Studiengangsbeschreibung
Inhalt
Bio- und Chemieingenieur*innen nutzen die Eigenschaften von Rohstoffen und entwickeln (Bio-)Katalysatoren und Prozesse, um zu neuen Produkten zu gelangen oder nachhaltigere, energiesparende Wege zu bestehenden Produkten zu realisieren. Damit können wichtige Ziele im Klima- und Naturschutz erreicht werden, in dem Prozesse energiesparender ausgelegt werden oder Kohlendioxid als Substrat für neue Prozesse genutzt wird. Zu den neuen Produkten können aber auch Lebensmittel gehören, die es erlauben den Bedarf einer steigenden Weltbevölkerung zu decken und dabei den Planeten nicht mehr auszubeuten. Auch neuen Arzneimittel werden von Chemie- und Bioingenieur*innen mitentwickelt und Prozesse gestaltet, um sie in großen Mengen produzieren zu können. Die Grundbedürfnisse des Menschen nach sauberem Trinkwasser, Nahrung, Energie und Gesundheit können nur mit Hilfe der Chemietechnik und Biotechnologie befriedigt werden. Chemie- und Bioingenieur*innen machen Biologie, Chemie und Physik für die Gesellschaft nutzbar, indem sie die Produktion von Lebensmitteln, Chemikalien, Pharmazeutika, Treibstoffen, Baustoffen, Metallen und Kunststoffen in großem Maßstab ermöglichen. Das Chemie- und Bioingenieurwesen trägt also eine große Verantwortung für eine ressourcenschonende und klimafreundliche Gesellschaft. Denn nur durch effiziente Stoffumwandlungsverfahren mit weitreichenden Recyclingmöglichkeiten ist eine Kreislaufwirtschaft mit minimalem ökologischen Fußabdruck zu erreichen.
Im Studium werden naturwissenschaftliche (Chemie, Biologie, Physik), mathematische, ingenieurwissenschaftliche (Mechanik, Messtechnik, Konstruktion) und prozesstechnische Grundlagen (Thermodynamik, Wärme- und Stoffübertragung) vermittelt. Dabei gehen die Dozent*innen der Verfahrenstechnik davon aus, dass in Zukunft hybride Prozesse bestehend aus biologischen und chemischen Teilprozessen in Zukunft immer wichtiger werden und daher biologische und chemische Grundlagen für zukünftige Ingenieur*innen im Bereich der Verfahrenstechnik gelegt werden müssen. Im Studium werden während verschiedener Praktika schon früh erste Eindrücke von der wissenschaftlichen Forschung an (bio-)verfahrenstechnischen Anlagen und Apparaten in Labor und Technikum ermöglicht. Dabei lernen die Studierenden neben den naturwissenschaftlichen und technischen Grundlagen viel über die verschiedenen Methoden und Anlagen, um Herstellungsprozesse und (bio-)chemische Reaktionen zu verstehen und zu berechnen. Nach der Vermittlung der Grundlagen können sich die Studierenden dann im vierten Semester für ein Schwerpunktthema entscheiden und vertiefen sich im Chemieingenieurwesen oder im Bioingenieurwesen.
Die Vertiefung Bioingenieurwesen fokussiert sich auf die Bereiche der Technischen Mikrobiologie, Biokatalyse und Bioverfahrenstechnik und vermittelt Konzepte und Methoden der Biochemie, der Genetik sowie der Mikro-, Molekular- und Zellbiologie. Dabei ist das Ziel, verständlich zu machen wie Biokatalysatoren und skalierbare biotechnologische Prozesse entworfen werden können, um neue nachhaltige biotechnologische Prozesse zu entwerfen. Die Vertiefung Chemieingenieurwesen befähigt dazu, Gesetzmäßigkeiten zu erkennen und zu formulieren, mit denen Apparate, Maschinen und ganze Produktionsanlagen für umweltverträgliche Verfahren geplant, berechnet, konstruiert, gebaut und betrieben werden können.
Unabhängig von der gewählten Vertiefungsrichtung können die folgenden Masterstudiengänge an der TUHH nach einem Bachelor in Chemie- und Bioingenieurwesen gewählt werden:
→ Verfahrenstechnik
→ Bioverfahrenstechnik
→ Chemical and Bioprocess Engineering
Ergänzend zu dem fachlichen Grundlagenkanon an der TUHH sind Seminare zur Personalen Kompetenzentwicklung im Rahmen des Theorie-Praxis-Transfers in das duale Studium integriert, die den modernen Berufsanforderungen an Ingenieur*innen gerecht werden und die Verknüpfung der beiden Lernorte unterstützt.
Die praxisintegrierenden dualen Intensivstudiengänge der TUHH bestehen aus einem wissenschaftsorientierten und einem praxisorientierten Teil, welche an zwei Lernorten durchgeführt werden. Der wissenschaftsorientierte Teil umfasst das Studium an der TUHH. Der praxisorientierte Teil ist mit dem Studium inhaltlich und zeitlich abgestimmt und findet jeweils in der vorlesungsfreien Zeit in einem Kooperationsunternehmen in Form von Praxismodulen und -phasen statt.
Berufliche Perspektiven
Allen Absolvent*innen der verfahrenstechnischen Studiengänge stehen die folgenden Tätigkeitsfelder offen:
Tätigkeitsfelder in der Industrie:
- Entwicklung und Verbesserung von chemischen, biotechnischen oder umwelttechnischen Verfahren
- Projektierung, Anlagenbau und Betrieb entsprechender Anlagen
- Erarbeitung von Grundlagen und Entwicklung neuer Apparate und Prozesse
- Werkstoff-Forschung und -Entwicklung
- Management in Produktionsbetrieben
- Arbeitsschutz und Sicherheitstechnik
- Dokumentation und Patentbearbeitung
- Marketing und Vertrieb
Tätigkeitsfelder im öffentlichen Dienst:
- Forschung und Lehre an wissenschaftlichen Hochschulen oder Instituten
- Technische Administration und Überwachung
- Mitarbeit in Bundes- und Landesämtern, z. B. Patentamt, Gewerbeaufsichtsamt, Materialprüfungsamt, Umweltbundesamt
Freiberufliche Perspektiven:
- Ingenieurbüros
- Patentanwaltskanzleien
- Gutachter*innen, Industrieberater*innen
- Eigene Firmengründung
Zudem erlangen die Studierenden grundlegende fachliche und personale Kompetenzen im dualen Studium, die sowohl zu einem frühen Einstieg in die Berufspraxis als auch zu einem wissenschaftlich vertiefenden Studium befähigen. Darüber hinaus werden berufspraktische Erfahrungen durch die integrierten Praxismodule erweitert. Die Absolvent*innen des dualen Studiengangs verfügen über ein breites Grundlagenwissen, grundlegende Fähigkeiten des wissenschaftlichen Arbeitens und über anwendungsbezogene personale Kompetenzen.
Lernziele
Lernziele Wissen
- Die Absolvent*innen sind in der Lage, Grundlagenwissen auf den Gebieten Mathematik, Physik, Biologie, Chemie und Mechanik wiederzugeben.
- Sie können die im Chemie- und Bioingenieurwesen und angrenzenden Disziplinen auftretenden Phänomene erklären.
- Sie können die grundlegenden Prinzipien des Chemie- und Bioingenieurwesens zur Auslegung, Modellierung und Simulation biologischer und verfahrenstechnischer Prozesse sowie chemischer Reaktionen, von Energie-, Stoff- und Impulstransportprozessen, von Trennprozessen auf der Mikro-, Meso- und Makroskala sowie zum Betrieb entsprechender Anlagen erläutern.
- Sie sind in der Lage, die Grundzüge der Mess-, Steuer- und Regelungstechnik zu beschreiben.
- Sie können rechtliche Aspekte im Zusammenhang mit (bio)verfahrenstechnischen Prozessen und Produktionsanlagen berücksichtigen.
Vertiefung Chemieingenieurwesen:
- Die Absolvent*innen der Vertiefungsrichtung Chemieingenieurwesen sind in der Lage, grundlegende Zusammenhänge in chemischen Prozessen zu verstehen und diese unter Nutzung von zusätzlichen Kenntnissen der Werkstofftechnik sowie des Anlagen- und Apparatebaus insbesondere mit einem Fokus auf die Nutzung von nachwachsenden Rohstoffen zur Realisierung möglichst nachhaltiger Produktionsverfahren umzusetzen.
- Darüber hinaus können die Absolvent*innen Nutzungsmöglichkeiten von regenerativen Energien für die Gestaltung von energieeffizienten und klimaschonenden Produktionsprozessen beschreiben.
Vertiefung Bioingenieurwesen:
- Die Absolvent*innen der Vertiefungsrichtung Bioingenieurwesen sind in der Lage, grundlegende molekularbiologische Techniken anzuwenden, um Mikroorgansimen gezielt für die Produktion von Chemikalien und Proteinen zu verändern.
- Darüber hinaus können sie die mikrobiellen, energetischen und verfahrenstechnischen Grundlagen von fermentativen Bioprozessen erklären und anwenden.
- Sie sind in der Lage, verschiedene kinetische Ansätze für das Wachstum und die Produktbildung verschiedener Mikroorganismen zu erklären und für die Bioprozessentwicklung einzusetzen und Transportprozesse im Bioreaktor zu quantifizieren und diese zum Scale-up von Bioprozessen heranzuziehen.
Lernziele Fertigkeiten
- Die Absolvent*innen können ihr Wissen über mathematisch-naturwissenschaftliche Grundlagen und Methoden der Ingenieurwissenschaften auf einfache Probleme anwenden und Lösungen erarbeiten.
- Sie können typische, detaillierte Problemstellungen aus dem Chemie- und Bioingenieurwesen (z. B. Auslegung von Anlagen, Berechnung von Wärme- und Stofftransportprozessen) auf ihr Grundlagenwissen abbilden, geeignete Lösungsmethoden finden und umsetzen. Sie können den eingeschlagenen Lösungsweg geeignet schriftlich dokumentieren.
- Sie können praktische, eher allgemeine Problemstellungen aus dem Chemie- und Bioingenieurwesen (z. B. Entwurf eines Prozesses) auf Teilprobleme des eigenen Faches oder anderer relevanter Fachgebiete abbilden, geeignete Methoden zur Problemlösung finden und diese umsetzen. Sie können ihre Lösung einer Zuhörerschaft klar strukturiert präsentieren.
- Sie können vorgegebene Fragestellungen aus der Forschung unter Verwendung geeigneter Methoden eigenverantwortlich bearbeiten, ihren eingeschlagenen Lösungsweg dokumentieren und vor einem fachkundigen Publikum präsentieren.
- Sie sind in der Lage, Entwürfe für (bio)verfahrenstechnische Prozesse nach spezifizierten Anforderungen zu erarbeiten.
- Sie können selbstständig Experimente planen, durchführen und die Ergebnisse interpretieren.
Vertiefung Chemieingenieurwesen:
- Die Absolvent*innen der Vertiefungsrichtung Chemieingenieurwesen sind in der Lage, chemische Stoffumwandlungsprozesse in technischen Gasen und Flüssigkeiten von der molekularen Skala bis zur Apparateskala zu verstehen, zu analysieren und zu bewerten.
- Sie können Entwürfe für chemische Prozesse nach spezifizierten Anforderungen erarbeiten; passende Analyse-, Modellierungs-, und Optimierungsmethoden auswählen und anwenden, Techniken und Methoden der Verfahrenstechnik einsetzen und deren Grenzen einschätzen.
Vertiefung Bioingenieurwesen:
- Die Absolvent*innen der Vertiefungsrichtung Bioingenieurwesen sind in der Lage, biologische Stoffumwandlungsprozesse mit Biokatalysatoren (Zellen und Enzymen) auf molekularer und Prozessebene zu durchdringen, zu analysieren und zu bewerten.
- Sie können Entwürfe für Bioprozesse nach spezifizierten Anforderungen erarbeiten; passende Analyse-, Modellierungs-, und Optimierungsmethoden auswählen und anwenden, Techniken und Methoden der Bioverfahrenstechnik einsetzen und deren Grenzen einschätzen.
Lernziele Sozialkompetenz
- Die Absolvent*innen sind qualifiziert, mit Fachleuten anderer Disziplinen zusammenzuarbeiten und die Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich zu präsentieren.
- Sie können über Inhalte und Probleme des Chemie- und Bioingenieurwesens mit Fachleuten und Laien in deutscher und englischer Sprache kommunizieren.
- Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet reagieren. Sie können sowohl einzeln als auch in (internationalen) Gruppen selbstständig arbeiten.
- Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren.
- Sie arbeiten problemorientiert und interdisziplinär in Expert*innen- und Arbeitsteams zusammen.
- Sie sind in der Lage, Arbeitsgruppen zusammenzustellen und anzuleiten.
- Sie vertreten komplexe, fachbezogene Problemlösungen gegenüber Fachleuten und Stakeholdern argumentativ und können diese gemeinsam weiterentwickeln.
Lernziele Selbstständigkeit
- Die Absolvent*innen haben die Fähigkeit, ihr Wissen auf unterschiedlichen Gebieten unter Berücksichtigung sicherheitstechnischer, ökologischer und wirtschaftlicher Erfordernisse verantwortungsbewusst anzuwenden und eigenverantwortlich zu vertiefen.
- Sie haben die Fähigkeit, Literaturrecherchen durchzuführen sowie Datenbanken und andere Informationsquellen für ihre Arbeit zu nutzen.
- Sie können ihre vorhandenen Kompetenzen realistisch einschätzen und Defizite selbstständig aufarbeiten. Sie können die nicht-technischen Auswirkungen der Ingenieurtätigkeit einschätzen.
- Sie sind in der Lage, Projekte zu organisieren und durchzuführen.
- Sie definieren, reflektieren und bewerten Ziele für Lern- und Arbeitsprozesse.
- Sie gestalten ihre Lern- und Arbeitsprozesse eigenständig und nachhaltig.
- Sie übernehmen Verantwortung für ihre Lern- und Arbeitsprozesse.
- Sie sind in der Lage, ihre Vorstellungen oder Handlungen bewusst zu durchdenken und auf ihr Selbstkonzept zu beziehen, um darauf aufbauend Folgerungen für zukünftiges Handeln zu entwickeln.
Der kontinuierliche Wechsel der Lernorte im dualen Studium ermöglicht es, dass Theorie und Praxis zueinander in Beziehung gesetzt werden können. Die individuellen berufspraktischen Erfahrungen werden von den Studierenden theoretisch reflektiert und in neue Formen der Praxis überführt, wie auch die praktische Erprobung theoretischer Elemente als Anregung für die theoretische Auseinandersetzung genutzt wird.
Studiengangsstruktur
Das Studium gliedert sich in folgende Abschnitte:
- Kernqualifikation,
- Vertiefung und
- Abschlussarbeit.
Die Kernqualifikation umfasst insgesamt 180 LP inklusive aller fünf Praxismodule im Umfang von insgesamt 30 LP. Alle Module der Kernqualifikation sind verpflichtend zu besuchen. In der Kernqualifikation ist auch das Modul "Theorie-Praxis-Verzahnung im dualen Bachelor" verankert.
Ab dem vierten Semester belegen die Studierenden Module in der von ihnen gewählten Vertiefungsrichtung. Als Vertiefungsrichtung stehen „Chemieingenieurwesen“ und „Bioingenieurwesen“ zur Auswahl. Die Vertiefungsrichtung umfasst 15 LP. Zwei Module à 6 LP sind verpflichtend zu belegen. Ein Modul à 3 LP kann aus verschiedenen Modulen ausgewählt werden.
Die Bachelorarbeit wird im sechsten Semester in der Regel im Unternehmen angefertigt und hat einen Umfang von 12 LP.
Insgesamt hat der duale Bachelorstudiengang Chemie- und Bioingenieurwesen einen Umfang von 210 LP bei einer Regelstudienzeit von sechs Semestern, es handelt sich somit um einen Intensivstudiengang.
Fachmodule der Kernqualifikation
Modul M0883: Allgemeine und Anorganische Chemie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerrit A. Luinstra | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gymnasiale Kurse in Chemie/Physik/Mathematik, insbesondere Aufbau des Atoms, Elektronenhülle, Gibbsenergie, pH-Konzept, Redoxreaktionen, Stromkreise (Spannung und Widerstand), Rechnen mit Logarithmen. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage, den Aufbau von Molekülen (Orbitaltheorie, VSPER, Oktaedrisches Ligandfeld) sowie deren Interaktionen in der Gasphase, in Flüssigkeiten und Festkörpern zu beschreiben. Sie können chemische Reaktionen im Sinne von Massen und Energiebilanzierung unter Berücksichtigung von Enthalpie und Entropiekonzepten, dem Massewirkungsgesetz aufstellen. Sie können das Konzept von Aktivierungsbarrieren in Kombination mit Kinetik erläutern. Sie haben vertiefte Kenntnisse in den Bereichen des Konzeptes von Säuren und Basen, der Beschreibung von Säure-Base-Reaktionen in Wasser, pH-Wertberechnungen, der quantitativen Analyse mittels Titration, von Redoxprozessen in Wasser, Redoxpotentialen, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen (Batterie, Accu, Brennstoffzellen), Überspannung als Aktivierungsenergie, Korrosion als Lokalelement. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Allgemeinen und Anorganischen Chemie auf technische Prozesse anzuwenden. Insbesondere können Sie Massen- und Energiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache pH-Wertberechnungen hinsichtlich des Einsatzes von Säuren und Basen bzw. einefache Betrachtungen über Redoxpotentialen durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. Die Studierenden können ihre wissenschaftlichen Arbeitsergebnisse vor dem Plenum präsentieren und verteidigen. Die Studierenden sind in der Lage, Versuchsergebnisse wissenschaftlich zu dokumentieren. Sie sind in der Lage, Quellen in ihren Protokollen wissenschaftlich korrekt zu zitieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Die Studierenden können in Kleingruppen unter Anleitung Experimente an labortechnischen Anlagen durchführen und dabei die einzelnen Aufgaben innerhalb der Gruppe selbstständig verteilen. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. Die Studierenden können selbstständig Experimente planen, vorbereiten und durchführen. Sie können ihren Wissensstand selbstständig einschätzen und sich Quellen beschaffen, um fehlendes Wissen zur Erfüllung ihrer Aufgaben zu ergänzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0824: Allgemeine und Anorganische Chemie |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Gerrit A. Luinstra, Prof. Franziska Lissel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Dieser Kurs setzt sich aus 4 Themenbereichen zusammen, i) Beschreibung von Molekülen entlang der Orbitaltheorie für s-,p-,d-Blockelementen (Oktaedrisches Feld), Beschreibung von Interaktionen in der Gasphase, in Flüssigkeiten und Festkörpern, (Halb)Leitung ii) chemische Reaktionen im Sinne von Massen und Energiebilanzierung, Enthalpie und Entropiekonzepte, Massewirkungsgesetz, Konzept von Aktivierungsbarrieren in Kombination mit Kinetik, iii) Konzept von Säuren und Basen, Beschreibung von Säure-Base-Reaktionen in Wasser, pH-Wertberechnungen, Quantitative Analyse mittels Titration, iv) Redoxprozessen in Wasser, Redoxpotentialen, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen (Batterie, Accu, Brennstoffzellen), Überspannung als Aktivierungsenergie, Korrosion als Lokalelement. |
Literatur |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) http://www.chemgapedia.de |
Lehrveranstaltung L0996: Allgemeine und Anorganische Chemie |
Typ | Laborpraktikum |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Prof. Gerrit A. Luinstra, Prof. Franziska Lissel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Das Erlernen von Arbeitstechniken und der Umgang mit chemischen Substanzen sind Gegenstand des Laborpraktikums. Die Versuche setzen sich aus 4 Themenbereichen zusammen, i) Atomaufbau durch spektroskopische Methoden, Einblick in Teile der analytischen Chemie ii) Chemische Reaktionen via Nachweisreaktionen, Bindungsarten und Reaktionstypen, beinhaltet die Aufstellung von Reaktionsgleichungen iii) Konzept von Säuren und Basen, Beschreibung von Säure-Base-Reaktionen in Wasser, Pufferlösungen, Quantitative Analyse mittels Titration iv) Redoxprozesse in Wasser, Redoxpotentiale, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen, Funktionsweise von galvanischen Elementen und Elektrolysezellen. Es wird in kleinen Gruppen (12-15 Studierende) vor jedem Versuch ein Seminar abgehalten, in dem sich die Studenten mündlich beteiligen. Teamarbeit und Kooperation werden gefördert, da die Versuche im Labor sowie das Schreiben der Protokolle in 3er/4er Gruppen durchgeführt werden. Zudem wird wissenschaftliches Arbeiten vermittelt (Dokumentation der Versuchsergebnisse im Laborjournal, Zitieren von Literatur im Protokoll).
|
Literatur |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) Analytische und anorganische Chemie, Jander/Blasius Maßanalyse, Jander/Jahr |
Lehrveranstaltung L1941: Allgemeine und anorganische Chemie |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerrit A. Luinstra, Prof. Franziska Lissel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Dieser Kurs setzt sich aus 4 Themenbereichen zusammen, i) Beschreibung von Molekülen entlang der Orbitaltheorie für s-,p-,d-Blockelementen (Oktaedrisches Feld), Beschreibung von Interaktionen in der Gasphase, in Flüssigkeiten und Festkörpern, (Halb)Leitung ii) chemische Reaktionen im Sinne von Massen und Energiebilanzierung, Enthalpie und Entropiekonzepte, Massewirkungsgesetz, Konzept von Aktivierungsbarrieren in Kombination mit Kinetik, iii) Konzept von Säuren und Basen, Beschreibung von Säure-Base-Reaktionen in Wasser, pH-Wertberechnungen, Quantitative Analyse mittels Titration, iv) Redoxprozessen in Wasser, Redoxpotentialen, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen (Batterie, Accu, Brennstoffzellen), Überspannung als Aktivierungsenergie, Korrosion als Lokalelement. |
Literatur |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3<br
/>Chemie, Charles Mortimer (Deutsch und Englisch verfügbar)<br
/>http://www.chemgapedia.de</p> |
Modul M0850: Mathematik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Schulmathematik | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 | ||||||||
Leistungspunkte | 8 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2970: Mathematik I |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Sabine Le Borne, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Mathematische Grundlagen:
Analysis: Grundzüge der Differential- und Integralrechnung einer Variablen
Lineare Algebra: Grundzüge der Linearen Algebra im Rn
|
Literatur |
|
Lehrveranstaltung L2971: Mathematik I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Christian Seifert, Dr. Jens-Peter Zemke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2972: Mathematik I |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Christian Seifert, Dr. Jens-Peter Zemke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1760: Einführung in das Chemie- und Bioingenieurwesen |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Johannes Gescher | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Es sind keine Vorkenntnisse erforderlich. | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage: - einen Überblick über die wichtigsten Themenfelder des Chemie und Bioingenieurwesens zu geben - einige Arbeitsmethoden für verschiedene Teilgebiete der Verfahrenstechnik zu erklären. - eigenständig wissenschaftliche Literaturrecherchen zu betreiben - einfach wissenschaftliche Texte zu formulieren und hier korrekt zu zitieren |
||||||||
Fertigkeiten |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage: - Publikationsdatenbanken eigenständig zu nutzen - korrekt zu zitieren - mit Hilfe von Hinweisen eigenständig typische verfahrenstechnische und biotechnologische Prozesse grob zu beschreiben. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können: - in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, ihren Lernstand selbstständig einzuschätzen und ihre Schwächen und Stärken auf dem Gebiet der Verfahrenstechnik und Bioverfahrenstechnik zu reflektieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | ||||||||
Leistungspunkte | 3 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 60 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L2892: Einführung in das Chemie- und Bioingenieurwesen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD V |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Die Veranstaltung verfolgt drei wichtige Ziele für die Ausbildung von Chemie- und Bioingenieur*innen. Die Dozent*innen der Verfahrenstechnik stellen anhand von Beispielen wie der Produktion von Penicillin oder dem Haber-Bosch-Prozess vor, wie mit Hilfe von verfahrenstechnischen Herangehensweisen und Methoden grüntechnische Prozesse entwickelt werden können und welche Entwicklungsstufen dabei durchschritten werden. Dabei stellen die Dozent*innen auch dar, wie mit Hilfe neuer Forschungsrichtungen und -ergebnisse solche Prozesse immer nachhaltiger gestaltet werden können. Darüber hinaus erlernen die Studierenden die Grundlage der wissenschaftlichen Literaturrecherche und wie damit ein neues Themengebiet erschlossen werden kann. Dabei wird auch vermittelt wie zwischen wissenschaftlichen und nichtwissenschaftlichen Quellen unterschieden werden kann. Schlussendlich erstellen die Studierenden eigene kurze wissenschaftliche Texte und lernen wie korrekt und sicher zitiert werden kann. |
Literatur | Literatur und zusätzliche Informationsquellen werden während der Veranstaltung über StudIP zur Verfügung gestellt. |
Modul M1761: Biologische und Biochemische Grundlagen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Johannes Gescher | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Das Modul gliedert sich in zwei Teile. Im Wintersemester wird eine Vorlesung mit 2 Semesterwochenstunden angeboten. Für diese Vorlesung sind keine Vorkenntnisse notwendig. Im darauf folgenden Sommersemester wird der zweite Teil des Moduls angeboten. Dieser gliedert sich in ein Praktikum und eine dazu einführende Vorlesung. Für diese beiden Modulteile wird dringend der Besuch der Vorlesung im Wintersemester empfohlen. | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Das Modul hat zum Ziel Ihnen die Grundprinzipien von biologischen Systemen und Biokatalysatoren zu vermitteln. Sie werden erfahren wie Organismen aufgebaut sind und über welche Grundcharakteristika Organismen aus den drei Reichen des Lebens unterscheiden werden können. Sie werden erfahren auf welche Weise biologische Systeme Energie gewinnen können und werden die Prinzipien der biologischen Thermodynamik anwenden. Darüber hinaus werden sie lernen wie Enzyme aufgebaut sind und beispielhaft an einigen Enzymklassen erlernen wie Enzyme ihre Wirkung entfalten. Am Ende des Moduls - können Sie Grundprinzipien lebender Systeme beschreiben und durch deren Anwendung den Stoffwechsel von Organismen erklären - können Sie Organismen anhand einiger Grundcharakteristika den drei Reichen des Lebens zuordnen - können Sie anhand einiger Beispielreaktionen die Aufgaben von Enzymen generisch beschreiben - können Sie aus den Grundbeschaffenheiten von Organismen und Enzymen ableiten, welche biotechnologischen Anwendungen mit diesen Systemen möglich sind. - können Sie das Fachvokabular zu biologische Systemen und Prozessen verstehen und anwenden - können Sie einfach bioinformatische Operationen vornehmen, um DNA-Sequenzen einer Funktion zuzuordnen - können Sie die Grundprinzipien der Anwendung von Primärliteratur sicher anwenden |
||||||||
Fertigkeiten |
Die Studierenden beherschen die Grundtechniken des sterilen Arbeitens und der molekularen Diagnostik. Sie können selbstständig Medien zubereiten und Mikroorganismen in Kultur halten. Darüber hinaus können sie aus Anreicherungskulturen und Umweltproben Organismen isolieren und charakterisieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, sich selbstständig ihre Praktikumstage zu strukturieren und Aufgaben zu priorisieren. Darüber hinaus sind sie in der Lage über eine Literaturrecherche grundlegende Informationen zu Mikroorganismen zu sammeln und zu verarbeiten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L2900: Biologische und Biochemische Grundlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung lernen wir die Grundmerkmale von Organismen aller Reiche des Lebens kennen. Dazu gehört die Zellbiologie wie auch die Zellphysiologie. Wir verstehen die energetischen Grundlagen lebender Systeme und die Vielfalt an möglichen metabolischen Lebenskonzepten. Aus diesen Grundgesetzmäßigkeiten heraus soll verständlich werden, wie und welchem Umfang eine Anwendung und genetische Umprogrammierung von Organismen für die Anwendung erfolgen kann. |
Literatur |
Fuchs: Allgemeine Mikrobiologie, 11. vollständig überarbeitete Auflage 2022; ISBN: 9783132434776 Brock: Biology of Microorganisms, ISBN-13: 9780134626109 |
Lehrveranstaltung L2901: Biologisches und Biochemisches Grundlagenpraktikum |
Typ | Laborpraktikum |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel des Praktikums ist die Vermittlung von
grundlegenden mikrobiologischen und molekularbiologischen Techniken anhand von
individuellen Forschungsaufträgen sowie Kontrollexperimenten. Dabei sollen in
diesem Praktikum Organismen isoliert werden, die von Studierenden des 4. und 6.
Semesters in zwei unabhängigen Modulen weiterbearbeitet werden. |
Literatur |
Steinbüchel: Mikrobiologisches Praktikum, ISBN: 978-3-662-63234-5 |
Lehrveranstaltung L2902: Einführung in das Biologische und Biochemische Praktikum |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das Ziel der einführenden Vorlesung ist es, unterschiedliche benutzte Methoden zu erläutern und deren Anwendungsspektrum zu verdeutlichen. Darüber hinaus werden wir in der Vorlesung spez. physiologische Merkmale der zu isolierenden Mikroorganismen verdeutlichen. |
Literatur |
Steinbüchel: Mikrobiologisches Praktikum, ISBN: 978-3-662-63234-5 |
Modul M1802: Technische Mechanik I (Stereostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gefestigte und tiefgehende Schulkentnisse in Mathematik und Physik. Als gute Auffrischung der Mathematikkenntnisse ist der Mathematikvorkurs empfehlenswert. Parallel zum Modul Mechanik I sollte das Modul Mathematik I besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L1001: Technische Mechanik I (Stereostatik) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1003: Technische Mechanik I (Stereostatik) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1002: Technische Mechanik I (Stereostatik) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken
In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Modul M1755: Theorie-Praxis-Verzahnung im dualen Bachelor |
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden können ausgewählte klassische und moderne Theorien, Konzepte und Methoden ...
... beschreiben, einordnen sowie auf konkrete Situationen, Projekte und Vorhaben in Ihrem persönlichen und beruflichen Kontext anwenden. |
Fertigkeiten |
Die dual Studierenden ...
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden ...
|
Selbstständigkeit |
Die dual Studierenden ...
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz. |
Lehrveranstaltung L2885: Selbstkompetenzen für den beruflichen Erfolg im Ingenieurbereich (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Lehrveranstaltung L2884: Selbstmanagement, Arbeits- und Lernorganisation im dualen Studium (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Lehrveranstaltung L2886: Sozialkompetenz: Teamentwicklung und Kommunikation im Ingenieurbereich (duale Studienvariante) |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Modul M1750: Praxismodul 1 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
LV A „Selbstmanagement, Arbeits- und Lernorganisation im dualen Studium“ aus dem Modul „Theorie-Praxis-Verzahnung im dualen Bachelor“. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden …
|
Fertigkeiten |
Die dual Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden …
|
Selbstständigkeit |
Die dual Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2879: Praxisphase 1 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0888: Organische Chemie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Robert Meyer | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gymnasiale Kurse in Chemie und/oder Vorlesung "Allgemeine und Anorganische Chemie" |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende sind mit den Grundkenntnissen der organischen Chemie vertraut. Sie können verschiedene organische Moleküle zuordnen und funktionelle Gruppen identifizieren und die jeweiligen grundlegenden Syntheserouten beschreiben. Grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution können Sie detailliert erläutern. Die Studierenden sind in der Lage, moderne Reaktionsmechanismen allgemein zu beschreiben. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Organischen Chemie auf technische Prozesse anzuwenden. Insbesondere können sie grundlegende Syntheserouten zu kleinen organischen Molekülen aufstellen, um damit technische Prozesse der Verfahrenstechnik und Umwelttechnik zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. Die Studierenden sind in der Lage, ihre Versuchsdurchführung und ihre Ergebnisse auf wissenschaftliche Art und Weise zu protokollieren und zu interpretieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg für vorgegebene Aufgaben erarbeiten. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0831: Organische Chemie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Franziska Lissel, Robert Meyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die Veranstaltung vermittelt die Grundkentnisse der organischen Chemie. Dies umfasst einfache Verbindungen des Kohlenstoffs, Alkane, Alkene, Aromatische Kohlenwasserstoffe, Alkohole, Phenole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Amine, Amide sowie Aminosäuren. Weiterhin werden grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution vermittelt. Weitere moderne Reaktionsmechanismen werden ebenso besprochen. |
Literatur | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Lehrveranstaltung L0832: Organische Chemie |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Franziska Lissel, Robert Meyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung vermittelt die Grundkentnisse der organischen Chemie. Dies umfasst einfache Verbindungen des Kohlenstoffs, Alkane, Alkene, Aromatische Kohlenwasserstoffe, Alkohole, Phenole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Amine, Amide sowie Aminosäuren. Weiterhin werden grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution vermittelt. Weitere moderne Reaktionsmechanismen werden ebenso besprochen. Vor der praktischen Durchführung der Versuche gibt es jeweils ein mündliches Kolloquium in Kleingruppen. Darin werden sicherheitsrelevante Aspekte besprochen, inhaltliche Fragen diskutiert und Lösungswege für vorgegebene Aufgaben diskutiert. In den Vorkollloquia erwerben die Studierenden die Möglichkeit sich wissenschaftlich korrekt mündlich ausdrücken und theoretische Grundlagen zu beschreiben. Die Studierenden verfassen zu jedem Versuch ein Protokoll. Sie erhalten Feedback zur Wissenschaftlichkeit ihrer Texte sowie wissenschaftlichen Standards (Zitierweise, Bildbeschriftung, etc.), sodass sie ihre Fertigkeiten diesbezüglich über den Verlauf des Praktikums kontinuierlich verbessern können. |
Literatur | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Lehrveranstaltung L3184: Organische Chemie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Franziska Lissel, Robert Meyer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0671: Technische Thermodynamik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Mathematik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit den Hauptsätzen der Thermodynamik vertraut. Sie wissen über die gegenseitige Verknüpfung der einzelnen Energieformen untereinander entsprechend dem 1. Hauptsatz der Thermodynamik und kennen die Grenzen einer Wandlung der verschiedenen Energieformen bei natürlichen und technischen Vorgängen entsprechend dem 2. Hauptsatz der Thermodynamik. Sie sind in der Lage, Zustandsgrößen von Prozessgrößen zu unterscheiden und kennen die Bedeutung der einzelnen Zustandsgrößen wie z. B. Temperatur, Enthalpie oder Entropie sowie der damit verbundenen Begriffe Exergie und Anergie. Sie können den Carnotprozess in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie können den Unterschied zwischen einem idealen und einem realem Gas physikalisch beschreiben und kennen die entsprechenden thermischen Zustandsgleichungen. Sie wissen, was eine Fundamentalgleichung ist und sind mit grundlegenden Zusammenhängen der Zweiphasenthermodynamik vertraut. |
Fertigkeiten |
Studierende sind in der Lage, die innere Energie, die Enthalpie, die kinetische und potenzielle Energie sowie Arbeit und Wärme für Zustandsänderungen zu berechnen und diese Berechnungsmöglichkeiten auch auf den Carnotprozess anzuwenden. Darüber hinaus können sie Zustandsgrößen für ideale und reale Gase aus messbaren thermischen Zustandsgrößen berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Sie können Verständnisfragen zum Inhalt, die mit dem ClickerOnline Tool "TurningPoint" in der Vorlesung bereit gestellt werden, nach Diskussionen mit anderen Studierenden beantworten. |
Selbstständigkeit |
Studierende können die in Aufgaben gestellten Problemstellungen physikalisch verstehen. Sie sind in der Lage, die in der Vorlesung und Übung vermittelten Methoden zur Lösung von Problemstellungen geeignet auszuwählen und eigenständig auf unterschiedliche Aufgabentypen anzuwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht Engineering Science: Vertiefung Maschinenbau: Pflicht Engineering Science: Vertiefung Maschinenbau: Pflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht Engineering Science: Vertiefung Advanced Materials: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Verkehrsplanung und -systeme: Wahlpflicht |
Lehrveranstaltung L0437: Technische Thermodynamik I |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes. |
Literatur |
|
Lehrveranstaltung L0439: Technische Thermodynamik I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0441: Technische Thermodynamik I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0851: Mathematik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Mathematik I | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 | ||||||||
Leistungspunkte | 8 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2976: Mathematik II |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Sabine Le Borne, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Analysis:
Lineare Algebra:
|
Literatur |
|
Lehrveranstaltung L2977: Mathematik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Christian Seifert, Dr. Jens-Peter Zemke, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2978: Mathematik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Christian Seifert, Dr. Jens-Peter Zemke, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1276: Grundlagen des Technischen Zeichnens |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Marko Hoffmann | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | ||||||||
Leistungspunkte | 3 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Wahlpflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1741: Grundlagen des Technischen Zeichnens |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1742: Grundlagen des Technischen Zeichnens |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1803: Technische Mechanik II (Elastostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I, Mathematik I (Grundkenntnisse der Starrkörpermechanik wie Kräfte- und Momentengleichgewicht, Grundkenntnisse der linearen Algebra wie Vektor-Matrix-Rechnung, Grundkenntnisse der Integral- und Differentialrechnung) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichen Absolvieren des Moduls kennen und verstehen die
Studierenden die Grundkonzepte der Kontinuumsmechanik und Elastostatik,
insbesondere Spannung, Verzerrung, Materialgesetze, Dehnung, Biegung,
Torsion, Festigkeitsrechnung, Energiemethoden und Stabilitätsversagen. |
Fertigkeiten |
Nach erfolgreichen Absolvieren des Moduls sind die Studierenden in der Lage, |
Personale Kompetenzen | |
Sozialkompetenz | Fähigkeit, komplexe Probleme in der Elastostatik zu kommunizieren, dafür gemeinsam mit anderen Lösungen zu erarbeiten, sowie auch diese Lösungen zu kommunizieren. |
Selbstständigkeit | Selbstdisziplin und Durchhaltevermögen bei der eigenständigen Bewältigung komplexer Herausforderungen im Bereich der Elastostatik; Fähigkeit, sich auch sehr abstrakte Kenntnisse anzueignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0494: Technische Mechanik II (Gruppenübung) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron, Dr. Kevin Linka |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Lehrveranstaltung L1691: Technische Mechanik II (Hörsaalübung) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron, Martin Legeland |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Lehrveranstaltung L0493: Technische Mechanik II (Vorlesung) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung Technische Mechanik II führt die Grundkonzepte der Kontinuumsmechanik ein und lehrt, wie diese im Rahmen der sogenannten Elastostatik dazu genutzt werden können, um die elastische Verformung mechanischer Körper unter Belastung zu beschreiben. Schwerpunkte der Vorlesung sind:
|
Literatur |
|
Modul M1751: Praxismodul 2 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2880: Praxisphase 2 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0892: Chemische Reaktionstechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Raimund Horn | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Vorlesungsinhalte der Module Mathematik I-III, Physikalische Chemie und technische Thermodynamik I+II sowie Informatik für Verfahrensingenieur*innen. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können die Grundbegriffe der chemischen Reaktionstechnik erläutern. Sie können den Unterschied zwischen thermodynamischen und kinetischen Vorgängen diskutieren. Sie sind in der Lage, Teile von isothermen und nicht-isothermen Idealreaktoren zu bezeichnen, deren Eigenschaften zu beschreiben. |
||||||||
Fertigkeiten |
Die Studierenden sind nach Abschluß des Modules in der Lage, |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können sich nach Absolvieren des Praktikums in Kleingruppen organisieren, um eine reaktionstechnische Fragestellung zu bearbeiten. Die Studierenden können ihr fachspezifisches Wissen mündlich reflektieren und mit Mitstudierenden und Lehrpersonal diskutieren. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, weiterführende Informationen selbstständig zu beschaffen und ihre Relevanz zu bewerten. Die Studierenden können eigenständig Experimente planen und vorbereiten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0204: Chemische Reaktionstechnik (Grundlagen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundbegriffe der Reaktionstechnik, Definitionen, Konzentrationsberechnungen (Reaktor, Reaktionsgemisch, Reaktanten, Produkte, Begleitstoffe, Reaktionsvolumen, Reaktorvolumen, Chemische Reaktion, Masse, Stoffmenge, Molenbruch, Volumen, Dichte, molare Konzentration, Massen-Konzentration, Molalität, Partialdruck, Hydrodynamische Verweilzeit, Raumzeit, Reaktionslaufzahl, Durchsatz eines Reaktors, Belastung eines Reaktors, Umsatz, Selektivität, Ausbeute, Konzentrationsberechnungen in ruhenden und strömenden Multikomponenten-Mischungen) Stöchiometrie und stöchiometrische Berechnungen (Einfache Reaktionen, Komplexe Reaktionen, Schlüsselreaktionen, Schlüsselspezies, Matrix der stöchiometrischen Koeffizienten, linear abhängige und unabhängige Reaktionen, Element-Spezies-Matrix, reduzierte Stufenform einer Matrix, Rang einer Matrix, Gauss Jordan Eliminierung, Zusammenhang Stöchiometrie und Kinetik, Berechnung der Reaktionslaufzahlen bei multiplen Reaktionen aus Stoffmengenänderungen) Thermodynamik (Was ist Thermodynamik?, Bedeutung der Thermodynamik in der Reaktionstechnik, Nulltet Hauptsatz, Temperaturskalen, Temperaturmessung in der Praxis, 1. Hauptsatz, Innere Energie, Enthalpie, Kalorimeter, Reaktionsenthalpie, Standardbildungsenthalpie, Satz von Hess, Wärmekapazität, Kirchhoff'scher Satz, Standardreaktionsenthalpie, Druckabhängigkeit der Reaktionsenthalpie, 2. Hauptsatz, Reversible und Irreversible Zustandsänderungen, Entropie, Clausius'sche Ungleichung, Freie Energie, Freie Enthalpie, Chemisches Potential, Chemisches Gleichgewicht, Aktivität, Van't Hoff'sche Reaktionsisobare, Gleichgewichtsberechnungen an ausgewählten Beispielen, Prinzip von Le Chatelier und Braun, Gleichgewichtsberechnung bei multiplen Reaktionen, Lagrange'sche Multiplikatoren) Chemische Kinetik (Reversible und Irreversible Reaktionen, Homogene und Heterogene Reaktionen, Elementarschritt, Reaktionsmechanismus, Mikrokinetik, Makrokinetik, Formalkinetik, Reaktionsgeschwindigkeit, Stoffmengenänderungsgeschwindigkeit, Arrhenius-Gleichung, Aktivierungsenergie und Vorfaktor bei komplexen Reaktionen, Reaktion 0., 1., 2. Ordnung, Integration der Geschwindigkeitsgesetze, Damköhler-Zahl, Differentielle und Integrale Methode der Kinetischen Analyse, Grundtypen von Laborreaktoren zum Messen von Kinetiken, Halbwertszeiten, Kinetik komplexer Reaktionen, Parallelreaktionen, Reversible Reaktionen, Folgereaktionen, Reaktion mit vorgelagertem Gleichgewicht, Reduktion von Reaktionsmechanismen, Quasistationarität nach Bodenstein, Geschwindigkeitsbestimmender Schritt, Michaelis-Menten Kinetik, Analytische Integration von Differentialgleichungen 1. Ordnung - integrierender Faktor, Numerische Integration Komplexer Kinetiken) Typen Chemischer Reaktionsapparate (Chemische Reaktoren in Industrie und Labor, Ideale vs. Reale Reaktoren, Diskontinuierliche-, Halbkontinuierliche-, Kontinuierliche Reaktoren, Einphasig- Zweiphasig- Mehrphasige Reaktoren, Batch-Reaktor, Semi-Batch Reaktor, CSTR, Plug Flow Reaktor, Festbettreaktoren, Hordenreaktor, Drehrohröfen, Wirbelschichten, Gas-Flüssig-Reaktoren, Dreiphasen-Reaktoren) Isotherme Idealreaktoren (Molbilanz eines chemische Reaktors, Molbilanz des Batch-Reaktors, Integration der Molbilanz des Batch-Reaktors für verschiedene Kinetiken, Partialbruchzerlegung, Molbilanz des Semibatch-Reaktors, Molbilanz des Plug Flow Reaktors, Analogie Batch Reaktor - PFR, Auslegung von PFR's bei Reaktionen mit Volumenänderung, komplexen Reaktionen, Molbilanz eines katalytischen Festbett-Reaktors, Auslegung eines Membranreaktors, Molbilanz des CSTR, Vergleich von CSTR und PFR hinsichtlich Umsatz und Selektivität, Molbilanz der Rührkesselkaskade, Numerisch-Iterative Berechnung von Rührkesselkaskaden, Newton-Raphson Verfahren, Graphische Auslegung von Rührkesselkaskaden) Nichtisotherme Idealreaktoren (Energiebilanz chemischer Reaktoren, adiabate Reaktoren, adiabatische Temperaturerhöhung, Hordenreaktor für adiabate exotherme Gleichgewichtsreaktionen, Auslegung eines adiabaten Strömungsrohres, Levenspiel-Plots, Wärmedurchgang durch eine Reaktorwand, Wärmeübergang, Wärmeleitung, Wärmedurchgang durch eine gekrümmte Wand, Auslegung eines PFR im Gleichstrom und Gegenstrom, Wärmebilanz des Kühlmediums, CSTR mit Wärmeaustausch, Multiple Stationäre Zustände, Zünd-Lösch Verhalten, Stabilität eines CSTR, Komplexe Reaktionen in nicht-isothermen Reaktoren, optimales Temperaturprofil eines Reaktors) |
Literatur |
lecture notes Raimund Horn skript Frerich Keil Books: M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH G. Emig, E. Klemm, Technische Chemie, Springer A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009 J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000 M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010 A. Jess, P. Wasserscheid, Chemical Technology An Integrated Textbook, WILEY-VCH |
Lehrveranstaltung L0244: Chemische Reaktionstechnik (Grundlagen) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn, Dr. Oliver Korup |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundbegriffe der Reaktionstechnik, Definitionen, Konzentrationsberechnungen (Reaktor, Reaktionsgemisch, Reaktanten, Produkte, Begleitstoffe, Reaktionsvolumen, Reaktorvolumen, Chemische Reaktion, Masse, Stoffmenge, Molenbruch, Volumen, Dichte, molare Konzentration, Massen-Konzentration, Molalität, Partialdruck, Hydrodynamische Verweilzeit, Raumzeit, Reaktionslaufzahl, Durchsatz eines Reaktors, Belastung eines Reaktors, Umsatz, Selektivität, Ausbeute, Konzentrationsberechnungen in ruhenden und strömenden Multikomponenten-Mischungen) Stöchiometrie und stöchiometrische Berechnungen (Einfache Reaktionen, Komplexe Reaktionen, Schlüsselreaktionen, Schlüsselspezies, Matrix der stöchiometrischen Koeffizienten, linear abhängige und unabhängige Reaktionen, Element-Spezies-Matrix, reduzierte Stufenform einer Matrix, Rang einer Matrix, Gauss Jordan Eliminierung, Zusammenhang Stöchiometrie und Kinetik, Berechnung der Reaktionslaufzahlen bei multiplen Reaktionen aus Stoffmengenänderungen) Thermodynamik (Was ist Thermodynamik?, Bedeutung der Thermodynamik in der Reaktionstechnik, Nulltet Hauptsatz, Temperaturskalen, Temperaturmessung in der Praxis, 1. Hauptsatz, Innere Energie, Enthalpie, Kalorimeter, Reaktionsenthalpie, Standardbildungsenthalpie, Satz von Hess, Wärmekapazität, Kirchhoff'scher Satz, Standardreaktionsenthalpie, Druckabhängigkeit der Reaktionsenthalpie, 2. Hauptsatz, Reversible und Irreversible Zustandsänderungen, Entropie, Clausius'sche Ungleichung, Freie Energie, Freie Enthalpie, Chemisches Potential, Chemisches Gleichgewicht, Aktivität, Van't Hoff'sche Reaktionsisobare, Gleichgewichtsberechnungen an ausgewählten Beispielen, Prinzip von Le Chatelier und Braun, Gleichgewichtsberechnung bei multiplen Reaktionen, Lagrange'sche Multiplikatoren) Chemische Kinetik (Reversible und Irreversible Reaktionen, Homogene und Heterogene Reaktionen, Elementarschritt, Reaktionsmechanismus, Mikrokinetik, Makrokinetik, Formalkinetik, Reaktionsgeschwindigkeit, Stoffmengenänderungsgeschwindigkeit, Arrhenius-Gleichung, Aktivierungsenergie und Vorfaktor bei komplexen Reaktionen, Reaktion 0., 1., 2. Ordnung, Integration der Geschwindigkeitsgesetze, Damköhler-Zahl, Differentielle und Integrale Methode der Kinetischen Analyse, Grundtypen von Laborreaktoren zum Messen von Kinetiken, Halbwertszeiten, Kinetik komplexer Reaktionen, Parallelreaktionen, Reversible Reaktionen, Folgereaktionen, Reaktion mit vorgelagertem Gleichgewicht, Reduktion von Reaktionsmechanismen, Quasistationarität nach Bodenstein, Geschwindigkeitsbestimmender Schritt, Michaelis-Menten Kinetik, Analytische Integration von Differentialgleichungen 1. Ordnung - integrierender Faktor, Numerische Integration Komplexer Kinetiken) Typen Chemischer Reaktionsapparate (Chemische Reaktoren in Industrie und Labor, Ideale vs. Reale Reaktoren, Diskontinuierliche-, Halbkontinuierliche-, Kontinuierliche Reaktoren, Einphasig- Zweiphasig- Mehrphasige Reaktoren, Batch-Reaktor, Semi-Batch Reaktor, CSTR, Plug Flow Reaktor, Festbettreaktoren, Hordenreaktor, Drehrohröfen, Wirbelschichten, Gas-Flüssig-Reaktoren, Dreiphasen-Reaktoren) Isotherme Idealreaktoren (Molbilanz eines chemische Reaktors, Molbilanz des Batch-Reaktors, Integration der Molbilanz des Batch-Reaktors für verschiedene Kinetiken, Partialbruchzerlegung, Molbilanz des Semibatch-Reaktors, Molbilanz des Plug Flow Reaktors, Analogie Batch Reaktor - PFR, Auslegung von PFR's bei Reaktionen mit Volumenänderung, komplexen Reaktionen, Molbilanz eines katalytischen Festbett-Reaktors, Auslegung eines Membranreaktors, Molbilanz des CSTR, Vergleich von CSTR und PFR hinsichtlich Umsatz und Selektivität, Molbilanz der Rührkesselkaskade, Numerisch-Iterative Berechnung von Rührkesselkaskaden, Newton-Raphson Verfahren, Graphische Auslegung von Rührkesselkaskaden) Nichtisotherme Idealreaktoren (Energiebilanz chemischer Reaktoren, adiabate Reaktoren, adiabatische Temperaturerhöhung, Hordenreaktor für adiabate exotherme Gleichgewichtsreaktionen, Auslegung eines adiabaten Strömungsrohres, Levenspiel-Plots, Wärmedurchgang durch eine Reaktorwand, Wärmeübergang, Wärmeleitung, Wärmedurchgang durch eine gekrümmte Wand, Auslegung eines PFR im Gleichstrom und Gegenstrom, Wärmebilanz des Kühlmediums, CSTR mit Wärmeaustausch, Multiple Stationäre Zustände, Zünd-Lösch Verhalten, Stabilität eines CSTR, Komplexe Reaktionen in nicht-isothermen Reaktoren, optimales Temperaturprofil eines Reaktors) |
Literatur |
lecture notes Raimund Horn skript Frerich Keil Books: M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH G. Emig, E. Klemm, Technische Chemie, Springer A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009 J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000 M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010 A. Jess, P. Wasserscheid, Chemical Technology An Integrated Textbook, WILEY-VCH |
Lehrveranstaltung L0221: Praktikum Chemische Reaktionstechnik (Grundlagen) |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Durchführung und Auswertung mehrerer Versuche aus dem Gebiet der Chemischen Reaktionstechnik. Schwerpunkt: Idealreaktoren Vor der praktischen Durchführung der Versuche findet ein Kolloquium statt, in dem die Studierenden die theoretischen Grundlagen der Versuche sowie deren Umsetzung in die Praxis erläutern, reflektieren und diskutieren. Die Studierenden verfassen zu jedem Versuch ein Protokoll. Sie erhalten Feedback zur Wissenschaftlichkeit ihrer Texte sowie wissenschaftlichen Standards (Zitierweise, Bildbeschriftung, etc.), sodass sie ihre Fertigkeiten diesbezüglich über den Verlauf des Praktikums kontinuierlich verbessern können |
Literatur |
Levenspiel, O.: Chemical reaction engineering; John Wiley & Sons, New York, 3. Ed., 1999 VTM 309(LB) Praktikumsskript Skript Chemische Verfahrenstechnik 1 (F.Keil) |
Modul M0688: Technische Thermodynamik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist. |
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden. Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Sie können Verständnisfragen zum Inhalt, die mit dem ClickerOnline Tool "TurningPoint" in der Vorlesung bereit gestellt werden, nach Diskussionen mit anderen Studierenden beantworten. |
Selbstständigkeit |
Studierende können die in Aufgaben gestellten komplexen Problemstellungen (Kreisprozesse, Klimatisierungsprozesse, Verbrennungsprozesse) physikalisch verstehen und erläutern. Sie sind in der Lage, die in der Vorlesung und Übung vermittelten Methoden zur Lösung von komplexen Problemstellungen geeignet auszuwählen und eigenständig auf unterschiedliche Aufgabentypen anzuwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0449: Technische Thermodynamik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
8. Kreisprozesse 9. Gas-Dampf-Gemische 10. Stationäre Fließprozesse 11. Verbrennungsprozesse 12. Sondergebiete In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes. |
Literatur |
|
Lehrveranstaltung L0450: Technische Thermodynamik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0451: Technische Thermodynamik II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Produktionsmanagement und Prozesse: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Informationstechnologie: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1497: Messtechnik für Chemie- und Bioingenieurwesen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Penn | ||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||
Empfohlene Vorkenntnisse |
Technisches Interesse, logische Begabung, Integral- und Differenezialrechnung, grundlegende physikalische Konzepte wie Temperatur, Masse, Geschwindigkeit, etc.. |
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
|
||||||||||||
Fertigkeiten |
Literaturrecherche, Einordnung der Thematiken, Analyse eines experimentellen Versuchstands, Erstellung eines Versuchsprotokolls, erste Programmierungen mit Matlab, Benutzung relevanter Labormesstechnik, Ausarbeitung eines Versuchsprotkolls. Durchführung von Berechnungen |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
Absprache und Arbeitsteilung in Praktikums- und Lerngruppen, Einschätzung des eigenen Wissenstandes, Arbeiten am Versuchstand in Gruppen, Rücksprache mit Lehrverantwortlichen, Präsentation der Versuchsvorbereitung, Frustrationstoleranz |
||||||||||||
Selbstständigkeit |
Zeitliche Einteilung der Arbeitslast, selbständiges erarbeiten der thematischen Grundlagen, Eigenverantwortung bei Ausstattung mit Schutzausrüstung und Arbeitskleidung, Übung von Präsentation vor Gruppe, aktive Beteiligung an den Vorlesungen, Formulierung von Rückfragen/Detailfragen durch Einsatz von Clicker. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L2270: Laborpraktikum Messtechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Penn |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Messtechnikpraktikum findet die Theorie aus den Vorlesungen „Physikalische Grundlagen der Messtechnik“ und „Messtechnik“ praktische Anwendung. In kleinen Gruppen lernen Studierende den Umgang mit verschiedenen Messtechniken aus der Industrie und Forschung kennen. Im Rahmen des Praktikums wird ein breites Spektrum an unterschiedlichen Messmethoden vermittelt, hierzu zählt unter anderem der Einsatz von HLPC-Säulen zur qualitativen Stoffanalyse, die Bestimmung von Stoffübergangskoeffizienten mithilfe von optischen Sauerstoffsensoren oder die Auswertung von Bilddaten zur Gewinnung von Prozessparametern. In dem Praktikum wird ebenfalls erlernt, wie Messdaten statistisch ausgewertet und Versuche korrekt dokumentiert werden. |
Literatur |
Hug, H.: Instrumentelle Analytik. Theorie und Praxis. Verlag Europa-Lehrmittel, Haan-Gruiten, 2015. Kamke, W.: Der Umgang mit experimentellen Daten, insbesondere Fehleranalyse, im physikalischen Anfänger-Praktikum. Eine elementare Einführung. W. Kamke, Kirchzarten [Keltenring 197], 2010. Strohrmann, G.: Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. Oldenbourg, München, 2004. |
Lehrveranstaltung L2268: Messtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Penn |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlegende Einführung in die Messtechnik für Verfahrensingenieur*innen. Beinhaltet Fehlerrechnung, Masseinheiten, Kalibrierung, Messdatenanlyse, Messtechniken und Sensoren. Speziell liegt der Augenmerk auf der Messung von Temperatur, Druck, Durchfluss und Füllstand. Die Vorlesung gibt Einblicke in die neuesten Entwicklungen der Sensorik in der Messtechnik und Verfahrenstechnik. |
Literatur |
Fraden, Jacob (2016): Handbook of Modern Sensors. Physics, Designs, and Applications. 5th ed. 2016. Cham, New York: Springer. Online verfügbar unter http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1081958. Hering, Ekbert; Schönfelder, Gert (2018): Sensoren in Wissenschaft und Technik. Funktionsweise und Einsatzgebiete. 2. Aufl. 2018. Online verfügbar unter http://dx.doi.org/10.1007/978-3-658-12562-2. Strohrmann, Günther (2004): Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. 10., durchges. Aufl. München: Oldenbourg. Tränkler, Hans-Rolf; Reindl, Leonhard M. (2014): Sensortechnik. Handbuch für Praxis und Wissenschaft. 2., völlig neu bearb. Aufl. Berlin: Springer Vieweg (VDI-Buch). Online verfügbar unter http://dx.doi.org/10.1007/978-3-642-29942-1. Webster, John G.; Eren, Halit B. (2014): Measurement, Instrumentation, and Sensors Handbook, Second Edition. Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement. 2nd ed. Hoboken: Taylor and Francis. Online verfügbar unter http://gbv.eblib.com/patron/FullRecord.aspx?p=1407945. |
Lehrveranstaltung L2269: Physikalische Grundlagen der Messtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Schroer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Klassische
Mechanik — Kinematik, Dynamik, Energie, Impuls und
Erhaltungssätze, Starre Körper, Translation und Rotation, Drehimpuls |
Literatur |
Paul A. Tipler, Gene Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum Verlag D. Meschede (Hrsg.): Gerthsen Physik, Springer-Verlag Jay Orear: Physik, Hanser Verlag D. Halliday, R. Resnick, J. Walker: Physik, Wiley VCH |
Modul M1764: Bioprozesstechnik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Liese | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage,
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Nach Abschluss des Moduls sind die Studierenden in der Lage, in fachlich gemischten Teams wissenschaftliche Fragestellungen unter sich und mit Industrievertreter*innen zu diskutieren, ihre Ansichten dazu zu vertreten und gemeinsam an gegebenen ingenieurstechnischen und wissenschaftlichen Aufgabenstellungen zu arbeiten. |
||||||||
Selbstständigkeit |
Nach Abschluss des Moduls sind die Teilnehmer in der Lage, sich selbst Wissensquellen zu erschließen und ihre Kenntnisse auf bisher unbekannte Fragestellungen anzuwenden und dies zu präsentieren. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L2906: Bioprozesstechnik I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH,2nd ed. 2006 H.W. Blanch, D. Clark: Biochemical Engineering, Taylor & Francis, 1997 P. M. Doran: Bioprocess Engineering Principles, 2nd. edition, Academic Press, 2013 H. Chmiel, R. Takors, D. Weuster-Botz (Herausgeber): Bioprozeßtechnik, Springer Spektrum, 2018 K.-E. Jaeger, A. Liese, C. Syldatk: Einführung in die Enzymtechnologie, Springer, 2018 |
Lehrveranstaltung L2907: Bioprozesstechnik I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2908: Bioprozesstechnik I - Grundlagenpraktikum |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In diesem Praktikum werden die Kultivierungs- und Aufarbeitungstechniken am Beispiel der Produktion eines Enzyms mit einem rekombinanten Mikroorganismus aufgezeigt. Darüber hinaus werden die Charakterisierung und Simulation der Enzymkinetik sowie die Anwendung des Enzyms in einem Enzymreaktor durchgeführt. Die Studierenden verfassen zu jedem Versuch ein Protokoll. |
Literatur |
· Praktikumsskript bereitgestellt über StudIP · Bioprozesstechnik-Vorlesung & -Vorlesungsskript · Jaeger, K.-E., Liese, A., Syldatk, C. (2018). Einführung in die Enzymtechnologie. Springer Spektrum. · Hilterhaus, L., Liese, A., Kettling, U., Antranikian, G. (2016). Applied Biocatalysis. Wiley-VCH. · Hass, V. C., Pörtner, R. (2011). Praxis der Bioprozesstechnik mit virtuellem Praktikum. Spektrum Akademischer Verlag. · Chmiel, H. (2018). Bioprozesstechnik. Springer Spektrum. · Liese, A., Seelbach, K., Wandrey, C. (2006). Industrial Biotransformations. Wiley-VCH. · Bommarius, S., Riebel, B. (2004). Biocatalysis: Fundamentals and Applications. Wiley-Blackwell. · Schmid, R. D. (2003). Pocket Guide to Biotechnology and Genetic Engineering. Wiley-Blackwell. |
Modul M1752: Praxismodul 3 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2881: Praxisphase 3 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M1693: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Fröschle | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende verfügen über Grundkenntnisse in folgenden Bereichen
|
||||||||
Fertigkeiten |
Studierende verfügen über grundlegende Fertigkeiten in folgenden Bereichen
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können grundlegende Werkzeuge zur Datenverarbeitung beschreiben und charakterisieren. Sie können einen grundlegenden Ablauf zur Verarbeitung experimenteller Daten beschreiben. |
||||||||
Selbstständigkeit |
Studierende können selbständig zwischen grundlegenden Werkzeugen zur Datenverarbeitung wählen und deren Fähigkeiten einschätzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Wahlpflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Informationstechnologie: Pflicht |
Lehrveranstaltung L2689: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
John V. Guttag: Introduction to Computation and Programming Using Python. |
Lehrveranstaltung L2690: Informatik für Ingenieure - Programmierkonzepte, Data Handling & Kommunikation |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0544: Phasengleichgewichtsthermodynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik, Physikalische Chemie, Thermodynamik I und II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifischen Aufgaben bearbeiten und die gemeinsamen Ergebnisse in den Tutorien mündlich präsentieren |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0114: Phasengleichgewichtsthermodynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0140: Phasengleichgewichtsthermodynamik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben in Kleingruppen und stellen die Ergebnisse in der Übungsgruppe vor. |
Literatur |
|
Lehrveranstaltung L0142: Phasengleichgewichtsthermodynamik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0536: Grundlagen der Strömungsmechanik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können:
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden
|
||||||||
Selbstständigkeit |
Die Studierenden
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 3 Stunden | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Verkehrsplanung und -systeme: Wahlpflicht |
Lehrveranstaltung L0091: Grundlagen der Strömungsmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2933: Grundlagen der Strömungsmechanik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Gruppenübung werden die Inhalte der Vorlesung aufgegriffen und anhand von Übungsaufgaben vertieft. Die Übungsaufgaben entsprechen in Qualität und Umfang den Aufgaben der Klausur. Themen: Reynoldssches Transporttheorem, Rohrdurchströmung, Freistrahl, Drehimpuls, |
Literatur |
Heinz Herwig: Strömungsmechanik, Eine Einführung in die Physik und die mathematische Modellierung von Strömungen, Springer Verlag, Berlin, 978-3-540-32441-6 (ISBN) Herbert Oertel, Martin Böhle, Thomas Reviol: Strömungsmechanik für Ingenieure und Naturwissenschaftler, Springer Verlag, Berlin, ISBN: 978-3-658-07786-0 Joseph Spurk, Nuri Aksel: Strömungslehre, Einführung in die Theorie der Strömungen, Springer Verlag, Berlin, ISBN: 978-3-642-13143-1. |
Lehrveranstaltung L0092: Strömungsmechanik für die Verfahrenstechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Hörsaalübung werden die Inhalte der Vorlesung weiter vertieft und in die praktische Anwendung überführt. Dies geschieht anhand von Beispielsaufgaben aus der Praxis, die den Studierenden nach der Vorlesung zum Download bereitgestellt werden. Die Studierenden sollen diese Aufgaben mit Hilfe des Vorlesungsstoffes eigenständig oder in Gruppen lösen. Die Lösung wird dann mit Studierenden unter wissenschaftlicher Anleitung diskutiert, wobei Aufgabenteile an der Tafel präsentiert werden. Am Ende der Hörsaalübung wird die Aufgabe an der Tafel korrekt vorgerechnet. Parallel zur Hörsaalübung finden Tutorien statt, bei denen die Studierenden in Kleingruppen Klausuraufgaben unter Zeitvorgabe rechnen und die Lösung anschließend diskutieren |
Literatur |
|
Modul M1753: Praxismodul 4 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2882: Praxisphase 4 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0546: Thermische Grundoperationen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Empfohlene Vorkenntnisse: Thermodynamik III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden sind in der Lage, ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen und dieses gebündelt zur Lösung konkreter technischer Probleme einzusetzen. Hierzu zählen insbesondere die Lehrveranstaltungen Thermodynamik, Prozess und Anlagentechnik sowie auch Strömungsmechanik und Chemische Verfahrenstechnik. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0118: Thermische Grundoperationen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0119: Thermische Grundoperationen |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben in Kleingruppen und stellen die Ergebnisse in der Übungsgruppe vor |
Literatur |
|
Lehrveranstaltung L0141: Thermische Grundoperationen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1159: Thermische Grundoperationen |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden absolvieren in diesem Praktikum acht Versuche. Zu jedem der acht Versuche gibt es ein Kolloquium. In diesem reflektieren die Studierenden ihr Wissen und diskutieren es anschließend auf Fachebene mit dem Lehrpersonal und den Mitstudierenden. Die Studierenden arbeiten stark arbeitsteilig in kleinen Gruppen. Über alle Versuche wird ein Abschlussprotokoll verfasst. Die Studierenden erhalten eine Rückmeldung zu den Standards des wissenschaftlichen Schreibens, sodass sie über die Dauer des Praktikums ihre Kompetenzen in diesem Bereich ausbauen können. Themen des Praktikums:
|
Literatur |
|
Modul M0538: Wärme- und Stoffübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse: Technische Thermodynamik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0101: Wärme- und Stoffübertragung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Für die Verbesserung der Anschaulichkeit in der Vorlesung wurden für die Studierenden Videos ausgesucht, die in die Vorlesungen eingebunden waren. Zur Gestaltung der Selbstlernzeit wurden semesterbegleitenden Aufgaben entwickelt, mit denen die Studierenden sich während des Semesters vertieft auf den Lehrinhalt vorbereiten. |
Literatur |
|
Lehrveranstaltung L0102: Wärme- und Stoffübertragung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1868: Wärme- und Stoffübertragung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0833: Grundlagen der Regelungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Timm Faulwasser |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe experimentell testen und bewerten |
Selbstständigkeit |
Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden. Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Informationstechnologie: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung II. Produktionsmanagement und Prozesse: Wahlpflicht |
Lehrveranstaltung L0654: Grundlagen der Regelungstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Signale und Systeme
Regelkreise
Wurzelortskurven
Frequenzgang-Verfahren
Totzeitsysteme
Digitale Regelung
Software-Werkzeuge
|
Literatur |
|
Lehrveranstaltung L0655: Grundlagen der Regelungstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1754: Praxismodul 5 im dualen Bachelor |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L2883: Praxisphase 5 im dualen Bachelor |
Typ | |
SWS | 0 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M1775: Ökonomische und ökologische Projektbewertung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden Projekte / Projektideen aus ökonomischer und ökologischer Sicht analysieren und bewerten; d. h. sie können angedachte / geplante Projekte anhand bestimmter Kriterien systematisieren / analysieren und dann mithilfe ökonomischer und ökologischer Instrumente diese geplanten Projekte bewerten (u. a. anhand der spezifischen Produktgestehungskosten und ausgewählter Umweltkenngrößen wie z. B. THG-Äquivalente). Ein solches Vorgehen inkludiert ein Basiswissen im Bereich der Wirtschaftlichkeitsrechnung (z. B. statische und dynamische Kostenrechnungsverfahren) einerseits und ein Grundverständnis in Bezug auf die Erstellung einer Ökobilanz andererseits. Hinzu kommt das Wissen, diese Instrumente für entsprechende konkrete Anwendungsfälle durch eigenständig von den Studierenden zu ziehende Bilanzgrenzen umzusetzen und die Ergebnisse entsprechend zu interpretieren. |
Fertigkeiten |
Die Studierenden sind in der Lage, die Methodiken zur ökonomischen / wirtschaftlichen Bewertung (z. B. Annuitätenmethode) und zur ökologischen Bewertung (z. B. Ökobilanzierung) auf verschiedene Arten von Projekten - und das unter verschiedenen Rand- und Rahmenbedingungen - anzuwenden. Sie können dann entsprechende Projekte (u. a. Energieprojekte, Chemieprojekte) ökologisch und ökonomisch - und ausgehend davon - systemisch bewerten und Aussagen zu den entsprechenden ökonomischen und ökologischen / umweltlichen Begrenzungen treffen. Die Studierenden sind auch in der Lage, Fragestellungen aus dem Fachgebiet und Ansätze zu dessen Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang einzuordnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, geeignete technische Projekte zu untersuchen und letztlich anhand ökonomischer und ökologischer Bewertungskriterien - und damit letztlich unter vielfältigen Nachhaltigkeitsgesichtspunkten - zu bewerten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht |
Lehrveranstaltung L1054: Fallstudien ökonomische und ökologische Projektbewertung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ökonomische und ökologische Bewertung von Fallstudien einschließlich der Erstellung von den entsprechenden Bilanzgrenzen für die unterschiedlichen Fälle. Für die einzelnen Fälle gelten die folgenden Aspekte. 1. Berechnung der spezifischen Kosten mithilfe statischer und dynamischer Verfahren; dies inkludiert eine Abschätzung der zugrunde zu legenden Kostenbasis und entsprechende Sensitivitätsanalysen. 2. Erstellen einer Ökobilanz inklusive Zieldefinition, Sachbilanz, Wirkungsabschätzung und Auswertung / Interpretation. 3. Für die unterschiedlichen Fälle / Veränderungen Ermittlung des Einfluss auf die ökonomische und ökologische Prozessbewertung; dies gilt u. a. für - Allokation/Koppel- bzw. Nebenpunkte - Lernkurven- und andere Ansätze für zukünftige Zeitpunkte - Setzung des administrativen Rahmens / der politischen Zielvorgaben - Analyse der Unsicherheit von Daten und Annahmen Innerhalb des Seminars werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. Die Bearbeitung erfolgt sowohl einzeln als auch in kleineren Gruppen. |
Literatur |
Skripte der Vorlesungen |
Lehrveranstaltung L0860: Grundlagen der ökologischen Projektbewertung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christoph Hagen Balzer |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Skript der Vorlesung
|
Lehrveranstaltung L2918: Grundlagen der ökonomischen Projektbewertung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Skript der Vorlesung |
Modul M0670: Partikeltechnologie und Feststoffverfahrenstechnik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | keine | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage, die grundlegenden Prozesse und Verfahren der Feststoffverfahrenstechnik zu benennen und im Kontext mit ihrer Anwendung in verfahrenstechnischen und umwelttechnischen Prozessen zu erklären. Außerdem sind sie in der Lage, Partikel und Partikelverteilungen zu beschreiben und ihre Schüttguteigenschaften zu erläutern. |
||||||||
Fertigkeiten |
Studierenden sind in der Lage, Apparate und Verfahren der Feststoffverfahrenstechnik zur Erzielung von gewünschten Feststoffeigenschaften bzw. zur Emissionsminderung und zur Abscheidung aus Luft und Wasser auszuwählen und auszulegen. Insbesondere können sie diese Auswahl nicht nur für isolierte Einzelapparate treffen, sondern auch genseitige Abhängigkeiten in komplexen Prozessketten zu berücksichtigen. Außerdem sind sie befähigt, Partikel hinsichtlich der Prozessierbarkeit und ihrer umwelttechnischen Auswirkungen zu beurteilen. Die Studierenden können ihre Arbeit wissenschaftlich dokumentieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, fachliche Fragen mit Fachleuten mündlich zu diskutieren und in Gruppen gemeinsam Lösungen für technisch-wissenschaftliche Fragestellungen zu erarbeiten. |
||||||||
Selbstständigkeit |
Studierende sind dazu in der Lage grundlegende Fragestellungen in der Partikeltechnologie selbstständig zu analysieren und zu lösen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Wasser- und Umweltingenieurwesen: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Wassertechnologien: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0434: Partikeltechnologie I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ein Schwerpunkt bei der Vorlesung ist es, nicht nur Grundlagen und Auslegung der Verfahren und Apparate darzustellen, sondern insbesondere auch die Einbindung in Herstellungsprozesse und Verfahren zum Beispiel der Luft- und Wasserreinhaltung zu behandeln. |
Literatur |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Lehrveranstaltung L0435: Partikeltechnologie I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0440: Partikeltechnologie I |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Versuche werden in Gruppen von ca. 4 Studierenden durchgeführt. Hierbei lernen die Studierenden nicht nur die Apparate und Verfahren der Feststoffverfahrenstechnik kennen, sondern üben gleichzeitig während der Eingangskolloquia und den Endberichten zu den einzelnen Versuchen die Präsentation und Diskussion von fachlichen Fragestellungen und Ergebnissen. Sie erhalten Anleitung zur wissenschaftlichen Arbeitsweise und Feedback zu ihrer eigenen Umsetzung, sodass sie über den Verlauf des Praktikums ihre Kompetenzen in diesem Bereich ausbauen können. |
Literatur |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Modul M1969: Entwicklung verfahrenstechnischer Prozesse |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Mirko Skiborowski | ||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||
Empfohlene Vorkenntnisse |
Ingenieurwissenschaftliche Grundlagen, insbesondere Grundoperationen der mechanischen und thermischen Verfahrenstechnik sowie chemische Reaktionstechnik |
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
Studierende sind in der Lage: - Globale
Bilanzgleichungen und lineare
Stoffbilanzmodell für verfahrenstechnische Systeme zu klassifizieren und
zu formulieren - Systemkonzepte zu verstehen und Anzuwenden - Strategien bei der Synthese von Reaktoren bei der Synthese von Trennsystemem darzulegen und anzuwenden - PINCH-Analysen zu verstehen - Statische und dynamische Methoden der Kosten- und Wirtschaftlichkeitsrechnung angeben |
||||||||||||
Fertigkeiten |
Studierende werden befähigt: - Massen- und Energiebilanzen von verfahrenstechnischen Prozessen aufzustellen und die Ströme zu berechnen - Massenströme in komplexen verfahrenstechnischen Anlagen mit Hilfe linearer Stoffbilanzmodelle zu berechnen - Bilanzausgleichsprobleme zu lösen - Prozesssynthese für Reaktoren strukturiert durchzuführen - Prozesssynthese für Trennsysteme strukturierte durchzuführen - PINCH-Analysen anzuwenden - Quantitative Aussagen über Herstellkosten und über die Wirtschaftlichkeit von Produktionsverfahren zu machen |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
Studierende sind in der Lage in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten |
||||||||||||
Selbstständigkeit |
Studierende werden befähigt sich anhand weiterführender Literatur eigenständig Wissen zu erschließen |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L3217: Entwicklung verfahrenstechnischer Prozesse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Methoden und Werkzeuge - Globale Bilanzgleichungen, Grafische Abbildung von Prozessen, Bilanzausgleich und Datenvalidierung Prozesssynthese - Grobaufbau verfahrenstechnischer
Prozesse,
Entscheidungsebenen bei
der Prozessentwicklung,
Reaktorsynthese,
Synthese von Trennprozessen,
Alternativen und Auswahlkriterien, Energieintegration, experimentelle Validierung, Auswahl von Hilfsstoffen
Kostenrechnung und Projektmanagement Herstellungskosten,
Investitionskosten,
Wirtschaftliche Bewertung (Ein- und Mehrperiodische Bewertung), Grundlagen des Projektmanagement |
Literatur |
Lehrveranstaltung L3218: Entwicklung verfahrenstechnischer Prozesse |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3219: Entwicklung verfahrenstechnischer Prozesse |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Mirko Skiborowski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Bioingenieurwesen
Modul M0877: Molekularbiologische Grundlagen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Johannes Gescher | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Vorlesung Biochemie
Vorlesung Mikrobiologie
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können nach erfolgreichem Bestehen des Moduls
|
||||||||
Fertigkeiten |
Studierende sind nach erfolgreichem Bestehen des Moduls in der Lage
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende sind fähig im Team
|
||||||||
Selbstständigkeit |
Studierende sind in der Lage
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 60 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering, Schwerpunkt Bio Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht |
Lehrveranstaltung L0889: Genetik / Molekularbiologie |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0886: Genetik / Molekularbiologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
- Organisation prokaryotischer DNA, Struktur und Funktion, DNA-Replikation - Regulation der Genexpression, Trankskription und Translation - Mechanismen der Genübertragung, Rekombination, Transposition - Mutation und DNA-Reparatur - DNA-Klonierung - DNA-Sequenzierung - Polymerase-Kettenreaktion - Genomsequenzierung, (Meta)Genomics, Transcriptomics und Proteomics |
Literatur |
Rolf Knippers, Molekulare Genetik, Georg Thieme Verlag Stuttgart Munk, K. (ed.), Genetik, 2010, Thieme Verlag John Ringo, Genetik kompakt, 2006, Elsevier GmbH, München T. A. Brown, Gene und Genome, 2007, 3. Aufl., Spektrum Akademischer Verlag, Jochen Graw, Genetik, Springer Verlag, Berlin Heidelberg |
Lehrveranstaltung L0890: Molekularbiologisches Grundpraktikum |
Typ | Laborpraktikum |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Während des Praktikums werden Methoden der Mikrobiologie, Biochemie sowie der Genetik erlernt. Vor der praktischen Durchführung der Versuche findet ein Kolloquium statt, in dem die Studierenden die theoretischen Grundlagen der Versuche sowie deren Umsetzung in die Praxis erläutern, reflektieren und diskutieren. Die Studierenden verfassen zu jedem Versuch ein Protokoll. Sie erhalten Feedback zur Wissenschaftlichkeit ihrer Texte sowie wissenschaftlichen Standards (Zitierweise, Bildbeschriftung, etc.), sodass sie ihre Fertigkeiten diesbezüglich über den Verlauf des Praktikums kontinuierlich verbessern können. Im Praktikum behandelte Themen: - Morphologie und Wachstumsstadien zur Unterscheidung unterschiedlicher Bakterienstämme - Wachstumsbestimmung mittels Trübungsmessverfahren und optischer Dichte - Ansetzen unterschiedlicher Närmedien - Stammbestimmung mittels Gram-Färbung und API-Test - Genetische Stammbestimmung mittels 16S rRNA-Analyse - Lichtmikroskopische Beurteilung verschiedener Bakterienstämme - BLAST-Analysen - Enzymaktvitätsmessungen und Enzymkinetik (Michaelis-Menten -Gleichung, Lineweaver-Burk) - Enzyme als Biokatalysatoren (Nutzung von Enzymen und ihre Aktivität in Wachmitteln) |
Literatur |
Brock Mikrobiologie / Brock Microbiology (Michael T. Madigan, John M. Martinko) Mikrobiologisches Grundpraktikum (Steve K. Alexander, Dennis Strete) |
Modul M1765: Bioprozesstechnik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anna-Lena Heins |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage,
|
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Moduls sind die Studierenden in der Lage, in fachlich gemischten Teams wissenschaftliche Fragestellungen zu diskutieren, ihre Ansichten dazu zu vertreten und gemeinsam an gegebenen ingenieurstechnischen und wissenschaftlichen Aufgabenstellungen zu arbeiten. |
Selbstständigkeit |
Nach Abschluss des Moduls sind die Teilnehmer*innen in der Lage, sich selbst Wissensquellen zu erschließen und ihre Kenntnisse auf bisher unbekannte Fragestellungen anzuwenden und dies zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Pflicht |
Lehrveranstaltung L2896: Bioprozesstechnik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Anna-Lena Heins, Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
P. F. Stanbury, A. Whitaker, S. J. Hall, Principles of Fermentation Technology, 3rd. Edition, Butterworth-Heinemann, 2016. H. Chmiel, R. Takors, D. Weuster-Botz (Herausgeber): Bioprozeßtechnik, Springer Spektrum, 2018 R.H. Balz et al.: Manual of Industrial Microbiology and Biotechnology, 3. edition, ASM Press, 2010 H.W. Blanch, D. Clark: Biochemical Engineering, Taylor & Francis, 1997 P. M. Doran: Bioprocess Engineering Principles, 2. edition, Academic Press, 2013 V.C. Hass, R. Pörtner: Praxis der Bioprozesstechnik, Springer Spektrum, 2011 |
Lehrveranstaltung L2897: Bioprozesstechnik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anna-Lena Heins, Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Studierenden stellen in der Übungsgruppe Aufgaben vor und diskutieren im Anschluss mit Mitstudierenden und Lehrpersonal darüber. |
Literatur |
P. F. Stanbury, A. Whitaker, S. J. Hall, Principles of Fermentation Technology, 3rd. Edition, Butterworth-Heinemann, 2016. H. Chmiel, R. Takors, D. Weuster-Botz (Herausgeber): Bioprozeßtechnik, Springer Spektrum, 2018 R.H. Balz et al.: Manual of Industrial Microbiology and Biotechnology, 3. edition, ASM Press, 2010 H.W. Blanch, D. Clark: Biochemical Engineering, Taylor & Francis, 1997 P. M. Doran: Bioprocess Engineering Principles, 2. edition, Academic Press, 2013 V.C. Hass, R. Pörtner: Praxis der Bioprozesstechnik, Springer Spektrum, 2011 |
Modul M1766: Vertiefungspraktikum Bioingenieurwesen |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Andreas Liese |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach Abschluss des Moduls kennen die Studierenden,
|
Fertigkeiten |
Die Studierenden sind nach Abschluss des Moduls in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Nach Abschluss des Moduls sind die Studierenden in der Lage, in fachlich gemischten Teams wissenschaftliche Fragestellungen zu diskutieren, ihre Ansichten dazu zu vertreten und gemeinsam an gegebenen ingenieurstechnischen und wissenschaftlichen Aufgabenstellungen zu arbeiten. |
Selbstständigkeit |
Nach Abschluss des Moduls sind die Teilnehmer*innen in der Lage, sich selbst Wissensquellen zu erschließen und ihre Kenntnisse auf bisher unbekannte Fragestellungen anzuwenden und dies zu präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Referat und Kolloqium |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Pflicht |
Lehrveranstaltung L2898: Vertiefungspraktikum Bioingenieurwesen |
Typ | Laborpraktikum |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Andreas Liese |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Studierenden planen in Gruppen eine Produktionsanlage für einen mikrobiellen Prozess (up-stream) unter Anwendung der Software „Bioprozesstrainer“ aus Hass & Pörtner „Praxis der Bioprozesstechnik“. Die Auslegung der Produktionsanlage soll dabei zwei große Themen verbinden: Anlagentechnik (Bioreaktoren, Art, Leistungseintrag, Begasung, Rührer, Scale-Up, etc) und Prozessführung (Prozessmodi, Fütterungsstrategien, etc). Die Ergebnisse werden in Kurzvorträgen zum aktuellen Stand der Arbeit und einen abschließenden Vortrag vorgestellt und in einer schriftlichen Ausarbeitung zusammengefasst. |
Literatur |
V.C. Hass, R. Pörtner: Praxis der Bioprozesstechnik, Springer Spektrum, 2011 H. Chmiel, R. Takors, D. Weuster-Botz (Herausgeber): Bioprozesstechnik, Springer Spektrum, 2018 |
Modul M1762: Werkstofftechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Marko Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Für die Auslegung von verfahrenstechnischen Anlagen und Apparaten mit den dazugehörigen Rohrleitungen ist ein Grundwissen an werkstoffwissenschaftlichen Kenntnissen notwendig. Ein Schwerunkt dieses Moduls sind daher Eisenwerkstoffe, wobei auch Polymerwerkstoffe und keramische Werkstoffe behandelt werden. Für die Werkstoffauswahl und für die Beurteilung von Korrosions- und Verschleißvorgängen ist unter anderem ein grundlegendes Verständnis des atomaren Aufbaus, des Gefügeaufbaus, der Phasenumwandlung, der Diffusion, der Zustandsdiagramme und der Legierungsbildung notwendig, dass die Studierenden in diesem einsemestrigen Modul erlangen sollen. Die Studierenden verfügen außerdem über grundlegende Kenntnisse im Bereich der mechanischen Eigenschaften von Werkstoffen einschließlich der wesentlichen Methoden der Werkstoffprüfung und die in der Praxis sehr relevanten Korrosionsvorgänge. Außerdem erlangen die Studierenden Wissen über die wesentlichen Stahlsorten, die in der Verfahrenstechnik eingesetzt werden, und Wissen über die in der Praxis wichtigsten Wärmebehandlungsverfahren von Stählen im Zusammenhang mit Zeit-Temperatur-Umwandlungsschaubildern (ZTU-Diagrammen). |
Fertigkeiten |
Studierende können geeignete Werkstoffe für die Auslegung von verfahrenstechnischen Anlagen und Apparaten auswählen. Hierbei werden die mechanischen Eigenschaften wie die Festigkeit, die Duktilität, die Zähigkeit und die Wechselfestigkeit berücksichtigt. Außerdem können Studierende Maßnahmen zur Erhöhung der Korrosionsbeständigkeit festlegen. Neben der Festlegung von festigkeitssteigernden Maßnahmen können die Studierenden weitere Maßnahmen zur Veränderung der mechanischen Eigenschaften auswählen, beispielsweise in Form von Wärmebehandlungsverfahren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren, angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihren Lernstand selbstständig einzuschätzen und ihre Schwächen und Stärken auf dem Gebiet der Werkstofftechnik zu reflektieren. Die Studierende sind außerdem in der Lage, selbstständig Informationen von fachspezifischen Publikationen herauszusuchen und diese in den Kontext der Veranstaltung zuzuordnen, z.B. beim Auswählen eines Werkstoffs für einen verfahrenstechnischen Apparat. |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L2894: Werkstofftechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1498: Praxis in der Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage:
|
Fertigkeiten |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können:
|
Selbstständigkeit |
Die Studierenden sind in der Lage, ihren Lernstand selbstständig einzuschätzen und ihre Schwächen und Stärken auf dem Gebiet der Verfahrenstechnik und Bioverfahrenstechnik zu reflektieren. |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 1 DIN A4 Seite als Bericht abzugeben beim Modulverantwortlichen + Referat am Ende des Sem. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L2271: Praktische Tätigkeiten in der Verfahrenstechnik |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des SD V |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Folgende Tätigkeiten können Studierenden angerechnet werden: • Praktika in der Industrie (z.B. auch in den Semesterferien) |
Literatur |
Lehrveranstaltung L2272: Vorträge zur Praxis in der Verfahrenstechnik |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des SD V |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Folgende Veranstaltungen können als Vortrag angerechnet werden: • Ringvorlesungen Für nähere Informationen s. https://www.tuhh.de/verfahrenstechnik/lehre.html |
Literatur |
Modul M1769: Regulatorische Aspekte bei biologischen Arbeitsstoffen |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Anna-Lena Heins |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
1. Fachwissen zum generellen Betrieb von industriellen Chemie- und Bioprozessen 2. Kenntnis von biologischen Zusammenhängen und Stoffgruppen 3. Erfahrung mit der Handhabung von Gefahrstoffen, welche z.B. in Laborexperimenten erworben wurden |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreicher Teilnahme an der Veranstaltung "Regulatorische Aspekte bei biologischen Arbeitsstoffen" können die Studierenden - den
rechtlichen Rahmen biotechnologischer und chemischer Arbeiten erklären, - Auszüge
aus z.B. Arbeitsschutzgesetz, Biostoffverordnung, Infektionsschutzgesetz,
Chemikaliengesetz, Gefahrstoffverordnung, Gentechnikgesetz,
Stammzellgesetz, Embryonenschutzgesetz veranschaulichen, - gentechnische Arbeiten und Ausstattung von biotechnologischen Genlaboren gemäß Sicherheitsstufen zuordnen, - current Good
Manufacturing Practice (cGMP) mit Bezug zum EU-GMP Leitfaden sowie internationale
Verordnungen und Guidelines für Biopharmazeutika (ICH Guidelines) zuordnen. |
Fertigkeiten |
Die Studierenden können biotechnologische Arbeiten mit natürlichen und gentechnisch veränderten Organismen anhand der rechtlichen Rahmenbedingungen umfassend bewerten. |
Personale Kompetenzen | |
Sozialkompetenz |
Die vermittelten Kenntnisse bereiten die Studierenden auf die selbständige und gewissenhafte Einschätzung von rechtlichen Fragestellungen, insbesondere in der biotechnologischen Arbeitswelt, vor. |
Selbstständigkeit |
Die Studierenden können die eigenen Arbeiten verantwortungsbewusst ausrichten und in Kenntnis der rechtlichen Situation durchzuführen und Kolleg*innen bei der Einschätzung der rechtlichen Situation unterstützen. |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht |
Lehrveranstaltung L2865: Regulatorische Aspekte bei biologischen Arbeitsstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Johannes Möller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Diese Lehrveranstaltung behandelt die rechtlichen Rahmenbedingungen biotechnologischer und chemischer Arbeiten. Anhand von Auszügen der zu berücksichtigenden Gesetze und Verordnungen (z.B. Arbeitsschutzgesetz, Biostoffverordnung, Gentechnikgesetz u.a.) werden die rechtlichen Rahmenbedingungen eruiert. Zusätzlich werden Anforderungen an die Sicherheitseinstufungen gentechnischer Arbeiten und die Ausstattung von Laboren für gentechnische Arbeiten dargestellt. Weiterhin werden nationale und internationale Anforderungen an die Arzneimittelherstellung mit industriellem Bezug diskutiert. |
Literatur |
Die zum Zeitpunkt der Vorlesung gültigen Gesetze werden in der Vorlesung dargestellt und bekanntgegeben. |
Modul M1770: Bioinformatik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Johannes Gescher | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
Studierende sollten mit den Grundlagen der Molekularbiologie und Genetik vertraut sein, und Kenntnisse zur mikrobiellen Kultivierung besitzen. Vorteilhaft sind darüber hinaus ein Vorwissen zu DNA Sequenziertechnologien und dem Stammbaum des Lebens. Außerdem hilfreich sind erste Erfahrungen zur Kommandozeilenbasierten Computereingabe. |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
Im Laufe des Kurses erlangen die Studierenden Kenntnisse über verschiedene Anwendungsfelder der DNA Sequenziertechnologien, welches Potenzial in bisher uncharakterisierten mikrobiellen Stoffwechselwegen liegt, wie sich die Lebensformen im Metabolismus von Mikroben unterscheiden und welche Vorteile im Wachstum mikrobieller Gemeinschaften liegen. |
|
Fertigkeiten |
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
Aufgaben werden in Gruppen bearbeitet. Wobei eine übersichtliche Darstellung der verwendeten Parameter, Methoden und Zwischenergebnisse zur Kommunikation in der Gruppe gewählt werden muss. |
|
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre Erkenntnisse aus den bearbeiteten Teilaufgaben in einem Bericht zusammenzufassen. |
|
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |
Leistungspunkte | 3 | |
Studienleistung | Keine | |
Prüfung | Fachtheoretisch-fachpraktische Arbeit | |
Prüfungsdauer und -umfang | Referat und Kolloqium | |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering, Schwerpunkt Bio Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht |
Lehrveranstaltung L2899: Bioinformatik |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Johannes Gescher |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Methoden zur Auswertung von DNA Sequenzierdaten
|
Literatur |
Relevante Literatur wird im Kurs zur Verfügung gestellt. |
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Lüthje |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | mehrere schriftliche Leistungen über das Semester verteilt plus finaler Test (90 Minuten) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Wahlpflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Maritime Technologien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Wassertechnologien: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Maschinenbau: Vertiefung Biomechanik: Pflicht Maschinenbau: Vertiefung Energietechnik: Pflicht Maschinenbau: Vertiefung Materialien in den Ingenieurwissenschaften: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Schiffstechnik: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Lüthje |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft. Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Matthias Meyer, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Christian Thies, Prof. Christoph Ihl, Prof. Kathrin Fischer, Prof. Moritz Göldner, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Tim Schweisfurth, Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Fachmodule der Vertiefung Chemieingenieurwesen
Modul M1715: Regenerative Energien |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden einen Überblick über Charakteristiken von erneuerbaren Energiesystemen geben. Dabei können sie die darin auftretenden Fragestellungen erläutern. Des Weiteren können sie Kenntnisse zur Energiebereitstellung, Energieverteilung und Energiehandel unter Einbeziehung fachangrenzender Kontexte in diesem Zusammenhang erläutern. Die Studierenden können diese Kenntnisse detailliert für derartige Energiesysteme erläutern und kritisch Stellung dazu beziehen. Ferner können sie die Umweltauswirkungen durch die Nutzung von regenerativen Energiesystemen erläutern und haben einen Überblick über die ökonomische Einordnung der jeweiligen Optionen.
|
Fertigkeiten |
Die Studierenden sind in der Lage Methodiken zur Bestimmung von Energienachfrage oder Energiebereitstellung auf verschiedene Arten von erneuerbaren Energiesystemen anzuwenden. Des Weiteren können sie derartige Energiesysteme technisch, ökologisch und ökonomisch sowie systemisch bewerten und unter bestimmten gegebenen Voraussetzungen auch konzipieren. Die dafür nötigen Vorschriften können sie fachspezifisch, vor allem durch nicht standardisierte Lösungen eines Problems, auswählen. Die Studierenden sind in der Lage Fragestellungen aus dem Fachgebiet und Ansätze zu dessen Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang einzuordnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, geeignete technische Alternativen zu untersuchen und letztlich auch anhand technischer, ökonomischer und ökologischer Kriterien - und damit unter Nachhaltigkeitsgesichtspunkten zu bewerten, um so einen wirksamen Beitrag zu einer nachhaltigeren und zukunftsfähigeren Energieversorgung leisten zu können. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Pflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering, Schwerpunkt Chemical Engineering: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L3143: Kraftstoffe II |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Eigene Unterlagen, Veröffentlichungen, Fachliteratur Literature: Own documents, publications, technical literature |
Lehrveranstaltung L2740: Regenerative Energien I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Dieses Modul beinhaltet die Darstellung des erneuerbaren Energieangebots sowie eine Diskussion der jeweiligen Techniken zur Bereitstellung der gewünschten End- bzw. Nutzenergie. Konkret inkludiert dies die Möglichkeiten zur Sonnenenergienutzung zur Wärme- und Stromerzeugung (d. h. passive Sonnenenergienutzung, Solarkollektoren zur Niedertemperaturwärmebereitstellung, solarthermische Stromerzeugung, photovoltaische Stromerzeugung), die Nutzung Windenergie zur Stromerzeugung (d. h. Onshore- und Offshore-Windkraftnutzung), die Wasserkraftnutzung zur Stromerzeugung (d. h. Lauf- und Speicherwasserkraft), die Nutzung der Meeresenergie zur Stromerzeugung (u. a. Gezeitenkraftwerke) und die Nutzung der Geothermie zur Wärme- und Stromerzeugung (d. h. Nutzung der oberflächennahen Nutzung mittels Wärmepumpen, Nutzung der tiefen Geothermie zur Wärme- und/oder Stromerzeugung). |
Literatur |
Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - Systemtechnik, Wirtschaftlichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2020, 6. Auflage |
Lehrveranstaltung L2742: Regenerative Energien I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
Tiefe Geothermie |
Literatur |
Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - Systemtechnik, Wirtschaftlichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2020, 6. Auflage |
Lehrveranstaltung L2741: Regenerative Energien II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Diese Vorlesung beinhaltet alle Optionen zur Energiebereitstellung aus Biomasse; dies inkludiert eine Bereitstellung von Wärme, Strom und Kraftstoffen. Dazu wird zuerst auf die jeweilige Biomasseressource und dessen Entstehung eingegangen. Anschließend wird die Biomassebereitstellung adressiert, mit der die Brücke zwischen den Biomasseanfall und der Nutzung geschlagen wird. Anschließend wird auf die unterschiedlichen Konversionsoptionen eingegangen. Dabei werden nur die Optionen vertieft dargestellt, die am Markt in Deutschland und Europa eine entsprechende Bedeutung haben. Dies beinhaltet (a) eine Wärmeerzeugung aus biogenen Festbrennstoffen in Klein- und Großanlagen (b) eine Stromerzeugung aus fester Biomasse über die Verbrennung (c) eine Biogaserzeugung aus Rückständen, Nebenprodukten und Abfällen, (d) eine Alkoholerzeugung aus Zucker und Stärke (e) eine Biodieselerzeugung aus pflanzlichen Ölen. Besonders eingegangen wird auch auf die entsprechenden Umweltaspekte. Auch erfolgt eine ökonomische Einordnung der verschiedenen Optionen. |
Literatur | Unterlagen der Vorlesung |
Modul M0729: Konstruktion und Apparatebau |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Marko Hoffmann | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0617: Konstruktion und Apparatebau |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0619: Konstruktion und Apparatebau |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1762: Werkstofftechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Marko Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Für die Auslegung von verfahrenstechnischen Anlagen und Apparaten mit den dazugehörigen Rohrleitungen ist ein Grundwissen an werkstoffwissenschaftlichen Kenntnissen notwendig. Ein Schwerunkt dieses Moduls sind daher Eisenwerkstoffe, wobei auch Polymerwerkstoffe und keramische Werkstoffe behandelt werden. Für die Werkstoffauswahl und für die Beurteilung von Korrosions- und Verschleißvorgängen ist unter anderem ein grundlegendes Verständnis des atomaren Aufbaus, des Gefügeaufbaus, der Phasenumwandlung, der Diffusion, der Zustandsdiagramme und der Legierungsbildung notwendig, dass die Studierenden in diesem einsemestrigen Modul erlangen sollen. Die Studierenden verfügen außerdem über grundlegende Kenntnisse im Bereich der mechanischen Eigenschaften von Werkstoffen einschließlich der wesentlichen Methoden der Werkstoffprüfung und die in der Praxis sehr relevanten Korrosionsvorgänge. Außerdem erlangen die Studierenden Wissen über die wesentlichen Stahlsorten, die in der Verfahrenstechnik eingesetzt werden, und Wissen über die in der Praxis wichtigsten Wärmebehandlungsverfahren von Stählen im Zusammenhang mit Zeit-Temperatur-Umwandlungsschaubildern (ZTU-Diagrammen). |
Fertigkeiten |
Studierende können geeignete Werkstoffe für die Auslegung von verfahrenstechnischen Anlagen und Apparaten auswählen. Hierbei werden die mechanischen Eigenschaften wie die Festigkeit, die Duktilität, die Zähigkeit und die Wechselfestigkeit berücksichtigt. Außerdem können Studierende Maßnahmen zur Erhöhung der Korrosionsbeständigkeit festlegen. Neben der Festlegung von festigkeitssteigernden Maßnahmen können die Studierenden weitere Maßnahmen zur Veränderung der mechanischen Eigenschaften auswählen, beispielsweise in Form von Wärmebehandlungsverfahren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren, angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihren Lernstand selbstständig einzuschätzen und ihre Schwächen und Stärken auf dem Gebiet der Werkstofftechnik zu reflektieren. Die Studierende sind außerdem in der Lage, selbstständig Informationen von fachspezifischen Publikationen herauszusuchen und diese in den Kontext der Veranstaltung zuzuordnen, z.B. beim Auswählen eines Werkstoffs für einen verfahrenstechnischen Apparat. |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Chemie- und Bioingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L2894: Werkstofftechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marko Hoffmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1498: Praxis in der Verfahrenstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage:
|
Fertigkeiten |
Nach dem erfolgreichen Absolvieren dieses Moduls sind die Studierenden in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können:
|
Selbstständigkeit |
Die Studierenden sind in der Lage, ihren Lernstand selbstständig einzuschätzen und ihre Schwächen und Stärken auf dem Gebiet der Verfahrenstechnik und Bioverfahrenstechnik zu reflektieren. |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | 1 DIN A4 Seite als Bericht abzugeben beim Modulverantwortlichen + Referat am Ende des Sem. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L2271: Praktische Tätigkeiten in der Verfahrenstechnik |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des SD V |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Folgende Tätigkeiten können Studierenden angerechnet werden: • Praktika in der Industrie (z.B. auch in den Semesterferien) |
Literatur |
Lehrveranstaltung L2272: Vorträge zur Praxis in der Verfahrenstechnik |
Typ | Seminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des SD V |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Folgende Veranstaltungen können als Vortrag angerechnet werden: • Ringvorlesungen Für nähere Informationen s. https://www.tuhh.de/verfahrenstechnik/lehre.html |
Literatur |
Modul M1768: Grundlagen der Chemischen Kinetik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Raimund Horn |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
|
Fertigkeiten |
Die Studierenden sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden
|
Selbstständigkeit |
Die Studierenden
|
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Wahlpflicht Engineering Science: Vertiefung Chemical and Bioprocess Engineering, Schwerpunkt Chemical Engineering: Pflicht |
Lehrveranstaltung L2895: Grundlagen der Chemischen Kinetik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Raimund Horn |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundbegriffe der Chemischen Kinetik (Reaktionsgeschwindigkeit, Speziesänderungsgeschwindigkeit, Geschwindigkeitskonstante, Reaktionsordnung, Aktivierungsenergie, reversible und irreversible Reaktionen, homogene und heterogene Reaktionen, Elementarschritt, Molekularität, Reaktionskoordinate, Reaktionsmechanismus, Quasi-Stationarität, Bodenstein Prinzip) Messung von kinetischen Daten im Labor auf Zeitskalen von Tagen bis Femtosekunden (Klassische Reaktorexperimente, Stopped-Flow Methode, Flash-Photolyse, Stoßwellenrohr, Relaxationsmethoden, Femtochemie, Molekularsstrahlen, Pump-Probe Experimente) Kinetik einfacher Reaktionen (0. Ordnung, 1. Ordnung, 2. Ordnung, 3. Ordnung, differentielle und integrierte Geschwindigkeitsgesetze, Integration von Geschwindigkeitsgesetzen durch Partialbruchzerlegung), Halbwertszeiten, Radiocarbon-Methode, Differentielle Kinetische Analyse, Integrale Kinetische Analyse, Isolationsmethode, Methode der Anfangsreaktionsgeschwindigkeit, Parameterschätzung kinetischer Modelle durch lineare und nichtlineare Anpassung an experimentelle Daten Kinetik komplexer Reaktionen (Parallelreaktionen, reversible Reaktionen, konsekutive Reaktionen, konsekutive Reaktionen mit vorgelagertem Gleichgewicht), Auswirkung der Kinetik auf Produktselektivität und Ausbeute, Integration der auftretenden inhomogenen gewöhnlichen Differentialgleichungen mit integrierenden Faktoren. Numerisches Lösen kinetischer Differentialgleichungen, Steifheit kinetischer Differentialgleichungen, Konvergenzverhalten expliziter und impliziter Solver, Unterschied zwischen Genauigkeit und Stabilität, mathematische Formulierung komplexer kinetischer Reaktionsnetzwerke, numerische Implementierung in Matlab, Lotka-Volterra Modell, Benutzung von impliziten und expliziten Solvern in Matlab. Beispiele für und Umgang mit komplexen Reaktionsnetzwerken, Radikalkettenreaktionen (verzweigt und unverzweigt), Sensitivitätsanalyse, Reduktion und Einbindung komplexer Kinetiken in Reaktorsimulationen, Reaktionspfadanalyse, Eigenwertanalyse kinetischer Systeme, stabile und instabile Lösungen, Chemische Oszillationen, Belousov-Zhabotinskii Reaktion (mathematische Analyse, chemischer Mechanismus und Ursache der Oszillation, experimentelle Durchführung) Kinetik heterogen katalysierter Reaktionen, Langmuir-Hinshelwood-Hougen-Watson Geschwindigkeitsgesetze, Vereinfachung von LHHW Gleichungen, Reaktionsordnungen und scheinbare Aktivierungsenergien bei heterogen katalytischen Reaktionen Theorie Chemischer Reaktionen und theoretische Berechnung von Geschwindigkeitskonstanten, kinetische Gastheorie, Maxwell-Boltzmann Energie- und Geschwindigkeitsverteilung, Berechnungen von Kollisionsfrequenzen, einfache Stoßtheorie, modifizierte Stoßtheorie, Theorie des Übergangszustandes, Zustandssummen, Eyring Gleichung. |
Literatur |
|
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Lüthje |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | mehrere schriftliche Leistungen über das Semester verteilt plus finaler Test (90 Minuten) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemie- und Bioingenieurwesen: Vertiefung Bioingenieurwesen: Wahlpflicht Chemie- und Bioingenieurwesen: Vertiefung Chemieingenieurwesen: Wahlpflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Biotechnologien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Maritime Technologien: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Wassertechnologien: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Maschinenbau: Vertiefung Biomechanik: Pflicht Maschinenbau: Vertiefung Energietechnik: Pflicht Maschinenbau: Vertiefung Materialien in den Ingenieurwissenschaften: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Schiffstechnik: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Kernqualifikation: Pflicht |
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Lüthje |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft. Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Matthias Meyer, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Christian Thies, Prof. Christoph Ihl, Prof. Kathrin Fischer, Prof. Moritz Göldner, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Tim Schweisfurth, Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Thesis
Modul M1800: Bachelorarbeit im dualen Studium |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden ...
|
Fertigkeiten |
Die dual Studierenden ...
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden ...
|
Selbstständigkeit |
Die dual Studierenden ...
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Chemie- und Bioingenieurwesen: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Engineering Science: Abschlussarbeit: Pflicht Green Technologies: Energie, Wasser, Klima: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Abschlussarbeit: Pflicht |