Modulhandbuch

Master

Regenerative Energien

Kohorte: Wintersemester 2015

Stand: 23. Mai 2016

Studiengangsbeschreibung

Inhalt

In den letzten Jahrzehnten haben der Energieverbrauch und die damit verbundenen anthropogenen Umweltauswirkungen stetig zu- und die (gefühlte) Versorgungssicherheit zunehmend abgenommen. Und es ist zu erwarten, dass diese Entwicklung zukünftig weitergeht. Eine verstärkte Nutzung regenerativer Energien – und damit von Wasserkraft, Windenergie und Solarstrahlung sowie Biomasse und Geothermie – im Strom-, Wärme- und Kraftstoffmarkt kann zur Lösung dieser Herausforderungen wesentlich beitragen.

Mit Abschluss dieses Masters "Regenerative Energien" sind die Absolvent/innen befähigt, die Möglichkeiten und Grenzen einer Energiebereitstellung für den Wärme-, Strom- und Kraftstoffmarkt aus den regenerativen Energiequellen Sonne, Erdwärme sowie Planetengravitation und -bewegung zu erläutern und zu beurteilen – und das primär aus technischer, aber auch aus ökonomischer und ökologischer Sicht. Sie können über die physikalische und chemische Charakteristik des regenerativen Energieangebots einen Überblick geben, haben die grundlegenden technischen Nutzungsprinzipien verstanden und können die daraus resultierenden technischen und technologischen Anforderungen an die entsprechende Konversionsanlagentechnik einschätzen. Auch können die Absolvent/innen die anlagen- und systemtechnischen sowie die ökonomischen und ökologischen Grundlagen der einzelnen Optionen zur Nutzung des regenerativen Energieangebots bewerten. Sie haben einen Überblick über Aspekte der Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien ins vorhandene Energiesystem – sowohl in Deutschland als auch im außereuropäischen Ausland. Außerdem können sie Fragen der Energiespeicherung und der Entwicklung regenerativer Energieprojekte mit Expert/innen diskutieren. Dieses Fachwissen und die damit in Verbindung stehenden Fertigkeiten befähigen die Absolvent/innen, auch zu aktuellen Themen der Energiewirtschaft fundiert und ideologiefrei Stellung zu beziehen. Durch dieses Masterstudium sind sie qualifiziert, Interessenten fachlich zu beraten oder eigenständig Fragestellungen und Ziele für neue anwendungs- oder forschungsorientierte Aufgaben zu formulieren.

Eine weitergehende fachliche Vertiefung innerhalb dieses Masters auf die regenerativen Energien Biomasse oder Windenergie ist möglich. Damit vermittelt der Studiengang umfassende Kenntnisse zu praktisch allen Optionen zur Nutzung des erneuerbaren Energieangebots, deren Nutzung im Energiesystem – unter Berücksichtigung der bereits vorhandenen Strukturen – und ausgewählter damit zusammenhängender technischer, ökonomischer und ökologischer Aspekte.


Fachmodule der Kernqualifikation

Innerhalb der Kernqualifikation des Masters "Regenerative Energien" erlangen die Studierenden Kenntnisse über die Möglichkeiten und Grenzen einer Energiebereitstellung aus den verschiedenen regenerativen Energiequellen für den Wärme-, Strom- und Kraftstoffmarkt.

Die Grundlage dafür bilden - aufbauend auf den Lehrveranstaltungen der konsekutiven Bachelorstudiengänge - weiterführende und anwendungsbezogene Lehrveranstaltungen im Bereich Elektrotechnik, Thermodynamik und Strömungsmechanik.

Den Grundlagen folgend werden die verschiedenen Nutzungsprinzipien des regenerativen Energieangebots und die daraus resultierenden Anforderungen an die entsprechende Konversionsanlagentechnik primär aus technischer Sicht vorgestellt. Vermittelte Kenntnisse werden nichtsdestotrotz auch in ökonomischen und ökologischen Bezug gebracht, um so die Einbindung von Anlagen und Systemen auf der Basis regenerativer Energien in vorhandene Energiesysteme - sowohl in Deutschland als auch im außereuropäischen Ausland - bewerten zu können. Auch werden in dem Zusammenhang Arten der Energiespeicherung vermittelt und diskutiert.

Innerhalb des Moduls "Projekte und ihre Bewertung" werden die nicht-technischen Gesichtspunkte zur Durchführung von Projekten insbesondere im Bereich der erneuerbaren Energien betrachtet, umso fachliche Grundlagen in der rechtlichen und energiewirtschaftlichen Umsetzung zu schaffen.

Modul M0508: Strömungsmechanik und Meeresenergie

Lehrveranstaltungen
Titel Typ SWS LP
Energie aus dem Meer (L0002) Vorlesung 2 2
Strömungsmechanik II (L0001) Vorlesung 2 4
Modulverantwortlicher Prof. Michael Schlüter
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Mathematik I-III
Grundlagen der Strömungsmechanik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können verschiedene Anwendungen der Strömungsmechanik in der Vertiefungsrichtungsrichtung Regenerative Energien beschreiben. Sie können die Grundlagen der Strömungsmechanik der Anwendung in der Meeresenergie zuordnen und für konkrete Berechnungen abwandeln. Die Studierenden können einschätzen, welche strömungsmechanischen Probleme mit analytischen Lösungen berechnet werden können und welche alternativen Möglichkeiten (z.B. Selbstähnlichkeit, empirische Lösungen, numerische Methoden) zur Verfügung stehen. 

Fertigkeiten

Studierende sind in der Lage, die Grundlagen der Strömungsmechanik auf technische Prozesse anzuwenden. Insbesondere können sie Impuls- und Massenbilanzen aufstellen, um damit technische Prozesse hydrodynamisch zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können die vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten.

Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben für strömungsmechanische Problemstellungen zu definieren und sich das zur Lösung dieser Aufgaben notwendige Wissen, aufbauend auf dem vermittelten Wissen, selbst zu erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 3h
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L0002: Energie aus dem Meer
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Einführung in die Umwandlung von Energie aus dem Meer
  2. Welleneigenschaften
    • Lineare Wellentheorie
    • Nichtlineare Wellentheorie
    • Irreguläre Wellen
    • Wellenenergie
    • Refraktion, Reflexion und Diffraktion von Wellen
  3. Wellenkraftwerke
    • Übersicht der verschiedenen Technologien
    • Auslegungs- und Berechnungsverfahren
  4. Meeresströmungskraftwerke


Literatur
  • Cruz, J., Ocean wave energy, Springer Series in Green Energy and Technology, UK, 2008.
  • Brooke, J., Wave energy conversion, Elsevier, 2003.
  • McCormick, M.E., Ocean wave energy conversion, Courier Dover Publications, USA, 2013.
  • Falnes, J., Ocean waves and oscillating systems, Cambridge University Press,UK, 2002.
  • Charlier, R. H., Charles, W. F., Ocean energy. Tide and tidal Power. Berlin, Heidelberg, 2009.
  • Clauss, G. F., Lehmann, E., Östergaard, C., Offshore Structures. Volume 1, Conceptual Design. Springer-Verlag, Berlin 1992


Lehrveranstaltung L0001: Strömungsmechanik II
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Michael Schlüter
Sprachen DE
Zeitraum WiSe
Inhalt
  • Differenzialgleichungen zum Impuls-, Wärme- und Stoffaustausch   
  • Beispiele für Vereinfachungen der Navier-Stokes Gleichungen  
  • Instationärer Impulsaustausch
  • Freie Scherschichten, Turbulenz und Freistrahl 
  • Partikelumströmungen – Feststoffverfahrenstechnik
  • Kopplung Impuls- und Wärmetransport - Thermische VT
  • Kopplung Impuls- und Wärmetransport - Thermische VT
  • Rheologie – Bioverfahrenstechnik
  • Kopplung Impuls- und Stofftransport – Reaktives Mischen, Chemische VT
  • Strömung in porösen Medien – heterogene Katalyse
  • Pumpen und Turbinen - Energie- und Umwelttechnik 
  • Wind- und Wellenkraftanlagen - Regenerative Energien
  • Einführung in die numerische Strömungssimulation
Literatur
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  

Modul M0510: Bioenergie und Logistik

Lehrveranstaltungen
Titel Typ SWS LP
Energie aus Biomasse (L0008) Vorlesung 2 2
Energie aus Biomasse (L0138) Gruppenübung 1 1
Verkehrslogistik (L0009) Projektseminar 2 2
Zukunftsfähige Mobilität (L0010) Vorlesung 2 1
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Grundlagen der Energiegewinnung aus Biomasse, über aerobe und anaerobe Abfallbehandlungsverfahren, die dabei gewonnenen Produkte und die Behandlung der jeweils entstehenden Emissionen wiedergeben. Sie können in diesem Zusammenhang über die Merkmale, Vorteile und Nachteile der verschiedenen Verkehrsträger und Logistikkonzepten von Biomasse, einen Überblick geben. 


Fertigkeiten

Die Studierenden können das erlernte Wissen über biomasse-basierte Energierzeugungsanlagen anwenden, um für unterschiedliche Fragestellungen, beispielsweise bezüglich der Dimensionierung und Auslegung von Anlagen, die Zusammenhänge zu erläutern. In diesem Zusammenhang sind die Studierenden auch in der Lage Berechnungsaufgaben zur Verbrennung, Vergasung und Biogas-, Biodiesel- und Bioethanolnutzung zu lösen. Sie sind in der Lage Logistikketten zu gestalten und Werkzeugen und Methoden für die Bewertung dieser anzuwenden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von Logistikkonzepten zum Transport von Biomasse diskutieren.

Selbstständigkeit

Die Studierenden können sich zur Aufarbeitung der Vorlesungschwerpunkte selbstständig Quellen über das Fachgebiet erschließen, Wissen auswählen und aneignen. Des Weiteren können die Studierenden, unter Hilfestellung der Lehrenden, eigenständig Berechnungen zu biomasse-nutzenden Energiesysteme erfüllen und so Ihren jeweiligen Lernstand einschätzen und auf dieser Basis weitere Arbeitsschritte definieren.

Arbeitsaufwand in Stunden Eigenstudium 82, Präsenzstudium 98
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Lehrveranstaltung L0008: Energie aus Biomasse
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Ziel dieses Kurses ist es, die physikalischen, chemischen und biologischen als auch die technischen, wirtschaftlichen und ökologischen Grundlagen aller Optionen der Energieerzeugung aus Biomasse aus deutscher und internationaler Sicht zu diskutieren. Zusätzlich unterschiedlichen Systemansätze zur Nutzung von Biomasse für die Energieerzeugung, Aspekte der Bioenergie im Energiesystem zu integrieren, technische und wirtschaftliche Entwicklungspotenziale und die aktuelle und erwartete zukünftige Verwendung innerhalb des Energiesystems vorgestellt.
Der Kurs ist wie folgt aufgebaut:

  • Biomasse als Energieträger im Energiesystem, die Nutzung von Biomasse in Deutschland und weltweit, Übersicht über den Inhalt des Kurses
  • Photosynthese , die Zusammensetzung der organischen Stoffe , Pflanzenproduktion , Energiepflanzen , Reststoffen, organischen Abfällen
  • Biomasse Bereitstellung Ketten für holzige und krautige Biomasse , Ernte und Bereitstellung , Transport, Lagerung, Trocknung
    - Thermo - chemische Umwandlung von biogenen Festbrennstoffen
    • Grundlagen der thermo- chemischen Umwandlung
    • Direkte thermo- chemische Umwandlung durch Verbrennung: Verbrennungstechnologien für kleine und Großanlagen , Strom- Erzeugungstechnologien , Abgasbehandlungstechnologien, Asche und ihre Verwendun
    • Vergasung: Vergasungstechnologien, Gasreinigungstechnologien, Optionen zur Nutzung des gereinigten Gases für die Bereitstellung von Wärme, Strom und/oder Brennstoffe
    • Schnelle und langsame Pyrolyse : Technologien für die Bereitstellung von Bio-Öl und / oder für die Bereitstellung von Kohle -, Öl- Reinigungstechnologien , Optionen um die Pyrolyse- Öl und Kohle als Energieträger als auch als Rohstoff verwenden
  • Physikalisch-chemische Umwandlung von Biomasse , die Öle und / oder Fette : Grundlagen , Ölsaaten und Ölfrüchte, Pflanzenölproduktion , die Produktion von Biokraftstoff mit standardisierten Merkmalen ( Umesterung , Hydrierung, Co-Processing in bestehenden Raffinerien) , Optionen der Nutzung dieser Kraftstoffe, Optionen zur Verwendung der Rückstände (d.h. Mehl, Glycerin)
    • Bio- chemische Umwandlung von Biomasse
    • Grundlagen der bio- chemische Umwandlung
    • Biogas : Prozess- Technologien für Anlagen mit landwirtschaftlichen Rohstoffen , Klärschlamm ( Klärgas ), organische Abfallfraktion (Deponiegas ) , Technologien für die Bereitstellung von Biomethan , die Verwendung des aufgeschlossenen Schlamm
    • Ethanol-Produktion : Prozesstechnologien für Einsatzmaterial, Zucker, Stärke oder Cellulose , die Verwendung von Ethanol als Kraftstoff, Verwendung der Schlempe
Literatur

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Lehrveranstaltung L0138: Energie aus Biomasse
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt

Übungen zu:

  • Logistik
  • Verbrennungsrechnung
  • Berechnung von Brennwert und Emissionen
  • Vergasung
  • Biodiesel
  • Biogas
  • Bioethanol


Literatur

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Lehrveranstaltung L0009: Verkehrslogistik
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Heike Flämig
Sprachen DE
Zeitraum SoSe
Inhalt

In Abhängigkeit vom gewählten praktischen Schwerpunkt des Studienjahres:

  • Charakteristika der verschiedenen Verkehrssysteme
  • Technologien, Strukturen und Abläufe im verkehrslogistischen System (Knoten, Netze, Interaktion).
  • Standort- und Tourenplanung
  • Zusammenspiel von Informations- und Materialfluss in der Transportkette
  • Wechselbeziehungen von Privat und Privat (Kontraktlogistik) und von Privat und Öffentlichkeit (Unternehmenspolitik, Verkehrspolitik) und deren (divergierende)
  • Gestaltungsansätze einer nachhaltigen Logistik



Literatur

Ihde, Gösta B.: Transport, Verkehr, Logistik. Gesamtwirtschaftliche Aspekte und einzelwirtschaftliche Handhabung. 3. überarbeitete Auflage. Vahlen, München 2001

Lehrveranstaltung L0010: Zukunftsfähige Mobilität
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dr. Karsten Wilbrand
Sprachen DE
Zeitraum WiSe
Inhalt
  • Globale Megatrends und zukünftige Herausforderungen der Energieversorgung
  • Energieszenarien bis 2060 und Bedeutung für den Mobilitätssektor
  • Nachhaltiger Luft-, Schiffs-, Schienen und Strassenverkehr
  • Entwicklungen bei Fahrzeug- und Antriebs-Technologie
  • Überblick Heutige Kraftstoffe (Produktion und Einsatz)
  • Biokraftstoffe der 1. und 2. Generation (Verfügbarkeit, Produktion, Verträglichkeit)
  • Erdgas (GTL, CNG, LNG)
  • Elektromobilität mit Batterie und Wasserstoff-Brennstoffzelle
  • Well-to-Wheel CO2 Analysen der verschiedenen Optionen
  • Rechtlicher Rahmen für Personen und Güterverkehr


Literatur
  • Eigene Unterlagen
  • Veröffentlichungen
  • Fachliteratur


Modul M0524: Nichttechnische Ergänzungskurse im Master

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Der Studienbereich Nichttechnische Wahlpflicht­fächer 

vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im „Nichttechnischen Studienbereich“ gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und  stellt dazu Orientierungswissen zu thematischen Schwerpunkten  von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewähltes Spezialgebiete des jeweiligen nichttechnischen Bereiches erläutern,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist).



Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende und teils auch spezielle Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache und teils auch fortgeschrittene Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.




Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist)



Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).




Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0509: Projekte und ihre Bewertung

Lehrveranstaltungen
Titel Typ SWS LP
Entwicklung regenerativer Energieprojekte (L0003) Vorlesung 2 2
Nachhaltigkeitsmanagement (L0007) Vorlesung 2 2
Rechtliche Aspekte der Nutzung regenerativer Energien (L0004) Seminar 2 2
Wirtschaftlichkeit einer regenerativen Energiebereitstellung (L0005) Vorlesung 1 1
Wirtschaftlichkeit einer regenerativen Energiebereitstellung (L0006) Projektseminar 1 1
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Umweltbewertung


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden die Vorgehensweise der Planung und Entwicklung von Projekten zur Nutzung regenerativer Energien beschreiben und auch die gesonderte Beachtung der wirtschaftlichen und rechtlichen Aspekte dabei erläutern.

Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen zur Vorgehensweise bei der Entwicklung erneuerbarer Energieprojekte auf beispielhafte Energieprojekte anwenden und die sich ergebenden Zusammenhänge unter besonderer Berücksichtigung der wirtschaftlichen und rechtlichen Vorraussetzungen fachlich und konzeptionell einschätzen und beurteilen.

Sie können als Basis zur Auslegung erneuerbarer Energiesysteme die Nachfrage nach thermischer und/oder elektrischer Energie auf betrieblicher und regionaler Ebene analysieren und dem folgend mögliche Energiesysteme auswählen und dimensionieren.

Zur Bewertung der Nachhaltigkeitsaspekte von erneuerbaren Energieprojekten können die Studierenden in diesem Zusammenhang die richtige Methodik in Abhängigkeit der Fragestellung auswählen, diskutieren und kritisch Stellung dazu beziehen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen zur Wirtschaftlichkeit erneuerbarer Energieprojekte in einer personenstarken Gruppe bearbeiten und zeitlich und fachlich organisieren. Sie können fachspezifische und fachübergreifende Diskussionen führen und dem folgend die Leistung der Kommilitonen einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen. Desweiteren sind die Studierenden in der Lage ihre Gruppenergebnisse von anderen zu vertreten.


Selbstständigkeit

Die Studierenden können sich zur Aufarbeitung der Vorlesungsinhalte und zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte selbstständig Quellen über das jeweilige Fachgebiet erschließen und sich das darin enthaltene Wissen aneignen. Auf dieser Basis sind sie in der Lage eigenständig Berechnungsmethoden zur Lösung der Aufgaben zur wirtschaftlichen Einschätzung erneuerbarer Energieprojekte zu erfüllen und veranstaltungsübergreifende Zusammenhänge zu erkennen. Durch die durch Lehrende angeleitete Berechnungen können die Studierenden eigenständig Ihren Wissenstand erkennen.



Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Prüfung Klausur
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Regenerative Energien: Kernqualifikation: Pflicht
Lehrveranstaltung L0003: Entwicklung regenerativer Energieprojekte
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt
  • Entwicklung von regenerativen Energieprojekten: von der Analyse der Gegebenheiten vor Ort bis zum fertigen Energieprojekt: welche Stufen müssen durchlaufen werden, um ein erfolgreiches regeneratives Energieprojekt zu realisieren und welche Einflussgrößen müssen beachtet werden
  • Erhebung der Energienachfrage; Methoden zur Erhebung der Nachfrage nach thermischer und/oder elektrischer Energie auf betrieblicher und regionaler Ebene bis hin zu Erarbeitung eines Energiemasterplans.
  • Systemtechnik regenerativer Energien: wie passen die einzelnen Optionen zur Nutzung regenerativer Energien vor dem Hintergrund einer bestimmten zur deckenden Versorgungsaufgabe am besten zusammen? Wie können unter bestimmten Bedingungen ideale Kombinationen aussehen?
  • Machbarkeitsstudie; Anforderungen an und Inhalte in einer Machbarkeitsstudie
  • Gesetzlicher Rahmen zur Anlagenerrichtung; Darstellung der Genehmigungsrechte einschließlich der gesamten formalen Vorgehensweise bei den unterschiedlichen Genehmigungsverfahren im Rahmen der BImSch-Gesetzgebung; weitergehende gesetzliche Vorgaben (u. a. Baurecht, Wasserecht, Lärm etc.)
  • Gesellschaftsformen; welche Gesellschaftsformen bieten sich für welchen Anwendungsfall am besten an? Wo liegen die Vor- und Nachteile?
  • Risikomanagement; wie können die Risiken von regenerativen Energieprojekten am besten bestimmt werden? Wie kann eine Risikominimierung sichergestellt werden? 
  • Versicherungen; welche Versicherungen gibt es? Wofür braucht man Versicherungen? Welche Voraussetzungen müssen erfüllt werden, um bestimmte Versicherungen für bestimmte regenerative Energieprojekte zu bekommen für die Bau- und Betriebsphase?
  • Akzeptanz; wie kann die Akzeptanz für eine Anlage zur Nutzung regenerativer Energien vor Ort bewertet und verbessert werden? Wie kann sie gemessen werden?
  • Organisation der Realisierung eines Projektes; wie wird der Bau einer Anlage zur Nutzung regenerativer Energien nach Abschluss der Planung organisiert?
  • Abnahme; Welche Abnahmestufen werden durchlaufen bis zum regulären Dauerbetrieb (VOB-Abnahme, sicherheitstechnische Abnahme, Abnahme durch Genehmigungsbehörde)
  • Beispiele; gute und weniger gute Beispiele einer Projektentwicklung


Literatur
  • Script zur Vorlesung mit Literaturhinweisen


Lehrveranstaltung L0007: Nachhaltigkeitsmanagement
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt, Prof. Timo Busch
Sprachen DE
Zeitraum WiSe
Inhalt

Die Vorlesung Nachhaltigkeitsmanagement soll einen Einblick in die verschiedenen Aspekte und Dimensionen der Nachhaltigkeit geben. Diese Inhalte der Vorlesung bauen auf den Grundlagen der Umweltbewertung auf; der vorherige Besuch der Vorlesung Umweltbewertung ist daher empfohlen. Verschiedene Bewertungsansätze für die Bewertung ökologischer, ökonomischer und sozialer Aspekte werden vorgestellt. Deren Anwendung und Nutzung für ein Nachhaltigkeitsmanagement wird direkt an kurzen Technikbeispielen erläutern und später umfassend anhand von Fallbeispiele dargestellt.

  • Einführung in das Thema der Nachhaltigkeit
  • Dimensionen der Nachhaltigkeit:
    • Ökologie
    • Ökonomie
    • Soziales
  • Übergang von der Umweltbewertung zur Nachhaltigkeitsmanagement
  • Fallbeispiele
  • Exkursion

Ziel: Ziel der Veranstaltung ist es, Methoden für die Bewertung von Nachhaltigkeitsaspekten zu erlernen und für das Nachhaltigkeitsmanagement anzuwenden. 


Literatur

Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage

Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag.


Lehrveranstaltung L0004: Rechtliche Aspekte der Nutzung regenerativer Energien
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Marian Paschke
Sprachen DE
Zeitraum WiSe
Inhalt

Das Seminar behandelt die zentralen Rechtsfragen der Regenerativen Energien. Sie haben im deutschen Gesetzesrecht vor allem im Erneuerbare Energien Gesetz (EEG) Niederschlag gefunden. Dieses Gesetz, nebst den begleitenden Gesetzen (wie dem Energiewirtschaftsgesetz – EnWG) befindet sich derzeit im politischen Prozess einer voraussichtlich grundlegenden Umgestaltung. Das Seminar geht den Grundlagen des geltenden Rechts, seiner europarechtlichen Rahmenordnung und den sich stellen rechtspolitischen Herausforderungen in der Gemengelage von insbesondere energie-, wirtschafts-, umwelt- und klimapolitischen Anforderungen an ein modernes Recht für regenerative Energien. Es behandelt das Rechtsgebiet möglichst umfassend in seinen organisatorischen und operativen Inhalt, von den Rechtsfragen der Anlagenplanung, über die Anlagengenehmigung, die Anlagenerrichtung und den Anlagenbetrieb. Behandelt werden die Rechtsfragen des Energiemarktdesign, des Energiewettbewerbs- und –regulierungsrechts sowie insgesamt des öffentlich-rechtlich und privatrechtlichen Energierechts.  Die rechtlichen Anforderungen und Rahmenordnungen für die privatwirtschaftlichen und administrativen Aspekte der Erzeugung und des Vertriebs regenerativer Energien werden in den Grundzügen behandelt, die nationalen und europäischen und – soweit einschlägig – die internationalen Regelungen werden jeweils themenbezogen integriert behandelt.

Themen   

  • Anlagenplanung
    • Planungsrecht für Onshore und Offshore-Anlagen
  • Anlagengengenehmigung
    • Genehmigungsverfahren (einschl. BauGB, BImSchG, NaturSchG, WasserG)
    • Rechtsschutz im Genehmigungsverfahren
    • Eilverfahren und Eilentscheidungen
  • Anlagenerrichtung
    • Rechtsfragen zivilrechtlicher Anlagenerrichtungsverträge (Vertragsrecht, Haftungsrecht, Garantien, Gewährleistungsrecht, internationales Privatrecht)
  • Anlagenbetrieb
    • behördliche Anlagenüberwachung
    • Rechtsfragen der Stromeinspeisung
    • Sonderfragen der Anlagen (insbes. Biomasse-, KWK-, Photovoltaik- und Windenergie-Anlagen)
  • Netzrecht
    • Rechtsfragen des Netz(aus)baus
    • Rechtsfragen des Netzbetriebs
  • Energieregulierungs- und –Kartellrecht
    • Aufgaben der BNetzA
    • Energiepreisrecht


Literatur Script zur Vorlesung
Lehrveranstaltung L0005: Wirtschaftlichkeit einer regenerativen Energiebereitstellung
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Andreas Wiese
Sprachen DE
Zeitraum WiSe
Inhalt
  • Einführung: Definitionen; Bedeutung der Kosten- und Wirtschaftlichkeitsrechnung für Projekte im Bereich "Regenerative Energien"; Preise und Kosten; Wirtschaftlichkeit von Energiesystemen versus Wirtschaftlichkeit von einzelnen Projekten
  • Kostenschätzungen und Kostenberechnungen
    • Definitionen,
    • Kostenberechnung,
    • Kostenschätzung,
    • Berechnung von Kosten für Bereitstellung von Arbeit und Leistung,
    • Kostenübersichten für regenerative Energietechnologien,
    • Speicher: Kostenübersichten; Einfluss auf die Kosten erneuerbarer Energieprojekte
  • Wirtschaftlichkeitsrechnung
    • Definitionen,
    • Methoden: statische Verfahren, dynamische Verfahren (z. B. LCOE (levelised cost of electricity)),
    • Betriebswirtschaftliche versus volkwirtschaftliche Betrachtung,
    • Leistung und Arbeit bei der Wirtschaftlichkeitsrechnung,
    • Speicher und ihr Einfluss auf die Wirtschaftlichkeitsrechnung
  • Der Due Diligence Prozess als Begleiter der Wirtschaftlichkeitsanalyse
  • Berücksichtigung von Unsicherheiten bei Projekten zur Nutzung erneuerbarer Energien
    • Definitionen,
    • Technische Unsicherheiten,
    • Kostenunsicherheiten,
    • Sonstige Unsicherheiten
  • Projektfinanzierung
    • Definitionen,
    • Projekt- versus Unternehmensfinanzierung,
    • Finanzierungsmodelle,
    • Eigenkapitalquote, DSCR,
    • Behandlung von Risiken in der Projektfinanzierung
  • Fördermöglichkeiten für erneuerbare Energieprojekte
    • Mögliche Förderansätze,
    • Gesetzliche Vorgaben in Deutschland (EEG),
    • Emissionshandel und Emissionszertifikate


