Program description

Content



Learning target

Graduates have acquired in-depth, wide-ranging engineering, mathematical and scientific knowledge that equips them to undertake scientific work and to act responsibly both professionally and in society. They have a critical awareness of more recent findings in their discipline. 

Graduates can:

  • Analyze problems scientifically and solve them even if they are unusually or incompletely defined and feature competing specifications;
  • Abstract and formulate complex problems in a new or developing area;
  • Apply innovative methods to solving basic research-oriented problems and develop new scientific methods.

Graduates can:

  • Develop concepts and solutions for basic research-oriented, and in some cases unusual, problems, bringing in other disciplines as appropriate;
  • Create and develop new products, processes and methods;
  • Apply their engineering judgment to work with complex, possibly incomplete information, to identify contradictions and deal with them.

Graduates can:

  • Recognize the need for information, find and source information;
  • Plan and execute theoretical and experimental investigations;
  • Critically assess data and draw conclusions from it;
  • Examine and evaluate the use of new and emerging technologies.

Over and above the qualifications gained on the Bachelor’s course, students can:

  • Methodically classify and systematically combine knowledge from different fields, and deal with complexity;
  • Familiarize themselves systematically and speedily with new tasks;
  • Reflect systematically on non-technical impacts of engineering activity and exercise a sense of responsibility in taking them into account in their actions.
  • Devise solutions requiring more detailed methodological competence.

The key qualifications for engineering practice acquired on the Bachelor’s course are augmented during the Master’s course.

By continually switching places of learnings throughout the dual study programme, it is possible for theory and practice to be interlinked. Students reflect theoretically on their individual professional practical experience, and apply the results of their reflection to new forms of practice. They also test theoretical elements of the course in a practical setting, and use their findings as a stimulus for theoretical debate.

Core Qualification

Module M0519: Particle Technology and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Advanced Particle Technology II (L0051) Project-/problem-based Learning 1 1
Advanced Particle Technology II (L0050) Lecture 2 2
Experimental Course Particle Technology (L0430) Practical Course 3 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Basic knowledge of solids processes and particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe and explain processes for solids processing in detail based on microprocesses on the particle level.
Skills Students are able to choose process steps and apparatuses for the focused treatment of solids depending on the specific characteristics. They furthermore are able to adapt these processes and to simulate them.
Personal Competence
Social Competence Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scientific researchers.
Autonomy Students are able to analyze and solve problems regarding solid particles independently or in small groups.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration fünf Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0051: Advanced Particle Technology II
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0050: Advanced Particle Technology II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Exercise in form of "Project based Learning"
  • Agglomeration, particle size enlargement
  • advanced particle size reduction
  • Advanced theorie of fluid/particle flows
  • CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling
  • Treatment of simulation problems with distributed properties, solution of population balances


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Course L0430: Experimental Course Particle Technology
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Fluidization
  • Agglomeration
  • Granulation
  • Drying
  • Determination of mechanical properties of agglomerats


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Module M0523: Business & Management

Module Responsible Prof. Matthias Meyer
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way around selected special areas of management within the scope of business management.
  • Students are able to explain basic theories, categories, and models in selected special areas of business management.
  • Students are able to interrelate technical and management knowledge.


Skills
  • Students are able to apply basic methods in selected areas of business management.
  • Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.


Personal Competence
Social Competence
  • Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems

Autonomy
  • Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.


Workload in Hours Depends on choice of courses
Credit points 6
Course L3065: Current Issues in Digital Economics B&M
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Dr. Christina Strobel
Language DE
Cycle WiSe
Content

Digital economics is the targeted approach to meeting human needs in the face of scarcity based on the use of digital information and communication technologies. The goal of the seminar is to discuss current issues in digital economics and their underlying economic theory. To do so, students will read a current popular science book (in German or English) as well as the relevant scientific literature (in English) prior to the seminar. During the seminar, individual topics will be presented by the students and critically discussed.

Literature
Course L2993: Current issues in behavioral economics
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Timo Heinrich
Language EN
Cycle WiSe/SoSe
Content
The goal of the seminar is to discuss current issues in behavioral and to shed light on their relationship to economic theory and our own behavior. Students will first read a current popular science book (in English) as well as the relevant scientific literature. Then the individual topics will be presented and critically discussed during the seminar. Furthermore, students will develop individual research questions.
Literature Wird noch bekanntgegeben.
Course L2860: Behavioral Online Experiments
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 5-seitige Ausarbeitung & 20-minütige Teampräsentation
Lecturer Dr. Christina Strobel
Language EN
Cycle SoSe
Content

The course offers an introduction to the methods and techniques of online experiments used in experimental Economics, Psychology, and Business Administration. The course is targeted at participants with no or limited experience. It pursues the agenda of providing the practical, theoretical and tool knowledge to find a research question, deduce hypotheses and design and run an experiment. Hence, the focus will be on general methodological, design and process issues. The course is not surveying the existing experimental evidence but rather pinpoints towards selected well knowns experiments. We will follow a learning-by-doing approach. We will have a short introduction to data evaluation using non-parametric statistics as well as to relevant software tools (oTree). At the end of this course you will have gained not only the know-how needed to develop and implement an experimental research design online but you have also gained the basic skills required to gather, analyze and interpret experimental data.

Literature

Webster, M., & Sell, J. (Eds.). (2014). Laboratory experiments in the social sciences. Elsevier.

Course L2546: Building Business Data Products
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2544: Business Data Science Basics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2545: Business Decisions with Machine Learning
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2722: Digitalization and the impact on people
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung (laut FPrO)
Examination duration and scale Ausarbeitung, 5 Seiten
Lecturer Robert Damköhler, Laura Noack
Language DE
Cycle SoSe
Content

Digital:
In this module we provide you with a practical overview of digital tools & methods, new business models & strategies, technological trends and legal aspects in 3 intensive phases - the conception, implementation and establishment of projects. The whole thing is consolidated with practical exercises, so that you already develop your own business model in the course of the seminar and test it on the market with the right techniques.

Human Factors:
With practical exercises, you will learn about methodical user-centredness through the user-centred design process and learn in which project phases, which UCD methods are useful to apply. In addition, you will get to know the subject area of "Human Factors" and understand why we also talk about socio-technical systems in digitalisation, why these represent an important success factor and which phases have to be gone through to integrate the principles into the organisational structure of a company.

New Leadership:
In the New Leadership module, you will learn about a new leadership approach that supports you in mastering the challenges of digitalisation. With the help of agile methodology and interactive exercises, you will learn how to anchor the principles of the new leadership approach and increase the empowerment and self-organisation of the team in order to create the framework for innovative work.

Literature

Digital:

  • Eine kurze Geschichte der Menschheit, Yuval Noah Harari
  • 21 Lektionen für das 21. Jahrhundert, Yuval Noah Harari
  • Eine kurze Geschichte der Digitalisierung, Martin Burckhardt
  • Digitale Fabrik, Uwe Bracht, Dieter Geckler und Gigrid Wenzel
  • Human Computer Interaction, R. Dix, Verlag: Pearson/Prentice Hall
  • The Mom Test: How to Talk to Customers & Learn if Your Business is a Good Idea When Everyone is Lying to You, Rob Fitzpatrick
  • Digitalisierungsstrategie entwickeln und umsetzen: Ein Praxisratgeber zur Entwicklung und Umsetzung der Digitalisierungsstrategie für die digitale Transformation, David Theil

Human Factors:

  • Ergonomie der Mensch-System-Interaktion, DIN EN ISO 9241, Deutsches Institut für Normung
  • Methoden der Usability Evalution: Wissenschaftliche Grundlagen und praktische Anwendung von Florian Sarodnic , Henning Brau, Verlag: Hogrefe AG
  • Introduction to Human Factors Engineering von Christopher D. Wicken, Verlag: Pearson
  • Sketching User Experiences von Bill Buxton, Verlag:mitp
  • Rapid Contextual Design von Karen Holtzblatt, Verlag: Elsevier Science & Technology
  • Wie User Testing in der Praxis wirklich funktioniert von M. Pirker, S. Rössler, M. Placho, A. Riedmüller, Verlag: Independently published (05.06.2019)
  • Wie User Experience in der Praxis wirklich funktioniert von M. Pirker, S. Rössler, M. Placho, A. Riedmüller, Verlag: Independently published (27.02.2018)
  • Schreckensberger, P., Schilbach, B., & Saier, T. (2015). Design Management: Zwischen Marken- & Produktsystemen (1. Aufl; P. Schreckensberger, Hrsg.). Norderstedt: Books on Demand.
  • Goodwin, K. (2009). Designing for the digital age: How to create human-centered products and services. Wiley Pub.
  • Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., & Dabney, J. (2014). Error Cost Escalation Through the Project Life Cycle. INCOSE International Symposium

New Leadership

  • Pink, D. H. (2011). Drive: The surprising truth about what motivates us. Penguin.
  • Sinek, S. (2009). Start with why: How great leaders inspire everyone to take action. Penguin.
  • Doerr, J. (2018). Measure what matters: OKRs: The simple idea that drives 10x growth. Penguin UK.
  • Darrell, K. R., Sutherland, J., & Takeuchi, H. (2016). Embracing agile. Harvard Business Review, 94(5), 41-50.
  • Sutherland, J. (2015). Die Scrum-Revolution: Management mit der bahnbrechenden Methode der erfolgreichsten Unternehmen. Campus Verlag.
  • Schwaber, K., & Sutherland, J. (2011). The scrum guide. Scrum Alliance, 21(1).
  • Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ... & Thomas, D. (2009). Agile manifesto, 2001. URL http://www. agilemanifesto. org.
  • Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard business review, 64(1), 137-146.
  • Medinilla, Á. (2012). Agile management: Leadership in an agile environment. Springer Science & Business Media.
  • Edmondson, A. C. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350−383.
  • Edmondson, A. C. (2003). Managing the risk of learning: Psychological safety in work teams. In M. West, D. Tjosvold, & K.G. Smith (Eds.), International handbook of organizational teamwork and cooperative working (pp. 255−276). John Wiley & Sons.
  • Harteis, C., Bauer, J., & Gruber, H. (2008). The culture of learning from mistakes: How employees handle mistakes in everyday work. International Journal of Educational Research, 47(4), 223−231.
Course L1703: Emotional Design / User Centered Product Development
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Teamarbeit und abschließender Vortrag
Lecturer Jörg Heuser
Language DE
Cycle SoSe
Content

Lecture

  • Objective and subjective perception for the evaluation of product characteristics
  • Effects of material, color, shape and structure to the acceptance of a product
  • Aesthetic function of a product
  • Case studies, lack of acceptance of a product and possible reason

Seminar

  • Identification of non-technical product functions
  • Identification of subjective influences for the product development

Project Work

  • Topics will be developed in cooperation with the students. Project works will be presented in teams, presented and evaluated
Exemplary Project: Holistic product evaluation, product optimization


Literature Wird in der Veranstaltung angegeben
Course L2348: Drivers of Success for Projects
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 0
Lecturer Dr. Alexander Kuhlicke, Stephan Meier
Language DE
Cycle WiSe
Content
Literature
Course L3123: Organizational Design for Innovation and Collaboration
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Tim Schweisfurth
Language EN
Cycle WiSe
Content
Literature
Course L2600: Green Economy - Entrepreneurship, Innovation & Technology Management
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Ausarbeitung und Gruppenpräsentation
Lecturer Prof. Michael Prange
Language EN
Cycle WiSe/SoSe
Content

Topics:

  • Green Economy
  • Business models
  • Business strategy
  • Green Technologies
  • Green Innovation
  • Business planning
  • Business development
  • Green Entrepreneurship

Based on examples and case studies primarily in the field of Green Economy, students learn the basics of Entrepreneurship, Innovation and Technology Management and will be able to develop business models, to evaluate start‐up projects and to describe strategic innovation processes.

Literature

Präsentationsfolien, Beispiele und Fallstudien aus der Lehrveranstaltung.

Presentation slides, examples, and case studies from the lecture.

Course L2347: Human resource management for engineers
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 0
Lecturer Helge Kochskämper
Language DE
Cycle WiSe
Content
Literature
Course L1711: Innovation Debates
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes
Lecturer Prof. Daniel Heiner Ehls
Language EN
Cycle WiSe
Content

Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow.

The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership.

Literature

1.       Course notes and materials provided before the lecture

2.       Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional)

Course L0940: Innovation Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Cornelius Herstatt
Language DE/EN
Cycle SoSe
Content Innovation is key to corporate growth and sustainibility. In this lecture Prof. Herstatt presents a systematic way from generating ideas to the successful implementation of innovations. The lecture is presented in German language only
Literature
  • Goffin, K., Herstatt, C. and Mitchell, R. (2009): Innovationsmanagement: Strategie und effektive Umsetzung von Innovationsprozessen mit dem Pentathlon-Prinzip, München: Finanzbuch Verlag

    Weiterführende Literatur
  • Innovationsmanagement
    Juergen Hauschildt
  • F + E Management
    Specht, G. / Beckmann, Chr.
  • Management der frühen Innovationsphasen
    Cornelius Herstatt, Birgit Verworn
    (im TUHH-Intranet auch als E-Book verfügbar)
  • Bringing Technology and Innovation Into the Boardroom
  • weitere Literaturempfehlungen auf Anfrage
Course L3093: Innovation Management (EN)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale NN
Lecturer Dr. Vytaute Dlugoborskyte
Language EN
Cycle SoSe
Content

The course aims to provide students with an understanding of key issues in the management of innovation and development of the relevant skills needed to manage innovation at both strategic and operational levels. It provides evidence of different approaches based on leading research, real world examples and experiences of firms and organizations from around the world. The management of innovation is one of the most important and challenging aspects of modern organization. Innovation is a fundamental driver of competitiveness and it plays a large part in improving quality of life. Innovation, and particularly technological innovation, is inherently difficult, uncertain and risky, and most new technologies fail to be translated into successful products and services. Given this, it is essential that students understand the strategies, tools and techniques for managing innovation, which often requires a different set of management knowledge and skills from those employed in everyday business administration. The course itself draws upon research activities of the Innovation Management Group within TUHH, the Institute for Technology and Innovation Management (TIM, W-7, www.tuhh.de/tim)

Knowledge Objectives:
1. Understand definitions and concepts of innovation,
2. Explore major models and theories of innovation,
3. Use and apply tools for innovation management.

Skill Objectives:
1. Diagnostic and analytical skills,
2. Enhance verbal skills through class and syndicate discussions,
3. Build up critical and interpretation skills,
4. Learn how to evaluate different options,
5. Formulate and develop strategy,
6. Assess and resolve managerial challenges.

Learning Outcomes
At the end of the course students will be able to demonstrate understanding, and make critical assessments of the following:
1. Assess and interpret innovation processes,
2. Develop and formulate managerial strategies to shape innovative performance,
3. Utilize tools of innovation management to map and measure innovative activities,
4. Diagnose different innovation challenges and make recommendations for resolving them.

Course Outline - Lecture Topics:
1. The Management of (Technological) Innovation,
2. Strategy and Organization for Innovation,
3. Innovation of Products, Services and Business Models,
4. Managing the Innovation Process,
5. Networks, Communities of Innovators and Lead User-Innovation,
6. Innovation in the Age of Circular Economy (C2C),
7. Market-Research for Innovation and Design-thinking,
8. Capturing value from R&D, Open Innovation and IP,
9. Creativity and mindfulness in Innovation,
10. Conclusions and Future Challenges.

Literature

Wir werden wichtige Themen auf der Grundlage wichtiger Forschungsarbeiten im Bereich des Innovationsmanagements diskutieren (wird den Studierenden über StudIP zur Verfügung gestellt). Darüber hinaus umfasst die Grundlagenliteratur die folgenden Themen:
1. Dodgson, M. Gann, D. and Salter A. The management of technological innovation: strategy and practice. Oxford University Press, 2008.
2. Tidd, J., Bessant, J. and Pavitt, K.: Managing Innovation: Integrating technological, market and organizational change. 5th ed., John Wiley and Sons, 2013.
3. Goffin, K., Mitchell, R.: Innovation Management: Effective strategy and implementation. 3rd ed., Macmillan Education, 2016.

Course L0161: Internationalization Strategies
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten)
Lecturer Prof. Thomas Wrona
Language EN
Cycle SoSe
Content
  • Introduction
  • Internationalization of markets
  • Measuring internationalization of firms
  • Target market strategies
  • Market entry strategies
  • Timing strategies
  • Allocation strategies
  • Working in small teams on close-to-reality problems based on presented theories
  • Paper writing on developed solution to the given problem/project e.g. market attractiveness analysis; development of market entry strategy for a hypothetical product in a given region
Literature
  • Bartlett/Ghoshal (2002): Managing Across Borders, The Transnational Solution, 2nd edition, Boston
  • Buckley, P.J./Ghauri, P.N. (1998), The Internationalization of the Firm, 2nd edition
  • Czinkota, Ronkainen, Moffett, Marinova, Marinov (2009), International Business, Hoboken
  • Dunning, J.H. (1993), The Globalization of Business: The Challenge of the 1990s, London
  • Ghoshal, S. (1987), Global Strategy: An Organizing Framework, Strategic Management Journal, p. 425-440
  • Praveen Parboteeah, K.,Cullen, J.B. (2011) , Strategic International Management, International 5th Edition
  • Rugman, A.M./Collinson, S. (2012): International Business, 6th Edition, Essex 2012
Course L3060: Causal Data Science for Business Analytics
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Mehrere schriftliche Ausarbeitungen über das Semester hinweg verteilt
Lecturer Oliver Mork
Language EN
Cycle WiSe
Content

Most managerial decision problems require answers to questions such as “what happens to Y if we do X?”, or “was it X that caused Y to change?” In other words, practical business decision-making requires knowledge about cause-and-effect. While most data science and machine learning approaches are designed to efficiently detect patterns in high-dimensional data, they are not able to distinguish causal relationships from simple correlations. That means, commonly used approaches to business analytics often fall short to provide decision makers with important causal knowledge. Therefore, many leading companies currently try to develop specific causal data science capabilities. This module will provide an introduction into the topic of causal inference with the help of modern data science and machine learning approaches and with a focus on applications to practical business problems from various management areas. Based on an overarching framework for causal data science, the course will guide students to detect sources of confounding influence factors, understand the problem of selective measurement in data collection, and extrapolate causal knowledge across different business contexts. We also cover several tools for causal inference, such as A/B testing and experiments, difference-in-differences, instrumental variables, matching, regression discontinuity designs, etc. A variety of hands-on examples will be discussed that allow students to apply their newly obtained knowledge and carry out state-of-the-art causal analyses by themselves.

Literature
Course L0863: Marketing
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Christian Lüthje
Language EN
Cycle WiSe
Content

Contents

Basics of Marketing

The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling

Strategic Marketing Planning

How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership  strategies?

Market-oriented Design of products and services

How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products?

Pricing

What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)?

Marketing Communication

What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations?

Sales and Distribution

How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets?


Knowledge

Students will gain an introduction and good overview of

  • Specific challenges in the marketing of innovative goods and services
  • Key strategic areas in strategic marketing planning (cooperation, internationalization, timing)
  • Tools for information gathering about future customer needs and requirements
  • Fundamental pricing theories and pricing methods
  • Main communication instruments
  • Marketing channels and main organizational issues in sales management
  • Basic approaches for managing customer relationship

Skills

Based on the acquired knowledge students will be able to:

  • Design market timing decisions
  • Make decisions for marketing-related cooperation and internationalization activities
  • Manage the challenges of market-oriented development of new products and services
  • Translate customer needs into concepts, prototypes and marketable offers
  • Determine the perceived quality of an existing product or service using advanced elicitation and measurement techniques that fit the given situation
  • Analyze the pricing alternatives for products and services
  • Make strategic sales decisions for products and services (i.e. selection of sales channels)
  • Analyze the value of customers and apply customer relationship management tools

Social Competence

The students will be able to

  • have fruitful discussions and exchange arguments
  • present results in a clear and concise way
  • carry out respectful team work

Self-reliance

The students will be able to

  • Acquire knowledge independently in the specific context and to map this knowledge on other new complex problem fields.
  • Consider proposed business actions in the field of marketing and reflect on them.



Literature

Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431

Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004,  p. 106-110

Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155

Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116


Course L3140: Sustainable corporate governance in practice
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 60 Minuten
Lecturer Stefan Klebert
Language DE
Cycle SoSe
Content
Literature
Course L3125: Open and Collaborative Innovation
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Tim Schweisfurth
Language EN
Cycle SoSe
Content
Literature
Course L2350: Operational Leadership
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Dr. Thomas Kosin
Language DE
Cycle WiSe
Content
  • Leadership & its Environment - Führung & Führungsumfeld
  • Motivation
  • Lead Yourself - Selbstführung
  • Leadership Theories & Styles - Führungstheorien und -stile
  • Team Leadership - Team & Führung
  • Lead Change - Wandel herbeiführen
  • Operational Change - Veränderung im Unternehmen umsetzen
  • Develop Leadership - Führungsworkshop
Literature

Czikszentmihalyi, Mihalyi (2014): Flow im Beruf oder Das Geheimnis des Glücks am Arbeitsplatz,
Klett-Cotta, 1. Auflage

Drucker, Peter F. (1999): Manage Oneself, Harvard Business School, On Managing Yourself, S.13-32

Dweck, Carol (2017): Selbstbild - Wie unser Denken Erfolge oder Niederlagen bewirkt, Piper-Verlag (engl. Original: Mindset - The new psychology of success)

Goleman, Daniel (2000): Leadership that gets results, Harvard Business School, On Managing People, S.1-14

Laloux, Frederic (2015): Reinventing Organizations, Verlag Franz Vahlen

McKee, Annie (2014): A focus on leaders, Pearson Education Ltd., 2. Auflage

Northouse, Peter G. (2019): Leadership - Theory & Practise, Sage Publications, 8. Auflage

Robbins, Stephen P., Coulter, Mary, Fischer, Ingo (2014): Management -  Grundlagen der Unternehmensführung, , Pearson Deutschland GmbH, 12. Auflage (engl. Original: Management, 2007, Pearson Prentice Hall, 9. Auflage)
Course L0709: Project Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Carlos Jahn
Language EN
Cycle WiSe
Content

The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event.

The following topics will be covered in the lecture:

  • SMART, Work Breakdown Structure, Operationalization, Goals relation matrix
  • Metra-Potential Method (MPM), Critical-Path Method (CPM), Program evaluation and review technique (PERT)
  • Milestone Analysis, Earned Value Analyis (EVA)
  • Progress reporting, Tracing of project goals, deadlines and costs, Project Management Control Loop, Maturity Level Assurance (MLA)
  • Risk Management, Failure Mode and Effects Analysis (FMEA), Risk Matrix

Literature

Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute.

DeMarco, Tom (1997). The Deadline: A Novel About Project Management.

DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5)

Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management.

Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung

Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach.

Heyworth, Frank (2002). A Guide to Project Management.

ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E))

Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling.

Lock, Dennis (2018). Project Management.

Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager.

Murch, Richard (2011). Project Management: Best Practices for IT Professionals.

Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen.

Course L1385: Project Management in Industrial Practice
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Gruppenarbeit: Erstellung eines Poster sowie eines Aufgabenblatts (inkl. Lösungen)
Lecturer Dipl.-Ing. Wilhelm Radomsky
Language DE
Cycle WiSe
Content

The event will cover current knowledge and trends in project management:

  Basics of project management (competences, methods, tools) are practised, e.g. EVA, MTA, KTA, FMEA, PDCA, MPM
  Project management culture with lessons learned, optimisation of theory and process
  Project management theory mirrored by experiences from project management practice
  Development, implementation and operation of a PM system in small and large companies, e.g. Siemens

The aim is to inform about current challenges in PM.

    Modern agile project management in dynamic markets
    Meeting challenges in turbulent times, project management in VUCA and BANI environments
    Managing change and transformation
    Securing the future through professional action
    Ensuring health and results in job and project

With the main topics

    Project management in industry, SMEs, studies and private life
    Project life cycle, process and organisation, agile or 'agile'
    Integration, content and scope management, environment and stakeholder management
    Contract, risk and change management
    Schedule, cost and personnel management
    Quality management, success factors in the project environment
    The human factor, corporate culture
    Communication management, team development, leadership theories

Project management is presented as a proven means of solving tasks and problems in private and professional environments. Project management is increasingly used as an agile goal-oriented leadership concept in companies and businesses. The participants are presented with competences and solutions to better cope with their tasks. The application of project management can already lead to an improvement of structure, communication and results during studies and prepare for the start of a career. The lecture serves as a basis for project management certification with the corresponding certification bodies such as GPM or PMI. The project management process is presented according to the basic international project management standards of IPMA and PMI and the Siemens project management system adapted for practical use.

Literature
  • PMI - PMBOK-Guide 7th Edition (A Guide to the Project Management Body of Knowledge) 2021
  • GPM - Kompetenzbasiertes Projektmanagement (PM4) 2019
  • Bea/Scheurer/Hesselmann - Projektmanagement 2019
  • Kerzner, Harold - Projektmanagement 2022
Course L1897: Project Management and Agile Methods
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten)
Lecturer Christian Bussler
Language DE
Cycle SoSe
Content

The Seminar teaches the basics of project management, which constitutes the foundations for technical as well as for business projects. It also includes a sideline about process management. The participants will work on the following questions:

  • What is a project and what challenges does it imply?
  • What methods have been developed to meet those challenges?
  • How have this methods evolved over time? What is “state of the art” today?
  • What basic skills should project members have?
  • What is the difference between project and process? How can the latter be analyzed?

The approaches are not just taught theoretically, but put to use in group work. Through this approach, participants are enabled to work successfully on actual projects - and manage projects later on. As project work is increasingly important in work life, project management is a key skill for job applicants.

Main topics of the seminar include:

  • The “magic triangle” of project objectives
  • Typical project phases
  • Key instruments and methods (project structure plan, RACI, Gantt chart)
  • Project organization and steering
  • Team communication and collaboration
  • The agile approach of Scrum
  • Process levels and cascading
  • Process improvement

With the knowledge and experience from the seminar, participants should be able to acquire a basic certificate in project management with relatively little additional effort. The certification is available through institutions like GPM.

Participants already start working on their homework paper in the group work. It comprises 5 to 10 pages and a structure plan for the chosen project, which can be done in Excel for example. Ideally, the members of the work groups write their homework paper together. The expected scale of the paper would increase in this case, yet not proportionally with the number of group members (4 participants would be expected to hand in a paper of 15-20 pages).

Literature

Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015

Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014

GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014

Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007

Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/

Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010

Course L2349: Accounting and Financial Statements
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Matthias Meyer
Language DE
Cycle WiSe/SoSe
Content
Literature
Course L1133: Law for Engineers
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 90 Minuten
Lecturer Markus A. Meyer-Chory
Language DE
Cycle WiSe
Content
  • Refreshment:  Basics of Law
  • Legal relevance of Engineers cases and actions: Contract Law, Liabilities - also for products, labor law, patent law, companies law
Literature

Notwendiger Gesetzestext (in Klausur erlaubt):

Bürgerliches Gesetzbuch 72. Auflage , 2013  , dtv Beck-Texte  5001,  ISBN 978-3-406-65707-8

Empfohlene Gesetzestexte:Arbeitsgesetze 83. Auflage, 2013  dtv Beck-Texte  5006   ISBN 978-3-406-65689-7
Handelsgesetzbuch 54. Auflage, 2013   
dtv Beck Texte  5002  ISBN 978-3-406-65083-3
Gesellschaftsrecht, 13. Auflage , 2013  dtv Beck Texte  5585   ISBN 978-3-406-64502-0
Wettbewerbsrecht, Markenrecht und Kartellrecht , 33. Auflage, 2013  dtv Beck Texte    ISBN 978-3-406-65212-7

Empfohlene Literatur: 

Vock, Willi,  
Recht der Ingenieure, 1. Auflage 2012, Boorberg Verlag , ISBN-10:3-415-04535-8  --- EAN:9783415045354

Meurer Rechtshandbuch für Architekten und Ingenieure 1…Auflage  -- erscheint  Anfg 2014      Werner Verlag   ISBN 978-3-8041-4342-5
Eisenberg / Gildeggen / Reuter / Willburger  Produkthaftung 2. Auflage - erscheint Anfg 2014    Oldenbourg Verlag - ISBN 978-3-486-71324-4
ENDERS/HETGER, Grundzüge der betrieblichen Rechtsfragen, 4. Auflage, 2008 Richard Boorberg Verlag - ISBN 978-3-415-04005-2
Müssig, Peter,  Wirtschaftsprivatrecht,  15. Auflage, 2012 ,  C.F. Müller   UTB  - ISBN  978-3-81149476-3
Schade, Friedrich, Wirtschaftsprivatrecht,  2. Auflage 2009,  Kohlhammer - ISBN  978-3-17-021087-5 



Course L1389: Key Aspects of Patent Law
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Christian Rohnke
Language DE
Cycle SoSe
Content

Mayor Issues in Patent Law:

The seminar covers five mayor issues in german patent law, namely patentatbility, prosecution, ownership and employee inventions, infringement and licensing and other commercila uses.

The lecturer will give an introduction to each issue which will be followed by in-depth inquiry by the participants through group work, presentation of results and moderated discussion.


Literature wird noch bekannt gegeben
Course L2982: Startup Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Christoph Ihl, Dr. Hannes Lampe
Language EN
Cycle WiSe
Content
Literature
Course L2409: Strategic Shared-Value Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Dr. Jill Küberling-Jost
Language EN
Cycle WiSe/SoSe
Content
Literature
Course L2295: Strategic Planning with Simulation Games
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Dr. Jan Spitzner
Language DE
Cycle SoSe
Content
Literature
Course L1351: Management Consulting
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Gerald Schwetje
Language DE
Cycle SoSe
Content

The Management Consulting lecture teaches students knowledge that is complementary to their technical and business administration studies. They learn the basics of consulting and agent-principal theory and are given an overview of the consulting market. They are also shown how management consulting works and which methodical building blocks (processes) are needed to deal with a client’s concerns and to undertake a consulting process. By means of practical examples students gain an insight into the extensive range of management consultancy services and of functional consulting.

Literature

Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008

Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008

Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009

Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003

Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992

Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008

Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991

Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996

Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997

Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005

Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013

Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011

Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011

Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011

Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012

Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010

Course L2669: Negotiation Management
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorbereitung, Durchführung und Selbstreflektion zu einer simulierten Verhandlungssituation. Die fiktive Verhandlung hat einen Umfang von 4 ½ Präsenzstunden und erfordert ausführliche Vor- und Nachbereitung im Umfang von ca. 3 x 2 Stunden. Zum Abschluss ist ein Reflektionsbericht einzureichen. Weitere Prüfungsleistungen werden im Rahmen von Lernfortschrittsabfragen entlang der Vorlesung erbracht.
Lecturer Prof. Christian Lüthje
Language EN
Cycle WiSe
Content

General description of course content and course goals

We negotiaate everday in privat and professional contexts. Leading negotiations successfully has a significant impact on future careers. Yet, we tend to have limited knowledge about the theory and empirical evidence regarding successful negotiating. Many people approach negotiations in a rather intuitive and unplanned way which often results in sub-optimal negotiation outcomes.

The purpose of this interactive and problem-based course is to theortically understand the strategies and process of negotiation as practiced in a variety of business-related settings (e.g. negotiations about working conditions, negotiations with customers and suppliers). The course will highlight the components of an effective negotiation (strategy, perparation, execution, evaluation) and offer the students the opportunity to analyze their own behavior in negotiations in order to improve.

The course structure is experiential and problem-based, combining lectures, class discussion, mini-cases and small erxercises, and more comprehensive negotiation practices in longer sessions. Through participation in negotiation exercises, students will have the opportunity to practice their communication and persuasion skills and to experiment with a variety of negotiating strategies and tactics. Students will apply the lessons learned to ongoing, real-world negotiations.


Content:

The students will find answers to the following fundamental questions of negotiation strategies in theory and practice:

  • How do negotiations influence everyday life and business processes?
  • What are key features of negotiations?
  • What are different forms of negotiations? What kinds of negotiation can be distinguished?
  • Which theoretical approaches to a theory of negotiation can be distinguished?
  • How can game theory be applied to negotiation?
  • What makes an effective negotiator?
  • Which factors should be considered when planning negotiations?
  • What steps must be followed to reach a deal?
  • Are there specific negotiation tactics?
  • What are the typical barriers to an agreement and how to deal with them?
  • What are possible cognitive (mental) errors and how to correct them?

Knowledge

Students know...

  • the theory basics of negotiations (e.g. game theory, behavioral theories)
  • the types and the pros and cons of diffrent negotiation strategies
  • the process of negotiation, inlcuding goal formulation, preparation/planning, execution and evaluation 
  • about some key issues impacting negotiations (e.g. team building and roles, barriers to reaching a deal, cognitive biases, multi-phase negotiations)

Skills

Students are capable of...

  • simultaneously considering multiple factors in negotiation situations and taking reasoned actions when preparing and conducting negotiations.
  • Analyzing and handling the key challenges of uncertainty, risk, intercultural differences, and time pressure in realistic negotiation situations.
  • assessing the typical barriers to an agreement (e.g. lack of trust), dealing with hardball tactics (e.g. good cop, bad cop; lowball, highball; intimidation), and avoiding cognitive traps (e.g. unchecked emotions, overconfidence).
  • reflecting on their decision-making in uncertain negotiation situations and derive actions for future decisions.

Social Competence

Students can...

  • provide appropriate feedback and handle feedback on their own performance constructively.
  • constructively interact with their team members in role playing in negotiations sessions
  • develop joint solutions in mixed teams and present them to others in real-world negotiation situatio

    Self-Reliance

    Students are able to...

    • assess possible consequences of their own negotiation behavior
    • define own positions and tasks in the negotiation preparation process.
    • justify and make elaborated decisions in authentic negotiation situations.




Literature

R.J. Lewicki / B. Barry / D.M. Saunders: Negotiation. Sixth Edition, McGraw-Hill, Boston, 2010.

H. Raiffa: Negotiation analysis. Belknap Press of Harvard Univ. Press, Cambridge, Mass, 2007.

R. Fisher / W. Ury: Getting to yes. Third edition. Penguin, New York, 2011.

M. Voeth / U. Herbst: Verhandlungsmanagement: Planung, Steuerung und Analyse. Schäffer-Poeschel, Stuttgart, 2009.

Course L1132: Civil- & Business Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 90 Minuten
Lecturer Markus A. Meyer-Chory
Language DE
Cycle SoSe
Content

- Basics of German Law System

- Basic concepts and Systematics of Civil-, Commercial-, Companies- and Labor Law by specific bullet points, i.e. Insurance law, etc.


                                            

Literature folgt im Seminar
Course L1381: Public and Constitutional Law
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 2 Stunden
Lecturer Klaus-Ulrich Tempke
Language DE
Cycle WiSe/SoSe
Content

Different areas of public law; proceedings, jurisdiction of administrative courts with stages of appeal,
members of the courts;
Court levels, organization and legal capacity;
lntroduction to and structure of fundamental rights;
Human dignity: the guiding principle of the constitution;
General right of privacy and freedom of action.

Literature

Module M0541: Process and Plant Engineering II

Courses
Title Typ Hrs/wk CP
Process and Plant Engineering II (L0097) Lecture 2 4
Process and Plant Engineering II (L0098) Recitation Section (large) 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

unit operation of thermal and mechanical separation

chemical reactor engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

-present process control concepts of apparatus and complex process plants

- classifyprocess models and model equations

- explain  numerical methods and their use in simulation tasks

- explain the solving strategy  of flowsheet simulation

- explain, present and discuss projects phases within the planning of processes

- present and explain the critical path method

Skills

students are capable of:

- formulation of targets of process control concepts and the translation into industrial practice

- design and evaluation of process control concepts and structures

- analyse the model structure ans parameters from the process simulation

- optimization of calculation sequence with respect to flowsheet simulation

Personal Competence
Social Competence

students are capable of:

  • develop solutions in heterogeneous small groups
Autonomy

students are capable of:

  • taping new knowledge on a special subject by literature research
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 Min.
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0097: Process and Plant Engineering II
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle WiSe
Content
  1. Process optimization
    Application areas
    Formulation of constrained optimization
    Solving strategy
    Classes of optimization tasks
  2. Process control
    Typical control functions of equipment and apparatus in process engineering
    Structures of control systems
    Plantwide control
  3. Process Modeling
    Process models (steady state and dynamic behaviour)
    Degrees of freedom
    Examples from industrial practice
  4. Process simulation
    Structured approach
    Numerical methods
    Flowsheeting
    Solution methods
    Examples for experimental validation in industrial practice
    Application of flowsheet simulation
  5. Plant design and construction
    Introduction
    Industrial project implementation
    Project execution: Applied aspects in industrial use
    critical path method
Literature

Literatur (Planung und Bau von Produktionsanlagen): 

G. Barnecker, Planung und Bau verfahrenstechnischer Anlagen, Springer Verlag, 2001

F.P. Helmus, Anlagenplanung, Wiley-VCH Verlag, Weinheim, 2003

E. Klapp, Apparate- und Anlagentechnik, Springer -Verlag,  Berlin, 1980

P. Rinza, Projektmanagement: Planung, Überwachung und Steuerung von technischen

und nichttechnischen Vorhaben, Düsseldorf,VDI-Verlag, 1994

K. Sattler, W. Kasper, Verfahrentechnische Anlagen, Wiley-VCH Verlag, Weinheim, 2000

G.H. Vogel, Verfahrensentwicklung, Wiley-VCH, Weinheim, 2002

K.H. Weber, Inbetriebnahme verfahrenstechnischer Anlagen, VDI Verlag, Düsseldorf, 1996

E. Wegener, Montagegerechte Anlagenplanung, Wiley-VCH Verlag, Weinheim, 2003





Course L0098: Process and Plant Engineering II
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0540: Transport Processes

Courses
Title Typ Hrs/wk CP
Multiphase Flows (L0104) Lecture 2 2
Reactor Design Using Local Transport Processes (L0105) Project-/problem-based Learning 2 2
Heat & Mass Transfer in Process Engineering (L0103) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe transport processes in single- and multiphase flows and they know the analogy between heat- and mass transfer as well as the limits of this analogy.
  • explain the main transport laws and their application as well as the limits of application.
  • describe how transport coefficients for heat- and mass transfer can be derived experimentally.
  • compare different multiphase reactors like trickle bed reactors, pipe reactors, stirring tanks and bubble column reactors.
  • are known. The Students are able to perform mass and energy balances for different kind of reactors. Further more the industrial application of multiphase reactors for heat- and mass transfer are known.
Skills

The students are able to:

  • optimize multiphase reactors by using mass- and energy balances,
  • use transport processes for the design of technical processes,
  • to choose a multiphase reactor for a specific application.


Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to define independently tasks, to solve the problem "design of a multiphase reactor". The knowledge that s necessary is worked out by the students themselves on the basis of the existing knowledge from the lecture. The students are able to decide by themselves what kind of equation and model is applicable to their certain problem. They are able to organize their own team and to define priorities for different tasks.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 15 min Presentation + 90 min multiple choice written examen
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0104: Multiphase Flows
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content
  • Interfaces in MPF (boundary layers, surfactants)
  • Hydrodynamics & pressure drop in Film Flows
  • Hydrodynamics & pressure drop in Gas-Liquid Pipe Flows
  • Hydrodynamics & pressure drop in Bubbly Flows
  • Mass Transfer in Film Flows
  • Mass Transfer in Gas-Liquid Pipe Flows
  • Mass Transfer in Bubbly Flows
  • Reactive mass Transfer in Multiphase Flows
  • Film Flow: Application Trickle Bed Reactors
  • Pipe Flow: Application Turbular Reactors
  • Bubbly Flow: Application Bubble Column Reactors
Literature

Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
Clift, R.; Grace, J.R.; Weber, M.E.: Bubbles, Drops and Particles, Academic Press, New York, 1978.
Fan, L.-S.; Tsuchiya, K.: Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth-Heinemann Series in Chemical Engineering, Boston, USA, 1990.
Hewitt, G.F.; Delhaye, J.M.; Zuber, N. (Ed.): Multiphase Science and Technology. Hemisphere Publishing Corp, Vol. 1/1982 bis Vol. 6/1992.
Kolev, N.I.: Multiphase flow dynamics. Springer, Vol. 1 and 2, 2002.
Levy, S.: Two-Phase Flow in Complex Systems. Verlag John Wiley & Sons, Inc, 1999.
Crowe, C.T.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, Fla, 1998.

Course L0105: Reactor Design Using Local Transport Processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content

In this Problem-Based Learning unit the students have to design a multiphase reactor for a fast chemical reaction concerning optimal hydrodynamic conditions of the multiphase flow. 

The four students in each team have to:

  • collect and discuss material properties and equations for design from the literature,
  • calculate the optimal hydrodynamic design,
  • check the plausibility of the results critically,
  • write an exposé with the results.

This exposé will be used as basis for the discussion within the oral group examen of each team.

Literature see actual literature list in StudIP with recent published papers
Course L0103: Heat & Mass Transfer in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content
  • Introduction - Transport Processes in Chemical Engineering
  • Molecular Heat- and Mass Transfer: Applications of Fourier's and Fick's Law
  • Convective Heat and Mass Transfer: Applications in Process Engineering
  • Unsteady State Transport Processes: Cooling & Drying
  • Transport at fluidic Interfaces: Two Film, Penetration, Surface Renewal
  • Transport Laws & Balance Equations  with turbulence, sinks and sources
  • Experimental Determination of Transport Coefficients
  • Design and Scale Up of Reactors for Heat- and Mass Transfer
  • Reactive Mass Transfer 
  • Processes with Phase Changes – Evaporization and Condensation 
  • Radiative Heat Transfer - Fundamentals
  • Radiative Heat Transfer - Solar Energy

Literature
  1. Baehr, Stephan: Heat and Mass Transfer, Wiley 2002.
  2. Bird, Stewart, Lightfood: Transport Phenomena, Springer, 2000.
  3. John H. Lienhard: A Heat Transfer Textbook,  Phlogiston Press, Cambridge Massachusetts, 2008.
  4. Myers: Analytical Methods in Conduction Heat Transfer, McGraw-Hill, 1971.
  5. Incropera, De Witt: Fundamentals of Heat and Mass Transfer, Wiley, 2002.
  6. Beek, Muttzall: Transport Phenomena, Wiley, 1983.
  7. Crank: The Mathematics of Diffusion, Oxford, 1995. 
  8. Madhusudana: Thermal Contact Conductance, Springer, 1996.
  9. Treybal: Mass-Transfer-Operation, McGraw-Hill, 1987.




Module M0542: Fluid Mechanics in Process Engineering

Courses
Title Typ Hrs/wk CP
Applications of Fluid Mechanics in Process Engineering (L0106) Recitation Section (large) 2 2
Fluid Mechanics II (L0001) Lecture 2 4
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-III
  • Fundamentals in Fluid Mechanics
  • Technical Thermodynamics I-II
  • Heat- and Mass Transfer
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe different applications of fluid mechanics in Process Engineering, Bioprocess Engineering, Energy- and Environmental Process Engineering and Renewable Energies. They are able to use the fundamentals of fluid mechanics for calculations of certain engineering problems. The students are able to estimate if a problem can be solved with an analytical solution and what kind of alternative possibilities are available (e.g. self-similarity in an example of free jets, empirical solutions in an example with the Forchheimer equation, numerical methods in an example of Large Eddy Simulation.

Skills

Students are able to use the governing equations of Fluid Dynamics for the design of technical processes. Especially they are able to formulate momentum and mass balances to optimize the hydrodynamics of technical processes. They are able to transform a verbal formulated message into an abstract formal procedure.

Personal Competence
Social Competence

The students are able to discuss a given problem in small groups and to develop an approach.

Autonomy

Students are able to define independently tasks for problems related to fluid mechanics. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0106: Applications of Fluid Mechanics in Process Engineering
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle WiSe
Content The Exercise-Lecture will bridge the gap between the theoretical content from the lecture and practical calculations. For this aim a special exercise is calculated at the blackboard that shows how the theoretical knowledge from the lecture can be used to solve real problems in Process Engineering.
Literature
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  
  14. White, F.: Fluid Mechanics, Mcgraw-Hill, ISBN-10: 0071311211, ISBN-13: 978-0071311212, 2011.
Course L0001: Fluid Mechanics II
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle WiSe
Content
  • Differential equations for momentum-, heat and mass transfer   
  • Examples for simplifications of the Navier-Stokes Equations 
  • Unsteady momentum transfer
  • Free shear layer, turbulence and free jets
  • Flow around particles - Solids Process Engineering
  • Coupling of momentum and heat transfer - Thermal Process Engineering
  • Rheology – Bioprocess Engineering
  • Coupling of momentum- and mass transfer – Reactive mixing, Chemical Process Engineering 
  • Flow threw porous structures - heterogeneous catalysis
  • Pumps and turbines - Energy- and Environmental Process Engineering 
  • Wind- and Wave-Turbines - Renewable Energy
  • Introduction into Computational Fluid Dynamics

Literature
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  

Module M1759: Linking theory and practice (dual study program, Master's degree)

Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical modules as part of the dual Bachelor’s course
  • Module "interlinking theory and practice as part of the dual Master’s course"
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

… can describe and classify selected classic and current theories, concepts and methods 

  • related to project management and
  • change and transformation management

... and apply them to specific situations, processes and plans in a personal, professional context.


Skills

Dual students …

  • ... anticipate typical difficulties, positive and negative effects, as well as success and failure factors in the engineering sector, evaluate them and consider promising strategies and courses of action.
  • … develop specialised technical and conceptual skills to solve complex tasks and problems in their professional field of activity/work.
Personal Competence
Social Competence

Dual students …

  • … can responsibly lead interdisciplinary teams within the framework of complex tasks and problems.
  • … engage in sector-specific and cross-sectoral discussions with experts, stakeholders and staff, representing their approaches, points of view and work results.
Autonomy

Dual students …

  • … define, reflect and evaluate goals and measures for complex application-oriented projects and change processes.
  • … shape their professional area of responsibility independently and sustainably.
  • … take responsibility for their actions and for the results of their work.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz.
Course L2890: Responsible Project Management in Engineering (for Dual Study Program)
Typ Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Henning Haschke, Heiko Sieben
Language DE
Cycle WiSe/SoSe
Content
  • Theories and methods of project management
  • Innovation management
  • Agile project management
  • Fundamentals of classic and agile methods
  • Hybrid use of classic and agile methods  
  • Roles, perspectives and stakeholders throughout the project
  • Initiating and coordinating complex engineering projects
  • Principles of moderation, team management, team leadership, conflict management
  • Communication structures: in-house, cross-company
  • Public information policy
  • Promoting commitment and empowerment
  • Sharing experience with specialists and managers from the engineering sector
  • Documenting and reflecting on learning experiences
Literature

Seminarapparat

Course L2891: Responsible Change and Transformation Management in Engineering (for Dual Study Program)
Typ Seminar
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Henning Haschke, Heiko Sieben
Language DE
Cycle WiSe/SoSe
Content
  • Basic concepts, opportunities and limits of organisational change 
  • Models and methods of organisational design and development
  • Strategic orientation and change, and their short-, medium- and long-term consequences for individuals, organisations and society as a whole
  • Roles, perspectives and stakeholders in change processes
  • Initiating and coordinating change measures in engineering
  • Phase models of organisational change (Lewin, Kotter, etc.) 
  • Change-oriented information policy and dealing with resistance and uncertainty 
  • Promoting commitment and empowerment
  • Successfully handling change and transformation: personally, as an employee, as a manager (personal, professional, organisational)
  • Company-level and globally (systemic)
  • Sharing experience with specialists and managers from the engineering sector
  • Documenting and reflecting on learning experiences
Literature Seminarapparat

Module M1756: Practical module 1 (dual study program, Master's degree)

Courses
Title Typ Hrs/wk CP
Practical term 1 (dual study program, Master's degree) (L2887) 0 10
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of a compatible dual B.Sc. at TU Hamburg or comparable practical work experience and competences in the area of interlinking theory and practice
  • Course D from the module on interlinking theory and practice as part of the dual Master’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity in engineering. 
  • … have a critical understanding of the practical applications of their engineering subject.
Skills

Dual students …

  • … apply technical theoretical knowledge to complex, interdisciplinary problems within the company, and evaluate the associated work processes and results, taking into account different possible courses of action.
  • … implement the university’s application recommendations with regard to their current tasks. 
  • … develop solutions as well as procedures and approaches in their field of activity and area of responsibility.
Personal Competence
Social Competence

Dual students …

  • … work responsibly in project teams within their working area and proactively deal with problems within their team. 
  • … represent complex engineering viewpoints, facts, problems and solution approaches in discussions with internal and external stakeholders.
Autonomy

Dual students …

  • … define goals for their own learning and working processes as engineers.
  • … reflect on learning and work processes in their area of responsibility.
  • … reflect on the relevance of subject modules specialisations and specialisation for work as an engineer, and also implement the university’s application recommendations and the associated challenges to positively transfer knowledge between theory and practice.
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Credit points 10
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy Systems: Core Qualification: Compulsory
Environmental Engineering: Core Qualification: Compulsory
Aircraft Systems Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Information and Communication Systems: Core Qualification: Compulsory
International Management and Engineering: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Core Qualification: Compulsory
Materials Science: Core Qualification: Compulsory
Mechanical Engineering and Management: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Biomedical Engineering: Core Qualification: Compulsory
Microelectronics and Microsystems: Core Qualification: Compulsory
Product Development, Materials and Production: Core Qualification: Compulsory
Renewable Energies: Core Qualification: Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L2887: Practical term 1 (dual study program, Master's degree)
Typ
Hrs/wk 0
CP 10
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe/SoSe
Content

Company onboarding process

  • Assigning a professional field of activity as an engineer (B.Sc.) and associated fields of work
  • Establishing responsibilities and authorisation of the dual student within the company as an engineer (B.Sc.)
  • Working independently in a team and on selected projects - across departments and, if applicable, across companies
  • Scheduling the current practical module with a clear correlation to work structures 
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: Responsibility as an engineer (B.Sc.) in their own area of work, coordinating team and project work, dealing with complex contexts and unsolved problems, developing and implementing innovative solutions
  • Subject specialisation (corresponding to the chosen course [M.Sc.]) in the field of activity
  • Systemic skills
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company 

Sharing/reflecting on learning

  • Creating an e-portfolio
  • Importance of course contents (M.Sc.) when working as an engineer
  • Importance of development and innovation when working as an engineer
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Handlungsempfehlungen zum Theorie-Praxis-Transfer

Module M0895: Advanced Chemical Reaction Engineering

Courses
Title Typ Hrs/wk CP
Chemical Reaction Engineering (Advanced Topics) (L0222) Lecture 2 2
Chemical Reaction Engineering (Advanced Topics) (L0245) Recitation Section (large) 2 2
Experimental Course Chemical Engineering (Advanced Topics) (L0287) Practical Course 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Content of the bachelor-lecture "basics of chemical reaction engineering".
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After completition of the module, students are able to:

- identify differences between ideal and non-ideal rectors,

- infer fundamental differences in kinetic models for catalyzed reactions,

- name modelling algorithms for non-ideal reactors.

Skills

After successfull completition of the module the students are able to

-evaluate properties of non-ideal reactors

-compare kinetic modells of heterogeneous-catalyzed reactions and develop measuring techniques thereof 

-choose instruments for temperature, pressure- concentration and mass-flow measurements regarding process conditions

-develop a concept for design of experiments

Personal Competence
Social Competence The students are able to analyze scientific challenges and elaborate suitable solutions in small groups. Moreover they are able to document these approaches according to scientific guidelines.

After successful completition of the lab-course the students have a strong ability to organize themselfes in small groups to solve issues in chemical reaction engineering. The students can discuss their subject related knowledge among each other and with their teachers.

Autonomy

The students are able to obtain further information for experimental planning and assess their relevance autonomously.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0222: Chemical Reaction Engineering (Advanced Topics)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE
Cycle SoSe
Content

1. Real reactors (residence time distribution E(t), F(t)-curve, measurement of E(t) or F(t), residence time distribution of ideal reactors, modeling of real reactors, segregated flow model, tanks in series model, dispersion model, compartment models)

2. Heterogeneous catalysis (what is a catalyst, operation principle of a catalyst, volcano plot, homogeneous catalysis, heterogeneous catalysis, biocatalysis, physisorption and chemisorption, turn-over frequency (TOF), Sabatier's principle, Bronstedt-Evans-Polyani-relationship, Adsorption isotherms of single and multi-component systems, kinetic models of heterogeneous catalytic reactions, Langmuir-Hinshelwood kinetics, Eley-Rideal kinetics, power law rate equations, kinetic measurements on heterogeneously catalyzed reactions in the laboratory , microkinetic modeling, catalyst characterization)

3. Diffusion in heterogeneous catalysis (diffusion regimes, Knudsen-diffusion, molecular diffusion, surface diffusion, single-file diffusion, reference systems, Stefan-Maxwell-Equations, Fick's law, pore effectiveness factor, impact of diffusion limitations in heterogeneous catalysis, Damköhler-relation, mass- and energy balance of heterogeneous catalytic reactors)

4. Laboratory measurements in heterogeneous catalysis (temperature, pressure, concentration, mass flow controllers, laboratory reactors, experimental design)


Literature

1. Vorlesungsfolien R. Horn

2. Skript zur Vorlesung F. Keil

3. M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

4. G. Emig, E. Klemm, Technische Chemie, Springer

5. A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

6. E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

7. J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

8. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

9. H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

10. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

11. L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

12. J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

13. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

14. M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill 15. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010                                                        

16. A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH

17. C. G. Hill, An Introduction to Chemical Engineering Kinetics & Reactor Design, John Wiley & Sons


Course L0245: Chemical Reaction Engineering (Advanced Topics)
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn, Dr. Oliver Korup
Language DE
Cycle SoSe
Content

1. Real reactors (residence time distribution E(t), F(t)-curve, measurement of E(t) or F(t), residence time distribution of ideal reactors, modeling of real reactors, segregated flow model, tanks in series model, dispersion model, compartment models)

2. Heterogeneous catalysis (what is a catalyst, operation principle of a catalyst, volcano plot, homogeneous catalysis, heterogeneous catalysis, biocatalysis, physisorption and chemisorption, turn-over frequency (TOF), Sabatier's principle, Bronstedt-Evans-Polyani-relationship, Adsorption isotherms of single and multi-component systems, kinetic models of heterogeneous catalytic reactions, Langmuir-Hinshelwood kinetics, Eley-Rideal kinetics, power law rate equations, kinetic measurements on heterogeneously catalyzed reactions in the laboratory , microkinetic modeling, catalyst characterization)

3. Diffusion in heterogeneous catalysis (diffusion regimes, Knudsen-diffusion, molecular diffusion, surface diffusion, single-file diffusion, reference systems, Stefan-Maxwell-Equations, Fick's law, pore effectiveness factor, impact of diffusion limitations in heterogeneous catalysis, Damköhler-relation, mass- and energy balance of heterogeneous catalytic reactors)

4. Laboratory measurements in heterogeneous catalysis (temperature, pressure, concentration, mass flow controllers, laboratory reactors, experimental design)

Literature

1. Vorlesungsfolien R. Horn

2. Skript zur Vorlesung F. Keil

3. M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

4. G. Emig, E. Klemm, Technische Chemie, Springer

5. A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

6. E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

7. J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

8. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

9. H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

10. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

11. L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

12. J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

13. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

14. M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill 15. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010                                                        

16. A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH

17. C. G. Hill, An Introduction to Chemical Engineering Kinetics & Reactor Design, John Wiley & Sons

Course L0287: Experimental Course Chemical Engineering (Advanced Topics)
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE/EN
Cycle SoSe
Content

Execution and evaluation of several experiments in chemical reaction engineering.

* Calculation of error propagation and error analysis
* Steady state Wicke-Kallenbach measurements of diffusivities in a catalyst pellet
* Interaction of reaction and diffusion in a catalyst particle, dissociation of methanol on zinc oxide
* Mass transfer in gas/liquid system
* Stability of a CSTR (hydrolysis of acetic anhydride)

Literature

Skript zur Vorlesung, als Buch in der TU-Bibliothek

Praktikumsskript

Levenspiel, O.: Chemical reaction engineering; John Wiley & Sons, New York, 3. Ed., 1999 VTM 309(LB)

Smith, J. M.: Chemical Engineering Kinetics, McGraw Hill, New York, 1981.

Hill, C.: Chemical Engineering Kinetics & Reactor Design, John Wiley, New York, 1977.

Fogler, H. S. : Elements of Chemical Reaction Engineering , Prentice Hall, 2006

M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken: Technische Chemie, VCH , 2006

G. F. Froment, K. B. Bischoff: Chemical Reactor Analysis and Design, Wiley, 1990

Module M0896: Bioprocess and Biosystems Engineering

Courses
Title Typ Hrs/wk CP
Bioreactor Design and Operation (L1034) Lecture 2 2
Bioreactors and Biosystems Engineering (L1037) Project-/problem-based Learning 1 2
Biosystems Engineering (L1036) Lecture 2 2
Module Responsible Prof. Ralf Pörtner
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After completion of this module, participants will be able to:

  • differentiate between different kinds of bioreactors and describe their key features
  • identify and characterize the peripheral and control systems of bioreactors
  • depict integrated biosystems (bioprocesses including up- and downstream processing)
  • name different sterilization methods and evaluate those in terms of different applications
  • recall and define the advanced methods of modern systems-biological approaches
  • connect the multiple "omics"-methods and evaluate their application for biological questions
  • recall the fundamentals of modeling and simulation of biological networks and biotechnological processes and to discuss their methods
  • assess and apply methods and theories of genomics, transcriptomics, proteomics and metabolomics in order to quantify and optimize biological processes at molecular and process levels.


Skills

After completion of this module, participants will be able to:

  • describe different process control strategies for bioreactors and chose them after analysis of characteristics of a given bioprocess
  • plan and construct a bioreactor system including peripherals from lab to pilot plant scale
  • adapt a present bioreactor system to a new process and optimize it
  • develop concepts for integration of bioreactors into bioproduction processes
  • combine the different modeling methods into an overall modeling approach, to apply these methods to specific problems and to evaluate the achieved results critically
  • connect all process components of biotechnological processes for a holistic system view.


Personal Competence
Social Competence

After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

The students can reflect their specific knowledge orally and discuss it with other students and teachers.

Autonomy

After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.



Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Environmental Engineering: Specialisation Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1034: Bioreactor Design and Operation
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Pörtner, Dr. Johannes Möller
Language EN
Cycle SoSe
Content

Design of bioreactors and peripheries:

  • reactor types and geometry
  • materials and surface treatment
  • agitation system design
  • insertion of stirrer
  • sealings
  • fittings and valves
  • peripherals
  • materials
  • standardization
  • demonstration in laboratory and pilot plant

Sterile operation:

  • theory of sterilisation processes
  • different sterilisation methods
  • sterilisation of reactor and probes
  • industrial sterile test, automated sterilisation
  • introduction of biological material
  • autoclaves
  • continuous sterilisation of fluids
  • deep bed filters, tangential flow filters
  • demonstration and practice in pilot plant

Instrumentation and control:

  • temperature control and heat exchange 
  • dissolved oxygen control and mass transfer 
  • aeration and mixing 
  • used gassing units and gassing strategies
  • control of agitation and power input 
  • pH and reactor volume, foaming, membrane gassing

Bioreactor selection and scale-up:

  • selection criteria
  • scale-up and scale-down
  • reactors for mammalian cell culture

Integrated biosystem:

  • interactions and integration of microorganisms, bioreactor and downstream processing
  • Miniplant technologies 

Team work with presentation:

  • Operation mode of selected bioprocesses (e.g. fundamentals of batch, fed-batch and continuous cultivation)


Literature
  • Storhas, Winfried, Bioreaktoren und periphere Einrichtungen, Braunschweig: Vieweg, 1994
  • Chmiel, Horst, Bioprozeßtechnik; Springer 2011
  • Krahe, Martin, Biochemical Engineering, Ullmann‘s Encyclopedia of Industrial Chemistry
  • Pauline M. Doran, Bioprocess Engineering Principles, Second Edition, Academic Press, 2013
  • Other lecture materials to be distributed  
Course L1037: Bioreactors and Biosystems Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Ralf Pörtner, Dr. Johannes Möller
Language EN
Cycle SoSe
Content

Introduction to Biosystems Engineering (Exercise)


Experimental basis and methods for biosystems analysis

  • Introduction to genomics, transcriptomics and proteomics
  • More detailed treatment of metabolomics
  • Determination of in-vivo kinetics
  • Techniques for rapid sampling
  • Quenching and extraction
  • Analytical methods for determination of metabolite concentrations


Analysis, modelling and simulation of biological networks

  • Metabolic flux analysis
  • Introduction
  • Isotope labelling
  • Elementary flux modes
  • Mechanistic and structural network models
  • Regulatory networks
  • Systems analysis
  • Structural network analysis
  • Linear and non-linear dynamic systems
  • Sensitivity analysis (metabolic control analysis)


Modelling and simulation for bioprocess engineering

  • Modelling of bioreactors
  • Dynamic behaviour of bioprocesses 

Selected projects for biosystems engineering

  • Miniaturisation of bioreaction systems
  • Miniplant technology for the integration of biosynthesis and downstream processin
  • Technical and economic overall assessment of bioproduction processes
Literature

E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006

R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006

G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998

I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003

Lecture materials to be distributed

Course L1036: Biosystems Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content

Introduction to Biosystems Engineering


Experimental basis and methods for biosystems analysis

  • Introduction to genomics, transcriptomics and proteomics
  • More detailed treatment of metabolomics
  • Determination of in-vivo kinetics
  • Techniques for rapid sampling
  • Quenching and extraction
  • Analytical methods for determination of metabolite concentrations


Analysis, modelling and simulation of biological networks

  • Metabolic flux analysis
  • Introduction
  • Isotope labelling
  • Elementary flux modes
  • Mechanistic and structural network models
  • Regulatory networks
  • Systems analysis
  • Structural network analysis
  • Linear and non-linear dynamic systems
  • Sensitivity analysis (metabolic control analysis)


Modelling and simulation for bioprocess engineering

  • Modelling of bioreactors
  • Dynamic behaviour of bioprocesses 


Selected projects for biosystems engineering

  • Miniaturisation of bioreaction systems
  • Miniplant technology for the integration of biosynthesis and downstream processin
  • Technical and economic overall assessment of bioproduction processes


Literature

E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006

R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006

G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998

I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003

Lecture materials to be distributed


Module M1757: Practical module 2 (dual study program, Master's degree)

Courses
Title Typ Hrs/wk CP
Practical term 2 (dual study program, Master's degree) (L2888) 0 10
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 1 as part of the dual Master’s course
  • course D from the module on interlinking theory and practice as part of the dual Master’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity in engineering. 
  • … have a critical understanding of the practical applications of their engineering subject.
Skills

Dual students …

  • … apply technical theoretical knowledge to complex, interdisciplinary problems within the company, and evaluate the associated work processes and results, taking into account different possible courses of action.
  • … implement the university’s application recommendations with regard to their current tasks. 
  • … develop (new) solutions as well as procedures and approaches in their field of activity and area of responsibility - including in the case of frequently changing requirements (systemic skills).
Personal Competence
Social Competence

Dual students …

  • … work responsibly in cross-departmental and interdisciplinary project teams and proactively deal with problems within their team. 
  • … represent complex engineering viewpoints, facts, problems and solution approaches in discussions with internal and external stakeholders and develop these further together.
Autonomy

Dual students …

  • … define goals for their own learning and working processes as engineers.
  • … reflect on learning and work processes in their area of responsibility.
  • … reflect on the relevance of subject modules specialisations and specialisation for work as an engineer, and also implement the university’s application recommendations and the associated challenges to positively transfer knowledge between theory and practice.
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Credit points 10
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy Systems: Core Qualification: Compulsory
Environmental Engineering: Core Qualification: Compulsory
Aircraft Systems Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Information and Communication Systems: Core Qualification: Compulsory
International Management and Engineering: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Core Qualification: Compulsory
Materials Science: Core Qualification: Compulsory
Mechanical Engineering and Management: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Biomedical Engineering: Core Qualification: Compulsory
Microelectronics and Microsystems: Core Qualification: Compulsory
Product Development, Materials and Production: Core Qualification: Compulsory
Renewable Energies: Core Qualification: Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L2888: Practical term 2 (dual study program, Master's degree)
Typ
Hrs/wk 0
CP 10
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe/SoSe
Content

Company onboarding process

  • Assigning a professional field of activity as an engineer (B.Sc.) and associated fields of work
  • Establishing responsibilities and authorisation of the dual student within the company as an engineer (B.Sc.)
  • Taking personal responsibility within a team and on selected projects - across departments and, if applicable, across companies
  • Scheduling the current practical module with a clear correlation to work structures 
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: Responsibility as an engineer (B.Sc.) in their own area of work, coordinating team and project work, dealing with complex contexts and unsolved problems, developing and implementing innovative solutions
  • Subject specialisation (corresponding to the chosen course [M.Sc.]) in the field of activity
  • Systemic skills
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company 

Sharing/reflecting on learning

  • Updating their e-portfolio
  • Importance of course contents (M.Sc.) when working as an engineer
  • Importance of development and innovation when working as an engineer 
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0904: Process Design Project

Courses
Title Typ Hrs/wk CP
Process Design Project (L1050) Projection Course 6 6
Module Responsible Dozenten des SD V
Admission Requirements None
Recommended Previous Knowledge
  • Particle Technology and Solid Process Engineering  
  • Transport Processes  
  • Process- and Plant Design II  
  • Fluid Mechanics for Process Engineering 
  • Chemical Reaction Engineering  
  • Bioprocess- and Biosystems-Engineering 
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After the students passed the project course successfully they know:

  • how a team is working together so solve a complex task in process engineering
  • what kind of tools are necessary to design a process
  • what kind of drawbacks and difficulties are coming up by designing a process
Skills

After passing the Module successfully the students are able to:

  • utilize tools for process design for a specific given process engineering task,
  • choose and connect apparatusses for a complete process,
  •   collecting all relevant data for an economical and ecological evaluation,
  • optimization of calculation sequence with respect to flowsheet simulation.
Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. They are able to organize their own team and to define priorities.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale .
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1050: Process Design Project
Typ Projection Course
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer NN
Language DE/EN
Cycle WiSe
Content

In the Process Design Project the students have to design in teams an energy or process engineering plant by calculating and designing single plant components. The calculation of costs as well as the process safety is another important aspect of this course. Furthermore the approval procedures have to be taken into account.

Literature

Module M1758: Practical module 3 (dual study program, Master's degree)

Courses
Title Typ Hrs/wk CP
Practical term 3 (dual study program, Master's degree) (L2889) 0 10
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 2 as part of the dual Master’s course
  • course E from the module on interlinking theory and practice as part of the dual Master’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … combine their comprehensive and specialised engineering knowledge acquired from previous study contents with the strategy-oriented practical knowledge gained from their current field of work and area of responsibility. 
  • … have a critical understanding of the practical applications of their engineering subject, as well as related fields when implementing innovations.


Skills

Dual students …

  • … apply specialised and conceptual skills to solve complex, sometimes interdisciplinary problems within the company, and evaluate the associated work processes and results, taking into account different possible courses of action.
  • … implement the university’s application recommendations with regard to their current tasks. 
  • … develop new solutions as well as procedures and approaches to implement operational projects and assignments - even when facing frequently changing requirements and unpredictable changes (systemic skills).
  • … can use academic methods to develop new ideas and procedures for operational problems and issues, and to assess these with regard to their usability.
Personal Competence
Social Competence

Dual students …

  • … work responsibly in cross-departmental and interdisciplinary project teams and proactively deal with problems within their team. 
  • … can promote the professional development of others in a targeted manner.
  • … represent complex and interdisciplinary engineering viewpoints, facts, problems and solution approaches in discussions with internal and external stakeholders and develop these further together.
Autonomy

Dual students …

  • … reflect on learning and work processes in their area of responsibility.
  • … define goals for new application-oriented tasks, projects and innovation plans while reflecting on potential effects on the company and the public. 
  • … reflect on the relevance of areas of specialisation and research for work as an engineer, and also implement the university’s application recommendations and the associated challenges to positively transfer knowledge between theory and practice.
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Credit points 10
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy Systems: Core Qualification: Compulsory
Environmental Engineering: Core Qualification: Compulsory
Aircraft Systems Engineering: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Information and Communication Systems: Core Qualification: Compulsory
International Management and Engineering: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Core Qualification: Compulsory
Materials Science: Core Qualification: Compulsory
Mechanical Engineering and Management: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Biomedical Engineering: Core Qualification: Compulsory
Microelectronics and Microsystems: Core Qualification: Compulsory
Product Development, Materials and Production: Core Qualification: Compulsory
Renewable Energies: Core Qualification: Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L2889: Practical term 3 (dual study program, Master's degree)
Typ
Hrs/wk 0
CP 10
Workload in Hours Independent Study Time 300, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe/SoSe
Content

Company onboarding process

  • Assigning a future professional field of activity as an engineer (M.Sc.) and associated fields of work
  • Extending responsibilities and authorisation of the dual student within the company up to the intended first assignment after completing their studies 
  • Working responsibly in a team; project responsibility within own area - as well as across divisions and companies if necessary
  • Scheduling the final practical module with a clear correlation to work structures 
  • Internal agreement on a potential topic or innovation project for the Master’s dissertation
  • Planning the Master’s dissertation within the company in cooperation with TU Hamburg  
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: dealing with change, project and team development, responsibility as an engineer in their future field of work (M.Sc.), dealing with complex contexts, frequent and unpredictable changes, developing and implementing innovative solutions
  • Specialising in one field of work (final dissertation)
  • Systemic skills
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company 

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of study content and personal specialisation when working as an engineer
  • Relevance of research and innovation when working as an engineer
Literature
  • Studierendenhandbuch
  • betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Specialization Process Engineering

Module M0513: System Aspects of Renewable Energies

Courses
Title Typ Hrs/wk CP
Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage (L0021) Lecture 2 2
Energy Trading (L0019) Lecture 1 1
Energy Trading (L0020) Recitation Section (small) 1 1
Deep Geothermal Energy (L0025) Lecture 2 2
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I

Module: Technical Thermodynamics II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy.

Skills

Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode.

Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. 

Personal Competence
Social Competence

Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module.

Autonomy

Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Fröba
Language DE
Cycle SoSe
Content
  1. Introduction to electrochemical energy conversion
  2. Function and structure of electrolyte
  3. Low-temperature fuel cell
    • Types
    • Thermodynamics of the PEM fuel cell
    • Cooling and humidification strategy
  4. High-temperature fuel cell
    • The MCFC
    • The SOFC
    • Integration Strategies and partial reforming
  5. Fuels
    • Supply of fuel
    • Reforming of natural gas and biogas
    • Reforming of liquid hydrocarbons
  6. Energetic Integration and control of fuel cell systems


Literature
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003


Course L0019: Energy Trading
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Michael Sagorje, Dr. Sven Orlowski
Language DE
Cycle SoSe
Content
  • Basic concepts and tradable products in energy markets
  • Primary energy markets
  • Electricity Markets
  • European Emissions Trading Scheme
  • Influence of renewable energy
  • Real options
  • Risk management

Within the exercise the various tasks are actively discussed and applied to various cases of application.

Literature
Course L0020: Energy Trading
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Michael Sagorje, Dr. Sven Orlowski
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0025: Deep Geothermal Energy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Ben Norden
Language DE
Cycle SoSe
Content
  1. Introduction to the deep geothermal use
  2. Geological Basics I
  3. Geological Basics II
  4. Geology and thermal aspects
  5. Rock Physical Aspects
  6. Geochemical aspects
  7. Exploration of deep geothermal reservoirs
  8. Drilling technologies, piping and expansion
  9. Borehole Geophysics
  10. Underground system characterization and reservoir engineering
  11. Microbiology and Upper-day system components
  12. Adapted investment concepts, cost and environmental aspect
Literature
  • Dipippo, R.: Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Butterworth Heinemann; 3rd revised edition. (29. Mai 2012)
  • www.geo-energy.org
  • Edenhofer et al. (eds): Renewable Energy Sources and Climate Change Mitigation; Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2012.
  • Kaltschmitt et al. (eds): Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, 5. Aufl. 2013.
  • Kaltschmitt et al. (eds): Energie aus Erdwärme. Spektrum Akademischer Verlag; Auflage: 1999 (3. September 2001)
  • Huenges, E. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 1. Auflage (19. April 2010)


Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0617: High Pressure Chemical Engineering

Courses
Title Typ Hrs/wk CP
High pressure plant and vessel design (L1278) Lecture 2 2
Industrial Processes Under High Pressure (L0116) Lecture 2 2
Advanced Separation Processes (L0094) Lecture 2 2
Module Responsible Dr. Monika Johannsen
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Chemical Engineering, Fluid Process Engineering, Thermal Separation Processes, Thermodynamics, Heterogeneous Equilibria


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After a successful completion of this module, students can:

  • explain the influence of pressure on the properties of compounds, phase equilibria, and production processes,
  • describe the thermodynamic fundamentals of separation processes with supercritical fluids,
  • exemplify models for the description of solid extraction and countercurrent extraction,
  • discuss parameters for optimization of processes with supercritical fluids.


Skills

After successful completion of this module, students are able to:

  • compare separation processes with supercritical fluids and conventional solvents,
  • assess the application potential of high-pressure processes at a given separation task,
  • include high pressure methods in a given multistep industrial application,
  • estimate economics of high-pressure processes in terms of investment and operating costs,
  • perform an experiment with a high pressure apparatus under guidance,
  • evaluate experimental results,
  • prepare an experimental protocol.


Personal Competence
Social Competence

After successful completion of this module, students are able to:

  • present a scientific topic from an original publication in teams of 2 and defend the contents together.


Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1278: High pressure plant and vessel design
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Häring
Language DE/EN
Cycle SoSe
Content
  1. Basic laws and certification standards
  2. Basics for calculations of pressurized vessels
  3. Stress hypothesis
  4. Selection of materials and fabrication processes
  5. vessels with thin walls
  6. vessels with thick walls
  7. Safety installations
  8. Safety analysis

    Applications:

    - subsea technology (manned and unmanned vessels)
    - steam vessels
    - heat exchangers
    - LPG, LEG transport vessels
Literature Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag
Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag
AD-Merkblätter, Heumanns Verlag
Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag
Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag
Klapp: Apparate- und Anlagentechnik, Springer Verlag
Course L0116: Industrial Processes Under High Pressure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Carsten Zetzl
Language EN
Cycle SoSe
Content Part I : Physical Chemistry and Thermodynamics

1.      Introduction: Overview, achieving high pressure, range of parameters.

2.       Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy,     entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension.

3.      Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria

4.      Overview on calculation methods for (high pressure) phase equilibria).
Influence of pressure on transport processes, heat and mass transfer.

Part II : High Pressure Processes

5.      Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases)

6.      Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation)

7.      Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure

Part III :  Industrial production

8.      Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO)

9.      Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery

10.  Industrial High Pressure Applications in Biofuel and Biodiesel Production

11.  Sterilization and Enzyme Catalysis

12.  Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor.

13.   Supercritical fluids for materials processing.

14.  Cost Engineering

Learning Outcomes:  

After a successful completion of this module, the student should be able to

-         understand of the influences of pressure on properties of compounds, phase equilibria, and production processes.

-         Apply high pressure approches in the complex process design tasks

-         Estimate Efficiency of high pressure alternatives with respect to investment and operational costs


Performance Record:

1.  Presence  (28 h)

2. Oral presentation of original scientific article (15 min) with written summary

3. Written examination and Case study 

    ( 2+3 : 32 h Workload)

Workload:

60 hours total

Literature

Literatur:

Script: High Pressure Chemical Engineering.
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Course L0094: Advanced Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle SoSe
Content
  • Introduction/Overview on Properties of Supercritical Fluids (SCF)and their Application in Gas Extraction Processes
  • Solubility of Compounds in Supercritical Fluids and Phase Equilibrium with SCF
  • Extraction from Solid Substrates: Fundamentals, Hydrodynamics and Mass Transfer
  • Extraction from Solid Substrates: Applications and Processes (including Supercritical Water)
  • Countercurrent Multistage Extraction: Fundamentals and Methods, Hydrodynamics and Mass Transfer
  • Countercurrent Multistage Extraction: Applications and Processes
  • Solvent Cycle, Methods for Precipitation
  • Supercritical Fluid Chromatography (SFC): Fundamentals and Application
  • Simulated Moving Bed Chromatography (SMB)
  • Membrane Separation of Gases at High Pressures
  • Separation by Reactions in Supercritical Fluids (Enzymes)
Literature

G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Module M0875: Nexus Engineering - Water, Soil, Food and Energy

Courses
Title Typ Hrs/wk CP
Ecological Town Design - Water, Energy, Soil and Food Nexus (L1229) Seminar 2 2
Water & Wastewater Systems in a Global Context (L0939) Lecture 2 4
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply.

Skills

Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content
  • Participants Workshop: Design of the most attractive productive Town
  • Keynote lecture and video
  • The limits of Urbanization / Green Cities
  • The tragedy of the Rural: Soil degradation, agro chemical toxification, migration to cities
  • Global Ecovillage Network: Upsides and Downsides around the World
  • Visit of an Ecovillage
  • Participants Workshop: Resources for thriving rural areas, Short presentations by participants, video competion
  • TUHH Rural Development Toolbox
  • Integrated New Town Development
  • Participants workshop: Design of New Towns: Northern, Arid and Tropical cases
  • Outreach: Participants campaign
  • City with the Rural: Resilience, quality of live and productive biodiversity


Literature
  • Ralf Otterpohl 2013: Gründer-Gruppen als Lebensentwurf: "Synergistische Wertschöpfung in erweiterten Kleinstadt- und Dorfstrukturen", in „Regionales Zukunftsmanagement Band 7: Existenzgründung unter regionalökonomischer Perspektive, Pabst Publisher, Lengerich
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)
  • TEDx New Town Ralf Otterpohl: http://youtu.be/_M0J2u9BrbU
Course L0939: Water & Wastewater Systems in a Global Context
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content


  • Keynote lecture and video
  • Water & Soil: Water availability as a consequence of healthy soils
  • Water and it’s utilization, Integrated Urban Water Management
  • Water & Energy, lecture and panel discussion pro and con for a specific big dam project
  • Rainwater Harvesting on Catchment level, Holistic Planned Grazing, Multi-Use-Reforestation
  • Sanitation and Reuse of water, nutrients and soil conditioners, Conventional and Innovative Approaches
  • Why are there excreta in water? Public Health, Awareness Campaigns
  • Rehearsal session, Q&A


Literature
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press
  • Liu, John D.: http://eempc.org/hope-in-a-changing_climate/ (Integrated regeneration of the Loess Plateau, China, and sites in Ethiopia and Rwanda)
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)

Module M0636: Cell and Tissue Engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Cell and Tissue Engineering (L0355) Lecture 2 3
Bioprocess Engineering for Medical Applications (L0356) Lecture 2 3
Module Responsible Prof. Ralf Pörtner
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students 

- know the basic principles of cell and tissue culture

- know the relevant metabolic and physiological properties of animal and human cells

- are able to explain and describe the basic underlying principles of bioreactors for cell and tissue cultures, in contrast to microbial fermentations

- are able to explain the essential steps (unit operations) in downstream

- are able to explain, analyze and describe the kinetic relationships and significant litigation strategies for cell culture reactors

Skills

The students are able

- to analyze and perform mathematical modeling to cellular metabolism at a higher level

- are able to to develop process control strategies for cell culture systems

Personal Competence
Social Competence


After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

The students can reflect their specific knowledge orally and discuss it with other students and teachers.

Autonomy


After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0355: Fundamentals of Cell and Tissue Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Pörtner, Prof. An-Ping Zeng
Language EN
Cycle SoSe
Content Overview of cell culture technology and tissue engineering (cell culture product manufacturing, complexity of protein therapeutics, examples of tissue engineering) (Pörtner, Zeng) Fundamentals of cell biology for process engineering (cells: source, composition and structure. interactions with environment, growth and death - cell cycle, protein glycolysation) (Pörtner) Cell physiology for process engineering (Overview of central metabolism, genomics etc.) (Zeng) Medium design (impact of media on the overall cell culture process, basic components of culture medium, serum and protein-free media) (Pörtner) Stochiometry and kinetics of cell growth and product formation (growth of mammalian cells, quantitative description of cell growth & product formation, kinetics of growth)


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Course L0356: Bioprocess Engineering for Medical Applications
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Pörtner
Language EN
Cycle SoSe
Content Requirements for cell culture processess, shear effects, microcarrier technology Reactor systems for mammalian cell culture (production systems) (design, layout, scale-up: suspension reactors (stirrer, aeration, cell retention), fixed bed, fluidized bed (carrier), hollow fiber reactors (membranes), dialysis reactors, Reactor systems for Tissue Engineering, Prozess strategies (batch, fed-batch, continuous, perfusion, mathematical modelling), control (oxygen, substrate etc.) • Downstream


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Module M0714: Numerical Methods for Ordinary Differential Equations

Courses
Title Typ Hrs/wk CP
Numerical Treatment of Ordinary Differential Equations (L0576) Lecture 2 3
Numerical Treatment of Ordinary Differential Equations (L0582) Recitation Section (small) 2 3
Module Responsible Prof. Daniel Ruprecht
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I, II, III für Ingenieurstudierende (deutsch oder englisch) oder Analysis & Lineare Algebra I + II sowie Analysis III für Technomathematiker
  • Basic knowledge of MATLAB, Python or a similar programming language
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • list numerical methods for the solution of ordinary differential equations and explain their core ideas,
  • formulate convergence statements for the treated numerical methods (including the assumptions about the underlying problem),
  • explain aspects regarding the practical realisation of a method.
  • select the appropriate numerical method for concrete problems, implement the numerical algorithms efficiently and interpret the numerical results
Skills

Students are able to

  • implement, apply and compare numerical methods for the solution of ordinary differential equations,
  • justify the convergence behaviour of numerical methods with respect to the posed problem and selected algorithm,
  • develop a suitable solution approach for a given problem, if necessary by combining of several algorithms, and to realise this approach and critically evaluate the results.


Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progress and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Computer Science: Specialisation III. Mathematics: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Interdisciplinary Mathematics: Specialisation II. Numerical - Modelling Training: Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Technomathematics: Specialisation I. Mathematics: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0576: Numerical Treatment of Ordinary Differential Equations
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content

Numerical methods for Initial Value Problems

  • single step methods
  • multistep methods
  • stiff problems
  • differential algebraic equations (DAE) of index 1

Numerical methods for Boundary Value Problems

  • multiple shooting method
  • difference methods
Literature
  • E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems.
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.
  • D. Griffiths, D. Higham: Numerical Methods for Ordinary Differential Equations.
Course L0582: Numerical Treatment of Ordinary Differential Equations
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0721: Air Conditioning

Courses
Title Typ Hrs/wk CP
Air Conditioning (L0594) Lecture 3 5
Air Conditioning (L0595) Recitation Section (large) 1 1
Module Responsible Prof. Dr. Arne Speerforck
Admission Requirements None
Recommended Previous Knowledge Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know the different kinds of air conditioning systems for buildings and mobile applications and how these systems are controlled. They are familiar with the change of state of humid air and are able to draw the state changes in a h1+x,x-diagram. They are able to calculate the minimum airflow needed for hygienic conditions in rooms and can choose suitable filters. They know the basic flow pattern in rooms and are able to calculate the air velocity in rooms with the help of simple methods. They know the principles  to calculate an air duct network. They know the different possibilities to produce cold and are able to draw these processes into suitable thermodynamic diagrams. They know the criteria for the assessment of refrigerants.


Skills

Students are able to configure air condition systems for buildings and mobile applications.  They are able to calculate an air duct network and have the ability to perform simple planning tasks, regarding natural heat sources and heat sinks. They can transfer research knowledge into practice. They are able to perform scientific work in the field of air conditioning.


Personal Competence
Social Competence

In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions.




    


Autonomy

Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Energy Systems: Specialisation Energy Systems: Elective Compulsory
Energy Systems: Specialisation Marine Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0594: Air Conditioning
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Dr. Arne Speerforck, Prof. Gerhard Schmitz
Language DE
Cycle SoSe
Content

1. Overview

1.1 Kinds of air conditioning systems

1.2 Ventilating

1.3 Function of an air condition system

2. Thermodynamic processes

2.1 Psychrometric chart

2.2 Mixer preheater, heater

2.3 Cooler

2.4 Humidifier

2.5 Air conditioning process in a Psychrometric chart

2.6 Desiccant assisted air conditioning

3. Calculation of heating and cooling loads

3.1 Heating loads

3.2 Cooling loads

3.3 Calculation of inner cooling load

3.4 Calculation of outer cooling load

4. Ventilating systems

4.1 Fresh air demand

4.2 Air flow in rooms

4.3 Calculation of duct systems

4.4 Fans

4.5 Filters

5. Refrigeration systems

5.1. compression chillers

5.2Absorption chillers

Literature
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013



Course L0595: Air Conditioning
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck, Prof. Gerhard Schmitz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0749: Waste Treatment and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Solid Matter Process Technology for Biomass (L0052) Lecture 2 2
Thermal Waste Treatment (L0320) Lecture 2 2
Thermal Waste Treatment (L1177) Recitation Section (large) 1 2
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge

Basics of

  • thermo dynamics
  • fluid dynamics
  • chemistry
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. 

The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables.

Skills

The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence

Students can

  • respectfully work together as a team and discuss technical tasks
  • participate in subject-specific and interdisciplinary discussions,
  • develop cooperated solutions 
  •  promote the scientific development and accept professional constructive criticism.
Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0052: Solid Matter Process Technology for Biomass
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle SoSe
Content The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture.
Literature

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Course L0320: Thermal Waste Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literature

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Course L1177: Thermal Waste Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0914: Technical Microbiology

Courses
Title Typ Hrs/wk CP
Applied Molecular Biology (L0877) Lecture 2 3
Technical Microbiology (L0999) Lecture 2 2
Technical Microbiology (L1000) Recitation Section (large) 1 1
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

Bachelor with basic knowledge in microbiology and genetics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successfully finishing this module, students are able

  • to give an overview of genetic processes in the cell
  • to explain the application of industrial relevant biocatalysts
  • to explain and prove genetic differences between pro- and eukaryotes


Skills

After successfully finishing this module, students are able

  • to explain and use advanced molecularbiological methods
  • to recognize problems in interdisciplinary fields 

Personal Competence
Social Competence

Students are able to

  • write protocols and PBL-summaries in teams
  • to lead and advise members within a PBL-unit in a group
  • develop and distribute work assignments for given problems


Autonomy

Students are able to

  • search information for a given problem by themselves
  • prepare summaries of their search results for the team
  • make themselves familiar with new topics


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min exam
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0877: Applied Molecular Biology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content

Lecture and PBL

- Methods in genetics / molecular cloning

- Industrial relevance of microbes and their biocatalysts

- Biotransformation at extreme conditions

- Genomics

- Protein engineering techniques

- Synthetic biology

Literature

Relevante Literatur wird im Kurs zur Verfügung gestellt.

Grundwissen in Molekularbiologie, Genetik, Mikrobiologie und Biotechnologie erforderlich.

Lehrbuch: Brock - Mikrobiologie / Microbiology (Madigan et al.)

Course L0999: Technical Microbiology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content
  • History of microbiology and biotechnology
  • Enzymes
  • Molecular biology
  • Fermentation
  • Downstream Processing
  • Industrial microbiological processes
  • Technical enzyme application
  • Biological Waste Water treatment 
Literature

Microbiology,  2013, Madigan, M., Martinko, J. M., Stahl, D. A., Clark, D. P. (eds.), formerly „Brock“, Pearson

Industrielle Mikrobiologie, 2012, Sahm, H., Antranikian, G., Stahmann, K.-P., Takors, R. (eds.) Springer Berlin, Heidelberg, New York, Tokyo. 

Angewandte Mikrobiologie, 2005, Antranikian, G. (ed.), Springer, Berlin, Heidelberg, New York, Tokyo.

Course L1000: Technical Microbiology
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0897: Computer Aided Process Engineering (CAPE)

Courses
Title Typ Hrs/wk CP
CAPE with Computer Exercises (L1039) Integrated Lecture 3 4
Methods of Process Safety and Dangerous Substances (L1040) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

thermal separation processes

heat and mass transport processes

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- outline types of simulation tools

- describe principles of flowsheet  and equation oriented simulation tools

- describe the setting of flowsheet simulation tools

- explain the main differences between steady state and dynamic simulations

- present the fundamentals of toxicology and hazardous materials

- explain the main methods of safety engineering

- present the importance of safety analysis with respect to plant design

- describe the definitions within the legal accident insurance

accident insurance


Skills

students can:

- conduct steady state and dynamic simulations

- evaluate simulation results and transform them in the practice

- choose and combine suitable simulation models into a production plant

- evaluate the achieved simulation results regarding practical importance
- evaluate the results of many experimental methods regarding safety aspects

- review, compare and  use results of safety considerations for a plant design

Personal Competence
Social Competence

students are able to:

- work together in teams in order to simulate process elements  and develop an integral process

- develop in teams a safety concept for a process and present it to the audience


Autonomy

students are able to

- act responsible with respect to environment and needs of the society

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Exam 90 minutes and written report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1039: CAPE with Computer Exercises
Typ Integrated Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle SoSe
Content

I. Introduction

       1. Fundamentals of steady state process simulation

       1.1. Classes of simulation tools
       1.2. Sequential-modularer approach
       1.3. Operating mode of ASPEN PLUS
       2. Introduction in ASPEN PLUS
       2.1. GUI
       2.2. Estimation methods of physical properties
       2.3. Aspen tools (z.B. Designspecification)
       2.4. Convergence methods

II. Exercices using ASPEN PLUS and ACM

            Performance and constraints of ASPEN PLUS
            ASPEN datenbank using
            Estimation methods of physical properties

            Application of model databank, process synthesis

            Design specifications

            Sensitivity analysis
            Optimization tasks
            Industrial cases

Literature

- G. Fieg: Lecture notes
-
Seider, W.D.; Seader, J.D.; Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis,
  and Evaluation; Hoboken, J. Wiley & Sons, 2010


Course L1040: Methods of Process Safety and Dangerous Substances
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle SoSe
Content
Literature

Bender, H.: Sicherer Umgang mit Gefahrstoffen; Weinheim (2005)
Bender, H.: Das Gefahrstoffbuch. Sicherer Umgang mit Gefahrstoffen in der Praxis; Weinheim (2002)
Birett, K.: Umgang mit Gefahrstoffen; Heidelberg (2011)
Birgersson, B.; Sterner, O.; Zimerson, E.: Chemie und Gesundheit; Weinheim (1988)

O. Antelmann, Diss. an der TU Berlin, 2001

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Prozesse und Produkte, Band 1

    Methodische Grundlagen, VCH, 2004-2006, S. 719

H. Pohle, Chemische Industrie, Umweltschutz, Arbeitsschutz, Anlagensicherheit, VCH, Weinheim, 1991

J. Steinbach, Chemische Sicherheitstechnik, VCH, Weinheim, 1995

G. Suter, Identifikation sicherheitskritischer Prozesse, P&A Kompendium, 2004

Module M0898: Heterogeneous Catalysis

Courses
Title Typ Hrs/wk CP
Analysis and Design of Heterogeneous Catalytic Reactors (L0223) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0533) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0534) Practical Course 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Content of the bachelor-modules "process technology", as well as particle technology, fluidmechanics in process-technology and transport processes.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to apply their knowledge to explain industrial catalytic processes as well as indicate different synthesis routes of established catalyst systems. They are capable to outline dis-/advantages of supported and full-catalysts with respect to their application. Students are able to identify anayltical tools for specific catalytic applications.
Skills After successfull completition of the module, students are able to use their knowledge to identify suitable analytical tools for specific catalytic applications and to explain their choice. Moreover the students are able to choose and formulate suitable reactor systems for the current synthesis process. Students can apply their knowldege discretely to develop and conduct experiments. They are able to appraise achieved results into a more general context and draw conclusions out of them.
Personal Competence
Social Competence

The students are able to plan, prepare, conduct and document experiments according to scientific guidelines in small groups.

The students can discuss their subject related knowledge among each other and with their teachers.

Autonomy

The students are able to obtain further information for experimental planning and assess their relevance autonomously.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0223: Analysis and Design of Heterogeneous Catalytic Reactors
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

1. Material- and Energybalance of the two-dimensionsal zweidimensionalen pseudo-homogeneous reactor model

2. Numerical solution of ordinary differential equations (Euler, Runge-Kutta, solvers for stiff problems, step controlled solvers)

3. Reactor design with one-dimensional models (ethane cracker, catalyst deactivation, tubular reactor with deactivating catalyst, moving bed reactor with regenerating catalyst, riser reactor, fluidized bed reactor)

4. Partial differential equations (classification, numerical solution Lösung, finite difference method, method of lines)

5. Examples of reactor design (isothermal tubular reactor with axial dispersion, dehydrogenation of ethyl benzene, wrong-way behaviour)

6. Boundary value problems (numerical solution, shooting method, concentration- and temperature profiles in a catalyst pellet, multiphase reactors, trickle bed reactor)


Literature

1. Lecture notes R. Horn

2. Lecture notes F. Keil

3.  G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010

4. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000



Course L0533: Modern Methods in Heterogeneous Catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

Heterogeneous Catalysis and Chemical Reaction Engineering are inextricably linked. About 90% of all chemical intermediates and consumer products (fuels, plastics, fertilizers etc.) are produced with the aid of catalysts. Most of them, in particular large scale products, are produced by heterogeneous catalysis viz. gaseous or liquid reactants react on solid catalysts. In multiphase reactors gases, liquids and a solid catalyst are present.

Heterogeneous catalysis plays also a key role in any future energy scenario (fuel cells, electrocatalytic splitting of water) and in environmental engineering (automotive catalysis, photocatalyic abatement of water pollutants).

Heterogeneous catalysis is an interdisciplinary science requiring knowledge of different scientific disciplines such as

  • Materials Science (synthesis and characterization of solid catalysts)
  • Physics (structure and electronic properties of solids, defects)
  • Physical Chemistry (thermodynamics, reaction mechanisms, chemical kinetics, adsorption, desorption, spectroscopy, surface chemistry, theory)
  • Reaction Engineering (catalytic reactors, mass- and heat transport in catalytic reactors, multi-scale modeling, application of heterogeneous catalysis)
The class „Modern Methods in Heterogeneous Catalysis“ will deal with the above listed aspects of heterogeneous catalysis beyond the material presented in the normal curriculum of chemical reaction engineering classes. In the corresponding laboratory will have the opportunity to apply their aquired theoretical knowledge by synthesizing a solid catalyst, characterizing it with a variety of modern instrumental methods (e.g. BET, chemisorption, pore analysis, XRD, Raman-Spectroscopy, Electron Microscopy) and measuring its kinetics. Class and laboratory „Modern Methods in Heterogeneous Catalysis“ in combination with the lecture „Analysis and Design of Heterogeneous Catalytic Reactors“ will give interested students the opportunity to specialize in this vibrant, multifaceted and application oriented field of research.


Literature
  • J.M. Thomas, W.J. Thomas: Principles and Practice of Heterogeneous Catalysis, VCH
  • I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, WILEY-VCH
  • B.C. Gates: Catalytic Chemistry, John Wiley
  • R.A. van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn, B.A. Averill (Eds.): Catalysis: an integrated approach, Elsevier
  • D.P. Woodruff, T.A. Delchar: Modern Techniques of Surface Science, Cambridge Univ. Press
  • J.W. Niemantsverdriet: Spectrocopy in Catalysis, VCH
  • F. Delannay (Ed.): Characterization of heterogeneous catalysts, Marcel Dekker
  • C.H. Bartholomew, R.J. Farrauto: Fundamentals of Industrial Catalytic Processes (2nd Ed.),Wiley


Course L0534: Modern Methods in Heterogeneous Catalysis
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0906: Numerical Simulation and Lagrangian Transport

Courses
Title Typ Hrs/wk CP
Lagrangian transport in turbulent flows (L2301) Lecture 2 3
Computational Fluid Dynamics - Exercises in OpenFoam (L1375) Recitation Section (small) 1 1
Computational Fluid Dynamics in Process Engineering (L1052) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-IV
  • Basic knowledge in Fluid Mechanics
  • Basic knowledge in chemical thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students are able to

  • explain the the basic principles of statistical thermodynamics (ensembles, simple systems) 
  • describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles
  • discuss examples of computer programs in detail,
  • evaluate the application of numerical simulations,
  • list the possible start and boundary conditions for a numerical simulation.
Skills

The students are able to:

  • set up computer programs for solving simple problems by Monte Carlo or molecular dynamics,
  • solve problems by molecular modeling,
  • set up a numerical grid,
  • perform a simple numerical simulation with OpenFoam,
  • evaluate the result of a numerical simulation.

Personal Competence
Social Competence

The students are able to

  • develop joint solutions in mixed teams and present them in front of the other students,
  • to collaborate in a team and to reflect their own contribution toward it.




Autonomy

The students are able to:

  • evaluate their learning progress and to define the following steps of learning on that basis,
  • evaluate possible consequences for their profession.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2301: Lagrangian transport in turbulent flows
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Yan Jin
Language EN
Cycle SoSe
Content

Contents

- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)

- An overview of Lagrange analysis methods and experiments in fluid mechanics

- Critical examination of the concept of turbulence and turbulent structures.

-Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.)

- Implementation of a Runge-Kutta 4th-order in Matlab

- Introduction to particle integration using ODE solver from Matlab

- Problems from turbulence research

- Application analytical methods with Matlab.


Structure:

- 14 units a 2x45 min. 

- 10 units lecture

- 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague


Learning goals:

Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge

The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills

The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence

Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence


Required knowledge:

Fluid mechanics 1 and 2 advantageous

Programming knowledge advantageous



Literature

Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag.

Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726.

Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press.

Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1.

Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502.

Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033.

Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley.

LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002.

Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO.

Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002.

Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109.

Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press.

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literature OpenFoam Tutorials (StudIP)
Course L1052: Computational Fluid Dynamics in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literature

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Module M1033: Special Areas of Process Engineering and Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Bioeconomy (L2797) Lecture 2 2
Chemical Kinetics (L0508) Lecture 2 2
Solid Matter Process in chemical Industry (L2021) Lecture 2 2
Optics for Engineers (L2437) Lecture 3 3
Optics for Engineers (L2438) Project-/problem-based Learning 3 3
Polymer Reaction Engineering (L1244) Lecture 2 2
Safety of Chemical Reactions (L1321) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge The students should have passed the Bachelor modules "Process Engineering" successfully.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to find their way around selected special areas of Process Engineering within the scope of Process Engineering.
Students are able to explain technical dependencies and models in selected special areas of Process Engineering.

Skills

Students are able to apply basic methods in selected areas of process engineering.

Personal Competence
Social Competence
Autonomy

Students can chose independently, in which field the want to deepen their knowledge and skills through the election of courses.

Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2797: Bioeconomy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Garabed Antranikian
Language EN
Cycle WiSe/SoSe
Content

Bioeconomy is the production, utilization and conservation of biological resources, including related knowledge, science, technology, and innovation, to provide information products, processes, and services across all economic sectors aiming towards a sustainable biobased technology. In this course the significance of various topics including the production and processing of biomass, economics, logistic as well as management will be discussed. Technologies aiming at the production of renewable biological resources and the conversion of these resources and waste streams into value-added products, such as food, feed, bio-based products (textiles, bioplastics, chemicals, pharmaceuticals) and bioenergy will be presented. Biological tools including microorganisms and enzymes will be introduced. This approach with a focus on chemical and process engineering will provide a smooth transition from crude oil-based industry to Sustainable Circular Bioeconomy taking into consideration the environmental issues. This sustainable use of renewable resources for industrial purposes will ensure environmental protection and a long-term balance of social and economic gains.

Literature
Course L0508: Chemical Kinetics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 120 Minuten
Lecturer Prof. Raimund Horn
Language EN
Cycle WiSe
Content

- Micro kinetics, formal kinetics, molecularity, reaction order, integrated rate laws

- Complex reactions, reversible reactions, consecutive reactions, parallel reactions, approximation methods: steady-state, pseudo-first order, numerical solution of rate equations , example : Belousov-Zhabotinskii reaction

- Experimental methods of kinetics, integral approach, differential approach, initial rate method, method of half-life, relaxation methods

- Collision theory, Maxwell velocity distribution, collision numbers, line of centers model

- Transition state theory, partition functions of atoms and molecules, examples, calculating reaction equilibria on the basis of molecular data only, heats of reaction, calculating rates of reaction by means of statistical thermodynamics

- Kinetics of heterogeneous reactions, peculiarities of heterogeneous reactions, mean-field approximation, Langmuir adsorption isotherm, reaction mechanisms, Langmuir-Hinshelwood Mechanism, Eley-Rideal Mechanism, steady-state approximation, quasi-equilibrium approximation, most abundant reaction intermediate (MARI), reaction order, apparent activation energy, example: CO oxidation, transition state theory of surface reactions, Sabatier´s principle, sticking coefficient, parameter fitting

- Explosions, cold flames

Literature

J. I. Steinfeld, J. S. Francisco, W. L . Hase: Chemical Kinetics & Dynamics, Prentice Hall

K. J. Laidler: Chemical Kinetics, Harper & Row Publishers

R. K. Masel. Chemical Kinetics & Catalysis , Wiley

I. Chorkendorff,, J. W. Niemantsverdriet: Concepts of modern Catalysis and Kinetics, Wiley

Course L2021: Solid Matter Process in chemical Industry
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 12 Seiten
Lecturer Prof. Frank Kleine Jäger
Language DE
Cycle SoSe
Content
Literature
Course L2437: Optics for Engineers
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content
  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Literature  
Course L2438: Optics for Engineers
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1244: Polymer Reaction Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 1 Stunde
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content

Introduction into polymer reaction engineering, free and controlled radical polymerization, coordination polymerization of olefins, ionic “living” polymerization, step polymerization (polyaddition, polycondensation), copolymerization, emulsion polymerization, specific challenges of the industrial implementation of polymerization reactions (viscosity increase, heat removal, scale-up, reactor safety, modelling of polymerization reactions and reactors), key competitive factors in polymer industry in Germany, EU and worldwide.

Literature

W. Keim: Kunststoffe - Synthese, Herstellungsverfahren, Apparaturen, 1. Auflage, Wiley-VCH, 2006

T. Meyer, J. Keurentjes: Handbook of Polymer Reaction Engineering, 2 Vol., 1. Ed., Wiley-VCH, 2005

A. Echte: Handbuch der technischen Polymerchemie, 1. Auflage, VCH-Verlagsgesellschaft, 1993

G. Odian: Principles of Polymerization, 4. Ed., Wiley-Interscience, 2004

J. Asua: Polymer Reaction Engineering, 1. Ed., Blackwell Publishing, 2007


Course L1321: Safety of Chemical Reactions
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content
Literature

Module M0657: Computational Fluid Dynamics II

Courses
Title Typ Hrs/wk CP
Computational Fluid Dynamics II (L0237) Lecture 2 3
Computational Fluid Dynamics II (L0421) Recitation Section (large) 2 3
Module Responsible Prof. Thomas Rung
Admission Requirements None
Recommended Previous Knowledge

Students should have sound knowledge of engineering mathematics (series expansions, internal & vector calculus), and be familiar with the foundations of partial/ordinary differential equations. They should also be familiar with engineering fluid mechanics and thermodynamics. Basic knowledge of numerical analysis or computational fluid dynamics is of advantage but not necessary.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will acquire a deeper knowledge of computational fluid dynamics (CFD) and can translate general principles of thermo-/fluid engineering into discrete algorithms on the basis of finite volume methods. They are familiar with the similarities and differences between different discretisation and approximation concepts for investigating coupled systems of non-linear, convective partial differential equations (PDE) on structured and unstructured grids. Students have the required background knowledge to develop, code and apply  modelling concepts to numerically describe turbulent and multiphase flow. They establish a thorough understanding of details of the theoretical background of complex CFD algorithms and the parameters used to control and adjust the execution of CFD procedures.

Skills

The students are able choose and apply appropriate finite volume (FV) approximation concepts and flow physics models that integrate the governing thermofluid dynamic PDEs in space and time. They can apply/optimise FV concepts to/for fluid dynamic applications. They acquire the ability to code computational algorithms dedicated to unstructured grid arrangements, apply these codes for parameter investigations and supplement interfaces to extract simulation data for an engineering analysis. They are able to judge different solution strategies.




Personal Competence
Social Competence

The students are able to discuss problems, present the results of their own analysis, and jointly develop, implement and report on solution strategies that address given technical reference problems in a team.

Autonomy

The students can independently analyse numerical methods to solving fluid engineering problems. They are able to critically analyse own results as well as external data with regards to the plausibility and reliability.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 0.5h-0.75h
Assignment for the Following Curricula Energy Systems: Core Qualification: Elective Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0237: Computational Fluid Dynamics II
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Thomas Rung
Language DE/EN
Cycle SoSe
Content Computational Modelling of complex single- and multiphase flows using higher-order approximations for unstructured grids and mehsless particle-based methods.
Literature

1)
Vorlesungsmanuskript und Übungsunterlagen

2)
J.H. Ferziger, M. Peric:
Computational Methods for Fluid Dynamics,
Springer

Course L0421: Computational Fluid Dynamics II
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Thomas Rung
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1709: Applied optimization in energy and process engineering

Courses
Title Typ Hrs/wk CP
Applied optimization in energy and process engineering (L2693) Integrated Lecture 2 3
Applied optimization in energy and process engineering (L2695) Recitation Section (small) 2 3
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.


In particular the contents of the module Process and Plant Engineering II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

• Introduction to Applied Optimization

• Formulation of optimization problems

• Linear Optimization

• Nonlinear Optimization

• Mixed-integer (non)linear optimization

• Multi-objective optimization

• Global optimization

Skills

After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly.


Personal Competence
Social Competence

Students are capable of:

•develop solutions in heterogeneous small groups
Autonomy

Students are capable of:

•taping new knowledge on a special subject by literature research
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 35 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L2693: Applied optimization in energy and process engineering
Typ Integrated Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE/EN
Cycle SoSe
Content

The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

- Introduction to Applied Optimization

- Formulation of optimization problems

- Linear Optimization

- Nonlinear Optimization

- Mixed-integer (non)linear optimization

- Multi-objective optimization

- Global optimization

Literature

Weicker, K., Evolutionäre Algortihmen, Springer, 2015

Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001

Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010

Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002

Course L2695: Applied optimization in energy and process engineering
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1702: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.


Skills
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M1777: Introduction to model-based industrial process development for biopharmaceuticals

Courses
Title Typ Hrs/wk CP
Design and Scale up of aerated bioreactors for biopharmaceutical products (L2922) Seminar 2 3
Insights into biopharmaceutical production (L2921) Seminar 2 3
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge

All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer, transport processes


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to:

  • describe and evaluate pharmaceutical processes from a process engineering perspective.
  • name and use the essential models for process development
  • describe and evaluate bioreactors for pharmaceutical processes, especially gassed stirred tank reactors.
  • describe various pharmaceutical processes and contrast their modes of operation and essential characteristics.
Skills

Students will be able to:

  • Describe, optimize and design biopharmaceutical processes using models,
  • Describe, optimize and design gassed stirred reactors as a typical type of apparatus. 
Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to independently define tasks for working on the overall problem of "Modeling a process for biopharmaceutical production". The knowledge required for this is acquired by the students themselves, building on the knowledge imparted in the lecture, and they decide which equations and models from the lecture are to be used for implementation. They can organize themselves in a team and assign priorities for subtasks.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2922: Design and Scale up of aerated bioreactors for biopharmaceutical products
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Jürgen Fitschen, Dr. Thomas Wucherpfennig
Language EN
Cycle SoSe
Content
  • Introduction to aerated stirred tank reactors and alternative reactor concepts
  • Mixing and mass transfer performance (example with M-STAR)
  • Energy dissipation rates and shear stress 
  • Gas holdup and bubble size distribution
  • Experimental methods for the characterization of aerated stirred tank reactors
  • Common design and scale up concepts
  • Concept of compartments
  • Design and scale up assisted by Computational Fluid Dynamics 
Literature
Course L2921: Insights into biopharmaceutical production
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Jürgen Fitschen, Dr. Thomas Wucherpfennig
Language EN
Cycle SoSe
Content
  • Introduction to biopharma including biopharmaceutical products (e.g. vaccine)
  • Biopharma market
  • Clinical studies
  • Quality of products
  • Drug substance process development (cell therapy)
  • Drug product development 
  • Insilico process development (equipment, process, digital twin) 
  • Scale-up, transfer and production of biopharmaceutical products 
  • Regulatory topics and market authorization
  • Biopharma lab & production planning
  • Data, handling, statistics, Experiment Planning (DOE)
  • Capacity modeling, Software “Bio-G”
Literature

Module M1737: Power-to-X process

Courses
Title Typ Hrs/wk CP
Power-to-X process (L2805) Lecture 2 2
Power-to-X process (L2806) Recitation Section (large) 1 2
Practical aspects of energy conversion (L2807) Practical Course 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the energy transition in Germany,
  • give an overview of the versatile application possibilities of power-to-X processes,
  • evaluate different power-to-X concepts with regard to their technical challenges and social benefits.
Skills

The students are able to:

  • develop concepts for the technical implementation of power-to-X processes,
  • evaluate practical aspects of energy conversion to platform chemicals using laboratory experiments,
  • apply the acquired knowledge to various engineering-relevant power-to-X processes.
Personal Competence
Social Competence

The students:

  • are able to independently discuss approaches to solutions and problems in the field of the energy transition in Germany in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
  • are able to work out the practical aspects of energy conversion to platform chemicals on the basis of laboratory experiments, carry out and evaluate the analytics of the products and precisely summarise the results of the experiments in a protocol.
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2805: Power-to-X process
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content
  • Regenerative surplus energy
  • Electrolysis
  • CO2 sources for Power-to-X
  • Power-to-heat
  • Power-to-Power
  • Power-to-gas (SNG)
  • Power-to-Syngas
  • Power-to-Methanol
  • Power-to-Fuels
  • Power-to-ammonia
  • LOHC (Liquid organic hydrogen carrier)
  • Economic and ecological comparison of different concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2806: Power-to-X process
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In exercise, the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2807: Practical aspects of energy conversion
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In the laboratory practical course, practical experiments on power-to-X processes are carried out. The challenges for the technical implementation of power-to-x processes are made clear to the students. The associated analysis of the test samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015

Module M0952: Industrial Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Biotechnical Processes (L1065) Project-/problem-based Learning 2 3
Development of bioprocess engineering processes in industrial practice (L1172) Seminar 2 3
Module Responsible Prof. Ralf Pörtner
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective biotechnological production processes
Skills

After successful completion of the module students are able to

  • analyzing and evaluate current research approaches
  • Lay-out biotechnological production processes basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.



Autonomy



After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale oral presentation + discussion (45 min) + Written report (10 pages)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1065: Biotechnical Processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language DE/EN
Cycle SoSe
Content

This course gives an overview of the most important biotechnological production processes. In addition to the individual methods and their specific requirements, general aspects of industrial reality are also addressed, such as:
• Asset Lifecycle
• Digitization in the bioprocess industry
• Basic principles of industrial bioprocess development
• Sustainability aspects in the development of bioprocess engineering processes

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986. 

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts


Course L1172: Development of bioprocess engineering processes in industrial practice
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle SoSe
Content

This course gives an insight into the methodology used in the development of industrial biotechnology processes. Important aspects of this are, for example, the development of the fermentation and the work-up steps for the respective target molecule, the integration of the partial steps into an overall process, and the cost-effectiveness of the process.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M0633: Industrial Process Automation

Courses
Title Typ Hrs/wk CP
Industrial Process Automation (L0344) Lecture 2 3
Industrial Process Automation (L0345) Recitation Section (small) 2 3
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

mathematics and optimization methods
principles of automata 
principles of algorithms and data structures
programming skills

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'.


Skills

The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs.

Personal Competence
Social Competence

The students can independently define work processes within their groups, distribute tasks within the group and develop solutions collaboratively.



Autonomy

The students are able to assess their level of knowledge and to document their work results adequately.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0344: Industrial Process Automation
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content

- foundations of problem solving and system modeling, discrete event systems
- properties of processes, modeling using automata and Petri-nets
- design considerations for processes (mutex, deadlock avoidance, liveness)
- optimal scheduling for processes
- optimal decisions when planning manufacturing systems, decisions under uncertainty
- software design and software architectures for automation, PLCs

Literature

J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012
Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010
Hrúz, Zhou: Modeling and Control of Discrete-event Dynamic Systems; Springer 2007
Li, Zhou: Deadlock Resolution in Automated Manufacturing Systems, Springer 2009
Pinedo: Planning and Scheduling in Manufacturing and Services, Springer 2009

Course L0345: Industrial Process Automation
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0537: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications

Courses
Title Typ Hrs/wk CP
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0100) Lecture 4 3
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0230) Recitation Section (small) 2 3
Module Responsible Dr. Sven Jakobtorweihen (alt)
Admission Requirements None
Recommended Previous Knowledge

Thermodynamics III

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are capable to formulate thermodynamic problems and to specify possible solutions. Furthermore, they can describe the current state of research in thermodynamic property predictions.




Skills

The students are capable to apply modern thermodynamic calculation methods to multi-component mixtures and relevant biological systems. They can calculate phase equilibria and partition coefficients by applying equations of state, gE models, and COSMO-RS methods. They can provide a comparison and a critical assessment of these methods with regard to their industrial relevance. The students are capable to use the software COSMOtherm and relevant property tools of ASPEN and to write short programs for the specific calculation of different thermodynamic properties. They can judge and evaluate the results from thermodynamic calculations/predictions for industrial processes.


Personal Competence
Social Competence

Students are capable to develop and discuss solutions in small groups; further they can translate these solutions into calculation algorithms. 


Autonomy

Students can rank the field of “Applied Thermodynamics” within the scientific and social context.  They are capable to define research projects within the field of thermodynamic data calculation.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Oral exam
Examination duration and scale 1 Stunde Gruppenprüfung
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0100: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Lecture
Hrs/wk 4
CP 3
Workload in Hours Independent Study Time 34, Study Time in Lecture 56
Lecturer Dr. Sven Jakobtorweihen, Prof. Ralf Dohrn
Language EN
Cycle WiSe
Content


  • Phase equilibria in multicomponent systems
  • Partioning in biorelevant systems
  • Calculation of phase equilibria in colloidal systems: UNIFAC, COSMO-RS (exercises in computer pool)
  • Calculation of partitioning coefficients in biological membranes: COSMO-RS (exercises in computer pool)
  • Application of equations of state (vapour pressure, phase equilibria, etc.) (exercises in computer pool) 
  • Intermolecular forces, interaction Potenitials
  • Introduction in statistical thermodynamics
Literature
Course L0230: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Sven Jakobtorweihen, Prof. Ralf Dohrn
Language EN
Cycle WiSe
Content

exercises in computer pool, see lecture description for more details

Literature -

Module M0545: Separation Technologies for Life Sciences

Courses
Title Typ Hrs/wk CP
Chromatographic Separation Processes (L0093) Lecture 2 2
Unit Operations for Bio-Related Systems (L0112) Lecture 2 2
Unit Operations for Bio-Related Systems (L0113) Project-/problem-based Learning 2 2
Module Responsible Prof. Pavel Gurikov
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Fluid Process Engineering, Thermal Separation Processes, Chemical Engineering, Chemical Engineering, Bioprocess Engineering

Basic knowledge in thermodynamics and in unit operations related to thermal separation processes




Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

On completion of the module, students are able to present an overview of the basic thermal process technology operations that are used, in particular, in the separation and purification of biochemically manufactured products. Students can describe chromatographic separation techniques and classic and new basic operations in thermal process technology and their areas of use. In their choice of separation operation students are able to take the specific properties and limitations of biomolecules into consideration. Using different phase diagrams they can explain the principle behind the basic operation and its suitability for bioseparation problems.



Skills

On completion of the module, students are able to assess the separation processes for bio- and pharmaceutical products that have been dealt with for their suitability for a specific separation problem. They can use simulation software to establish the productivity and economic efficiency of bioseparation processes. In small groups they are able to jointly design a downstream process and to present their findings in plenary and summarize them in a joint report.


Personal Competence
Social Competence

Students are able in small heterogeneous groups to jointly devise a solution to a technical problem by using project management methods such as keeping minutes and sharing tasks and information.





Autonomy

Students are able to prepare for a group assignment by working their way into a given problem on their own. They can procure the necessary information from suitable literature sources and assess its quality themselves. They are also capable of independently preparing the information gained in a way that all participants can understand (by means of reports, minutes, and presentations).



Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Written exam
Examination duration and scale 120 minutes; theoretical questions and calculations
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0093: Chromatographic Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle WiSe
Content
  • Introduction: overview, history of chromatography, LC (HPLC), GC, SFC
  • Fundamentals of linear (analytical) chromatography, retention time/factor, separation factor, peak resolution, band broadening, Van-Deemter equation
  • Fundamentals of nonlinear chromatography, discontinuous and continuous preparative chromatography (annular, true moving bed - TMB, simulated moving bed - SMB)
  • Adsorption equilibrium: experimental determination of adsorption isotherms and modeling
  • Equipment for chromatography, production and characterization of chromatographic adsorbents
  • Method development, scale up methods, process design, modeling of chromatographic processes, economic aspects
  • Applications: e.g. normal phase chromatography, reversed phase chromatography, hydrophobic interaction chromatography, chiral chromatography, bioaffinity chromatography, ion exchange chromatography
Literature
  • Schmidt-Traub, H.: Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents. Weinheim: Wiley-VCH (2005) - eBook
  • Carta, G.: Protein chromatography: process development and scale-up. Weinheim: Wiley-VCH (2010)
  • Guiochon, G.; Lin, B.: Modeling for Preparative Chromatography. Amsterdam: Elsevier (2003)
  • Hagel, L.: Handbook of process chromatography: development, manufacturing, validation and economics. London ;Burlington, MA Academic (2008) - eBook


Course L0112: Unit Operations for Bio-Related Systems
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Pavel Gurikov
Language EN
Cycle WiSe
Content Contents:
  • Introduction: overview about the separation process in biotechnology and pharmacy
  • Handling of multicomponent systems
  • Adsorption of biologic molecules
  • Crystallization of biologic molecules
  • Reactive extraction
  • Aqueous two-phase systems
  • Micellar systems: micellar extraction and micellar chromatographie
  • Electrophoresis
  •  Choice of the separation process for the specific systems
Learning Outcomes:
  • Basic knowledge of separation processes for biotechnological and pharmaceutical processes
  • Identification of specific features and limitations in bio-related systems
  • Proof of economical value of the process


Literature

"Handbook of Bioseparations", Ed. S. Ahuja

http://www.elsevier.com/books/handbook-of-bioseparations-2/ahuja/978-0-12-045540-9

"Bioseparations Engineering" M. R. Ladish

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471244767.html


Course L0113: Unit Operations for Bio-Related Systems
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Pavel Gurikov
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0881: Mathematical Image Processing

Courses
Title Typ Hrs/wk CP
Mathematical Image Processing (L0991) Lecture 3 4
Mathematical Image Processing (L0992) Recitation Section (small) 1 2
Module Responsible Prof. Marko Lindner
Admission Requirements None
Recommended Previous Knowledge
  • Analysis: partial derivatives, gradient, directional derivative
  • Linear Algebra: eigenvalues, least squares solution of a linear system
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to 

  • characterize and compare diffusion equations
  • explain elementary methods of image processing
  • explain methods of image segmentation and registration
  • sketch and interrelate basic concepts of functional analysis 
Skills

Students are able to 

  • implement and apply elementary methods of image processing  
  • explain and apply modern methods of image processing
Personal Competence
Social Competence

Students are able to work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge) and to explain theoretical foundations.

Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Computer Science: Specialisation III. Mathematics: Elective Compulsory
Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory
Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Technomathematics: Specialisation I. Mathematics: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0991: Mathematical Image Processing
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Marko Lindner
Language DE/EN
Cycle WiSe
Content
  • basic methods of image processing
  • smoothing filters
  • the diffusion / heat equation
  • variational formulations in image processing
  • edge detection
  • de-convolution
  • inpainting
  • image segmentation
  • image registration
Literature Bredies/Lorenz: Mathematische Bildverarbeitung
Course L0992: Mathematical Image Processing
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Marko Lindner
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0662: Numerical Mathematics I

Courses
Title Typ Hrs/wk CP
Numerical Mathematics I (L0417) Lecture 2 3
Numerical Mathematics I (L0418) Recitation Section (small) 2 3
Module Responsible Prof. Sabine Le Borne
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I + II for Engineering Students (german or english) or Analysis & Linear Algebra I + II for Technomathematicians
  • basic MATLAB/Python knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • name numerical methods for interpolation, integration, least squares problems, eigenvalue problems, nonlinear root finding problems and to explain their core ideas,
  • repeat convergence statements for the numerical methods,
  • explain aspects for the practical execution of numerical methods with respect to computational and storage complexitx.


Skills

Students are able to

  • implement, apply and compare numerical methods using MATLAB/Python,
  • justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm,
  • select and execute a suitable solution approach for a given problem.
Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0417: Numerical Mathematics I
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne
Language EN
Cycle WiSe
Content
  1. Finite precision arithmetic, error analysis, conditioning and stability
  2. Linear systems of equations: LU and Cholesky factorization, condition
  3. Interpolation: polynomial, spline and trigonometric interpolation
  4. Nonlinear equations: fixed point iteration, root finding algorithms, Newton's method
  5. Linear and nonlinear least squares problems: normal equations, Gram Schmidt and Householder orthogonalization, singular value decomposition, regularizatio, Gauss-Newton and Levenberg-Marquardt methods
  6. Eigenvalue problems: power iteration, inverse iteration, QR algorithm
  7. Numerical differentiation
  8. Numerical integration: Newton-Cotes rules, error estimates, Gauss quadrature, adaptive quadrature
Literature
  • Gander/Gander/Kwok: Scientific Computing: An introduction using Maple and MATLAB, Springer (2014)
  • Stoer/Bulirsch: Numerische Mathematik 1, Springer
  • Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer


Course L0418: Numerical Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0899: Synthesis and Design of Industrial Processes

Courses
Title Typ Hrs/wk CP
Synthesis and Design of Industrial Facilities (L1048) Lecture 1 2
Industrial Plant Design and Economics (L1977) Project-/problem-based Learning 3 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

process and plant engineering I and II

thermal separation processes

heat and mass transport processes

CAPE (absolut necessarily!)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- reproduce the main elements of design of industrial processes

- give an overview and explain the phases of design

- describe and explain energy, mass balances, cost estimation methods and economic evaluation of invest projects

- justify  and discuss process control concepts and fundamentals of process optimization

Skills

students are capable of:

-conduction and evaluation of design of unit operations

- combination of unit operation to a complex process plant

- use of cost estimation methods for the prediction of production costs

- carry out the pfd-diagram

Personal Competence
Social Competence

students are able to discuss and develop in groups the design of an industrial process

Autonomy

students are able to reflect the consequences of their professional activity


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Engineering Handbook and oral exam (20 min)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1048: Synthesis and Design of Industrial Facilities
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Presentation of the task
Introduction to design and analysis of a chemical processing plant (example chemical processing plants)
Discussion of the process, preparation of process flow diagram
Calculation of material balance
Calculation of energy balance
Designing/Sizing of the equipment
Capital cost estimation
Production cost estimation
Process control & HAZOP Study
Lecture 11 = Process optimization
Lecture 12 = Final Project Presentation

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Course L1977: Industrial Plant Design and Economics
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content

Introduction

Flowsheet (Discussion)

Mass and Energy Balances

Economics

Process Safety

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Module M0900: Examples in Solid Process Engineering

Courses
Title Typ Hrs/wk CP
Fluidization Technology (L0431) Lecture 2 2
Practical Course Fluidization Technology (L1369) Practical Course 1 1
Technical Applications of Particle Technology (L0955) Lecture 2 2
Exercises in Fluidization Technology (L1372) Recitation Section (small) 1 1
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Knowledge from the module particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe based on examples the assembly of solids engineering processes consisting of multiple apparatuses and subprocesses. They are able to describe the coaction and interrelation of subprocesses.
Skills Students are able to analyze tasks in the field of solids process engineering and to combine suitable subprocesses in a process chain.
Personal Competence
Social Competence Students are able to discuss technical problems in a scientific manner.
Autonomy Students are able to acquire scientific knowledge independently and discuss technical problems in a scientific manner.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration drei Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0431: Fluidization Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Introduction: definition, fluidization regimes, comparison with other types of gas/solids reactors
Typical fluidized bed applications
Fluidmechanical principle
Local fluid mechanics of gas/solid fluidization
Fast fluidization (circulating fluidized bed)
Entrainment
Solids mixing in fluidized beds
Application of fluidized beds to granulation and drying processes


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L1369: Practical Course Fluidization Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Experiments:

  • Determination of the minimum fluidization velocity
  • heat transfer
  • granulation
  • drying


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L0955: Technical Applications of Particle Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle WiSe
Content Unit operations like mixing, separation, agglomeration and size reduction are discussed concerning their technical applicability from the perspective of the practician. Machines and apparatuses are presented, their designs and modes of action are explained and their application in production processes for chemicals, food and feed and in recycling processes are illustrated.
Literature Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997
Course L1372: Exercises in Fluidization Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Exercises and calculation examples for the lecture Fluidization Technology


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Module M0902: Wastewater Treatment and Air Pollution Abatement

Courses
Title Typ Hrs/wk CP
Biological Wastewater Treatment (L0517) Lecture 2 3
Air Pollution Abatement (L0203) Lecture 2 3
Module Responsible Dr. Swantje Pietsch-Braune
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of biology and chemistry

Basic knowledge of solids process engineering and separation technology


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • name and explain biological processes for waste water treatment,
  • characterize waste water and sewage sludge,
  • discuss legal regulations in the area of emissions and air quality
  • explain the effects of air pollutants on the environment,
  • name and explan off gas tretament processes and to define their area of application
Skills

Students are able to

  • choose and design processs steps for the biological waste water treatment
  • combine processes for cleaning of off-gases depending on the pollutants contained in the gases
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0517: Biological Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Charaterisation of Wastewater
Metobolism of Microorganisms
Kinetic of mirobiotic processes
Calculation of bioreactor for wastewater treatment
Concepts of Wastewater treatment
Design of WWTP
Excursion to a WWTP
Biofilms
Biofim Reactors
Anaerobic Wastewater and sldge treatment
resources oriented sanitation technology
Future challenges of wastewater treatment

Literature

Gujer, Willi
Siedlungswasserwirtschaft : mit 84 Tabellen
ISBN: 3540343296 (Gb.) URL: http://www.gbv.de/dms/bs/toc/516261924.pdf URL: http://deposit.d-nb.de/cgi-bin/dokserv?id=2842122&prov=M&dok_var=1&dok_ext=htm
Berlin [u.a.] : Springer, 2007
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Imhoff, Karl (Imhoff, Klaus R.;)
Taschenbuch der Stadtentwässerung : mit 10 Tafeln
ISBN: 3486263331 ((Gb.))
München [u.a.] : Oldenbourg, 1999
TUB_HH_Katalog
Lange, Jörg (Otterpohl, Ralf; Steger-Hartmann, Thomas;)
Abwasser : Handbuch zu einer zukunftsfähigen Wasserwirtschaft
ISBN: 3980350215 (kart.) URL: http://www.gbv.de/du/services/agi/52567E5D44DA0809C12570220050BF25/000000700334
Donaueschingen-Pfohren : Mall-Beton-Verl., 2000
TUB_HH_Katalog
Mudrack, Klaus (Kunst, Sabine;)
Biologie der Abwasserreinigung : 18 Tabellen
ISBN: 382741427X URL: http://www.gbv.de/du/services/agi/94B581161B6EC747C1256E3F005A8143/420000114903
Heidelberg [u.a.] : Spektrum, Akad. Verl., 2003
TUB_HH_Katalog
Tchobanoglous, George (Metcalf & Eddy, Inc., ;)
Wastewater engineering : treatment and reuse
ISBN: 0070418780 (alk. paper) ISBN: 0071122508 (ISE (*pbk))
Boston [u.a.] : McGraw-Hill, 2003
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Kunz, Peter
Umwelt-Bioverfahrenstechnik
Vieweg, 1992
Bauhaus-Universität., Arbeitsgruppe Weiterbildendes Studium Wasser und Umwelt (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, ;)
Abwasserbehandlung : Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren, Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen
ISBN: 3860682725 URL: http://www.gbv.de/dms/weimar/toc/513989765_toc.pdf URL: http://www.gbv.de/dms/weimar/abs/513989765_abs.pdf
Weimar : Universitätsverl, 2006
TUB_HH_Katalog
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
DWA-Regelwerk
Hennef : DWA, 2004
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0203: Air Pollution Abatement
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Swantje Pietsch-Braune, Christian Eichler
Language EN
Cycle WiSe
Content

In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators.

Literature

Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002
Atmospheric pollution : history, science, and regulation, Mark Zachary Jacobson. - Cambridge [u.a.] : Cambridge Univ. Press, 2002
Air pollution control technology handbook, Karl B. Schnelle. - Boca Raton [u.a.] : CRC Press, c 2002
Air pollution, Jeremy Colls. - 2. ed. - London [u.a.] : Spon, 2002

Module M0802: Membrane Technology

Courses
Title Typ Hrs/wk CP
Membrane Technology (L0399) Lecture 2 3
Membrane Technology (L0400) Recitation Section (small) 1 2
Membrane Technology (L0401) Practical Course 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures.

Skills

Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. 

Personal Competence
Social Competence

Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. 

Autonomy

Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0399: Membrane Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content

The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well.

Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis.

The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. 

Literature
  • T. Melin, R. Rautenbach: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung (2., erweiterte Auflage), Springer-Verlag, Berlin 2004.
  • Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Richard W. Baker, Membrane Technology and Applications, Second Edition, John Wiley & Sons, Ltd., 2004
Course L0400: Membrane Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0401: Membrane Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones

Courses
Title Typ Hrs/wk CP
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0942) Seminar 2 3
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0941) Lecture 2 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners.

Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world.


Skills

Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content


  • Central part of this module is a group work on a subtopic of the lectures. The focus of these projects will be based on an interview with a target audience, practitioners or scientists.
  • The group work is divided into several Milestones and Assignments. The outcome will be presented in a final presentation at the end of the semester.



Literature
  • J. Lange, R. Otterpohl 2000: Abwasser - Handbuch zu einer zukunftsfähigen Abwasserwirtschaft. Mallbeton Verlag (TUHH Bibliothek)
  • Winblad, Uno and Simpson-Hébert, Mayling 2004: Ecological Sanitation, EcoSanRes, Sweden (free download)
  • Schober, Sabine: WTO/TUHH Award winning Terra Preta Toilet Design: http://youtu.be/w_R09cYq6ys
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
  • Living Soil - THE key element of Rural Development
  • Participatory Approaches
  • Rainwater Harvesting
  • Ecological Sanitation Principles and practical examples
  • Permaculture Principles of Rural Development
  • Performance and Resilience of Organic Small Farms
  • Going Further: The TUHH Toolbox for Rural Development
  • EMAS Technologies, Low cost drinking water supply


Literature
  • Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation: http://youtu.be/9hmkgn0nBgk
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press

Module M0973: Biocatalysis

Courses
Title Typ Hrs/wk CP
Biocatalysis and Enzyme Technology (L1158) Lecture 2 3
Technical Biocatalysis (L1157) Lecture 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this course, students will be able to

  • reflect a broad knowledge about enzymes and their applications in academia and industry
  • have an overview of relevant biotransformations und name the general definitions
Skills

After successful completion of this course, students will be able to

  • understand the fundamentals of biocatalysis and enzyme processes and transfer this to new tasks
  • know the several enzyme reactors and the important parameters of enzyme processes
  • use their gained knowledge about the realisation of processes. Transfer this to new tasks
  • analyse and discuss special tasks of processes in plenum and give solutions
  • communicate and discuss in English
Personal Competence
Social Competence

After completion of this module, participants will be able to debate technical and biocatalytical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

Autonomy

After completion of this module, participants will be able to solve a technical problem independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Environmental Engineering: Specialisation Biotechnology: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1158: Biocatalysis and Enzyme Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language EN
Cycle WiSe
Content

1. Introduction: Impact and potential of enzyme-catalysed processes in biotechnology.

2. History of microbial and enzymatic biotransformations.

3. Chirality - definition & measurement

4. Basic biochemical reactions, structure and function of enzymes.

5. Biocatalytic retrosynthesis of asymmetric molecules

6. Enzyme kinetics: mechanisms, calculations, multisubstrate reactions.

7. Reactors for biotransformations.

Literature
  • K. Faber: Biotransformations in Organic Chemistry, Springer, 5th Ed., 2004
  • A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH, 2006
  • R. B. Silverman: The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, 2000
  • K. Buchholz, V. Kasche, U. Bornscheuer: Biocatalysts and Enzyme Technology. VCH, 2005.
  • R. D. Schmidt: Pocket Guide to Biotechnology and Genetic Engineering, Woley-VCH, 2003
Course L1157: Technical Biocatalysis
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language EN
Cycle WiSe
Content

1. Introduction

2. Production and Down Stream Processing of Biocatalysts

3. Analytics (offline/online)

4. Reaction Engineering & Process Control

  • Definitions
  • Reactors
  • Membrane Processes
  • Immobilization

5. Process Optimization

  • Simplex / DOE / GA

6. Examples of Industrial Processes

  • food / feed
  • fine chemicals

7. Non-Aqueous Solvents as Reaction Media

  • ionic liquids
  • scCO2
  • solvent free
Literature
  •  A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH, 2006
  •  H. Chmiel: Bioprozeßtechnik, Elsevier, 2005
  •  K. Buchholz, V. Kasche, U. Bornscheuer: Biocatalysts and Enzyme Technology, VCH, 2005
  •  R. D. Schmidt: Pocket Guide to Biotechnology and Genetic Engineering, Woley-VCH, 2003

Module M1017: Food Technology

Courses
Title Typ Hrs/wk CP
Food Technology (L1216) Lecture 2 3
Experimental Course: Brewing Technology (L1242) Practical Course 2 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge of partice technology
  • Separation Technique; Heat and Mass Transfer I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • discuss the material properties of food
  • explain basic of production processes in food engineering
  • describe some selected processes
Skills

Students are able to

  • choose and design process chains for the processing of food
  • asses the effect of the single process steps on the material properties of food
Personal Competence
Social Competence Students are enabled to discuss knowledge in a scientific environment.
Autonomy

Students are able to acquire scientific knowledge independently and knowledge in a scientific manner.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration 10 - 15 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1216: Food Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich, Prof. Stefan Palzer
Language DE
Cycle WiSe
Content

1. Material properties: Rheology, Transport coefficients, Measuring devices, Quality aspects

2. Processes at ambient condition, at elevated temperature and pressure

3. energy analysis

4. Selected processes: Seed oil production; Roasted Coffee 

Literature

M. Bockisch: Handbuch der Lebensmitteltechnologie , Stuttgart, 1993

R. Eggers: Vorlesungsmanuskript

Course L1242: Experimental Course: Brewing Technology
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich, Prof. Stefan Palzer
Language DE/EN
Cycle WiSe
Content

In the frame of the course the basics of fermentation, fluid processing and process engineering will be repeated.

Following all aspects of manufacturing of beer will be explained: selection and processing of raw materials, different liquid and solid unit operations, packaging technology and final quality assurance/sensory evaluation.

The students will perform all unit operations in pilot scale. The objective is that student experience and adopt a holistic view of food manufacturing.

Literature

Ludwig Narziss: Abriss der Bierbrauerei, 7. Auflage, Wiley VCH

Module M0905: Research Project Process Engineering

Courses
Title Typ Hrs/wk CP
Research Project in Process Engineering (L1051) Project-/problem-based Learning 6 6
Module Responsible Dozenten des SD V
Admission Requirements None
Recommended Previous Knowledge

Advanced state of knowledge in the master program of Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know current research topics oft institutes engaged in their specialization. They can name the fundamental scientific methods used for doing related reserach.

Skills

Students are capable of completing a small, independent sub-project of currently ongoing research projects in the institutes engaged in their specialization. Students can justify and explain their approach for problem solving, they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alterantive approaches with their own with regard to given criteria.

Personal Competence
Social Competence

Students are able to discuss their work progress with research assistants of the supervising institute. They are capable of presenting their results in front of a professional audience.


Autonomy

Based on their competences gained so far students are capable of defining meaningful tasks within ongoing research project for themselves. They are able to develop the necessary understanding  and problem solving methods.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1051: Research Project in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content

Working on current research topics of the chosen specialisation.

Research projects can be carried out at the institutes of process engineering, in industry or abroad. It is always necessary to have a university lecturer from the school of Process Engineering as a supervisor, who must be determined before the research project begins.


Literature

Aktuelle Literatur zu Forschungsthemen aus der gewählten Vertiefungsrichtung. 

Current literature on research topics of the chosen specialization.

Module M1396: Hybrid Processes in Process Engineering

Courses
Title Typ Hrs/wk CP
Hybrid Processes in Process Engineering (L1715) Project-/problem-based Learning 2 4
Hybrid Processes in Process Engineering (L1978) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Process and Plant Engineering 1

Process and Plant Engineering 2

Basics in Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Students are able to evaluate hybrid processes
Skills
Students are able to evaluate processes with regard to their suitability as hybrid processes and to interpret them accordingly.
Personal Competence
Social Competence
Students are able to apply the principles of project management for small groups.
Autonomy
Students are able to acquire and discuss specialized knowledge about hybrid processes.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Project report incl. PM-documents
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1715: Hybrid Processes in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1978: Hybrid Processes in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content
Literature

- H. Schmidt-Traub; Integrated Reaction and Separation Operations: Modelling and Experimental Validation; Springer 2006
- K. Sundmacher, A. Kienle, A. Seidel-Morgenstern; Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control; Wiley-VCH 2005
- Mexandre C. Dimian (Ed); Integrated Design and Simulation of Chemical Processes; in Computer Aided Chemical Engineering, Volume 13, Pages 1-698 (2003)

Module M0822: Process Modeling in Water Technology

Courses
Title Typ Hrs/wk CP
Process Modelling of Wastewater Treatment (L0522) Project-/problem-based Learning 2 3
Process Modeling in Drinking Water Treatment (L0314) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Knowledge of the most important processes in drinking water and waste water treatment. 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling.

Skills

Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations.


Personal Competence
Social Competence

Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work.


Autonomy

Students are able to define a problem, gain the required knowledge and set up a model.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0522: Process Modelling of Wastewater Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Mass and energy balances

Tracer modelling

Activated Sludge Model

Wastewater Treatment Plant Modelling (continously and SBR)

Sludge Treatment (ADM, aerobic autothermal)

Biofilm Modelling

Literature

Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;)
Activated sludge modelling : processes in theory and practice ; selected proceedings of the 5th Kollekolle Seminar on Activated Sludge Modelling, held in Kollekolle, Denmark, 10 - 12 September 2001
ISBN: 1843394146
[London] : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0314: Process Modeling in Drinking Water Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE/EN
Cycle WiSe
Content

In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica,  that is increasingly used in industry.  In this course OpenModelica is used, an free access frontend of the programming language Modelica.

In the beginning of the course  the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. 


Literature

OpenModelica: https://openmodelica.org/index.php/download/download-windows

OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation

OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation

Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631.

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.


Module M0658: Innovative CFD Approaches

Courses
Title Typ Hrs/wk CP
Application of Innovative CFD Methods in Research and Development (L0239) Lecture 2 3
Application of Innovative CFD Methods in Research and Development (L1685) Recitation Section (small) 2 3
Module Responsible Prof. Thomas Rung
Admission Requirements None
Recommended Previous Knowledge

Students should have sound knowledge of engineering mathematics (series expansions, internal & vector calculus), and be familiar with the foundations of partial/ordinary differential equations. They are expected to be familiar with engineering fluid mechanics. Basic knowledge of numerical analysis or computational fluid dynamics, e.g. acquired in previous CFD courses, is of advantage but not necessary.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will acquire a deeper knowledge of recent trends in computational fluid dynamics (CFD), i.e. finite volume, smoothed particle hydrodynamics and lattice Boltzmann approaches, and can relate recent innovations with present challenges in computational fluid mechanics. They are familiar with the similarities and differences between different Eulerian and Lagrangian discretisation and approximation concepts for investigating on the basis of continuum and kinetic theories. Students have the required knowledge to develop, explain, code and apply numerical models concepts to approximate multiphase and multifield problems with grid and particle based methods, respectively. Students know the fundamentals of simulation based PDE constraint optimisation.

Skills

The students are able choose and apply appropriate discretisation concepts and flow physics models. They acquire the ability to code computational algorithms dedicated to finite volumes on unstructured grids & particle-based discretisations & structured lattice Boltzmann arrangements, apply these codes for parameter investigations and supplement interfaces to extract simulation data for an engineering analysis. They are able to sophisticatedly judge different solution strategies.

Personal Competence
Social Competence

The students are able to discuss problems, present the results of their own analysis, and jointly develop, implement and report on solution strategies that address given technical reference problems in a team. They to lead team sessions and present solutions to experts.

Autonomy

The students can independently analyse innovative methods to solving fluid engineering problems. They are able to critically analyse own results as well as external data with regards to the plausibility and reliability. Students are able to structure and perform a simulation-based investigation.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Energy Systems: Core Qualification: Elective Compulsory
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory
Ship and Offshore Technology: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0239: Application of Innovative CFD Methods in Research and Development
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Thomas Rung
Language DE/EN
Cycle WiSe
Content

Computational Optimisation, Parallel Computing, Efficient CFD-Procedures   for GPU Archtiectures, Alternative Approximations (Lattice-Boltzmann Methods, Particle Methods), Fluid/Structure-Interaction, Modelling of Hybrid Continua

Literature Vorlesungsmaterialien /lecture notes
Course L1685: Application of Innovative CFD Methods in Research and Development
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Thomas Rung
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0742: Thermal Energy Systems

Courses
Title Typ Hrs/wk CP
Thermal Engergy Systems (L0023) Lecture 3 5
Thermal Engergy Systems (L0024) Recitation Section (large) 1 1
Module Responsible Prof. Dr. Arne Speerforck
Admission Requirements None
Recommended Previous Knowledge Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know the different energy conversion stages and the difference between efficiency and annual efficiency. They have increased knowledge in heat and mass transfer, especially in regard to buildings and mobile applications. They are familiar with German energy saving code and other technical relevant rules. They know to differ different heating systems in the domestic and industrial area and how to control such heating systems. They are able to model a furnace and to calculate the transient temperatures in a furnace. They have the basic knowledge of emission formations in the flames of small burners  and how to conduct the flue gases into the atmosphere. They are able to model thermodynamic systems with object oriented languages.


Skills

Students are able to calculate the heating demand for different heating systems and to choose the suitable components. They are able to calculate a pipeline network and have the ability to perform simple planning tasks, regarding solar energy. They can write Modelica programs and can transfer research knowledge into practice. They are able to perform scientific work in the field of thermal engineering.


Personal Competence
Social Competence

In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions.


Autonomy

Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results.




Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Compulsory
Energy Systems: Specialisation Marine Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0023: Thermal Engergy Systems
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Dr. Arne Speerforck, Prof. Gerhard Schmitz
Language DE
Cycle WiSe
Content

1. Introduction

2. Fundamentals of Thermal Engineering 2.1 Heat Conduction 2.2 Convection 2.3 Radiation 2.4 Heat transition 2.5 Combustion parameters 2.6 Electrical heating 2.7 Water vapor transport

3. Heating Systems 3.1 Warm water heating systems 3.2 Warm water supply 3.3 piping calculation 3.4 boilers, heat pumps, solar collectors 3.5 Air heating systems 3.6 radiative heating systems

4. Thermal traetment systems 4.1 Industrial furnaces 4.2 Melting furnaces 4.3 Drying plants 4.4 Emission control 4.5 Chimney calculation 4.6 Energy measuring

5. Laws and standards 5.1 Buildings 5.2 Industrial plants

Literature
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Course L0024: Thermal Engergy Systems
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1716: Subsurface Processes

Courses
Title Typ Hrs/wk CP
Modeling of Subsurface Processes (L2731) Recitation Section (small) 3 3
Subsurface Solute Transport (L2728) Lecture 2 2
Subsurface Solute Transport (L2729) Recitation Section (large) 1 1
Module Responsible Prof. Nima Shokri
Admission Requirements None
Recommended Previous Knowledge

Basic Mathematics, Hydrology

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module.

Skills In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career.
Personal Competence
Social Competence Teamwork & problem solving
Autonomy The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Report and Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L2731: Modeling of Subsurface Processes
Typ Recitation Section (small)
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Milad Aminzadeh
Language EN
Cycle WiSe
Content

Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data

Literature
Course L2728: Subsurface Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Nima Shokri
Language EN
Cycle WiSe
Content

Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization)


Literature

- Environmental Soil Physics, by Daniel Hillel

- Soil Physics, Sixth Edition, by William A. Jury and Robert Horton

Course L2729: Subsurface Solute Transport
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Hannes Nevermann
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1736: Industrial homogeneous catalysis

Courses
Title Typ Hrs/wk CP
Homogeneous catalysis in application (L2804) Practical Course 1 2
Industrial homogeneous catalysis (L2802) Lecture 2 2
Industrial homogeneous catalysis (L2803) Recitation Section (large) 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the principle of homogeneous catalysis,
  • give an overview of the versatile applications of homogeneous catalysis in industry
  • evaluate different homogeneously catalysed reactions with regard to their technical challenges and economic significance.
Skills

The students are able to

  • develop concepts for the technical implementation of homogeneously catalysed reactions,
  • evaluate practical aspects of homogeneous catalysis using laboratory experiments,
  • apply the acquired knowledge to different homogeneously catalysed reactions.
Personal Competence
Social Competence

The students:

  • are able to work out the practical aspects of homogeneous catalysis on the basis of laboratory experiments, to carry out and evaluate the analytics of the products and to precisely summarise the results of the experiments in a protocol.
  • are able to independently discuss approaches to solutions and problems in the field of homogeneous catalysis in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
    Translated with www.DeepL.com/Translator (free version)
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L2804: Homogeneous catalysis in application
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language EN
Cycle WiSe
Content

In the laboratory practical course, practical experiments are carried out with reference to industrial application of homogeneous catalysis. The hurdles to the technical implementation of homogeneously catalysed reactions are made clear to the students. The associated analysis of the experimental samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2802: Industrial homogeneous catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jakob Albert
Language EN
Cycle WiSe
Content
  • Introduction to homogeneous catalysis
  • Elementary steps of catalysis
  • Homogeneous transition metal catalysis
  • Hydroformylation
  • Wacker process
  • Monsanto process
  • Shell higher olefin process (SHOP)
  • Extractive-oxidative desulphurisation (ECODS)
  • Phase transfer catalysis
  • Liquid-liquid two-phase catalysis
  • Catalyst recycling
  • Reactor concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2803: Industrial homogeneous catalysis
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert, Dr. Maximilian Poller
Language EN
Cycle WiSe
Content

In this exercise the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008

Module M1778: Special Topics on Fluid Mechanics

Courses
Title Typ Hrs/wk CP
Application of numerical methods in process engineering (L2923) Lecture 2 2
Non invasive measurement techniques for Multiphase Flows (L2924) Lecture 2 2
Non invasive measurement techniques for Multiphase Flows (L2925) Practical Course 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge

All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to:

  • apply numerical simulations to concrete flow problems in process engineering.
  • experimentally analysis of basic parameters in industrial multiphase flows
  • critically assess how reliably numerical methods work and decide which quantities need to be validated with experimental data.
Skills

Students are able to:

  • perform numerical simulations in single and multiphase flows especially in technical applications
  • choose and apply experimental methods in multiphase flows especially in industrial aparatuses
Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to independently define tasks for working on the overall problem "Experimental and numerical analysis of multiphase reactors". The knowledge required for this is acquired by the students themselves, building on the knowledge imparted in the lecture, and they decide which experimental and numerical methods from the lecture and the practical course are to be used for implementation. They can organize themselves in a team and assign priorities for subtasks.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 20 min
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2923: Application of numerical methods in process engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter, Dr. Yan Jin
Language DE/EN
Cycle WiSe
Content

This lecture introduces a number of significant research topics in fluid mechanics and their up-to-date progresses. Through the lecture, students will learn how to solve real scientific and engineering flow problems using numerical and experimental methods. The lecture helps the students to prepare for their master thesis. The detailed contents include:

  • Wall bounded flows (channel flows; pipe flows; wall roughness)
  • Convection in porous media (multiscale physics; flow instabilities)
  • Flows in turbomachinery (compressor/turbine cascades; wind turbines)
  • Flows in biological and physiological processes (digestion in stomach; respiratory system
  • Interfacial mass transfer of bubbly flows
  • Comparison between experiments and simulation, experimental validation


  • Combustion in engines (optional)
Literature
Course L2924: Non invasive measurement techniques for Multiphase Flows
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content
  • Flow measurement techniques (Particle Image Velocimetry, Particle Tracking Velocimetry,...)
  • Concentration measurement techniques (Laser Induced Fluorescence, UV/VIS Imaging, …)
  • Measurement of Particle Size Distribution (Bubbles, Droplets, Particles)
  • Measurement techniques for Microflows
  • Measurement techniques for Multiphase flows in industrial application
Literature
Course L2925: Non invasive measurement techniques for Multiphase Flows
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content

Exemplary measurements in the laboratory of the Institute of Multiphase Flows:

  • Flow measurements(Particle Image Velocimetry, Particle Tracking Velocimetry,...)
  • Concentration measurements (Laser Induced Fluorescence, UV/VIS Imaging, …)
  • Particle Size Distribution measurements (Bubbles, Droplets, Particles)
  • Measurements in microflows
Literature

Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1814: Environmental analysis for process engineering

Courses
Title Typ Hrs/wk CP
Practical Course Aquatic Chemistry (L0965) Practical Course 4 3
Environmental Analysis (L0354) Lecture 2 3
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the solubility of gases, carbonic acid system and calcium carbonate, blending, softening and redox processes as well as materials and legal requirements on drinking water treatment.

Skills

The participants must take responsibility for partial aspects of the practical course within the group.

In addition, the participants are able to compile and evaluate designs and layouts of plants and test transcripts as well as the analysis and techniques, measurements and professional relevant methods. Out of the need to prepare laboratory transcripts on the experiments the students can communicate in a technical way and debate their own results in detail in a group.
Personal Competence
Social Competence

Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms.

Autonomy

Students can accumulate knowledge of the subject area and practice it in the lab. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0965: Practical Course Aquatic Chemistry
Typ Practical Course
Hrs/wk 4
CP 3
Workload in Hours Independent Study Time 34, Study Time in Lecture 56
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content

The practical course is conducted as a block course and lasts for 1 week. There are simple but typical methods  for chemical analysis for water, sewage, soil and waste taught, which serve the students as the basis for their later work in this area. 
 
In this practical course for example the Institutes of Wastewater Management and Water Protection (IAG), Environmental Technology and Energy Economics(IUE), Water Resources and Water Supply (IWW) are involved. 
In the following examples of experiments and methods taught in the course are summarized:

  • Surface waters: sampling of water and sediment 
  • Determination of the pH-value 
  • Determination of the redox potential 
  • Determination of a heavy metal (Zn) 
  • Acid neutralizing capacity (sediment) 
  • Flocculation or co-precipitation of water-suspended titanium dioxide particles 
  • Precipitation of phosphate with Fe3 + 
  •  determine the toxicity of wastewater componentsagainst bacteria 
  • denitrification 
  • Electrical conductivity 
  • Acid and base capacity (m-and p-value) 
  • Determination of permanent gases (H2, O2, N2, CO2, CH4) in Landfill Gas 
  • Determining a grading curve by screens
  • Determination of volatile organic acids and the total content of inorganic carbonate (FOS / TAC) by means of pH titration in samples from biogas plants


Literature
Course L0354: Environmental Analysis
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach, Dr. Henning Mangels
Language EN
Cycle WiSe
Content

Introduction

Sampling in different environmental compartments, sample transportation, sample storage

Sample preparation

Photometry

Wastewater analysis

Introduction into chromatography

Gas chromatography

HPLC

Mass spectrometry

Optical emission spectrometry

Atom absorption spectrometry

Quality assurance in environmental analysis
Literature

Roger Reeve, Introduction to Environmental Analysis, John Wiley & Sons Ltd., 2002 (TUB: USD-728)

Pradyot Patnaik, Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, CRC Press, Boca Raton, 2010 (TUB: USD-716)

Chunlong Zhang, Fundamentals of Environmental Sampling and Analysis,  John Wiley & Sons Ltd., Hoboken, New Jersey, 2007 (TUB: USD-741)

Miroslav Radojević, Vladimir N. Bashkin, Practical Environmental Analysis
RSC Publ., Cambridge, 2006 (TUB: USD-720)

Werner Funk, Vera Dammann, Gerhild Donnevert, Sarah Iannelli (Translator), Eric Iannelli (Translator), Quality Assurance in Analytical Chemistry: Applications in Environmental, Food and Materials Analysis, Biotechnology, and Medical Engineering, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2007 (TUB: CHF-350)

STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 21st Edition, Andrew D. Eaton, Leonore S. Clesceri, Eugene W. Rice, and Arnold E. Greenberg, editors, 2005 (TUB:CHF-428)


K. Robards, P. R. Haddad, P. E. Jackson, Principles and Practice of
Modern Chromatographic Methods, Academic Press

G. Schwedt, Chromatographische Trennmethoden, Thieme Verlag

H. M. McNair, J. M. Miller, Basic Gas Chromatography, Wiley

W. Gottwald, GC für Anwender, VCH

B. A. Bidlingmeyer, Practical HPLC Methodology and Applications, Wiley

K. K. Unger, Handbuch der HPLC, GIT Verlag

G. Aced, H. J. Möckel, Liquidchromatographie, VCH

Charles B. Boss and Kenneth J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry
Perkin-Elmer Corporation 1997, On-line available at:
http://files.instrument.com.cn/bbs/upfile/2006291448.pdf

Atomic absorption spectrometry: theory, design and applications, ed. by S. J. Haswell 1991 (TUB: 2727-5614)

Royal Society of Chemistry, Atomic absorption spectometry (http://www.kau.edu.sa/Files/130002/Files/6785_AAs.pdf)

Specialization Chemical Process Engineering

Module M0617: High Pressure Chemical Engineering

Courses
Title Typ Hrs/wk CP
High pressure plant and vessel design (L1278) Lecture 2 2
Industrial Processes Under High Pressure (L0116) Lecture 2 2
Advanced Separation Processes (L0094) Lecture 2 2
Module Responsible Dr. Monika Johannsen
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Chemical Engineering, Fluid Process Engineering, Thermal Separation Processes, Thermodynamics, Heterogeneous Equilibria


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After a successful completion of this module, students can:

  • explain the influence of pressure on the properties of compounds, phase equilibria, and production processes,
  • describe the thermodynamic fundamentals of separation processes with supercritical fluids,
  • exemplify models for the description of solid extraction and countercurrent extraction,
  • discuss parameters for optimization of processes with supercritical fluids.


Skills

After successful completion of this module, students are able to:

  • compare separation processes with supercritical fluids and conventional solvents,
  • assess the application potential of high-pressure processes at a given separation task,
  • include high pressure methods in a given multistep industrial application,
  • estimate economics of high-pressure processes in terms of investment and operating costs,
  • perform an experiment with a high pressure apparatus under guidance,
  • evaluate experimental results,
  • prepare an experimental protocol.


Personal Competence
Social Competence

After successful completion of this module, students are able to:

  • present a scientific topic from an original publication in teams of 2 and defend the contents together.


Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1278: High pressure plant and vessel design
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Häring
Language DE/EN
Cycle SoSe
Content
  1. Basic laws and certification standards
  2. Basics for calculations of pressurized vessels
  3. Stress hypothesis
  4. Selection of materials and fabrication processes
  5. vessels with thin walls
  6. vessels with thick walls
  7. Safety installations
  8. Safety analysis

    Applications:

    - subsea technology (manned and unmanned vessels)
    - steam vessels
    - heat exchangers
    - LPG, LEG transport vessels
Literature Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag
Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag
AD-Merkblätter, Heumanns Verlag
Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag
Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag
Klapp: Apparate- und Anlagentechnik, Springer Verlag
Course L0116: Industrial Processes Under High Pressure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Carsten Zetzl
Language EN
Cycle SoSe
Content Part I : Physical Chemistry and Thermodynamics

1.      Introduction: Overview, achieving high pressure, range of parameters.

2.       Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy,     entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension.

3.      Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria

4.      Overview on calculation methods for (high pressure) phase equilibria).
Influence of pressure on transport processes, heat and mass transfer.

Part II : High Pressure Processes

5.      Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases)

6.      Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation)

7.      Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure

Part III :  Industrial production

8.      Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO)

9.      Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery

10.  Industrial High Pressure Applications in Biofuel and Biodiesel Production

11.  Sterilization and Enzyme Catalysis

12.  Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor.

13.   Supercritical fluids for materials processing.

14.  Cost Engineering

Learning Outcomes:  

After a successful completion of this module, the student should be able to

-         understand of the influences of pressure on properties of compounds, phase equilibria, and production processes.

-         Apply high pressure approches in the complex process design tasks

-         Estimate Efficiency of high pressure alternatives with respect to investment and operational costs


Performance Record:

1.  Presence  (28 h)

2. Oral presentation of original scientific article (15 min) with written summary

3. Written examination and Case study 

    ( 2+3 : 32 h Workload)

Workload:

60 hours total

Literature

Literatur:

Script: High Pressure Chemical Engineering.
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Course L0094: Advanced Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle SoSe
Content
  • Introduction/Overview on Properties of Supercritical Fluids (SCF)and their Application in Gas Extraction Processes
  • Solubility of Compounds in Supercritical Fluids and Phase Equilibrium with SCF
  • Extraction from Solid Substrates: Fundamentals, Hydrodynamics and Mass Transfer
  • Extraction from Solid Substrates: Applications and Processes (including Supercritical Water)
  • Countercurrent Multistage Extraction: Fundamentals and Methods, Hydrodynamics and Mass Transfer
  • Countercurrent Multistage Extraction: Applications and Processes
  • Solvent Cycle, Methods for Precipitation
  • Supercritical Fluid Chromatography (SFC): Fundamentals and Application
  • Simulated Moving Bed Chromatography (SMB)
  • Membrane Separation of Gases at High Pressures
  • Separation by Reactions in Supercritical Fluids (Enzymes)
Literature

G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Module M0714: Numerical Methods for Ordinary Differential Equations

Courses
Title Typ Hrs/wk CP
Numerical Treatment of Ordinary Differential Equations (L0576) Lecture 2 3
Numerical Treatment of Ordinary Differential Equations (L0582) Recitation Section (small) 2 3
Module Responsible Prof. Daniel Ruprecht
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I, II, III für Ingenieurstudierende (deutsch oder englisch) oder Analysis & Lineare Algebra I + II sowie Analysis III für Technomathematiker
  • Basic knowledge of MATLAB, Python or a similar programming language
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • list numerical methods for the solution of ordinary differential equations and explain their core ideas,
  • formulate convergence statements for the treated numerical methods (including the assumptions about the underlying problem),
  • explain aspects regarding the practical realisation of a method.
  • select the appropriate numerical method for concrete problems, implement the numerical algorithms efficiently and interpret the numerical results
Skills

Students are able to

  • implement, apply and compare numerical methods for the solution of ordinary differential equations,
  • justify the convergence behaviour of numerical methods with respect to the posed problem and selected algorithm,
  • develop a suitable solution approach for a given problem, if necessary by combining of several algorithms, and to realise this approach and critically evaluate the results.


Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progress and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Computer Science: Specialisation III. Mathematics: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Interdisciplinary Mathematics: Specialisation II. Numerical - Modelling Training: Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Technomathematics: Specialisation I. Mathematics: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0576: Numerical Treatment of Ordinary Differential Equations
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content

Numerical methods for Initial Value Problems

  • single step methods
  • multistep methods
  • stiff problems
  • differential algebraic equations (DAE) of index 1

Numerical methods for Boundary Value Problems

  • multiple shooting method
  • difference methods
Literature
  • E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems.
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.
  • D. Griffiths, D. Higham: Numerical Methods for Ordinary Differential Equations.
Course L0582: Numerical Treatment of Ordinary Differential Equations
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0749: Waste Treatment and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Solid Matter Process Technology for Biomass (L0052) Lecture 2 2
Thermal Waste Treatment (L0320) Lecture 2 2
Thermal Waste Treatment (L1177) Recitation Section (large) 1 2
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge

Basics of

  • thermo dynamics
  • fluid dynamics
  • chemistry
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. 

The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables.

Skills

The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence

Students can

  • respectfully work together as a team and discuss technical tasks
  • participate in subject-specific and interdisciplinary discussions,
  • develop cooperated solutions 
  •  promote the scientific development and accept professional constructive criticism.
Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0052: Solid Matter Process Technology for Biomass
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle SoSe
Content The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture.
Literature

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Course L0320: Thermal Waste Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literature

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Course L1177: Thermal Waste Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0897: Computer Aided Process Engineering (CAPE)

Courses
Title Typ Hrs/wk CP
CAPE with Computer Exercises (L1039) Integrated Lecture 3 4
Methods of Process Safety and Dangerous Substances (L1040) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

thermal separation processes

heat and mass transport processes

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- outline types of simulation tools

- describe principles of flowsheet  and equation oriented simulation tools

- describe the setting of flowsheet simulation tools

- explain the main differences between steady state and dynamic simulations

- present the fundamentals of toxicology and hazardous materials

- explain the main methods of safety engineering

- present the importance of safety analysis with respect to plant design

- describe the definitions within the legal accident insurance

accident insurance


Skills

students can:

- conduct steady state and dynamic simulations

- evaluate simulation results and transform them in the practice

- choose and combine suitable simulation models into a production plant

- evaluate the achieved simulation results regarding practical importance
- evaluate the results of many experimental methods regarding safety aspects

- review, compare and  use results of safety considerations for a plant design

Personal Competence
Social Competence

students are able to:

- work together in teams in order to simulate process elements  and develop an integral process

- develop in teams a safety concept for a process and present it to the audience


Autonomy

students are able to

- act responsible with respect to environment and needs of the society

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Exam 90 minutes and written report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1039: CAPE with Computer Exercises
Typ Integrated Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle SoSe
Content

I. Introduction

       1. Fundamentals of steady state process simulation

       1.1. Classes of simulation tools
       1.2. Sequential-modularer approach
       1.3. Operating mode of ASPEN PLUS
       2. Introduction in ASPEN PLUS
       2.1. GUI
       2.2. Estimation methods of physical properties
       2.3. Aspen tools (z.B. Designspecification)
       2.4. Convergence methods

II. Exercices using ASPEN PLUS and ACM

            Performance and constraints of ASPEN PLUS
            ASPEN datenbank using
            Estimation methods of physical properties

            Application of model databank, process synthesis

            Design specifications

            Sensitivity analysis
            Optimization tasks
            Industrial cases

Literature

- G. Fieg: Lecture notes
-
Seider, W.D.; Seader, J.D.; Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis,
  and Evaluation; Hoboken, J. Wiley & Sons, 2010


Course L1040: Methods of Process Safety and Dangerous Substances
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle SoSe
Content
Literature

Bender, H.: Sicherer Umgang mit Gefahrstoffen; Weinheim (2005)
Bender, H.: Das Gefahrstoffbuch. Sicherer Umgang mit Gefahrstoffen in der Praxis; Weinheim (2002)
Birett, K.: Umgang mit Gefahrstoffen; Heidelberg (2011)
Birgersson, B.; Sterner, O.; Zimerson, E.: Chemie und Gesundheit; Weinheim (1988)

O. Antelmann, Diss. an der TU Berlin, 2001

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Prozesse und Produkte, Band 1

    Methodische Grundlagen, VCH, 2004-2006, S. 719

H. Pohle, Chemische Industrie, Umweltschutz, Arbeitsschutz, Anlagensicherheit, VCH, Weinheim, 1991

J. Steinbach, Chemische Sicherheitstechnik, VCH, Weinheim, 1995

G. Suter, Identifikation sicherheitskritischer Prozesse, P&A Kompendium, 2004

Module M0898: Heterogeneous Catalysis

Courses
Title Typ Hrs/wk CP
Analysis and Design of Heterogeneous Catalytic Reactors (L0223) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0533) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0534) Practical Course 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Content of the bachelor-modules "process technology", as well as particle technology, fluidmechanics in process-technology and transport processes.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to apply their knowledge to explain industrial catalytic processes as well as indicate different synthesis routes of established catalyst systems. They are capable to outline dis-/advantages of supported and full-catalysts with respect to their application. Students are able to identify anayltical tools for specific catalytic applications.
Skills After successfull completition of the module, students are able to use their knowledge to identify suitable analytical tools for specific catalytic applications and to explain their choice. Moreover the students are able to choose and formulate suitable reactor systems for the current synthesis process. Students can apply their knowldege discretely to develop and conduct experiments. They are able to appraise achieved results into a more general context and draw conclusions out of them.
Personal Competence
Social Competence

The students are able to plan, prepare, conduct and document experiments according to scientific guidelines in small groups.

The students can discuss their subject related knowledge among each other and with their teachers.

Autonomy

The students are able to obtain further information for experimental planning and assess their relevance autonomously.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0223: Analysis and Design of Heterogeneous Catalytic Reactors
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

1. Material- and Energybalance of the two-dimensionsal zweidimensionalen pseudo-homogeneous reactor model

2. Numerical solution of ordinary differential equations (Euler, Runge-Kutta, solvers for stiff problems, step controlled solvers)

3. Reactor design with one-dimensional models (ethane cracker, catalyst deactivation, tubular reactor with deactivating catalyst, moving bed reactor with regenerating catalyst, riser reactor, fluidized bed reactor)

4. Partial differential equations (classification, numerical solution Lösung, finite difference method, method of lines)

5. Examples of reactor design (isothermal tubular reactor with axial dispersion, dehydrogenation of ethyl benzene, wrong-way behaviour)

6. Boundary value problems (numerical solution, shooting method, concentration- and temperature profiles in a catalyst pellet, multiphase reactors, trickle bed reactor)


Literature

1. Lecture notes R. Horn

2. Lecture notes F. Keil

3.  G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010

4. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000



Course L0533: Modern Methods in Heterogeneous Catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

Heterogeneous Catalysis and Chemical Reaction Engineering are inextricably linked. About 90% of all chemical intermediates and consumer products (fuels, plastics, fertilizers etc.) are produced with the aid of catalysts. Most of them, in particular large scale products, are produced by heterogeneous catalysis viz. gaseous or liquid reactants react on solid catalysts. In multiphase reactors gases, liquids and a solid catalyst are present.

Heterogeneous catalysis plays also a key role in any future energy scenario (fuel cells, electrocatalytic splitting of water) and in environmental engineering (automotive catalysis, photocatalyic abatement of water pollutants).

Heterogeneous catalysis is an interdisciplinary science requiring knowledge of different scientific disciplines such as

  • Materials Science (synthesis and characterization of solid catalysts)
  • Physics (structure and electronic properties of solids, defects)
  • Physical Chemistry (thermodynamics, reaction mechanisms, chemical kinetics, adsorption, desorption, spectroscopy, surface chemistry, theory)
  • Reaction Engineering (catalytic reactors, mass- and heat transport in catalytic reactors, multi-scale modeling, application of heterogeneous catalysis)
The class „Modern Methods in Heterogeneous Catalysis“ will deal with the above listed aspects of heterogeneous catalysis beyond the material presented in the normal curriculum of chemical reaction engineering classes. In the corresponding laboratory will have the opportunity to apply their aquired theoretical knowledge by synthesizing a solid catalyst, characterizing it with a variety of modern instrumental methods (e.g. BET, chemisorption, pore analysis, XRD, Raman-Spectroscopy, Electron Microscopy) and measuring its kinetics. Class and laboratory „Modern Methods in Heterogeneous Catalysis“ in combination with the lecture „Analysis and Design of Heterogeneous Catalytic Reactors“ will give interested students the opportunity to specialize in this vibrant, multifaceted and application oriented field of research.


Literature
  • J.M. Thomas, W.J. Thomas: Principles and Practice of Heterogeneous Catalysis, VCH
  • I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, WILEY-VCH
  • B.C. Gates: Catalytic Chemistry, John Wiley
  • R.A. van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn, B.A. Averill (Eds.): Catalysis: an integrated approach, Elsevier
  • D.P. Woodruff, T.A. Delchar: Modern Techniques of Surface Science, Cambridge Univ. Press
  • J.W. Niemantsverdriet: Spectrocopy in Catalysis, VCH
  • F. Delannay (Ed.): Characterization of heterogeneous catalysts, Marcel Dekker
  • C.H. Bartholomew, R.J. Farrauto: Fundamentals of Industrial Catalytic Processes (2nd Ed.),Wiley


Course L0534: Modern Methods in Heterogeneous Catalysis
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1702: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.


Skills
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M0906: Numerical Simulation and Lagrangian Transport

Courses
Title Typ Hrs/wk CP
Lagrangian transport in turbulent flows (L2301) Lecture 2 3
Computational Fluid Dynamics - Exercises in OpenFoam (L1375) Recitation Section (small) 1 1
Computational Fluid Dynamics in Process Engineering (L1052) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-IV
  • Basic knowledge in Fluid Mechanics
  • Basic knowledge in chemical thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students are able to

  • explain the the basic principles of statistical thermodynamics (ensembles, simple systems) 
  • describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles
  • discuss examples of computer programs in detail,
  • evaluate the application of numerical simulations,
  • list the possible start and boundary conditions for a numerical simulation.
Skills

The students are able to:

  • set up computer programs for solving simple problems by Monte Carlo or molecular dynamics,
  • solve problems by molecular modeling,
  • set up a numerical grid,
  • perform a simple numerical simulation with OpenFoam,
  • evaluate the result of a numerical simulation.

Personal Competence
Social Competence

The students are able to

  • develop joint solutions in mixed teams and present them in front of the other students,
  • to collaborate in a team and to reflect their own contribution toward it.




Autonomy

The students are able to:

  • evaluate their learning progress and to define the following steps of learning on that basis,
  • evaluate possible consequences for their profession.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2301: Lagrangian transport in turbulent flows
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Yan Jin
Language EN
Cycle SoSe
Content

Contents

- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)

- An overview of Lagrange analysis methods and experiments in fluid mechanics

- Critical examination of the concept of turbulence and turbulent structures.

-Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.)

- Implementation of a Runge-Kutta 4th-order in Matlab

- Introduction to particle integration using ODE solver from Matlab

- Problems from turbulence research

- Application analytical methods with Matlab.


Structure:

- 14 units a 2x45 min. 

- 10 units lecture

- 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague


Learning goals:

Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge

The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills

The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence

Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence


Required knowledge:

Fluid mechanics 1 and 2 advantageous

Programming knowledge advantageous



Literature

Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag.

Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726.

Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press.

Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1.

Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502.

Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033.

Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley.

LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002.

Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO.

Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002.

Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109.

Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press.

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literature OpenFoam Tutorials (StudIP)
Course L1052: Computational Fluid Dynamics in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literature

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Module M1709: Applied optimization in energy and process engineering

Courses
Title Typ Hrs/wk CP
Applied optimization in energy and process engineering (L2693) Integrated Lecture 2 3
Applied optimization in energy and process engineering (L2695) Recitation Section (small) 2 3
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.


In particular the contents of the module Process and Plant Engineering II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

• Introduction to Applied Optimization

• Formulation of optimization problems

• Linear Optimization

• Nonlinear Optimization

• Mixed-integer (non)linear optimization

• Multi-objective optimization

• Global optimization

Skills

After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly.


Personal Competence
Social Competence

Students are capable of:

•develop solutions in heterogeneous small groups
Autonomy

Students are capable of:

•taping new knowledge on a special subject by literature research
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 35 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L2693: Applied optimization in energy and process engineering
Typ Integrated Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE/EN
Cycle SoSe
Content

The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

- Introduction to Applied Optimization

- Formulation of optimization problems

- Linear Optimization

- Nonlinear Optimization

- Mixed-integer (non)linear optimization

- Multi-objective optimization

- Global optimization

Literature

Weicker, K., Evolutionäre Algortihmen, Springer, 2015

Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001

Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010

Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002

Course L2695: Applied optimization in energy and process engineering
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1737: Power-to-X process

Courses
Title Typ Hrs/wk CP
Power-to-X process (L2805) Lecture 2 2
Power-to-X process (L2806) Recitation Section (large) 1 2
Practical aspects of energy conversion (L2807) Practical Course 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the energy transition in Germany,
  • give an overview of the versatile application possibilities of power-to-X processes,
  • evaluate different power-to-X concepts with regard to their technical challenges and social benefits.
Skills

The students are able to:

  • develop concepts for the technical implementation of power-to-X processes,
  • evaluate practical aspects of energy conversion to platform chemicals using laboratory experiments,
  • apply the acquired knowledge to various engineering-relevant power-to-X processes.
Personal Competence
Social Competence

The students:

  • are able to independently discuss approaches to solutions and problems in the field of the energy transition in Germany in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
  • are able to work out the practical aspects of energy conversion to platform chemicals on the basis of laboratory experiments, carry out and evaluate the analytics of the products and precisely summarise the results of the experiments in a protocol.
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2805: Power-to-X process
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content
  • Regenerative surplus energy
  • Electrolysis
  • CO2 sources for Power-to-X
  • Power-to-heat
  • Power-to-Power
  • Power-to-gas (SNG)
  • Power-to-Syngas
  • Power-to-Methanol
  • Power-to-Fuels
  • Power-to-ammonia
  • LOHC (Liquid organic hydrogen carrier)
  • Economic and ecological comparison of different concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2806: Power-to-X process
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In exercise, the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2807: Practical aspects of energy conversion
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In the laboratory practical course, practical experiments on power-to-X processes are carried out. The challenges for the technical implementation of power-to-x processes are made clear to the students. The associated analysis of the test samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015

Module M0537: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications

Courses
Title Typ Hrs/wk CP
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0100) Lecture 4 3
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0230) Recitation Section (small) 2 3
Module Responsible Dr. Sven Jakobtorweihen (alt)
Admission Requirements None
Recommended Previous Knowledge

Thermodynamics III

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are capable to formulate thermodynamic problems and to specify possible solutions. Furthermore, they can describe the current state of research in thermodynamic property predictions.




Skills

The students are capable to apply modern thermodynamic calculation methods to multi-component mixtures and relevant biological systems. They can calculate phase equilibria and partition coefficients by applying equations of state, gE models, and COSMO-RS methods. They can provide a comparison and a critical assessment of these methods with regard to their industrial relevance. The students are capable to use the software COSMOtherm and relevant property tools of ASPEN and to write short programs for the specific calculation of different thermodynamic properties. They can judge and evaluate the results from thermodynamic calculations/predictions for industrial processes.


Personal Competence
Social Competence

Students are capable to develop and discuss solutions in small groups; further they can translate these solutions into calculation algorithms. 


Autonomy

Students can rank the field of “Applied Thermodynamics” within the scientific and social context.  They are capable to define research projects within the field of thermodynamic data calculation.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Oral exam
Examination duration and scale 1 Stunde Gruppenprüfung
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0100: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Lecture
Hrs/wk 4
CP 3
Workload in Hours Independent Study Time 34, Study Time in Lecture 56
Lecturer Dr. Sven Jakobtorweihen, Prof. Ralf Dohrn
Language EN
Cycle WiSe
Content


  • Phase equilibria in multicomponent systems
  • Partioning in biorelevant systems
  • Calculation of phase equilibria in colloidal systems: UNIFAC, COSMO-RS (exercises in computer pool)
  • Calculation of partitioning coefficients in biological membranes: COSMO-RS (exercises in computer pool)
  • Application of equations of state (vapour pressure, phase equilibria, etc.) (exercises in computer pool) 
  • Intermolecular forces, interaction Potenitials
  • Introduction in statistical thermodynamics
Literature
Course L0230: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Sven Jakobtorweihen, Prof. Ralf Dohrn
Language EN
Cycle WiSe
Content

exercises in computer pool, see lecture description for more details

Literature -

Module M0633: Industrial Process Automation

Courses
Title Typ Hrs/wk CP
Industrial Process Automation (L0344) Lecture 2 3
Industrial Process Automation (L0345) Recitation Section (small) 2 3
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

mathematics and optimization methods
principles of automata 
principles of algorithms and data structures
programming skills

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'.


Skills

The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs.

Personal Competence
Social Competence

The students can independently define work processes within their groups, distribute tasks within the group and develop solutions collaboratively.



Autonomy

The students are able to assess their level of knowledge and to document their work results adequately.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0344: Industrial Process Automation
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content

- foundations of problem solving and system modeling, discrete event systems
- properties of processes, modeling using automata and Petri-nets
- design considerations for processes (mutex, deadlock avoidance, liveness)
- optimal scheduling for processes
- optimal decisions when planning manufacturing systems, decisions under uncertainty
- software design and software architectures for automation, PLCs

Literature

J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012
Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010
Hrúz, Zhou: Modeling and Control of Discrete-event Dynamic Systems; Springer 2007
Li, Zhou: Deadlock Resolution in Automated Manufacturing Systems, Springer 2009
Pinedo: Planning and Scheduling in Manufacturing and Services, Springer 2009

Course L0345: Industrial Process Automation
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0899: Synthesis and Design of Industrial Processes

Courses
Title Typ Hrs/wk CP
Synthesis and Design of Industrial Facilities (L1048) Lecture 1 2
Industrial Plant Design and Economics (L1977) Project-/problem-based Learning 3 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

process and plant engineering I and II

thermal separation processes

heat and mass transport processes

CAPE (absolut necessarily!)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- reproduce the main elements of design of industrial processes

- give an overview and explain the phases of design

- describe and explain energy, mass balances, cost estimation methods and economic evaluation of invest projects

- justify  and discuss process control concepts and fundamentals of process optimization

Skills

students are capable of:

-conduction and evaluation of design of unit operations

- combination of unit operation to a complex process plant

- use of cost estimation methods for the prediction of production costs

- carry out the pfd-diagram

Personal Competence
Social Competence

students are able to discuss and develop in groups the design of an industrial process

Autonomy

students are able to reflect the consequences of their professional activity


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Engineering Handbook and oral exam (20 min)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1048: Synthesis and Design of Industrial Facilities
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Presentation of the task
Introduction to design and analysis of a chemical processing plant (example chemical processing plants)
Discussion of the process, preparation of process flow diagram
Calculation of material balance
Calculation of energy balance
Designing/Sizing of the equipment
Capital cost estimation
Production cost estimation
Process control & HAZOP Study
Lecture 11 = Process optimization
Lecture 12 = Final Project Presentation

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Course L1977: Industrial Plant Design and Economics
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content

Introduction

Flowsheet (Discussion)

Mass and Energy Balances

Economics

Process Safety

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Module M0900: Examples in Solid Process Engineering

Courses
Title Typ Hrs/wk CP
Fluidization Technology (L0431) Lecture 2 2
Practical Course Fluidization Technology (L1369) Practical Course 1 1
Technical Applications of Particle Technology (L0955) Lecture 2 2
Exercises in Fluidization Technology (L1372) Recitation Section (small) 1 1
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Knowledge from the module particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe based on examples the assembly of solids engineering processes consisting of multiple apparatuses and subprocesses. They are able to describe the coaction and interrelation of subprocesses.
Skills Students are able to analyze tasks in the field of solids process engineering and to combine suitable subprocesses in a process chain.
Personal Competence
Social Competence Students are able to discuss technical problems in a scientific manner.
Autonomy Students are able to acquire scientific knowledge independently and discuss technical problems in a scientific manner.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration drei Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0431: Fluidization Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Introduction: definition, fluidization regimes, comparison with other types of gas/solids reactors
Typical fluidized bed applications
Fluidmechanical principle
Local fluid mechanics of gas/solid fluidization
Fast fluidization (circulating fluidized bed)
Entrainment
Solids mixing in fluidized beds
Application of fluidized beds to granulation and drying processes


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L1369: Practical Course Fluidization Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Experiments:

  • Determination of the minimum fluidization velocity
  • heat transfer
  • granulation
  • drying


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L0955: Technical Applications of Particle Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle WiSe
Content Unit operations like mixing, separation, agglomeration and size reduction are discussed concerning their technical applicability from the perspective of the practician. Machines and apparatuses are presented, their designs and modes of action are explained and their application in production processes for chemicals, food and feed and in recycling processes are illustrated.
Literature Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997
Course L1372: Exercises in Fluidization Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Exercises and calculation examples for the lecture Fluidization Technology


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Module M1033: Special Areas of Process Engineering and Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Bioeconomy (L2797) Lecture 2 2
Chemical Kinetics (L0508) Lecture 2 2
Solid Matter Process in chemical Industry (L2021) Lecture 2 2
Optics for Engineers (L2437) Lecture 3 3
Optics for Engineers (L2438) Project-/problem-based Learning 3 3
Polymer Reaction Engineering (L1244) Lecture 2 2
Safety of Chemical Reactions (L1321) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge The students should have passed the Bachelor modules "Process Engineering" successfully.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to find their way around selected special areas of Process Engineering within the scope of Process Engineering.
Students are able to explain technical dependencies and models in selected special areas of Process Engineering.

Skills

Students are able to apply basic methods in selected areas of process engineering.

Personal Competence
Social Competence
Autonomy

Students can chose independently, in which field the want to deepen their knowledge and skills through the election of courses.

Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2797: Bioeconomy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Garabed Antranikian
Language EN
Cycle WiSe/SoSe
Content

Bioeconomy is the production, utilization and conservation of biological resources, including related knowledge, science, technology, and innovation, to provide information products, processes, and services across all economic sectors aiming towards a sustainable biobased technology. In this course the significance of various topics including the production and processing of biomass, economics, logistic as well as management will be discussed. Technologies aiming at the production of renewable biological resources and the conversion of these resources and waste streams into value-added products, such as food, feed, bio-based products (textiles, bioplastics, chemicals, pharmaceuticals) and bioenergy will be presented. Biological tools including microorganisms and enzymes will be introduced. This approach with a focus on chemical and process engineering will provide a smooth transition from crude oil-based industry to Sustainable Circular Bioeconomy taking into consideration the environmental issues. This sustainable use of renewable resources for industrial purposes will ensure environmental protection and a long-term balance of social and economic gains.

Literature
Course L0508: Chemical Kinetics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 120 Minuten
Lecturer Prof. Raimund Horn
Language EN
Cycle WiSe
Content

- Micro kinetics, formal kinetics, molecularity, reaction order, integrated rate laws

- Complex reactions, reversible reactions, consecutive reactions, parallel reactions, approximation methods: steady-state, pseudo-first order, numerical solution of rate equations , example : Belousov-Zhabotinskii reaction

- Experimental methods of kinetics, integral approach, differential approach, initial rate method, method of half-life, relaxation methods

- Collision theory, Maxwell velocity distribution, collision numbers, line of centers model

- Transition state theory, partition functions of atoms and molecules, examples, calculating reaction equilibria on the basis of molecular data only, heats of reaction, calculating rates of reaction by means of statistical thermodynamics

- Kinetics of heterogeneous reactions, peculiarities of heterogeneous reactions, mean-field approximation, Langmuir adsorption isotherm, reaction mechanisms, Langmuir-Hinshelwood Mechanism, Eley-Rideal Mechanism, steady-state approximation, quasi-equilibrium approximation, most abundant reaction intermediate (MARI), reaction order, apparent activation energy, example: CO oxidation, transition state theory of surface reactions, Sabatier´s principle, sticking coefficient, parameter fitting

- Explosions, cold flames

Literature

J. I. Steinfeld, J. S. Francisco, W. L . Hase: Chemical Kinetics & Dynamics, Prentice Hall

K. J. Laidler: Chemical Kinetics, Harper & Row Publishers

R. K. Masel. Chemical Kinetics & Catalysis , Wiley

I. Chorkendorff,, J. W. Niemantsverdriet: Concepts of modern Catalysis and Kinetics, Wiley

Course L2021: Solid Matter Process in chemical Industry
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 12 Seiten
Lecturer Prof. Frank Kleine Jäger
Language DE
Cycle SoSe
Content
Literature
Course L2437: Optics for Engineers
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content
  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Literature  
Course L2438: Optics for Engineers
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1244: Polymer Reaction Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 1 Stunde
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content

Introduction into polymer reaction engineering, free and controlled radical polymerization, coordination polymerization of olefins, ionic “living” polymerization, step polymerization (polyaddition, polycondensation), copolymerization, emulsion polymerization, specific challenges of the industrial implementation of polymerization reactions (viscosity increase, heat removal, scale-up, reactor safety, modelling of polymerization reactions and reactors), key competitive factors in polymer industry in Germany, EU and worldwide.

Literature

W. Keim: Kunststoffe - Synthese, Herstellungsverfahren, Apparaturen, 1. Auflage, Wiley-VCH, 2006

T. Meyer, J. Keurentjes: Handbook of Polymer Reaction Engineering, 2 Vol., 1. Ed., Wiley-VCH, 2005

A. Echte: Handbuch der technischen Polymerchemie, 1. Auflage, VCH-Verlagsgesellschaft, 1993

G. Odian: Principles of Polymerization, 4. Ed., Wiley-Interscience, 2004

J. Asua: Polymer Reaction Engineering, 1. Ed., Blackwell Publishing, 2007


Course L1321: Safety of Chemical Reactions
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content
Literature

Module M0905: Research Project Process Engineering

Courses
Title Typ Hrs/wk CP
Research Project in Process Engineering (L1051) Project-/problem-based Learning 6 6
Module Responsible Dozenten des SD V
Admission Requirements None
Recommended Previous Knowledge

Advanced state of knowledge in the master program of Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know current research topics oft institutes engaged in their specialization. They can name the fundamental scientific methods used for doing related reserach.

Skills

Students are capable of completing a small, independent sub-project of currently ongoing research projects in the institutes engaged in their specialization. Students can justify and explain their approach for problem solving, they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alterantive approaches with their own with regard to given criteria.

Personal Competence
Social Competence

Students are able to discuss their work progress with research assistants of the supervising institute. They are capable of presenting their results in front of a professional audience.


Autonomy

Based on their competences gained so far students are capable of defining meaningful tasks within ongoing research project for themselves. They are able to develop the necessary understanding  and problem solving methods.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1051: Research Project in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content

Working on current research topics of the chosen specialisation.

Research projects can be carried out at the institutes of process engineering, in industry or abroad. It is always necessary to have a university lecturer from the school of Process Engineering as a supervisor, who must be determined before the research project begins.


Literature

Aktuelle Literatur zu Forschungsthemen aus der gewählten Vertiefungsrichtung. 

Current literature on research topics of the chosen specialization.

Module M1396: Hybrid Processes in Process Engineering

Courses
Title Typ Hrs/wk CP
Hybrid Processes in Process Engineering (L1715) Project-/problem-based Learning 2 4
Hybrid Processes in Process Engineering (L1978) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Process and Plant Engineering 1

Process and Plant Engineering 2

Basics in Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Students are able to evaluate hybrid processes
Skills
Students are able to evaluate processes with regard to their suitability as hybrid processes and to interpret them accordingly.
Personal Competence
Social Competence
Students are able to apply the principles of project management for small groups.
Autonomy
Students are able to acquire and discuss specialized knowledge about hybrid processes.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Project report incl. PM-documents
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1715: Hybrid Processes in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1978: Hybrid Processes in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga
Language DE/EN
Cycle WiSe
Content
Literature

- H. Schmidt-Traub; Integrated Reaction and Separation Operations: Modelling and Experimental Validation; Springer 2006
- K. Sundmacher, A. Kienle, A. Seidel-Morgenstern; Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control; Wiley-VCH 2005
- Mexandre C. Dimian (Ed); Integrated Design and Simulation of Chemical Processes; in Computer Aided Chemical Engineering, Volume 13, Pages 1-698 (2003)

Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1736: Industrial homogeneous catalysis

Courses
Title Typ Hrs/wk CP
Homogeneous catalysis in application (L2804) Practical Course 1 2
Industrial homogeneous catalysis (L2802) Lecture 2 2
Industrial homogeneous catalysis (L2803) Recitation Section (large) 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the principle of homogeneous catalysis,
  • give an overview of the versatile applications of homogeneous catalysis in industry
  • evaluate different homogeneously catalysed reactions with regard to their technical challenges and economic significance.
Skills

The students are able to

  • develop concepts for the technical implementation of homogeneously catalysed reactions,
  • evaluate practical aspects of homogeneous catalysis using laboratory experiments,
  • apply the acquired knowledge to different homogeneously catalysed reactions.
Personal Competence
Social Competence

The students:

  • are able to work out the practical aspects of homogeneous catalysis on the basis of laboratory experiments, to carry out and evaluate the analytics of the products and to precisely summarise the results of the experiments in a protocol.
  • are able to independently discuss approaches to solutions and problems in the field of homogeneous catalysis in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
    Translated with www.DeepL.com/Translator (free version)
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L2804: Homogeneous catalysis in application
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language EN
Cycle WiSe
Content

In the laboratory practical course, practical experiments are carried out with reference to industrial application of homogeneous catalysis. The hurdles to the technical implementation of homogeneously catalysed reactions are made clear to the students. The associated analysis of the experimental samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2802: Industrial homogeneous catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jakob Albert
Language EN
Cycle WiSe
Content
  • Introduction to homogeneous catalysis
  • Elementary steps of catalysis
  • Homogeneous transition metal catalysis
  • Hydroformylation
  • Wacker process
  • Monsanto process
  • Shell higher olefin process (SHOP)
  • Extractive-oxidative desulphurisation (ECODS)
  • Phase transfer catalysis
  • Liquid-liquid two-phase catalysis
  • Catalyst recycling
  • Reactor concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2803: Industrial homogeneous catalysis
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert, Dr. Maximilian Poller
Language EN
Cycle WiSe
Content

In this exercise the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008

Specialization Environmental Process Engineering

Module M0513: System Aspects of Renewable Energies

Courses
Title Typ Hrs/wk CP
Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage (L0021) Lecture 2 2
Energy Trading (L0019) Lecture 1 1
Energy Trading (L0020) Recitation Section (small) 1 1
Deep Geothermal Energy (L0025) Lecture 2 2
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I

Module: Technical Thermodynamics II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy.

Skills

Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode.

Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. 

Personal Competence
Social Competence

Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module.

Autonomy

Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Fröba
Language DE
Cycle SoSe
Content
  1. Introduction to electrochemical energy conversion
  2. Function and structure of electrolyte
  3. Low-temperature fuel cell
    • Types
    • Thermodynamics of the PEM fuel cell
    • Cooling and humidification strategy
  4. High-temperature fuel cell
    • The MCFC
    • The SOFC
    • Integration Strategies and partial reforming
  5. Fuels
    • Supply of fuel
    • Reforming of natural gas and biogas
    • Reforming of liquid hydrocarbons
  6. Energetic Integration and control of fuel cell systems


Literature
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003


Course L0019: Energy Trading
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Michael Sagorje, Dr. Sven Orlowski
Language DE
Cycle SoSe
Content
  • Basic concepts and tradable products in energy markets
  • Primary energy markets
  • Electricity Markets
  • European Emissions Trading Scheme
  • Influence of renewable energy
  • Real options
  • Risk management

Within the exercise the various tasks are actively discussed and applied to various cases of application.

Literature
Course L0020: Energy Trading
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Michael Sagorje, Dr. Sven Orlowski
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0025: Deep Geothermal Energy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Ben Norden
Language DE
Cycle SoSe
Content
  1. Introduction to the deep geothermal use
  2. Geological Basics I
  3. Geological Basics II
  4. Geology and thermal aspects
  5. Rock Physical Aspects
  6. Geochemical aspects
  7. Exploration of deep geothermal reservoirs
  8. Drilling technologies, piping and expansion
  9. Borehole Geophysics
  10. Underground system characterization and reservoir engineering
  11. Microbiology and Upper-day system components
  12. Adapted investment concepts, cost and environmental aspect
Literature
  • Dipippo, R.: Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Butterworth Heinemann; 3rd revised edition. (29. Mai 2012)
  • www.geo-energy.org
  • Edenhofer et al. (eds): Renewable Energy Sources and Climate Change Mitigation; Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2012.
  • Kaltschmitt et al. (eds): Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, 5. Aufl. 2013.
  • Kaltschmitt et al. (eds): Energie aus Erdwärme. Spektrum Akademischer Verlag; Auflage: 1999 (3. September 2001)
  • Huenges, E. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 1. Auflage (19. April 2010)


Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Wastewater Systems - Collection, Treatment and Reuse (L0934) Lecture 2 2
Wastewater Systems - Collection, Treatment and Reuse (L0943) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0934: Wastewater Systems - Collection, Treatment and Reuse
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content •Understanding the global situation with water and wastewater

•Regional planning and decentralised systems

•Overview on innovative approaches

•In depth knowledge on advanced wastewater treatment options for different situations, for end-of-pipe and reuse

•Mathematical Modelling of Nitrogen Removal

•Exercises with calculations and design

Literature

Henze, Mogens:
Wastewater Treatment: Biological and Chemical Processes, Springer 2002, 430 pages

George Tchobanoglous, Franklin L. Burton, H. David Stensel:
Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy
McGraw-Hill, 2004 - 1819 pages

Course L0943: Wastewater Systems - Collection, Treatment and Reuse
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0875: Nexus Engineering - Water, Soil, Food and Energy

Courses
Title Typ Hrs/wk CP
Ecological Town Design - Water, Energy, Soil and Food Nexus (L1229) Seminar 2 2
Water & Wastewater Systems in a Global Context (L0939) Lecture 2 4
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply.

Skills

Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content
  • Participants Workshop: Design of the most attractive productive Town
  • Keynote lecture and video
  • The limits of Urbanization / Green Cities
  • The tragedy of the Rural: Soil degradation, agro chemical toxification, migration to cities
  • Global Ecovillage Network: Upsides and Downsides around the World
  • Visit of an Ecovillage
  • Participants Workshop: Resources for thriving rural areas, Short presentations by participants, video competion
  • TUHH Rural Development Toolbox
  • Integrated New Town Development
  • Participants workshop: Design of New Towns: Northern, Arid and Tropical cases
  • Outreach: Participants campaign
  • City with the Rural: Resilience, quality of live and productive biodiversity


Literature
  • Ralf Otterpohl 2013: Gründer-Gruppen als Lebensentwurf: "Synergistische Wertschöpfung in erweiterten Kleinstadt- und Dorfstrukturen", in „Regionales Zukunftsmanagement Band 7: Existenzgründung unter regionalökonomischer Perspektive, Pabst Publisher, Lengerich
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)
  • TEDx New Town Ralf Otterpohl: http://youtu.be/_M0J2u9BrbU
Course L0939: Water & Wastewater Systems in a Global Context
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content


  • Keynote lecture and video
  • Water & Soil: Water availability as a consequence of healthy soils
  • Water and it’s utilization, Integrated Urban Water Management
  • Water & Energy, lecture and panel discussion pro and con for a specific big dam project
  • Rainwater Harvesting on Catchment level, Holistic Planned Grazing, Multi-Use-Reforestation
  • Sanitation and Reuse of water, nutrients and soil conditioners, Conventional and Innovative Approaches
  • Why are there excreta in water? Public Health, Awareness Campaigns
  • Rehearsal session, Q&A


Literature
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press
  • Liu, John D.: http://eempc.org/hope-in-a-changing_climate/ (Integrated regeneration of the Loess Plateau, China, and sites in Ethiopia and Rwanda)
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)

Module M0897: Computer Aided Process Engineering (CAPE)

Courses
Title Typ Hrs/wk CP
CAPE with Computer Exercises (L1039) Integrated Lecture 3 4
Methods of Process Safety and Dangerous Substances (L1040) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

thermal separation processes

heat and mass transport processes

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- outline types of simulation tools

- describe principles of flowsheet  and equation oriented simulation tools

- describe the setting of flowsheet simulation tools

- explain the main differences between steady state and dynamic simulations

- present the fundamentals of toxicology and hazardous materials

- explain the main methods of safety engineering

- present the importance of safety analysis with respect to plant design

- describe the definitions within the legal accident insurance

accident insurance


Skills

students can:

- conduct steady state and dynamic simulations

- evaluate simulation results and transform them in the practice

- choose and combine suitable simulation models into a production plant

- evaluate the achieved simulation results regarding practical importance
- evaluate the results of many experimental methods regarding safety aspects

- review, compare and  use results of safety considerations for a plant design

Personal Competence
Social Competence

students are able to:

- work together in teams in order to simulate process elements  and develop an integral process

- develop in teams a safety concept for a process and present it to the audience


Autonomy

students are able to

- act responsible with respect to environment and needs of the society

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Exam 90 minutes and written report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1039: CAPE with Computer Exercises
Typ Integrated Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle SoSe
Content

I. Introduction

       1. Fundamentals of steady state process simulation

       1.1. Classes of simulation tools
       1.2. Sequential-modularer approach
       1.3. Operating mode of ASPEN PLUS
       2. Introduction in ASPEN PLUS
       2.1. GUI
       2.2. Estimation methods of physical properties
       2.3. Aspen tools (z.B. Designspecification)
       2.4. Convergence methods

II. Exercices using ASPEN PLUS and ACM

            Performance and constraints of ASPEN PLUS
            ASPEN datenbank using
            Estimation methods of physical properties

            Application of model databank, process synthesis

            Design specifications

            Sensitivity analysis
            Optimization tasks
            Industrial cases

Literature

- G. Fieg: Lecture notes
-
Seider, W.D.; Seader, J.D.; Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis,
  and Evaluation; Hoboken, J. Wiley & Sons, 2010


Course L1040: Methods of Process Safety and Dangerous Substances
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle SoSe
Content
Literature

Bender, H.: Sicherer Umgang mit Gefahrstoffen; Weinheim (2005)
Bender, H.: Das Gefahrstoffbuch. Sicherer Umgang mit Gefahrstoffen in der Praxis; Weinheim (2002)
Birett, K.: Umgang mit Gefahrstoffen; Heidelberg (2011)
Birgersson, B.; Sterner, O.; Zimerson, E.: Chemie und Gesundheit; Weinheim (1988)

O. Antelmann, Diss. an der TU Berlin, 2001

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Prozesse und Produkte, Band 1

    Methodische Grundlagen, VCH, 2004-2006, S. 719

H. Pohle, Chemische Industrie, Umweltschutz, Arbeitsschutz, Anlagensicherheit, VCH, Weinheim, 1991

J. Steinbach, Chemische Sicherheitstechnik, VCH, Weinheim, 1995

G. Suter, Identifikation sicherheitskritischer Prozesse, P&A Kompendium, 2004

Module M0512: Use of Solar Energy

Courses
Title Typ Hrs/wk CP
Energy Meteorology (L0016) Lecture 1 1
Energy Meteorology (L0017) Recitation Section (small) 1 1
Collector Technology (L0018) Lecture 2 2
Solar Power Generation (L0015) Lecture 2 2
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

With the completion of this module, students will be able to deal with technical foundations and current issues and problems in the field of solar energy and explain and evaulate these critically in consideration of the prior curriculum and current subject specific issues. In particular they can professionally describe the processes within a solar cell and explain the specific features of application of solar modules. Furthermore, they can provide an overview of the collector technology in solar thermal systems.

Skills

Students can apply the acquired theoretical foundations of exemplary energy systems using solar radiation. In this context, for example they can assess and evaluate potential and constraints of solar energy systems with respect to different geographical assumptions. They are able to dimension solar energy systems in consideration of technical aspects and given assumptions. Using module-comprehensive knowledge students can evalute the economic and ecologic conditions of these systems. They can select calculation methods within the radiation theory for these topics. 


Personal Competence
Social Competence

Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module.

Autonomy

Students can independently exploit sources and acquire the particular knowledge about the subject area with respect to emphasis fo the lectures. Furthermore, with the assistance of lecturers, they can discrete use calculation methods for analysing and dimensioning solar energy systems. Based on this procedure they can concrete assess their specific learning level and can consequently define the further workflow. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Energy Systems: Specialisation Energy Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0016: Energy Meteorology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Volker Matthias, Dr. Beate Geyer
Language DE
Cycle SoSe
Content
  • Introduction: radiation source Sun, Astronomical Foundations, Fundamentals of radiation
  • Structure of the atmosphere
  • Properties and laws of radiation
    • Polarization
    • Radiation quantities 
    • Planck's radiation law
    • Wien's displacement law
    • Stefan-Boltzmann law
    • Kirchhoff's law
    • Brightness temperature
    • Absorption, reflection, transmission
  • Radiation balance, global radiation, energy balance
  • Atmospheric extinction
  • Mie and Rayleigh scattering
  • Radiative transfer
  • Optical effects in the atmosphere
  • Calculation of the sun and calculate radiation on inclined surfaces
Literature
  • Helmut Kraus: Die Atmosphäre der Erde
  • Hans Häckel: Meteorologie
  • Grant W. Petty: A First Course in Atmosheric Radiation
  • Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy
  • Alexander Löw, Volker Matthias: Skript Optik Strahlung Fernerkundung


Course L0017: Energy Meteorology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Beate Geyer
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0018: Collector Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Agis Papadopoulos
Language DE
Cycle SoSe
Content
  • Introduction: Energy demand and application of solar energy.
  • Heat transfer in the solar thermal energy: conduction, convection, radiation.
  • Collectors: Types, structure, efficiency, dimensioning, concentrated systems.
  • Energy storage: Requirements, types.
  • Passive solar energy: components and systems.
  • Solar thermal low temperature systems: collector variants, construction, calculation.
  • Solar thermal high temperature systems: Classification of solar power plants construction.
  • Solar air conditioning.
Literature
  • Vorlesungsskript.
  • Kaltschmitt, Streicher und Wiese (Hrsg.). Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte, 5. Auflage, Springer, 2013.
  • Stieglitz und Heinzel .Thermische Solarenergie: Grundlagen, Technologie, Anwendungen. Springer, 2012.
  • Von Böckh und Wetzel. Wärmeübertragung: Grundlagen und Praxis, Springer, 2011.
  • Baehr und Stephan. Wärme- und Stoffübertragung. Springer, 2009.
  • de Vos. Thermodynamics of solar energy conversion. Wiley-VCH, 2008.
  • Mohr, Svoboda und Unger. Praxis solarthermischer Kraftwerke. Springer, 1999.


Course L0015: Solar Power Generation
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Martin Schlecht, Prof. Alf Mews, Roman Fritsches-Baguhl
Language DE
Cycle SoSe
Content

Photovoltaics:

  1. Introduction
  2. Primary energies and consumption, available solar energy
  3. Physics of the ideal solar cell
  4. Light absorption, PN transition, characteristic sizes of the solar cell, efficiency
  5. Physics of the real solar cell
  6. Charge carrier recombination, characteristic curves, barrier layer recombination, equivalent circuit diagram
  7. Increasing efficiency
  8. Methods for increasing the quantum yield and reducing recombination
  9. Hetero- and tandem structures
  10. Heterojunction, Schottky, electrochemical, MIS and SIS cell, tandem cell
  11. Concentrator cells
  12. Concentrator optics and tracking systems, concentrator cells
  13. Technology and properties: solar cell types, manufacturing, monocrystalline silicon and gallium arsenide, polycrystalline silicon and silicon thin film cells, thin film cells on carriers (amorphous silicon, CIS, electrochemical cells)
  14. Modules
  15. Switches

Concentrating solar power plants:

  1. Introduction
  2. Point focused technologies
  3. Line focused technologies
  4. Design of CSP projects
Literature
  • A. Götzberger, B. Voß, J. Knobloch: Sonnenenergie: Photovoltaik, Teubner Studienskripten, Stuttgart, 1995
  • A. Götzberger: Sonnenenergie: Photovoltaik : Physik und Technologie der Solarzelle, Teubner Stuttgart, 1994
  • H.-J. Lewerenz, H. Jungblut: Photovoltaik, Springer, Berlin, Heidelberg, New York, 1995
  • A. Götzberger: Photovoltaic solar energy generation, Springer, Berlin, 2005
  • C. Hu, R. M. White: Solar CelIs, Mc Graw HilI, New York, 1983
  • H.-G. Wagemann: Grundlagen der photovoltaischen Energiewandlung: Solarstrahlung, Halbleitereigenschaften und Solarzellenkonzepte, Teubner, Stuttgart, 1994
  • R. J. van Overstraeten, R.P. Mertens: Physics, technology and use of photovoltaics, Adam Hilger Ltd, Bristol and Boston, 1986
  • B. O. Seraphin: Solar energy conversion Topics of applied physics V 01 31, Springer, Berlin, Heidelberg, New York, 1995
  • P. Würfel: Physics of Solar cells, Principles and new concepts, Wiley-VCH, Weinheim 2005
  • U. Rindelhardt: Photovoltaische Stromversorgung, Teubner-Reihe Umwelt, Stuttgart 2001
  • V. Quaschning: Regenerative Energiesysteme, Hanser, München, 2003
  • G. Schmitz: Regenerative Energien, Ringvorlesung TU Hamburg-Harburg 1994/95, Institut für Energietechnik

Module M0518: Waste and Energy

Courses
Title Typ Hrs/wk CP
Waste Recycling Technologies (L0047) Lecture 2 2
Waste Recycling Technologies (L0048) Recitation Section (small) 1 2
Waste to Energy (L0049) Project-/problem-based Learning 2 2
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge Basics of process engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe and explain in detail techniques, processes and concepts for treatment and energy recovery from wastes.



Skills

The students are able to select suitable processes for the treatment and energy recovery of wastes. They can evaluate the efforts and costs for processes and select economically feasible treatment Concepts. Students are able to evaluate alternatives even with incomplete information. Students are able to prepare systematic documentation of work results in form of reports, presentations and are able to defend their findings in a group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of collegues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration
Examination Presentation
Examination duration and scale PowerPoint presentation (10-15 minutes)
Assignment for the Following Curricula Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0047: Waste Recycling Technologies
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Fundamentals on primary and secondary production of  raw materials (steel, aluminum, phosphorous, copper, precious metals, rare metals)
  • Use and demand of metals and minerals in industry and society
  • collection systems and concepts
  • quota and efficiency
  • Advanced sorting technologies
  • mechanical pretreatment
  • advanced treatment
  • Chemical analysis of Critical Materials in post-consumer products
  • Analytical tools in Resource Management (Material Flow Analysis, Recycling Performance Indicators, Criticality Assessment, statistical analysis of uncertainties)
Literature
Course L0048: Waste Recycling Technologies
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Fundamentals on primary and secondary production of  raw materials (steel, aluminum, phosphorous, copper, precious metals, rare metals)
  • Use and demand of metals and minerals in industry and society
  • collection systems and concepts
  • quota and efficiency
  • Advanced sorting technologies
  • mechanical pretreatment
  • advanced treatment
  • Chemical analysis of Critical Materials in post-consumer products
  • Analytical tools in Resource Management (Material Flow Analysis, Recycling Performance Indicators, Criticality Assessment, statistical analysis of uncertainties)
Literature
Course L0049: Waste to Energy
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Rüdiger Siechau
Language EN
Cycle SoSe
Content
  • Project-based lecture
  • Introduction into the " Waste to Energy " consisting of:
    • Thermal Process ( incinerator , RDF combustion )
    • Biological processes ( Wet-/Dryfermentation )
    • technology , energy , emissions, approval , etc.
  • Group work
    • design of systems/plants for energy recovery from waste
    • The following points are to be processed :
      • Input: waste ( fraction collection and transportation, current quantity , material flows , possible amount of development )
      • Plant (design, process diagram , technology, energy production )
      • Output ( energy quantity / type , by-products )
      • Costs and revenues
      • Climate and resource protection ( CO2 balance , substitution of primary raw materials / fossil fuels )
      • Location and approval (infrastructure , expiration authorization procedure)
      • Focus at the whole concept ( advantages, disadvantages , risks and opportunities , discussion )
  • Grading: No Exam , but presentation of the results of the working group



Literature

Literatur:

Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010

Powerpoint-Folien in Stud IP



Literature:
Introduction to Waste Management; Kranert Martin , Klaus Cord - Landwehr (Ed. ), Vieweg + Teubner Verlag , 2010


PowerPoint slides in Stud IP



Module M0749: Waste Treatment and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Solid Matter Process Technology for Biomass (L0052) Lecture 2 2
Thermal Waste Treatment (L0320) Lecture 2 2
Thermal Waste Treatment (L1177) Recitation Section (large) 1 2
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge

Basics of

  • thermo dynamics
  • fluid dynamics
  • chemistry
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. 

The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables.

Skills

The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence

Students can

  • respectfully work together as a team and discuss technical tasks
  • participate in subject-specific and interdisciplinary discussions,
  • develop cooperated solutions 
  •  promote the scientific development and accept professional constructive criticism.
Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0052: Solid Matter Process Technology for Biomass
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle SoSe
Content The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture.
Literature

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Course L0320: Thermal Waste Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literature

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Course L1177: Thermal Waste Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1308: Modelling and Technical Design of Bio Refinery Processes

Courses
Title Typ Hrs/wk CP
Biorefineries - Technical Design and Optimization (L1832) Project-/problem-based Learning 3 3
CAPE in Energy Engineering (L0022) Projection Course 3 3
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The tudents can completely design a technical process including mass and energy balances, calculation and layout of different process devices, layout of measurement- and control systems as well as modeling of the overall process.

Furthermore, they can describe the basics of the general procedure for the processing of modeling tasks, especially with ASPEN PLUS ® and ASPEN CUSTOM MODELER ®.

Skills Students are able to simulate and solve scientific task in the context of renewable energy technologies by:    
  • development of modul-comprehensive approaches for the dimensioning and design of production processes
  • evaluating alternatives input parameter to solve the particular task even with incomplete information,
  • a systematic documentation of the work results in form of a written version, the presentation itself and the defense of contents.

They can use the ASPEN PLUS ® and ASPEN CUSTOM MODELER ® for modeling energy systems and to evaluate the simulation solutions.

Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Personal Competence
Social Competence Students can
  • respectfully work together as a team with around 2-3 members,
  • participate in subject-specific and interdisciplinary discussions in the area of dimensioning and design of production processes, and can develop cooperated solutions,
  • defend their own work results in front of fellow students and

assess the performance of fellow students in comparison to their own performance. Furthermore, they can accept professional constructive criticism.

Autonomy

Students can independently tap knowledge regarding to the given task. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written report incl. presentation
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1832: Biorefineries - Technical Design and Optimization
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle SoSe
Content

I. Repetition of engineering basics

  1. Shell and tube heat exchangers
  2. Steam generators and refrigerating machines
  3. Pumps and turbines
  4. Flow in piping networks
  5. Pumping and mixing of non-newtonian fluids
  6. Requirements to a detailed layout plan 

 II. Calculation:

  1. Planning and design of a specific bio-refinery plant section, such as Ethanol distillation and fermentation. This is based on empirical valuse of a real, industrial plant.
    • Mass and energy balances (Aspen)
    • Equipment design (heat exchangers, pumps, pipes, tanks, etc.) (
    • Isolation, wall thickness and material selection
    • Energy demand (electrical, heat or cooling), design of steam boilers and appliances
    • Selection of fittings, measuring instruments and safety equipment
    • Definition of main control loops
  2. Hereby, the dependencies of transport phenomena between certain plant sections become evident and methods of calculation are introduced.
  3. In Detail Engineering , it is focused on aspects of plant engineering planning that are relevant for the subsequent construction of the plant.
  4. Depending of time requirement and group size a cost estimation and preparation of a complete R&I flow chart can be implemented as well.
Literature

Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007

Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014

Course L0022: CAPE in Energy Engineering
Typ Projection Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content
  • CAPE = Computer-Aided-Project-Engineering

  • INTRODUCTION TO THE THEORY    
    • Classes of simulation programs
    • Sequential modular approach
    • Equation-oriented approach
    • Simultaneous modular approach
    • General procedure for the processing of modeling tasks
    • Special procedure for solving models with repatriations
  • COMPUTER EXERCISES renewable energy projects WITH ASPEN PLUS ® AND ASPEN CUSTOM MODELER ®    
    • Scope, potential and limitations of Aspen Plus ® and Aspen Custom Modeler ®
    • Use of integrated databases for material data
    • Methods for estimating non-existent physical property data
    • Use of model libraries and Process Synthesis
    • Application of design specifications and sensitivity analyzes
    • Solving optimization problems

Within the seminar, the various tasks are actively discussed and applied to various cases of application.

Literature
  • Aspen Plus® - Aspen Plus User Guide
  • William L. Luyben; Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5

Module M1287: Risk Management, Hydrogen and Fuel Cell Technology

Courses
Title Typ Hrs/wk CP
Applied Fuel Cell Technology (L1831) Lecture 2 2
Risk Management in the Energy Industry (L1748) Lecture 2 2
Hydrogen Technology (L0060) Lecture 2 2
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

None

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

With completion of this module students can explain basics of risk management involving thematical adjacent contexts and can describe an optimal management of energy systems.

Furthermore, students can reproduce solid theoretical knowledge about the potentials and applications of new information technologies in logistics and explain technical aspects of the use, production and processing of hydrogen.

Skills

With completion of this module students are able to evaluate risks of energy systems with respect to energy economic conditions in an efficient way. This includes that the students can assess the risks in operational planning of power plants from a technical, economic and ecological perspective.

In this context, students can evaluate the potentials of logistics and information technology in particular on energy issues.

In addition, students are able to describe the energy transfer medium hydrogen according to its applications, the given security and its existing service capacities and limits as well as to evaluate these aspects from a technical, environmental and economic perspective.

Personal Competence
Social Competence

Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module.

Autonomy

Students can independently exploit sources on the emphasis of the lectures and acquire the contained knowledge. In this way, they can recognize their lacks of knowledge and can consequently define the further workflow. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1831: Applied Fuel Cell Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Klaus Bonhoff
Language DE
Cycle SoSe
Content

The lecture provide an insight into the various possibilities of fuel cells in the energy system (electricity, heat and transport).  These are presented and discussed for individual fuel types and application-oriented requirements; also compared with alternative technologies in the system. These different possibilities will be presented regardind the state-of-the-art development  of the technologies and exemplary applications from Germany and worldwide. Also the emerging trends and lines of development will be discussed. Besides to the technical aspects, which are the focus of the event, also energy, environmental and industrial policy aspects are discussed - also in the context of changing circumstances in the German and international energy system.

Literature

Vorlesungsunterlagen

Course L1748: Risk Management in the Energy Industry
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Christian Wulf
Language DE
Cycle SoSe
Content
  • Basics of risk management
    • Definition of terms
    • Risk types
    • Risk management process
    • Enterprise risk management
  • Markets and instruments in energy trading
    • Basics of futures and spot trading
    • Notation in energy markets
    • Options
  • Kennzahlendefinition
    • Assessing of market risks
    • Assessing of credit risks
    • Assessing of operational risks
    • Assessing of liquidy risks
  • Risk monitoring and reporting
  • Risk treatment
Literature
  • Roggi, O. (2012): Risk Taking: A Corporate Governance Perspective, International Finance Corporation, New York
  • Hull, J. C. (2012): Options, Futures, and other Derivatives, 8. Auflage, Pearson Verlag, New York
  • Albrecht, P.; Maurer, R. (2008): Investment- und Risikomanagement, 3. Auflage, Schäffer-Poeschel Verlag, Stuttgart
  • Rittenberg, L.; Martens, F. (2012): Understanding and Communicating Risk Appetite, Treadway Commission, Durham
Course L0060: Hydrogen Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Jun.-Prof. Julian Jepsen
Language DE
Cycle SoSe
Content
  1. Energy economy
  2. Hydrogen economy
  3. Occurrence and properties of hydrogen
  4. Production of hydrogen (from hydrocarbons and by electrolysis)
  5. Separation and purification Storage and transport of hydrogen 
  6. Security
  7. Fuel cells
  8. Projects
Literature
  • Skriptum zur Vorlesung
  • Winter, Nitsch: Wasserstoff als Energieträger
  • Ullmann’s Encyclopedia of Industrial Chemistry
  • Kirk, Othmer: Encyclopedia of Chemical Technology
  • Larminie, Dicks: Fuel cell systems explained


Module M1702: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.


Skills
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M1737: Power-to-X process

Courses
Title Typ Hrs/wk CP
Power-to-X process (L2805) Lecture 2 2
Power-to-X process (L2806) Recitation Section (large) 1 2
Practical aspects of energy conversion (L2807) Practical Course 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the energy transition in Germany,
  • give an overview of the versatile application possibilities of power-to-X processes,
  • evaluate different power-to-X concepts with regard to their technical challenges and social benefits.
Skills

The students are able to:

  • develop concepts for the technical implementation of power-to-X processes,
  • evaluate practical aspects of energy conversion to platform chemicals using laboratory experiments,
  • apply the acquired knowledge to various engineering-relevant power-to-X processes.
Personal Competence
Social Competence

The students:

  • are able to independently discuss approaches to solutions and problems in the field of the energy transition in Germany in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
  • are able to work out the practical aspects of energy conversion to platform chemicals on the basis of laboratory experiments, carry out and evaluate the analytics of the products and precisely summarise the results of the experiments in a protocol.
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2805: Power-to-X process
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content
  • Regenerative surplus energy
  • Electrolysis
  • CO2 sources for Power-to-X
  • Power-to-heat
  • Power-to-Power
  • Power-to-gas (SNG)
  • Power-to-Syngas
  • Power-to-Methanol
  • Power-to-Fuels
  • Power-to-ammonia
  • LOHC (Liquid organic hydrogen carrier)
  • Economic and ecological comparison of different concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2806: Power-to-X process
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In exercise, the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015
Course L2807: Practical aspects of energy conversion
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language DE
Cycle SoSe
Content

In the laboratory practical course, practical experiments on power-to-X processes are carried out. The challenges for the technical implementation of power-to-x processes are made clear to the students. The associated analysis of the test samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. H. Watter, „Regenerative Energiesysteme“, Springer, 2015

Module M1878: Sustainable energy from wind and water

Courses
Title Typ Hrs/wk CP
Sustainability Management (L0007) Lecture 2 1
Hydro Power Use (L0013) Lecture 1 1
Wind Turbine Plants (L0011) Lecture 2 3
Wind Energy Use - Focus Offshore (L0012) Lecture 1 1
Module Responsible Dr. Marvin Scherzinger
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I,

Module: Technical Thermodynamics II,

Module: Fundamentals of Fluid Mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe.

Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Skills

Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects.

Personal Competence
Social Competence

 Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar.

Autonomy

Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration Schriftliche Ausarbeitung (inkl. Vortrag) in Nachhaltigkeitsmanagement
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0007: Sustainability Management
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Anne Rödl
Language DE
Cycle SoSe
Content

The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:

  • What is "sustainability"?
  • Why is this concept an important topic for companies?
  • What opportunities and business risks are addressed or are associated with it?
  • How can the often mentioned three pillars of sustainability - economy, ecology, and social- be meaningfully integrated into corporate management despite their sometimes contradictory tendencies, and how a corresponding compromise can be found?
  • What concepts or frameworks exist for the implementation of sustainability management in companies?
  • Which sustainability labels exist for products or companies? What do they have in common, and where do they differ?

Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes.

In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions.

Literature

Die folgenden Bücher bieten einen Überblick:

Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage

Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag.


Course L0013: Hydro Power Use
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Achleitner
Language DE
Cycle SoSe
Content
  • Introduction, importance of water power in the national and global context
  • Physical basics: Bernoulli's equation, usable height of fall, hydrological measures, loss mechanisms, efficiencies
  • Classification of Hydropower: Flow and Storage hydropower, low and high pressure systems
  • Construction of hydroelectric power plants: description of the individual components and their technical system interaction
  • Structural engineering components; representation of dams, weirs, dams, power houses, computer systems, etc.
  • Energy Technical Components: Illustration of the different types of hydraulic machinery, generators and grid connection
  • Hydropower and the Environment
  • Examples from practice

Literature
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Course L0011: Wind Turbine Plants
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Rudolf Zellermann
Language DE
Cycle SoSe
Content
  • Historical development
  • Wind: origins, geographic and temporal distribution, locations
  • Power coefficient, rotor thrust
  • Aerodynamics of the rotor
  • Operating performance
  • Power limitation, partial load, pitch and stall control
  • Plant selection, yield prediction, economy
  • Excursion
Literature

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Course L0012: Wind Energy Use - Focus Offshore
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Skiba
Language DE
Cycle SoSe
Content
  • Introduction, importance of offshore wind power generation, Specific requirements for offshore engineering
  • Physical fundamentals for utilization of wind energy
  • Design and operation of offshore wind turbines, presentation of different concepts of offshore wind turbines, representation of the individual system components and their system-technical relationships
  • Foundation engineering, offshore site investigation, presentation of different concepts of offshore foundation structures, planning and fabrication of foundation structures
  • Electrical infrastructure of an offshore wind farm, Inner Park cabling, offshore substation, grid connection
  • Installation of offshore wind farms, installation techniques and auxiliary devices, construction logistics
  • Development and planning of offshore wind farms
  • Operation and optimization of offshore wind farms
  • Day excursion
Literature
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Module M0902: Wastewater Treatment and Air Pollution Abatement

Courses
Title Typ Hrs/wk CP
Biological Wastewater Treatment (L0517) Lecture 2 3
Air Pollution Abatement (L0203) Lecture 2 3
Module Responsible Dr. Swantje Pietsch-Braune
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of biology and chemistry

Basic knowledge of solids process engineering and separation technology


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • name and explain biological processes for waste water treatment,
  • characterize waste water and sewage sludge,
  • discuss legal regulations in the area of emissions and air quality
  • explain the effects of air pollutants on the environment,
  • name and explan off gas tretament processes and to define their area of application
Skills

Students are able to

  • choose and design processs steps for the biological waste water treatment
  • combine processes for cleaning of off-gases depending on the pollutants contained in the gases
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0517: Biological Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Charaterisation of Wastewater
Metobolism of Microorganisms
Kinetic of mirobiotic processes
Calculation of bioreactor for wastewater treatment
Concepts of Wastewater treatment
Design of WWTP
Excursion to a WWTP
Biofilms
Biofim Reactors
Anaerobic Wastewater and sldge treatment
resources oriented sanitation technology
Future challenges of wastewater treatment

Literature

Gujer, Willi
Siedlungswasserwirtschaft : mit 84 Tabellen
ISBN: 3540343296 (Gb.) URL: http://www.gbv.de/dms/bs/toc/516261924.pdf URL: http://deposit.d-nb.de/cgi-bin/dokserv?id=2842122&prov=M&dok_var=1&dok_ext=htm
Berlin [u.a.] : Springer, 2007
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Imhoff, Karl (Imhoff, Klaus R.;)
Taschenbuch der Stadtentwässerung : mit 10 Tafeln
ISBN: 3486263331 ((Gb.))
München [u.a.] : Oldenbourg, 1999
TUB_HH_Katalog
Lange, Jörg (Otterpohl, Ralf; Steger-Hartmann, Thomas;)
Abwasser : Handbuch zu einer zukunftsfähigen Wasserwirtschaft
ISBN: 3980350215 (kart.) URL: http://www.gbv.de/du/services/agi/52567E5D44DA0809C12570220050BF25/000000700334
Donaueschingen-Pfohren : Mall-Beton-Verl., 2000
TUB_HH_Katalog
Mudrack, Klaus (Kunst, Sabine;)
Biologie der Abwasserreinigung : 18 Tabellen
ISBN: 382741427X URL: http://www.gbv.de/du/services/agi/94B581161B6EC747C1256E3F005A8143/420000114903
Heidelberg [u.a.] : Spektrum, Akad. Verl., 2003
TUB_HH_Katalog
Tchobanoglous, George (Metcalf & Eddy, Inc., ;)
Wastewater engineering : treatment and reuse
ISBN: 0070418780 (alk. paper) ISBN: 0071122508 (ISE (*pbk))
Boston [u.a.] : McGraw-Hill, 2003
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Kunz, Peter
Umwelt-Bioverfahrenstechnik
Vieweg, 1992
Bauhaus-Universität., Arbeitsgruppe Weiterbildendes Studium Wasser und Umwelt (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, ;)
Abwasserbehandlung : Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren, Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen
ISBN: 3860682725 URL: http://www.gbv.de/dms/weimar/toc/513989765_toc.pdf URL: http://www.gbv.de/dms/weimar/abs/513989765_abs.pdf
Weimar : Universitätsverl, 2006
TUB_HH_Katalog
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
DWA-Regelwerk
Hennef : DWA, 2004
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0203: Air Pollution Abatement
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Swantje Pietsch-Braune, Christian Eichler
Language EN
Cycle WiSe
Content

In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators.

Literature

Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002
Atmospheric pollution : history, science, and regulation, Mark Zachary Jacobson. - Cambridge [u.a.] : Cambridge Univ. Press, 2002
Air pollution control technology handbook, Karl B. Schnelle. - Boca Raton [u.a.] : CRC Press, c 2002
Air pollution, Jeremy Colls. - 2. ed. - London [u.a.] : Spon, 2002

Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones

Courses
Title Typ Hrs/wk CP
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0942) Seminar 2 3
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0941) Lecture 2 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners.

Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world.


Skills

Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content


  • Central part of this module is a group work on a subtopic of the lectures. The focus of these projects will be based on an interview with a target audience, practitioners or scientists.
  • The group work is divided into several Milestones and Assignments. The outcome will be presented in a final presentation at the end of the semester.



Literature
  • J. Lange, R. Otterpohl 2000: Abwasser - Handbuch zu einer zukunftsfähigen Abwasserwirtschaft. Mallbeton Verlag (TUHH Bibliothek)
  • Winblad, Uno and Simpson-Hébert, Mayling 2004: Ecological Sanitation, EcoSanRes, Sweden (free download)
  • Schober, Sabine: WTO/TUHH Award winning Terra Preta Toilet Design: http://youtu.be/w_R09cYq6ys
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
  • Living Soil - THE key element of Rural Development
  • Participatory Approaches
  • Rainwater Harvesting
  • Ecological Sanitation Principles and practical examples
  • Permaculture Principles of Rural Development
  • Performance and Resilience of Organic Small Farms
  • Going Further: The TUHH Toolbox for Rural Development
  • EMAS Technologies, Low cost drinking water supply


Literature
  • Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation: http://youtu.be/9hmkgn0nBgk
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press

Module M1033: Special Areas of Process Engineering and Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Bioeconomy (L2797) Lecture 2 2
Chemical Kinetics (L0508) Lecture 2 2
Solid Matter Process in chemical Industry (L2021) Lecture 2 2
Optics for Engineers (L2437) Lecture 3 3
Optics for Engineers (L2438) Project-/problem-based Learning 3 3
Polymer Reaction Engineering (L1244) Lecture 2 2
Safety of Chemical Reactions (L1321) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge The students should have passed the Bachelor modules "Process Engineering" successfully.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to find their way around selected special areas of Process Engineering within the scope of Process Engineering.
Students are able to explain technical dependencies and models in selected special areas of Process Engineering.

Skills

Students are able to apply basic methods in selected areas of process engineering.

Personal Competence
Social Competence
Autonomy

Students can chose independently, in which field the want to deepen their knowledge and skills through the election of courses.

Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2797: Bioeconomy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Garabed Antranikian
Language EN
Cycle WiSe/SoSe
Content

Bioeconomy is the production, utilization and conservation of biological resources, including related knowledge, science, technology, and innovation, to provide information products, processes, and services across all economic sectors aiming towards a sustainable biobased technology. In this course the significance of various topics including the production and processing of biomass, economics, logistic as well as management will be discussed. Technologies aiming at the production of renewable biological resources and the conversion of these resources and waste streams into value-added products, such as food, feed, bio-based products (textiles, bioplastics, chemicals, pharmaceuticals) and bioenergy will be presented. Biological tools including microorganisms and enzymes will be introduced. This approach with a focus on chemical and process engineering will provide a smooth transition from crude oil-based industry to Sustainable Circular Bioeconomy taking into consideration the environmental issues. This sustainable use of renewable resources for industrial purposes will ensure environmental protection and a long-term balance of social and economic gains.

Literature
Course L0508: Chemical Kinetics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 120 Minuten
Lecturer Prof. Raimund Horn
Language EN
Cycle WiSe
Content

- Micro kinetics, formal kinetics, molecularity, reaction order, integrated rate laws

- Complex reactions, reversible reactions, consecutive reactions, parallel reactions, approximation methods: steady-state, pseudo-first order, numerical solution of rate equations , example : Belousov-Zhabotinskii reaction

- Experimental methods of kinetics, integral approach, differential approach, initial rate method, method of half-life, relaxation methods

- Collision theory, Maxwell velocity distribution, collision numbers, line of centers model

- Transition state theory, partition functions of atoms and molecules, examples, calculating reaction equilibria on the basis of molecular data only, heats of reaction, calculating rates of reaction by means of statistical thermodynamics

- Kinetics of heterogeneous reactions, peculiarities of heterogeneous reactions, mean-field approximation, Langmuir adsorption isotherm, reaction mechanisms, Langmuir-Hinshelwood Mechanism, Eley-Rideal Mechanism, steady-state approximation, quasi-equilibrium approximation, most abundant reaction intermediate (MARI), reaction order, apparent activation energy, example: CO oxidation, transition state theory of surface reactions, Sabatier´s principle, sticking coefficient, parameter fitting

- Explosions, cold flames

Literature

J. I. Steinfeld, J. S. Francisco, W. L . Hase: Chemical Kinetics & Dynamics, Prentice Hall

K. J. Laidler: Chemical Kinetics, Harper & Row Publishers

R. K. Masel. Chemical Kinetics & Catalysis , Wiley

I. Chorkendorff,, J. W. Niemantsverdriet: Concepts of modern Catalysis and Kinetics, Wiley

Course L2021: Solid Matter Process in chemical Industry
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 12 Seiten
Lecturer Prof. Frank Kleine Jäger
Language DE
Cycle SoSe
Content
Literature
Course L2437: Optics for Engineers
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content
  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Literature  
Course L2438: Optics for Engineers
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1244: Polymer Reaction Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 1 Stunde
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content

Introduction into polymer reaction engineering, free and controlled radical polymerization, coordination polymerization of olefins, ionic “living” polymerization, step polymerization (polyaddition, polycondensation), copolymerization, emulsion polymerization, specific challenges of the industrial implementation of polymerization reactions (viscosity increase, heat removal, scale-up, reactor safety, modelling of polymerization reactions and reactors), key competitive factors in polymer industry in Germany, EU and worldwide.

Literature

W. Keim: Kunststoffe - Synthese, Herstellungsverfahren, Apparaturen, 1. Auflage, Wiley-VCH, 2006

T. Meyer, J. Keurentjes: Handbook of Polymer Reaction Engineering, 2 Vol., 1. Ed., Wiley-VCH, 2005

A. Echte: Handbuch der technischen Polymerchemie, 1. Auflage, VCH-Verlagsgesellschaft, 1993

G. Odian: Principles of Polymerization, 4. Ed., Wiley-Interscience, 2004

J. Asua: Polymer Reaction Engineering, 1. Ed., Blackwell Publishing, 2007


Course L1321: Safety of Chemical Reactions
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Hans-Ulrich Moritz
Language DE
Cycle SoSe
Content
Literature

Module M0905: Research Project Process Engineering

Courses
Title Typ Hrs/wk CP
Research Project in Process Engineering (L1051) Project-/problem-based Learning 6 6
Module Responsible Dozenten des SD V
Admission Requirements None
Recommended Previous Knowledge

Advanced state of knowledge in the master program of Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know current research topics oft institutes engaged in their specialization. They can name the fundamental scientific methods used for doing related reserach.

Skills

Students are capable of completing a small, independent sub-project of currently ongoing research projects in the institutes engaged in their specialization. Students can justify and explain their approach for problem solving, they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alterantive approaches with their own with regard to given criteria.

Personal Competence
Social Competence

Students are able to discuss their work progress with research assistants of the supervising institute. They are capable of presenting their results in front of a professional audience.


Autonomy

Based on their competences gained so far students are capable of defining meaningful tasks within ongoing research project for themselves. They are able to develop the necessary understanding  and problem solving methods.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1051: Research Project in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content

Working on current research topics of the chosen specialisation.

Research projects can be carried out at the institutes of process engineering, in industry or abroad. It is always necessary to have a university lecturer from the school of Process Engineering as a supervisor, who must be determined before the research project begins.


Literature

Aktuelle Literatur zu Forschungsthemen aus der gewählten Vertiefungsrichtung. 

Current literature on research topics of the chosen specialization.

Module M1294: Bioenergy

Courses
Title Typ Hrs/wk CP
Biofuels Process Technology (L0061) Lecture 1 1
Biofuels Process Technology (L0062) Recitation Section (small) 1 1
World Market for Commodities from Agriculture and Forestry (L1769) Lecture 1 1
Thermal Biomass Utilization (L1767) Lecture 2 2
Thermal Biomass Utilization (L2386) Practical Course 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce an in-depth outline of energy production from biomass, aerobic and anaerobic waste treatment processes, the gained products and the treatment of produced emissions.

Skills

Students can apply the learned theoretical knowledge of biomass-based energy systems to explain relationships for different tasks, like dimesioning and design of biomass power plants.  In this context, students are also able to solve computational tasks for combustion, gasification and biogas, biodiesel and bioethanol use.

Personal Competence
Social Competence

Students can participate in discussions to design and evaluate energy systems using biomass as an energy source.

Autonomy

Students can independently exploit sources with respect to the emphasis of the lectures. They can choose and aquire the for the particular task useful knowledge. Furthermore, they can solve computational tasks of biomass-based energy systems independently with the assistance of the lecture. Regarding to this they can assess their specific learning level and can consequently define the further workflow. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0061: Biofuels Process Technology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • General introduction
  • What are biofuels?
  • Markets & trends 
  • Legal framework
  • Greenhouse gas savings 
  • Generations of biofuels 
    • first-generation bioethanol 
      • raw materials
      • fermentation distillation 
    • biobutanol / ETBE
    • second-generation bioethanol 
      • bioethanol from straw
    • first-generation biodiesel 
      • raw materials 
      • Production Process
      • Biodiesel & Natural Resources
    • HVO / HEFA 
    • second-generation biodiesel
      • Biodiesel from Algae
  • Biogas as fuel
    • the first biogas generation 
      • raw materials 
      • fermentation 
      • purification to biomethane 
    • Biogas second generation and gasification processes
  • Methanol / DME from wood and Tall oil ©

Literature
  • Skriptum zur Vorlesung
  • Drapcho, Nhuan, Walker; Biofuels Engineering Process Technology
  • Harwardt; Systematic design of separations for processing of biorenewables
  • Kaltschmitt; Hartmann; Energie aus Biomasse: Grundlagen, Techniken und Verfahren
  • Mousdale; Biofuels - Biotechnology, Chemistry and Sustainable Development
  • VDI Wärmeatlas


Course L0062: Biofuels Process Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • Life Cycle Assessment
    • Good example for the evaluation of CO2 savings potential by alternative fuels - Choice of system boundaries and databases
  • Bioethanol production
    • Application task in the basics of thermal separation processes (rectification, extraction) will be discussed. The focus is on a column design, including heat demand, number of stages, reflux ratio ...
  • Biodiesel production
    • Procedural options for solid / liquid separation, including basic equations for estimating power, energy demand, selectivity and throughput
  • Biomethane production
    • Chemical reactions that are relevant in the production of biofuels, including equilibria, activation energies, shift reactions


Literature

Skriptum zur Vorlesung

Course L1769: World Market for Commodities from Agriculture and Forestry
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Köhl, Bernhard Chilla
Language DE
Cycle WiSe
Content

1) Markets for Agricultural Commodities
What are the major markets and how are markets functioning
Recent trends in world production and consumption.
World trade is growing fast. Logistics. Bottlenecks.
The major countries with surplus production
Growing net import requirements, primarily of China, India and many other countries.
Tariff and non-tariff market barriers. Government interferences.


2) Closer Analysis of Individual Markets
Thomas Mielke will analyze in more detail the global vegetable oil markets, primarily palm oil, soya oil,
rapeseed oil, sunflower oil. Also the raw material (the oilseed) as well as the by-product (oilmeal) will
be included. The major producers and consumers.
Vegetable oils and oilmeals are extracted from the oilseed. The importance of vegetable oils and
animal fats will be highlighted, primarily in the food industry in Europe and worldwide. But in the past
15 years there have also been rapidly rising global requirements of oils & fats for non-food purposes,
primarily as a feedstock for biodiesel but also in the chemical industry.
Importance of oilmeals as an animal feed for the production of livestock and aquaculture
Oilseed area, yields per hectare as well as production of oilseeds. Analysis of the major oilseeds
worldwide. The focus will be on soybeans, rapeseed, sunflowerseed, groundnuts and cottonseed.
Regional differences in productivity. The winners and losers in global agricultural production.


3) Forecasts: Future Global Demand & Production of Vegetable Oils
Big challenges in the years ahead: Lack of arable land for the production of oilseeds, grains and other
crops. Competition with livestock. Lack of water. What are possible solutions? Need for better
education & management, more mechanization, better seed varieties and better inputs to raise yields.
The importance of prices and changes in relative prices to solve market imbalances (shortage
situations as well as surplus situations). How does it work? Time lags.
Rapidly rising population, primarily the number of people considered “middle class” in the years ahead.
Higher disposable income will trigger changing diets in favour of vegetable oils and livestock products.
Urbanization. Today, food consumption per caput is partly still very low in many developing countries,
primarily in Africa, some regions of Asia and in Central America. What changes are to be expected?
The myth and the realities of palm oil in the world of today and tomorrow.
Labour issues curb production growth: Some examples: 1) Shortage of labour in oil palm plantations in
Malaysia. 2) Structural reforms overdue for the agriculture in India, China and other countries to
become more productive and successful, thus improving the standard of living of smallholders.

Literature Lecture material
Course L1767: Thermal Biomass Utilization
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle WiSe
Content

Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented.

The course is structured as follows:

  • Biomass as an energy carrier within the energy system; use of biomass in Germany and world-wide, overview on the content of the course
  • Photosynthesis, composition of organic matter, plant production, energy crops, residues, organic waste
  • Biomass provision chains for woody and herbaceous biomass, harvesting and provision, transport, storage, drying
  • Thermo-chemical conversion of solid biofuels
    • Basics of thermo-chemical conversion
    • Direct thermo-chemical conversion through combustion: combustion technologies for small and large scale units, electricity generation technologies, flue gas treatment technologies, ashes and their use
    • Gasification: Gasification technologies, producer gas cleaning technologies, options to use the cleaned producer gas for the provision of heat, electricity and/or fuels
    • Fast and slow pyrolysis: Technologies for the provision of bio-oil and/or for the provision of charcoal, oil cleaning technologies, options to use the pyrolysis oil and charcoal as an energy carrier as well as a raw material
  • Physical-chemical conversion of biomass containing oils and/or fats: Basics, oil seeds and oil fruits, vegetable oil production, production of a biofuel with standardized characteristics (trans-esterification, hydrogenation, co-processing in existing refineries), options to use this fuel, options to use the residues (i.e. meal, glycerine)
  • Bio-chemical conversion of biomass
    • Basics of bio-chemical conversion
    • Biogas: Process technologies for plants using agricultural feedstock, sewage sludge (sewage gas), organic waste fraction (landfill gas), technologies for the provision of bio methane, use of the digested slurry
    • Ethanol production: Process technologies for feedstock containing sugar, starch or celluloses, use of ethanol as a fuel, use of the stillage
Literature

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Course L2386: Thermal Biomass Utilization
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger
Language DE
Cycle WiSe
Content

The experiments of the practical lab course illustrate the different aspects of heat generation from biogenic solid fuels. First, different biomasses (e.g. wood, straw or agricultural residues) will be investigated; the focus will be on the calorific value of the biomass. Furthermore, the used biomass will be pelletized, the pellet properties analysed and a combustion test carried out on a pellet combustion system. The gaseous and solid pollutant emissions, especially the particulate matter emissions, are measured and the composition of the particulate matter is investigated in a further experiment. Another focus of the practical course is the consideration of options for the reduction of particulate matter emissions from biomass combustion. In the practical course, a method for particulate matter reduction will be developed and tested. All experiments will be evaluated and the results presented.

Within the practical lab course the students discuss different technical-scientific tasks, both subject-specifically and interdisciplinary. They
discuss various approaches to solving the problem and advise on the theoretical or practical implementation.

Literature

- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage. Berlin Heidelberg: Springer Science & Business Media, 2016. -ISBN 978-3-662-47437-2
- Versuchsskript

Module M0822: Process Modeling in Water Technology

Courses
Title Typ Hrs/wk CP
Process Modelling of Wastewater Treatment (L0522) Project-/problem-based Learning 2 3
Process Modeling in Drinking Water Treatment (L0314) Project-/problem-based Learning 2 3
Module Responsible Dr. Klaus Johannsen
Admission Requirements None
Recommended Previous Knowledge

Knowledge of the most important processes in drinking water and waste water treatment. 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain selected processes of drinking water and waste water treatment in detail. They are able to explain basics as well as possibilities and limitations of dynamic modeling.

Skills

Students are able to use the most important features Modelica offers. They are able to transpose selected processes in drinking water and waste water treatment into a mathematical model in Modelica with respect to equilibrium, kinetics and mass balances. They are able to set up and apply models and assess their possibilities and limitations.


Personal Competence
Social Competence

Students are able to solve problems and document solutions in a group with members of different technical background. They are able to give appropriate feedback and can work constructively with feedback concerning their work.


Autonomy

Students are able to define a problem, gain the required knowledge and set up a model.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0522: Process Modelling of Wastewater Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle WiSe
Content

Mass and energy balances

Tracer modelling

Activated Sludge Model

Wastewater Treatment Plant Modelling (continously and SBR)

Sludge Treatment (ADM, aerobic autothermal)

Biofilm Modelling

Literature

Henze, Mogens (Seminar on Activated Sludge Modelling, ; Kollekolle Seminar on Activated Sludge Modelling, ;)
Activated sludge modelling : processes in theory and practice ; selected proceedings of the 5th Kollekolle Seminar on Activated Sludge Modelling, held in Kollekolle, Denmark, 10 - 12 September 2001
ISBN: 1843394146
[London] : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L0314: Process Modeling in Drinking Water Treatment
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE/EN
Cycle WiSe
Content

In this course selected drinking water treatment processes (e.g. aeration or activated carbon adsorption) are modeled dynamically using the programming language Modelica,  that is increasingly used in industry.  In this course OpenModelica is used, an free access frontend of the programming language Modelica.

In the beginning of the course  the use of OpenModelica is explainded by means of simple examples. Together required elements and structure of the model are developed. The implementation in OpenModelica and the application of the model is done individually or in groups respectively. Students get feedback and can gain extra points for the exam. 


Literature

OpenModelica: https://openmodelica.org/index.php/download/download-windows

OpenModelica - Modelica Tutorial: https://openmodelica.org/index.php/useresresources/userdocumentation

OpenModelica - Users Guide: https://openmodelica.org/index.php/useresresources/userdocumentation

Peter Fritzson: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,Wiley-IEEE Press, ISBN 0-471-471631.

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.


Module M1303: Energy Projects - Development and Assessment

Courses
Title Typ Hrs/wk CP
Development of Renewable Energy Projects (L0003) Lecture 2 2
Renewable Energy Projects in Emerged Markets (L0014) Project Seminar 2 2
Economics of an Energy Provision from Renewables (L0005) Lecture 1 1
Economics of an Energy Provision from Renewables (L0006) Project Seminar 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Environmental Assessment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module, students can describe the planning and development of projects using renewable energy sources. Furthermore they are able to explain the special emphasis on the economic and legal aspects in this context. 

The learning content of the different topics of the module are use-oriented; thus students can apply them i.a. in professional fields of consultation or supervision of energy projects.

Skills

By ending the module the students can apply the learned theoretical foundations of the development of renewable energy projects to exemplary energy projects and can explain technically and conceptually the resulting correlations with respect to legal and economic requirements.

As a basis for the design of renewable energy systems they can calculate the demand for thermal and/or electrical energy at operating and regional level. Regarding to this calculation they can choose and dimension possible energy systems. 

To assess sustainability aspects of renewable energy projects, the students can choose and discuss the right methodology according to the particular task. 

Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Personal Competence
Social Competence

Students will be able to edit scientific tasks in the context of the economic analysis of renewable energy projects in a group with a high number of participants and can organize the processing time within the group. They can perform subject-specific and interdisciplinary discussions. Consequently, they can asses the knowledge of their fellow students and are able to deal with feedback on their own performance. Students can present their group results in front of others.

Autonomy

Regarding to the contents of the lectures and to solve the tasks for the economical analysis of renewable energy projects the students are able to exploit sources and acquire the particular knowledge about the subject area independently and self-organized. Based on this expertise they are able to use indenpendently calculation methods for these tasks. Regarding to these calculations, guided by the lecturers, the students can recognize self-organized theri personal level of knowledge.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 2 hours written exam + Written assay from project seminar
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0003: Development of Renewable Energy Projects
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle WiSe
Content
  • Development of renewable energy projects from the analysis of the local situation to the final energy project: what steps have to be completed in order to implement a successful regenerative energy project and what factors must be considered
  • Survey of energy demand; methods to collect the demand for thermal and/or electrical energy at operational and regional level until the point of a development of an energy master plan
  • Technology of renewable energy: how to combine the various options for using renewable energy with different supply situation in the most reasonable way? How can under certain conditions ideal combinations look like?
  • Feasibility study, requirements and content of a feasibility study
  • Legal framework for plant construction; representation of authorization rights, including the entire formal procedure for the different approval procedures in the context of the BImSch legislation; further legal requirements (including laws pertaining to construction, water and waterways, noise, etc.
  • Company structures; which company structure is the most appropriate
    for the various applications? What are the pros and cons?
  • Risk management: how the risks of renewable energy projects
    can be best determined? How the minimizing of risk can be ensured?
  • Insurance: which kinds of insurance exit? Why do you need insurance? What requirements must be met in order to obtain certain types of insurance for certain renewable energy projects for the construction and operational phase?
  • Acceptance: how the acceptance of an application for the use of renewable energy can be assessed and improved? How the acceptance can be measured?
  • Organization of realization of a project: how the construction phase of a renewable energy system is organized after the end of the planning period?
  • Acceptance: Which are the acceptance steps until the regular continuous operation (VOB acceptance, safety acceptance, approval by authority)
  • Examples: good and less good examples of project development
Literature
  • Script zur Vorlesung mit Literaturhinweisen


Course L0014: Renewable Energy Projects in Emerged Markets
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Wiese
Language DE
Cycle WiSe
Content
  1. Introduction
    • Development of renewable energies worldwide
      • History
      • Future markets
    • Special challenges in new markets - Overview
  2. Sample project wind farm Korea
    • Survey
    • Technical Description
    • Project phases and characteristics
  3. Funding and financing instruments for EE projects in new markets
    • Overview funding opportunitie
    • Overview countries with feed-in laws
    • Major funding programs
  4. CDM projects - why, how , examples
    • Overview CDM process
    • Examples
    • Exercise CDM
  5. Rural electrification and hybrid systems - an important future market for EE
    • Rural Electrification - Introduction
    • Types of Elektrizifierungsprojekten
    • The role of the EEInterpretation of hybrid systems
    • Project example: hybrid system Galapagos Islands
  6. Tendering process for EE projects - examples
    • South Africa
    • Brazil
  7. Selected projects from the perspective of a development bank - Wesley Urena Vargas, KfW Development Bank
    • Geothermal
    • Wind or CSP

Within the seminar, the various topics are actively discussed and applied to various cases of application.

Literature Folien der Vorlesung
Course L0005: Economics of an Energy Provision from Renewables
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle WiSe
Content
  • Introduction: definitions; importance of cost and profitability statements for projects in the "Renewable Energies"; prices and costs; efficiency of energy systems versus profitability of individual project
  • Cost estimates and cost calculations
    • Definitions
    • Cost calculation
    • Cost estimation
    • Calculation of costs for the provision of work and power
    • Cost summaries for renewable energy technologies
    • Energy Storage: cost overviews; impact on the cost of renewable energy projects
  • Efficiency calculation
    • Definitions
    • Methods: static methods, dynamic methods (eg. LCOE (levelised cost of electricity))
    • Economic versus national economic approach
    • Power and work in cost accounting
    • Energy storage and its influence on the efficiency calculation
  • The due diligence process as an attendant of economic analysis
  • Consideration of uncertainty in projects for renewable energy
    • Definitions
    • Technical uncertainty
    • Cost uncertainties
    • Other uncertainties
  • Project financing
    • Definitions
    • Project -versus corporate finance
    • Funding models
    • Equity ratio , DSCR
    • Treatment of risks in project financing
    • Funding opportunities for renewable energy projects
    • Possible funding approaches
    • Legal requirements in Germany (EEG )
    • Emissions trading and carbon credits
Literature

Script der Vorlesung


Course L0006: Economics of an Energy Provision from Renewables
Typ Project Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle WiSe
Content

Calculation of tasks to evaluate the economics of a renewable energy project, with the aim to deepen the complex knowledge of economic analysis and market analysis. Processing is carried out individually or in smaller groups. The following topics are covered:    

  • Stat. and dyn. calculation of profitability
  • Cost estimate plus stat. and dyn. calculation of profitability
  • sensitivity analysis
  • joint production
  • Grid parity calculation

Within the seminar, the various tasks are actively discussed and applied to various cases of application.


Literature Skript der Vorlesung

Module M1716: Subsurface Processes

Courses
Title Typ Hrs/wk CP
Modeling of Subsurface Processes (L2731) Recitation Section (small) 3 3
Subsurface Solute Transport (L2728) Lecture 2 2
Subsurface Solute Transport (L2729) Recitation Section (large) 1 1
Module Responsible Prof. Nima Shokri
Admission Requirements None
Recommended Previous Knowledge

Basic Mathematics, Hydrology

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Upon completion of this module, the students will understand the mechanisms controlling solute transport in soil and natural porous media and will be able to work with the equations that govern the fate and transport of solutes in porous media. Analytical, numerical and experimental tools and techniques will be used in this module.

Skills In addition to the physical insights, the students will be exposed to analytical, experimental and numerical tools and techniques in this module. This provides them with an excellent opportunity to improve their skills on multiple fronts which will be useful in their future career.
Personal Competence
Social Competence Teamwork & problem solving
Autonomy The students will be involved in writing individual reports and presentation. This will contribute to the students’ ability and willingness to work independently and responsibly.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Report and Presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L2731: Modeling of Subsurface Processes
Typ Recitation Section (small)
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Milad Aminzadeh
Language EN
Cycle WiSe
Content

Basic usage and background of chosen computer software to calculate flow and transport in the saturated and unsaturated zone and to analyze field data like pumping test data

Literature
Course L2728: Subsurface Solute Transport
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Nima Shokri
Language EN
Cycle WiSe
Content

Basic physical properties of soil: Definition and quantification; Liquid flow in soils (Darcy’s law); Solute transport in soils; Practical analysis to measure dispersion coefficient in soil under different boundary conditions; Advanced topics (e.g. Application of Artificial Intelligence to predict soil salinization)


Literature

- Environmental Soil Physics, by Daniel Hillel

- Soil Physics, Sixth Edition, by William A. Jury and Robert Horton

Course L2729: Subsurface Solute Transport
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Hannes Nevermann
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0830: Environmental Protection and Management

Courses
Title Typ Hrs/wk CP
Integrated Pollution Control (L0502) Lecture 2 2
Health, Safety and Environmental Management (L0387) Lecture 2 3
Health, Safety and Environmental Management (L0388) Recitation Section (small) 1 1
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge
  • Good knowledge in Technologies for Environmental Protection (end-of-pipe, integrated solutions)
  • Good knowledge of the relevant Environmental Legislation
  • Basic knowledge of instruments for Environmental Assessment
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors.


Skills

Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level.


Personal Competence
Social Competence

The students can work together in international groups.


Autonomy

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Energy: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0502: Integrated Pollution Control
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content

The lecture focusses on:

  • The Regulatory Framework
  • Pollution & Impacts, Characteristics of Pollutants
  • Approaches of Integrated Pollution Control
  • Sevilla Process, Best Available Technologies & BREF Documents
  • Case Studies: paper industry, cement industry, automotive industry
  • Field Trip
Literature

Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0

Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3






Course L0387: Health, Safety and Environmental Management
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Hans-Joachim Nau
Language EN
Cycle WiSe
Content
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literature

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Course L0388: Health, Safety and Environmental Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Hans-Joachim Nau
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0802: Membrane Technology

Courses
Title Typ Hrs/wk CP
Membrane Technology (L0399) Lecture 2 3
Membrane Technology (L0400) Recitation Section (small) 1 2
Membrane Technology (L0401) Practical Course 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures.

Skills

Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. 

Personal Competence
Social Competence

Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. 

Autonomy

Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0399: Membrane Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content

The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well.

Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis.

The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. 

Literature
  • T. Melin, R. Rautenbach: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung (2., erweiterte Auflage), Springer-Verlag, Berlin 2004.
  • Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Richard W. Baker, Membrane Technology and Applications, Second Edition, John Wiley & Sons, Ltd., 2004
Course L0400: Membrane Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0401: Membrane Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0801: Water Resources and -Supply

Courses
Title Typ Hrs/wk CP
Chemistry of Drinking Water Treatment (L0311) Lecture 2 1
Chemistry of Drinking Water Treatment (L0312) Recitation Section (large) 1 2
Water Resource Management (L0402) Lecture 2 2
Water Resource Management (L0403) Recitation Section (small) 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Knowledge of water management and the key processes involved in water treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to outline key areas of conflict in water management, as well as their mutual dependence for sustainable water supply. They will understand relevant economic, environmental and social factors. Students will be able to explain and outline the organisational structures of water companies. They will be able to explain the available water treatment processes and the scope of their application.

Skills

Students will be able to assess complex problems in drinking water production and establish solutions involving water management and technical measures. They will be able to assess the evaluation methods that can be used for this. Students will be able to carry out chemical calculations for selected treatment processes and apply generally accepted technical rules and standards to these processes.

Personal Competence
Social Competence

Working in a diverse group of specialists, students will be able to develop and document complex solutions for the management and treatment of drinking water. They will be able to take an appropriate professional position, for example representing user interests. They will be able to develop joint solutions in teams of diverse experts and present these solutions to others.

Autonomy

Students will be in a position to work on a subject independently and present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min (chemistry) + presentation
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0311: Chemistry of Drinking Water Treatment
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content

The topic of this course is water chemistry with respect to drinking water treatment and water distribution

Major topics are solubility of gases, carbonic acid system and calcium carbonate,  blending, softening, redox processes, materials and legal requirements on drinking water treatment. Focus is put on generally accepted rules of technology (DVGW- and DIN-standards).

Special emphasis is put on calculations using realistic analysis data  (e.g. calculation of pH or calcium carbonate dissolution potential) in exercises. Students can get a feedback and gain extra points for exam by solving problems for homework.

Knowledge of drinking water treatment processes is vital for this lecture. Therefore the most important processes are explained coordinated with the course “ Water resources management“ in the beginning of the semester.


Literature

MHW (rev. by Crittenden, J. et al.): Water treatment principles and design. John Wiley & Sons, Hoboken, 2005.

Stumm, W., Morgan, J.J.: Aquatic chemistry. John Wiley & Sons, New York, 1996.

DVGW (Hrsg.): Wasseraufbereitung - Grundlagen und Verfahren. Oldenbourg Industrie Verlag, München, 2004.

Jensen, J. N.: A Problem Solving Approach to Aquatic Chemistry. John Wiley & Sons, Inc., New York, 2003.


Course L0312: Chemistry of Drinking Water Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Klaus Johannsen
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0402: Water Resource Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content

The lecture provides comprehensive knowledge on interaction of water ressource management and drinking water supply. Content overview:

  • Current situation of global water resources

-        User and Stakeholder conflicts

-        Wasserressourcenmanagement in urbane Gebieten

-        Rechtliche Aspekte, Organisationsformen Trinkwasserversorgungsunternehmen.

-        Ökobilanzierung, Benchmarking in der Wasserversorgung

Literature
  • Aktuelle UN World Water Development Reports
  • Branchenbild der deutschen Wasserwirtschaft, VKU (2011)
  • Aktuelle Artikel wissenschaftlicher Zeitschriften
  • Ppt der Vorlesung
Course L0403: Water Resource Management
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1814: Environmental analysis for process engineering

Courses
Title Typ Hrs/wk CP
Practical Course Aquatic Chemistry (L0965) Practical Course 4 3
Environmental Analysis (L0354) Lecture 2 3
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the solubility of gases, carbonic acid system and calcium carbonate, blending, softening and redox processes as well as materials and legal requirements on drinking water treatment.

Skills

The participants must take responsibility for partial aspects of the practical course within the group.

In addition, the participants are able to compile and evaluate designs and layouts of plants and test transcripts as well as the analysis and techniques, measurements and professional relevant methods. Out of the need to prepare laboratory transcripts on the experiments the students can communicate in a technical way and debate their own results in detail in a group.
Personal Competence
Social Competence

Students can work together as a team of 2-5 persons, participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of colleagues. Furthermore, they can give and accept professional constructive criticisms.

Autonomy

Students can accumulate knowledge of the subject area and practice it in the lab. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0965: Practical Course Aquatic Chemistry
Typ Practical Course
Hrs/wk 4
CP 3
Workload in Hours Independent Study Time 34, Study Time in Lecture 56
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content

The practical course is conducted as a block course and lasts for 1 week. There are simple but typical methods  for chemical analysis for water, sewage, soil and waste taught, which serve the students as the basis for their later work in this area. 
 
In this practical course for example the Institutes of Wastewater Management and Water Protection (IAG), Environmental Technology and Energy Economics(IUE), Water Resources and Water Supply (IWW) are involved. 
In the following examples of experiments and methods taught in the course are summarized:

  • Surface waters: sampling of water and sediment 
  • Determination of the pH-value 
  • Determination of the redox potential 
  • Determination of a heavy metal (Zn) 
  • Acid neutralizing capacity (sediment) 
  • Flocculation or co-precipitation of water-suspended titanium dioxide particles 
  • Precipitation of phosphate with Fe3 + 
  •  determine the toxicity of wastewater componentsagainst bacteria 
  • denitrification 
  • Electrical conductivity 
  • Acid and base capacity (m-and p-value) 
  • Determination of permanent gases (H2, O2, N2, CO2, CH4) in Landfill Gas 
  • Determining a grading curve by screens
  • Determination of volatile organic acids and the total content of inorganic carbonate (FOS / TAC) by means of pH titration in samples from biogas plants


Literature
Course L0354: Environmental Analysis
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Dorothea Rechtenbach, Dr. Henning Mangels
Language EN
Cycle WiSe
Content

Introduction

Sampling in different environmental compartments, sample transportation, sample storage

Sample preparation

Photometry

Wastewater analysis

Introduction into chromatography

Gas chromatography

HPLC

Mass spectrometry

Optical emission spectrometry

Atom absorption spectrometry

Quality assurance in environmental analysis
Literature

Roger Reeve, Introduction to Environmental Analysis, John Wiley & Sons Ltd., 2002 (TUB: USD-728)

Pradyot Patnaik, Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, CRC Press, Boca Raton, 2010 (TUB: USD-716)

Chunlong Zhang, Fundamentals of Environmental Sampling and Analysis,  John Wiley & Sons Ltd., Hoboken, New Jersey, 2007 (TUB: USD-741)

Miroslav Radojević, Vladimir N. Bashkin, Practical Environmental Analysis
RSC Publ., Cambridge, 2006 (TUB: USD-720)

Werner Funk, Vera Dammann, Gerhild Donnevert, Sarah Iannelli (Translator), Eric Iannelli (Translator), Quality Assurance in Analytical Chemistry: Applications in Environmental, Food and Materials Analysis, Biotechnology, and Medical Engineering, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2007 (TUB: CHF-350)

STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 21st Edition, Andrew D. Eaton, Leonore S. Clesceri, Eugene W. Rice, and Arnold E. Greenberg, editors, 2005 (TUB:CHF-428)


K. Robards, P. R. Haddad, P. E. Jackson, Principles and Practice of
Modern Chromatographic Methods, Academic Press

G. Schwedt, Chromatographische Trennmethoden, Thieme Verlag

H. M. McNair, J. M. Miller, Basic Gas Chromatography, Wiley

W. Gottwald, GC für Anwender, VCH

B. A. Bidlingmeyer, Practical HPLC Methodology and Applications, Wiley

K. K. Unger, Handbuch der HPLC, GIT Verlag

G. Aced, H. J. Möckel, Liquidchromatographie, VCH

Charles B. Boss and Kenneth J. Fredeen, Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry
Perkin-Elmer Corporation 1997, On-line available at:
http://files.instrument.com.cn/bbs/upfile/2006291448.pdf

Atomic absorption spectrometry: theory, design and applications, ed. by S. J. Haswell 1991 (TUB: 2727-5614)

Royal Society of Chemistry, Atomic absorption spectometry (http://www.kau.edu.sa/Files/130002/Files/6785_AAs.pdf)

Thesis

Module M1801: Master thesis (dual study program)

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students ...

  • ... use the specialised knowledge (facts, theories and methods) from their field of study and the acquired professional knowledge confidently to deal with technical and practical professional issues.
  • ... can explain the relevant approaches and terminologies in depth in one or more of their subject’s specialist areas, describe current developments and take a critical stance. 
  • ... formulate their own research assignment to tackle a professional problem and contextualise it within their subject area. They ascertain the current state of research and critically assess it.
Skills

Dual students ...

  • ... can select suitable methods for the respective subject-related professional problem, apply them and develop them further as required. 
  • ... assess knowledge and methods acquired during their studies (including practical phases) and apply their expertise to complex and/or incompletely defined problems in a solution- and application-oriented manner.
  • ... acquire new academic knowledge in their subject area and critically evaluate it.
Personal Competence
Social Competence

Dual students ...

  • ... can present a professional problem in the form of an academic question in a structured, comprehensible and factually correct manner, both in writing and orally, for a specialist audience and for professional stakeholders. 
  • ... answer questions as part of a professional discussion in an expert, appropriate manner. They represent their own points of view and assessments convincingly.
Autonomy

Dual students ...

  • ... can structure their own project into work packages, work through them at an academic level and reflect on them with regard to feasible courses of action for professional practice.  
  • ... work in-depth in a partially unknown area within the discipline and acquire the information required to do so.
  • ... apply the techniques of academic work comprehensively in their own research work when dealing with an operational problem and question.
Workload in Hours Independent Study Time 900, Study Time in Lecture 0
Credit points 30
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Civil Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy Systems: Thesis: Compulsory
Environmental Engineering: Thesis: Compulsory
Aircraft Systems Engineering: Thesis: Compulsory
Computer Science in Engineering: Thesis: Compulsory
Information and Communication Systems: Thesis: Compulsory
International Management and Engineering: Thesis: Compulsory
Logistics, Infrastructure and Mobility: Thesis: Compulsory
Materials Science: Thesis: Compulsory
Mechanical Engineering and Management: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Biomedical Engineering: Thesis: Compulsory
Microelectronics and Microsystems: Thesis: Compulsory
Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory