Program description
Content
In recent decades energy consumption and the associated man-made repercussions on the environment have steadily increased and the (perceived) security of supplies has decreased. This trend can be expected to continue. Increased use of renewable energies - these being hydroelectric, wind and solar power, biomass and geothermal energy - in the electricity, heating and fuel market can make a major contribution toward facing these challenges.
On completing this master’s program in Renewable Energies, graduates are able to explain and assess the possibilities of and limits to the provision of energy for the heating, electricity and fuel market by the renewable energy sources sun, geothermal heat and planetary gravitation and movement. These explanations are primarily from the technical but also from the economic and ecological viewpoint. Graduates can provide an overview of the physical and chemical characteristics of renewable energy sources, have understood the fundamental technical principles of their use and can assess the resulting technical and technological requirements of the requisite conversion plant technology. They can also assess the plant and system technology and the economic and ecological basics of the individual options for renewable energy supply. Graduates have an overview of aspects for integration of plants and systems based on renewable energies into the existing energy system - both in Germany and in non-European countries. Furthermore they can discuss issues of energy storage and the development of renewable energy projects with experts. This specialized knowledge and related skills also enable graduates to take up a position on current energy industry issues on a sound and ideology-free basis. As a result of this master’s program they are qualified to advise interested parties in a professional capacity or to formulate independently problems and objectives for new application - or research-oriented tasks.
A further in-depth specialization, as a part of the master’s program, in the renewable energy system biomass, solar or wind power is possible. Thus, the program provides a comprehensive knowledge on practically all options of renewable energy supply, it’s utilization in the energy system - taking existing structures into account - and on selected associated technical, economic and ecological aspects.
Career prospects
The successful completion of the Master's program "Renewable Energies" enables graduates to hold leading positions in the engineering labor market. Typical fields of activities can be found in energy suppliers, energy consultants, project developers, as well as technical authorities in the renewable energy industry. Furthermore, there is the possibility of engaging in activities as a research assistant with the aim of doctoral degree.
Learning target
- Wind energy
- Photovoltaics,
- Hydropower,
- Ocean energy,
- Biomass and
- Geothermal
and to define and schedule these with respect to necessary clarifications and available information.
Program structure
The technical contents of the master are structured as follows:
- Modules of the core skills:
- technical fundamentals of usage of renewable energy sources,
- project evaluation, economy and sustainability,
- electrical power engineering,
- non- technical supplementary courses,
- modules of specialization:
- bioenergy systems,
- solar energy systems,
- wind energy systems,
- Master's thesis.
The choice of one specialization is compulsory. Within one specialization courses have to be selected from a catalog of elective courses.
Despite of individual freedom in the choice of courses within the specialization, courses in the core qualification are compulsory for all students. With these courses a balance of formal and practical course content in theory and application of the learning outcomes is ensured.
Non-technical supplementary courses and courses in operation and management provide more flexibilty in the individual design of the curriculum and ensure a linkage between technical and business knowledge. These courses can be chosen from the general catalog of the TUHH.
The master thesis with a share of 25% describe the remaining part of the curriculum.
Note: Within the specialization "Solar Energy Systems", students have been given the opportunity to study abroad at the "University of Jordan" in Amman, Jordan. Within this foreign stay, additional modules in the field of "solar energy systems" can be choosen. The earned credits are recognized at TUHH by agreement.
Core Qualification
Within the core qualification of the Master "Renewable energies" the
students gain knowledge about the possibilities and limitations of energy
supply from the various renewable energy sources for the heat, electricity
and fuel market.
Basis for this aim are on one hand the courses of consecutive
Bachelor courses and on the other hand continuing and applied courses in the field of
electrical engineering, thermodynamics and fluid mechanics.
Continuing to these courses the different principles for the use of renewable energies
and the resulting requirements on the corresponding conversion plant
technology are presented, primarily from a technical perspective. Nonetheless, this knowledge is linked to economic and environmental context, to understand and to evaluate the
integration of renewable energy applications in energy systems - both in Germany, Europe and countries outside Europe. Furthermore, energy storage opportunities are discussed in this context.
Within
the module "Projects and their Assessment", non-technical aspects
of the implementation of projects especially in the field of renewable
energies are considered, to provide background information in the legal
and economic energy implementation of renewable energy applications.
Module M0508: Fluid Mechanics and Ocean Energy |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Michael Schlüter | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Technische Thermodynamik I-II |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to describe different applications of fluid mechanics for the field of Renewable Energies. They are able to use the fundamentals of fluid mechanics for calculations of certain engineering problems in the field of ocean energy. The students are able to estimate if a problem can be solved with an analytical solution and what kind of alternative possibilities are available (e.g. self-similarity, empirical solutions, numerical methods). |
||||||||
Skills |
Students are able to use the governing equations of Fluid Dynamics for the design of technical processes. Especially they are able to formulate momentum and mass balances to optimize the hydrodynamics of technical processes. They are able to transform a verbal formulated message into an abstract formal procedure. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss a given problem in small groups and to develop an approach. They are able to solve a problem within a team, to prepare a poster with the results and to present the poster. |
||||||||
Autonomy |
Students are able to define independently tasks for problems related to fluid mechanics. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 3h | ||||||||
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L0002: Energy from the Ocean |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0001: Fluid Mechanics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M0523: Business & Management |
Module Responsible | Prof. Matthias Meyer |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0524: Non-technical Courses for Master |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Nontechnical Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”. The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M1294: Bioenergy |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to reproduce an in-depth outline of energy production from biomass, aerobic and anaerobic waste treatment processes, the gained products and the treatment of produced emissions. |
Skills |
Students can apply the learned theoretical knowledge of biomass-based energy systems to explain relationships for different tasks, like dimesioning and design of biomass power plants. In this context, students are also able to solve computational tasks for combustion, gasification and biogas, biodiesel and bioethanol use. |
Personal Competence | |
Social Competence |
Students can participate in discussions to design and evaluate energy systems using biomass as an energy source. |
Autonomy |
Students can independently exploit sources with respect to the emphasis of the lectures. They can choose and aquire the for the particular task useful knowledge. Furthermore, they can solve computational tasks of biomass-based energy systems independently with the assistance of the lecture. Regarding to this they can assess their specific learning level and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0061: Biofuels Process Technology |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Oliver Lüdtke |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0062: Biofuels Process Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Oliver Lüdtke |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Skriptum zur Vorlesung |
Course L1769: World Market for Commodities from Agriculture and Forestry |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Michael Köhl, Bernhard Chilla |
Language | DE |
Cycle | WiSe |
Content |
1) Markets for Agricultural Commodities
|
Literature | Lecture material |
Course L1767: Thermal Biomass Utilization |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented. The course is structured as follows:
|
Literature |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Course L2386: Thermal Biomass Utilization |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Kaltschmitt, Dr. Isabel Höfer |
Language | DE |
Cycle | WiSe |
Content |
The experiments of the practical lab course illustrate the different
aspects of heat generation from biogenic solid fuels. First,
different biomasses (e.g. wood, straw or agricultural residues) will
be investigated; the focus will be on the calorific value of the
biomass. Furthermore, the used biomass will be pelletized, the
pellet properties analysed and a combustion test carried out on a
pellet combustion system. The gaseous and solid pollutant emissions,
especially the particulate matter emissions, are measured and the
composition of the particulate matter is investigated in a further
experiment. Another focus of the practical course is the
consideration of options for the reduction of particulate matter
emissions from biomass combustion. In the practical course, a method
for particulate matter reduction will be developed and tested. All
experiments will be evaluated and the results presented. |
Literature |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of conventional and modern electric power systems. They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 - 150 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory Data Science: Core Qualification: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1670: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Course L1671: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Module M1303: Energy Projects - Development and Assessment |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Environmental Assessment |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
By ending this module, students can describe the planning and development of projects using renewable energy sources. Furthermore they are able to explain the special emphasis on the economic and legal aspects in this context. The learning content of the different topics of the module are use-oriented; thus students can apply them i.a. in professional fields of consultation or supervision of energy projects. |
Skills |
By ending the module the students can apply the learned theoretical foundations of the development of renewable energy projects to exemplary energy projects and can explain technically and conceptually the resulting correlations with respect to legal and economic requirements. As a basis for the design of renewable energy systems they can calculate the demand for thermal and/or electrical energy at operating and regional level. Regarding to this calculation they can choose and dimension possible energy systems. To assess sustainability aspects of renewable energy projects, the students can choose and discuss the right methodology according to the particular task. Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
Personal Competence | |
Social Competence |
Students will be able to edit scientific tasks in the context of the economic analysis of renewable energy projects in a group with a high number of participants and can organize the processing time within the group. They can perform subject-specific and interdisciplinary discussions. Consequently, they can asses the knowledge of their fellow students and are able to deal with feedback on their own performance. Students can present their group results in front of others. |
Autonomy |
Regarding to the contents of the lectures and to solve the tasks for the economical analysis of renewable energy projects the students are able to exploit sources and acquire the particular knowledge about the subject area independently and self-organized. Based on this expertise they are able to use indenpendently calculation methods for these tasks. Regarding to these calculations, guided by the lecturers, the students can recognize self-organized theri personal level of knowledge. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 hours written exam + Written assay from project seminar |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0003: Development of Renewable Energy Projects |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0014: Renewable Energy Projects in Emerged Markets |
Typ | Project Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Wiese |
Language | DE |
Cycle | WiSe |
Content |
Within the seminar, the various topics are actively discussed and applied to various cases of application. |
Literature | Folien der Vorlesung |
Course L0005: Economics of an Energy Provision from Renewables |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Andreas Wiese |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Script der Vorlesung |
Course L0006: Economics of an Energy Provision from Renewables |
Typ | Project Seminar |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Andreas Wiese |
Language | DE |
Cycle | WiSe |
Content |
Calculation of tasks to evaluate the economics of a renewable energy project, with the aim to deepen the complex knowledge of economic analysis and market analysis. Processing is carried out individually or in smaller groups. The following topics are covered:
Within the seminar, the various tasks are actively discussed and applied to various cases of application. |
Literature | Skript der Vorlesung |
Module M1309: Dimensioning and Assessment of Renewable Energy Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can describe current issue and problems in the field of renewable energies. Furthermore, they can explain aspects in relation to the provision of heat or electricity through different renewable technologies, and explain and assess them in a technical, economical and environmental way. |
Skills |
Students are able to solve scientific problems in the context of heat and electricity supply using renewable energy systems by:
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students can independently tap knowledge regarding to the given task. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | per course: 20 minutes presentation + written report |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0137: Environmental Technology and Energy Economics |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Course L0046: Electricity Generation from Renewable Sources of Energy |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0045: Heat Provision from Renewable Sources of Energy |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Module M0512: Use of Solar Energy |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the completion of this module, students will be able to deal with technical foundations and current issues and problems in the field of solar energy and explain and evaulate these critically in consideration of the prior curriculum and current subject specific issues. In particular they can professionally describe the processes within a solar cell and explain the specific features of application of solar modules. Furthermore, they can provide an overview of the collector technology in solar thermal systems. |
Skills |
Students can apply the acquired theoretical foundations of exemplary energy systems using solar radiation. In this context, for example they can assess and evaluate potential and constraints of solar energy systems with respect to different geographical assumptions. They are able to dimension solar energy systems in consideration of technical aspects and given assumptions. Using module-comprehensive knowledge students can evalute the economic and ecologic conditions of these systems. They can select calculation methods within the radiation theory for these topics. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources and acquire the particular knowledge about the subject area with respect to emphasis fo the lectures. Furthermore, with the assistance of lecturers, they can discrete use calculation methods for analysing and dimensioning solar energy systems. Based on this procedure they can concrete assess their specific learning level and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0016: Energy Meteorology |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Matthias, Dr. Beate Geyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0017: Energy Meteorology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Beate Geyer |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0018: Collector Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Agis Papadopoulos |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0015: Solar Power Generation |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Martin Schlecht, Paola Pignatelli, Prof. Alf Mews, Roman Fritsches-Baguhl |
Language | DE |
Cycle | SoSe |
Content |
Photovoltaics:
Concentrating solar power plants:
|
Literature |
|
Module M0513: System Aspects of Renewable Energies |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I Module: Technical Thermodynamics II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy. |
Skills |
Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode. Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Fröba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0019: Energy Trading |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content |
Within the exercise the various tasks are actively discussed and applied to various cases of application. |
Literature |
Course L0020: Energy Trading |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0025: Deep Geothermal Energy |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Ben Norden |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1308: Modelling and technical design of bio refinery processes |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The
tudents can completely design a technical process including mass and energy
balances, calculation and layout of different process devices, layout of
measurement- and control systems as well as modeling of the overall process.
Furthermore, they can describe the basics of the general procedure for the processing of modeling tasks, especially with ASPEN PLUS ® and ASPEN CUSTOM MODELER ®. |
Skills |
Students
are able to simulate and solve scientific task in the context of renewable
energy technologies by:
They can use the ASPEN PLUS ® and ASPEN CUSTOM MODELER ® for modeling energy systems and to evaluate the simulation solutions. Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
Personal Competence | |
Social Competence |
Students
can
assess the performance of fellow students in comparison to their own performance. Furthermore, they can accept professional constructive criticism. |
Autonomy |
Students can independently tap knowledge regarding to the given task. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Written report incl. presentation |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L1832: Biorefineries - Technical Design and Optimization |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Oliver Lüdtke |
Language | DE |
Cycle | SoSe |
Content |
I. Repetition of engineering basics
II. Calculation:
|
Literature |
Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007 Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014 |
Course L0022: CAPE in Energy Engineering |
Typ | Projection Course |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE |
Cycle | SoSe |
Content |
Within the seminar, the various tasks are actively discussed and applied to various cases of application. |
Literature |
|
Module M0511: Electrical Energy from Solar Radiation and Wind Power |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Dr. Isabel Höfer |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I, Module: Technical Thermodynamics II, Module: Fundamentals of Fluid Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe. Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
Skills |
Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects. |
Personal Competence | |
Social Competence |
Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar. |
Autonomy |
Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2.5 hours written exam + written elaboration (incl. presentation) in sustainability management |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0007: Sustainability Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Anne Rödl |
Language | DE |
Cycle | SoSe |
Content |
The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:
Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes. In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions. |
Literature |
Die folgenden Bücher bieten einen Überblick: Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Course L0013: Hydro Power Use |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Achleitner |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0011: Wind Turbine Plants |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rudolf Zellermann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Course L0012: Wind Energy Use - Focus Offshore |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Skiba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0742: Thermal Energy Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge | Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students know the different energy conversion stages and the difference between efficiency and annual efficiency. They have increased knowledge in heat and mass transfer, especially in regard to buildings and mobile applications. They are familiar with German energy saving code and other technical relevant rules. They know to differ different heating systems in the domestic and industrial area and how to control such heating systems. They are able to model a furnace and to calculate the transient temperatures in a furnace. They have the basic knowledge of emission formations in the flames of small burners and how to conduct the flue gases into the atmosphere. They are able to model thermodynamic systems with object oriented languages. |
Skills |
Students are able to calculate the heating demand for different heating systems and to choose the suitable components. They are able to calculate a pipeline network and have the ability to perform simple planning tasks, regarding solar energy. They can write Modelica programs and can transfer research knowledge into practice. They are able to perform scientific work in the field of thermal engineering. |
Personal Competence | |
Social Competence |
In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions. |
Autonomy |
Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0023: Thermal Engergy Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Arne Speerforck, Prof. Gerhard Schmitz |
Language | DE |
Cycle | WiSe |
Content |
1. Introduction 2. Fundamentals of Thermal Engineering 2.1 Heat Conduction 2.2 Convection 2.3 Radiation 2.4 Heat transition 2.5 Combustion parameters 2.6 Electrical heating 2.7 Water vapor transport 3. Heating Systems 3.1 Warm water heating systems 3.2 Warm water supply 3.3 piping calculation 3.4 boilers, heat pumps, solar collectors 3.5 Air heating systems 3.6 radiative heating systems 4. Thermal traetment systems 4.1 Industrial furnaces 4.2 Melting furnaces 4.3 Drying plants 4.4 Emission control 4.5 Chimney calculation 4.6 Energy measuring 5. Laws and standards 5.1 Buildings 5.2 Industrial plants |
Literature |
|
Course L0024: Thermal Engergy Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Specialization Bioenergy Systems
Module M1343: Structure and properties of fibre-polymer-composites |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge | Basics: chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1894: Structure and properties of fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literature |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Course L2614: Structure and properties of fibre-polymer-composites |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content | |
Literature |
Course L2613: Structure and properties of fibre-polymer-composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0518: Waste and Energy |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Basics of process engineering | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to describe and explain in detail techniques, processes and concepts for treatment and energy recovery from wastes. |
||||||||
Skills |
The students are able to select suitable processes for the treatment and energy recovery of wastes. They can evaluate the efforts and costs for processes and select economically feasible treatment Concepts. Students are able to evaluate alternatives even with incomplete information. Students are able to prepare systematic documentation of work results in form of reports, presentations and are able to defend their findings in a group. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of collegues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Autonomy |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Presentation | ||||||||
Examination duration and scale | PowerPoint presentation (10-15 minutes) | ||||||||
Assignment for the Following Curricula |
Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0047: Waste Recycling Technologies |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Course L0048: Waste Recycling Technologies |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Course L0049: Waste to Energy |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Rüdiger Siechau |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Literatur: Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 Powerpoint-Folien in Stud IP Literature:
|
Module M0896: Bioprocess and Biosystems Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. An-Ping Zeng | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Knowledge of bioprocess engineering and process engineering at bachelor level |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After completion of this module, participants will be able to:
|
||||||||
Skills |
After completion of this module, participants will be able to:
|
||||||||
Personal Competence | |||||||||
Social Competence |
After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. The students can reflect their specific knowledge orally and discuss it with other students and teachers. |
||||||||
Autonomy |
After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Environmental Engineering: Specialisation Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L1034: Bioreactor Design and Operation |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. An-Ping Zeng, Dr. Johannes Möller |
Language | EN |
Cycle | SoSe |
Content |
Design of bioreactors and peripheries:
Sterile operation:
Instrumentation and control:
Bioreactor selection and scale-up:
Integrated biosystem:
Team work with presentation:
|
Literature |
|
Course L1037: Bioreactors and Biosystems Engineering |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. An-Ping Zeng, Dr. Johannes Möller |
Language | EN |
Cycle | SoSe |
Content |
Introduction to Biosystems Engineering (Exercise)
Selected projects for biosystems engineering
|
Literature |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Course L1036: Biosystems Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. An-Ping Zeng |
Language | EN |
Cycle | SoSe |
Content |
Introduction to Biosystems Engineering
Selected projects for biosystems engineering
|
Literature |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Module M0749: Waste Treatment and Solid Matter Process Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Kerstin Kuchta |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can name, describe current issue and problems in the field of thermal waste treatment and particle process engineering and contemplate them in the context of their field. The industrial application of unit operations as part of process engineering is explained by actual examples of waste incineration technologies and solid biomass processes. Compostion, particle sizes, transportation and dosing, drying and agglomeration of renewable resources and wastes are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, electricity , heat and mineral recyclables. |
Skills |
The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0052: Solid Matter Process Technology for Biomass |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Werner Sitzmann |
Language | DE |
Cycle | SoSe |
Content | The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture. |
Literature |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Course L0320: Thermal Waste Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Course L1177: Thermal Waste Treatment |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1709: Applied optimization in energy and process engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Mirko Skiborowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. • Introduction to Applied Optimization • Formulation of optimization problems •
Linear Optimization • Nonlinear Optimization • Mixed-integer (non)linear optimization • Multi-objective optimization • Global optimization |
Skills |
After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly. |
Personal Competence | |
Social Competence |
Students are capable of: •develop solutions in heterogeneous small groups |
Autonomy |
Students are capable of: •taping new knowledge on a special subject by literature research |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 35 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory |
Course L2693: Applied optimization in energy and process engineering |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content |
The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. - Introduction to Applied Optimization - Formulation of optimization problems - Linear Optimization - Nonlinear Optimization - Mixed-integer (non)linear optimization - Multi-objective optimization - Global optimization |
Literature |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Course L2695: Applied optimization in energy and process engineering |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0902: Wastewater Treatment and Air Pollution Abatement |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Swantje Pietsch-Braune |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of biology and chemistry Basic knowledge of solids process engineering and separation technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Environmental Engineering: Specialisation Waste and Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Specialisation Water: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Compulsory |
Course L0517: Biological Wastewater Treatment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Joachim Behrendt |
Language | DE/EN |
Cycle | WiSe |
Content |
Charaterisation of Wastewater |
Literature |
Gujer, Willi |
Course L0203: Air Pollution Abatement |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Swantje Pietsch-Braune, Christian Eichler |
Language | EN |
Cycle | WiSe |
Content |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literature |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Module M0900: Examples in Solid Process Engineering |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Stefan Heinrich | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Knowledge from the module particle technology | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | After completion of the module the students will be able to describe based on examples the assembly of solids engineering processes consisting of multiple apparatuses and subprocesses. They are able to describe the coaction and interrelation of subprocesses. | ||||||||
Skills | Students are able to analyze tasks in the field of solids process engineering and to combine suitable subprocesses in a process chain. | ||||||||
Personal Competence | |||||||||
Social Competence | Students are able to discuss technical problems in a scientific manner. | ||||||||
Autonomy | Students are able to acquire scientific knowledge independently and discuss technical problems in a scientific manner. | ||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0431: Fluidization Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Heinrich |
Language | EN |
Cycle | WiSe |
Content |
Introduction: definition, fluidization
regimes, comparison with other types of gas/solids reactors |
Literature |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Course L1369: Practical Course Fluidization Technology |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Heinrich |
Language | EN |
Cycle | WiSe |
Content |
Experiments:
|
Literature |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Course L0955: Technical Applications of Particle Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Werner Sitzmann |
Language | DE |
Cycle | WiSe |
Content | Unit operations like mixing, separation, agglomeration and size reduction are discussed concerning their technical applicability from the perspective of the practician. Machines and apparatuses are presented, their designs and modes of action are explained and their application in production processes for chemicals, food and feed and in recycling processes are illustrated. |
Literature | Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997 |
Course L1372: Exercises in Fluidization Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Heinrich |
Language | EN |
Cycle | WiSe |
Content |
Exercises and calculation examples for the lecture Fluidization Technology |
Literature |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Module M1424: Integration of Renewable Energies |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of renewable energies and the energy system |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | With the completion of the module the students are able to use and apply the previously learned technical basics of the different fields of renewable energies. Current problems concerning the integration of renewable energies in the energy system are presented and analyzed. In particular, the sectors electricity, heat and mobility will be addressed, giving students insights into sector coupling activities. |
Skills | By completing this module, students can apply the basics learned to various sector coupling problems and, in this context, assess the potentials as well as the limits of sector coupling in the German energy system. In particular, the students should use the application and linking of already learned methods and knowledge here, so that a vision of the different technologies is achieved. |
Personal Competence | |
Social Competence | The students will be able to discuss problems in the areas of sector coupling and the integration of renewable energies. |
Autonomy |
The students are able to acquire own sources based on the main topics of the lecture and to increase their knowledge. Furthermore, the students can search further technologies and interconnection possibilities for the energy system itself. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory |
Course L2049: Integration of Renewable Energies I |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2050: Integration of Renewable Energies I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2051: Integration of Renewable Energies II |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2052: Integration of Renewable Energies II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0010: Sustainable Mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1354: Advanced Fuels |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors. |
||||||||
Skills |
After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:
Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions. |
||||||||
Autonomy |
The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 2 hours written exam | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2414: Second generation biofuels and electricity based fuels |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1926: Carbon dioxide as an economic determinant in the mobility sector |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2416: Mobility and climate protection |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice
|
Literature |
|
Course L2415: Sustainability aspects and regulatory framework |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Benedikt Buchspies |
Language | DE/EN |
Cycle | WiSe |
Content |
Holistic examination of the different fuel paths with the following main topics, among others:
|
Literature |
|
Specialization Solar Energy Systems
Within the specialization "Solar Energy Systems", students have been given the opportunity to study abroad at the "University of Jordan" in Amman, Jordan. Within this foreign stay, additional modules in the field of "solar energy systems" can be choosen. The earned ECTS are recognized at TUHH by agreement.
In addition, students in the "Solar Energy Systems" course can take the module "Modeling and Simulation of Building Integrated Solar Energy Systems" in cooperation with the International Hellenic University in Thessaloniki, Greece, which can be recognized by TUHH. The Exchange is also encouraged.
Students, who are planning to choose the specialization "Solar Energy Systems" are kindly requested to contact the head of the program early for further information about the course of studies and their stay abroad.
Module M1343: Structure and properties of fibre-polymer-composites |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge | Basics: chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1894: Structure and properties of fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literature |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Course L2614: Structure and properties of fibre-polymer-composites |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content | |
Literature |
Course L2613: Structure and properties of fibre-polymer-composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0643: Optoelectronics I - Wave Optics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Alexander Petrov |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics in electrodynamics, calculus |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the fundamental mathematical and physical relations of freely propagating optical waves. |
Skills |
Students can generate models and derive mathematical descriptions in relation to free optical wave propagation. |
Personal Competence | |
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Credit points | 4 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L0359: Optoelectronics I: Wave Optics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Alexander Petrov |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Course L0361: Optoelectronics I: Wave Optics (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Alexander Petrov |
Language | EN |
Cycle | SoSe |
Content | see lecture Optoelectronics 1 - Wave Optics |
Literature |
see lecture Optoelectronics 1 - Wave Optics |
Module M0932: Process Measurement Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Roland Harig |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamental principles of electrical engineering and measurement technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an understanding of complex, state-of-the-art process measurement equipment. They can relate devices and procedures to a variety of commonly used measurement and communications technology. |
Skills |
The students are capable of modeling and evaluating complex systems of sensing devices as well as associated communications systems. An emphasis is placed on a system-oriented understanding of the measurement equipment. |
Personal Competence | |
Social Competence |
Students can communicate the discussed technologies using the English language. |
Autonomy |
Students are capable of gathering necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Fundamentals of Electrical Engineering, Analysis, Stochastic Processes, Communication Systems). |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Credit points | 4 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 45 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L1077: Process Measurement Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Roland Harig |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
- Färber: „Prozeßrechentechnik“, Springer-Verlag 1994 - Kiencke, Kronmüller: „Meßtechnik“, Springer Verlag Berlin Heidelberg, 1995 - A. Ambardar: „Analog and Digital Signal Processing“ (1), PWS Publishing Company, 1995, NTC 339 - A. Papoulis: „Signal Analysis“ (1), McGraw-Hill, 1987, NTC 312 (LB) - M. Schwartz: „Information Transmission, Modulation and Noise“ (3,4), McGraw-Hill, 1980, 2402095 - S. Haykin: „Communication Systems“ (1,3), Wiley&Sons, 1983, 2419072 - H. Sheingold: „Analog-Digital Conversion Handbook“ (5), Prentice-Hall, 1986, 2440072 - J. Fraden: „AIP Handbook of Modern Sensors“ (5,6), American Institute of Physics, 1993, MTB 346 |
Course L1083: Process Measurement Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Roland Harig |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1425: Power electronics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | Basics of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | The students are taught the basics of power converter technology and modern power electronics. Furthermore, the essential properties of conventional and modern power semiconductors will be presented and their driving techniques will be presented. The students also learn about the most important circuit topologies of self-commutated power converters and their control methods. |
Skills | In addition to the basics of power converter commutation, the students learn methods for determining the on-state and switching losses of the components. Using simple examples, the participants will learn methods for the mathematical description of the transmission behavior of power electronic circuits. |
Personal Competence | |
Social Competence | Students will be able to discuss problems in related topics in the field of photovoltaics and power electronics with fellow students. |
Autonomy |
The students can independently access sources based on the main topics of the lectures and transfer the acquired knowledge to a wider field |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2053: Power electronics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Hoffmann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Hilfsblätter und Literaturhinweise werden im Rahmen der Vorlesung ausgeteilt. |
Course L2054: Power electronics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Hoffmann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1287: Risk Management, Hydrogen and Fuel Cell Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With completion of this module students can explain basics of risk management involving thematical adjacent contexts and can describe an optimal management of energy systems. Furthermore, students can reproduce solid theoretical knowledge about the potentials and applications of new information technologies in logistics and explain technical aspects of the use, production and processing of hydrogen. |
Skills |
With completion of this module students are able to evaluate risks of energy systems with respect to energy economic conditions in an efficient way. This includes that the students can assess the risks in operational planning of power plants from a technical, economic and ecological perspective. In this context, students can evaluate the potentials of logistics and information technology in particular on energy issues. In addition, students are able to describe the energy transfer medium hydrogen according to its applications, the given security and its existing service capacities and limits as well as to evaluate these aspects from a technical, environmental and economic perspective. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources on the emphasis of the lectures and acquire the contained knowledge. In this way, they can recognize their lacks of knowledge and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L1831: Applied Fuel Cell Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | SoSe |
Content |
The lecture provide an insight into the various possibilities of fuel cells in the energy system (electricity, heat and transport). These are presented and discussed for individual fuel types and application-oriented requirements; also compared with alternative technologies in the system. These different possibilities will be presented regardind the state-of-the-art development of the technologies and exemplary applications from Germany and worldwide. Also the emerging trends and lines of development will be discussed. Besides to the technical aspects, which are the focus of the event, also energy, environmental and industrial policy aspects are discussed - also in the context of changing circumstances in the German and international energy system. |
Literature |
Vorlesungsunterlagen |
Course L1748: Risk Management in the Energy Industry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Christian Wulf |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0060: Hydrogen Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Martin Dornheim |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0515: Energy Information Systems and Electromobility |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of the electric power engineering in the field of renewable energies. They can explain in detail the possibilities for the integration of renewable energy systems into the existing grid, the electrical storage possibilities and the electric power transmission and distribution, and can take critically a stand on it. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of renewable energy systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 40 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1696: Electrical Power Systems II: Operation and Information Systems of Electrical Power Grids |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Course L1833: Electro mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Vorlesungsunterlagen/ lecture material |
Module M0540: Transport Processes |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Michael Schlüter |
Admission Requirements | None |
Recommended Previous Knowledge | All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
The students are able to:
|
Personal Competence | |
Social Competence |
The students are able to discuss in international teams in english and develop an approach under pressure of time. |
Autonomy |
Students are able to define independently tasks, to solve the problem "design of a multiphase reactor". The knowledge that s necessary is worked out by the students themselves on the basis of the existing knowledge from the lecture. The students are able to decide by themselves what kind of equation and model is applicable to their certain problem. They are able to organize their own team and to define priorities for different tasks. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 15 min Presentation + 90 min multiple choice written examen |
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0104: Multiphase Flows |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971. |
Course L0105: Reactor Design Using Local Transport Processes |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | WiSe |
Content |
In this Problem-Based Learning unit the students have to design a multiphase reactor for a fast chemical reaction concerning optimal hydrodynamic conditions of the multiphase flow. The four students in each team have to:
This exposé will be used as basis for the discussion within the oral group examen of each team. |
Literature | see actual literature list in StudIP with recent published papers |
Course L0103: Heat & Mass Transfer in Process Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1710: Smart Grid Technologies |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering, Introduction to Control Systems, Mathematics I, II, III Electrical Power Systems I Electrical Power Systems II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain in detail and critically evaluate methods and technologies for operation of smart grids (i.e. intelligent distribution grids). |
Skills |
With completion of this module the students are
able to analyze the impact of emerging technologies (such as renewables,
energy storage and demand response) on the electric power system. They can formulate and apply computational intelligence techniques to power system operation problems. They can also explain what ICT technologies (such as digital twins and IoT) are relevant and suitable for distribution grid operation. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures and apply it within further research activities. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2706: Smart Grid Technologies |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker, Dr. Davood Babazadeh |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
Introduction to Smart Grids
Emerging technologies in distribution grids
Distribution grid management & analysis
Computational intelligence and optimization techniques in Smart Grids
ICT Technologies for Smart Grids
Practical lesson-learned: Stromnetz Hamburg (SNH) perspective
Study visits:
Stromnetz Hamburg Control Center |
Literature |
|
Course L2707: Smart Grid Technologies |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker, Dr. Davood Babazadeh |
Language | DE/EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M1424: Integration of Renewable Energies |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of renewable energies and the energy system |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | With the completion of the module the students are able to use and apply the previously learned technical basics of the different fields of renewable energies. Current problems concerning the integration of renewable energies in the energy system are presented and analyzed. In particular, the sectors electricity, heat and mobility will be addressed, giving students insights into sector coupling activities. |
Skills | By completing this module, students can apply the basics learned to various sector coupling problems and, in this context, assess the potentials as well as the limits of sector coupling in the German energy system. In particular, the students should use the application and linking of already learned methods and knowledge here, so that a vision of the different technologies is achieved. |
Personal Competence | |
Social Competence | The students will be able to discuss problems in the areas of sector coupling and the integration of renewable energies. |
Autonomy |
The students are able to acquire own sources based on the main topics of the lecture and to increase their knowledge. Furthermore, the students can search further technologies and interconnection possibilities for the energy system itself. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory |
Course L2049: Integration of Renewable Energies I |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2050: Integration of Renewable Energies I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2051: Integration of Renewable Energies II |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2052: Integration of Renewable Energies II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0010: Sustainable Mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1354: Advanced Fuels |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors. |
||||||||
Skills |
After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:
Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions. |
||||||||
Autonomy |
The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 2 hours written exam | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2414: Second generation biofuels and electricity based fuels |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1926: Carbon dioxide as an economic determinant in the mobility sector |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2416: Mobility and climate protection |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice
|
Literature |
|
Course L2415: Sustainability aspects and regulatory framework |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Benedikt Buchspies |
Language | DE/EN |
Cycle | WiSe |
Content |
Holistic examination of the different fuel paths with the following main topics, among others:
|
Literature |
|
Specialization Wind Energy Systems
In addition, in a separate module, the material-specific basis for the composition of components of wind turbines is provided.
Module M1133: Port Logistics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Carlos Jahn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | none | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Th After completing the module, students can...
|
||||||||
Skills |
After completing the module, students will be able to...
|
||||||||
Personal Competence | |||||||||
Social Competence |
After completing the module, students can...
|
||||||||
Autonomy |
After completing the module, the students are able to...
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0686: Port Logistics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The extraordinary role of maritime transport in international trade requires very efficient ports. These must meet numerous requirements in terms of economy, speed, safety and the environment. Against this background, the lecture Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The aim of the lecture Port Logistics is to convey an understanding of structures and processes in ports. The focus will be on different types of terminals, their characteristical layouts and the technical equipment used as well as the ongoing digitization and interaction of the players involved. In addition, renowned guest speakers from science and practice will be regularly invited to discuss some lecture-relevant topics from alternative perspectives. The following contents will be conveyed in the lectures:
|
Literature |
|
Course L1473: Port Logistics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The content of the exercise is the independent preparation of a
scientific paper plus an accompanying presentation on a current topic of port
logistics. The paper deals with current topics of port logistics. For example,
the future challenges in sustainability and productivity of ports, the digital
transformation of terminals and ports or the introduction of new regulations by
the International Maritime Organization regarding the verified gross weight of
containers. Due to the international orientation of the event, the paper is to
be prepared in English.
|
Literature |
|
Module M0527: Marine Soil Technics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Isabel Höfer |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge in analysis and differential equations |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the basic techniques for the analysis of offshore systems, including the related studies of the properties of the seabed, to provide an overview about that topic. Furthermore they can explain the associated content taking into account the specialist adjacent contexts. |
Skills |
Students are able to model and evaluate dynamic offshore systems. Consequently they are also able to think system-oriented and to break down complex system into subsystems . |
Personal Competence | |
Social Competence | none |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions. Furthermore, they can concrete assess their specific learning level within the exercise hours guided by teachers and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 hours written exam |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory |
Course L0068: Analysis of Maritime Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0069: Analysis of Maritime Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0067: Offshore Geotechnical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Jan Dührkop |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1132: Maritime Transport |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Carlos Jahn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to…
|
||||||||
Skills |
The students are able to...
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to...
|
||||||||
Autonomy |
The students are capable to...
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0063: Maritime Transport |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The general tasks of maritime logistics include the planning, design, implementation and control of material and information flows in the logistics chain ship - port - hinterland. This includes technology assessment, selection, dimensioning and implementation as well as the operation of technologies. The aim of the course is to provide students with knowledge of maritime transport and the actors involved in the maritime transport chain. Typical problem areas and tasks will be dealt with, taking into account the economic development. Thus, classical problems as well as current developments and trends in the field of maritime logistics are considered. In the lecture, the components of the maritime logistics chain and the actors involved will be examined and risk assessments of human disturbances on the supply chain will be developed. In addition, students learn to estimate the potential of digitisation in maritime shipping, especially with regard to the monitoring of ships. Further content of the lecture is the different modes of transport in the hinterland, which students can evaluate after completion of the course regarding their advantages and disadvantages. |
Literature |
|
Course L0064: Maritime Transport |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The exercise lesson bases on the haptic management game MARITIME. MARITIME focuses on providing knowledge about structures and processes in a maritime transport network. Furthermore, the management game systematically provides process management methodology and also promotes personal skills of the participants. |
Literature |
|
Module M1343: Structure and properties of fibre-polymer-composites |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge | Basics: chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1894: Structure and properties of fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literature |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Course L2614: Structure and properties of fibre-polymer-composites |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content | |
Literature |
Course L2613: Structure and properties of fibre-polymer-composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M1287: Risk Management, Hydrogen and Fuel Cell Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With completion of this module students can explain basics of risk management involving thematical adjacent contexts and can describe an optimal management of energy systems. Furthermore, students can reproduce solid theoretical knowledge about the potentials and applications of new information technologies in logistics and explain technical aspects of the use, production and processing of hydrogen. |
Skills |
With completion of this module students are able to evaluate risks of energy systems with respect to energy economic conditions in an efficient way. This includes that the students can assess the risks in operational planning of power plants from a technical, economic and ecological perspective. In this context, students can evaluate the potentials of logistics and information technology in particular on energy issues. In addition, students are able to describe the energy transfer medium hydrogen according to its applications, the given security and its existing service capacities and limits as well as to evaluate these aspects from a technical, environmental and economic perspective. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources on the emphasis of the lectures and acquire the contained knowledge. In this way, they can recognize their lacks of knowledge and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L1831: Applied Fuel Cell Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | SoSe |
Content |
The lecture provide an insight into the various possibilities of fuel cells in the energy system (electricity, heat and transport). These are presented and discussed for individual fuel types and application-oriented requirements; also compared with alternative technologies in the system. These different possibilities will be presented regardind the state-of-the-art development of the technologies and exemplary applications from Germany and worldwide. Also the emerging trends and lines of development will be discussed. Besides to the technical aspects, which are the focus of the event, also energy, environmental and industrial policy aspects are discussed - also in the context of changing circumstances in the German and international energy system. |
Literature |
Vorlesungsunterlagen |
Course L1748: Risk Management in the Energy Industry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Christian Wulf |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0060: Hydrogen Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Martin Dornheim |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1709: Applied optimization in energy and process engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Mirko Skiborowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. • Introduction to Applied Optimization • Formulation of optimization problems •
Linear Optimization • Nonlinear Optimization • Mixed-integer (non)linear optimization • Multi-objective optimization • Global optimization |
Skills |
After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly. |
Personal Competence | |
Social Competence |
Students are capable of: •develop solutions in heterogeneous small groups |
Autonomy |
Students are capable of: •taping new knowledge on a special subject by literature research |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 35 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory |
Course L2693: Applied optimization in energy and process engineering |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content |
The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. - Introduction to Applied Optimization - Formulation of optimization problems - Linear Optimization - Nonlinear Optimization - Mixed-integer (non)linear optimization - Multi-objective optimization - Global optimization |
Literature |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Course L2695: Applied optimization in energy and process engineering |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0515: Energy Information Systems and Electromobility |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of the electric power engineering in the field of renewable energies. They can explain in detail the possibilities for the integration of renewable energy systems into the existing grid, the electrical storage possibilities and the electric power transmission and distribution, and can take critically a stand on it. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of renewable energy systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 40 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1696: Electrical Power Systems II: Operation and Information Systems of Electrical Power Grids |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Course L1833: Electro mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Vorlesungsunterlagen/ lecture material |
Module M1710: Smart Grid Technologies |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering, Introduction to Control Systems, Mathematics I, II, III Electrical Power Systems I Electrical Power Systems II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain in detail and critically evaluate methods and technologies for operation of smart grids (i.e. intelligent distribution grids). |
Skills |
With completion of this module the students are
able to analyze the impact of emerging technologies (such as renewables,
energy storage and demand response) on the electric power system. They can formulate and apply computational intelligence techniques to power system operation problems. They can also explain what ICT technologies (such as digital twins and IoT) are relevant and suitable for distribution grid operation. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures and apply it within further research activities. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2706: Smart Grid Technologies |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker, Dr. Davood Babazadeh |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
Introduction to Smart Grids
Emerging technologies in distribution grids
Distribution grid management & analysis
Computational intelligence and optimization techniques in Smart Grids
ICT Technologies for Smart Grids
Practical lesson-learned: Stromnetz Hamburg (SNH) perspective
Study visits:
Stromnetz Hamburg Control Center |
Literature |
|
Course L2707: Smart Grid Technologies |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker, Dr. Davood Babazadeh |
Language | DE/EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M1424: Integration of Renewable Energies |
||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of renewable energies and the energy system |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | With the completion of the module the students are able to use and apply the previously learned technical basics of the different fields of renewable energies. Current problems concerning the integration of renewable energies in the energy system are presented and analyzed. In particular, the sectors electricity, heat and mobility will be addressed, giving students insights into sector coupling activities. |
Skills | By completing this module, students can apply the basics learned to various sector coupling problems and, in this context, assess the potentials as well as the limits of sector coupling in the German energy system. In particular, the students should use the application and linking of already learned methods and knowledge here, so that a vision of the different technologies is achieved. |
Personal Competence | |
Social Competence | The students will be able to discuss problems in the areas of sector coupling and the integration of renewable energies. |
Autonomy |
The students are able to acquire own sources based on the main topics of the lecture and to increase their knowledge. Furthermore, the students can search further technologies and interconnection possibilities for the energy system itself. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory |
Course L2049: Integration of Renewable Energies I |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2050: Integration of Renewable Energies I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2051: Integration of Renewable Energies II |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2052: Integration of Renewable Energies II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Lenz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0010: Sustainable Mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0528: Maritime Technology and Offshore Wind Parks |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Moustafa Abdel-Maksoud |
Admission Requirements | None |
Recommended Previous Knowledge |
Qualified Bachelor of a natural or engineering science; Solid knowledge and competences in mathematics, mechanics, fluid dynamics. Basic knowledge of ocean engineering topics (e.g. from an introductory class like 'Introduction to Maritime Technology') |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of this class, students should have an overview about phenomena and methods in ocean engineering and the ability to apply and extend the methods presented. In detail, the students should be able to
Based on research topics of present relevance the participants are to be prepared for independent research work in the field. For that purpose specific research problems of workable scope will be addressed in the class. After successful completion of this module, students should be able to
|
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Energy Systems: Specialisation Marine Engineering: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory |
Course L0070: Introduction to Maritime Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Walter Kuehnlein, Dr. Sven Hoog |
Language | DE |
Cycle | WiSe |
Content |
1. Introduction
2. Coastal and offshore Environmental Conditions
3. Response behavior of Technical Structures 4. Maritime Systems and Technologies
|
Literature |
|
Course L1614: Introduction to Maritime Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Walter Kuehnlein |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0072: Offshore Wind Parks |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Alexander Mitzlaff |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1354: Advanced Fuels |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors. |
||||||||
Skills |
After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:
Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions. |
||||||||
Autonomy |
The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 2 hours written exam | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L2414: Second generation biofuels and electricity based fuels |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1926: Carbon dioxide as an economic determinant in the mobility sector |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2416: Mobility and climate protection |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Language | DE/EN |
Cycle | WiSe |
Content |
Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice
|
Literature |
|
Course L2415: Sustainability aspects and regulatory framework |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Benedikt Buchspies |
Language | DE/EN |
Cycle | WiSe |
Content |
Holistic examination of the different fuel paths with the following main topics, among others:
|
Literature |
|
Thesis
Module M-002: Master Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
The students are able:
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able:
|
Workload in Hours | Independent Study Time 900, Study Time in Lecture 0 |
Credit points | 30 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computer Science in Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Interdisciplinary Mathematics: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory Naval Architecture and Ocean Engineering: Thesis: Compulsory Ship and Offshore Technology: Thesis: Compulsory Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory Theoretical Mechanical Engineering: Thesis: Compulsory Process Engineering: Thesis: Compulsory Water and Environmental Engineering: Thesis: Compulsory Certification in Engineering & Advisory in Aviation: Thesis: Compulsory |