Modulhandbuch
Master
Chemical and Bioprocess Engineering
Kohorte: Wintersemester 2015
Stand: 23. Mai 2016
Inhalt
Das spezifisch verfolgte Ziel des Master-Studiengangs Chemical and Bioprocess Engineering ist es, Bachelor-Ingenieuren mit dem Schwerpunkten Verfahrenstechnik oder Industrielle Biotechnologie die Kenntnisse und Fähigkeiten zu vermitteln, die sie für eine wissenschaftliche Weiterqualifizierung (Promotion) oder eine anschließende Berufstätigkeit in verschiedenen Branchen der Chemieindustrie und/oder Biotechnologie und des Anlagenbaus vorbereitet. Der künftige Tätigkeitsbereich der Absolventen kann sich von der Forschung und Entwicklung über Planung, Projektierung und Betrieb verfahrenstechnischer bzw. bioverfahrenstechnischer Anlagen erstrecken.
Neben der Befähigung zu einer technisch-wissenschaftlichen Entwicklungs- und Projektierungsarbeit sollen die Absolventen aus Chemical and Bioprocess Engineering qualifiziert werden, Führungsaufgaben in diesem Umfeld zu übernehmen und in einer international geprägten Arbeitsorganisation zu agieren.
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Ergänzungskurse im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studienbereich Nichttechnische Wahlpflichtfächer vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im „Nichttechnischen Studienbereich“ gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M1038: Particle Technology for International Master Programs |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able |
Fertigkeiten |
students are able to
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht |
Lehrveranstaltung L1289: Particle Technology for IMP |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1290: Practicle Course Particle Technology for IMP |
Typ | Laborpraktikum |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Following experiments have to be carried out:
|
Literatur |
|
Modul M0537: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Sven Jakobtorweihen |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Thermodynamics III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are capable to formulate thermodynamic problems and to specify possible solutions. Furthermore, they can describe the current state of research in thermodynamic property predictions. |
Fertigkeiten |
The students are capable to apply modern thermodynamic calculation methods to multi-component mixtures and relevant biological systems. They can calculate phase equilibria and partition coefficients by applying equations of state, gE models, and COSMO-RS methods. They can provide a comparison and a critical assessment of these methods with regard to their industrial relevance. The students are capable to use the software COSMOtherm and relevant property tools of ASPEN and to write short programs for the specific calculation of different thermodynamic properties. They can judge and evaluate the results from thermodynamic calculations/predictions for industrial processes. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are capable to develop and discuss solutions in small groups; further they can translate these solutions into calculation algorithms. |
Selbstständigkeit |
Students can rank the field of “Applied Thermodynamics” within the scientific and social context. They are capable to define research projects within the field of thermodynamic data calculation. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 1 Stunde Gruppenprüfung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0100: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications |
Typ | Vorlesung |
SWS | 4 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 34, Präsenzstudium 56 |
Dozenten | Dr. Sven Jakobtorweihen, Prof. Ralf Dohrn |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L0230: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sven Jakobtorweihen |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
exercises in computer pool, see lecture description for more details |
Literatur |
Modul M0545: Separation Technologies for Life Sciences |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Fundamentals of Chemistry, Fluid Process Engineering, Thermal Separation Processes, Chemical Engineering, Chemical Engineering, Bioprocess Engineering Basic knowledge in thermodynamics and in unit operations related to thermal separation processes |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
On completion of the module, students are able to present an overview of the basic thermal process technology operations that are used, in particular, in the separation and purification of biochemically manufactured products. Students can describe chromatographic separation techniques and classic and new basic operations in thermal process technology and their areas of use. In their choice of separation operation students are able to take the specific properties and limitations of biomolecules into consideration. Using different phase diagrams they can explain the principle behind the basic operation and its suitability for bioseparation problems. |
Fertigkeiten |
On completion of the module, students are able to assess the separation processes for bio- and pharmaceutical products that have been dealt with for their suitability for a specific separation problem. They can use simulation software to establish the productivity and economic efficiency of bioseparation processes. In small groups they are able to jointly design a downstream process and to present their findings in plenary and summarize them in a joint report. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able in small heterogeneous groups to jointly devise a solution to a technical problem by using project management methods such as keeping minutes and sharing tasks and information. |
Selbstständigkeit |
Students are able to prepare for a group assignment by working their way into a given problem on their own. They can procure the necessary information from suitable literature sources and assess its quality themselves. They are also capable of independently preparing the information gained in a way that all participants can understand (by means of reports, minutes, and presentations). |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0093: Chromatographic Separation Processes |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Monika Johannsen |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0112: Unit Operations for Bio-Related Systems |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Contents:
|
Literatur |
"Handbook of Bioseparations", Ed. S. Ahuja http://www.elsevier.com/books/handbook-of-bioseparations-2/ahuja/978-0-12-045540-9 "Bioseparations Engineering" M. R. Ladish http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471244767.html |
Lehrveranstaltung L0113: Unit Operations for Bio-Related Systems |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0973: Biocatalysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Andreas Liese |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of this course, students will be able to
|
Fertigkeiten |
After successful completion of this course, students will be able to
|
Personale Kompetenzen | |
Sozialkompetenz |
After completion of this module, participants will be able to debate technical and biocatalytical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. |
Selbstständigkeit |
After completion of this module, participants will be able to solve a technical problem independently including a presentation of the results. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Environmental Engineering: Vertiefung Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1158: Biocatalysis and Enzyme Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction: Impact and potential of enzyme-catalysed processes in biotechnology. 2. History of microbial and enzymatic biotransformations. 3. Chirality - definition & measurement 4. Basic biochemical reactions, structure and function of enzymes. 5. Biocatalytic retrosynthesis of asymmetric molecules 6. Enzyme kinetics: mechanisms, calculations, multisubstrate reactions. 7. Reactors for biotransformations. |
Literatur |
|
Lehrveranstaltung L1157: Technical Biocatalysis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction 2. Production and Down Stream Processing of Biocatalysts 3. Analytics (offline/online) 4. Reaction Engineering & Process Control
5. Process Optimization
6. Examples of Industrial Processes
7. Non-Aqueous Solvents as Reaction Media
|
Literatur |
|
Modul M1018: Process Systems Engineering and Transport Processes |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen |
none |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to decribe the transport processes in single- and multiphase flows. They are able to explain the analogy between heat- and mass transfer as well as the limits of this analogy. The students are able to write down the main transport laws and their application as well as the limits of application. Students are able to:
|
Fertigkeiten |
Students are able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to discuss in international teams in english and develop an approach under pressure of time. |
Selbstständigkeit |
Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. They are able to organize their own team and to define priorities. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht |
Lehrveranstaltung L0104: Multiphase Flows |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971. |
Lehrveranstaltung L1243: Process Systems Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Georg Fieg |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction Process Synthesis Synthesis of Heat Recovery Systems Process Control |
Literatur |
J. M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, 1988 |
Lehrveranstaltung L0103: Heat & Mass Transfer in Process Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0898: Heterogeneous Catalysis |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Raimund Horn |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Content of the bachelor-modules "process technology", as well as particle technology, fluidmechanics in process-technology and transport processes. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to apply their knowledge to explain industrial catalytic processes as well as indicate different synthesis routes of established catalyst systems. They are capable to outline dis-/advantages of supported and full-catalysts with respect to their application. Students are able to identify anayltical tools for specific catalytic applications. |
Fertigkeiten | After successfull completition of the module, students are able to use their knowledge to identify suitable analytical tools for specific catalytic applications and to explain their choice. Moreover the students are able to choose and formulate suitable reactor systems for the current synthesis process. Students can apply their knowldege discretely to develop and conduct experiments. They are able to appraise achieved results into a more general context and draw conclusions out of them. |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to plan, prepare, conduct and document experiments according to scientific guidelines in small groups. |
Selbstständigkeit |
The students are able to obtain further information for experimental planning and assess their relevance autonomously. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0223: Analysis and Design of Heterogeneous Catalytic Reactors |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Material- and Energybalance of the two-dimensionsal zweidimensionalen pseudo-homogeneous reactor model 2. Numerical solution of ordinary differential equations (Euler, Runge-Kutta, solvers for stiff problems, step controlled solvers) 3. Reactor design with one-dimensional models (ethane cracker, catalyst deactivation, tubular reactor with deactivating catalyst, moving bed reactor with regenerating catalyst, riser reactor, fluidized bed reactor) 4. Partial differential equations (classification, numerical solution Lösung, finite difference method, method of lines) 5. Examples of reactor design (isothermal tubular reactor with axial dispersion, dehydrogenation of ethyl benzene, wrong-way behaviour) 6. Boundary value problems (numerical solution, shooting method, concentration- and temperature profiles in a catalyst pellet, multiphase reactors, trickle bed reactor) |
Literatur |
1. Lecture notes R. Horn 2. Lecture notes F. Keil 3. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010 4. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000 |
Lehrveranstaltung L0533: Modern Methods in Heterogeneous Catalysis |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Heterogeneous Catalysis and Chemical Reaction Engineering are inextricably linked. About 90% of all chemical intermediates and consumer products (fuels, plastics, fertilizers etc.) are produced with the aid of catalysts. Most of them, in particular large scale products, are produced by heterogeneous catalysis viz. gaseous or liquid reactants react on solid catalysts. In multiphase reactors gases, liquids and a solid catalyst are present. Heterogeneous catalysis plays also a key role in any future energy scenario (fuel cells, electrocatalytic splitting of water) and in environmental engineering (automotive catalysis, photocatalyic abatement of water pollutants). Heterogeneous catalysis is an interdisciplinary science requiring knowledge of different scientific disciplines such as
|
Literatur |
|
Lehrveranstaltung L0534: Modern Methods in Heterogeneous Catalysis |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0896: Bioprocess and Biosystems Engineering |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. An-Ping Zeng |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After completion of this module, participants will be able to:
|
Fertigkeiten |
After completion of this module, participants will be able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. |
Selbstständigkeit |
After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Environmental Engineering: Vertiefung Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1034: Bioreactor Design and Operation |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Design of bioreactors and peripheries:
Sterile operation:
Instrumentation and control:
Bioreactor selection and scale-up:
Integrated biosystem:
Team work with presentation:
|
Literatur |
|
Lehrveranstaltung L1035: Bioreactor Design and Operation |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Design of bioreactors and peripheries (Exercise/Practical):
Sterile operation:
Instrumentation and control:
Bioreactor selection and scale-up:
Integrated biosystem:
Team work with presentation:
|
Literatur |
|
Lehrveranstaltung L1036: Biosystems Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Lehrveranstaltung L1037: Biosystems Engineering |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Introduction to Biosystems Engineering (Exercise)
Selected projects for biosystems engineering
|
Literatur |
E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006 R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006 G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998 I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003 Lecture materials to be distributed |
Modul M0914: Technical Microbiology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Skander Elleuche |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Bachelor with basic knowledge in microbiology and genetics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successfully finishing this module, students are able
|
Fertigkeiten |
After successfully finishing this module, students are able
|
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to
|
Selbstständigkeit |
Students are able to
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min Klausur (und PBL-Anteile und Antestate in der Übung im Semester) |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0877: Applied Molecular Biology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Skander Elleuche |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Lecture and PBL - Methods in genetics / molecular cloning - Industrial relevance of microbes and their biocatalysts - Biotransformation at extreme conditions - Genomics - Protein engineering techniques - Synthetic biology |
Literatur |
Relevante Literatur wird im Kurs zur Verfügung gestellt. Grundwissen in Molekularbiologie, Genetik, Mikrobiologie und Biotechnologie erforderlich. Lehrbuch: Brock - Mikrobiologie / Microbiology (Madigan et al.) |
Lehrveranstaltung L0999: Technical Microbiology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Kerstin Sahm, Prof. Garabed Antranikian |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Microbiology, 2013, Madigan, M., Martinko, J. M., Stahl, D. A., Clark, D. P. (eds.), formerly „Brock“, Pearson Industrielle Mikrobiologie, 2012, Sahm, H., Antranikian, G., Stahmann, K.-P., Takors, R. (eds.) Springer Berlin, Heidelberg, New York, Tokyo. Angewandte Mikrobiologie, 2005, Antranikian, G. (ed.), Springer, Berlin, Heidelberg, New York, Tokyo. |
Lehrveranstaltung L1000: Technical Microbiology |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Kerstin Sahm |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0904: Projektierungskurs |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dozenten des SD V |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreicher Teilnahme am Projektierungskurs wissen die Studierenden:
|
Fertigkeiten |
Studierende sind nach erfolgreicher Teilnahme in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in international besetzten teams auf englisch diskutieren und unter Zeitdruck einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. Sie können sich selbst im Team organisieren und Prioritäten vergeben. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1050: Projektierungskurs |
Typ | Projektierungskurs |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Projektierungskurs sollen die Studierenden in Arbeitsgruppen den Gesamtkomplex einer energie- oder verfahrenstechnischen Anlage planen, die einzelnen Anlagenkomponenten auslegen und berechnen sowie eine vollständige Kostenkalkulation erarbeiten. Bei der Projektierung sind sicherheitstechnische Aspekte zu berücksichtigen sowie das Genehmigungsverfahren/Behördenengineering. |
Literatur |
Modul M1047: Forschungsprojekt IMP Chemical and Bioprocess Engineering |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dozenten des SD V |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Fortgeschrittener Kenntnisstand im Internationalen Master-Studium Chemical and Bioprocess Engineering |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen aktuelle Forschungsprojekte der Institute in der Vertiefungsrichtung. Sie können die grundlegenden wissenschaftlichen Methoden nennen, mit denen an diesen gearbeitet wird. |
Fertigkeiten | Die Studierenden sind in der Lage, ein eigenständiges Teilprojekt in aktuell laufenden Forschungsprojekten der Institute in der Vertiefungsrichtung durchzuführen. Studierende können Ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnenen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende sind in der Lage, mit Mitarbeitern der betreuenden Institute fachlich den Fortschritt der Arbeit zu diskutieren und ihre Endergebnisse adressatengerecht zu präsentieren. |
Selbstständigkeit | Studierende sind in der Lage, anhand der im bisherigen Studium erworbenen Kompetenzen sich selbstständig aus aktuellen Forschungsprojekten sinnvolle Aufgaben zu definieren, dazu notwendiges Wissen zu erschließen sowie geeignete Lösungsmethoden auszuwählen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht |
Lehrveranstaltung L1388: Forschungsprojekt IMP Chemical and Bioprocess Engineering |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Dozenten des SD V |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden bearbeiten ein Teilprojekt in einem aktuell laufenden Forschungsprojekt eines Instituts der Vertiefungsrichtung. Der Inhalt dieses Teilprojekts kann theoretischer Natur oder experimenteller Natur sein bzw. Theorie und Experiment miteinander verbinden. Das Forschungsprojekt kann auch dazu dienen, eine nachfolgende Masterarbeit vorzubereiten, z.B. durch Durchführung einer Literaturrechereche oder von Vorexperimenten. |
Literatur |
Bücher, Zeitschriften und Patentliteratur des jeweiligen Forschungsgebiets. Books, journals and patent literature of the respective field of research. |
In dieser Vertiefung können die Studierenden den Wahlpflichtbereich frei gestalten.
Für Studenten mit entsprechender guten Deutschkenntnissen stehen die auf Deutsch gehaltenen Module von den Masters Bioverfahrenstechnik und Verfahrenstechnik zur Verfügung.
Modul M0516: Regenerative Energien im Versorgungssystem |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche erneuerbare Technologien erklären, erläutern und technisch, ökonmisch und ökologisch bewerten. |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeistschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 94, Präsenzstudium 56 |
Leistungspunkte | 5 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Vertiefung Bioenergie: Pflicht Regenerative Energien: Vertiefung Windenergie: Pflicht |
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Modul M0636: Cell and Tissue Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Pörtner |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the module the students - know the basic principles of cell and tissue culture - know the relevant metabolic and physiological properties of animal and human cells - are able to explain and describe the basic underlying principles of bioreactors for cell and tissue cultures, in contrast to microbial fermentations - are able to explain the essential steps (unit operations) in downstream - are able to explain, analyze and describe the kinetic relationships and significant litigation strategies for cell culture reactors |
Fertigkeiten |
The students are able - to analyze and perform mathematical modeling to cellular metabolism at a higher level - are able to to develop process control strategies for cell culture systems |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0355: Fundamentals of Cell and Tissue Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Pörtner, Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Overview of cell culture technology and tissue engineering (cell culture product manufacturing, complexity of protein therapeutics, examples of tissue engineering) (Pörtner, Zeng) Fundamentals of cell biology for process engineering (cells: source, composition and structure. interactions with environment, growth and death – cell cycle, protein glycolysation) (Pörtner) Cell physiology for process engineering (Overview of central metabolism, genomics etc.) (Zeng) Medium design (impact of media on the overall cell culture process, basic components of culture medium, serum and protein-free media) (Pörtner) Stochiometry and kinetics of cell growth and product formation (growth of mammalian cells, quantitative description of cell growth & product formation, kinetics of growth) |
Literatur |
Butler, M (2004) Animal Cell Culture Technology – The basics, 2nd ed. Oxford University Press Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5 Pörtner R (ed) (2013) Animal Cell Biotechnology – Methods and Protocols. Humana Press |
Lehrveranstaltung L0356: Bioprocess Engineering for Medical Applications |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Pörtner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Requirements for cell culture processess, shear effects, microcarrier technology Reactor systems for mammalian cell culture (production systems) (design, layout, scale-up: suspension reactors (stirrer, aeration, cell retention), fixed bed, fluidized bed (carrier), hollow fiber reactors (membranes), dialysis reactors, Reactor systems for Tissue Engineering, Prozess strategies (batch, fed-batch, continuous, perfusion, mathematical modelling), control (oxygen, substrate etc.) • Downstream |
Literatur |
Butler, M (2004) Animal Cell Culture Technology – The basics, 2nd ed. Oxford University Press Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5 Pörtner R (ed) (2013) Animal Cell Biotechnology – Methods and Protocols. Humana Press |
Modul M0617: Hochdruckverfahrenstechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Monika Johannsen |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Chemie, Chemische und Thermische Verfahrenstechnik, Fluidverfahrenstechnik, Trenntechnik, Thermodynamik, Mehrphasengleichgewichte |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreicher Teilnahme können Studierende:
|
Fertigkeiten |
Nach erfolgreicher Teilnahme sind Studierende in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach erfolgreicher Teilnahme sind Studierende in der Lage:
|
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1278: Hochdrucktechnik im Apparatebau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Robert Surma |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag AD-Merkblätter, Heumanns Verlag Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag Klapp: Apparate- und Anlagentechnik, Springer Verlag |
Lehrveranstaltung L0116: Industrial Processes Under High Pressure |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Carsten Zetzl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Part I : Physical Chemistry and Thermodynamics 1. Introduction: Overview, achieving high pressure, range of parameters. 2. Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy, entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension. 3. Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria 4. Overview on calculation methods for (high pressure) phase equilibria). 5. Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases) 6. Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation) 7. Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure Part III : Industrial production 8. Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO) 9. Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery 10. Industrial High Pressure Applications in Biofuel and Biodiesel Production 11. Sterilization and Enzyme Catalysis 12. Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor. 13. Supercritical fluids for materials processing. 14. Cost Engineering Learning Outcomes:After a successful completion of this module, the student should be able to - understand of the influences of pressure on properties of compounds, phase equilibria, and production processes. - Apply high pressure approches in the complex process design tasks - Estimate Efficiency of high pressure alternatives with respect to investment and operational costs Performance Record: 1. Presence (28 h) 2. Oral presentation of original scientific article (15 min) with written summary 3. Written examination and Case study ( 2+3 : 32 h Workload) Workload:60 hours total |
Literatur |
Literatur: Script: High Pressure Chemical Engineering. |
Lehrveranstaltung L0094: Advanced Separation Processes |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Monika Johannsen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994. |
Modul M0875: Water & Wastewater Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply. |
Fertigkeiten |
Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0939: Water & Wastewater Systems in a Global Context |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0714: Numerik gewöhnlicher Differentialgleichungen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Blanca Ayuso Dios |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Technomathematik: Vertiefung Mathematik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Numerische Verfahren für Anfangswertprobleme
Numerische Verfahren für Randwertaufgaben
|
Literatur |
|
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0906: Molecular Modeling and Computational Fluid Dynamics |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the module the students are able to
|
Fertigkeiten |
The students are able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to
|
Selbstständigkeit |
The students are able to:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 1 Stunde Gruppenprüfung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1375: Computational Fluid Dynamics - Exercises in OpenFoam |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur | OpenFoam Tutorials (StudIP) |
Lehrveranstaltung L1052: Computational Fluid Dynamics in Process Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2. Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868. Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6
|
Lehrveranstaltung L0099: Statistical Thermodynamics and Molecular Modelling |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sven Jakobtorweihen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Daan Frenkel, Berend Smit: Understanding Molecular Simulation, Academic Press M. P. Allen, D. J. Tildesley: Computer Simulations of Liquids, Oxford Univ. Press A.R. Leach: Molecular Modelling – Principles and Applications, Prentice Hall, N.Y. D. A. McQuarrie: Statistical Mechanics, University Science Books T. L. Hill: Statistical Mechanics , Dover Publications |
Modul M0633: Industrial Process Automation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
mathematics and optimization methods |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can evaluate and assess disctrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. |
Fertigkeiten |
The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity and implementation using PLCs. |
Personale Kompetenzen | |
Sozialkompetenz |
The students work in teams to solve problems. |
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0344: Industrial Process Automation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- foundations of problem solving and system modeling, discrete event systems |
Literatur |
J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012 |
Lehrveranstaltung L0345: Industrial Process Automation |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Freiwillige schriftliche Bearbeitung von Übungsaufgaben. Damit können Bonuspunkte für die Modulprüfung gesammelt werden. |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0902: Abwasserreinigung und Luftreinhaltung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Ernst-Ulrich Hartge |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse |
Grundlagen der Biologie und Chemie Grundlagen der Feststoffverfahrenstechnik und der Trenntechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage,
|
Fertigkeiten |
Studenten sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0517: Biologische Abwasserreinigung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Keine verpflichtenden Studienleistungen. |
Dozenten | Dr. Joachim Behrendt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Charakterisierung von Abwasser |
Literatur |
Gujer, Willi |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Ernst-Ulrich Hartge |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M0683: Algebraische Statistik für computerorientierte Biologie |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine. |
Empfohlene Vorkenntnisse |
Höhere Mathematik, insbesondere Analysis, Lineare Algebra und Grundlagen der abstrakten Algebra. Grundlagen aus Stochastik und Statistik sind hilfreich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Wissen: Die Studierenden kennen
|
Fertigkeiten |
Fertigkeiten: Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von einschlägiger Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0456: Algebraische Statistik für computerorientierte Biologie |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0949: Rural Development and Sanitation for different Climate Zones |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners. Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world. |
Fertigkeiten |
Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | semesterbegleitend werden 5 Meilensteine erarbeitet, vorgetragen und schrfitlich festgehalten. Genaueres findet man ab jeweiligem Semesterbeginn im Stud Ip Kurs im herunterladbarem Modulhandbuch. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0941: Rural Development in Different Climates |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0942: Resources Oriented Sanitation: High and Low-Tech Options |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0504: Resources Oriented Sanitation: High - and Low - Tech Options |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Fachpraktische Arbeit: Vorbereitung und Durchführung von vier Versuchen sowie Agabe eines Versuchsprotokolls. |
Dozenten | Dr. Holger Gulyas |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Construction of urine-diverting toilets - Comparison of stored and fresh urine: ammonia concentration - Comparison of stored and fresh urine: alkalinity |
Literatur |
Skript Steven A. Esrey, Jean Gough, Dave Rapaport, Ron Sawyer, Mayling Simpson-Hébert, Jorge Vargas and Uno Winblad: Ecological Sanitation, SIDA, Stockholm 1998, http://www.ecosanres.org/pdf_files/Ecological_Sanitation.pdf |
Modul M0802: Membrane Technology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Fertigkeiten |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personale Kompetenzen | |
Sozialkompetenz |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Selbstständigkeit |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0399: Membrane Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literatur |
|
Lehrveranstaltung L0400: Membrane Technology |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Einreichung von Lösungen zu Übungsaufgaben. Über die Abgabe von Lösungen können Bonuspunkte für die Klausur gesammelt werden. Detailliertere Informationen erhalten die Studierenden bei Veranstaltungsbeginn. |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0401: Membrane Technology |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Protokoll: Verpflichtende Abgabe eines Versuchsprotokolls über die durchgeführten Experimente. |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1019: Verfahrenstechnik zur Herstellung von Werkstoffen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Physik, Chemie, Mechanik, Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, die Herstellungsverfahren von keramischen und polymeren Werkstoffen und Verbundwerkstoffen detailliert zu erläutern. Sie können die wesentlichen Eigenschaften der Werkstoffe aufzählen und deren Einsatzbereiche benennen. |
Fertigkeiten |
Studierende sind in der Lage, Entscheidungen hinsichtlich einer Werkstoffauswahl für verschiedene Anwendungen zu treffen. Sie können den Aufwand des jeweiligen Herstellungsverfahrens beurteilen und Möglichkeiten der Werkstoffoptimierung und Anpassung einschätzen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Hausaufgaben: Fragen zur Vorlesungsinhalten werden via Stud.IP zur Verfügung gestellt. Diese müssen bis zur nächsten Vorlesungsstunde beantwortet werden. Bei richtiger Beantwortung werden Bonuspunkte zugewiesen, die dann bei der Klausurbewertung berücksichtigt werden. Werden alle Fragen (nahezu) richtig beantwortet, entspricht die Summe der Bonuspunkte einer Notenverbesserung von 0,3. |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0511: Manufacturing with Polymers and Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Crawford: Plastics engineering, Pergamon Press Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Modul M1309: Auslegung und Bewertung regenerativer Energiesysteme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierende können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativer Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche erneuerbare Technologien erklären, erläutern und technisch, ökonmisch und ökologisch bewerten |
Fertigkeiten |
Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeistschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | je Lehrveranstaltung ca. 20 Minuten Vortrag + schriftliche Ausarbeitung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Vorlesung ist aufbauend auf den Vorlesungen "Stromerzeugung aus regenerativen Energien" und "Wärmeerzeugung aus regenerativen Energien".
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen. |
Modul M0952: Industrielle Bioprozesstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. An-Ping Zeng |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der Bioverfahrenstechnik oder Verfahrenstechnik auf Bachelorniveau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls
|
Fertigkeiten |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, gemeinsam im Team mit mehreren Studierenden vorgegebene Aufgaben zu lösen und ihre Arbeitsergebnisse im Plenum zu diskutieren und zu verteidigen. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung (10 Seiten), Vortrag + Diskussion (45 min) |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1065: Bioverfahrenstechnische Produktionsprozesse |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Pörtner, Prof. An-Ping Zeng, Prof. Garabed Antranikian, Prof. Andreas Liese |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Biotechnische Produktionsprozesse für -Lebensmittel und Lebensmittelzusätze -Therapeutische Wirkstoffe -Technische Biopolymere -Pharmazeutika, Herbizide, Insektizide -Organische Säuren und Grundchemikalien -Abwasser- und Abfallaufbereitung Die Studierenden bearbeiten in Gruppen einen vorgegebenen biotechnologischen Prozess und sollen sich die wesentlichen Charakteristika dieses Prozesses (Grundlagen, Auslegung, wirtschaftliche Bedeutung) erschließen. Eine kritische Analyse des Prozesses soll dazu dienen, mögliche Optimierungen (bzgl. Rohstoffen, Energiebedarf, Personalbedarf, Abfallentsorgung etc.) zu erkennen und hierfür Vorschläge zu erarbeiten. |
Literatur |
Rehm, Hans-Jürgen; G. Reed: Biotechnology : A comprehensive treatise in 8 Vol., Weinheim: Verlag Chemie, 1981-1988, Ullmann´s encyclopedia of industrial chemistry. Wiley-VCH (on-line) R.H. Baltz et al.: Manual of Industrial Microbiology and Biotechnology, 3. Edition, ASM Press, 2010. Recent articles on the selected process in the scientific-technical and patent literature (journals, handbooks, databases (Internet). Textbooks for previous courses in the programmes. |
Lehrveranstaltung L1172: Trends in Industrial Biocatalysis |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
In dieser Vertiefungsrichtung sind die Kompetenzen im Bereich der Bioprozesstechnik und Biotechnologie vorgesehen.
Für Studenten mit entsprechender guten Deutschkenntnissen stehen die auf Deutsch gehaltenen Module von dem Master Bioverfahrenstechnik zur Verfügung.
Modul M0636: Cell and Tissue Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf Pörtner |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Knowledge of bioprocess engineering and process engineering at bachelor level |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the module the students - know the basic principles of cell and tissue culture - know the relevant metabolic and physiological properties of animal and human cells - are able to explain and describe the basic underlying principles of bioreactors for cell and tissue cultures, in contrast to microbial fermentations - are able to explain the essential steps (unit operations) in downstream - are able to explain, analyze and describe the kinetic relationships and significant litigation strategies for cell culture reactors |
Fertigkeiten |
The students are able - to analyze and perform mathematical modeling to cellular metabolism at a higher level - are able to to develop process control strategies for cell culture systems |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0355: Fundamentals of Cell and Tissue Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Pörtner, Prof. An-Ping Zeng |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Overview of cell culture technology and tissue engineering (cell culture product manufacturing, complexity of protein therapeutics, examples of tissue engineering) (Pörtner, Zeng) Fundamentals of cell biology for process engineering (cells: source, composition and structure. interactions with environment, growth and death – cell cycle, protein glycolysation) (Pörtner) Cell physiology for process engineering (Overview of central metabolism, genomics etc.) (Zeng) Medium design (impact of media on the overall cell culture process, basic components of culture medium, serum and protein-free media) (Pörtner) Stochiometry and kinetics of cell growth and product formation (growth of mammalian cells, quantitative description of cell growth & product formation, kinetics of growth) |
Literatur |
Butler, M (2004) Animal Cell Culture Technology – The basics, 2nd ed. Oxford University Press Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5 Pörtner R (ed) (2013) Animal Cell Biotechnology – Methods and Protocols. Humana Press |
Lehrveranstaltung L0356: Bioprocess Engineering for Medical Applications |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf Pörtner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Requirements for cell culture processess, shear effects, microcarrier technology Reactor systems for mammalian cell culture (production systems) (design, layout, scale-up: suspension reactors (stirrer, aeration, cell retention), fixed bed, fluidized bed (carrier), hollow fiber reactors (membranes), dialysis reactors, Reactor systems for Tissue Engineering, Prozess strategies (batch, fed-batch, continuous, perfusion, mathematical modelling), control (oxygen, substrate etc.) • Downstream |
Literatur |
Butler, M (2004) Animal Cell Culture Technology – The basics, 2nd ed. Oxford University Press Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5 Pörtner R (ed) (2013) Animal Cell Biotechnology – Methods and Protocols. Humana Press |
Modul M0683: Algebraische Statistik für computerorientierte Biologie |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine. |
Empfohlene Vorkenntnisse |
Höhere Mathematik, insbesondere Analysis, Lineare Algebra und Grundlagen der abstrakten Algebra. Grundlagen aus Stochastik und Statistik sind hilfreich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Wissen: Die Studierenden kennen
|
Fertigkeiten |
Fertigkeiten: Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von einschlägiger Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0456: Algebraische Statistik für computerorientierte Biologie |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M1125: Bioresources and Biorefineries |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Ina Körner |
Zulassungsvoraussetzungen | Non |
Empfohlene Vorkenntnisse |
Basics on engineering; |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can give on overview on principles and theories in the field’s bioresource management and biorefinery technology and can explain specialized terms and technologies. |
Fertigkeiten |
Students are capable of applying knowledge and know-how in the field’s bioresource management and biorefinery technology |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work goal-oriented with others and communicate and document their interests and knowledge in acceptable way. |
Selbstständigkeit |
Students are able to solve independently, with the aid of pointers, practice-related tasks bearing in mind possible societal consequences. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Environmental Engineering: Vertiefung Abfall und Energie: Wahlpflicht Environmental Engineering: Vertiefung Biotechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht |
Lehrveranstaltung L0895: Biorefinery Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Ina Körner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The Europe 2020 strategy calls for bioeconomy as the key for smart and green growth of today. Biorefineries are the fundamental part on the way to convert the use of fossil-based society to bio-based society. For this reason, agriculture and forestry sectors are increasingly deliver bioresources. It is not only for their traditional applications in the food and feed sectors such as pulp or paper and construction material productions, but also to produce bioenergy and bio-based products such as bio-plastics. However although bioresources are renewable, they are considered as limited resources as well. The bioeconomy’s limitation factor is the availability land on our world. In the context of the development of the bioeconomy, the sustainable and reliable supply of noon-food biomass feedstock is a critical success factor for the long-term perspective of bioenergy and other bio-based products production. Biorefineries are complex of technologies and process cascades using the available primary, secondary and tertiary bioresources to produce a multitude of products - a product mix from material and energy products. The lecture gives an overview on biorefinery technology and shall contribute to promotion of international biorefinery developments. Lectures:
The lectures will be accompanied by technical tours. Optional it is also possible to visit more biorefinery lectures in the University of Hamburg (lectures in German only). In the exercise students have the possibility to work in groups on a biorefinery project or to work on a student-specific task. |
Literatur |
Biorefineries - Industrial Process and Products - Status Qua and Future directions by Kamm, Gruber and Kamm (2010); Wiley VCH, available on-line in TUHH-library Powerpoint-Präsentations / selected Publications / further recommendations depending on the actual developments Industrial Biorefineries and White Biorefinery, by Pandey, Höfer, Larroche, Taherzadeh, Nampoothiri (Eds.); (2014 book development in progress) |
Lehrveranstaltung L0974: Biorefinery Technologie |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ina Körner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. ) Selection of a topic within the thematic area "Biorefinery Technologie" from a given list or self-selected. 2.) Self-dependent recherches to the topic. 3.) Preparation of a written elaboration. 4.) Presentation of the results in the group. |
Literatur |
Vom Thema abhängig. Eigene Recherchen nötig. Depending on the topic. Own recheches necassary. |
Lehrveranstaltung L0892: Bioresource Management |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Ina Körner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the context of limited fossil resources, climate change mitigation and increasing population growth, Bioresources has a special role. They have to feed the population and in the same time they are important for material production such as pulp and paper or construction materials. Moreover they become more and more important in chemical industry and in energy provision as fossil substitution. Although Bioresources are renewable, they are also considered as limited resources. The availability of land on our planet is the main limitation factor. The sustainable and reliable supply of non-food biomass feedstock is a critical for successful and long term perspective on production of bioenergy and other bio-based products. As the consequence, the increasing competition and shortages continue to happen at the traditional sectors. On the other side, huge unused but potentials residue on waste and wastewater sector exist. Nowadays, a lot of activities to develop better processes, to create new bio-based products in order to become more efficient, the inclusion of secondary and tertiary bio-resources in the valorisation chain are going on. The lecture deals with the current state-of-the-art of bioresource management. It shows deficits and potentials for improvement especially in the sector of utilization of organic residues for material and energy generation: Lectures on:
Special lectures by invited guests from research and practice:
Optional: Technical visits |
Literatur |
Power-Point presentations in STUD-IP |
Lehrveranstaltung L0893: Bioresource Management |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Ina Körner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0952: Industrielle Bioprozesstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. An-Ping Zeng |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Kenntnisse der Bioverfahrenstechnik oder Verfahrenstechnik auf Bachelorniveau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls
|
Fertigkeiten |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, gemeinsam im Team mit mehreren Studierenden vorgegebene Aufgaben zu lösen und ihre Arbeitsergebnisse im Plenum zu diskutieren und zu verteidigen. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Referat |
Prüfungsdauer und -umfang | Schriftliche Ausarbeitung (10 Seiten), Vortrag + Diskussion (45 min) |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1065: Bioverfahrenstechnische Produktionsprozesse |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Pörtner, Prof. An-Ping Zeng, Prof. Garabed Antranikian, Prof. Andreas Liese |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Biotechnische Produktionsprozesse für -Lebensmittel und Lebensmittelzusätze -Therapeutische Wirkstoffe -Technische Biopolymere -Pharmazeutika, Herbizide, Insektizide -Organische Säuren und Grundchemikalien -Abwasser- und Abfallaufbereitung Die Studierenden bearbeiten in Gruppen einen vorgegebenen biotechnologischen Prozess und sollen sich die wesentlichen Charakteristika dieses Prozesses (Grundlagen, Auslegung, wirtschaftliche Bedeutung) erschließen. Eine kritische Analyse des Prozesses soll dazu dienen, mögliche Optimierungen (bzgl. Rohstoffen, Energiebedarf, Personalbedarf, Abfallentsorgung etc.) zu erkennen und hierfür Vorschläge zu erarbeiten. |
Literatur |
Rehm, Hans-Jürgen; G. Reed: Biotechnology : A comprehensive treatise in 8 Vol., Weinheim: Verlag Chemie, 1981-1988, Ullmann´s encyclopedia of industrial chemistry. Wiley-VCH (on-line) R.H. Baltz et al.: Manual of Industrial Microbiology and Biotechnology, 3. Edition, ASM Press, 2010. Recent articles on the selected process in the scientific-technical and patent literature (journals, handbooks, databases (Internet). Textbooks for previous courses in the programmes. |
Lehrveranstaltung L1172: Trends in Industrial Biocatalysis |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
In dieser Vertiefungsrichtung sind die Kompetenzen im Bereich der prozessorientirten bzw. chemischen Verfahrenstechnik vorgesehen.
Für Studenten mit entsprechender guten Deutschkenntnissen stehen die auf Deutsch gehaltenen Module von dem Master Verfahrenstechnik zur Verfügung.
Modul M0617: Hochdruckverfahrenstechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Monika Johannsen |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Chemie, Chemische und Thermische Verfahrenstechnik, Fluidverfahrenstechnik, Trenntechnik, Thermodynamik, Mehrphasengleichgewichte |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreicher Teilnahme können Studierende:
|
Fertigkeiten |
Nach erfolgreicher Teilnahme sind Studierende in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach erfolgreicher Teilnahme sind Studierende in der Lage:
|
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1278: Hochdrucktechnik im Apparatebau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Robert Surma |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag AD-Merkblätter, Heumanns Verlag Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag Klapp: Apparate- und Anlagentechnik, Springer Verlag |
Lehrveranstaltung L0116: Industrial Processes Under High Pressure |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Carsten Zetzl |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Part I : Physical Chemistry and Thermodynamics 1. Introduction: Overview, achieving high pressure, range of parameters. 2. Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy, entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension. 3. Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria 4. Overview on calculation methods for (high pressure) phase equilibria). 5. Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases) 6. Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation) 7. Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure Part III : Industrial production 8. Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO) 9. Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery 10. Industrial High Pressure Applications in Biofuel and Biodiesel Production 11. Sterilization and Enzyme Catalysis 12. Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor. 13. Supercritical fluids for materials processing. 14. Cost Engineering Learning Outcomes:After a successful completion of this module, the student should be able to - understand of the influences of pressure on properties of compounds, phase equilibria, and production processes. - Apply high pressure approches in the complex process design tasks - Estimate Efficiency of high pressure alternatives with respect to investment and operational costs Performance Record: 1. Presence (28 h) 2. Oral presentation of original scientific article (15 min) with written summary 3. Written examination and Case study ( 2+3 : 32 h Workload) Workload:60 hours total |
Literatur |
Literatur: Script: High Pressure Chemical Engineering. |
Lehrveranstaltung L0094: Advanced Separation Processes |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Monika Johannsen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994. |
Modul M0714: Numerik gewöhnlicher Differentialgleichungen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Blanca Ayuso Dios |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Technomathematik: Vertiefung Mathematik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Numerische Verfahren für Anfangswertprobleme
Numerische Verfahren für Randwertaufgaben
|
Literatur |
|
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0906: Molecular Modeling and Computational Fluid Dynamics |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the module the students are able to
|
Fertigkeiten |
The students are able to:
|
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to
|
Selbstständigkeit |
The students are able to:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 1 Stunde Gruppenprüfung |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1375: Computational Fluid Dynamics - Exercises in OpenFoam |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur | OpenFoam Tutorials (StudIP) |
Lehrveranstaltung L1052: Computational Fluid Dynamics in Process Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2. Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868. Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6
|
Lehrveranstaltung L0099: Statistical Thermodynamics and Molecular Modelling |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sven Jakobtorweihen |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Daan Frenkel, Berend Smit: Understanding Molecular Simulation, Academic Press M. P. Allen, D. J. Tildesley: Computer Simulations of Liquids, Oxford Univ. Press A.R. Leach: Molecular Modelling – Principles and Applications, Prentice Hall, N.Y. D. A. McQuarrie: Statistical Mechanics, University Science Books T. L. Hill: Statistical Mechanics , Dover Publications |
Modul M0633: Industrial Process Automation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
mathematics and optimization methods |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can evaluate and assess disctrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. |
Fertigkeiten |
The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity and implementation using PLCs. |
Personale Kompetenzen | |
Sozialkompetenz |
The students work in teams to solve problems. |
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0344: Industrial Process Automation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- foundations of problem solving and system modeling, discrete event systems |
Literatur |
J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012 |
Lehrveranstaltung L0345: Industrial Process Automation |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Studienleistung | Freiwillige schriftliche Bearbeitung von Übungsaufgaben. Damit können Bonuspunkte für die Modulprüfung gesammelt werden. |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0802: Membrane Technology |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Mathias Ernst |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures. |
Fertigkeiten |
Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. |
Personale Kompetenzen | |
Sozialkompetenz |
Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. |
Selbstständigkeit |
Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Environmental Engineering: Vertiefung Wasser: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0399: Membrane Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well. Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis. The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. |
Literatur |
|
Lehrveranstaltung L0400: Membrane Technology |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Studienleistung | Freiwillige Einreichung von Lösungen zu Übungsaufgaben. Über die Abgabe von Lösungen können Bonuspunkte für die Klausur gesammelt werden. Detailliertere Informationen erhalten die Studierenden bei Veranstaltungsbeginn. |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0401: Membrane Technology |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Studienleistung | Protokoll: Verpflichtende Abgabe eines Versuchsprotokolls über die durchgeführten Experimente. |
Dozenten | Prof. Mathias Ernst |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Prüfung | laut FSPO |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |