Course of Study Process Engineering (Study Cohort w17)

Nontechnical Elective Complementary Courses for Master (from catalogue) - 6LP

Sample course plan B Master Process Engineering (VTMS) Specialisation Chemical Process Engineering

Legend:

Core qualification Compulsory	Specialisation Compulsory	Focus Compulsory	Thesis Compulsory
Core qualification Elective Compulsory	Specialisation Elective Compulsory	Focus Elective Compulsory	Interdisciplinary complement

LP	Semester 1	Form Hrs/w	kSemester 2	Form Hrs/w	kSemester 3	Form Hrs/w	kSemester 4 Form Hrs/w
1 2 3 4 5 6 7 8 9 10	Particle Technology and Solid Matter Pro Technology Advanced Particle Technology II Advanced Particle Technology II Experimental Course Particle Technology Transport Processes Heat & Mass Transfer in Process Engineering Multiphase Flows	VL 2 UE 1 PR 3	Advanced Chemical Reaction Engineering Chemical Reaction Engineering Chemical Reaction Engineering Experimental Course Chemical Engineering Bioprocess and Biosystems Engineering Bioreactor Design and Operation Bioreactor Design and Operation Biosystems Engineering	VL 2 HÜ 2 PR 2	Process Design Project Process Design Project Applied Thermodynamics: Thermodynam Properties for Industrial Applications Applied Thermodynamics: Thermodynamic Properties for Industrial Applications	PK 6	Master Thesis
12	Reactor Design Using Local Transport Processes	PBL 2	Biosystems Engineering	PBL 1	Applied Thermodynamics: Thermodynamic Properties for Industrial Applications	UE 2	
13 14 15 16 17 18	Process and Plant Engineering II	VL 2 HÜ 1 UE 1	Computer Aided Process Engineering (C CAPE with Computer Exercises Methods of Process Safety and Dangerous Substances	VL 2 VL 2	Synthesis and Design of Industrial Proce Synthesis and Design of Industrial Facilities Industrial Plant Design and Economics		
19 20 21 22 23 24	Fluid Mechanics in Process Engineering Fluid Mechanics II Applications of Fluid Mechanics in Process Engineering	VL 2 HÜ 2	Heterogeneous Catalysis Analysis and Design of Heterogeneous Catalytic Reactors Modern Methods in Heterogeneous Catalysis Modern Methods in Heterogeneous Catalysis	VL 2 VL 2 PR 2	Examples in Solid Process Engineering Fluidization Technology Technical Applications of Particle Technology Practical Course Fluidization Technology Exercises in Fluidization Technology	VL 2 VL 2 PR 1 UE 1	
25 26 27 28 29 30	Business & Management (from catalogue) - 6	d D			Research Project Process Engineering Research Project in Process Engineering	PBL 6	

The choice of courses from the catalogue is flexible (depends on the semestral work load), provided the necessary number of required credits is reached.