Literatur

Script der Vorlesung


Lehrveranstaltung L0006: Wirtschaftlichkeit einer regenerativen Energiebereitstellung
Typ Projektseminar
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Andreas Wiese
Sprachen DE
Zeitraum WiSe
Inhalt

Berechnung von Aufgaben zur Bewertung der Wirtschaftlichkeit eines erneuerbaren Energieprojektes, mit dem Ziel die  komplexe Kenntnisse der Wirtschaftlichkeitsbetrachtung und Marktanalyse zu vertiefen. Bearbeitung erfolgt sowohl einzeln als auch in kleineren Gruppen. Folgende Themen werden behandelt:

  • Stat. und dyn. Wirtschaftlichkeitsberechnung
  • Kostenschätzung plus stat. und dyn. Wirtschaftlichkeitsberechnung
  • Sensitivitätsanalyse
  • Kuppelproduktion
  • Grid Parity Berechnung

Literatur Skript der Vorlesung

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0511: Stromerzeugung aus Wind- und Wasserkraft

Lehrveranstaltungen
Titel Typ SWS LP
Regenerative Energieprojekte in neuen Märkten (L0014) Projektseminar 1 1
Wasserkraftnutzung (L0013) Vorlesung 1 1
Windenergieanlagen (L0011) Vorlesung 2 3
Windenergienutzung - Schwerpunkt Offshore (L0012) Vorlesung 1 1
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Thermodynamik, Strömungsmechanik, Grundlagen der Strömungsmaschinen


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären.


Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren.

Selbstständigkeit

Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten
Typ Projektseminar
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Andreas Wiese
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
    • Entwicklung der erneuerbaren Energien weltweit
      • Historie
      • Zukünftige Märkte
    • Besondere Herausforderungen in neuen Märkten - Übersicht
  2. Beispielprojekt Windpark Korea
    • Übersicht
    • Technische Beschreibung
    • Projektphasen und Besonderheiten
  3. Förder- und Finanzierungsinstrumente für EE Projekten in neuen Märkten
    • Übersicht Fördermöglichkeiten
    • Übersicht Länder mit Einspeisegesetzen
    • Wichtige Finanzierungsprogramme
  4. CDM Projekte – Warum, wie, Beispiele
    • Übersicht CDM Prozess
    • Beispiele
    • Übungsaufgabe CDM
  5. Ländliche Elektrifizierung und Hybridsysteme – ein wichtiger Zukunftsmarkt für EE
    • Ländliche Elektrifizierung – Einführung
    • Typen von Elektrizifierungsprojekten
    • Die Rolle der EE
    • Auslegung von Hybridsystemen
    • Projektbeispiel: Hybridsystem Galapagos Inseln
  6. Ausschreibungsverfahren für EE Projekte – Beispiele
    • Südafrika
    • Brasilien
  7. Ausgewählte Projektbeispiele aus der Sicht einer Entwicklungsbank – Wesley Urena Vargas, KfW Entwicklungsbank
    • Geothermie
    • Wind oder CSP
Literatur Folien der Vorlesung
Lehrveranstaltung L0013: Wasserkraftnutzung
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Stephan Heimerl
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung; Bedeutung der Wasserkraft im nationalen und globalen Kontext
  • Physikalische Grundlagen: Bernoulli-Gleichung, nutzbare Fallhöhe, hydrologische Grundlagen, Verlustmechanismen, Wirkungsgrade
  • Einteilung der Wasserkraft: Lauf- und Speicherwasserkraft, Nieder- und Hochdruckanlagen
  • Aufbau von Wasserkraftanlagen: Darstellung der einzelnen Komponenten und ihres systemtechnischen Zusammenspiels
    • Bautechnische Komponenten; Darstellung von Dämmen, Wehren, Staumauern, Krafthäusern, Rechenanlagen etc.
    • Energietechnische Komponenten: Darstellung der unterschiedlichen Arten der hydraulischen Strömungsmaschinen, der Generatoren und der Netzanbindung
  • Wasserkraft und Umwelt
  • Beispiele aus der Praxis


Literatur
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie – Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen – Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen – Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Skiba
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung , Bedeutung der Offshore-Windstromerzeugung, Besondere Anforderungen an die Offshore-Technik
  • Physikalische Grundlagen zur Nutzung der Windenergie
  • Aufbau und Funktionsweise von Offshore-Windenergieanlagen, Vorstellung unterschiedlicher Konzepte von Offshore-Windenergieanlagen, Darstellung der einzelnen Systemkomponenten und deren systemtechnisches Zusammenspiel
  • Gründungstechnik, Offshore-Baugrunderkundung, Vorstellung unterschiedlicher Konzepte von Offshore-Gründungsstrukturen, Planung und Fabrikation von Gründungsstrukturen
  • Elektrische Infrastruktur eines Offshore-Windparks, Innerpark-Verkabelung, Offshore-Umspannwerk, Netzanbindung
  • Installation von Offshore-Windparks, Installationstechniken und Hilfsgeräte, Errichtungslogistik
  • Entwicklung und Planung eines Offshore-Windparks
  • Betrieb und Optimierung von Offshore-Windparks
  • Tagesexkursion


Literatur
  • Gasch, R.; Twele, J.: Windkraftanlagen – Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie – Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen – Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Modul M0512: Solarenergienutzung

Lehrveranstaltungen
Titel Typ SWS LP
Kollektortechnik (L0018) Vorlesung 2 2
Solare Stromerzeugung (L0015) Vorlesung 2 2
Strahlung und Optik (L0016) Vorlesung 1 1
Strahlung und Optik (L0017) Gruppenübung 1 1
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden sich fachliche mit Grundlagen und mit aktuellen Fragen und Problemen aus dem Gebiet der Solarenergienutzung auseinandersetzen und diese unter Einbeziehung vorheriger Lehrinhalte und aktueller Problematiken erläutern und kritisch Stellung dazu beziehen. Sie können insbesondere die Prozesse innerhalb einer Solarzelle fachlich beschreiben und die Besonderheiten bei der Anwendung von Solarmodulen erläutern. Des Weiteren können sie einen Überblick über die Kollektortechnik in solarthermischen Anlagen geben.



Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf beispielhafte solarstrahlungnutzende Energiesysteme anwenden und in diesem Zusammenhang unter anderem Potenziale und Grenzen solarer Energieerzeugungsanlagen für verschiedene geografische Bedingungen einschätzen und beurteilen. Sie sind in der Lage unter gegebenen Randbedingungen solare Energieerzeugungsanlagen technische effizient zu dimensionieren und mit der Nutzung modulübergreifendes Wissens ökonomisch und ökologisch zu beurteilen. Dafür notwendige Berechnungsmethoden innerhalb der Strahlungslehre können sie auswählen und aufgabenspezifisch anwenden. 

Personale Kompetenzen
Sozialkompetenz


Selbstständigkeit

Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und  Wissen aneignen. Des Weiteren können die Studierenden angeleitet durch Lehrende eigenständig Berechnungsmethoden zur Potenzialanalyse und technischen Auslegung von solaren Energiesystemen durchführen und auf dieser Basis Ihren jeweiligen Lernstand einschätzen und eventuell weitere Arbeitsschritte definieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L0018: Kollektortechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Agis Papadopoulos
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung: Energiebedarf und Anwendung der Sonnenenergie.
  • Wärmeübertragung in der Solarthermie: Wärmeleitung, Konvektion, Wärmestrahlung.
  • Kollektoren: Arten, Aufbau, Wirkungsgrad, Dimensionierung, konzentrierende Systeme.
  • Energiespeicher: Anforderungen, Arten.
  • Passive Sonnenenergienutzung: Komponenten und Systeme.
  • Solarthermische Niedertemperatursysteme: Kollektorvarianten, Aufbau, Berechnung.
  • Solarthermische Hochtemperatursysteme: Klassifizierung von Solarkraftwerke, Aufbau.
  • Solare Klimatisierung.


Literatur
  • Vorlesungsskript.
  • Kaltschmitt, Streicher und Wiese (Hrsg.). Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte, 5. Auflage, Springer, 2013.
  • Stieglitz und Heinzel .Thermische Solarenergie: Grundlagen, Technologie, Anwendungen. Springer, 2012.
  • Von Böckh und Wetzel. Wärmeübertragung: Grundlagen und Praxis, Springer, 2011.
  • Baehr und Stephan. Wärme- und Stoffübertragung. Springer, 2009.
  • de Vos. Thermodynamics of solar energy conversion. Wiley-VCH, 2008.
  • Mohr, Svoboda und Unger. Praxis solarthermischer Kraftwerke. Springer, 1999.


Lehrveranstaltung L0015: Solare Stromerzeugung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Martin Schlecht, Dietmar Obst
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
  2. Primärenergien und Verbrauch, verfügbare Sonnenenergie
  3. Physik der idealen Solarzelle
  4. Lichtabsorption, PN-Übergang, charakteristische Größen der Solarzelle, Wirkungsgrad
  5. Physik der realen Solarzelle
  6. Ladungsträgerrekombination, Kennlinien, Sperrschichtrekombination, Ersatzschaltbild
  7. Erhöhung der Effizienz
  8. Methoden zur Erhöhung der Quantenausbeute und Verringerung der Rekombination
  9. Hetero- und Tandemstrukturen
  10. Hetero-Übergang, Schottky-, elektrochemische, MIS- und SIS-Zelle, Tandem-Zelle
  11. Konzentratorzellen
  12. Konzentrator-Optiken und Nachführsysteme, Konzentratorzellen
  13. Technologie und Eigenschaften: Solarzellentypen, Herstellung, einkristallines Silizium und Galliumarsenid, polykristalline Silizium- und Silizium-Dünnschichtzellen, Dünnschichtzellen auf Trägern (amorphes Silizium, CIS, elektrochemische Zellen)
  14. Module
  15. Schaltungen


Literatur
  • A. Götzberger, B. Voß, J. Knobloch: Sonnenenergie: Photovoltaik, Teubner Studienskripten, Stuttgart, 1995
  • A. Götzberger: Sonnenenergie: Photovoltaik : Physik und Technologie der Solarzelle, Teubner Stuttgart, 1994
  • H.-J. Lewerenz, H. Jungblut: Photovoltaik, Springer, Berlin, Heidelberg, New York, 1995
  • A. Götzberger: Photovoltaic solar energy generation, Springer, Berlin, 2005
  • C. Hu, R. M. White: Solar CelIs, Mc Graw HilI, New York, 1983
  • H.-G. Wagemann: Grundlagen der photovoltaischen Energiewandlung: Solarstrahlung, Halbleitereigenschaften und Solarzellenkonzepte, Teubner, Stuttgart, 1994
  • R. J. van Overstraeten, R.P. Mertens: Physics, technology and use of photovoltaics, Adam Hilger Ltd, Bristol and Boston, 1986
  • B. O. Seraphin: Solar energy conversion Topics of applied physics V 01 31, Springer, Berlin, Heidelberg, New York, 1995
  • P. Würfel: Physics of Solar cells, Principles and new concepts, Wiley-VCH, Weinheim 2005
  • U. Rindelhardt: Photovoltaische Stromversorgung, Teubner-Reihe Umwelt, Stuttgart 2001
  • V. Quaschning: Regenerative Energiesysteme, Hanser, München, 2003
  • G. Schmitz: Regenerative Energien, Ringvorlesung TU Hamburg-Harburg 1994/95, Institut für Energietechnik



Lehrveranstaltung L0016: Strahlung und Optik
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Volker Matthias
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung: Strahlungsquelle Sonne, Astronomische Grundlagen, Grundlagen der Strahlung
  • Aufbau der Atmosphäre
  • Eigenschaften und Gesetze von Strahlung
    • Polarisation
    • Strahlungsgrößen
    • Plancksches Strahlungsgesetz
    • Wiensches Verschiebungsgesetz
    • Stefan-Boltzmann Gesetz
    • Das Kirchhoffsche Gesetz
    • Helligkeitstemperatur
    • Absorption, Reflexion, Transmission
  • Strahlungsbilanz, Globalstrahlung, Energiebilanz
  • Atmosphärische Extinktion
  • Mie- und Rayleigh-Streuung
  • Strahlungstransfer
  • Optische Effekte in der Atmosphäre
  • Berechnung Sonnenstand und Berechnung Strahlung auf geneigte Flächen


Literatur
  • Helmut Kraus: Die Atmosphäre der Erde
  • Hans Häckel: Meteorologie
  • Grant W. Petty: A First Course in Atmosheric Radiation
  • Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy
  • Alexander Löw, Volker Matthias: Skript Optik Strahlung Fernerkundung


Lehrveranstaltung L0017: Strahlung und Optik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Steffen Beringer
Sprachen DE
Zeitraum SoSe
Inhalt Anwendungen von Berechnungschritten innerhalb der Strahlungslehre.
Literatur siehe Vorlesungsscript

Modul M0513: Systemaspekte regenerativer Energien

Lehrveranstaltungen
Titel Typ SWS LP
Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung (L0021) Vorlesung 2 2
Energiehandel und Energiemärkte (L0019) Vorlesung 1 1
Energiehandel und Energiemärkte (L0020) Gruppenübung 1 1
Tiefe Geothermie (L0025) Vorlesung 2 2
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können mit Abschluss dieses Moduls die Prozesse im Energiehandel und die Gestaltung der Energiemärkte beschreiben und kritisch in Bezug zu aktuellen Problemstellungen bewerten. Des Weiteren sind sie in der Lage die thermodynamischen Grundlagen der elektrochemischen Energiewandlung in Brennstoffzellen zu erklären und den Bezug zu verschiedenen Bauarten von Brennstoffzellen und deren jeweiligem Aufbau herzustellen und zu erläutern. Die Studenten können diese Technologie mit weiteren Energiespeichermöglichkeiten vergleichen. Zusätzlich können die Studenten einen Überblick über die Verfahrensweise und der energetischen Einbindung von tiefer Geothermie geben.


Fertigkeiten

Die Studierenden können das erlernte Wissen zur Speicherung überschüssiger Energie anwenden, um für unterschiedlicher Energiesysteme Lösungsansätze für eine versorgungssichere Energiebereitstellung erläutern. Insbesondere können sie diesbezüglich häusliche, gewerbliche und industrielle Beheizungsanlagen unter Anwednung von Speichern energiesparend planen und berechnen, und im Bezug zu komplexen Energiesystemen beurteilen. In diesem Zusammenhang können die Studierenden die Potenziale und Grenzen von Geothermieanlagen einschätzen und deren Funktionsweise erläutern.

Des Weiteren sind die Studierenden in der Lage die Vorgehensweisen und Strategien zur Vermarktung von Energie zu erläutern und im Kontext anderer Module auf erneuerbare Energieprojekte anwenden. In diesem Zusammenhang können die Studierenden eigenständig Analysen zur Bewertung von Energiehandel und Energiemärkten erstellen. 

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das darin enthaltene Wissen aneignen.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Michael Fröba
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung in die elektrochemische Energiewandlung
  2. Funktion und Aufbau von Elektrolyten
  3. Die Niedertemperatur-Brennstoffzellen
    • Bauformen
    • Thermodynamik der PEM-Brennstoffzelle
    • Kühl- und Befeuchtungsstrategie
  4. Die Hochtemperatur-Brennstoffzelle
    • Die MCFC
    • Die SOFC
    • Integrationsstrategien und Teilreformierung
  5. Brennstoffe
    • Bereitstellung von Brennstoffen
    • Reformierung von Erdgas und Biogas
    • Reformierung von flüssigen Kohlenwasserstoffen
  6. Energetische Integration und Regelung von Brennstoffzellen-Systemen


Literatur
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley – VCH, 2003


Lehrveranstaltung L0019: Energiehandel und Energiemärkte
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Michael Sagorje, Jörg Seidel
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundbegriffe und handelbare Produkte in Energiemärkten
  • Primärenergiemärkte
  • Strommärkte
  • Europäisches Emissionshandelssystem
  • Einfluss von Erneuerbaren Energien
  • Realoptionen
  • Risikomanagement
Literatur
Lehrveranstaltung L0020: Energiehandel und Energiemärkte
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Michael Sagorje, Jörg Seidel
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0025: Tiefe Geothermie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Ben Norden
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung in die tiefe geothermische Nutzung
  2. Geologische Grundlagen I
  3. Geologische Grundlagen II
  4. Geologisch-thermische Aspekte
  5. Gesteinsphysikalische Aspekte
  6. Geochemische Aspekte
  7. Exploration tiefer geothermischer Reservoire
  8. Bohrungstechnologien, Verrohrung und Ausbau
  9. Bohrlochgeophysik
  10. Untertägige Systemcharakterisierung und Reservoirengineering
  11. Mikrobiologie und Obertägige Systemkomponenten
  12. Angepasste Anlagenkonzepte, Kosten und Umweltaspekt


Literatur
  • Dipippo, R.: Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Butterworth Heinemann; 3rd revised edition. (29. Mai 2012)
  • www.geo-energy.org
  • Edenhofer et al. (eds): Renewable Energy Sources and Climate Change Mitigation; Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2012.
  • Kaltschmitt et al. (eds): Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, 5. Aufl. 2013.
  • Kaltschmitt et al. (eds): Energie aus Erdwärme. Spektrum Akademischer Verlag; Auflage: 1999 (3. September 2001)
  • Huenges, E. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 1. Auflage (19. April 2010)


Modul M1235: Elektrische Energiesysteme I

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Energiesysteme I (L1670) Vorlesung 3 4
Elektrische Energiesysteme I (L1671) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. 

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. 

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 - 150 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Lehrveranstaltung L1670: Elektrische Energiesysteme I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Studienleistung keine
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aufbau und Entwicklungstendenzen der elektrischen Energieversorgung 
  • Aufgaben und historische Entwicklung
  • symmetrische Drehstromsysteme
  • Grundlagen und Modellierung von Netzen
    • Leitungen
    • Transformatoren
    • Synchrongeneratoren
    • Netzaufbau und Schaltanlagen
  • Grundlagen der Energieumwandlung
    • Elektromechanische Energiewandlung
    • Thermodynamische Grundlagen
    • Kraftwerkstechnik
    • Regenerative Energieumwandlung
  • Bordnetzstrukturen
  • Netzberechnung
    • Netzmodellierung
    • Lastflussrechnung
    • Ausfallkriterium
  • Symmetrische Kurzschlussberechnung, Kurzschlussleistung
  • Unsymmetrische Kurzschlussberechnung
    • symmetrische Komponenten
    • Berechnung unsymmetrischer Fehler
  • Netz- und Kraftwerksregelung
  • Isolationskoordination und Schutzmaßnahmen
  • Grundlagen der Netzplanung
  • Grundlagen der elektrischen Energiewirtschaft und -märkte
Literatur

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014

A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005

Lehrveranstaltung L1671: Elektrische Energiesysteme I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Studienleistung keine
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aufbau und Entwicklungstendenzen der elektrischen Energieversorgung 
  • Aufgaben und historische Entwicklung
  • symmetrische Drehstromsysteme
  • Grundlagen und Modellierung von Netzen
    • Leitungen
    • Transformatoren
    • Synchrongeneratoren
    • Netzaufbau und Schaltanlagen
  • Grundlagen der Energieumwandlung
    • Elektromechanische Energiewandlung
    • Thermodynamische Grundlagen
    • Kraftwerkstechnik
    • Regenerative Energieumwandlung
  • Bordnetzstrukturen
  • Netzberechnung
    • Netzmodellierung
    • Lastflussrechnung
    • Ausfallkriterium
  • Symmetrische Kurzschlussberechnung, Kurzschlussleistung
  • Unsymmetrische Kurzschlussberechnung
    • symmetrische Komponenten
    • Berechnung unsymmetrischer Fehler
  • Netz- und Kraftwerksregelung
  • Isolationskoordination und Schutzmaßnahmen
  • Grundlagen der Netzplanung
  • Grundlagen der elektrischen Energiewirtschaft und -märkte
Literatur

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014

A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005

Modul M0742: Wärmetechnik

Lehrveranstaltungen
Titel Typ SWS LP
Wärmetechnik (L0023) Vorlesung 3 5
Wärmetechnik (L0024) Hörsaalübung 1 1
Modulverantwortlicher Prof. Gerhard Schmitz
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in  der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut.


Fertigkeiten

Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.

Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.

  


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Pflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0023: Wärmetechnik
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Studienleistung keine
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einleitung

2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion

3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen

4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme

5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Lehrveranstaltung L0024: Wärmetechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Studienleistung keine
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Bioenergie

In der Vertiefungsrichtung „Bioenergie“ werden weiterführende Kenntnisse in der energetischen Verwertung von Biomasse vermittelt. Dies impliziert unter anderem die Verarbeitung und Nutzung von Holz als energetischen Rohstoff, aber auch das Verständnis zu Verfahren und Konzepten, die eine Energiegewinnung aus Abfällen ermöglichen.

Modul M0516: Regenerative Energien im Versorgungssystem

Lehrveranstaltungen
Titel Typ SWS LP
Stromerzeugung aus regenerativen Energien (L0046) Seminar 2 2
Wärmeerzeugung aus regenerativen Energien (L0045) Seminar 2 3
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche erneuerbare Technologien erklären, erläutern und technisch, ökonmisch und ökologisch bewerten.

Fertigkeiten

Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:

  • das bereits erlernte Fachwissen modulübergreifend auf verschiedene Anwendungsfälle anzuwenden
  • auch bei unvollständiger Datenbasis alternative Eingangsdaten zur Lösung der Aufgabenstellung abzuwägen (technische, ökonomische, ökologische Parameter)
  • die Arbeitsergebnissen durch Ausarbeitung einer schriftlichen Arbeit, durch die Präsentation eines Vortrags und der Verteidigung der Inhalte systematische zu dokumentieren.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • im Team von circa 2-3 Personen zusammenarbeiten, 
  • wissenschaftliche Aufgabenstellungen zur Auslegung und Potentialanalyse von Systemen zur Strom- und Wärmeerzeugung aus erneuerbaren Energien fachspezifische und fachübergreifende diskutieren und gemeinsame Lösungen entwickeln,
  • ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten und
  • die Leistungen der Kommilitonen im Vergleich zu Ihrer eigenen Leistung einschätzen und mit Rückmeldungen zu ihrem eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeistschritte zu definieren. 


Arbeitsaufwand in Stunden Eigenstudium 94, Präsenzstudium 56
Leistungspunkte 5
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Pflicht
Regenerative Energien: Vertiefung Windenergie: Pflicht
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur
  • Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.


Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren
Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Modul M0520: Holzbereitstellung und -verarbeitung

Lehrveranstaltungen
Titel Typ SWS LP
Bioraffinerien - Konzepte und Anlagen (L0055) Vorlesung 2 2
Forstliche Produktionslehre (L0053) Vorlesung 2 2
Mechanische Holztechnologie (L0054) Vorlesung 2 2
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können holzwirtschaftliche und Bioraffinerie-Konzepte im Kontext politischer und wirtschaftlicher Herausforderungen erläutern, die Systemgrenzen und den jeweiligen Entwicklungsstand beschreiben.




Fertigkeiten

Die Studierenden sind in der Lage, fachübergreifende und systemorientierte Methoden zur Bewertung von holzwirtschaftlichen und Bioraffinerie-Konzepten anzuwenden, z.B. Bilanzierungen oder Machbarkeiten. Dabei können die Studierenden Alternativen auch bei unvollständigen Informationen ökonomisch und ökologisch im Vergleich mit fossilbasierten Raffinerien beurteilen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend in der Gesamtgruppe diskutieren.

Selbstständigkeit

Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung der gegebenen Fragestellung aus den Bereichen der Holzwirtschaft und der Bioraffinerien die notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 1,5 Stunden
Zuordnung zu folgenden Curricula Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Lehrveranstaltung L0055: Bioraffinerien - Konzepte und Anlagen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta
Sprachen DE
Zeitraum WiSe
Inhalt

Leitfragen der Veranstaltung:

  1. Wie sind Bioraffinerien im Kontext politischer und wirtschaftlicher Herausforderungen einzuordnen?
  2. Wodurch zeichnen sich Bioraffinerien aus?
  3. Wie sind die zu betrachtenden Bioraffinerien einzugrenzen?
  4. Wie sind Bioraffinerien im Vergleich zu anderen Biomassenutzungen zu bewerten?
  5. Wie ist der Entwicklungsstand für Bioraffinerien?
  6. Wie sind Bioraffinerietechnologien ökonomisch und ökologisch zu bewerten (einschließlich Passfähigkeit zu vorhandenen petrochemischen Technologien)?
  7. Welche Zukunftsstrategien und welcher Handlungsbedarf können abgeleitet werden?
Literatur
Lehrveranstaltung L0053: Forstliche Produktionslehre
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Michael Köhl
Sprachen DE
Zeitraum WiSe
Inhalt

Die Studierenden haben fundierte Kenntnisse über die Entstehung und Bereitstellung des nachwachsenden Rohstoffs Holz, im Rahmen einer nachhaltigen Forstlichen Produktion - global und regionalgeografisch differenziert. Sie können Problem- und Konfliktfelder beurteilen, die hinsichtlich der unterschiedlichen Interessen und Anforderungen an die Waldbewirtschaftung bestehen und unter Berücksichtigung ökonomischer, ökologischer und sozialer Aspekte regionalspezifisch zu lösen sind. Außerdem kennen sie die Grundlagen der Holzernte und Logistik, so dass sie die Brücke zur Holzmarktlehre schlagen können.

Literatur Script der Vorlesung
Lehrveranstaltung L0054: Mechanische Holztechnologie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Jörg B. Ressel
Sprachen DE
Zeitraum WiSe
Inhalt

Die Teilnehmer sollen die wichtigsten Produktionsprozesse der mechanischen Holzindustrie kennenlernen und ihre Vor- und Nachteile gegeneinander abwägen können (Effektivität, Einsatzmöglichkeiten des Rohstoffes, Möglichkeiten der Herstellung von Produkten unter Berücksichtigung von Investitions- und Produktionskosten). Das Wissen soll die Teilnehmer befähigen, spätere Tätigkeiten im Bereich der Produktion, der Kostenrechnung, des Ein- und Verkaufes und des Marketings von Produkten auszuüben.

Vorlesungsinhalte:

- Holztrocknung
- Dämpfen und Kochen von Holz
- Behandlung von Holz mit Kunststoffen
- Herstellungstechniken für Schnittholz
- Herstellung von Messer- und Schälfurnieren
- Sperrholzherstellung
- Spanplattenherstellung und Veredelung
- Herstellung von Faserplatten
- Verarbeitung von Schnittholz zu Bauteilen
- Verfahrensprozesse in der Möbelherstellung

Literatur Vorlesungsscript

Modul M0518: Waste and Energy

Lehrveranstaltungen
Titel Typ SWS LP
Abfallverwertungstechnologien (L0047) Vorlesung 2 2
Abfallverwertungstechnologien (L0048) Gruppenübung 1 2
Energie aus Abfall (L0049) Problemorientierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen none
Empfohlene Vorkenntnisse Basics of process engineering
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to describe and explain in detail techniques, processes and concepts for treatment and energy recovery from wastes.



Fertigkeiten

The students are able to select suitable processes for the treatment and energy recovery of wastes. They can evaluate the efforts and costs for processes and select economically feasible treatment Concepts. Students are able to evaluate alternatives even with incomplete information. Students are able to prepare systematic documentation of work results in form of reports, presentations and are able to defend their findings in a group.


Personale Kompetenzen
Sozialkompetenz

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development of collegues. Furthermore, they can give and accept professional constructive criticism.


Selbstständigkeit

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Projektarbeit
Prüfungsdauer und -umfang Vortrag mithilfe von Powerpoint-Folien (10-15 Minuten)
Zuordnung zu folgenden Curricula Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Lehrveranstaltung L0047: Waste Recycling Technologies
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta
Sprachen EN
Zeitraum SoSe
Inhalt
  • Fundamentals on primary and secondary production of  raw materials (steel, aluminum, phosphorous, copper, precious metals, rare metals)
  • Use and demand of metals and minerals in industry and society
  • collection systems and concepts
  • quota and efficiency
  • Advanced sorting technologies
  • mechanical pretreatment
  • advanced treatment
  • Chemical analysis of Critical Materials in post-consumer products
  • Analytical tools in Resource Management (Material Flow Analysis, Recycling Performance Indicators, Criticality Assessment, statistical analysis of uncertainties)
Literatur
Lehrveranstaltung L0048: Waste Recycling Technologies
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Kerstin Kuchta
Sprachen EN
Zeitraum SoSe
Inhalt
  • Fundamentals on primary and secondary production of  raw materials (steel, aluminum, phosphorous, copper, precious metals, rare metals)
  • Use and demand of metals and minerals in industry and society
  • collection systems and concepts
  • quota and efficiency
  • Advanced sorting technologies
  • mechanical pretreatment
  • advanced treatment
  • Chemical analysis of Critical Materials in post-consumer products
  • Analytical tools in Resource Management (Material Flow Analysis, Recycling Performance Indicators, Criticality Assessment, statistical analysis of uncertainties)
Literatur
Lehrveranstaltung L0049: Waste to Energy
Typ Problemorientierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Rüdiger Siechau
Sprachen EN
Zeitraum SoSe
Inhalt
  • Project-based lecture
  • Introduction into the " Waste to Energy " consisting of:
    • Thermal Process ( incinerator , RDF combustion )
    • Biological processes ( Wet-/Dryfermentation )
    • technology , energy , emissions, approval , etc.
  • Group work
    • design of systems/plants for energy recovery from waste
    • The following points are to be processed :
      • Input: waste ( fraction collection and transportation, current quantity , material flows , possible amount of development )
      • Plant (design, process diagram , technology, energy production )
      • Output ( energy quantity / type , by-products )
      • Costs and revenues
      • Climate and resource protection ( CO2 balance , substitution of primary raw materials / fossil fuels )
      • Location and approval (infrastructure , expiration authorization procedure)
      • Focus at the whole concept ( advantages, disadvantages , risks and opportunities , discussion )
  • Grading: No Exam , but presentation of the results of the working group



Literatur

Literatur:

Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010

Powerpoint-Folien in Stud IP



Literature:
Introduction to Waste Management; Kranert Martin , Klaus Cord - Landwehr (Ed. ), Vieweg + Teubner Verlag , 2010


PowerPoint slides in Stud IP



Modul M0522: Biokraftstoffe und deren Nutzung I

Lehrveranstaltungen
Titel Typ SWS LP
Biokraftstoffverfahrenstechnik (L0061) Vorlesung 1 1
Biokraftstoffverfahrenstechnik (L0062) Gruppenübung 1 1
Verbrennungsmotoren I (L0059) Vorlesung 2 2
Verbrennungsmotoren I (L0639) Hörsaalübung 1 2
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse
  • Grundlagen der Kraft- und Arbeitsmaschinen
  • Technische Thermodynamik I&II
  • Mechanik I&II
  • Grundlagen der Verfahrenstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können über die Entwicklungsgeschichte und Handlungsfelder der Verbrennungsmotoren, sowie zu moderner Simulationstechnik zur systematischen Motorenauslegung einen Überblick geben. Dabei können sie auch die Kräfte und Momente im Triebwerk beschreiben. Des Weiteren können sie die Möglichkeiten der Biokraftstoffgewinnung und - nutzung detailliert erläutern und kritisch Stellung dazu nehmen.


Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage den erlernten theoretischen Stoff der Verbrennungstechnik und Biokraftstoffverfahrenstechnik auf die heutige Biotreibstoffentwicklung anzuwenden und so Potenziale und Grenzen angemessen einschätzen zu können. Des Weiteren können die Studierenden eigenständig Lösungsansätze zur Berechnung und Analyse von Biokraftstoffen finden. 

Personale Kompetenzen
Sozialkompetenz


Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und sich darin enthaltenes Wissen aneignen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 2,5 Stunden
Zuordnung zu folgenden Curricula Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Lehrveranstaltung L0061: Biokraftstoffverfahrenstechnik
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Oliver Lüdtke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Allgemeine Einleitung
  • Was sind Biokraftstoffe?
  • Märkte & Entwicklungen
  • Gesetzliche Rahmenbedingungen
  • Treibhausgaseinsparungen
  • Generationen der Biokraftstoffe
    • Bioethanol der ersten Generation
      • Rohstoffe
      • Fermentation
      • Destillation
    • Biobutanol / ETBE
    • Bioethanol der zweiten Generation
      • Bioethanol aus Stroh
    • Biodiesel der ersten Generation
      • Rohstoffe
      • Produktionsprozess
      • Biodiesel & Rohstoffe
    • HVO / HEFA
    • Biodiesel der zweiten Generation
      • Biodiesel aus Algen
  • Biogas als Kraftstoff
    • Biogas der ersten Generation
      • Rohstoffe
      • Fermentation
      • Reinigung zu Biomethan
    • Biogas der zweiten Generation & Vergasungsverfahren
    • Methanol / DME aus Holz und Tall oil©


Literatur
  • Skriptum zur Vorlesung
  • Drapcho, Nhuan, Walker; Biofuels Engineering Process Technology
  • Harwardt; Systematic design of separations for processing of biorenewables
  • Kaltschmitt; Hartmann; Energie aus Biomasse: Grundlagen, Techniken und Verfahren
  • Mousdale; Biofuels - Biotechnology, Chemistry and Sustainable Development
  • VDI Wärmeatlas


Lehrveranstaltung L0062: Biokraftstoffverfahrenstechnik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Oliver Lüdtke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Ökobilanzen
    • Exemplarisches Beispiel zur Bewertung von CO2 Einsparungspotentialen durch alternative Kraftstoffe -- Wahl der Systemgrenzen und Datenbanken
  • Bioethanolherstellung
    • Anwendungsaufgabe in der die Grundlagen der thermischen Trennverfahren (Rektifikation, Extraktion) thematisiert werden. Dabei liegt der Fokus auf einer Kolonnenauslegung, inkl. Wärmebedarf, Stufenanzahl, Rücklaufverhältnis...
  • Biodieselherstellung
    • Verfahrenstechnische Optionen der Fest/Flüssigtrennung, inklusive Grundgleichungen zum Abschätzen von Leistung, Energiebedarf, Trennschärfe und Durchsatz
  • Biomethanproduktion
    • Chemische Reaktionen, die bei der Herstellung von Biokraftstoffen relevant sind, inklusive Gleichgewichte, Aktivierungsenergien, shift-Reaktionen


Literatur

Skriptum zur Vorlesung

Lehrveranstaltung L0059: Verbrennungsmotoren I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Die Anfänge der Motorenentwicklung
  • Auslegung von Motoren
  • Realprozessrechnung
  • Aufladeverfahren
  • Kinematik des Kurbeltriebs
  • Kräfte im Triebwerk

Literatur
  • Vorlesungsskript
  • Übungsaufgaben mit Lösungsweg
  • Literaturliste


Lehrveranstaltung L0639: Verbrennungsmotoren I
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum SoSe
Inhalt

Aufgabenberechnung zu:

  • Auslegung von Motoren
  • Realprozessrechnung
  • Aufladeverfahren
  • Kinematik des Kurbeltriebs
  • Kräfte im Triebwerk
Literatur

Vorlesungsskript

Modul M0555: Auslegung und Bewertung regenerativer Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
CAPE bei Energieprojekten (L0022) Projektierungskurs 2 2
Erneuerbare Energien im Energiesystem (L0137) Problemorientierte Lehrveranstaltung 2 3
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben. Des Weiteren können sie die Grundlagen zur allgemeine Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben, insbesondere mit ASPEN PLUS® und ASPEN CUSTOM MODELER® beschreiben.



Fertigkeiten

Die Studierenden sind in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:

  • modulübergreifende Lösungsansätze zur Auslegung, Darstellung und Bewertung von (regenerativen) Energiesystemen zu entwickeln,
  • auch bei unvollständiger Information in der zu bearbeitenden Aufgabe alternative Eingangsparameter abzuwägen,
  • die Arbeitsergebnissen durch Ausarbeitung einer schriftlichen Arbeit, durch die Präsentation eines Vortrags und der Verteidigung der Inhalte systematische zu dokumentieren.

Sie können die ASPEN PLUS ® and ASPEN CUSTOM MODELER ® zur Modellierung energetischer Systeme anwenden und die Simulationslösung bewerten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • im Team in Gruppen von circa 2-3 Personen zusammenarbeiten, 
  • wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von (regenerativen) Energiesystemen fachspezifische und fachübergreifende diskutieren, um gemeinsame Lösungen entwickeln,
  • ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten und
  • mit Rückmeldungen zu ihrem eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. 


Arbeitsaufwand in Stunden Eigenstudium 94, Präsenzstudium 56
Leistungspunkte 5
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Pflicht
Regenerative Energien: Vertiefung Windenergie: Pflicht
Lehrveranstaltung L0022: CAPE bei Energieprojekten
Typ Projektierungskurs
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum SoSe
Inhalt
  • CAPE = Computer-Aided-Project-Engineering
  • EINFÜHRUNG IN DIE THEORIE
    • Klassen von Simulationsprogrammen
    • Sequentiell-modularer Ansatz
    • Gleichungsorientierter Ansatz
    • Simultan-modularer Ansatz
    • Allgemeine Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben
    • Spezielle Vorgehensweise zur Lösung von Modellen mit Rückführungen
  • COMPUTER-ÜBUNGEN zu erneuerbaren Energieprojekten MIT ASPEN PLUS® UND ASPEN CUSTOM MODELER®
    • Anwendungsbereich, Potential und Grenzen von Aspen Plus® und Aspen Custom Modeler®
    • Benutzung der integrierten Datenbanken für Stoffdaten
    • Methoden zur Abschätzung nicht vorhandener physikalischer Stoffdaten
    • Benutzung der Modellbibliotheken und Prozesssynthese
    • Anwendung von Design-Spezifikationen und Sensitivitätsanalysen
    • Lösung von Optimierungsproblemen


Literatur
  • Aspen Plus® - Aspen Plus User Guide
  • William L. Luyben; Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem
Typ Problemorientierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Vorbesprechung mit Diskussion der Spielregeln
  • Ausgabe der Themen aus dem Bereich der erneuerbaren Energietechnik in Form einer Ausschreibung von Ingenieurdienstleistungen an eine Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • "Ausschreibungen" beschäftigen sich mit Aspekten der Auslegung, Kostenberechnung sowie der ökologischen, ökonomischen und technischen Bewertung von verschiedenen Energieerzeugungskonzepten (z. B. Onshore-Windstromerzeugung, groß-technische Photovoltaik-Stromerzeugung, Biogaserzeugung, geothermischer Strom- und Wärmeerzeugung) unter ganz speziellen Gegebenheiten
  • Abgabe eines schriftlichen Lösungsansatz zur Aufgabenstellung und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (20 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Modul M0749: Abfallbehandlung und Feststoffverfahrenstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Feststoffverfahrenstechnik für Biomassen (L0052) Vorlesung 2 2
Thermische Abfallbehandlung (L0320) Vorlesung 2 2
Thermische Abfallbehandlung (L1177) Hörsaalübung 1 2
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Grundlagen der Thermodynamik, 

Grundlagen Strömungsmechanik

Grundlagen der Chemie

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der thermischen Abfallbehandlungstechnik und der Feststoffverfahrenstechnik beschreiben. 

Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Abfallverbrennung und der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zusammensetzung, Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe und Abfällen im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites, elektrischem Strom, Wärme und mineralischen Rezyklaten.

Fertigkeiten

Die Studierenden sind in der Lage, geeignete Verfahren für die Behandlung bestimmter Abfälle oder Rohstoffe in Abhängigkeit von deren Charakteristika und den Zielsetzungen auszuwählen. Sie können den technischen Aufwand und die ökologischen Folgen der Technologien  abschätzen .

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • respektvoll in der Gruppe lernen und technische Fragestellungen diskutieren, 
  • wissenschaftliche Aufgabenstellungen fachspezifische und fachübergreifende diskutieren,
  • gemeinsame Lösungen entwickeln,
  • fachliche konstruktives Feedback geben und mit Rückmeldungen zu ihrem eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0052: Feststoffverfahrenstechnik für Biomassen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Werner Sitzmann
Sprachen DE
Zeitraum SoSe
Inhalt Die großtechnische Anwendung verfahrenstechnischer Grundoperationen wird an aktuellen Beispielen der Verarbeitung fester Biomassen demonstriert. Hierzu gehören unter anderem: Zerkleinern, Fördern und Dosieren, Trocknen und Agglomerieren nachwachsender Rohstoffe im Rahmen der Herstellung von Brennnstoffen, der Bioethanolerzeugung, der Gewinnung und Veredelung von Pflanzenölen, von Biomass-to-liquid-Prozessen sowie der Herstellung von wood-plasic-composites. Aspekte zum Explosionsschutz und zur Anlagenplanung ergänzen die Vorlesung.
Literatur

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Lehrveranstaltung L0320: Thermal Waste Treatment
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta, Dr. Joachim Gerth, Dr. Ernst-Ulrich Hartge
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literatur

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Lehrveranstaltung L1177: Thermal Waste Treatment
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dr. Ernst-Ulrich Hartge, Dr. Joachim Gerth
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0521: Werkstoffe für energietechnische Anlagen

Lehrveranstaltungen
Titel Typ SWS LP
Baustoffe, Bauschäden und Instandsetzung (L0056) Vorlesung 3 3
Konstruieren mit Kunststoffen und Verbundwerkstoffen (L0057) Vorlesung 2 3
Modulverantwortlicher Prof. Frank Schmidt-Döhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in Werkstoffkunde

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können für Bauteile aus Kunststoffen und Faserverbundwerkstoffe Materialien auswählen. Die Grundlagen der Laminattheorie sowie des Bruchverhaltens dieser Werkstoffe können sie erläutern. Die Studierenden können mineralische Baustoffe sowie deren Komponenten und Funktion, Herstellung, Eigenschaften und Anwendungsgebiete darstellen. Stähle des Bauwesens und deren Anwendungsbereiche können sie darstellen.

Fertigkeiten

Die Studierenden sind in der Lage einfache Bauteile aus Kunststoffen und Faserverbundwerkstoffen zu konstruieren und zu dimensionieren. Sie können Rezepturen von Betonen und Mörteln erstellen. Die Studierenden sind in der Lage Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden  sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden erwerben die Fähigkeit technische Zusammenhänge in der Gruppe zu diskutieren und Sachverhalte zu beurteilen bzw. in angemessener Form zu vertreten.

Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 2 stündige Klausur
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Lehrveranstaltung L0056: Baustoffe, Bauschäden und Instandsetzung
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Studienleistung keine
Dozenten Prof. Frank Schmidt-Döhl
Sprachen DE
Zeitraum WiSe
Inhalt Mineralische Bindemittel und Baustoffe, Beton, Stähle des Bauwesens, andere Baustoffe für energietechnische Anlagen, Metall- und Betonkorrosion, Bauwerkserhaltung und Instandsetzung
Literatur

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Blaich, J.: Bauschäden, Analyse und Vermeidung

BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen

Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE
Zeitraum WiSe
Inhalt Designing with Polymers: Materials Selection; Structural Design; Dimensioning
Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literatur

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag


Modul M0900: Ausgewählte Prozesse der Feststoffverfahrenstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Wirbelschichttechnologie (L0431) Vorlesung 2 2
Praktikum Wirbelschichttechnologie (L1369) Laborpraktikum 1 1
Technische Anwendungen der Partikeltechnologie (L0955) Vorlesung 2 2
Übungen zur Wirbelschichttechnologie (L1372) Gruppenübung 1 1
Modulverantwortlicher Prof. Stefan Heinrich
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Kenntnisse aus dem Modul Partikletechnologie I
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Nach Abschluss des Moduls sind die Studierenden in der Lage, beispielhaft die Zusammenstellung von Prozessen der Feststoffverfahrenstechnik aus Apparaten und Verfahren der Partikeltechnologie zu beschreiben und das Zusammenwirken einzelner Teilprozesse in einem Gesamtprozess erläutern.

Fertigkeiten

Die Studierenden sind in der Lage, Aufgabenstellungen in der Feststoffverfahrenstechnik zu analysieren und geeignete Prozessketten zusammenzustellen.



Personale Kompetenzen
Sozialkompetenz Studierende sind in der Lage fachspezifische Inhalte in wissenschaftlicher Weise zu diskutieren.
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0431: Fluidization Technology
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Stefan Heinrich
Sprachen EN
Zeitraum WiSe
Inhalt

Introduction: definition, fluidization regimes, comparison with other types of gas/solids reactors
Typical fluidized bed applications
Fluidmechanical principle
Local fluid mechanics of gas/solid fluidization
Fast fluidization (circulating fluidized bed)
Entrainment
Solids mixing in fluidized beds
Application of fluidized beds to granulation and drying processes


Literatur

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Lehrveranstaltung L1369: Practical Course Fluidization Technology
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Studienleistung Verpflichtender Praktikumsbericht: drei Berichte (pro Versuch ein Bericht) à 5-10 Seiten.
Dozenten Prof. Stefan Heinrich
Sprachen EN
Zeitraum WiSe
Inhalt

Experiments:

  • Determination of the minimum fluidization velocity
  • heat transfer
  • granulation
  • drying


Literatur

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Lehrveranstaltung L0955: Technische Anwendungen der Partikeltechnologie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Werner Sitzmann
Sprachen DE
Zeitraum WiSe
Inhalt Auf der Basis physikalischer Grundlagen werden die Grundoperationen Mischen, Trennen, Agglomerieren und Zerkleinern hinsichtlich ihrer technischen Anwendung aus Sicht des Praktikers diskutiert. Es werden Maschinen und Apparate vorgestellt, deren Aufbau und Wirkungsweise erklärt und ihre Einbindung in Produktionsprozesse der Chemie, der Lebens- und Futtermitteltechnik sowie der Endsorgungs- und Recyclingindustrie veranschaulicht.
Literatur Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997
Lehrveranstaltung L1372: Exercises in Fluidization Technology
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Stefan Heinrich
Sprachen EN
Zeitraum WiSe
Inhalt

Exercises and calculation examples for the lecture Fluidization Technology


Literatur

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Modul M0902: Abwasserreinigung und Luftreinhaltung

Lehrveranstaltungen
Titel Typ SWS LP
Biologische Abwasserreinigung (L0517) Vorlesung 2 3
Technologie der Luftreinhaltung (L0203) Vorlesung 2 3
Modulverantwortlicher Dr. Ernst-Ulrich Hartge
Zulassungsvoraussetzungen


Empfohlene Vorkenntnisse

Grundlagen der Biologie und Chemie

Grundlagen der Feststoffverfahrenstechnik und der Trenntechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage,

  • biologische Verfahren der Abwasserbehandlung zu benennen und zu erklären,
  • Abwasser und Schlamm zu charakterisieren,

  • gesetzliche Vorgaben im Bereich der Emission und Immsision zu erläutern
  • Verfahren zur Abgasreinigung zu klassieren und deren Einsatzbereich zu benennen
Fertigkeiten

Studenten sind in der Lage

  • Prozesschritte zur Abwasserbehandlung auszuwählen und auszulegen,
  • Anlagen zur Behandlung in Abhängigkeit der Schadkomponenten zusammenzustellen und auszulegen
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht
Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht
Lehrveranstaltung L0517: Biologische Abwasserreinigung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Studienleistung Keine verpflichtenden Studienleistungen.
Dozenten Dr. Joachim Behrendt
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Charakterisierung von Abwasser
Stoffwechseltypen von Mikroorganismen
Kinetik biologischer Stoffumwandlung
Berechnung von Bioreaktoren zur Abwasserreinigung
Konzepte in der biologischen Abwasserreinigung
Design WWTP
Exkursion zur Kläranlage Seevetal Klüsing
Biofilme
Biofilmreaktoren
Anaerobe Verfahren
Resoursen orientierte Sanitärtechnik
Zukünftige Herausforderungen in der Abwasserforschung

Literatur

Gujer, Willi
Siedlungswasserwirtschaft : mit 84 Tabellen
ISBN: 3540343296 (Gb.) URL: http://www.gbv.de/dms/bs/toc/516261924.pdf URL: http://deposit.d-nb.de/cgi-bin/dokserv?id=2842122&prov=M&dok_var=1&dok_ext=htm
Berlin [u.a.] : Springer, 2007
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Imhoff, Karl (Imhoff, Klaus R.;)
Taschenbuch der Stadtentwässerung : mit 10 Tafeln
ISBN: 3486263331 ((Gb.))
München [u.a.] : Oldenbourg, 1999
TUB_HH_Katalog
Lange, Jörg (Otterpohl, Ralf; Steger-Hartmann, Thomas;)
Abwasser : Handbuch zu einer zukunftsfähigen Wasserwirtschaft
ISBN: 3980350215 (kart.) URL: http://www.gbv.de/du/services/agi/52567E5D44DA0809C12570220050BF25/000000700334
Donaueschingen-Pfohren : Mall-Beton-Verl., 2000
TUB_HH_Katalog
Mudrack, Klaus (Kunst, Sabine;)
Biologie der Abwasserreinigung : 18 Tabellen
ISBN: 382741427X URL: http://www.gbv.de/du/services/agi/94B581161B6EC747C1256E3F005A8143/420000114903
Heidelberg [u.a.] : Spektrum, Akad. Verl., 2003
TUB_HH_Katalog
Tchobanoglous, George (Metcalf & Eddy, Inc., ;)
Wastewater engineering : treatment and reuse
ISBN: 0070418780 (alk. paper) ISBN: 0071122508 (ISE (*pbk))
Boston [u.a.] : McGraw-Hill, 2003
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Kunz, Peter
Umwelt-Bioverfahrenstechnik
Vieweg, 1992
Bauhaus-Universität., Arbeitsgruppe Weiterbildendes Studium Wasser und Umwelt (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, ;)
Abwasserbehandlung : Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren, Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen
ISBN: 3860682725 URL: http://www.gbv.de/dms/weimar/toc/513989765_toc.pdf URL: http://www.gbv.de/dms/weimar/abs/513989765_abs.pdf
Weimar : Universitätsverl, 2006
TUB_HH_Katalog
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
DWA-Regelwerk
Hennef : DWA, 2004
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Lehrveranstaltung L0203: Air Pollution Abatement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Ernst-Ulrich Hartge
Sprachen EN
Zeitraum WiSe
Inhalt

In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators.

Literatur

Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002
Atmospheric pollution : history, science, and regulation, Mark Zachary Jacobson. - Cambridge [u.a.] : Cambridge Univ. Press, 2002
Air pollution control technology handbook, Karl B. Schnelle. - Boca Raton [u.a.] : CRC Press, c 2002
Air pollution, Jeremy Colls. - 2. ed. - London [u.a.] : Spon, 2002

Fachmodule der Vertiefung Windenergie

Innerhalb der Vertiefung “Windenergie” werden weiterführende Kenntnisse zur Nutzung von Windenergie, sowohl im Onshore als auch im Offshore Bereich vermittelt. Insbesondere wird auf die maritimen und logistischen Randbedingungen zur Installation und Nutzung von Offshore Windkraftparks eingegangen. In diesem Zusammenhang wird auch der Umgang mit Risiken, die beim Bau und im Betrieb solcher großen Energieprojekte auftreten können, erläutert.

Zusätzlich werden in einem Modul die werkstoffspezifischen Grundlagen für die Zusammensetzung von Bestandteilen von Windenergieanlagen geschaffen.

Modul M0516: Regenerative Energien im Versorgungssystem

Lehrveranstaltungen
Titel Typ SWS LP
Stromerzeugung aus regenerativen Energien (L0046) Seminar 2 2
Wärmeerzeugung aus regenerativen Energien (L0045) Seminar 2 3
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche erneuerbare Technologien erklären, erläutern und technisch, ökonmisch und ökologisch bewerten.

Fertigkeiten

Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:

  • das bereits erlernte Fachwissen modulübergreifend auf verschiedene Anwendungsfälle anzuwenden
  • auch bei unvollständiger Datenbasis alternative Eingangsdaten zur Lösung der Aufgabenstellung abzuwägen (technische, ökonomische, ökologische Parameter)
  • die Arbeitsergebnissen durch Ausarbeitung einer schriftlichen Arbeit, durch die Präsentation eines Vortrags und der Verteidigung der Inhalte systematische zu dokumentieren.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • im Team von circa 2-3 Personen zusammenarbeiten, 
  • wissenschaftliche Aufgabenstellungen zur Auslegung und Potentialanalyse von Systemen zur Strom- und Wärmeerzeugung aus erneuerbaren Energien fachspezifische und fachübergreifende diskutieren und gemeinsame Lösungen entwickeln,
  • ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten und
  • die Leistungen der Kommilitonen im Vergleich zu Ihrer eigenen Leistung einschätzen und mit Rückmeldungen zu ihrem eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeistschritte zu definieren. 


Arbeitsaufwand in Stunden Eigenstudium 94, Präsenzstudium 56
Leistungspunkte 5
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Pflicht
Regenerative Energien: Vertiefung Windenergie: Pflicht
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur
  • Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.


Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren
Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Modul M0528: Maritime Technik und Offshore-Windkraftparks

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Maritime Technik (L0070) Vorlesung 2 2
Einführung in die Maritime Technik (L1614) Gruppenübung 1 1
Offshore-Windkraftparks (L0072) Vorlesung 2 3
Modulverantwortlicher Prof. Moustafa Abdel-Maksoud
Zulassungsvoraussetzungen
Empfohlene Vorkenntnisse

Qualifizierter Bachelor einer Natur- oder Ingenieurwissenschaft; Solide Kenntnisse Fähigkeiten in Mathematik, Mechanik, Strömungsmechanik.


Grundkenntnisse der Meerestechnik (z.B. aus der einführenden Veranstaltung 'Einführung in die Maritime Technik')

Gute Grundlagenkenntnisse im Bereich Technische Mechanik
Hilfreich aber keine Voraussetzung: Vorkenntnisse in den Bereichen Hydromechanik, Stahlbau, Geotechnik.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Nach dem Erfolgreichen Absolvieren dieses Kurses sollten die Studierenden einen Überblick über Phänomene und Methoden der Meerestechnik und Fähigkeit zu Anwendung und Transfer der Methoden auf neuartige Fragestellungen erworben haben. Im Einzelnen sollten die Studierenden:

  • die verschiedenen Aspekte und Themenfelder der Maritimen Technik einordnen können,
  • bestehende Methoden auf Fragestellungen der Maritimen Technik anwenden können,
  • Grenzen des bestehenden Wissens und zukünftige Entwicklungen diskutieren können.


Anhand ausgewählter Themen sollen die Teilnehmer an aktuelle Forschungsfragen herangeführt und im Rahmen projektorientierter Übungsaufgaben zur Durchführung weitergehender eigenständiger Forschungsaktivitäten befähigt werden.

Lernziele im Einzelnen:

  • Benennen aktueller Forschungsfragestellungen der Meerestechnik
  • Erklären des derzeitigen Forschungsstandes
  • Anwenden gegebener Techniken zur Bearbeitung vorgegebener Fragestellungen
  • Bewerten der Grenzen aktueller Methoden
  • Erkennen von Ansätzen zur Erweiterung bestehender Methoden
  • Abschätzen von weiteren Entwicklungspotenzialen


Ein grundlegendes Verständnis der technischen Aufgabenstellungen im Bereich Offshore Windenergie und der Ansätze für ihre Lösung.
Ein Einblick in die Marktbedingungen und in das Zusammenwirken der verschiedenen Disziplinen (Windenergieanlagentechnik, Gründungsstrukturen, Umspannplattformen, parkinterne Verkabelung und Seekabel, Fertigung, Offshore Installation, Betrieb und Überwachung, Rückbau).

Fertigkeiten



Im Rahmen dieser Vorlesung über ein einziges Semester soll und kann den Studenten vor allem ein Überblickswissen und praxisorientierte Kenntnisse vermittelt werden.

Personale Kompetenzen
Sozialkompetenz


Der Dozent trägt nicht nur vor, sondern skizziert an der Tafel und bindet die Studenten in einem Dialog ein. Die Studierenden sind damit gefordert sich zu artikulieren und einen Beitrag in der Gruppe zu leisten.

Selbstständigkeit


Die Studierenden werden in der Vorlesung immer wieder aufgefordert eigenständig mitzudenken und die grundlegenden Zusammenhänge aufzuzeigen.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Lehrveranstaltung L0070: Einführung in die Maritime Technik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Sven Hoog
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einführung

  • Maritime Technik und marine Wissenschaften
  • Potenziale der See
  • Industriestrukturen

2. Küste und Meer: Umweltbedingungen

  • Physikalische und chemische Eigenschaften von Meerwasser und Meereis
  • Strömungen, Seegang, Wind, Eisdynamik
  • Biosphäre

3. Antwortverhalten technischer Strukturen

4. Maritime Systeme und Technologien

  • Konstruktion und Installation von Offshore-Strukturen
  • Geophysikalische und geotechnische Aspekte
  • Verankerte und schwimmende Strukturen
  • Verankerungen, Riser, Pipelines
Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I/II, Elsevier 2005.
  • Gerwick, B.C., Construction of Marine and Offshore Structures, CRC-Press 1999.
  • Wagner, P., Meerestechnik, Ernst&Sohn 1990.
  • Clauss, G., Meerestechnische Konstruktionen, Springer 1988.
  • Knauss, J.A., Introduction to Physical Oceanography, Waveland 2005.
  • Wright, J. et al., Waves, Tides and Shallow-Water Processes, Butterworth 2006.
  • Faltinsen, O.M., Sea Loads on Ships and Offshore Structures, Cambridge 1999.
Lehrveranstaltung L1614: Einführung in die Maritime Technik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Sven Hoog
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0072: Offshore-Windkraftparks
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Mitzlaff
Sprachen DE
Zeitraum WiSe
Inhalt
  • Nichtlineare Wellen: Stabilität, Strukturbildung, solitäre Zustände
  • Bodengrenzschicht: Wellengrenzschichten, Scour, Hangstabilität
  • Wechselwirkung zwischen Meereis und Offshore-Strukturen
  • Wellen- und Strömungsenergiekonversion


Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I&II, Elsevier 2005.
  • Mc Cormick, M.E., Ocean Wave Energy Conversion, Dover 2007.
  • Infeld, E., Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge 2000.
  • Johnson, R.S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge 1997.
  • Lykousis, V. et al., Submarine Mass Movements and Their Consequences, Springer 2007.
  • Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, World Scientific 2005.
  • Research Articles.


Modul M0527: Marine Bodentechnik

Lehrveranstaltungen
Titel Typ SWS LP
Analyse meerestechnischer Systeme (L0068) Vorlesung 2 2
Analyse meerestechnischer Systeme (L0069) Gruppenübung 1 1
Offshore-Geotechnik (L0067) Vorlesung 2 2
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Kenntnisse der Analysis und Differentialgleichungen

Grundkenntnisse der maritimen Technik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können über die grundlegende Techniken zur Analyse von Offshore-Systemen, einschließlich der dazugehörigen Untersuchungen der Eigenschaften des Meeresbodens, eine Überblick geben und die dazugehörigen Inhalte unter Einbeziehung fachlich angrenzender Kontexte erläutern.


Fertigkeiten

Die Studierenden sind in der Lage dynamische Offshoresysteme modelltechnisch abzubilden und zu bewerten. Dafür sind sie sind sie zusätzlich in der Lage systemorientiert zudenken und komplexe System in Teilsysteme zu zerlegen. 


Personale Kompetenzen
Sozialkompetenz


Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. Des Weiteren können die Studierenden innerhalb der Übungsstunden angeleitet durch Lehrende Ihren jeweiligen Lernstand konkret einschätzen und auf dieser Basis weitere Arbeitsschritte definieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Lehrveranstaltung L0068: Analyse meerestechnischer Systeme
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Hydrostatische Analyse
    • Auftrieb
    • Schwimmfähigkeit und Stabilität
  2. Hydrodynamische Analyse
    • Froude-Krylov-Kraft
    • Morison-Gleichung
    • Radiation und Diffraktion
    • transparente/kompakte Strukturen
  3. Bewertung meerestechnischer Konstruktionen: Verlässlichkeitstechniken (Sicherheit, Zuverlässigkeit, Verfügbarkeit)
    • Kurzzeitbewertung
    • Langzeitbewertung: Extremereignisse
Literatur
  • G. Clauss, E. Lehmann, C. Östergaard. Offshore Structures Volume I: Conceptual Design and Hydrodynamics. Springer Verlag Berlin, 1992
  • E. V. Lewis (Editor), Principles of Naval Architecture ,SNAME, 1988
  • Journal of Offshore Mechanics and Arctic Engineering
  • Proceedings of International Conference on Offshore Mechanics and Arctic Engineering
  • S. Chakrabarti (Ed.), Handbook of Offshore Engineering, Volumes 1-2, Elsevier, 2005
  • S. K. Chakrabarti, Hydrodynamics of Offshore Structures , WIT Press, 2001


Lehrveranstaltung L0069: Analyse meerestechnischer Systeme
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Moustafa Abdel-Maksoud, Dr. Volker Müller
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0067: Offshore-Geotechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Jan Dührkop
Sprachen DE
Zeitraum SoSe
Inhalt
  • Überblick und Einführung Offshore-Geotechnik
  • Einführung in die Bodenmechanik
  • Offshore-Baugrunderkundung
  • Schwerpunktthema zyklische Einwirkungen
  • Geotechnische Bemessung von Offshore-Gründungen
  • Monopiles
  • Jackets
  • Schwergewichtgründungen
  • Geotechnische Vorerkundung für den Einsatz von Hubschiffen und -plattformen
Literatur
  • Randolph, M. and Gourvenec, S (2011): Offshore Geotechnical Engineering. Spon Press.
  • Poulos H.G. (1988): Marine Geotechnics. Unwin Hyman, London
  • BSH-Standard Baugrunderkundung für Offshore-Windenergieparks
  • Lesny K. (2010): Foundations for Offshore Wind Turbines. VGE Verlag, Essen.
  • EA-Pfähle (2012): Empfehlungen des Arbeitskreises Pfähle der DGGT. Ernst & Sohn, Berlin.


Modul M1132: Maritimer Transport

Lehrveranstaltungen
Titel Typ SWS LP
Maritimer Transport (L0063) Vorlesung 2 3
Maritimer Transport (L0064) Gruppenübung 2 3
Modulverantwortlicher Prof. Carlos Jahn
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können…

  • an der maritimen Transportkette beteiligten Akteure mit ihren typischen Aufgaben benennen;
  • in der Schifffahrt gängige Ladungsarten benennen sowie die zu den Ladungsarten entsprechenden Güter einordnen;
  • Betriebsformen in der Seeschifffahrt, die Transportoptionen und das Management in Transportnetzwerken benennen und erklären;
  • Haupthandelsrouten, Meerengen und Schifffahrtskanäle sowie mögliche zukünftige Routen erläutern;
  • für Standortplanung von Häfen und Seehafenterminals relevante Faktoren benennen und diskutieren.


Fertigkeiten

Die Studierenden sind in der Lage...

  • Transportart, Akteure und Funktionen der Akteure in der maritimen Lieferkette zu bestimmen;
  • mögliche Kostentreiber in einer Transportkette zu identifizieren und entsprechende Vorschläge zur Kostenreduktion zu empfehlen;
  • Material- und Informationsflüsse einer maritimen Logistikkette zu erfassen, abzubilden und systematisch zu analysieren, mögliche Probleme zu identifizieren und Lösungsvorschläge zu empfehlen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können…

  • in Kleingruppen umfangreiche Aufgabenpakete diskutieren und organisieren;
  • in Kleingruppen Arbeitsergebnisse dokumentieren und präsentieren.
Selbstständigkeit

Studierende sind fähig…

  • Fachliteratur, darunter auch Normen und Richtlinien, zu recherchieren und auszuwählen
  • eigene Anteile an  einer umfangreichen schriftlichen Ausarbeitung in Kleingruppen fristgerecht einzureichen und innerhalb eines festen Zeitrahmens gemeinschaftlich zu präsentieren.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht
Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht
Lehrveranstaltung L0063: Maritimer Transport
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Carlos Jahn
Sprachen DE
Zeitraum SoSe
Inhalt

Ziel der Veranstaltung ist es den Studierenden Kenntnisse des maritimen Transports zu vermitteln sowie typische Problemfelder und Aufgaben  aus diesem Bereich darzustellen. Hierbei werden sowohl die klassischen als auch aktuellen Probleme beleuchtet. In der Vorlesung werden die Bestandteile der maritimen Logistikkette und die beteiligten Akteure beleuchtet. In diesem Zusammenhang werden Häfen, Schiffe und Seeverkehrswege untersucht und detailliert besprochen. Es werden sowohl klassische Probleme und Planungsaufgaben als auch aktuelle Themen wie z.B. Green Logistics dargestellt.

Literatur
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.
  • Schönknecht, Axel. Maritime Containerlogistik: Leistungsvergleich von Containerschiffen in intermodalen Transportketten. Berlin Heidelberg: Springer-Verlag, 2009.
  • Stopford, Martin. Maritime Economics Routledge, 2009
Lehrveranstaltung L0064: Maritimer Transport
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Carlos Jahn
Sprachen DE
Zeitraum SoSe
Inhalt


Literatur
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.


Modul M0529: Assetmanagement und übergeordnete Aspekte

Lehrveranstaltungen
Titel Typ SWS LP
Assetmanagement in der Energiewirtschaft (L0074) Vorlesung 1 1
Assetmanagement in der Energiewirtschaft (L0075) Gruppenübung 1 1
Logistik und Informationstechnologie (L0065) Vorlesung 2 2
Wasserstofftechnologie (L0060) Vorlesung 2 2
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Assetmanagementes unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben.

Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wieder geben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage  Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen effizient auszulegen, anzupassen und zu bewerten. Die beinhaltet, dass die Studieren unter anderem in der Lage sind die Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen.

In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen.

Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. 

Personale Kompetenzen
Sozialkompetenz


Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes.



Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Lehrveranstaltung L0074: Assetmanagement in der Energiewirtschaft
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Michael Sagorje
Sprachen DE
Zeitraum WiSe
Inhalt
  • Einführung in unterschiedliche Klassen energiewirtschaftlicher Assets
    (Thermische Kraftwerke, Hydrokraftwerke, Gasspeicher,…)
  • Einfluß von Unsicherheiten
  • Einsatzplanung dieser Assets unter Unsicherheit
  • Wirtschaftliche Bewertung dieser Assets unter Berücksichtigung der Optionalität
  • Wirtschaftliche Absicherung dieser Assets


Literatur Folien zur Vorlesung
Lehrveranstaltung L0075: Assetmanagement in der Energiewirtschaft
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Michael Sagorje
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0065: Logistik und Informationstechnologie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefende Inhalte des Logistik- und Supply Chain Managements
  • Vertiefende Inhalte des Informationsmanagements
  • Vertiefende Inhalte der Informationssysteme
  • Empirische Studien in Bezug auf IT in der Supply Chain
  • Relevanz der Information in der Supply Chain
  • Weiterführende Inhalte von Logistikinformationssystemen
  • Theoretische Kenntnisse und Anwendung von Radio Frequency Identification (RFID)
  • E-Logistik
  • Electronic Sourcing
  • E-Supply Chains
  • Fallbeispiele und neue technische Entwicklungen aus der Praxis


Literatur
  • Kummer, S./Einbock, M., Westerheide, C.: RFID in der Logistik – Handbuch für die Praxis, Wien 2005.

Pepels, W. (Hsg.): E-Business-Anwendungen in der Betriebswirtschaft, Herne/Berlin 2002.

Reindl, M./Oberniedermaier, G.: eLogistics: Logistiksysteme und -prozesse im Internetzeitalter, München et al. 2002.

Schulte, C.: Logistik, 5. Auflage, München 2009

Wildemann, H.: Logistik Prozessmanagement, 4. Aufl., München 2009.

Wildemann H. (Hsg.): Supply Chain Management, München 2000.


Lehrveranstaltung L0060: Wasserstofftechnologie
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Energiewirtschaft
  2. Wasserstoffwirtschaft
  3. Vorkommen und Eigenschaften von Wasserstoff
  4. Herstellung von Wasserstoff (aus Kohlenwasserstoffen und durch Elektrolyse)
  5. Trennung und Reinigung
  6. Speicherung und Transport von Wasserstoff
  7. Sicherheit
  8. Brennstoffzellen
  9. Projekte


Literatur
  • Skriptum zur Vorlesung
  • Winter, Nitsch: Wasserstoff als Energieträger
  • Ullmann’s Encyclopedia of Industrial Chemistry
  • Kirk, Othmer: Encyclopedia of Chemical Technology
  • Larminie, Dicks: Fuel cell systems explained


Modul M0555: Auslegung und Bewertung regenerativer Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
CAPE bei Energieprojekten (L0022) Projektierungskurs 2 2
Erneuerbare Energien im Energiesystem (L0137) Problemorientierte Lehrveranstaltung 2 3
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben. Des Weiteren können sie die Grundlagen zur allgemeine Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben, insbesondere mit ASPEN PLUS® und ASPEN CUSTOM MODELER® beschreiben.



Fertigkeiten

Die Studierenden sind in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik:

  • modulübergreifende Lösungsansätze zur Auslegung, Darstellung und Bewertung von (regenerativen) Energiesystemen zu entwickeln,
  • auch bei unvollständiger Information in der zu bearbeitenden Aufgabe alternative Eingangsparameter abzuwägen,
  • die Arbeitsergebnissen durch Ausarbeitung einer schriftlichen Arbeit, durch die Präsentation eines Vortrags und der Verteidigung der Inhalte systematische zu dokumentieren.

Sie können die ASPEN PLUS ® and ASPEN CUSTOM MODELER ® zur Modellierung energetischer Systeme anwenden und die Simulationslösung bewerten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • im Team in Gruppen von circa 2-3 Personen zusammenarbeiten, 
  • wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von (regenerativen) Energiesystemen fachspezifische und fachübergreifende diskutieren, um gemeinsame Lösungen entwickeln,
  • ihre eigenen Arbeitsergebnissen vor Kommilitonen vertreten und
  • mit Rückmeldungen zu ihrem eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. 


Arbeitsaufwand in Stunden Eigenstudium 94, Präsenzstudium 56
Leistungspunkte 5
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Pflicht
Regenerative Energien: Vertiefung Windenergie: Pflicht
Lehrveranstaltung L0022: CAPE bei Energieprojekten
Typ Projektierungskurs
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum SoSe
Inhalt
  • CAPE = Computer-Aided-Project-Engineering
  • EINFÜHRUNG IN DIE THEORIE
    • Klassen von Simulationsprogrammen
    • Sequentiell-modularer Ansatz
    • Gleichungsorientierter Ansatz
    • Simultan-modularer Ansatz
    • Allgemeine Vorgehensweise bei der Bearbeitung von Modellierungsaufgaben
    • Spezielle Vorgehensweise zur Lösung von Modellen mit Rückführungen
  • COMPUTER-ÜBUNGEN zu erneuerbaren Energieprojekten MIT ASPEN PLUS® UND ASPEN CUSTOM MODELER®
    • Anwendungsbereich, Potential und Grenzen von Aspen Plus® und Aspen Custom Modeler®
    • Benutzung der integrierten Datenbanken für Stoffdaten
    • Methoden zur Abschätzung nicht vorhandener physikalischer Stoffdaten
    • Benutzung der Modellbibliotheken und Prozesssynthese
    • Anwendung von Design-Spezifikationen und Sensitivitätsanalysen
    • Lösung von Optimierungsproblemen


Literatur
  • Aspen Plus® - Aspen Plus User Guide
  • William L. Luyben; Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem
Typ Problemorientierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Vorbesprechung mit Diskussion der Spielregeln
  • Ausgabe der Themen aus dem Bereich der erneuerbaren Energietechnik in Form einer Ausschreibung von Ingenieurdienstleistungen an eine Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • "Ausschreibungen" beschäftigen sich mit Aspekten der Auslegung, Kostenberechnung sowie der ökologischen, ökonomischen und technischen Bewertung von verschiedenen Energieerzeugungskonzepten (z. B. Onshore-Windstromerzeugung, groß-technische Photovoltaik-Stromerzeugung, Biogaserzeugung, geothermischer Strom- und Wärmeerzeugung) unter ganz speziellen Gegebenheiten
  • Abgabe eines schriftlichen Lösungsansatz zur Aufgabenstellung und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (20 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Modul M1133: Hafenlogistik

Lehrveranstaltungen
Titel Typ SWS LP
Hafenlogistik (L0686) Vorlesung 2 3
Hafenlogistik (L1473) Gruppenübung 2 3
Modulverantwortlicher Prof. Carlos Jahn
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können…

  • die historische Entwicklung der Seehäfen (bezüglich der Funktionen der Häfen und der entsprechenden Terminals sowie der betreffenden Betreibermodellen) wiedergeben und diese in den historischen Kontext einordnen;
  • unterschiedliche Typen von Seehafenterminals und ihre spezifischen Charakteristika erläutern (Ladung, Umschlagstechnologien, logistische Funktionsbereiche);
  • gängige Planungsaufgaben (z. B. Liegeplatzplanung, Stauplanung, Yardplanung) auf Seehafenterminals benennen sowie geeignete Ansätze (im Sinne von Methoden und Werkzeuge) zur Lösung dieser Planungsaufgaben vorschlagen;
  • Trends hinsichtlich Planung und Steuerung innovativer Seehafenterminals benennen und diskutieren.


Fertigkeiten

Die Studierenden sind in der Lage...

  • Funktionsbereiche in Häfen und in Seehafenterminals zu erkennen;
  • für Containerterminals passende Betriebssysteme zu definieren und zu bewerten;
  • statische Berechnungen hinsichtlich gegebener Randbedingungen wie z.B. erforderliche Kapazität (Stellplätze, Gerätebedarf, Kaimauerlänge)  auf ausgewählten Terminaltypen durchzuführen;
  • zuverlässig einzuschätzen, welche Randbedingungen bei der statischen Planung von ausgewählten Terminaltypen in welchem Ausmaß gängige Logistikkennzahlen beeinflussen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können…

  • in Kleingruppen umfangreiche Aufgabenpakete diskutieren und organisieren;
  • in Kleingruppen Arbeitsergebnisse dokumentieren und präsentieren.


Selbstständigkeit

Studierende sind fähig…

  • Fachliteratur, darunter auch Normen und Richtlinien, zu recherchieren und auszuwählen
  • eigene Anteile an  einer umfangreichen schriftlichen Ausarbeitung in Kleingruppen fristgerecht einzureichen und innerhalb eines festen Zeitrahmens gemeinschaftlich zu präsentieren.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Logistik: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht
Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht
Lehrveranstaltung L0686: Hafenlogistik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Carlos Jahn
Sprachen DE
Zeitraum SoSe
Inhalt

Die außerordentliche Rolle des Seeverkehrs für den internationalen Handel erfordert leistungsfähige Häfen. Diese müssen zahlreichen Anforderungen in Punkten Wirtschaftlichkeit, Geschwindigkeit, Sicherheit und Umwelt genügen. Vor diesem Hintergrund beschäftigt sich Hafenlogistik mit der Planung, Steuerung, Durchführung und Kontrolle von Materialflüssen und den dazugehörigen Informationsflüssen im System Hafen und seinen Schnittstellen zu zahlreichen Akteuren innerhalb und außerhalb des Hafengeländes. Die Veranstaltung Hafenlogistik zielt darauf ab, Verständnis über Strukturen und Prozesse in Häfen zu vermitteln. Schwerpunktmäßig werden unterschiedliche Typen von Terminals, ihre charakteristischen Layouts und das eingesetzte technische Equipment sowie das Zusammenspiel der beteiligten Akteure thematisiert.

Literatur
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.


Lehrveranstaltung L1473: Hafenlogistik
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Carlos Jahn
Sprachen DE
Zeitraum SoSe
Inhalt

Schwerpunkt der Übung bilden analytische Aufgaben im Bereich der Terminalplanung. Bei diesen Aufgaben sollen die Studierenden in Kleingruppen unter Berücksichtigung von gegebenen Rahmenbedingungen Terminallayouts rechnerisch konzipieren. Die berechneten Logistikkennzahlen, bzw. die entsprechenden Layouts sollen unter Verwendung spezieller Planungssoftware in 2D- und 3D-Modellen grafisch umgesetzt werden.

Literatur
  • Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005.

Modul M0521: Werkstoffe für energietechnische Anlagen

Lehrveranstaltungen
Titel Typ SWS LP
Baustoffe, Bauschäden und Instandsetzung (L0056) Vorlesung 3 3
Konstruieren mit Kunststoffen und Verbundwerkstoffen (L0057) Vorlesung 2 3
Modulverantwortlicher Prof. Frank Schmidt-Döhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in Werkstoffkunde

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können für Bauteile aus Kunststoffen und Faserverbundwerkstoffe Materialien auswählen. Die Grundlagen der Laminattheorie sowie des Bruchverhaltens dieser Werkstoffe können sie erläutern. Die Studierenden können mineralische Baustoffe sowie deren Komponenten und Funktion, Herstellung, Eigenschaften und Anwendungsgebiete darstellen. Stähle des Bauwesens und deren Anwendungsbereiche können sie darstellen.

Fertigkeiten

Die Studierenden sind in der Lage einfache Bauteile aus Kunststoffen und Faserverbundwerkstoffen zu konstruieren und zu dimensionieren. Sie können Rezepturen von Betonen und Mörteln erstellen. Die Studierenden sind in der Lage Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden  sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden erwerben die Fähigkeit technische Zusammenhänge in der Gruppe zu diskutieren und Sachverhalte zu beurteilen bzw. in angemessener Form zu vertreten.

Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 2 stündige Klausur
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht
Regenerative Energien: Vertiefung Windenergie: Wahlpflicht
Lehrveranstaltung L0056: Baustoffe, Bauschäden und Instandsetzung
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Studienleistung keine
Dozenten Prof. Frank Schmidt-Döhl
Sprachen DE
Zeitraum WiSe
Inhalt Mineralische Bindemittel und Baustoffe, Beton, Stähle des Bauwesens, andere Baustoffe für energietechnische Anlagen, Metall- und Betonkorrosion, Bauwerkserhaltung und Instandsetzung
Literatur

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Blaich, J.: Bauschäden, Analyse und Vermeidung

BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen

Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE
Zeitraum WiSe
Inhalt Designing with Polymers: Materials Selection; Structural Design; Dimensioning
Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literatur

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag


Thesis

Modul M-002: Masterarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 24 (1):

    Es müssen mindestens 78 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.


Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches sicher zur Bearbeitung fachlicher Fragestellungen einsetzen.
  • Die Studierenden können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • Die Studierenden können eine eigene Forschungsaufgabe in ihrem Fachgebiet verorten, den Forschungsstand erheben und kritisch einschätzen.


Fertigkeiten
  • Die Studierenden sind in der Lage, für die jeweilige fachliche Problemstellung geeignete Methoden auszuwählen, anzuwenden und ggf. weiterzuentwickeln.
  • Die Studierenden sind in der Lage, im Studium erworbenes Wissen und erlernte Methoden auch auf komplexe und/oder unvollständig definierte Problemstellungen lösungsorientiert anzuwenden.
  • Die Studierenden können in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse erarbeiten und diese kritisch beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können

  • eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht beantworten und dabei eigene Einschätzungen überzeugend vertreten.


Selbstständigkeit

Studierende sind fähig,

  • ein eigenes Projekt in Arbeitspakete zu strukturieren und abzuarbeiten.
  • sich in ein teilweise unbekanntes Arbeitsgebiet des Studiengangs vertieft einzuarbeiten und dafür benötigte Informationen zu erschließen.
  • Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit anzuwenden.


Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Prüfung laut FSPO
Prüfungsdauer und -umfang laut FSPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energie- und Umwelttechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Global Innovation Management: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
International Production Management: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Ship and Offshore Technology: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht