Studiengangsbeschreibung
Inhalt
In den letzten Jahrzehnten haben der Energieverbrauch und die damit verbundenen anthropogenen Umweltauswirkungen stetig zu- und die (gefühlte) Versorgungssicherheit zunehmend abgenommen. Und es ist zu erwarten, dass diese Entwicklung zukünftig weitergeht. Eine verstärkte Nutzung regenerativer Energien - und damit von Wasserkraft, Windenergie und Solarstrahlung sowie Biomasse und Geothermie - im Strom-, Wärme- und Kraftstoffmarkt kann zur Lösung dieser Herausforderungen wesentlich beitragen.
Mit Abschluss dieses Masters "Regenerative Energien" sind die Absolvent/innen befähigt, die Möglichkeiten und Grenzen einer Energiebereitstellung für den Wärme-, Strom- und Kraftstoffmarkt aus den regenerativen Energiequellen Sonne, Erdwärme sowie Planetengravitation und -bewegung zu erläutern und zu beurteilen - und das primär aus technischer, aber auch aus ökonomischer und ökologischer Sicht. Sie können über die physikalische und chemische Charakteristik des regenerativen Energieangebots einen Überblick geben, haben die grundlegenden technischen Nutzungsprinzipien verstanden und können die daraus resultierenden technischen und technologischen Anforderungen an die entsprechende Konversionsanlagentechnik einschätzen. Auch können die Absolvent/innen die anlagen- und systemtechnischen sowie die ökonomischen und ökologischen Grundlagen der einzelnen Optionen zur Nutzung des regenerativen Energieangebots bewerten. Sie haben einen Überblick über Aspekte der Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien ins vorhandene Energiesystem - sowohl in Deutschland als auch im außereuropäischen Ausland. Außerdem können sie Fragen der Energiespeicherung und der Entwicklung regenerativer Energieprojekte mit Expert/innen diskutieren. Dieses Fachwissen und die damit in Verbindung stehenden Fertigkeiten befähigen die Absolvent/innen, auch zu aktuellen Themen der Energiewirtschaft fundiert und ideologiefrei Stellung zu beziehen. Durch dieses Masterstudium sind sie qualifiziert, Interessenten fachlich zu beraten oder eigenständig Fragestellungen und Ziele für neue anwendungs- oder forschungsorientierte Aufgaben zu formulieren.
Eine weitergehende fachliche Vertiefung innerhalb dieses Masters auf die regenerativen Energiesysteme Biomasse, Solar oder Wind ist möglich. Damit vermittelt der Studiengang umfassende Kenntnisse zu praktisch allen Optionen zur Nutzung des erneuerbaren Energieangebots, deren Nutzung im Energiesystem - unter Berücksichtigung der bereits vorhandenen Strukturen - und ausgewählter damit zusammenhängender technischer, ökonomischer und ökologischer Aspekte.
Berufliche Perspektiven
Lernziele
- Windenergie,
- Photovoltaik,
- Wasserkraft,
- Meeresenergie,
- Biomasse und
- Geothermie
zu erarbeiten und diese unter Berücksichtigung
erforderlicher Abklärungen und Prüfung vorhandener Informationen zu planen.
Studiengangsstruktur
- Module der Kernqualifikation:
- technische Grundlagen der Nutzung der regenerativen Energien,
- Projektbewertung, Wirtschaftlichkeit und Nachhaltigkeit,
- elektrische Energietechnik
- nichttechnische Ergänzungskurse,
- Fachmodule der
Vertiefungsrichtungen:
- Bioenergiesysteme,
- Solare Energiesysteme,
- Windenergiesysteme,
- die Master-Arbeit.
Die Wahl einer Vertiefungsrichtung ist obligatorisch. Innerhalb einer Vertiefungsrichtung kann und muss im Rahmen der vorgeschriebenen LP-Punktzahl aus einem Wahlpflicht-Katalog ausgewählt werden.
Um trotz individueller Freiräume bei der Auswahl der Lehrveranstaltungen innerhalb der Vertiefungsrichtung ein ausgewogenes Verhältnis von formalen und praktischen Lehrinhalten im Theorie- und Anwendungsbereich des Curriculums zu gewährleisten, sind Veranstaltungen der Kernqualifikation obligatorisch für alle Studierenden.
Weitere Spielräume bei der individuellen Gestaltung des Studienplanes und Verknüpfungsansätze von technischen und betriebswirtschaftlichen Wissen bieten die nichttechnischen Ergänzungskurse und die Kurse im Bereich Betrieb und Management, die aus dem Gesamtkatalog der TUHH gewählt werden können.
Den verbleibenden Teil des Curriculums macht die Master-Arbeit mit einem Anteil von 25 % aus.
Anmerkung: Innerhalb der Vertiefungsrichtung „Solare Energiesysteme“ haben
Studierende die Möglichkeit ein Auslandssemester
an der „University of Jordan“ in Amman, Jordanien, gefördert zu bekommen.
Innerhalb dieses Auslandsaufenthaltes sollen zusätzliche Module im Bereich
„Solare Energiesysteme“ belegt werden, deren Leistungspunkte an TUHH nach
Absprache anerkannt werden. Weiterhin kann in der Vertiefungsrichtung „Solare Energiesysteme“ im Zuge einer Kooperation mit der International Hellenic University in Thessaloniki, Griechenland ein geförderter Austausch erfolgen. Hierzu kann ein Modul an der Partneruniversität belegt werden, welches nach Absprache anerkannt werden kann.
Fachmodule der Kernqualifikation
Die Grundlage dafür bilden - aufbauend auf den Lehrveranstaltungen der konsekutiven Bachelorstudiengänge - weiterführende und anwendungsbezogene Lehrveranstaltungen im Bereich Elektrotechnik, Thermodynamik und Strömungsmechanik.
Den Grundlagen folgend werden die verschiedenen Nutzungsprinzipien des regenerativen Energieangebots und die daraus resultierenden Anforderungen an die entsprechende Konversionsanlagentechnik primär aus technischer Sicht vorgestellt. Vermittelte Kenntnisse werden nichtsdestotrotz auch in ökonomischen und ökologischen Bezug gebracht, um so die Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien in vorhandene Energiesysteme - sowohl in Deutschland als auch im außereuropäischen Ausland - bewerten zu können. Auch werden in dem Zusammenhang Arten der Energiespeicherung vermittelt und diskutiert.
Innerhalb des Moduls "Projekte und ihre Bewertung" werden die nicht-technischen Gesichtspunkte zur Durchführung von Projekten insbesondere im Bereich der erneuerbaren Energien betrachtet, umso fachliche Grundlagen in der rechtlichen und energiewirtschaftlichen Umsetzung zu schaffen.
Modul M0508: Strömungsmechanik und Meeresenergie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Mathematik I-III |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können verschiedene Anwendungen der Strömungsmechanik in der Vertiefungsrichtungsrichtung Regenerative Energien beschreiben. Sie können die Grundlagen der Strömungsmechanik der Anwendung in der Meeresenergie zuordnen und für konkrete Berechnungen abwandeln. Die Studierenden können einschätzen, welche strömungsmechanischen Probleme mit analytischen Lösungen berechnet werden können und welche alternativen Möglichkeiten (z.B. Selbstähnlichkeit, empirische Lösungen, numerische Methoden) zur Verfügung stehen. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Strömungsmechanik auf technische Prozesse anzuwenden. Insbesondere können sie Impuls- und Massenbilanzen aufstellen, um damit technische Prozesse hydrodynamisch zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können die vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten. Sie sind in der Lage, eine Aufgabenstellung aus dem Fachgebiet im Team zu bearbeiten, die Ergebnisse in Form eines Posters darzustellen und im Rahmen einer Posterpräsentation zu präsentieren. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben für strömungsmechanische Problemstellungen zu definieren und sich das zur Lösung dieser Aufgaben notwendige Wissen, aufbauend auf dem vermittelten Wissen, selbst zu erarbeiten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 3h | ||||||||
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0002: Energie aus dem Meer |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0001: Strömungsmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltung L2599: Behavioral Game Theory |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Timo Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2664: Behavioural Decision Theory |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min. |
Dozenten | Prof. Timo Heinrich |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2546: Building Business Data Products |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | folgt |
Dozenten | Prof. Christoph Ihl, Joschka Schwarz |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2544: Business Data Science Basics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | folgt |
Dozenten | Prof. Christoph Ihl, Joschka Schwarz |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2545: Business Decisions with Machine Learning |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | folgt |
Dozenten | Prof. Christoph Ihl, Joschka Schwarz |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2722: Digitalisierung und die Auswirkungen auf den Menschen |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung (laut FPrO) |
Prüfungsdauer und -umfang | Ausarbeitung, 5 Seiten |
Dozenten | Lucia Pohl, Robert Damköhler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1384: Gewerblicher Rechtsschutz |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Janna Thomsen, Cathérine Elkemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Quellen und Materialen wird im Internet zur Verfügung gestellt |
Lehrveranstaltung L2600: Green Economy - Entrepreneurship, Innovation & Technology Management |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Gruppenpräsentation |
Dozenten | Prof. Michael Prange |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Topics:
Based on examples and case studies primarily in the field of Green Economy, students learn the basics of Entrepreneurship, Innovation and Technology Management and will be able to develop business models, to evaluate start‐up projects and to describe strategic innovation processes. |
Literatur |
Präsentationsfolien, Beispiele und Fallstudien aus der Lehrveranstaltung. Presentation slides, examples, and case studies from the lecture. |
Lehrveranstaltung L2347: Human resource management für Ingenieure |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 0 |
Dozenten | Helge Kochskämper |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1711: Innovation Debates |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes |
Dozenten | Prof. Daniel Heiner Ehls |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow. The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership. |
Literatur |
1. Course notes and materials provided before the lecture 2. Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional) |
Lehrveranstaltung L0940: Innovationsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Innovationen sind die wichtigsten Quellen des Wachstums in industrialisierten Ländern. Die Frage, wie Innovationen herbeigeführt und erfolgreich gestaltet werden können, nimmt in der Betriebswirtschaftslehre einen immer größeren Raum ein. In der Lehrveranstaltung Innovationsmanagement behandelt Prof. Herstatt ausgewählte Aspekte und Themen im Zusammenhang mit strategischen, organisatorischen und Ressourcen-bezogenen Entscheidungen. Die Veranstaltung Innovationsmanagement findet im üblichen Vorlesungsformat statt, ergänzt durch studentische Präsentationen sowie Gruppen- und Einzelarbeiten. Themen
|
Literatur |
|
Lehrveranstaltung L0161: Internationalization Strategies |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten) |
Dozenten | Prof. Thomas Wrona |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2717: Konfigurationsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | York Schnatmeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Konfigurationsmanagement in komplexen Projekten und Vorhaben mit hohen Entwicklungsanteilen, langen Laufzeiten und dem Einsatz von Hochtechnologie. Konfigurationsmanagement (KM) gewinnt also zunehmend an Bedeutung insbesondere in öffentlichen, nationalen und internationalen Ausschreibungen/Vorhaben, sowie u.a. in der Luftfahrt- und Schiffbauindustrie. Es ist Tool des Projektmanagements. Es werden die wesentlichen Begriffe und Prozesse des KM erklärt. Als gemeinsame Basis dient die DIN ISO 10007. KM wird eingeordnet und abgegrenzt zu den wesentlichen anderen Prozessen des Projektmanagements wie Systems Engineering, Terminplanung, Qualitätsmanagement, Risikomanagement, Controlling, Vertragsmanagement usw. Es werden die notwenigen Strukturen in den zu entwickelnden und zu fertigenden Produkten und innerhalb der Projektorganisation selbst aufgezeigt. KM unterstützt die Schnittstelle zwischen dem Project Management Office (PMO) und den ausführenden Abteilungen, sowie den involvierten Unterauftragnehmern. Eine Schlüsseldisziplin des KM ist die Änderungslenkung, ausgehend vom Erkennen des Änderungsbedarfs bis zur Umsetzung in Planung, Konstruktion, Fertigung und Produkt. Dabei wird die Einbeziehung des Auftraggebers, oftmals auch des öffentlichen Auftraggebers, besonders betrachtet. Die klassischen Projektphasen, Akquisition, Realisierung, Inbetriebnahmen und die Nutzung erfordern Gemeinsamkeiten sowie auch unterschiedliche Anforderungen an das jeweilige KM. Durch die vermittelten Inhalte sollen die Studierenden befähigt werden, beim Aufsetzen neuer Projekte von Anfang an zielgerichtet mitzuarbeiten, bestehende Projekte voranzutreiben und dabei KM einzusetzen. Grundlagen I |
Literatur | DIN ISO 10007 |
Lehrveranstaltung L2350: Leadership |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Thomas Kosin |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1231: Management und Unternehmensführung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Christian Ringle, Janna Ehrlich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
- Bea, F.X.; Haas, J.: Strategisches Management, 5. Auflage, Stuttgart 2009. |
Lehrveranstaltung L0863: Marketing |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Christian Lüthje |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Contents Basics of Marketing The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling Strategic Marketing Planning How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership strategies? Market-oriented Design of products and services How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products? Pricing What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)? Marketing Communication What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations? Sales and Distribution How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets? Knowledge Students will gain an introduction and good overview of
Skills Based on the acquired knowledge students will be able to:
Social Competence The students will be able to
Self-reliance The students will be able to
|
Literatur |
Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431 Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004, p. 106-110 Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155 Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116 |
Lehrveranstaltung L2440: Mergers & Acquistions (M&A) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Philipp Haberstock |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0709: Project Management |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Carlos Jahn |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event. The following topics will be covered in the lecture:
|
Literatur |
Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute. DeMarco, Tom (1997). The Deadline: A Novel About Project Management. DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5) Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management. Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach. Heyworth, Frank (2002). A Guide to Project Management. ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E)) Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. Lock, Dennis (2018). Project Management. Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager. Murch, Richard (2011). Project Management: Best Practices for IT Professionals. Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen. |
Lehrveranstaltung L1385: Projektmanagement in der industriellen Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dipl.-Ing. Wilhelm Radomsky |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
• Brown (1998): Erfolgreiches Projektmanagement in 7 Tagen • Burghardt (2002): Einführung in Projektmanagement • Cleland / King (1997): Project Management Handbook • Hemmrich, Harrant (2002): Projektmanagement, In 7 Schritten zum Erfolg • Kerzner (2003): Projektmanagement • Litke (2004): Projektmanagement • Madauss (2005): Handbuch Projektmanagement • Patzak / Rattay (2004): Projektmanagement • PMI (2004): A Guide to the Project Management Body of Knowledge • RKW / GPM: Projektmanagement Fachmann • Schelle / Ottmann / Pfeiffer (2005): ProjektManager |
Lehrveranstaltung L1897: Projektmanagement und Agile Methoden |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten) |
Dozenten | Christian Bussler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung vermittelt die Grundlagen des Projektmanagements, wie es sowohl in technischen als auch in kaufmännischen Projekten angewandt wird. Inhaltlich abgerundet wird sie durch einen Exkurs zum Prozessmanagement. Zentrale Fragestellungen sind: - Was macht ein Projekt aus und vor welche Herausforderungen stellt es die Beteiligten? - Welche Methoden gibt es, um diesen Herausforderungen zu begegnen? - Wie wurden die Methoden weiterentwickelt, um immer schnelleren Innovationszyklen gerecht zu werden? Was ist heute "state of the art"? - Was wird von den einzelnen Projektmitgliedern erwartet? - Was unterscheidet Projekte von Prozessen? Wie werden letztere analysiert? Die Methoden werden in der Veranstaltung nicht nur vermittelt, sondern unmittelbar in Gruppenarbeit angewendet. Damit werden die Teilnehmer befähigt, sich konstruktiv in Projekte einzubringen und später selbst Projekte zu gestalten und zu steuern. Da in Unternehmen immer mehr projektorientiert gearbeitet wird, stellt dies eine Schlüsselqualifikation dar. Themenschwerpunkte sind dabei: - Das "magische Dreieck" der Projektziele - Typische Projektphasen - Klassische Instrumente und Methoden (Projektstrukturplan, DEMI, Gantt-Diagramm) - Projektorganisation und -steuerung - Kommunikation und Arbeit im Team - Agiles Vorgehen nach Scrum - Prozessebenen und -kaskadierung - Grundlagen der Prozessoptimierung Die Veranstaltung ist so aufgebaut, dass die Teilnehmer mit überschaubarem zusätzlichen Aufwand eine Basiszertifizierung für Projektmanagement bei einer entsprechenden Zertifizierungsstellen (z.B. GPM Basiszertifikat) erwerben können. Teile der Hausarbeit sind bereits Ergebnis der Gruppenarbeit im Seminar selbst. Sie soll 5-10 Seiten umfassen sowie einen Projektstrukturplan, der z.B. in Excel ausgearbeitet werden kann. Erwünscht ist, dass die Hausarbeit in Arbeitsgruppen erstellt wird. Der erwartete Umfang steigt dann an, jedoch nicht proportional zur Zahl der Arbeitsgruppenmitglieder (bei 4 Teilnehmern z.B. 15-20 Seiten). |
Literatur |
Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015 Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014 GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014 Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007 Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/ Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010 |
Lehrveranstaltung L2349: Rechnungswesen und Jahresabschluss |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Matthias Meyer |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | |
Literatur |
Lehrveranstaltung L1293: Risikomanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Meike Schröder |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Risiken sind in der heutigen Geschäftswelt allgegenwärtig. Daher stellt die Fähigkeit Risiken zu managen, einen der wichtigsten Aspekte dar, der erfolgreiche Unternehmer von anderen unterscheidet. Es existieren verschiedene Risikokategorien wie Kredit-, Länder-, Markt-, Liquiditäts-, operationelle, Supply Chain- oder Reputationsrisiken. Unternehmen sind dabei anfällig für die verschiedensten Risiken. Was den Umgang mit Risiken noch komplexer und herausfordernder gestaltet ist, dass sich Risiken häufig der direkten Kontrolle durch das Unternehmen entziehen, denn sie können ihren Ursprung auch außerhalb der Unternehmensgrenzen haben. Dennoch kann der damit verbundene (negative) Einfluss auf das Unternehmen erheblich sein. Das Bewusstsein sowie die Fachkenntnis, verschiedene Risiken zu managen, gewinnen daher in Zukunft weiter an Bedeutung. Im Rahmen der Vorlesung werden unter anderem folgende Themen behandelt:
|
Literatur |
Brühwiler, B., Romeike, F. (2010), Praxisleitfaden Risikomanagement. ISO 31000 und ONR 49000 sicher anwenden, Berlin: Erich Schmidt. Cottin, C., Döhler, S. (2013), Risikoanalyse. Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen, 2. überarbeitete und erweiterte Aufl., Wiesbaden: Springer. Eller, R., Heinrich, M., Perrot, R., Reif, M. (2010), Kompaktwissen Risikomanagement. Nachschlagen, verstehen und erfolgreich umsetzen, Wiesbaden: Gabler. Fiege, S. (2006), Risikomanagement- und Überwachungssystem nach KonTraG. Prozess, Instrumente, Träger, Wiesbaden: Deutscher Universitäts-Verlag. Frame, D. (2003), Managing Risk in organizations. A guide for managers, San Francisco: Wiley. Götze, U., Henselmann, K., Mikus, B. (2001), Risikomanagement, Heidelberg: Physica-Verlag. Müller, K. (2010), Handbuch Unternehmenssicherheit. Umfassendes Sicherheits-, Kontinuitäts- und Risikomanagement mit System, 2., neu bearbeitete Auflage, Wiesbaden: Springer. Rosenkranz, F., Missler-Behr, M. (2005), Unternehmensrisiken erkennen und managen. Einführung in die quantitative Planung, Berlin u.a.: Springer. Wengert, H., Schittenhelm F. A. (2013), Coporate Risk Mangement, Berlin: Springer. |
Lehrveranstaltung L1389: Schwerpunkte des Patentrechts |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Christian Rohnke |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Das Seminar behandelt in vertiefter und komprimierter Form fünf wesentliche Schwerpunkte des Patentrechts, nämlich die Patentierungsvoraussetzungen, das Anmeldeverfahren, Fragen der Inhaberschaft unter besonderer Berücksichtigung von Arbeitnehmererfindern, den Verletzungsprozess sowie den Lizenzvertrag und die sonstige wirtschaftliche Verwertung von Patenten. Einer vorlesungsartigen Einführung in den Themenkreis durch den Referenten folgt eine vertiefte Auseinandersetzung der Teilnehmer mit dem Stoff durch die Anwendung im Rahmen von Gruppenarbeiten, die Vorstellung der Ergebnisse und anschließende Diskussion im Kreis der Seminarteilnehmer. |
Literatur | wird noch bekannt gegeben |
Lehrveranstaltung L2796: Startup Engineering: Cases |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Christoph Ihl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2410: Startup Engineering: Project |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Christoph Ihl, Dr. Hannes Lampe |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2409: Strategic Shared-Value Management |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Jill Küberling-Jost |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt | |
Literatur |
Lehrveranstaltung L2295: Strategische Planung mit Planspielen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | |
Dozenten | Dr. Jan Spitzner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1351: Unternehmensberatung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Gerald Schwetje |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung "Unternehmensberatung" vermittelt dem Studierenden komplementäres Wissen zum technischen und betriebswirtschaftlichen Studium. Die Studierenden lernen die Grundlagen der Beratung sowie das Zusammenwirken der Akteure (Agent-Prinzipal-Theorie) kennen und erhalten einen Überblick zum Beratungsmarkt. Darüber hinaus wird aufgezeigt, wie eine Unternehmensberatung funktioniert und welche methodischen Bausteine (Prozesse) notwendig sind, um ein Anliegen eines Klienten zu bearbeiten und einen Beratungsprozess durchzuführen. Anhand von praxisnahen Anwendungsbeispielen sollen die Studierenden einen Einblick in das breite Leistungsangebot der Managementberatung als auch der funktionalen Beratung erhalten. |
Literatur |
Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008 Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008 Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009 Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003 Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992 Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008 Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991 Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996 Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997 Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005 Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013 Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011 Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011 Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011 Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012 Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012 Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012 Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010 |
Lehrveranstaltung L0536: Vertrauens- und Reputationsmanagement |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 20-30 Minuten und Thesenpapier |
Dozenten | Dr. Michael Florian |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Lehrveranstaltung im Block I Betrieb und Management Besonders in Krisenzeiten lässt sich die große wirtschaftliche Relevanz von Vertrauen und Reputation erkennen, wenn der Verlust dieser beiden immateriellen Handlungsressourcen im Markttausch, in der internen Organisation von Unternehmungen oder in der zwischenbetrieblichen Kooperation bemerkt und beklagt wird. Was aber bedeutet Vertrauen im Kontext wirtschaftlicher Aktivitäten und was ist unter Reputation zu verstehen? Inwieweit ist die Rede von einer "Investition" in Vertrauen oder von einem Vertrauens- und Reputations-"Management" überhaupt angemessen? Lassen sich Vertrauen und Reputation in Unternehmungen ohne weiteres durch das Management vorausschauend planen, steuern und kontrollieren - oder beruht der Versuch einer bewussten Gestaltung und gezielten Fremdsteuerung der Vertrauensbildung und des guten Rufes auf einem Missverständnis, das sogar kontraproduktive Effekte der Misstrauensbildung hervorrufen kann? Am Beispiel von ausgewählten Texten und vertiefenden Fallstudien befasst sich das Seminar mit theoretischen und methodischen Problemen sowie mit den praktischen Implikationen, den Einflusschancen und Grenzen des Vertrauens- und Reputationsmanagements bei der Koordination und Kontrolle wirtschaftlicher Aktivitäten. |
Literatur |
Allgäuer, Jörg E. (2009): Vertrauensmanagement: Kontrolle ist gut, Vertrauen ist besser. Ein Plädoyer für Vertrauensmanagement als zentrale Aufgabe integrierter Unternehmenskommunikation von Dienstleistungsunternehmen. München: brain script Behr. |
Modul M0524: Nichttechnische Angebote im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltung L1775: “What’s up, Doc?” Science and Stereotypes in Literature and Film |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Jennifer Henke |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Popular novels and films significantly contribute to the public understanding of science and its representatives. How to define “good” or “bad” science is negotiated in a variety of artistic works. Stereotypes such as the “mad scientist”, which originated in early nineteenth century England, continue to persist. Mary Shelley created the prototype of the obsessive and reckless scientist in Frankenstein - The Modern Prometheus (1818) who conducts his forbidden experiments in a secret lab and crosses ethical boundaries. This masculine stereotype has been followed by further ones such as the noble, adventurous or clumsy scientist, whereas scholars have only recently begun to consider the representation of female science. First, this seminar is devoted to selected formations of knowledge in relation to literature from classical antiquity to the present. Second, the focus shall rest on the production of persistent stereotypes in various media formats such as novels or films while paying particular attention to the aspect of gender. The overall goal of the seminar is an understanding of science as a cultural practice. Requirements for participation: Shelley, Mary: Frankenstein. New York: Norton, 2012. Please pay attention to the exact publication dates. |
Literatur |
Teilnahmevoraussetzungen: Shelley, Mary: Frankenstein. New York: Norton, 2012. Bitte ausschließlich diese Edition anschaffen. |
Lehrveranstaltung L2064: 120 Jahre Filmgeschichte |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Oliver Schmidt |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Die Vorlesung vertieft das Verhältnis von Filmtechnikentwicklung, ästhetische Filmformentwicklung und soziokultureller Gesellschaftsentwicklung. Ausgehend von den medialen Vorläufern des Films im 19. Jahrhundert wie der Laterna Magica, der Fotografie und des Kinetoskop werden entscheidende Stationen der über 120 Jahre umfassenden Geschichte des Films chronologisch untersucht und im Hinblick auf folgende Fragen überprüft: Inwiefern ist die Entwicklung neuer Medientechniken als Reaktion auf bestimmte gesellschaftliche Veränderungen und Bedürfnisse zu begreifen? Welche neuen ästhetischen Ausdrucksformen ermöglichen solche Technikerneuerungen wie die Einführung des Tonfilms, des Farbfilms oder der Handkamera? Und inwiefern spiegeln diese neuen ästhetischen Ausdruckmöglichkeiten wiederum bestimmte gesellschaftliche Befindlichkeiten, letztlich den jeweiligen Zeitgeist? Inhaltliche Hauptstationen der Vorlesung sind: die Technikeuphorie des 19. Jahrhunderts, der frühe Film, der Deutsche Expressionistische Film, das klassische Hollywood-Kino, das europäische Nachkriegskino, Exploitation- und Underground-Cinema, New Hollywood, Das Blockbuster-Kino, Independent Cinema bis hin zum aktuellen „Kino der Entgrenzung“. Die Teilnehmer erlernen zum einen vertieftes, detailliertes Wissen über Geschichte, Bedeutung und Analyse des Einzelmediums Film und erwerben damit Medienkompetenz. Und zum anderen sollen die Teilnehmer durch eine interdisziplinäre Perspektive auf den Film (Technikgeschichte, Medienkulturwissenschaft und Gesellschaftswissenschaft) ein tieferes Verständnis für die realen Verflechtungen von Technologien in Kultur und Gesellschaft und deren historische Transformationsprozesse erlangen. |
Literatur |
Lehrveranstaltung L1774: Angewandte Kunst: Form und Funktion |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Prof. Margarete Jarchow, Dr. Christian Lechelt |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Als „angewandte Kunst“ werden die Sparten von Design, Kunsthandwerk und Kunstgewerbe zusammengefasst. Mithin also die Kunstgattungen, die sich mit der Gestaltung der Dinge befassen. Wissenschaftlich oftmals unterschätzt, erlaubt gerade die angewandte Kunst, Aussagen über die Befindlichkeiten einer Gesellschaft in ihrer jeweiligen historischen Situation zu treffen. Im Seminar werden die Rückwirkungen gesellschaftlicher Entwicklungen auf insbesondere diese Kunstgattungen herausgearbeitet. Außerdem werden die Interdependenzen von Gestaltungsabsicht, Funktion, Materialeinsatz und Technologie eruiert. Darüber hinaus werden die Gründe für die oftmals eher abwertende Besetzung des Begriffs „Kunstgewerbe“ diskutiert. |
Literatur |
Wird noch angegeben Will be announced in lecture |
Lehrveranstaltung L2854: Care-Krise, Corona-Krise und soziale Ungleichheiten |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Gruppenreferat mit Handout (45 Minuten) |
Dozenten | Anna Maria Köster-Eiserfunke |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Wie nicht zuletzt die Corona-Pandemie deutlich macht sind alle Menschen auf fürsorgende Tätigkeiten und gesundheitliche Infrastrukturen angewiesen. Die gesellschaftliche Verteilung dieser Arbeiten ebenso wie die Zugänge zu gesundheitlicher Versorgung sind jedoch von zahlreichen Ungleichheitsverhältnissen geprägt und strukturell krisenhaft. Diese Krisenprozesse ebenso wie die Bedeutung sozialer Ungleichheiten in der Bearbeitung der Corona-Pandemie werden im Seminar fokussiert und gemeinsam erarbeitet. Hierfür beschäftigen wir uns u.a. mit der Ökonomisierung des Gesundheitssektors und bio-politischen Grenzziehungen, mit neuen familiären Arbeitsteilungen und der Bedeutung von Armut für gesundheitliche Risiken ebenso wie mit politischen Handlungsmöglichkeiten für eine solidarische Bewältigung der Krise(n). In diesem Seminar setzen sich die Studierenden mit grundlegenden Gesellschaftsstrukturen und aktuellen gesellschaftlichen risenprozessen auseinander. Sie erlernen die Erarbeitung komplexer Perspektiven auf Care-Verhältnisse, Gesundheitspolitiken und die gegenwärtige Corona-Krise und setzen sich mit politischen Gestaltungsmöglichkeiten und ihrer sozialen Verantwortung in einer vernetzten Welt auseinander. Die Studierenden reflektieren auf soziale Ungleichheiten im Kontext der gesellschaftlichen rganisation von Care-Arbeit sowie der aktuellen |
Literatur |
Aulenbacher, B., Dammayr, M. (Hg.) 2014: Für sich und andere sorgen. Krise und Zukunft von Care in der modernen Gesellschaft // Volkmer, M., Werner, K. 2020: Die Corona-Gesellschaft. Analysen zur Lage und Perspektiven für die Zukunft |
Lehrveranstaltung L1990: Clash of Cultures. Filme und Serien als Verhandlungsorte des Eigenen und des Fremden |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Jacobus Bracker |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Bilder sind seit jeher Verhandlungsorte des Eigenen, Anderen und Fremden. Das gilt in besonderem Maße für die Medien des Films und der Fernsehserie. Serien wie „Game of Thrones“, „The Walking Dead“ oder „Vikings” oder die Filme der Alien-Reihe oder „Lord of the Rings“ zeigen das Aufeinanderprallen der Kulturen. Unabhängig von ihrem Genre - Fantasy, Science Fiction, historisierend - bedienen sich die bewegten Bilder immer wieder ähnlicher Muster, um Konzepte des Eigenen und des Fremden bildlich zu inszenieren und erzählerisch zu vermitteln. In dem Seminar werden wir uns einerseits mit diesen Konzepten und dem Kulturbegriff, andererseits mit den Besonderheiten bewegter Bilder auseinandersetzen, um sodann ausgewählte Film- und Serienbeispiele unter diesen Aspekten zu betrachten und zu analysieren. |
Literatur |
Literaturhinweise, Texte etc. werden zu gegebener Zeit online zur Verfügung gestellt. |
Lehrveranstaltung L1441: Deutsch als Fremdsprache für Internationale Masterstudiengänge |
Typ | Seminar |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dagmar Richter |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Master-Deutschkurse in Kooperation mit IBH e.V. - Master-Deutschkurse auf unterschiedlichen Niveau-Stufen Sie sind in internationalen Studienprogrammen verpflichtend für Nicht-Muttersprachler bzw. für Studierende ohne DSH-Zertifikat oder äquivalentem TEST DAF-Ergebnis; Einstufung nach Eignungstest. Alle anderen Studierenden müssen stattdessen Module für insgesamt 4 ECTS aus dem Katalog der Nichttechnischen Ergänzungskurse belegen. |
Literatur | - Will be announced in lectures - |
Lehrveranstaltung L1884: Die Hamburger Speicherstadt - Von der Ingenieurleistung zum Weltkulturerbe |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 20 minütiges Referat mit anschließender Diskussion |
Dozenten | Dr. Jörg Schilling |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Das Seminar beabsichtigt die mit der Anlage der Speicherstadt bewältigten Herausforderungen und die wegweisende städtebauliche und architektonische Leistung des Hamburger Ingenieurwesens herauszuarbeiten, die aufgrund ihrer nachhaltigen Konzeption und Funktionsgerechtigkeit sowie der einheitlichen Prägung die Ernennung zum Weltkulturerbe begründete. |
Literatur | u.a.: Hamburg und seine Bauten unter Berücksichtigung seiner Nachbarstädte Altona und Wandsbek, hg. vom Architekten- und Ingenieur-Verein zu Hamburg, Hamburg 1890; Karin Maak: Die Speicherstadt im Hamburger Hafen, Hamburg 1895; Hermann Hipp: Freie und Hansestadt Hamburg, Köln 1989; Matthias von Popowski: Franz Andreas Meyer (1837-1901). Oberingenieur und Leiter des Ingenieurwesens von 1872-1901, in: Wie das Kunstwerk Hamburg entstand, hg. v. Dieter Schädel, Hamburg 2006, S. 64-79; Ralf Lange: HafenCity + Speicherstadt : das maritime Quartier in Hamburg, Hamburg 2010. |
Lehrveranstaltung L2367: Digitale Kunst |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Referat ca. 20 min. plus anschließende Diskussion |
Dozenten | Dr. Imke Hofmeister |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Die Digitalisierung beeinflusst in hohem Maß viele Bereiche unseres Lebens und so ist der Einsatz digitaler Technologien auch in der Kunst und im Design rasant gestiegen. Schließlich unterliegt Kunst nicht nur einem steten Wandel, sondern passt sich auch immer wieder den technischen Gegebenheiten an. Nach der Fotokunst aus der Mitte des 19. Jh. und der Videokunst der 1960er Jahre, die bereits große Veränderungen im künstlerischen Schaffen mit sich brachten, gewinnt im Bereich der Medienkunst die Digitale Kunst immer größere Bedeutung. Die ersten Versuche den Computer mit entsprechender Grafiksoftware als künstlerisches Medium zu nutzen fanden in den 80/90er Jahren des 20. Jh. statt. Seitdem gibt es eine breite Entwicklung im Bereiche der Digitalen Kunst, die mittlerweile die unterschiedlichsten digitalen Bildphänomene und Kunstgattungen umfasst und somit in ihren Objekten, Theorien und Praktiken auf vielfältige Weise mit den digitalen Medien verflochten ist. Das Seminar gibt einen Überblick über die Geschichte der Digitalen Kunst und ihre unterschiedlichen Gattungen. Dazu zählen z.B. Photopaintings, wo durch digitale Manipulation, Filterungsprozesse und Malerei das Bild bearbeitet und über viele Stufen hinweg in eine völlig neue Form transformiert werden kann. Außerdem 3-D Bilder, Vektorgrafiken, mathematische Kunst und Computerkunst im Allgemeinen. Gleichwohl soll die digitale Entwicklung in der Kunst beleuchtet werden, von den ersten Anfängen am Computer mit noch vergleichsweise einfachen „digitalen Hilfsmitteln“ z.B. in Form von einfachen Bildbearbeitungsprogrammen bis hin zu den gegenwärtigen ausgefeilten grafischen Tools. Darüber hinaus sollen auch die Darstellungs-, Verbreitungs- und Konservierungsmöglichkeiten Digitaler Kunst erörtert werden, die sich in erster Linie - da am Computerbildschirm darstellbar - sehr gut im Internet verbreiten lässt. Gleichwohl gibt es die Kunstwerke auch zunehmend als Digitaldruck, z.B. auf Kunstdruckpapier oder auf einer Künstlerleinwand, wodurch reale Kunstwerke entstehen, die auch gesammelt werden können. Dabei stellt die Konservierung digitaler Kunstwerke die Gesellschaft vor neue Herausforderungen: einerseits wird es durch den ständigen technologischen Fortschritt bzw. die rapide Weiterentwicklung der Speichermedien zunehmend komplizierter, aktuelle Arbeiten zu konservieren. Andererseits gibt es digitale Kunstwerke, die über eine solche Komplexität verfügen, dass von vornherein eine Archivierung unmöglich gemacht wird. Thematisiert wird des Weiteren die große Faszination am digitalen kreativen Schaffen und die fast unerschöpflichen Möglichkeiten, die das Medium Computer den Künstlern bietet, die weiterhin dafür sorgen werden, dass Digitale Kunst einen festen Platz neben traditionellen Medien findet. Schließlich gibt es im Gegensatz zu den traditionellen Herstellungsweisen im Bereich der bildenden Kunst und des Design bei der Digitalen Kunst immer neue Erscheinungsformen, die letztlich nicht nur dem „ausgebildeten“ Künstler sondern auch dem Laien weitreichende Möglichkeit zu künstlerischem Ausdruck geben. Und das ganz im Sinne des Performance Künstlers Joseph Beuys , der in seinem erweiterten Kunstbegriff der 70er Jahre des 20. Jh. postuliert, dass seiner Vorstellung nach jeder Mensch zur Kreativität fähig ist, ja „jeder Mensch ein Künstler“ sei. Zudem soll im Seminar auch die Frage diskutiert werden, inwiefern Digitale Kunst als „die“ zeitgenössische Kunst d.h. die Gegenwartskunst im Zeitalter digitaler Technik bezeichnet werden kann. Darüber hinaus ist von großem Interesse, inwiefern sich die Wahrnehmung von Kunst per se in einer digitalisierten Gesellschaft bereits verändert hat und noch verändern wird. |
Literatur | folgt |
Lehrveranstaltung L2479: Einführung in den Technikjournalismus: So erreichen Forschung, Entwicklung und Lösungen die Öffentlichkeit |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 15 Minuten je 3er Team |
Dozenten | Prof. Margarete Jarchow, Matthias Kowalski |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Das Seminar vermittelt grundlegende journalistische Kenntnisse und Fähigkeiten, um technische Inhalte einer breiten Öffentlichkeit zu vermitteln. |
Literatur |
Newman, Nic: Journalism, Media & Technology - Trends and predictions 2019, Reuters Institute/ University of Oxford Digital News Publications http://www.digitalnewsreport.org/publications/2019/journalism-media-technology-trends-predictions-2019/#executive-summary; |
Lehrveranstaltung L1084: Fachdidaktik der Ingenieurwissenschaften in Forschung und Anwendung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Teilnahme an gegenseitiger Hospitation und umfassender Bericht, schriftliche Reflexionsaufgaben, mündliche Beiträge in Diskussionen |
Dozenten | Prof. Christian Kautz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Lernumgebungen, Aktivierende Lehrformen Methoden, Ergebnisse und Implikationen der empirischen Fachdidaktik Konzeptuelles Verständnis und Fehlvorstellungen in Grundlagenveranstaltungen, Untersuchungen zu Lernverhalten, -motivation und -einstellungen Vorbereitung von Gruppenübungen in den unterstützten Grundlagenveranstaltungen Problem-Based Learning Berücksichtung von Lerntypen in der ingenieurwissenschaftlichen Lehre Prüfungen |
Literatur |
Ausgewählte Artikel aus Fachzeitschriften (überwiegend in englischer Sprache) werden an die Seminarteilnehmer verteilt. |
Lehrveranstaltung L1994: Fakten, Fakten, Fakten - Die Technik des Journalismus verstehen und anwenden- deutschsprachig |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Prof. Margarete Jarchow, Matthias Kowalski |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Egal, ob über klassische Kanäle wie Zeitung/Zeitschrift oder Hörfunk/TV sowie über Internet, soziale Medien oder über Kommunikation in Fachzirkeln: Journalismus begegnet uns heute in beinahe allen Formen von öffentlicher und privater Kommunikation. Doch was macht in dieser Flut von Inhalten eine Geschichte wirklich auch zur Nachricht? Wie erkennen wir Relevanz? Wie enttarnen wir Fake-News? In diesem Blockseminar werden anhand von Praxisbeispielen und redaktionellen Übungen die Grundsätze der journalistischen Techniken vermittelt. Die Teilnehmer erarbeiten dabei außerdem Tools, um Manipulationen zu erkennen und auszuschalten. |
Literatur |
Lehrveranstaltung L2370: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in English |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Prof. Margarete Jarchow, Matthias Kowalski |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required. |
Literatur | folgt |
Lehrveranstaltung L0970: Fremdsprachkurs |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dagmar Richter |
Sprachen | |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Studierende können hier einen Fremdsprachkurs aus dem Angebot wählen, dass die Hamburger Volkshochschule im Auftrag der TUHH konzipiert hat und auf dem Campus anbietet. Es handelt sich um Kurse in den Sprachen Englisch, Chinesisch, Französisch, Japanisch, Portugisisch, Russisch, Schwedisch, Spanisch und Deutsch als Fremdsprache. In allen Sprachen werden zielgerichtet allgemeinsprachliche Kenntnisse vermittelt, in Englisch enthalten zudem alle Kurse fachsprachliche Anteile (English for technical purposes). Die aktuellen Prüfungsmodalitäten der Fremdsprachkurse sind auf der TUHH - Anmeldeseite für die Fremdsprachkurse abgebildet. |
Literatur | Kursspezifische Literatur / selected bibliography depending on special lecture programm. |
Lehrveranstaltung L1844: Gelassen bleiben im Konflikt. Gewaltfreie Kommunikation nach M. Rosenberg |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 2-3 Seiten bzw. 10-20 Minuten plus anschließende Besprechung |
Dozenten | Dr. Claudia Wunram |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! "Worte können Brücken bauen oder Gräben ziehen" - das ist auch in wissenschaftlichen und sach-orientierten Berufsfeldern so. Wie reagiere ich zum Beispiel, wenn ich von meinem Gegenüber in einer fachlichen Diskussion oder von Kollegen in einem Team angegriffen werde oder es zum Streit in der Projektplanung kommt? Was hilft mir, auch in herausfordernden Situationen respektvoll und wertschätzend zu kommunizieren? Wie kann ich Kritik oder Ärger ehrlich, direkt und ohne Vorwürfe ausdrücken? Gewaltfreie Kommunikation ist ein von Marshall B. Rosenberg, Ph.D. entwickeltes Konzept, das dabei hilft, eine wertschätzende Grundhaltung sich selbst und anderen gegenüber zu entwickeln und danach zu leben. Gewaltfreie Kommunikation zeigt Wege auf, mit der eigenen Sprache achtsam und verantwortlich umzugehen, sodass selbst in herausfordernden Konfliktsituationen eine Brücke gebaut werden kann. Effektive und zufriedenstellende Zusammenarbeit gelingt nur, wenn die Kommunikation zwischen den Beteiligten funktioniert, ansonsten wird es mühsam und wenig effizient. Anhand eigener Beispiele und durch Vorwegnahme von Fragestellungen aus ihrem zukünftigen Berufsleben erhalten die Studierenden der Ingenieurwissenschaften mit diesem Seminar die Möglichkeit, ihr eigenes kommunikatives Verhalten zu reflektieren und Wege der Kooperation und einvernehmlichen Lösungsgestaltung zu erlernen. Dieses Seminar vermittelt die dafür wesentlichen Kommunikationskompetenzen. |
Literatur |
German:
English:
|
Lehrveranstaltung L2345: Hochschuldidaktik in Theorie, Forschung und Praxis |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung (in mehreren Teilen) sowie eine Präsentation |
Dozenten | Prof. Christian Kautz, Jenny Alice Rohde |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Die Veranstaltung behandelt in Seminarform theoretische Grundlagen sowie praktische Anregungen zu einer Tätigkeit als Tutorin oder Tutor in Gruppenübungen an der TUHH. Sie bietet darüber hinaus die Möglichkeit, diese Tätigkeit zu reflektieren, u. a. im Rahmen von Hospitationen. Zum Vorwissen / den Veranstaltungsvoraussetzungen: Diese Veranstaltung setzt grundlegende erste Arbeits-/Zusammenarbeitserfahrungen in den wissenschaftlichen Arbeitsstrukturen einer Hochschule voraus, die Masterstudierende im Rahmen der Qualifikation für den Bachelorabschluss an einer Hochschule erworben haben. Zu diesen vorausgesetzten Arbeitserfahrungen gehören spezifische Selbst/Lernerfahrungen an einer Hochschule. Diese werden aufgegriffen, reflektiert, ausgebaut und theoretisch wie praktisch im Hinblick auf das Lernen von und in Gruppen und das spätere Anleiten dieses Lernprozesses weiterentwickelt. Weiter werden Erfahrungen mit verschiedenen hochschulischen Lern-/Gruppentypen, die im Rahmen eines Studiums, die im Laufe des Bachelorstudiums erworben wurden, hier im Masterstudium vorausgesetzt, aufgegriffen, reflektiert, ausgebaut und weiterentwickelt. Die Lehrveranstaltung setzt außerdem grundlegende Kenntnisse des Präsentierens von wissenschaftlichen Arbeitsergebnissen voraus, die Masterstudierenden mit Bachelorabschluss erworben haben. In der Lehrveranstaltung wird diese Erfahrung mit und in Darstellung in Gruppensituation ausgebaut und weiterentwickelt in Richtung der Auseinandersetzung der Studierenden mit der eigenen Rolle sowie mit deren Ausgestaltung in Face-to-Face Interaktion sowie in Gruppenprozessen, Lern- und Führungssituationen, da Masterabsolvent*innen nach Abschluss anders als Bachelorabsolvent*innen beruflich stärker in einer Moderationsrolle und mit der Führung von Menschen denn mit der Führung in Sachthemen gefordert sind. Entsprechend der späteren Berufsrolle wird in der Arbeit im Seminar die von Masterabsolvent*innen deutlich mehr als von Bachelorabsolvent*innen erwartete Befähigungen zu selbstständigem Arbeiten und Lernen, Übertragung des Erlernten auf neue Gebiete, Mitgestaltung, Diskussionsbeteiligung und das Einbringen eigener Beispiele und Interessen gefördert und ermöglicht. Lernziele Fachkompetenz: Wissen: Die Studierenden haben Kenntnisse in den folgenden Bereichen erworben: - Feedbackregeln und -methoden - Moderations- und Präsentationstechniken - Lernprozesse und Lernziele - Planung einer Veranstaltung (Planungsraster) - Neurodidaktik, Motivation, didaktisch begründete Aufgabenreduktion, Gruppendynamik, Korrektur von Aufgaben, Störungsstufen und Interventionen in der Lehre - Methoden zur Förderung der Mitarbeit von Studierenden - Prinzip der Minimalen Hilfe nach Zech, Fragetechniken, Think-Pair-Share - Methoden und Ergebnisse der Fachdidaktik - Methoden, Arbeitsweisen und Erkenntnisse der empirischen Hochschuldidaktik - Taxonomien kognitiver Prozesse Fertigkeiten: Die Studierenden sind auf Basis des erlernten Wissens in der Lage: - Feedbackregeln und -methoden anzuwenden - den Transfer aus den Methoden und Ergebnissen der Fachdidaktik auf das eigene Tutorium zu leisten - grundlegende Moderations- und Präsentationskompetenzen anzuwenden - Methoden zur Förderung der Mitarbeit von Studierenden einzusetzen - einfache Methoden der fachdidaktischen Forschung zur Identifizierung von Verständnisschwierigkeiten einzusetzen - eine Feedback-Methode für Unterricht in Kleingruppen auszuwählen, dafür relevante Fragestellungen zu entwickeln und diese einzusetzen - (Übungs-)Aufgaben anhand von Lernzieltaxonomien sowie der Ergebnisse fachdidaktischer Forschung zu beurteilen - zu erkennen, wann der Einsatz welcher Lehr-/Lernmethode sinnvoll ist - Vorgehensweisen in der Lehre sowie die zugrunde liegenden Annahmen von Lehrenden anhand üblicher Lerntheorien einzuordnen. Personale Kompetenz: Sozialkompetenz: Die Studierenden sind nach Abschluss des Seminars in der Lage: - Lernende mit Hilfe von Methoden zu motivieren und so die Mitarbeit zu fördern - ihre eigene Rolle als Lehrende zu reflektieren - einen positiven Beitrag für ein angenehmes Arbeits- bzw. Lernklima zu leisten - Anwendungsmöglichkeiten der erworbenen Kompetenzen (Gruppenleitung, Fähigkeit, auf unterschiedliche Menschentypen eingehen zu können etc.) auf weitere Bereiche (berufliche Zukunft) erkennen - Erkenntnisse an betreuende Lehrende und andere Tutorinnen und Tutoren weitergeben (Verständnisschwierigkeiten ihrer Teilnehmenden etc.) - Die Möglichkeiten und Grenzen ihres Einflusses als Tutor/in zu reflektieren (z. B. Motivierung von Studierenden) und ihr Verhalten entsprechend anzupassen Selbstständigkeit: Die Studierenden sind nach Abschluss des Seminars in der Lage: - kurze Veranstaltungen (im Rahmen ihrer Möglichkeiten) mit Hinblick auf Lernprozesse und Lernziele zu planen und durchzuführen Lernende durch Hilfestellungen zu begleiten |
Literatur |
Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman. Bosse, E. (2016). Herausforderungen und Unterstützung für gelingendes Studieren: Studienanforderungen und Angebote für den Studieneinstieg. In I. van den Berk, K. Petersen, K. Schultes, & K. Stolz (Hrsg.). Studierfähigkeit - theoretische Erkenntnisse, empirische Befunde und praktische Perspektiven (Bd. 15). (S.129-169). Hamburg: Universität Hamburg. Collins, D. & Holton, E. (2004). The effectiveness of managerial leadership development programs: A meta-analysis of studies from 1982 to 2001. Human resource development quarterly, 15(2), 217 - 248. Danielsiek, H., Hubwieser, P., Krugel, J., Magenheim, J., Ohrndorf, L., Ossenschmidt, D., Schaper, N. & Vahrenhold, J. (2017). Verbundprojekt KETTI: Kompetenzerwerb von Tutorinnen und Tutoren in der Informatik. In A. Hanft, F. Bischoff, B. Prang (Hrsg.), Working Paper Lehr-/Lernformen. Perspektiven aus der Begleitforschung zum Qualitätspakt Lehre. Abgerufen von KoBF: Freeman, S., Eddy, SL., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematic. Proceedings of the National Academy of Sciences 11(23), 8410-8415. Glathe, A. (2017). Effekte von Tutorentraining und die Kompetenzentwicklung von MINTFachtutor* innen in Lernunterstützungsfunktion. (Nicht veröffentlichte Dissertation). Technische Universität Darmstadt, Deutschland. Kirkpatrick, D. L. (1959). Techniques for Evaluation Training Program. Journal of the American Society of Training Directors, 13, 21-26. Hänze, M. Fischer, E. Schreiber, Biehler, R. & Hochmuth, R- (2013). Innovationen in der Hochschullehre: empirische Überprüfung eines Studienprogramms zur Verbesserung von vorlesungsbegleitenden Übungsgruppen in der Mathematik. Zeitschrift für Hochschulentwicklung, 8(4), 89- 103. Kröpke, H. (2014). Who is who? Tutoring und Mentoring - der Versuch einer begrifflichen Schärfung. In D. Lenzen & H. Fischer (Hrsg.), Tutoring und Mentoring unter besonderer Berücksichtigung der Orientierungseinheit (Bd. 5). (21-29). Hamburg: Universitätskolleg-Schriften. Kühlmann, T. (2007). Fragebögen. In J. Straub, A. Weidemann & D. Weidemann (Hrsg.), Handbuch interkulturelle Kommunikation und Kompetenz (346-352). Stuttgart: Metzler. Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (11. aktualisierte und überarbeitete Auflage). Weinheim/Basel: Beltz. Mummendey, H. D. (1981). Methoden und Probleme der Kontrolle sozialer Erwünschtheit (Social Desirability). Zeitschrift für Differentielle und Diagnostische Psychologie, 2, 199-218. Rohde, J. & Block, M. (2018). Welche Herausforderungen und Bewältigungsstrategien berichten Tutor/innen der Ingenieurwissenschaften? Eine explorative Analyse von Reflexionsberichten. Vortrag auf der 47. Tagung der Deutschen Gesellschaft für Hochschuldidaktik, Karlsruhe. Heterogenität der Studierenden und Lösungsansätze von Tutor/-innen Jenny Alice Rohde. Posterpräsentation auf der Tagung “Tutorielle Lehre und Heterogenität”. Technische Universität Darmstadt, 16.05.2019.Hochschuldidaktische Tutorenqualifizierung - Eine Basisqualifizierung des akademischen Nachwuchses und Chance für den Wandel der Lehr-/Lernkultur? Jenny Alice Rohde & Caroline Thon-Gairola. Posterpräsentation auf der DGHD am 07.03.2019.Welches Lehrverhalten zeigen geschulte Tutor/innen? Eine explorative Analyse selbst- und fremdwahrnehmungsbasierter Reflexionsberichte Jenny Alice Rohde & Nadine Stahlberg. In: die hochschulehre (2019). Schneider, M. & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyse. Psychological Bulletin, 143(6), 565-600. Skylar Powell, K. & Yalcin, S. (2010). Managerial training effectiveness: A meta-analysis 1952-2002. Personnel Review, 39(2), 227-241. 27 Welches Lehrverhalten zeigen geschulte Tutor/innen d ie hochs chul l ehre 2019 www.hochschullehre.org Stes, A., Min-Leliveld, M., Gijbels, D. & Van Petegem, P. (2010). The impact of instructional development in higher education: The state-of-the-art of the research. Educational Research Review, 5(1), 25-49. Stroebe, W. (2016). Why Good Teaching Evaluations May Reward Bad Teaching: On Grade Inflation and Other Unintended Consequences of Student Evaluation. Perspectives on Psychological Science, 11(6), 800-816. Technische Universität Hamburg (2018). Kennzahlen 2017. Hamburg: Technische Universität Hamburg. [https://www.tuhh.de/tuhh/uni/informationen/kennzahlen.html] Thumser-Dauth, K. (2008). Und was bringt das? Evaluation hochschuldidaktischer Weiterbildung. In B. Berendt, H.-P. Voss & J. Wildt (Hrsg.), Neues Handbuch Hochschullehre. Lehren und Lernen effizient gestalten. Kap. L 1.11 Hochschuldidaktische Aus- und Weiterbildung. Veranstaltungskonzepte und -modelle. Berlin: Raabe. S. 1-10. Wibbecke, G. (2015): Evaluation einer hochschuldidaktischen Weiterbildung an der Medizinischen Fakultät Heidelberg. Dissertation. Ruprecht-Karls-Universität Heidelberg. Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015a). Randauszählung Studienqualitätsmonitor 2014, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im Sommersemester 2014, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung. Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015b). Randauszählung Studienqualitätsmonitor 2015, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im Sommersemester 2015, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung. Winkler, M. (2018). Tutorielle Lehransätze im Vergleich. Die KOMPASS Begleitforschung. Vortrag gehalten am 12.03.2018 auf dem Netzwerktreffen Tutorienarbeit an Hochschulen in Würzburg. Zech, F. (1977). Grundkurs Mathematikdidaktik: theoretische und praktische Anleitungen für das Lehren und Lernen im Fach Mathematik. Weinheim: Beltz. |
Lehrveranstaltung L1509: Intercultural Communication |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Prof. Margarete Jarchow, Anna Katharina Bartel |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
As young professionals with technical background you may often tend to focus on communicating numbers and statistics in your presentations. However, facts are only one aspect of convincing others. Often, your personality, personal experience, cultural background and emotions are more important. You have to convince as a person in order to get your content across. In this workshop you will learn how to increase and express your cultural competence. You will apply cultural knowledge and images in order to positively influence communicative situations. You will learn how to add character and interest to your talks, papers and publications by referring to your own and European Cultural background. You will find out the basics of communicating professionally and convincingly by showing personality and by referring to your own cultural knowledge. You will get hands-on experience both in preparing and in conducting such communicative situations. This course is not focussing on delivering new knowledge about European culture but helps you using existing knowledge or such that you can gain e.g. in other Humanities courses. Content
|
Literatur |
Literaturhinweise werden zu Beginn des Seminars bekanntgegeben. Literature will be announced at the beginning of the seminar. |
Lehrveranstaltung L2015: Intercultural Management - Theory and Awareness Training |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 15 Minuten Vortrag und dessen schriftliche Ausarbeitung (10 Seiten) |
Dozenten | Prof Jürgen Rothlauf |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
The subject of the course is the deepening of the intercultural dimension of international management in relation to fundamental challenges, the importance of culture in team work and leadership of large multinational companies. In addition, culture-awareness trainings are discussed and carried out. |
Literatur |
Rothlauf, J (2014): A Global View on Intercultural Management - Challenges in a Globalized World, De Gruyter Oldenbourg Verlag, 360 p |
Lehrveranstaltung L2851: Join Mini Challenges of the ECIU University |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 90 Stunden Arbeitsaufwand |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Join multidisciplinary and international teams at the ECIU University and solve mini challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in mini challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Mini challenges” are challenges in the ECIU University that are supposed to be done within 1-4 weeks. Focus is to define your actual challenge, find suitable solution(s) and to implement them. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literatur |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Lehrveranstaltung L2852: Join Nano Challenges of the ECIU University |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 30 Stunden Arbeitsaufwand |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Join multidisciplinary and international teams at the ECIU University and solve nano challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in nano challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Nano challenges” are the smallest unit of challenges in the ECIU University and are supposed to be done within 1-2 days. Focus is to define your actual challenge, find suitable solution(s) and create ideas for further steps. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literatur |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Lehrveranstaltung L2853: Join Standard Challenges of the ECIU University |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Prüfungsart | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 180 Stunden Arbeitsaufwand |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Join multidisciplinary and international teams at the ECIU University and solve standard challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in standard challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Standard challenges” are challenges in the ECIU University that are supposed to be done within 3-6 months. Focus is to define your actual challenge, find suitable solution(s) and to implement as well as evaluate and publish them. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literatur |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Lehrveranstaltung L2176: Kommunikationskultur in Beruf und Alltag - Theorien und Methoden erfolgreicher Kommunikation |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Anna Katharina Bartel |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Diese Veranstaltung richtet sich an Studierende im Masterstudium. Wir werden uns vertiefend mit verschiedenen Theorien, Modellen und Methoden aus den Bereichen Kommunikationspsychologie und Kulturtheorie auseinandersetzen. Die Teilnehmenden erhalten zudem Gelegenheit, das Gelernte auf konkrete Situationen des eigenen aktuellen oder zukünftigen Erfahrungsbereichs zu übertragen. Die Studierenden erarbeiten und präsentieren dazu theoretische Inhalte und erproben Modelle und Methoden anhand praktischer Übungen. Kommunikationskulturen prägen unser Leben, sowohl im beruflichen als auch im privaten Umfeld. Dies betrifft auch die hoch spezialisierte Arbeitswelt der Ingenieure. Wir sind nicht unabhängig in unserer Kommunikation, sondern wir stehen, als Teil davon, immer im Verhältnis zu der kommunikativen Kultur einer oder mehrerer Gruppen. Unsere Fähigkeit, uns dabei flexibel und erfolgreich zwischen den verschiedenen Kontexten zu bewegen, trägt entscheidend zu unserem beruflichen Erfolg und unserem persönlichen Wohlbefinden bei. Dies betrifft sowohl unsere verbale, als auch unsere nonverbale Kommunikation. Doch nicht immer fällt uns das leicht: - Zum Beispiel, wenn wir uns in einem Umfeld bewegen, in dem es immer wieder zu Konflikten kommt. - Wenn wir oft zwischen verschiedenen Kontexten wechseln müssen. - Oder wenn einerseits ein starker Fokus auf Daten und Fakten liegt und andererseits Wissen an Fachfremde vermittelt werden soll, komplexe Sachverhalte greifbar gemacht werden müssen und wir gleichzeitig für ein Anliegen begeistern wollen. Allzu oft entstehen dann in unserer Kommunikation Missverständnisse oder es fehlt an Offenheit und Konfliktfähigkeit. Dadurch fällt es uns schwer unsere Ziele zu erreichen. Denn für das positive Gestalten von Beziehungen, sei es im Studium, im Umgang mit zukünftigen Kunden, Auftraggebern, Partnern und Vorgesetzten oder im Privaten, ist gelungenes Kommunizieren unerlässlich. Das Erkennen von Kommunikationsmustern, das Reflektieren von eigenem und fremdem Kommunikationsverhalten und das aktive und erfolgreiche Mitgestalten von Kommunikationskultur sind dabei wertvolle und hilfreiche Fähigkeiten. |
Literatur |
|
Lehrveranstaltung L2369: Literatur und Kultur für internationale Studierende in englischsprachigen Masterstudiengängen (nicht Muttersprachler*innen in Deutsch) |
Typ | Seminar |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 45 min. Präsentation und anschließende Diskussion |
Dozenten | Bertrand Schütz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Im Seminar LITERATUR UND KULTUR wird der Frage nachgegangen, was Kultur ausmacht. Kultur verstanden als Realitätssuche, als "ineinander verwobene Problem-Komplexität", die "auf Realitätsbewältigung gerichtet ist". (Hermann Broch). Arbeitsgrundlage im Seminar sind schwerpunktmäßig literarische Texte. Unter jeweils unterschiedlichen Aspekten werden Themen an den Schnittstellen von Technik, Natur- und Geisteswissenschaften erarbeitet, besonderes Augenmerk gilt den kulturellen Voraussetzungen für die Entwicklung und Weitergabe von Wissen, den Wesenszügen von Wissenskulturen. Dabei ist zu bedenken, dass in Europa inzwischen die Einsicht reift, dass es nicht den Anspruch erheben kann, im Besitz der letztgültigen Maßstäbe von Erkenntnis und Wissen zu sein. Das Seminar entwickelt Ansätze, die das Gespräch zwischen internationalen und hiesigen Studierenden fördern. Angaben zum jeweiligen Schwerpunkt-Thema des Semesters finden sich im StudIP und im Vorlesungsverzeichnis. |
Literatur |
Je nach Thematik des Semesters wird eine spezifische cf. StudIP |
Lehrveranstaltung L2029: Lügenpresse“? Funktionen und aktuelle Herausforderungen des Journalismus |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Horst Pöttker |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Lügenpresse - das abschätzige Schimpfwort erlebt eine Renaissance.
Journalisten wehren sich gern dagegen, indem sie auf den angeblichen
Ursprung des Begriffs in der NS-Propaganda hinweisen. Das überzeugt
wenig, weil schon seit Mitte des 19. Jahrhunderts zahlreiche Parteien
und Ideologien den politischen Kampfbegriff der Lügenpresse benutzt
haben, um die Medien anderer Parteien und Ideologien unglaubwürdig zu
machen. Und es führt am Kern der Problematik vorbei. Von Kritikern wird
nicht ohne Grund befürchtet, dass mit der Wahl von „Lügenpresse“ zum
Unwort des Jahres 2014 die Frage blockiert wurde, ob es eine berechtigte
Kritik an den journalistischen Medien, genauer: am Verhältnis zwischen
journalistischen Medien und ihrem Publikum gibt? Wenn das so ist, haben
aus interaktionistischer Sicht beide Seiten, journalistische Medien wie
ihr Publikum, daran Anteil. |
Literatur |
Zur Einführung: Weischenberg, S. (2010): Das Jahrhundert des Journalismus ist vorbei. Rekonstruktionen und Prognosen zur Formation gesellschaftlicher Selbstbeobachtung. In: Bartelt-Kircher, Gabriele u.a.: Krise der Printmedien - eine Krise des Journalismus? Berlin und New York: de Gruyter Saur, S. 32-60. Eine ausführliche Literaturliste wird am Anfang des Seminars verteilt. |
Lehrveranstaltung L1846: Overnewsed and underinformed: Der klassische Journalismus und die Neuen Medien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Ca. 20 min. plus anschließende Diskussion |
Dozenten | Dieter Bednarz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Der Siegeszug des Internets, das sich als weitgehend kostenlose Informationsquelle etabliert hat, verändert die klassische Medienlandschaft in einer Schnelligkeit und mit einer Radikalität, die alle etablierten Medien vor neue Herausforderungen stellt. Markiert diese Entwicklung des „immer schneller“, „immer mehr“ und des „immer kostenlos“ das Ende des Qualitätsjournalismus? Oder werden sich Netz und Print zum Vorteil für die interessierten Bürger ergänzen? Wie geht ein Magazin wie DER SPIEGEL mit diesen Herausforderungen um? Und unabhängig von der Strukturkrise der etablierten Medien wie Zeitungen und Zeitungen: Wie gehen wir als Nachrichtenkonsumenten mit diesem Immer-Mehr und Immer-Schneller um, mit dem wir durch das Internet konfrontiert werden? Bewahrheitet sich heute, was der Medienforscher und Autor Neil Postman schon vor einem Vierteljahrhundert diagnostiziert hat, dass wir nämlich auf eine Informationsgesellschaft zusteuern, in der wir "overnewsed but underinformed“ sind? In dem Seminar werden Fragen der Verantwortung für die genannte Entwicklung sowie die Frage von Ethik in Journalismus und Politik diskutiert. Zur Veranstaltung gehört ein Besuch der SPIEGEL-Redaktion, in dem Arbeitsweise und Selbstverständnis des Magazins diskutiert werden. |
Literatur |
Wird im Seminar genannt |
Lehrveranstaltung L1023: Politics |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Stephan Albrecht |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Scientists and engineers neither just strive for truths and scientific laws, nor are they working in a space far from politics. Science and engineering have contributed to what we now call the Anthropocene, the first time in the history of mankind when essential cycles of the earth system, e.g. carbon cycle, climate system, are heavily influenced or even shattered. Furthermore, Peak oil is indicating the end of cheap fossil energy thus triggering the search for alternatives such as biomass. Systems of knowledge, science and technology in the OECD countries have since roughly 30 years increasingly become divided. On the one hand new technologies such as modern biotechnology, IT or nanotechnology are developing rapidly, bringing about many innovations for industry, agriculture, and consumers. On the other hand scientific studies from earth, environmental, climate change, agricultural and social sciences deliver increasingly robust evidence on more or less severe impacts on society, environment, global equity, and economy resulting from innovations during the last 50 years. Technological innovation thus is no longer an uncontested concept. And many protest movements demonstrate that the introduction of new or the enlargement of existing technologies (e.g. airports, railway stations, highways, high-voltage power lines surveillance) isn’t at all a matter of course. It is important to bear in mind the fact that all processes of technological innovation are made by humans, individually and collectively. Industrial, social, and political organizations as actors from the local to global level of communication, deliberation, and decision making interact in diverse arenas, struggling to promote their respective corporate and/or political agenda. So innovations are as well a problem of technology as a problem of politics. Innovation and technology policies aren’t the same in all countries. We can observe conceptual and practical variations. Since the 1992 Earth Summit in Rio de Janeiro Agenda 21 constitutes a normative umbrella, indicating Sustainable Development (SD) as core cluster of earth politics on all levels from local to global. Meanwhile other documents such as the Millennium Development Goals (MDG) have complemented the SD agenda. SD can be interpreted as operationalization of the Universal Declaration of Human Rights, adopted in 1948 by the General Assembly of the United Nations and since amended many times. Engineers and scientists as professionals can’t avoid to become confronted with many non-technical and non-disciplinary items, challenges, and dilemmas. So they have to choose between alternative options for action, as individuals and as members of organizations or employees. Therefore the seminar will address core elements of the complex interrelations between science, society and politics. Reflections on experiences of participants - e.g. from other countries as Germany - during the seminar are very welcome. The goals of the seminar include:
The seminar will deal with current problems from areas such as innovation policy, energy, food systems, and raw materials. Issues will include the future of energy, food security and electronics. Historical issues will also be addressed. The seminar will start with a profound overarching introduction. Issues will be introduced by a short presentation and a Q & A session, followed by group work on selected problems. All participants will have to prepare a presentation during the weekend seminar. The seminar will use inter alia interactive tools of teaching such as focus groups, simulations and presentations by students. Regular and active participation is required at all stages. |
Literatur | Literatur wird zu Beginn des Seminars abgesprochen. |
Lehrveranstaltung L1856: Politik und Wissenschaft - deutschsprachig |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Referat ca. 20 min. plus anschließende Diskussion |
Dozenten | Dr. Mirko Himmel, Dr. Ines Krohn-Molt |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Wissenschaftler glauben häufig, dass ihre Arbeit unpolitisch ist. Im Rahmen dieses Seminars möchten wir verdeutlichen, wie sehr Wissenschaft und Politik miteinander verbunden sind. Wissenschaftliche Vorgaben sind oft notwendig, um politische Entscheidungen zu treffen und wissenschaftliche Resultate sind Gegenstand politischer Interpretation. Gleichzeitig beeinflusst die Politik wissenschaftlichen Fortschritt durch die Priorisierung von Forschungsagenden und durch Förderentscheidungen. Diese Verhältnisse sollen anhand von Fallbeispielen zu aktuellen Debatten diskutiert werden. |
Literatur |
Wird im Seminar genannt |
Lehrveranstaltung L1779: Politics and Science - in English |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Frederik Postelt, Dr. Gunnar Jeremias |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions. During this seminar we would like to show the different range of influences - scientific, economic, social, environmental, ethical/normative, security-related - affecting decision-making on science and politics. Using case studies on current debates on food security, public health, nuclear energy and terrorism to discuss the interrelation between science and politics illuminating the role of various actors in this process, such as: • Governments, • International organizations, • Scientific associations, • Industry, • Civil society, and • Individual scientists. The guiding questions will be: • How does and should science influence politics? • How does and should politics influence science? In order to take responsibility for the consequences of scientific work, engineers and scientists increasingly need to acknowledge the political dimension of their work and their role in the political process. We will address this political dimension of scientific work by discussing: • Biographies and motivations of famous scientists, • Individual responsibility of scientists for the implications of their work, and • The role of codes of conduct as guidelines for responsible behaviour. The goals of the seminar include: • Raising awareness and increasing knowledge about the political dimensions of scientific work, • Providing guidelines for evaluating political implications of scientific research, • Improving the understanding of scientists’ and engineers’ responsibility for the results of their professional activities, • Taking decisions at the institutional, national and international level about rules and regulations concerning scientific conduct, and • Choosing arguments and defending positions in situations of conflicting interests. The seminar will use current issues, such as dilemmas in the life sciences or bio fuels to demonstrate the problematic relationship between science and politics. The seminar, however, does not focus on providing in-depth knowledge of these current issues. We strongly discourage students that have participated in an “Ethics for Engineers” seminar to take this course, because the contents of the two seminars overlap. Issues will be introduced by short presentations and a Q&A session, followed by group work on selected problems. All participants will have to prepare a presentation. Those requiring a graded certificate (“Schein”) additionally have to write a 3-4 page paper on selected issues. The seminar will use interactive tools of teaching such as role playing and simulations. Group work and active participation is expected at all stages of the seminar. |
Literatur |
will be announced in lecture wird im Seminar bekannt gegeben |
Lehrveranstaltung L1734: Projectrealisation: TUHH goes circular - Sustainability in Research, Education and campus management |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
Description The group project: TUHH goes Circular addresses environmental challenges and engages with science communication as an instrument of sustainable solution strategies. Due to the Covid-19-pandemic especially digital communication has gained importance - and this shall be adopted in the digital summer semester of 2021. The students are being introduced to the importance of high-quality science communication for ecologically and socially sustainable development. In a practical group task, the students are gaining experience with traditional and popular formats. Topics are to be chosen matching the general scope of environmental challenges, i.e. the challenges of rising resource consumption and waste production. Competences
|
Literatur |
Wird im Seminar bekannt gegeben Will be announced in lecture. |
Lehrveranstaltung L2649: Schöne neue Welt? Technik, Gesellschaft und Digitalität in filmischen Dystopien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 45 Minuten |
Dozenten | Dr. Marlis Bussacker |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Verödete Landschaften, Zerstörung, Gewalt - das sind in aller Regel unsere ersten Assoziationen bei dem Begriff Dystopie. Doch so offensichtlich ist es nicht. Auf den ersten Blick erscheint oftmals eine fast utopisch anmutende Welt ohne Krankheit, ohne Hunger, ohne Armut, in der viele Probleme, die uns heute umtreiben, behoben werden konnten. Doch die Idylle trügt, bzw. sie hat ihren Preis. / Wie sieht dieser Preis aus? Im Mittelpunkt des Seminars werden Filme stehen, in denen technischer Fortschritt und die Entwicklung künstlicher Intelligenz den Menschen fast unbegrenzte Möglichkeiten eröffnet haben - zur Verbesserung ihrer Lebensumstände, aber auch zu ihrer vollständigen Kontrolle. / Wer übt die Kontrolle aus? Ist Individualität noch möglich? Wie steht es um demokratische Strukturen? Zeigen die Filme uns unsere Zukunft? Wieviel Freiheit sind wir bereit aufzugeben für ein auf den ersten Blick sicheres und sorgenfreies Leben? Und: Warum gibt es keine gesellschaftlichen Utopien mehr? Diese Fragen, unter anderem, werden bei der Analyse der Filme im Mittelpunkt der Diskussionen stehen. |
Literatur |
Wird im Seminar bekannt gegeben. |
Lehrveranstaltung L1872: Social Learning: Gesellschaftliches Engagement für Flüchtlinge / Master |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten |
Dozenten | Muthana Al-Temimi |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Diese Veranstaltung soll das gesellschaftliche Engagement für Flüchtlinge, und Migrantinnen/Migranten und das ein damit einhergehende soziale Lernen ermöglichen und fördern. Unter „gesellschaftlichem Engagement für Flüchtlinge“ wird eine aktive Mitarbeit und Teilhabe in Projekten, Initiativen oder Organisationen verstanden, die ein freies, gleiches und solidarisches Zusammenleben mit Flüchtlingen/Migrantinnen/ in Deutschland zum Ziel haben. Die Anerkennung von Aktivitäten im Rahmen von Projekten, Initiativen oder Organisationen mit demokratiefeindlicher Zielsetzung ist ausgeschlossen. Ziel ist „soziales Lernen im Rahmen gesellschaftlichen Engagements“: Dazu gehört einerseits der Erwerb bzw. die Vertiefung von Kompetenzen auf Seiten der Studierenden durch ihr Engagement in dem o.g. Bereich; andererseits gehört dazu die Unterstützung/Förderung/Lernen der Flüchtlinge/ Migrantinnen/ Migranten durch die Kompetenzen der Studierenden. In dieser Veranstaltung suchen sich Studierende selbständig gesellschaftliche Projekte im oben genannte Sinne und engagieren sich mindesten 50 h. Bereits früher geleistetes gesellschaftliches Engagement im genannten Bereich kann berücksichtigt werden. Verpflichtende 10 h Präsenslehre inkl. Beratungszeit ermöglichen es Studierenden, begleitend oder nachfolgend zum Engagement in einer Reflexionsarbeit / schriftlichen Ausarbeitung strukturiert und erfolgreich die Lernsituation vor Ort sowie die eigenen Kompetenz zu reflektieren. Die Lernziele bestehen im Einzelnen darin, eigene Kompetenzen im Kontext des Engagements
Allgemeine Kenntnisse über Lernprozesse und soziales Lernen. |
Literatur |
Wird im Seminar bekannt gegeben. Will be announced in lecture. |
Lehrveranstaltung L2485: Social Learning: Gesellschaftliches Engagement für die Nachhaltigkeit - M.Sc. |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten + mündliche Präsentation |
Dozenten | Tatjana Grimm |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Diese Veranstaltung soll das gesellschaftliche Engagement im Bereich ökologische, ökonomischer und soziale Nachhaltigkeit und das ein damit einhergehende soziale Lernen ermöglichen und fördern. Unter „gesellschaftlichem Engagement für Nachhaltigkeit“ wird eine aktive Mitarbeit und Teilhabe in Projekten, Initiativen oder Organisationen verstanden, die den Erhalt bzw. die Verbesserung der Lebensbedingungen und -räume für gegenwärtige und zukünftige Generationen z.B. Ressourcenschonung, Naturschutz oder Stärkung des fairen Handel zum Ziel haben und nicht in erster Linie eigenwirtschaftliche Zwecke verfolgen. Die Anerkennung von Aktivitäten im Rahmen von Projekten, Initiativen oder Organisationen mit demokratiefeindlicher Zielsetzung sowie in politischen Parteien ist ausgeschlossen. |
Literatur | - |
Lehrveranstaltung L2480: Social Learning: Gesellschaftliches Engagement zum Erhalt historischer Kulturgüter - MSc |
Typ | Seminar |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten + mündliche Präsentation |
Dozenten | Tatjana Grimm |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Diese Veranstaltung soll das gesellschaftliche Engagement im Bereich Natur- und Technikgeschichte und das damit einhergehende soziale Lernen ermöglichen und fördern. Unter „gesellschaftlichem Engagement zum Erhalt historischer Kulturgüter“ wird eine aktive Mitarbeit und Teilhabe in Projekten, Initiativen oder Organisationen verstanden, die den Erhalt natur- sozial- und technikhistorischer Kulturgüter zum Ziel haben. Mögliche Anlaufstellen sind Naturkunde- und Technikmuseen sowie Denkmalschutzstiftungen, welche historische Gebäude, Schiffe und Hafenanlagen oder unterirdische Bauten betreuen. Die Anerkennung von Aktivitäten im Rahmen von Projekten, Initiativen oder Organisationen mit demokratiefeindlicher Zielsetzung sowie in politischen Parteien ist ausgeschlossen. In dieser Veranstaltung engagieren sich Studierende für mindestens 42h in gesellschaftlichen Projekten. Bereits früher geleistetes gesellschaftliches Engagement im genannten Bereich kann berücksichtigt werden. Zudem wird den Teilnehmern die Möglichkeit eröffnet, sich gezielt mit anderen Studierenden aus den Social Learning Seminaren zu deren gesellschaftlichen Aktivitäten auszutauschen. Die Teilnehmer werden engmaschig durch die Kursleitung begleitet und beraten, insbesondere bei der Suche und Auswahl einer geeigneten Tätigkeit für die Selbstlernsituation und der methodischen Umsetzung der Aufgaben. Ziel des „sozialen Lernens im Rahmen gesellschaftlichen Engagements“ im o.g. Kontext ist der Erwerb bzw. die Vertiefung von Kompetenzen auf Seiten der Studierenden durch ihr Engagement. |
Literatur | - |
Lehrveranstaltung L2849: Technikfolgeabschätzung (TFA) und Technikgeneseforschung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Hausarbeit 7-10 Textseiten; verpflichtend: Präsentation der Zwischenergebnisse mit Diskussion (geht nicht in die Bewertung mit ein) |
Dozenten | Dr. Martin Schütz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Können zukünftige techn. Entwicklungslinien samt ihrer multidimensionalen Konsequenzen vorausgesehen werden? Kann man zu einer |
Literatur |
− Bell, Daniel (1994): Technology and Society in a Post-industrial Age. In: Hans-Ulrich |
Lehrveranstaltung L1771: Umbruch und Verantwortung: Der Arabische Frühling und seine Konsequenzen |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dieter Bednarz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Der Siegeszug des Internets, das sich als weitgehend kostenlose Informationsquelle etabliert hat, verändert die klassische Medienlandschaft in einer Schnelligkeit und mit einer Radikalität, die alle etablierten Medien vor neue Herausforderungen stellen. Markiert diese Entwicklung des „immer schneller“, „immer mehr“ und des „immer kostenlos“ das Ende des Qualitätsjournalismus? Oder werden sich Netz und Print zum Vorteil für die interessierten Bürger ergänzen? Wie geht ein Magazin wie DER SPIEGEL mit diesen Herausforderungen um? Das Beispiel Nahost zeigt, wie sehr neue Medien wie Facebook und Twitter zur Demokratisierung einer Bevölkerung beitragen können. Doch warum hat der so genannte Arabische Frühling nicht zu mehr Demokratie geführt? Warum scheiterten die Revolutionäre in Kairo? Warum wurde Syrien vom Staat zum Flickenteppich? In dem Seminar werden Fragen der Verantwortung für die genannten Entwicklungen sowie die Frage von Ethik in Journalismus und Politik diskutiert. Zur Veranstaltung gehört ein Besuch der SPIEGEL-Redaktion, in dem Arbeitsweise und Selbstverständnis des Magazin diskutiert werden. |
Literatur |
Wird im Seminar angegeben und besprochen. Will be announced in the lecture. |
Lehrveranstaltung L1916: Verantwortungsvolles Handeln in Technik und Wissenschaft |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Mirko Himmel, Dr. Ines Krohn-Molt |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Was bedeutet Verantwortung im Technik- und Wissenschaftsbetrieb? Das Seminar nimmt sich dieses wichtigen Themenkomplexes in der Ausbildung der Studierenden an und beginnt mit einem Exkurs zur Rolle von Wissenschaftlern und Ingenieuren für den sicheren, verantwortungsvollen Umgang mit Technologien und Wissen. Hierbei sollen einschlägige Fallbeispiele aus der Praxis als Diskussionsgrundlage dienen. |
Literatur | folgt im Seminar |
Lehrveranstaltung L1991: Was kann Philosophie? Relevanz philosophischer Theorien des 20. und 21. Jhdts. |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Ursula Töller |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Über Jahrhunderte ist die Philosophie als eine Disziplin angetreten, die komplexe und universelle Antworten auf Zeitgeschichte und Zeitumstände liefert. Oftmals konnte sie Utopien entwerfen, die für politische Umwälzungen wegweisend waren. Während alle wissenschaftlichen Disziplinen einer weiter zunehmenden Differenzierung unterliegen, hat die Philosophie ab der zweiten Hälfte des 20. Jahrhunderts ihren Anspruch auf Universalität eingebüst. Was aber sind dann die Themen der Philosophie des 20. und 21. Jhdts und welche Relevanz haben philosophische Theorien für Prozesse der Veränderung? Wir werden uns einen Überblick über westliche Philosophien des 20. und 21. Jhdts. verschaffen und einen kritischen Blick auf das Selbstverständnis der Philosophie werfen. |
Literatur |
Gerhardt Schweppenhäuser: Kritische Theorie, Stuttgart 2010 Postmoderne und Dekonstruktion, Texte französischer Philosophen der Gegenwart, hrsg. von Peter Engelmann, Reclam UB 8668 Thomas Rentsch: Philosophie des 20. Jhdts. Von Husserl bis Derrida, München 2014 Geschichte der Philosophie in Text und Darstellung, Bd. 8=20 Jhdt. Reclam UB 9918 Geschichte der Philosophie in Text und Darstellung, Bd. 9= Gegenwart Reclam UB 18267 |
Lehrveranstaltung L0528: Wirtschaftssoziologie |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | 20-30 Minuten Referat und Thesenpapier |
Dozenten | Dr. Michael Florian |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wirtschaftssoziologie bedeutet die Anwendung soziologischer Theorien, Methoden und Sichtweisen auf ökonomische Phänomene, d.h. auf alles, was mit der Produktion, der Verteilung, dem Austausch und Verbrauch knapper Güter und Dienstleistungen verbunden ist. Unter dem Etikett einer "Neuen" Wirtschaftssoziologie hat die soziologische Erforschung ökonomischer Strukturen und Prozesse seit Mitte der 1980er Jahre vor allem in den USA - inzwischen aber auch in Europa - eine bemerkenswerte Renaissance erlebt. Das Seminar "Wirtschaftssoziologie" soll diese Entwicklung anhand grundlegender Texte veranschaulichen und zugleich die Stärken und Schwächen der neuen wirtschaftssoziologischen Konzepte am Beispiel ausgewählter Forschungsansätze und Fallstudien vertiefend untersuchen. |
Literatur |
Baecker, Dirk: Wirtschaftssoziologie. Transcript: Bielefeld, 2006. |
Lehrveranstaltung L2343: Wissenschaftliches Schreiben und Präsentieren für Master-Studierende |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Dozenten | Dr. Sigrid Vierck |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Bitte informieren Sie sich auch in Stud.IP über die Modalitäten asynchroner Lehre, die Erreichbarkeit der Lehrenden und Ihre Zugänge zu online Lehrräumen. Danke! Die Lehrveranstaltung richtet sich an Masterstudierende, die ihre Abschlussarbeiten planen, später promovieren möchten oder ihre Forschungsergebnisse auf Tagungen bzw. in Fachmagazinen präsentieren wollen. Der Kurs ist mehrstufig aufgebaut: 1. Recherche 2. Präsentation in Wort und Bild und 3. Praktischer Kontext. Berücksichtigt werden sowohl die Arbeitssituation an der Universität, als auch in Forschungsgruppen und/oder in Unternehmen. 1. Recherche - Forschungsstand aufarbeiten, Literaturrecherche, Lesetechniken - Urheberrecht, Zitieren, Plagiate (Auffrischung) - Journal führen 2. Präsentation - Zweck, Aufbau, Struktur und Grundlagen wissenschaftlicher Präsentation - Stil und Sprache (Merkmale guter/schlechter Texte) - Orthografie, Syntax, Interpunktion - Präsentation im Wort - Thesis abfassen - Schreibtypen - Schreibübungen - Präsentation im Bild: PPP, Poster, Video - Aufbau und Struktur - Einsatz von Medien und Materialien 3. Praktischer Kontext - Die eigene Rolle (Stärken und Schwächen) - Das Gegenüber (Wahrnehmung und Austausch) - Teamarbeit - Kommunikationskompetenzen (Sprache, Gestik, Mimik, Blick) - individuelle Präsentationskompetenz - Kommunikation mit der/dem Betreuer*In - Zeitmanagement
|
Literatur |
Ascheron, Klaus: Die Kunst des wissenschaftlichen Präsentierens und Publizierens. Ein Praxisleitfaden für junge Wissenschaftler. München 2007. Der Autor, Naturwissenschaftler, erklärt aufgrund seiner langjährigen und internationalen Erfahrung worauf es beim wissenschaftlichen Präsentieren (und Schreiben) ankommt. Aus seinem ganzheitlichen Ansatz heraus gibt er klare und hilfreiche Tipps für ein erfolgreiches und korrektes Darstellen im wissenschaftlichen Kontext. Eufinger, Günther: Dokumente perfekt gestalten. München 2007. Der Autor geht in dem kompakten Band auf die Schlüsselkompetenzen für erfolgreiches Präsentieren ein, die er aufgrund langjähriger praktischer Erfahrungen definiert. Darunter wird die Power-Point-Präsentation eingehend behandelt, wobei das in den weiteren Kapiteln dargestellte Basiswissen auch für PPP anzuwenden ist. Feuerbacher, Bernd: Professionell Präsentieren in den Natur- und Ingenieurwissenschaften. Weinheim 2009. Ansprechender, klar strukturierter Band, der auf die Unterschiede zwischen mündlichem Vortrag und schriftlichen Ausdruck eingeht sowie zusätzlich den Schwerpunkt auf die Power-Point-Präsentation legt. Wie im Titel angegeben zwar mit Betonung der Natur- und Ingenieurwissenschaften, aber in der Beschreibung rhetorischen Auftretens allgemeingültig formuliert. Hug, Theo (Hrsg.): Wie kommt Wissenschaft zu Wissen, Band 1: Einführung in das wissenschaftliche Arbeiten. Hohengehren 2001. Weitreichende Einführung, die bereits in den späteren Praxisbereich übergreift. Intensive Behandlung der internetbezogenen Arbeit. Kremer, Bruno P.: Vom Referat bis zur Abschlussarbeit. Naturwissenschaftliche Texte perfekt produzieren, präsentieren und publizieren. 5. Aufl. 2018. Berlin, Heidelberg (Imprint: Springer Spektrum). Der Autor schreibt mit langjähriger Erfahrung. Der Band, wie im Titel formuliert auf die Naturwissenschaften zugeschnitten, informiert umfassend, ist sehr gut gegliedert und verständlich geschrieben, sozusagen eine Werkstattanleitung, praxisnah und ermunternd. Prexl, Lydia: Mit digitalen Quellen arbeiten: richtig zitieren aus Datenbanken, E-Books, YouTube & Co. 3., aktualisierte und überarbeitete Auflage, Paderborn, Stuttgart 2019 (UTB) https://elibrary.utb.de/doi/book/10.36198/9783838550725 (Lizenzpflichtig) Die Autorin schildert in kleinen Schritten das wissenschaftliche Arbeiten mit Betonung des digitalen Anteils wie E-Books, E-Journals, Social-Media-Einträgen, Datenbanken und anderen elektronische Quellen. Vor allem bei der Frage nach der Verwendbarkeit und Zitierfähigkeit gibt dieser Ratgeber Lösungen ebenso wie zur Vermeidung von Plagiaten, sowie der bibliographischen Angabe, auch bei Unvollständigkeit. Pöhm, Matthias: Präsentieren Sie noch oder faszinieren Sie schon? Der Irrtum PowerPoint. 6. Aufl. Heidelberg 2009. Als Coach und Moderator bietet der Autor Tipps zur erfolgreichen Präsentation, die - wie er provokant im Titel formuliert - ohne PowerPoint auskommen soll, denn er setzt auf die Emotion als Kommunikationsmittel. Damit wird deutlich, dass er sich mehr im verkaufsorientierten als im wissenschaftlichen Bereich ansiedelt. Pukas, Dietrich: Lernmanagement. Einführung in Lern- und Arbeitstechniken. 3. aktual. Aufl. Rinteln 2008. Übersichtliches und umfassendes Kompendium zu den zahlreichen Fragen des Lernens und wissenschaftlichen Arbeitens. Zunächst wirtschaftswissenschaftlich orientiert, was auch durch die Struktur sowie die Tabellen und Diagramme deutlich wird, hat der Band durchaus allgemeine Gültigkeit. Darüber hinaus werden praxisorientierte Hinweise gegeben. Reynolds, Garr: Zen oder die Kunst der Präsentation. München u.a. 2010. Der Autor kommt aus dem Designbereich und bietet somit Stilmittel zur Gestaltung der PPP an. Wie im Titel angedeutet sind für ihn die Mittel der Konzentration auf das Wesentliche, der Ruhe und Einfachheit von entscheidender Bedeutung. Rost, Friedrich: Lern- und Arbeitstechniken für das Studium. 8., überarb. u. aktual. Aufl. Wiesbaden 2018. Ausführliche Vermittlung von Arbeitstechniken der Stoffermittlung, der Stoffverarbeitung, der Stoffsammlung, des informativen Schreibens, des Sprechens und Redens mit Berücksichtigung der computergestützten Arbeit und einem Anhang zu Ausdruck und Grammatik der deutschen Sprache. Sesink, Werner: Einführung in das wissenschaftliche Arbeiten: inklusive E-Learning, Web-Recherche, digitale Präsentation u.a. 9., vollständ. überarb. u. aktual. Aufl. München 2014. Arbeitshilfe mit Betonung auf der Computer-Verwendung. Erklärung des wissenschaftlichen Arbeitens und der Vorarbeiten wie Literatursuche und persönlicher Materialsammlung. Beschreibung des Abfassens einer schriftlichen Arbeit, auch Protokoll, Thesenpapier und Klausur. Ausführliche Behandlung der computergestützten Arbeit, vor allem auch des Textformatierens und der Textverarbeitung in der Studienpraxis. Spoun, Sascha und Dominik B. Domnik: Erfolgreich studieren. Ein Handbuch für Wirtschafts- und Sozialwissenschaftler. München u.a. 2005. Pearson-Studium. Handlicher Band, der Selbstorganisation als Erfolg versprechende Grundlage für das Studium sowie Techniken des Recherchierens, Lesens und Darstellens beschreibt. Durch die Konzentration auf das Wesentliche wird der Intensität und Kürze des Bachelor- und Masterstudiums Rechnung getragen und ein Leitfaden für die Bewältigung des workloads gegeben. Theisen, Manuel R.: Wissenschaftliches Arbeiten. Technik, Methodik, Form. 17., aktual. u. bearb. Aufl. München 2017. Zielgerichtete Beschreibung des Arbeitsprozesses von der Planung bis zum Druck und der Präsentation. Alle Stufen werden ausführlich, detailliert und in sinnvoller Reihenfolge beschrieben, wobei einzelne Kapitel auch für sich genommen werden können. Klar, übersichtlich, grundlegend. Der Autor ist in der Betriebswirtschaftslehre beheimatet. Wolpert, Lewis: Unglaubliche Wissenschaft. Frankfurt a. M. 2004. Der Autor, Naturwissenschaftler, vermittelt aufgrund seiner lebenslang gewonnenen Erfahrung den Weg zur wissenschaftlichen Erkenntnis durch Aufzeigen der grundlegenden Frageprinzipien und des wissenschaftlichen, sprich nachvollziehbaren und beweisfähigen Denkens. Der Band ist in der Reihe „Die Andere Bibliothek“ erschienen, mit der Herausgeber Hans Magnus Enzensberger ein Kompendium der Welt- und Wissensliteratur eigener Prägung schafft. Der Band regt zum unkonventionellen Denken an. |
Modul M1294: Bioenergie |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen der Energiegewinnung aus Biomasse, über aerobe und anaerobe Abfallbehandlungsverfahren, die dabei gewonnenen Produkte und die Behandlung der jeweils entstehenden Emissionen wiedergeben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen über biomasse-basierte Energiebereitstellungsanlagen anwenden, um für unterschiedliche Fragestellungen, beispielsweise bezüglich der Dimensionierung und Auslegung von Anlagen, die Zusammenhänge zu erläutern. In diesem Zusammenhang sind die Studierenden auch in der Lage Berechnungsaufgaben zur Verbrennung, Vergasung und Biogas-, Biodiesel- und Bioethanolnutzung zu lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von Energiesystemen zur Biomassenutzung diskutieren. |
Selbstständigkeit |
Die Studierenden können sich zur Aufarbeitung der Vorlesungsschwerpunkte selbstständig Quellen über das Fachgebiet erschließen, Wissen auswählen und aneignen. Des Weiteren können die Studierenden, unter Hilfestellung der Lehrenden, eigenständig Berechnungen zu biomasse-nutzenden Energiesysteme erfüllen und so Ihren jeweiligen Lernstand einschätzen und auf dieser Basis weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0061: Biokraftstoffverfahrenstechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0062: Biokraftstoffverfahrenstechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Skriptum zur Vorlesung |
Lehrveranstaltung L1769: Globale Märkte für land- und forstwirtschaftliche Rohstoffe |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Köhl, Bernhard Chilla |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1) Markets for Agricultural Commodities
|
Literatur | Lecture material |
Lehrveranstaltung L1767: Thermische Biomassenutzung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel dieses Kurses ist es, die physikalischen, chemischen und
biologischen als auch die technischen, wirtschaftlichen und
ökologischen Grundlagen aller Optionen der Energieerzeugung aus
Biomasse aus deutscher und internationaler Sicht zu diskutieren.
Zusätzlich unterschiedlichen Systemansätze zur Nutzung von Biomasse für
die Energieerzeugung, Aspekte der Bioenergie im Energiesystem zu
integrieren, technische und wirtschaftliche Entwicklungspotenziale und
die aktuelle und erwartete zukünftige Verwendung innerhalb des
Energiesystems vorgestellt.
|
Literatur |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Lehrveranstaltung L2386: Thermische Biomassenutzung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Dr. Isabel Höfer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die
Versuche des Praktikums verdeutlichen die unterschiedlichen
Aspekte der
Wärmegewinnung aus biogenen Festbrennstoffen. Dazu werden zunächst
unterschiedliche
Biomassen (wie z.B. Holz, Stroh oder landwirtschaftliche
Reststoffe) untersucht;
hierbei liegt der Schwerpunkt auf dem Heiz- und Brennwert der
Biomasse.
Weiterhin wird die verwendete Biomasse pelletiert, die
Pelleteigenschaften
analysiert und ein Verbrennungsversuch an einer
Pellet-Einzelraumfeuerung
durchgeführt. Dabei werden die gasförmigen und festen
Schadstoffemissionen,
besonders der entstehende Feinstaub, gemessen und in einem
weiteren Versuch die
Zusammensetzung des Feinstaubes untersucht. Ein weiterer
Schwerpunkt des
Praktikums liegt auf der Betrachtung von Optionen zur Reduzierung
des
Feinstaubes aus der Biomasseverbrennung. Im Praktikum wird eine
Methode zur
Feinstaubreduzierung erarbeitet und getestet. Alle Versuche werden
ausgewertet
und die Ergebnisse vorgestellt. |
Literatur |
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie
aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage.
Berlin Heidelberg: Springer Science & Business Media, 2016.
-ISBN 978-3-662-47437-2 |
Modul M1235: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Data Science: Kernqualifikation: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1670: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Lehrveranstaltung L1671: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Modul M1303: Energieprojekte und ihre Bewertung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Umweltbewertung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Vorgehensweise der Planung und Entwicklung von Projekten zur Nutzung regenerativer Energien beschreiben und auch die gesonderte Beachtung der wirtschaftlichen und rechtlichen Aspekte dabei erläutern. Die Lehrinhalte der einzelnen Themenschwerpunkte des Moduls werden anwendungsbezogen vermittelt; die Studierenden können diese somit u.a. in Berufszweigen der Beratung oder Betreuung von Energieprojekten auf unterschiedliche Fragestellungen anwenden. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen zur Vorgehensweise bei der Entwicklung erneuerbarer Energieprojekte auf beispielhafte Energieprojekte anwenden und die sich ergebenden Zusammenhänge unter besonderer Berücksichtigung der wirtschaftlichen und rechtlichen Voraussetzungen fachlich und konzeptionell einschätzen und beurteilen. Sie können als Basis zur Auslegung erneuerbarer Energiesysteme die Nachfrage nach thermischer und/oder elektrischer Energie auf betrieblicher und regionaler Ebene analysieren und dem folgend mögliche Energiesysteme auswählen und dimensionieren. Zur Bewertung der Nachhaltigkeitsaspekte von erneuerbaren Energieprojekten können die Studierenden in diesem Zusammenhang die richtige Methodik in Abhängigkeit der Fragestellung auswählen, diskutieren und kritisch Stellung dazu beziehen. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Seminare und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen zur Wirtschaftlichkeit erneuerbarer Energieprojekte in einer personenstarken Gruppe bearbeiten und zeitlich und fachlich organisieren. Sie können fachspezifische und fachübergreifende Diskussionen führen und dem folgend die Leistung der Kommilitonen einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. Des Weiteren sind die Studierenden in der Lage ihre Gruppenergebnisse von anderen zu vertreten. |
Selbstständigkeit |
Die Studierenden können sich zur Aufarbeitung der Vorlesungsinhalte und zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte selbstständig Quellen über das jeweilige Fachgebiet erschließen und sich das darin enthaltene Wissen aneignen. Auf dieser Basis sind sie in der Lage eigenständig Berechnungsmethoden zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte zu erfüllen und veranstaltungsübergreifende Zusammenhänge zu erkennen. Durch die durch Lehrende angeleitete Berechnungen können die Studierenden eigenständig Ihren Wissenstand erkennen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden Klausur + Projektseminarausarbeitung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0003: Entwicklung regenerativer Energieprojekte |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0005: Wirtschaftlichkeit einer regenerativen Energiebereitstellung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Script der Vorlesung |
Lehrveranstaltung L0006: Wirtschaftlichkeit einer regenerativen Energiebereitstellung |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Berechnung von Aufgaben zur Bewertung der Wirtschaftlichkeit eines erneuerbaren Energieprojektes, mit dem Ziel die komplexe Kenntnisse der Wirtschaftlichkeitsbetrachtung und Marktanalyse zu vertiefen. Bearbeitung erfolgt sowohl einzeln als auch in kleineren Gruppen. Folgende Themen werden behandelt:
Innerhalb des Seminars werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Skript der Vorlesung |
Modul M1309: Auslegung und Bewertung regenerativer Energiesysteme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativen Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche Erneuerbare Energien Technologien erklären, erläutern und technisch, ökonomisch und ökologisch bewerten. |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | je Lehrveranstaltung ca. 20 Minuten Vortrag + schriftliche Ausarbeitung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung ist aufbauend auf den Vorlesungen "Stromerzeugung aus regenerativen Energien" und "Wärmeerzeugung aus regenerativen Energien".
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Modul M0512: Solarenergienutzung |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden sich fachliche mit Grundlagen und mit aktuellen Fragen und Problemen aus dem Gebiet der Solarenergienutzung auseinandersetzen und diese unter Einbeziehung vorheriger Lehrinhalte und aktueller Problematiken erläutern und kritisch Stellung dazu beziehen. Sie können insbesondere die Prozesse innerhalb einer Solarzelle fachlich beschreiben und die Besonderheiten bei der Anwendung von Solarmodulen erläutern. Des Weiteren können sie einen Überblick über die Kollektortechnik in solarthermischen Anlagen geben. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf beispielhafte solarstrahlungnutzende Energiesysteme anwenden und in diesem Zusammenhang unter anderem Potenziale und Grenzen solarer Energieerzeugungsanlagen für verschiedene geografische Bedingungen einschätzen und beurteilen. Sie sind in der Lage unter gegebenen Randbedingungen solare Energieerzeugungsanlagen technische effizient zu dimensionieren und mit der Nutzung modulübergreifendes Wissens ökonomisch und ökologisch zu beurteilen. Dafür notwendige Berechnungsmethoden innerhalb der Strahlungslehre können sie auswählen und aufgabenspezifisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden angeleitet durch Lehrende eigenständig Berechnungsmethoden zur Potenzialanalyse und technischen Auslegung von solaren Energiesystemen durchführen und auf dieser Basis Ihren jeweiligen Lernstand einschätzen und eventuell weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0016: Energiemeteorologie |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Matthias, Dr. Beate Geyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0017: Energiemeteorologie |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Beate Geyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0018: Kollektortechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Agis Papadopoulos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0015: Solare Stromerzeugung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alf Mews, Martin Schlecht, Roman Fritsches-Baguhl, Paola Pignatelli |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0513: Systemaspekte regenerativer Energien |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Technische Thermodynamik I Modul: Technische Thermodynamik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können mit Abschluss dieses Moduls die Prozesse im Energiehandel und die Gestaltung der Energiemärkte beschreiben und kritisch in Bezug zu aktuellen Problemstellungen bewerten. Des Weiteren sind sie in der Lage die thermodynamischen Grundlagen der elektrochemischen Energiewandlung in Brennstoffzellen zu erklären und den Bezug zu verschiedenen Bauarten von Brennstoffzellen und deren jeweiligem Aufbau herzustellen und zu erläutern. Die Studenten können diese Technologie mit weiteren Energiespeichermöglichkeiten vergleichen. Zusätzlich können die Studenten einen Überblick über die Verfahrensweise und der energetischen Einbindung von tiefer Geothermie geben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen zur Speicherung überschüssiger Energie anwenden, um für unterschiedlicher Energiesysteme Lösungsansätze für eine versorgungssichere Energiebereitstellung erläutern. Insbesondere können sie diesbezüglich häusliche, gewerbliche und industrielle Beheizungsanlagen unter Anwendung von Speichern energiesparend planen und berechnen, und im Bezug zu komplexen Energiesystemen beurteilen. In diesem Zusammenhang können die Studierenden die Potenziale und Grenzen von Geothermieanlagen einschätzen und deren Funktionsweise erläutern. Des Weiteren sind die Studierenden in der Lage die Vorgehensweisen und Strategien zur Vermarktung von Energie zu erläutern und im Kontext anderer Module auf erneuerbare Energieprojekte anwenden. In diesem Zusammenhang können die Studierenden eigenständig Analysen zur Bewertung von Energiehandel und Energiemärkten erstellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Fröba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0019: Energiehandel und Energiemärkte |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Michael Sagorje, Dr. Sven Orlowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb der Übung werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur |
Lehrveranstaltung L0020: Energiehandel und Energiemärkte |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Michael Sagorje, Dr. Sven Orlowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0025: Tiefe Geothermie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Ben Norden |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1308: Modellierung und technische Auslegung von Bioraffinerieprozessen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können nach der Teilnahme an der Veranstaltung einen
verfahrenstechnischen Prozess umfassend auslegen. Dazu gehören die Erstellung
von Massen- und Energiebilanzen, die Auslegung verfahrenstechnischer Apparate,
die Festlegung von Messtechniken und Regelkreisen für die einzelnen Apparate
sowie die Modellierung des Gesamtprozesses.
Des Weiteren können sie die Grundlagen zur allgemeinen Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben, insbesondere mit ASPEN PLUS® und ASPEN CUSTOM MODELER® beschreiben. |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung von Simulations- und
Anwendungsaufgaben der erneuerbaren Energietechnik:
Sie können die ASPEN PLUS ® and ASPEN CUSTOM MODELER ® zur Modellierung energetischer Systeme anwenden und die Simulationslösung bewerten. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Seminare und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die
Studierenden können
die Leistungen der Kommilitonen im Vergleich zu Ihrer eigenen Leistung einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung inkl. Vortrag |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1832: Bioraffinerien - Technische Auslegung und Optimierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Empfohlene Vorkenntnisse:
Prozess- und Anlagentechnik I und II Thermische Grundoperationen Wärme- und Stoffübertragung Strömungsmechanik I und II I. Wiederholung Grundlagen:
II. Selbstständiges Rechnen:
|
Literatur |
Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007 Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014 |
Lehrveranstaltung L0022: CAPE bei Energieprojekten |
Typ | Projektierungskurs |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur |
|
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Isabel Höfer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2,5 Stunden + Vortrag in Nachhaltikeitsmanagement |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0007: Nachhaltigkeitsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Anne Rödl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung Nachhaltigkeitsmanagement soll einen Einblick in die verschiedenen Aspekte und Dimensionen der Nachhaltigkeit geben. Diese Inhalte der Vorlesung bauen auf den Grundlagen der Umweltbewertung auf; der vorherige Besuch der Vorlesung Umweltbewertung ist daher empfohlen. Verschiedene Bewertungsansätze für die Bewertung ökologischer, ökonomischer und sozialer Aspekte werden vorgestellt. Deren Anwendung und Nutzung für ein Nachhaltigkeitsmanagement wird direkt an kurzen Technikbeispielen erläutern und später umfassend anhand von Fallbeispiele dargestellt.
Ziel: Ziel der Veranstaltung ist es, Methoden für die Bewertung von Nachhaltigkeitsaspekten zu erlernen und für das Nachhaltigkeitsmanagement anzuwenden. |
Literatur |
Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner, Hugo Götsch |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann, Dr. Jochen Oexmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0742: Thermische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dr. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Thermische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Dr. Arne Speerforck, Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Thermische Energiesysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dr. Arne Speerforck, Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Bioenergiesysteme
Modul M1343: Fibre-polymer-composites |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics: chemistry / physics / materials science |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L1893: Design with fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur | Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M0518: Waste and Energy |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Basics of process engineering | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able to describe and explain in detail techniques, processes and concepts for treatment and energy recovery from wastes. |
||||||||
Fertigkeiten |
The students are able to select suitable processes for the treatment and energy recovery of wastes. They can evaluate the efforts and costs for processes and select economically feasible treatment Concepts. Students are able to evaluate alternatives even with incomplete information. Students are able to prepare systematic documentation of work results in form of reports, presentations and are able to defend their findings in a group. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of collegues. Furthermore, they can give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Referat | ||||||||
Prüfungsdauer und -umfang | Vortrag mithilfe von Powerpoint-Folien (10-15 Minuten) | ||||||||
Zuordnung zu folgenden Curricula |
Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0047: Waste Recycling Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L0048: Waste Recycling Technologies |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L0049: Waste to Energy |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Rüdiger Siechau |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur: Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 Powerpoint-Folien in Stud IP Literature:
|
Modul M0896: Bioprocess and Biosystems Engineering |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. An-Ping Zeng | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
After completion of this module, participants will be able to:
|
||||||||
Fertigkeiten |
After completion of this module, participants will be able to:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. The students can reflect their specific knowledge orally and discuss it with other students and teachers. |
||||||||
Selbstständigkeit |
After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Environmental Engineering: Vertiefung Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1034: Bioreactor Design and Operation |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Design of bioreactors and peripheries:
Sterile operation:
Instrumentation and control:
Bioreactor selection and scale-up:
Integrated biosystem:
Team work with presentation:
|
Literatur |
|
Lehrveranstaltung L1037: Bioreactors and Biosystems Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. An-Ping Zeng, Dr. Johannes Möller |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering (Exercise)
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Lehrveranstaltung L1036: Biosystems Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Modul M0749: Abfallbehandlung und Feststoffverfahrenstechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Thermodynamik, Grundlagen Strömungsmechanik Grundlagen der Chemie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können aktuelle Frage- und
Problemstellungen aus dem Gebiet der thermischen
Abfallbehandlungstechnik
Dabei können sie verschiedene Arten von Verbrennungs- und
Aufbereitungstechniken unterscheiden und beschreiben, zum
Beispiel
Die Studierenden sind in der Lage, Apparate der thermischen Abfallbehandlungstechnik und der Feststoffverfahrenstechnik zu konzipieren und auszulegen. |
Fertigkeiten |
Die Studierenden sind in der Lage, geeignete Verfahren für die Behandlung bestimmter Abfälle oder Rohstoffe in Abhängigkeit von deren Charakteristika und den Zielsetzungen auszuwählen. Sie können den technischen Aufwand und die ökologischen Folgen der Technologien abschätzen . |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung. |
Literatur |
Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4 Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe, Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175 |
Lehrveranstaltung L0320: Thermal Waste Treatment |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013. |
Lehrveranstaltung L1177: Thermal Waste Treatment |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Kerstin Kuchta |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0902: Abwasserreinigung und Luftreinhaltung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Swantje Pietsch-Braune |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Biologie und Chemie Grundlagen der Feststoffverfahrenstechnik und der Trenntechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage,
|
Fertigkeiten |
Studenten sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Swantje Pietsch-Braune, Christian Eichler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M0900: Ausgewählte Prozesse der Feststoffverfahrenstechnik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Kenntnisse aus dem Modul Partikletechnologie I | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage, beispielhaft die Zusammenstellung von Prozessen der Feststoffverfahrenstechnik aus Apparaten und Verfahren der Partikeltechnologie zu beschreiben und das Zusammenwirken einzelner Teilprozesse in einem Gesamtprozess erläutern. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, Aufgabenstellungen in der Feststoffverfahrenstechnik zu analysieren und geeignete Prozessketten zusammenzustellen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Studierende sind in der Lage fachspezifische Inhalte in wissenschaftlicher Weise zu diskutieren. | ||||||||
Selbstständigkeit | Studierende sind dazu in der Lage fachspezifisches Wissen selbstständig zu vertiefen und in wissenschaftlicher Weise zu diskutieren. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0431: Fluidization Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction: definition, fluidization
regimes, comparison with other types of gas/solids reactors |
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Lehrveranstaltung L1369: Practical Course Fluidization Technology |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Experiments:
|
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Lehrveranstaltung L0955: Technische Anwendungen der Partikeltechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Werner Sitzmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Auf der Basis physikalischer Grundlagen werden die Grundoperationen Mischen, Trennen, Agglomerieren und Zerkleinern hinsichtlich ihrer technischen Anwendung aus Sicht des Praktikers diskutiert. Es werden Maschinen und Apparate vorgestellt, deren Aufbau und Wirkungsweise erklärt und ihre Einbindung in Produktionsprozesse der Chemie, der Lebens- und Futtermitteltechnik sowie der Endsorgungs- und Recyclingindustrie veranschaulicht. |
Literatur | Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997 |
Lehrveranstaltung L1372: Exercises in Fluidization Technology |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Exercises and calculation examples for the lecture Fluidization Technology |
Literatur |
Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991. |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Modul M1709: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Mirko Skiborowski |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen im Bereich der mathematischen Modellierung und numersichen Mathematik, sowie ein grundlegendes Verständniss verfahrenstechnsicher Prozesse. Insbesondere die Inhalte des Moduls Prozess- und Anlagentechnik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Das Modul bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. •Einführung in die angewandte Optimierung • Formulierung von Optimierungsproblemen • Lineare Optimierung • Nichtlineare Optimierung • Gemischt-ganzzahlige (nicht)lineare Optimierung • Mehrkriterielle Optimierung • Globale Optimierung |
Fertigkeiten | Studierende können nach erfolgreicher Teilnahme am Modul "Angeandte Optimierung in der Energie- und Verfahrenstechnik" die unterschiedlichen Arten von Optimierungsproblemen formulieren und in dafür geeigneiter Software wie Matlab und GAMS entsprechende Lösungsverfahren auszuwählen und weiterführende Lösungsstrategien zu entwickeln. Daüber hinaus sind Sie in der Lage die Ergebnisse entsprechend zu interpretieren und kritisch zu prüfen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind in der Lage: •in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten |
Selbstständigkeit |
Studierende sind in der Lage: •sich anhand weiterführender Literatur zum Thema daraus Wissen zu erschließen |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 35 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L2693: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. - Einführung in die angewandte Optimierung - Formulierung von Optimierungsproblemen - Lineare Optimierung - Nichtlineare Optimierung - Gemischt-ganzzahlige (nicht)lineare Optimierung - Mehrkriterielle Optimierung - Globale Optimierung |
Literatur |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Lehrveranstaltung L2695: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Solare Energiesysteme
Innerhalb der Vertiefungsrichtung „Solare Energiesysteme“ haben Studierende die Möglichkeit ein Auslandssemester an der „University of Jordan“ in Amman, Jordanien, gefördert zu bekommen. Innerhalb dieses Auslandsaufenthaltes sollen zusätzliche Module im Bereich „Solare Energiesysteme“ belegt werden, deren Leistungspunkte an TUHH nach Absprache anerkannt werden.
Weiterhin können Studierende innerhalb der Vertiefungsrichtung „Solare Energiesysteme“ in Kooperation mit der International Hellenic University in Thessaloniki, Griechenland das Modul "Modelling and simulation of Building Integrated Solar Energy systems" belegen, welches nach Absprache an der TUHH anerkannt werden kann. Der Austausch wird ebenfalls gefördert.
Studierende, welche beabsichtigen die Vertiefung „Solare Energiesysteme“ zu belegen, werden gebeten sich in jedem Falle frühzeitig an den Studiengangsleiter für weitere Informationen zum Studienverlauf und Auslandsaufenthalt zu wenden.
Modul M1343: Fibre-polymer-composites |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics: chemistry / physics / materials science |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L1893: Design with fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur | Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M0643: Optoelectronics I - Wave Optics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Manfred Eich |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basics in electrodynamics, calculus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain the fundamental mathematical and physical relations of freely propagating optical waves. |
Fertigkeiten |
Students can generate models and derive mathematical descriptions in relation to free optical wave propagation. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Selbstständigkeit |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Leistungspunkte | 4 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 40 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L0359: Optoelectronics I: Wave Optics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Lehrveranstaltung L0361: Optoelectronics I: Wave Optics (Problem Solving Course) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Manfred Eich |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | see lecture Optoelectronics 1 - Wave Optics |
Literatur |
see lecture Optoelectronics 1 - Wave Optics |
Modul M0932: Prozessmesstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Roland Harig |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik und der Messtechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen ein Verständnis für prozessmesstechnische Zusammenhänge und Messtechnik weitverzweigter Anlagen. Die Studierenden kennen übliche Verfahren zur Verarbeitung und Übertragung von Signalen. |
Fertigkeiten |
Die Studierenden können komplexe Sensor- und Messdatenübertragungssysteme modellieren und bewerten. Hierbei steht insbesondere das systemorientierte Denken im Vordergrund. |
Personale Kompetenzen | |
Sozialkompetenz |
Technische Zusammenhänge können in englischer Sprache kommuniziert werden. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen kontinuierlich reflektieren und auf dieser Basis ihren Lernprozess steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Grundlagen der Elektrotechnik, Analysis, Stochastische Prozesse, Nachrichtenübertragung) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Leistungspunkte | 4 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L1077: Prozessmesstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Roland Harig |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
- Färber: „Prozeßrechentechnik“, Springer-Verlag 1994 - Kiencke, Kronmüller: „Meßtechnik“, Springer Verlag Berlin Heidelberg, 1995 - A. Ambardar: „Analog and Digital Signal Processing“ (1), PWS Publishing Company, 1995, NTC 339 - A. Papoulis: „Signal Analysis“ (1), McGraw-Hill, 1987, NTC 312 (LB) - M. Schwartz: „Information Transmission, Modulation and Noise“ (3,4), McGraw-Hill, 1980, 2402095 - S. Haykin: „Communication Systems“ (1,3), Wiley&Sons, 1983, 2419072 - H. Sheingold: „Analog-Digital Conversion Handbook“ (5), Prentice-Hall, 1986, 2440072 - J. Fraden: „AIP Handbook of Modern Sensors“ (5,6), American Institute of Physics, 1993, MTB 346 |
Lehrveranstaltung L1083: Prozessmesstechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Roland Harig |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1425: Leistungselektronik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Den Studierenden werden die Grundlagen der Stromrichtertechnik und der modernen Leistungselektronik vermittelt. Ferner werden die wesentlichen Eigenschaften konventioneller und moderner Leistungshalbleiter vorgestellt und deren Ansteuerverfahren präsentiert. Ebenso lernen die Studierenden die wichtigsten Schaltungstopologien der selbstgeführten Stromrichter und deren Steuerverfahren kennen. |
Fertigkeiten | Neben den Grundlagen der Stromrichterkommutierung lernen die Studierenden Methoden zur Bestimmung der Durchlass- und Schaltverluste der Bauelemente kennen. An einfachen Beispielen lernen die Teilnehmer Methoden zur mathematischen Beschreibung des Übertragungsverhaltens leistungselektronischer Schaltungen kennen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in angrenzenden Themengebieten im Bereich der Photovoltaik und Leistungselektronik mit Kommilitonen diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und das erlangte Wissen auf weitere Bereich übertragen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2053: Leistungselektronik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Klaus Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Hilfsblätter und Literaturhinweise werden im Rahmen der Vorlesung ausgeteilt. |
Lehrveranstaltung L2054: Leistungselektronik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1287: Risikomanagement, Wasserstoff- und Brennstoffzellentechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Risikomanagements unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben. Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wiedergeben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage Risiken von Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen zu bewerten. Die beinhaltet auch, dass die Studierenden unter anderem in der Lage sind Risiken in der Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen. In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen. Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1831: Angewandte Brennstoffzellentechnologie |
Typ | Vorlesung | ||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||
LP | 2 | ||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 | ||||||||||||||||||||||
Dozenten | Prof. Klaus Bonhoff | ||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||
Zeitraum | SoSe | ||||||||||||||||||||||
Inhalt |
Die Vorlesung gibt einen Einblick in die
vielfältigen Nutzungsmöglichkeiten von Brennstoffzellen im Energiesystem
(Strom, Wärme und Verkehr). Dazu werden für einzelne Brennstoffzellentypen und anwendungsorientierten Anforderungsprofile dargestellt und diskutiert; auch im Systemvergleich mit alternativen Technologien. Für die einzelnen Varianten wird der aktuelle Stand der
Technologie mit Praxisbeispielen aus Deutschland und weltweit vorgestellt.
Auch wird auf die sich abzeichnenden Entwicklungstendenzen und
Entwicklungslinien - und die in den kommenden Jahren zu erwartenden Technologien
- eingegangen. Neben den technischen Aspekten, die den Schwerpunkt der
Veranstaltung darstellen, werden auch energie-, umwelt- und industriepolitische
Aspekte - auch im Kontext der sich verändernden Gegebenheiten im deutschen und
internationalen Energiesystem - diskutiert.
|
||||||||||||||||||||||
Literatur |
Vorlesungsunterlagen |
Lehrveranstaltung L1748: Risikomanagement in der Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christian Wulf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0060: Wasserstofftechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Dornheim |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0515: Energieinformationssysteme und Elektromobilität |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die elektrische Energietechnik im Bereich Erneuerbarer Energien einen Überblick geben. Möglichkeiten der Integration von erneuerbaren Energieanlagen in das bestehende Netz, der elektrischen Speichermöglichkeiten und der elektrischen Energieübertragung und- verteilung können sie detailliert erläutern und kritisch dazu Stellung beziehen. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung erneuerbarer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwickeln und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Lehrveranstaltung L1833: Elektromobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Bonhoff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Vorlesungsunterlagen/ lecture material |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0540: Transport Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to:
|
Fertigkeiten |
The students are able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to discuss in international teams in english and develop an approach under pressure of time. |
Selbstständigkeit |
Students are able to define independently tasks, to solve the problem "design of a multiphase reactor". The knowledge that s necessary is worked out by the students themselves on the basis of the existing knowledge from the lecture. The students are able to decide by themselves what kind of equation and model is applicable to their certain problem. They are able to organize their own team and to define priorities for different tasks. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 15 Minuten Vortrag + 90 Minuten Multiple Choice Klausur |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0104: Multiphase Flows |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971. |
Lehrveranstaltung L0105: Reactor Design Using Local Transport Processes |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this Problem-Based Learning unit the students have to design a multiphase reactor for a fast chemical reaction concerning optimal hydrodynamic conditions of the multiphase flow. The four students in each team have to:
This exposé will be used as basis for the discussion within the oral group examen of each team. |
Literatur | see actual literature list in StudIP with recent published papers |
Lehrveranstaltung L0103: Heat & Mass Transfer in Process Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Modul M1709: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Mirko Skiborowski |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen im Bereich der mathematischen Modellierung und numersichen Mathematik, sowie ein grundlegendes Verständniss verfahrenstechnsicher Prozesse. Insbesondere die Inhalte des Moduls Prozess- und Anlagentechnik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Das Modul bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. •Einführung in die angewandte Optimierung • Formulierung von Optimierungsproblemen • Lineare Optimierung • Nichtlineare Optimierung • Gemischt-ganzzahlige (nicht)lineare Optimierung • Mehrkriterielle Optimierung • Globale Optimierung |
Fertigkeiten | Studierende können nach erfolgreicher Teilnahme am Modul "Angeandte Optimierung in der Energie- und Verfahrenstechnik" die unterschiedlichen Arten von Optimierungsproblemen formulieren und in dafür geeigneiter Software wie Matlab und GAMS entsprechende Lösungsverfahren auszuwählen und weiterführende Lösungsstrategien zu entwickeln. Daüber hinaus sind Sie in der Lage die Ergebnisse entsprechend zu interpretieren und kritisch zu prüfen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind in der Lage: •in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten |
Selbstständigkeit |
Studierende sind in der Lage: •sich anhand weiterführender Literatur zum Thema daraus Wissen zu erschließen |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 35 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L2693: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Integrierte Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden. - Einführung in die angewandte Optimierung - Formulierung von Optimierungsproblemen - Lineare Optimierung - Nichtlineare Optimierung - Gemischt-ganzzahlige (nicht)lineare Optimierung - Mehrkriterielle Optimierung - Globale Optimierung |
Literatur |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Lehrveranstaltung L2695: Angewandte Optimierung in der Energie- und Verfahrenstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Windenergiesysteme
Innerhalb der Vertiefung “Windenergiesysteme” werden weiterführende Kenntnisse zur Nutzung von Windenergie, sowohl im Onshore als auch im Offshore Bereich vermittelt. Insbesondere wird auf die maritimen und logistischen Randbedingungen zur Installation und Nutzung von Offshore Windkraftparks eingegangen. In diesem Zusammenhang wird auch der Umgang mit Risiken, die beim Bau und im Betrieb solcher großen Energieprojekte auftreten können, erläutert.
Zusätzlich werden in einem Modul die werkstoffspezifischen Grundlagen für die Zusammensetzung von Bestandteilen von Windenergieanlagen geschaffen.
Modul M1133: Hafenlogistik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | keine | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können nach Abschluss des Moduls …
|
||||||||
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können nach Abschluss des Moduls…
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0686: Hafenlogistik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Hafenlogistik beschäftigt sich mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die außerordentliche Rolle des Seeverkehrs für den internationalen Handel erfordert sehr leistungsfähige Häfen. Diese müssen zahlreichen Anforderungen in Punkten Wirtschaftlichkeit, Geschwindigkeit, Sicherheit und Umwelt genügen. Vor diesem Hintergrund beschäftigt sich die Vorlesung Hafenlogistik mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die Veranstaltung Hafenlogistik zielt darauf ab, Verständnis über Strukturen und Prozesse in Häfen zu vermitteln. Schwerpunktmäßig werden unterschiedliche Typen von Terminals, ihre charakteristischen Layouts und das eingesetzte technische Equipment und die voranschreitende Digitalisierung sowie das Zusammenspiel der beteiligten Akteure thematisiert. Außerdem werden regelmäßig renommierte Gastredner aus der Wissenschaft und Praxis eingeladen, um einige vorlesungsrelevante Themen aus alternativen Blickwinkeln zu beleuchten. Folgende Inhalte werden in der Veranstaltung vermittelt:
|
Literatur |
|
Lehrveranstaltung L1473: Hafenlogistik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt der Übung ist die selbstständige Erstellung
eines wissenschaftlichen Papers und einer dazugehörigen Präsentation zu einem
aktuellen Thema der Hafenlogistik. Inhalt des Papers sind aktuelle Themen der
Hafenlogistik, beispielsweise die zukünftigen Herausforderungen in Nachhaltigkeit
und Produktivität von Häfen, die digitale Transformation von Terminals und
Häfen oder die Einführung von neuen Regularien durch die International Maritime
Organisation in Bezug auf das verifizierte Bruttogewicht von Containern. Aufgrund
der internationalen Ausrichtung der Veranstaltung ist das Paper in englischer
Sprache zu erstellen.
|
Literatur |
|
Modul M0527: Marine Bodentechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Isabel Höfer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der Analysis und Differentialgleichungen Grundkenntnisse der maritimen Technik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die grundlegendne Techniken zur Analyse von Offshore-Systemen, einschließlich der dazugehörigen Untersuchungen der Eigenschaften des Meeresbodens, eine Überblick geben und die dazugehörigen Inhalte unter Einbeziehung fachlich angrenzender Kontexte erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage dynamische Offshoresysteme modelltechnisch abzubilden und zu bewerten. Dafür sind sie sind sie zusätzlich in der Lage systemorientiert zudenken und komplexe System in Teilsysteme zu zerlegen. |
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. Des Weiteren können die Studierenden innerhalb der Übungsstunden angeleitet durch Lehrende Ihren jeweiligen Lernstand konkret einschätzen und auf dieser Basis weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L0068: Analyse meerestechnischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0069: Analyse meerestechnischer Systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1132: Maritimer Transport |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Carlos Jahn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können…
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage...
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können…
|
||||||||
Selbstständigkeit |
Studierende sind fähig…
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0063: Maritimer Transport |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Zu den generellen Aufgaben der maritimen Logistik zählen die Planung, Gestaltung, Durchführung und Steuerung von Material- und Informationsflüssen in der Logistikkette Schiff - Hafen - Hinterland. Eingeschlossen sind die Technologiebewertung, -auswahl, -dimensionierung und -einführung sowie der Betrieb von Technologien. Ziel der Lehrveranstaltung ist es, den Studierenden Kenntnisse des maritimen Transports und der an der maritimen Transportkette beteiligten Akteure zu vermitteln. Hierbei wird, unter Beachtung der wirtschaftlichen Entwicklung, auf typische Problemfelder und Aufgaben eingegangen. Somit sind sowohl klassische Probleme als auch aktuelle Entwicklungen und Trends im Bereich der Maritimen Logistik berücksichtigt. In der Vorlesung werden die Bestandteile der maritimen Logistikkette und die beteiligten Akteure beleuchtet sowie Risikoabschätzungen von menschlichen Störungen auf die Supply Chain erarbeitet. Darüber hinaus lernen Studierenden die Potentiale der Digitalisierung in der Seeschifffahrt, Insbesondere im Hinblick auf das Monitoring von Schiffen, abzuschätzen. Ein weiterer Inhalt der Vorlesung sind die verschiedenen Verkehrsträger im Hinterland, welche Studierenden nach Abschluss der Lehrveranstaltung hinsichtlich ihrer Vor- und Nachteile bewerten können. |
Literatur |
|
Lehrveranstaltung L0064: Maritimer Transport |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Carlos Jahn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bei der Gruppenübung im Modul "Maritimer Transport" werden den Studierenden durch das haptische Planspiel MARITIME grundlegende Kenntnisse über Akteure und Prozesse in maritimen Transportketten vermittelt. Weiterhin ermöglicht das Planspiel und die darauf aufbauende Gruppenarbeit das selbständige Erlernen verschiedener Prozessmodellierungstechniken und fördert die Kompetenzen der Studierenden im Bereich der Präsentation, Moderation und Diskussion. |
Literatur |
|
Modul M1343: Fibre-polymer-composites |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Basics: chemistry / physics / materials science |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can
|
Selbstständigkeit |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L1893: Design with fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur | Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1287: Risikomanagement, Wasserstoff- und Brennstoffzellentechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Risikomanagements unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben. Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wiedergeben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage Risiken von Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen zu bewerten. Die beinhaltet auch, dass die Studierenden unter anderem in der Lage sind Risiken in der Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen. In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen. Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1831: Angewandte Brennstoffzellentechnologie |
Typ | Vorlesung | ||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||
LP | 2 | ||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 | ||||||||||||||||||||||
Dozenten | Prof. Klaus Bonhoff | ||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||
Zeitraum | SoSe | ||||||||||||||||||||||
Inhalt |
Die Vorlesung gibt einen Einblick in die
vielfältigen Nutzungsmöglichkeiten von Brennstoffzellen im Energiesystem
(Strom, Wärme und Verkehr). Dazu werden für einzelne Brennstoffzellentypen und anwendungsorientierten Anforderungsprofile dargestellt und diskutiert; auch im Systemvergleich mit alternativen Technologien. Für die einzelnen Varianten wird der aktuelle Stand der
Technologie mit Praxisbeispielen aus Deutschland und weltweit vorgestellt.
Auch wird auf die sich abzeichnenden Entwicklungstendenzen und
Entwicklungslinien - und die in den kommenden Jahren zu erwartenden Technologien
- eingegangen. Neben den technischen Aspekten, die den Schwerpunkt der
Veranstaltung darstellen, werden auch energie-, umwelt- und industriepolitische
Aspekte - auch im Kontext der sich verändernden Gegebenheiten im deutschen und
internationalen Energiesystem - diskutiert.
|
||||||||||||||||||||||
Literatur |
Vorlesungsunterlagen |
Lehrveranstaltung L1748: Risikomanagement in der Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christian Wulf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0060: Wasserstofftechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Dornheim |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0515: Energieinformationssysteme und Elektromobilität |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können über die elektrische Energietechnik im Bereich Erneuerbarer Energien einen Überblick geben. Möglichkeiten der Integration von erneuerbaren Energieanlagen in das bestehende Netz, der elektrischen Speichermöglichkeiten und der elektrischen Energieübertragung und- verteilung können sie detailliert erläutern und kritisch dazu Stellung beziehen. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung erneuerbarer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwickeln und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Lehrveranstaltung L1833: Elektromobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus Bonhoff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Vorlesungsunterlagen/ lecture material |
Modul M1424: Integration Erneuerbarer Energien |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Erneuerbaren Energien sowie des Energiesystems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Mit Abschluss des Moduls sind die Studierenden in der Lage, die bisher erlernten fachlichen Grundlagen der verschiedenen Fachgebiete der Erneuerbaren Energien übergreifend einzusetzen und anzuwenden. Es werden aktuelle Problemstellungen in Bezug auf die Integration Erneuerbarer Energien im Energiesystem dargestellt und analysiert. Hierbei wird insbesondere auf die Sektoren Elektrizität, Wärme sowie Mobilität eingegangen, sodass die Studierenden Einblicke in sektorübergreifende Maßnahmen erlangen. |
Fertigkeiten | Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf verschiedene sektorenübergreifende Problemstellungen anwenden und in diesem Zusammenhang die Potentiale aber auch Grenzen der Sektorenkopplung im deutschen Energiesystem einschätzen und beurteilen. Insbesondere das Anwenden und Verknüpfen von bereits erlernten Methoden und Wissen soll hier von den Studierenden angewendet werden, sodass ein Weitblick über die verschiedenen Technologien erlangt wird. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können Problemstellungen in den Themengebieten der Sektorenkopplung und Integration von erneuerbaren Energien miteinander diskutieren. |
Selbstständigkeit | Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden weitere Technologien und Kopplungsmöglichkeiten für das Energiesystem selbst recherchieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht |
Lehrveranstaltung L2049: Integration Erneuerbarer Energien I |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2050: Integration Erneuerbarer Energien I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2051: Integration Erneuerbarer Energien II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2052: Integration Erneuerbarer Energien II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Volker Lenz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0528: Maritime Technik und Offshore-Windkraftparks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Moustafa Abdel-Maksoud |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Qualifizierter Bachelor einer Natur- oder Ingenieurwissenschaft; Solide Kenntnisse Fähigkeiten in Mathematik, Mechanik, Strömungsmechanik. Grundkenntnisse der Meerestechnik (z.B. aus der einführenden Veranstaltung 'Einführung in die Maritime Technik') Gute Grundlagenkenntnisse im Bereich Technische Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem Erfolgreichen Absolvieren dieses Kurses sollten die Studierenden einen Überblick über Phänomene und Methoden der Meerestechnik und Fähigkeit zu Anwendung und Transfer der Methoden auf neuartige Fragestellungen erworben haben. Im Einzelnen sollten die Studierenden:
Anhand ausgewählter Themen sollen die Teilnehmer an aktuelle Forschungsfragen herangeführt und im Rahmen projektorientierter Übungsaufgaben zur Durchführung weitergehender eigenständiger Forschungsaktivitäten befähigt werden. Lernziele im Einzelnen:
Ein grundlegendes Verständnis der technischen Aufgabenstellungen im Bereich Offshore Windenergie und der Ansätze für ihre Lösung. |
Fertigkeiten |
Im Rahmen dieser Vorlesung über ein einziges Semester soll und kann den Studenten vor allem ein Überblickswissen und praxisorientierte Kenntnisse vermittelt werden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Dozent trägt nicht nur vor, sondern skizziert an der Tafel und bindet die Studenten in einem Dialog ein. Die Studierenden sind damit gefordert sich zu artikulieren und einen Beitrag in der Gruppe zu leisten. |
Selbstständigkeit |
Die Studierenden werden in der Vorlesung immer wieder aufgefordert eigenständig mitzudenken und die grundlegenden Zusammenhänge aufzuzeigen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L0070: Einführung in die Maritime Technik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Walter Kuehnlein, Dr. Sven Hoog |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einführung
2. Küste und Meer: Umweltbedingungen
3. Antwortverhalten technischer Strukturen 4. Maritime Systeme und Technologien
|
Literatur |
|
Lehrveranstaltung L1614: Einführung in die Maritime Technik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Walter Kuehnlein |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0072: Offshore-Windkraftparks |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1354: Advanced Fuels |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden lernen innerhalb des Moduls verschiedene Bereitstellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoffproduktion beleuchtet. Hierzu gehören beispielsweise die Anforderungen der Erneuerbare-Energien-Richtlinie II sowie die Voraussetzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoffoptionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. |
Fertigkeiten |
Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:
Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht |
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2416: Mobilität und Klimaschutz |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Benedikt Buchspies, Dr. Karsten Wilbrand |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis
|
Literatur |
|
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Benedikt Buchspies |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:
|
Literatur |
|
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Interdisciplinary Mathematics: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht |