Studiengangsbeschreibung
Inhalt
In den letzten Jahrzehnten haben der Energieverbrauch und die damit verbundenen anthropogenen Umweltauswirkungen stetig zu- und die (gefühlte) Versorgungssicherheit zunehmend abgenommen. Und es ist zu erwarten, dass diese Entwicklung zukünftig weitergeht. Eine verstärkte Nutzung regenerativer Energien - und damit von Wasserkraft, Windenergie und Solarstrahlung sowie Biomasse und Geothermie - im Strom-, Wärme- und Kraftstoffmarkt kann zur Lösung dieser Herausforderungen wesentlich beitragen.
Mit Abschluss dieses Masters "Regenerative Energien" sind die Absolvent/innen befähigt, die Möglichkeiten und Grenzen einer Energiebereitstellung für den Wärme-, Strom- und Kraftstoffmarkt aus den regenerativen Energiequellen Sonne, Erdwärme sowie Planetengravitation und -bewegung zu erläutern und zu beurteilen - und das primär aus technischer, aber auch aus ökonomischer und ökologischer Sicht. Sie können über die physikalische und chemische Charakteristik des regenerativen Energieangebots einen Überblick geben, haben die grundlegenden technischen Nutzungsprinzipien verstanden und können die daraus resultierenden technischen und technologischen Anforderungen an die entsprechende Konversionsanlagentechnik einschätzen. Auch können die Absolvent/innen die anlagen- und systemtechnischen sowie die ökonomischen und ökologischen Grundlagen der einzelnen Optionen zur Nutzung des regenerativen Energieangebots bewerten. Sie haben einen Überblick über Aspekte der Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien ins vorhandene Energiesystem - sowohl in Deutschland als auch im außereuropäischen Ausland. Außerdem können sie Fragen der Energiespeicherung und der Entwicklung regenerativer Energieprojekte mit Expert/innen diskutieren. Dieses Fachwissen und die damit in Verbindung stehenden Fertigkeiten befähigen die Absolvent/innen, auch zu aktuellen Themen der Energiewirtschaft fundiert und ideologiefrei Stellung zu beziehen. Durch dieses Masterstudium sind sie qualifiziert, Interessenten fachlich zu beraten oder eigenständig Fragestellungen und Ziele für neue anwendungs- oder forschungsorientierte Aufgaben zu formulieren.
Eine weitergehende fachliche Vertiefung innerhalb dieses Masters auf die regenerativen Energiesysteme Biomasse, Solar oder Wind ist möglich. Damit vermittelt der Studiengang umfassende Kenntnisse zu praktisch allen Optionen zur Nutzung des erneuerbaren Energieangebots, deren Nutzung im Energiesystem - unter Berücksichtigung der bereits vorhandenen Strukturen - und ausgewählter damit zusammenhängender technischer, ökonomischer und ökologischer Aspekte.
Berufliche Perspektiven
Lernziele
Wissen
- Die Absolventinnen und Absolventen können vertiefte mathematisch-ingenieurwissenschaftliche Kenntnisse wiedergeben und diese mit einem breiten theoretischen und methodischen Fundament untermauern.
- Die Absolventinnen und Absolventen können die Prinzipien, Methoden und Anwendungsgebiete der Vertiefungsrichtungen des Studiengangs Regenerative Energien im Detail erklären.
- Die Absolventinnen und Absolventen können die Grundlagen im Bereich Betrieb und Management und angrenzenden Fächern (z. B. Patentwesen) benennen und in Beziehung zu ihrem Fach setzen.
- Die Absolventinnen und Absolventen können die Elemente wissenschaftlicher Arbeit und Forschung anführen und können einen Überblick über deren Anwendung im Bereich Regenerative Energien geben.
Fertigkeiten
- Die Absolventinnen und Absolventen beherrschen das theoriegeleitete Anwenden sehr anspruchsvoller Methoden und Verfahren ihrer Vertiefungsrichtung. Sie können komplexere Probleme geeignet zergliedern, Lösungsverfahren für die Teilprobleme anwenden und daraus eine in sich schlüssige und geschlossene Gesamtlösung erstellen.
- Die Absolventinnen und Absolventen können für energietechnische Problemstellungen aus der Praxis unterschiedliche Lösungsansätze vorschlagen, bewerten, diskutieren und unter Beachtung außerfachlicher Randbedingungen (z. B. gesellschaftliche, ökonomische, ökologische) beurteilen.
- Die Absolventinnen und Absolventen können interdisziplinäre Zusammenhänge einer energietechnischen / energiesystemischen Problemstellung erkennen, analysieren und in ihrer Bedeutung bewerten bzw. ihr Fachgebiet in einen interdisziplinären Zusammenhang bringen.
- Die Absolventinnen und Absolventen können zukünftige Technologien und wissenschaftliche Entwicklungen untersuchen bzw. einschätzen und sind befähigt, eigenständig forschend tätig zu werden (Befähigung zur Promotion).
Sozialkompetenz
- Die Absolventinnen und Absolventen sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen.
- Die Absolventinnen und Absolventen können über fortgeschrittene Inhalte und Probleme der Energietechnik - Schwerpunkt Regenerative Energien - mit Fachleuten und Laien kommunizieren. Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet, umfassend und kompetent reagieren.
- Die Absolventinnen und Absolventen sind in der Lage, in Gruppen unterschiedlicher Größe zu arbeiten. Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren. Sie haben die Fähigkeit und Bereitschaft, Führungsverantwortung zu übernehmen
Selbstständigkeit
- Die Absolventinnen und Absolventen sind in der Lage, eigenständig die notwendigen Informationen aus unterschiedlichsten Quellen zu beschaffen und in den Kontext ihres Wissens zu setzen.
- Die Absolventinnen und Absolventen können ihre vorhandenen Kompetenzen realistisch und im Kontext der praktischen Gegebenheiten einschätzen, Defizite selbstständig kompensieren und sinnvolle Erweiterungen eigenständig vornehmen.
- Die Absolventinnen und Absolventen können selbstorganisiert und -motiviert Forschungsgebiete erarbeiten und neue Problemstellungen finden bzw. definieren (lebenslanges Forschen).
Studiengangsstruktur
Die fachlichen Inhalte des Masters gliedern sich innerhalb der folgenden Struktur wie folgt:
- Module
der Kernqualifikation (zwölf Pflichtmodule, 72 LP):
- energietechnische Grundlagen,
- technische/systemische Grundlagen einzelner Optionen zur Nutzung regenerativer Energien,
- Bewertung von Energieprojekten anhand technischer, ökonomischer, ökologischer, systemischer, legaler und weiterer Bewertungskriterien.
- Nichttechnische Angebote im Master und Betrieb & Management.
- Fachmodule
der Vertiefungsrichtungen (Wahlpflichtmodule im Umfang von 18 LP):
- Bioenergiesysteme,
- Solare Energiesysteme,
- Windenergiesysteme.
- die Masterarbeit (30 LP).
Die Wahl einer Vertiefungsrichtung ist obligatorisch. Innerhalb einer Vertiefungsrichtung kann und muss im Rahmen der vorgeschriebenen Anzahl an Leistungspunkten aus einem Wahlpflichtkatalog ausgewählt werden.
Um trotz individueller Freiräume bei der Auswahl der Lehrveranstaltungen innerhalb der Vertiefungsrichtung ein ausgewogenes Verhältnis von formalen und praktischen Lehrinhalten im Theorie- und Anwendungsbereich des Curriculums zu gewährleisten, sind Veranstaltungen der Kernqualifikation für alle Studentinnen und Studenten verpflichtend.
Weitere Spielräume bei der individuellen Gestaltung des Studienplans und Verknüpfungsansätze von technischen und betriebswirtschaftlichen Wissen bieten die nichttechnischen Angebote und die Kurse im Bereich Betrieb & Management.
Den verbleibenden Teil des Curriculums macht die Masterarbeit mit einem Umfang von 30 LP aus.
Fachmodule der Kernqualifikation
Die Grundlage dafür bilden - aufbauend auf den Lehrveranstaltungen der konsekutiven Bachelorstudiengänge - weiterführende und anwendungsbezogene Lehrveranstaltungen im Bereich Elektrotechnik, Thermodynamik und Strömungsmechanik.
Den Grundlagen folgend werden die verschiedenen Nutzungsprinzipien des regenerativen Energieangebots und die daraus resultierenden Anforderungen an die entsprechende Konversionsanlagentechnik primär aus technischer Sicht vorgestellt. Vermittelte Kenntnisse werden nichtsdestotrotz auch in ökonomischen und ökologischen Bezug gebracht, um so die Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien in vorhandene Energiesysteme - sowohl in Deutschland als auch im außereuropäischen Ausland - bewerten zu können. Auch werden in dem Zusammenhang Arten der Energiespeicherung vermittelt und diskutiert.
Innerhalb des Moduls "Projekte und ihre Bewertung" werden die nicht-technischen Gesichtspunkte zur Durchführung von Projekten insbesondere im Bereich der erneuerbaren Energien betrachtet, umso fachliche Grundlagen in der rechtlichen und energiewirtschaftlichen Umsetzung zu schaffen.
Modul M0508: Strömungsmechanik und Meeresenergie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Mathematik I-III |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können verschiedene Anwendungen der Strömungsmechanik in der Vertiefungsrichtungsrichtung Regenerative Energien beschreiben. Sie können die Grundlagen der Strömungsmechanik der Anwendung in der Meeresenergie zuordnen und für konkrete Berechnungen abwandeln. Die Studierenden können einschätzen, welche strömungsmechanischen Probleme mit analytischen Lösungen berechnet werden können und welche alternativen Möglichkeiten (z.B. Selbstähnlichkeit, empirische Lösungen, numerische Methoden) zur Verfügung stehen. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Strömungsmechanik auf technische Prozesse anzuwenden. Insbesondere können sie Impuls- und Massenbilanzen aufstellen, um damit technische Prozesse hydrodynamisch zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können die vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten. Sie sind in der Lage, eine Aufgabenstellung aus dem Fachgebiet im Team zu bearbeiten, die Ergebnisse in Form eines Posters darzustellen und im Rahmen einer Posterpräsentation zu präsentieren. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben für strömungsmechanische Problemstellungen zu definieren und sich das zur Lösung dieser Aufgaben notwendige Wissen, aufbauend auf dem vermittelten Wissen, selbst zu erarbeiten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 3h | ||||||||
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L0002: Energie aus dem Meer |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0001: Strömungsmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Angebote im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M1294: Bioenergie |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen der Energiegewinnung aus Biomasse, über aerobe und anaerobe Abfallbehandlungsverfahren, die dabei gewonnenen Produkte und die Behandlung der jeweils entstehenden Emissionen wiedergeben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen über biomasse-basierte Energiebereitstellungsanlagen anwenden, um für unterschiedliche Fragestellungen, beispielsweise bezüglich der Dimensionierung und Auslegung von Anlagen, die Zusammenhänge zu erläutern. In diesem Zusammenhang sind die Studierenden auch in der Lage Berechnungsaufgaben zur Verbrennung, Vergasung und Biogas-, Biodiesel- und Bioethanolnutzung zu lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von Energiesystemen zur Biomassenutzung diskutieren. |
Selbstständigkeit |
Die Studierenden können sich zur Aufarbeitung der Vorlesungsschwerpunkte selbstständig Quellen über das Fachgebiet erschließen, Wissen auswählen und aneignen. Des Weiteren können die Studierenden, unter Hilfestellung der Lehrenden, eigenständig Berechnungen zu biomasse-nutzenden Energiesysteme erfüllen und so Ihren jeweiligen Lernstand einschätzen und auf dieser Basis weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0061: Biokraftstoffverfahrenstechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0062: Biokraftstoffverfahrenstechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Skriptum zur Vorlesung |
Lehrveranstaltung L1769: Globale Märkte für land- und forstwirtschaftliche Rohstoffe |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Köhl, Bernhard Chilla |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1) Markets for Agricultural Commodities
|
Literatur | Lecture material |
Lehrveranstaltung L1767: Thermische Biomassenutzung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel dieses Kurses ist es, die physikalischen, chemischen und
biologischen als auch die technischen, wirtschaftlichen und
ökologischen Grundlagen aller Optionen der Energieerzeugung aus
Biomasse aus deutscher und internationaler Sicht zu diskutieren.
Zusätzlich unterschiedlichen Systemansätze zur Nutzung von Biomasse für
die Energieerzeugung, Aspekte der Bioenergie im Energiesystem zu
integrieren, technische und wirtschaftliche Entwicklungspotenziale und
die aktuelle und erwartete zukünftige Verwendung innerhalb des
Energiesystems vorgestellt.
|
Literatur |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Lehrveranstaltung L2386: Thermische Biomassenutzung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Dr. Isabel Höfer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die
Versuche des Praktikums verdeutlichen die unterschiedlichen
Aspekte der
Wärmegewinnung aus biogenen Festbrennstoffen. Dazu werden zunächst
unterschiedliche
Biomassen (wie z.B. Holz, Stroh oder landwirtschaftliche
Reststoffe) untersucht;
hierbei liegt der Schwerpunkt auf dem Heiz- und Brennwert der
Biomasse.
Weiterhin wird die verwendete Biomasse pelletiert, die
Pelleteigenschaften
analysiert und ein Verbrennungsversuch an einer
Pellet-Einzelraumfeuerung
durchgeführt. Dabei werden die gasförmigen und festen
Schadstoffemissionen,
besonders der entstehende Feinstaub, gemessen und in einem
weiteren Versuch die
Zusammensetzung des Feinstaubes untersucht. Ein weiterer
Schwerpunkt des
Praktikums liegt auf der Betrachtung von Optionen zur Reduzierung
des
Feinstaubes aus der Biomasseverbrennung. Im Praktikum wird eine
Methode zur
Feinstaubreduzierung erarbeitet und getestet. Alle Versuche werden
ausgewertet
und die Ergebnisse vorgestellt. |
Literatur |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Modul M1235: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Data Science: Kernqualifikation: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1670: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Lehrveranstaltung L1671: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Modul M1303: Energieprojekte - Entwicklung und Bewertung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Umweltbewertung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Vorgehensweise der Planung und Entwicklung von Projekten zur Nutzung regenerativer Energien beschreiben und auch die gesonderte Beachtung der wirtschaftlichen und rechtlichen Aspekte dabei erläutern. Die Lehrinhalte der einzelnen Themenschwerpunkte des Moduls werden anwendungsbezogen vermittelt; die Studierenden können diese somit u.a. in Berufszweigen der Beratung oder Betreuung von Energieprojekten auf unterschiedliche Fragestellungen anwenden. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen zur Vorgehensweise bei der Entwicklung erneuerbarer Energieprojekte auf beispielhafte Energieprojekte anwenden und die sich ergebenden Zusammenhänge unter besonderer Berücksichtigung der wirtschaftlichen und rechtlichen Voraussetzungen fachlich und konzeptionell einschätzen und beurteilen. Sie können als Basis zur Auslegung erneuerbarer Energiesysteme die Nachfrage nach thermischer und/oder elektrischer Energie auf betrieblicher und regionaler Ebene analysieren und dem folgend mögliche Energiesysteme auswählen und dimensionieren. Zur Bewertung der Nachhaltigkeitsaspekte von erneuerbaren Energieprojekten können die Studierenden in diesem Zusammenhang die richtige Methodik in Abhängigkeit der Fragestellung auswählen, diskutieren und kritisch Stellung dazu beziehen. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Seminare und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen zur Wirtschaftlichkeit erneuerbarer Energieprojekte in einer personenstarken Gruppe bearbeiten und zeitlich und fachlich organisieren. Sie können fachspezifische und fachübergreifende Diskussionen führen und dem folgend die Leistung der Kommilitonen einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. Des Weiteren sind die Studierenden in der Lage ihre Gruppenergebnisse von anderen zu vertreten. |
Selbstständigkeit |
Die Studierenden können sich zur Aufarbeitung der Vorlesungsinhalte und zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte selbstständig Quellen über das jeweilige Fachgebiet erschließen und sich das darin enthaltene Wissen aneignen. Auf dieser Basis sind sie in der Lage eigenständig Berechnungsmethoden zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte zu erfüllen und veranstaltungsübergreifende Zusammenhänge zu erkennen. Durch die durch Lehrende angeleitete Berechnungen können die Studierenden eigenständig Ihren Wissenstand erkennen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden Klausur + Projektseminarausarbeitung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0003: Entwicklung regenerativer Energieprojekte |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0005: Wirtschaftlichkeit einer regenerativen Energiebereitstellung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Script der Vorlesung |
Lehrveranstaltung L0006: Wirtschaftlichkeit einer regenerativen Energiebereitstellung |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Berechnung von Aufgaben zur Bewertung der Wirtschaftlichkeit eines erneuerbaren Energieprojektes, mit dem Ziel die komplexe Kenntnisse der Wirtschaftlichkeitsbetrachtung und Marktanalyse zu vertiefen. Bearbeitung erfolgt sowohl einzeln als auch in kleineren Gruppen. Folgende Themen werden behandelt:
Innerhalb des Seminars werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Skript der Vorlesung |
Modul M1309: Auslegung und Bewertung regenerativer Energiesysteme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativen Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche Erneuerbare Energien Technologien erklären, erläutern und technisch, ökonomisch und ökologisch bewerten. |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | je Lehrveranstaltung ca. 20 Minuten Vortrag + schriftliche Ausarbeitung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung ist aufbauend auf den Vorlesungen "Stromerzeugung aus regenerativen Energien" und "Wärmeerzeugung aus regenerativen Energien".
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Modul M0512: Solarenergienutzung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden sich fachliche mit Grundlagen und mit aktuellen Fragen und Problemen aus dem Gebiet der Solarenergienutzung auseinandersetzen und diese unter Einbeziehung vorheriger Lehrinhalte und aktueller Problematiken erläutern und kritisch Stellung dazu beziehen. Sie können insbesondere die Prozesse innerhalb einer Solarzelle fachlich beschreiben und die Besonderheiten bei der Anwendung von Solarmodulen erläutern. Des Weiteren können sie einen Überblick über die Kollektortechnik in solarthermischen Anlagen geben. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf beispielhafte solarstrahlungnutzende Energiesysteme anwenden und in diesem Zusammenhang unter anderem Potenziale und Grenzen solarer Energieerzeugungsanlagen für verschiedene geografische Bedingungen einschätzen und beurteilen. Sie sind in der Lage unter gegebenen Randbedingungen solare Energieerzeugungsanlagen technische effizient zu dimensionieren und mit der Nutzung modulübergreifendes Wissens ökonomisch und ökologisch zu beurteilen. Dafür notwendige Berechnungsmethoden innerhalb der Strahlungslehre können sie auswählen und aufgabenspezifisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden angeleitet durch Lehrende eigenständig Berechnungsmethoden zur Potenzialanalyse und technischen Auslegung von solaren Energiesystemen durchführen und auf dieser Basis Ihren jeweiligen Lernstand einschätzen und eventuell weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0016: Energiemeteorologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Matthias, Dr. Beate Geyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0017: Energiemeteorologie |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Beate Geyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0018: Kollektortechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Agis Papadopoulos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0015: Solare Stromerzeugung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Martin Schlecht, Paola Pignatelli, Prof. Alf Mews, Roman Fritsches-Baguhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Photovoltaik:
Konzentrierende Solarkraftwerke:
|
Literatur |
|
Modul M0513: Systemaspekte regenerativer Energien |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Technische Thermodynamik I Modul: Technische Thermodynamik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können mit Abschluss dieses Moduls die Prozesse im Energiehandel und die Gestaltung der Energiemärkte beschreiben und kritisch in Bezug zu aktuellen Problemstellungen bewerten. Des Weiteren sind sie in der Lage die thermodynamischen Grundlagen der elektrochemischen Energiewandlung in Brennstoffzellen zu erklären und den Bezug zu verschiedenen Bauarten von Brennstoffzellen und deren jeweiligem Aufbau herzustellen und zu erläutern. Die Studenten können diese Technologie mit weiteren Energiespeichermöglichkeiten vergleichen. Zusätzlich können die Studenten einen Überblick über die Verfahrensweise und der energetischen Einbindung von tiefer Geothermie geben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen zur Speicherung überschüssiger Energie anwenden, um für unterschiedlicher Energiesysteme Lösungsansätze für eine versorgungssichere Energiebereitstellung erläutern. Insbesondere können sie diesbezüglich häusliche, gewerbliche und industrielle Beheizungsanlagen unter Anwendung von Speichern energiesparend planen und berechnen, und im Bezug zu komplexen Energiesystemen beurteilen. In diesem Zusammenhang können die Studierenden die Potenziale und Grenzen von Geothermieanlagen einschätzen und deren Funktionsweise erläutern. Des Weiteren sind die Studierenden in der Lage die Vorgehensweisen und Strategien zur Vermarktung von Energie zu erläutern und im Kontext anderer Module auf erneuerbare Energieprojekte anwenden. In diesem Zusammenhang können die Studierenden eigenständig Analysen zur Bewertung von Energiehandel und Energiemärkten erstellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Fröba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0019: Energiehandel und Energiemärkte |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Michael Sagorje, Dr. Sven Orlowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb der Übung werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur |
Lehrveranstaltung L0020: Energiehandel und Energiemärkte |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Michael Sagorje, Dr. Sven Orlowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0025: Tiefe Geothermie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Ben Norden |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1308: Modellierung und technische Auslegung von Bioraffinerieprozessen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können nach der Teilnahme an der Veranstaltung einen
verfahrenstechnischen Prozess umfassend auslegen. Dazu gehören die Erstellung
von Massen- und Energiebilanzen, die Auslegung verfahrenstechnischer Apparate,
die Festlegung von Messtechniken und Regelkreisen für die einzelnen Apparate
sowie die Modellierung des Gesamtprozesses.
Des Weiteren können sie die Grundlagen zur allgemeinen Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben, insbesondere mit ASPEN PLUS® und ASPEN CUSTOM MODELER® beschreiben. |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung von Simulations- und
Anwendungsaufgaben der erneuerbaren Energietechnik:
Sie können die ASPEN PLUS ® and ASPEN CUSTOM MODELER ® zur Modellierung energetischer Systeme anwenden und die Simulationslösung bewerten. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Seminare und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die
Studierenden können
die Leistungen der Kommilitonen im Vergleich zu Ihrer eigenen Leistung einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung inkl. Vortrag |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1832: Bioraffinerien - Technische Auslegung und Optimierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Empfohlene Vorkenntnisse:
Prozess- und Anlagentechnik I und II Thermische Grundoperationen Wärme- und Stoffübertragung Strömungsmechanik I und II I. Wiederholung Grundlagen:
II. Selbstständiges Rechnen:
|
Literatur |
Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007 Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014 |
Lehrveranstaltung L0022: CAPE bei Energieprojekten |
Typ | Projektierungskurs |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur |
|
Modul M0511: Elektrische Energie aus Solarstrahlung und Windkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Isabel Höfer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2,5 Stunden + Schriftliche Ausarbeitung (inkl. Vortrag) in Nachhaltigkeitsmanagement |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0007: Nachhaltigkeitsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Anne Rödl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung „Nachhaltigkeitsmanagement“ gibt einen Einblick in die verschiedenen Aspekte und Dimensionen der Nachhaltigkeit. Dazu werden zunächst wichtige Begriffe und Definitionen, wesentliche Ent¬wicklungen der letzten Jahre sowie rechtliche Rahmenbedingungen erläutert. Danach werden die verschiedenen Aspekte der Nachhaltigkeit im Einzelnen vorgestellt und diskutiert. Als wesentlicher Bestandteil der Vorlesung, werden Konzepte zur Umsetzung des Themas Nachhaltigkeit in Unternehmen besprochen Zu beantwortende Kernfragen sind dabei u. a.:
Des Weiteren soll die Veranstaltung Einblicke in die konkrete Umsetzung von Nachhaltig-keitsaspekten in der unternehmerischen Praxis bieten. Dafür werden externe Dozenten aus Unternehmen eingeladen, die berichten, wie das Thema Nachhaltigkeit in ihre täglichen Abläufe integriert wird. Im Rahmen einer eigenständigen Ausarbeitung sollen die Studierenden die Umsetzung von Nachhaltigkeitsaspekten anhand kurzer Fallstudien analysieren und diskutieren. Anhand der Beschäftigung und dem Vergleich von „Best Practice“ Beispielen sollen sie die Auswirkungen und Tragweite von unternehmerischen Entscheidungen kennenlernen. Dabei soll deutlich werden, welche Risiken bzw. Chancen mit der Nichtbeachtung bzw. Beachtung von Nachhaltigkeitsaspekten verbunden sind. |
Literatur |
Die folgenden Bücher bieten einen Überblick: Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0742: Thermische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Thermische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Arne Speerforck, Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Thermische Energiesysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Bioenergiesysteme
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0518: Waste and Energy |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Basics of process engineering | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able to describe and explain in detail techniques, processes and concepts for treatment and energy recovery from wastes. |
||||||||
Fertigkeiten |
The students are able to select suitable processes for the treatment and energy recovery of wastes. They can evaluate the efforts and costs for processes and select economically feasible treatment Concepts. Students are able to evaluate alternatives even with incomplete information. Students are able to prepare systematic documentation of work results in form of reports, presentations and are able to defend their findings in a group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of collegues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Vortrag mithilfe von Powerpoint-Folien (10-15 Minuten) | ||||||||
Zuordnung zu folgenden Curricula |
Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0047: Waste Recycling Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L0048: Waste Recycling Technologies |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L0049: Waste to Energy |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Rüdiger Siechau |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur: Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 Powerpoint-Folien in Stud IP Literature:
|
Modul M0896: Bioprocess and Biosystems Engineering |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. An-Ping Zeng | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
After completion of this module, participants will be able to:
|
||||||||
Fertigkeiten |
After completion of this module, participants will be able to:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. The students can reflect their specific knowledge orally and discuss it with other students and teachers. |
||||||||
Selbstständigkeit |
After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Environmental Engineering: Vertiefung Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1034: Bioreactor Design and Operation |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng, Dr. Johannes Möller |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Design of bioreactors and peripheries:
Sterile operation:
Instrumentation and control:
Bioreactor selection and scale-up:
Integrated biosystem:
Team work with presentation:
|
Literatur |
|
Lehrveranstaltung L1037: Bioreactors and Biosystems Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. An-Ping Zeng, Dr. Johannes Möller |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering (Exercise)
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Lehrveranstaltung L1036: Biosystems Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Modul M0749: Abfallbehandlung und Feststoffverfahrenstechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Thermodynamik, Grundlagen Strömungsmechanik Grundlagen der Chemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können aktuelle Frage- und
Problemstellungen aus dem Gebiet der thermischen
Abfallbehandlungstechnik
Dabei können sie verschiedene Arten von Verbrennungs- und
Aufbereitungstechniken unterscheiden und beschreiben, zum
Beispiel
Die Studierenden sind in der Lage, Apparate der thermischen Abfallbehandlungstechnik und der Feststoffverfahrenstechnik zu konzipieren und auszulegen. |
Fertigkeiten |
Die Studierenden sind in der Lage, geeignete Verfahren für die Behandlung bestimmter Abfälle oder Rohstoffe in Abhängigkeit von deren Charakteristika und den Zielsetzungen auszuwählen. Sie können den technischen Aufwand und die ökologischen Folgen der Technologien abschätzen . |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L0320: Thermal Waste Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Lehrveranstaltung L1177: Thermal Waste Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1709: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Mirko Skiborowski |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen im Bereich der mathematischen Modellierung und numersichen Mathematik, sowie ein grundlegendes Verständniss verfahrenstechnsicher Prozesse. Insbesondere die Inhalte des Moduls Prozess- und Anlagentechnik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Das Modul bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. •Einführung in die angewandte Optimierung • Formulierung von Optimierungsproblemen • Lineare Optimierung • Nichtlineare Optimierung • Gemischt-ganzzahlige (nicht)lineare Optimierung • Mehrkriterielle Optimierung • Globale Optimierung |
Fertigkeiten | Studierende können nach erfolgreicher Teilnahme am Modul "Angeandte Optimierung in der Energie- und Verfahrenstechnik" die unterschiedlichen Arten von Optimierungsproblemen formulieren und in dafür geeigneiter Software wie Matlab und GAMS entsprechende Lösungsverfahren auszuwählen und weiterführende Lösungsstrategien zu entwickeln. Daüber hinaus sind Sie in der Lage die Ergebnisse entsprechend zu interpretieren und kritisch zu prüfen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind in der Lage: •in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten |
Selbstständigkeit |
Studierende sind in der Lage: •sich anhand weiterführender Literatur zum Thema daraus Wissen zu erschließen |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 35 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L2693: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. - Einführung in die angewandte Optimierung - Formulierung von Optimierungsproblemen - Lineare Optimierung - Nichtlineare Optimierung - Gemischt-ganzzahlige (nicht)lineare Optimierung - Mehrkriterielle Optimierung - Globale Optimierung |
Literatur |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Lehrveranstaltung L2695: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0902: Abwasserreinigung und Luftreinhaltung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Swantje Pietsch-Braune |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Biologie und Chemie Grundlagen der Feststoffverfahrenstechnik und der Trenntechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage,
|
Fertigkeiten |
Studenten sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Swantje Pietsch-Braune, Christian Eichler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M0900: Ausgewählte Prozesse der Feststoffverfahrenstechnik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Kenntnisse aus dem Modul Partikletechnologie I | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage, beispielhaft die Zusammenstellung von Prozessen der Feststoffverfahrenstechnik aus Apparaten und Verfahren der Partikeltechnologie zu beschreiben und das Zusammenwirken einzelner Teilprozesse in einem Gesamtprozess erläutern. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, Aufgabenstellungen in der Feststoffverfahrenstechnik zu analysieren und geeignete Prozessketten zusammenzustellen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Studierende sind in der Lage fachspezifische Inhalte in wissenschaftlicher Weise zu diskutieren. | ||||||||
Selbstständigkeit | Studierende sind dazu in der Lage fachspezifisches Wissen selbstständig zu vertiefen und in wissenschaftlicher Weise zu diskutieren. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0431: Fluidization Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction: definition, fluidization
regimes, comparison with other types of gas/solids reactors |
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Lehrveranstaltung L1369: Practical Course Fluidization Technology |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Experiments:
|
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Lehrveranstaltung L0955: Technische Anwendungen der Partikeltechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Auf der Basis physikalischer Grundlagen werden die Grundoperationen Mischen, Trennen, Agglomerieren und Zerkleinern hinsichtlich ihrer technischen Anwendung aus Sicht des Praktikers diskutiert. Es werden Maschinen und Apparate vorgestellt, deren Aufbau und Wirkungsweise erklärt und ihre Einbindung in Produktionsprozesse der Chemie, der Lebens- und Futtermitteltechnik sowie der Endsorgungs- und Recyclingindustrie veranschaulicht. |
Literatur | Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997 |
Lehrveranstaltung L1372: Exercises in Fluidization Technology |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Exercises and calculation examples for the lecture Fluidization Technology |
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
||||||||
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 2 Stunden Klausur | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Fachmodule der Vertiefung Solare Energiesysteme
Innerhalb der Vertiefungsrichtung „Solare Energiesysteme“ haben Studierende die Möglichkeit ein Auslandssemester an der „University of Jordan“ in Amman, Jordanien, gefördert zu bekommen. Innerhalb dieses Auslandsaufenthaltes sollen zusätzliche Module im Bereich „Solare Energiesysteme“ belegt werden, deren Leistungspunkte an TUHH nach Absprache anerkannt werden.
Weiterhin können Studierende innerhalb der Vertiefungsrichtung „Solare Energiesysteme“ in Kooperation mit der International Hellenic University in Thessaloniki, Griechenland das Modul "Modelling and simulation of Building Integrated Solar Energy systems" belegen, welches nach Absprache an der TUHH anerkannt werden kann. Der Austausch wird ebenfalls gefördert.
Studierende, welche beabsichtigen die Vertiefung „Solare Energiesysteme“ zu belegen, werden gebeten sich in jedem Falle frühzeitig an den Studiengangsleiter für weitere Informationen zum Studienverlauf und Auslandsaufenthalt zu wenden.
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0643: Optoelectronics I - Wave Optics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Alexander Petrov |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics in electrodynamics, calculus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain the fundamental mathematical and physical relations of freely propagating optical waves. |
Fertigkeiten |
Students can generate models and derive mathematical descriptions in relation to free optical wave propagation. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Selbstständigkeit |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Leistungspunkte | 4 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L0359: Optoelectronics I: Wave Optics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Alexander Petrov |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Lehrveranstaltung L0361: Optoelectronics I: Wave Optics (Problem Solving Course) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Alexander Petrov |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | see lecture Optoelectronics 1 - Wave Optics |
Literatur |
see lecture Optoelectronics 1 - Wave Optics |
Modul M0932: Prozessmesstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Roland Harig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik und der Messtechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen ein Verständnis für prozessmesstechnische Zusammenhänge und Messtechnik weitverzweigter Anlagen. Die Studierenden kennen übliche Verfahren zur Verarbeitung und Übertragung von Signalen. |
Fertigkeiten |
Die Studierenden können komplexe Sensor- und Messdatenübertragungssysteme modellieren und bewerten. Hierbei steht insbesondere das systemorientierte Denken im Vordergrund. |
Personale Kompetenzen | |
Sozialkompetenz |
Technische Zusammenhänge können in englischer Sprache kommuniziert werden. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen kontinuierlich reflektieren und auf dieser Basis ihren Lernprozess steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Grundlagen der Elektrotechnik, Analysis, Stochastische Prozesse, Nachrichtenübertragung) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Leistungspunkte | 4 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L1077: Prozessmesstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Roland Harig |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
- Färber: „Prozeßrechentechnik“, Springer-Verlag 1994 - Kiencke, Kronmüller: „Meßtechnik“, Springer Verlag Berlin Heidelberg, 1995 - A. Ambardar: „Analog and Digital Signal Processing“ (1), PWS Publishing Company, 1995, NTC 339 - A. Papoulis: „Signal Analysis“ (1), McGraw-Hill, 1987, NTC 312 (LB) - M. Schwartz: „Information Transmission, Modulation and Noise“ (3,4), McGraw-Hill, 1980, 2402095 - S. Haykin: „Communication Systems“ (1,3), Wiley&Sons, 1983, 2419072 - H. Sheingold: „Analog-Digital Conversion Handbook“ (5), Prentice-Hall, 1986, 2440072 - J. Fraden: „AIP Handbook of Modern Sensors“ (5,6), American Institute of Physics, 1993, MTB 346 |
Lehrveranstaltung L1083: Prozessmesstechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Roland Harig |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1425: Leistungselektronik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Den Studierenden werden die Grundlagen der Stromrichtertechnik und der modernen Leistungselektronik vermittelt. Ferner werden die wesentlichen Eigenschaften konventioneller und moderner Leistungshalbleiter vorgestellt und deren Ansteuerverfahren präsentiert. Ebenso lernen die Studierenden die wichtigsten Schaltungstopologien der selbstgeführten Stromrichter und deren Steuerverfahren kennen. |
Fertigkeiten | Neben den Grundlagen der Stromrichterkommutierung lernen die Studierenden Methoden zur Bestimmung der Durchlass- und Schaltverluste der Bauelemente kennen. An einfachen Beispielen lernen die Teilnehmer Methoden zur mathematischen Beschreibung des Übertragungsverhaltens leistungselektronischer Schaltungen kennen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in angrenzenden Themengebieten im Bereich der Photovoltaik und Leistungselektronik mit Kommilitonen diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und das erlangte Wissen auf weitere Bereich übertragen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2053: Leistungselektronik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Klaus Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Hilfsblätter und Literaturhinweise werden im Rahmen der Vorlesung ausgeteilt. |
Lehrveranstaltung L2054: Leistungselektronik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1287: Risikomanagement, Wasserstoff- und Brennstoffzellentechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Risikomanagements unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben. Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wiedergeben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage Risiken von Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen zu bewerten. Die beinhaltet auch, dass die Studierenden unter anderem in der Lage sind Risiken in der Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen. In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen. Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1831: Angewandte Brennstoffzellentechnologie |
Typ | Vorlesung | ||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||
LP | 2 | ||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 | ||||||||||||||||||||||
Dozenten | Prof. Klaus Bonhoff | ||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||
Zeitraum | SoSe | ||||||||||||||||||||||
Inhalt |
Die Vorlesung gibt einen Einblick in die
vielfältigen Nutzungsmöglichkeiten von Brennstoffzellen im Energiesystem
(Strom, Wärme und Verkehr). Dazu werden für einzelne Brennstoffzellentypen und anwendungsorientierten Anforderungsprofile dargestellt und diskutiert; auch im Systemvergleich mit alternativen Technologien. Für die einzelnen Varianten wird der aktuelle Stand der
Technologie mit Praxisbeispielen aus Deutschland und weltweit vorgestellt.
Auch wird auf die sich abzeichnenden Entwicklungstendenzen und
Entwicklungslinien - und die in den kommenden Jahren zu erwartenden Technologien
- eingegangen. Neben den technischen Aspekten, die den Schwerpunkt der
Veranstaltung darstellen, werden auch energie-, umwelt- und industriepolitische
Aspekte - auch im Kontext der sich verändernden Gegebenheiten im deutschen und
internationalen Energiesystem - diskutiert.
|
||||||||||||||||||||||
Literatur |
Vorlesungsunterlagen |
Lehrveranstaltung L1748: Risikomanagement in der Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christian Wulf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0060: Wasserstofftechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Dornheim |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0515: Energieinformationssysteme und Elektromobilität |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die elektrische Energietechnik im Bereich Erneuerbarer Energien einen Überblick geben. Möglichkeiten der Integration von erneuerbaren Energieanlagen in das bestehende Netz, der elektrischen Speichermöglichkeiten und der elektrischen Energieübertragung und- verteilung können sie detailliert erläutern und kritisch dazu Stellung beziehen. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung erneuerbarer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwickeln und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 40 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Lehrveranstaltung L1833: Elektromobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Bonhoff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Vorlesungsunterlagen/ lecture material |
Modul M0540: Transport Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to:
|
Fertigkeiten |
The students are able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to discuss in international teams in english and develop an approach under pressure of time. |
Selbstständigkeit |
Students are able to define independently tasks, to solve the problem "design of a multiphase reactor". The knowledge that s necessary is worked out by the students themselves on the basis of the existing knowledge from the lecture. The students are able to decide by themselves what kind of equation and model is applicable to their certain problem. They are able to organize their own team and to define priorities for different tasks. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 15 Minuten Vortrag + 90 Minuten Multiple Choice Klausur |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0104: Multiphase Flows |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971. |
Lehrveranstaltung L0105: Reactor Design Using Local Transport Processes |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this Problem-Based Learning unit the students have to design a multiphase reactor for a fast chemical reaction concerning optimal hydrodynamic conditions of the multiphase flow. The four students in each team have to:
This exposé will be used as basis for the discussion within the oral group examen of each team. |
Literatur | see actual literature list in StudIP with recent published papers |
Lehrveranstaltung L0103: Heat & Mass Transfer in Process Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1710: Smart-Grid-Technologien |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik, Grundlagen der Regelungstechnik, Mathematik I, II, III Elektrische Energiesysteme I Elektrische Energiesysteme II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Verfahren und Technologien zum Betrieb von Smart Grids (intelligente Verteilernetze) detailliert erläutern und kritisch bewerten. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die Auswirkungen neuer Technologien (z. B. erneuerbare Energien, Energiespeicher und Demand-Response) auf das Stromnetz zu analysieren. Sie können Techniken der "Computational Intelligence" verstehen und auf Probleme des Verteilnetzbetriebs anwenden. Sie können auch erklären, welche IKT-Technologien (wie digitale Zwillinge und IoT) für den Betrieb von Verteilernetzen relevant und geeignet sind. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die
Studierenden können sich selbstständig Quellen über die Schwerpunkte der
Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen
weiterführender Forschungsaktivitäten nutzbar machen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2706: Smart-Grid-Technologien |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker, Dr. Davood Babazadeh |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Vorstellung von Smart Grids
Aufstrebende Technologien in Verteilnetzen
Verteilnetzmanagement & Analyse
Rechnerische Intelligenz und Optimierungstechniken
ICT-Technologien für intelligente Stromnetze
Praktische Erfahrungen: Stromnetz Hamburg (SNH) Perspektive
Studienbesuche:
|
Literatur |
|
Lehrveranstaltung L2707: Smart-Grid-Technologien |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker, Dr. Davood Babazadeh |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
||||||||
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 2 Stunden Klausur | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Fachmodule der Vertiefung Windenergiesysteme
Innerhalb der Vertiefung “Windenergiesysteme” werden weiterführende Kenntnisse zur Nutzung von Windenergie, sowohl im Onshore als auch im Offshore Bereich vermittelt. Insbesondere wird auf die maritimen und logistischen Randbedingungen zur Installation und Nutzung von Offshore Windkraftparks eingegangen. In diesem Zusammenhang wird auch der Umgang mit Risiken, die beim Bau und im Betrieb solcher großen Energieprojekte auftreten können, erläutert.
Zusätzlich werden in einem Modul die werkstoffspezifischen Grundlagen für die Zusammensetzung von Bestandteilen von Windenergieanlagen geschaffen.
Modul M1133: Hafenlogistik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | keine | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können nach Abschluss des Moduls …
|
||||||||
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können nach Abschluss des Moduls…
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0686: Hafenlogistik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Hafenlogistik beschäftigt sich mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die außerordentliche Rolle des Seeverkehrs für den internationalen Handel erfordert sehr leistungsfähige Häfen. Diese müssen zahlreichen Anforderungen in Punkten Wirtschaftlichkeit, Geschwindigkeit, Sicherheit und Umwelt genügen. Vor diesem Hintergrund beschäftigt sich die Vorlesung Hafenlogistik mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die Veranstaltung Hafenlogistik zielt darauf ab, Verständnis über Strukturen und Prozesse in Häfen zu vermitteln. Schwerpunktmäßig werden unterschiedliche Typen von Terminals, ihre charakteristischen Layouts und das eingesetzte technische Equipment und die voranschreitende Digitalisierung sowie das Zusammenspiel der beteiligten Akteure thematisiert. Außerdem werden regelmäßig renommierte Gastredner aus der Wissenschaft und Praxis eingeladen, um einige vorlesungsrelevante Themen aus alternativen Blickwinkeln zu beleuchten. Folgende Inhalte werden in der Veranstaltung vermittelt:
|
Literatur |
|
Lehrveranstaltung L1473: Hafenlogistik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt der Übung ist die selbstständige Erstellung
eines wissenschaftlichen Papers und einer dazugehörigen Präsentation zu einem
aktuellen Thema der Hafenlogistik. Inhalt des Papers sind aktuelle Themen der
Hafenlogistik, beispielsweise die zukünftigen Herausforderungen in Nachhaltigkeit
und Produktivität von Häfen, die digitale Transformation von Terminals und
Häfen oder die Einführung von neuen Regularien durch die International Maritime
Organisation in Bezug auf das verifizierte Bruttogewicht von Containern. Aufgrund
der internationalen Ausrichtung der Veranstaltung ist das Paper in englischer
Sprache zu erstellen.
|
Literatur |
|
Modul M0527: Marine Bodentechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Isabel Höfer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der Analysis und Differentialgleichungen Grundkenntnisse der maritimen Technik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die grundlegendne Techniken zur Analyse von Offshore-Systemen, einschließlich der dazugehörigen Untersuchungen der Eigenschaften des Meeresbodens, eine Überblick geben und die dazugehörigen Inhalte unter Einbeziehung fachlich angrenzender Kontexte erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage dynamische Offshoresysteme modelltechnisch abzubilden und zu bewerten. Dafür sind sie sind sie zusätzlich in der Lage systemorientiert zudenken und komplexe System in Teilsysteme zu zerlegen. |
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. Des Weiteren können die Studierenden innerhalb der Übungsstunden angeleitet durch Lehrende Ihren jeweiligen Lernstand konkret einschätzen und auf dieser Basis weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L0068: Analyse meerestechnischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0069: Analyse meerestechnischer Systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1132: Maritimer Transport |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können…
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können…
|
||||||||
Selbstständigkeit |
Studierende sind fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0063: Maritimer Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Zu den generellen Aufgaben der maritimen Logistik zählen die Planung, Gestaltung, Durchführung und Steuerung von Material- und Informationsflüssen in der Logistikkette Schiff - Hafen - Hinterland. Eingeschlossen sind die Technologiebewertung, -auswahl, -dimensionierung und -einführung sowie der Betrieb von Technologien. Ziel der Lehrveranstaltung ist es, den Studierenden Kenntnisse des maritimen Transports und der an der maritimen Transportkette beteiligten Akteure zu vermitteln. Hierbei wird, unter Beachtung der wirtschaftlichen Entwicklung, auf typische Problemfelder und Aufgaben eingegangen. Somit sind sowohl klassische Probleme als auch aktuelle Entwicklungen und Trends im Bereich der Maritimen Logistik berücksichtigt. In der Vorlesung werden die Bestandteile der maritimen Logistikkette und die beteiligten Akteure beleuchtet sowie Risikoabschätzungen von menschlichen Störungen auf die Supply Chain erarbeitet. Darüber hinaus lernen Studierenden die Potentiale der Digitalisierung in der Seeschifffahrt, Insbesondere im Hinblick auf das Monitoring von Schiffen, abzuschätzen. Ein weiterer Inhalt der Vorlesung sind die verschiedenen Verkehrsträger im Hinterland, welche Studierenden nach Abschluss der Lehrveranstaltung hinsichtlich ihrer Vor- und Nachteile bewerten können. |
Literatur |
|
Lehrveranstaltung L0064: Maritimer Transport |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bei der Gruppenübung im Modul "Maritimer Transport" werden den Studierenden durch das haptische Planspiel MARITIME grundlegende Kenntnisse über Akteure und Prozesse in maritimen Transportketten vermittelt. Weiterhin ermöglicht das Planspiel und die darauf aufbauende Gruppenarbeit das selbständige Erlernen verschiedener Prozessmodellierungstechniken und fördert die Kompetenzen der Studierenden im Bereich der Präsentation, Moderation und Diskussion. |
Literatur |
|
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M1287: Risikomanagement, Wasserstoff- und Brennstoffzellentechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Risikomanagements unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben. Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wiedergeben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage Risiken von Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen zu bewerten. Die beinhaltet auch, dass die Studierenden unter anderem in der Lage sind Risiken in der Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen. In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen. Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1831: Angewandte Brennstoffzellentechnologie |
Typ | Vorlesung | ||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||
LP | 2 | ||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 | ||||||||||||||||||||||
Dozenten | Prof. Klaus Bonhoff | ||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||
Zeitraum | SoSe | ||||||||||||||||||||||
Inhalt |
Die Vorlesung gibt einen Einblick in die
vielfältigen Nutzungsmöglichkeiten von Brennstoffzellen im Energiesystem
(Strom, Wärme und Verkehr). Dazu werden für einzelne Brennstoffzellentypen und anwendungsorientierten Anforderungsprofile dargestellt und diskutiert; auch im Systemvergleich mit alternativen Technologien. Für die einzelnen Varianten wird der aktuelle Stand der
Technologie mit Praxisbeispielen aus Deutschland und weltweit vorgestellt.
Auch wird auf die sich abzeichnenden Entwicklungstendenzen und
Entwicklungslinien - und die in den kommenden Jahren zu erwartenden Technologien
- eingegangen. Neben den technischen Aspekten, die den Schwerpunkt der
Veranstaltung darstellen, werden auch energie-, umwelt- und industriepolitische
Aspekte - auch im Kontext der sich verändernden Gegebenheiten im deutschen und
internationalen Energiesystem - diskutiert.
|
||||||||||||||||||||||
Literatur |
Vorlesungsunterlagen |
Lehrveranstaltung L1748: Risikomanagement in der Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christian Wulf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0060: Wasserstofftechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Dornheim |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1709: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Mirko Skiborowski |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen im Bereich der mathematischen Modellierung und numersichen Mathematik, sowie ein grundlegendes Verständniss verfahrenstechnsicher Prozesse. Insbesondere die Inhalte des Moduls Prozess- und Anlagentechnik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Das Modul bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. •Einführung in die angewandte Optimierung • Formulierung von Optimierungsproblemen • Lineare Optimierung • Nichtlineare Optimierung • Gemischt-ganzzahlige (nicht)lineare Optimierung • Mehrkriterielle Optimierung • Globale Optimierung |
Fertigkeiten | Studierende können nach erfolgreicher Teilnahme am Modul "Angeandte Optimierung in der Energie- und Verfahrenstechnik" die unterschiedlichen Arten von Optimierungsproblemen formulieren und in dafür geeigneiter Software wie Matlab und GAMS entsprechende Lösungsverfahren auszuwählen und weiterführende Lösungsstrategien zu entwickeln. Daüber hinaus sind Sie in der Lage die Ergebnisse entsprechend zu interpretieren und kritisch zu prüfen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind in der Lage: •in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten |
Selbstständigkeit |
Studierende sind in der Lage: •sich anhand weiterführender Literatur zum Thema daraus Wissen zu erschließen |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 35 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L2693: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. - Einführung in die angewandte Optimierung - Formulierung von Optimierungsproblemen - Lineare Optimierung - Nichtlineare Optimierung - Gemischt-ganzzahlige (nicht)lineare Optimierung - Mehrkriterielle Optimierung - Globale Optimierung |
Literatur |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Lehrveranstaltung L2695: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0515: Energieinformationssysteme und Elektromobilität |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die elektrische Energietechnik im Bereich Erneuerbarer Energien einen Überblick geben. Möglichkeiten der Integration von erneuerbaren Energieanlagen in das bestehende Netz, der elektrischen Speichermöglichkeiten und der elektrischen Energieübertragung und- verteilung können sie detailliert erläutern und kritisch dazu Stellung beziehen. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung erneuerbarer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwickeln und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 40 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Lehrveranstaltung L1833: Elektromobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Bonhoff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Vorlesungsunterlagen/ lecture material |
Modul M1710: Smart-Grid-Technologien |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik, Grundlagen der Regelungstechnik, Mathematik I, II, III Elektrische Energiesysteme I Elektrische Energiesysteme II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Verfahren und Technologien zum Betrieb von Smart Grids (intelligente Verteilernetze) detailliert erläutern und kritisch bewerten. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die Auswirkungen neuer Technologien (z. B. erneuerbare Energien, Energiespeicher und Demand-Response) auf das Stromnetz zu analysieren. Sie können Techniken der "Computational Intelligence" verstehen und auf Probleme des Verteilnetzbetriebs anwenden. Sie können auch erklären, welche IKT-Technologien (wie digitale Zwillinge und IoT) für den Betrieb von Verteilernetzen relevant und geeignet sind. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die
Studierenden können sich selbstständig Quellen über die Schwerpunkte der
Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen
weiterführender Forschungsaktivitäten nutzbar machen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2706: Smart-Grid-Technologien |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker, Dr. Davood Babazadeh |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Vorstellung von Smart Grids
Aufstrebende Technologien in Verteilnetzen
Verteilnetzmanagement & Analyse
Rechnerische Intelligenz und Optimierungstechniken
ICT-Technologien für intelligente Stromnetze
Praktische Erfahrungen: Stromnetz Hamburg (SNH) Perspektive
Studienbesuche:
|
Literatur |
|
Lehrveranstaltung L2707: Smart-Grid-Technologien |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker, Dr. Davood Babazadeh |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0528: Maritime Technik und Offshore-Windkraftparks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Moustafa Abdel-Maksoud |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Qualifizierter Bachelor einer Natur- oder Ingenieurwissenschaft; Solide Kenntnisse Fähigkeiten in Mathematik, Mechanik, Strömungsmechanik. Grundkenntnisse der Meerestechnik (z.B. aus der einführenden Veranstaltung 'Einführung in die Maritime Technik') Gute Grundlagenkenntnisse im Bereich Technische Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem Erfolgreichen Absolvieren dieses Kurses sollten die Studierenden einen Überblick über Phänomene und Methoden der Meerestechnik und Fähigkeit zu Anwendung und Transfer der Methoden auf neuartige Fragestellungen erworben haben. Im Einzelnen sollten die Studierenden:
Anhand ausgewählter Themen sollen die Teilnehmer an aktuelle Forschungsfragen herangeführt und im Rahmen projektorientierter Übungsaufgaben zur Durchführung weitergehender eigenständiger Forschungsaktivitäten befähigt werden. Lernziele im Einzelnen:
Ein grundlegendes Verständnis der technischen Aufgabenstellungen im Bereich Offshore Windenergie und der Ansätze für ihre Lösung. |
Fertigkeiten |
Im Rahmen dieser Vorlesung über ein einziges Semester soll und kann den Studenten vor allem ein Überblickswissen und praxisorientierte Kenntnisse vermittelt werden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Dozent trägt nicht nur vor, sondern skizziert an der Tafel und bindet die Studenten in einem Dialog ein. Die Studierenden sind damit gefordert sich zu artikulieren und einen Beitrag in der Gruppe zu leisten. |
Selbstständigkeit |
Die Studierenden werden in der Vorlesung immer wieder aufgefordert eigenständig mitzudenken und die grundlegenden Zusammenhänge aufzuzeigen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L0070: Einführung in die Maritime Technik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Walter Kuehnlein, Dr. Sven Hoog |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einführung
2. Küste und Meer: Umweltbedingungen
3. Antwortverhalten technischer Strukturen 4. Maritime Systeme und Technologien
|
Literatur |
|
Lehrveranstaltung L1614: Einführung in die Maritime Technik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Walter Kuehnlein |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0072: Offshore-Windkraftparks |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
||||||||
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 2 Stunden Klausur | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Interdisciplinary Mathematics: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht |