Program description

Content

Core Qualification

Module M0883: General and Inorganic Chemistry

Courses
Title Typ Hrs/wk CP
General and Inorganic Chemistry (L0824) Lecture 3 3
Fundamentals in Inorganic Chemistry (L0996) Practical Course 3 2
Fundamentals in Inorganic Chemistry (L1941) Recitation Section (small) 1 1
Module Responsible Prof. Gerrit A. Luinstra
Admission Requirements None
Recommended Previous Knowledge

High School Chemistry/Physics/calculus, specifically Structure of the atom with electrons, Free energy G, concepts of pH and redox processes, electric circuits (potential and resistance), calculus with logarithms. 


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Sstudents are able to handle molecular orbital theory including the octahedral ligand field, qualitatively describe the resulting electron density distribution and structures of molecules (VSEPR); they have developed an idea of molecular interactions in the gas, liquid and solid phases. They are able to describe chemical reactions in the sense of retention of mass and energy, enthalpy and entropy as well as the chemical equilibrium. They can explain the concept of activation energy in conjucture with particle kinetic energy. They have increased knowledge of acid-base concepts, acid-base reactions in water, can perform pH calculations, understand titration as a quantitative analysis.  They can recognize redox processes,  correlate redox potentials to Gibbs energy, handle Nernst theory in describing the concentration dependence of redox potentials, known the concept of overpotential and understand corrosion as a redox reaction (local element).


Skills

Students are able to use general and inorganic chemistry for the design of technical processes. Especially they are able to formulate mass and energy balances and by this to optimise technical processes. They are able to perform simple calculations of pH values in regard to an application of acids and bases, and evaluate the course of redox processes (calculation of redoxpotentials). They are able to transform a verbal formulated message into an abstract formal procedure. Students are able to present and discuss their scientific results in plenum. The students are able to document the results of their experiments scientifically. They are able to use scientific citation methods in their reports.

Personal Competence
Social Competence

The students are able to discuss given tasks in small groups and to develop an approach.

Students are able to carry out experiments in small groups in lab scale and to distribute tasks in the group independently. 


Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.

Students are able to apply their knowledge to plan, prepare and conduct experiments. Students are able to independently judge their own knowledge and to acquire missing knowledge that is required to fulfill their tasks.


Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0824: General and Inorganic Chemistry
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Gerrit A. Luinstra
Language DE
Cycle WiSe
Content

This elementary course in chemistry comprises the following four topics, i) molecular orbital theory applied to compounds with bonds between s-, p- and d-block elements (octahedral field only), Description of molecular interactions in the gas, liquid and solid phase, (semi) conductivity on account of the formation of band structures, ii) describing chemical reactions in the sense of retention of mass and energy, enthalpy and entropy, chemical equilibrium, concepts of activation energy in conjucture with particle kinetic energy iii) acid-base concepts, acid-base reactions in water, pH calculation, quantitative analysis (titration) iv), redox processes in water, redox potential, Nernst theory describing the concentration dependence of redox potentials, overpotential, corrosion (local elments).

Literature

Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3

Chemie, Charles Mortimer (Deutsch und Englisch verfügbar)

http://www.chemgapedia.de

Course L0996: Fundamentals in Inorganic Chemistry
Typ Practical Course
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Prof. Gerrit A. Luinstra
Language DE
Cycle WiSe
Content

This laboratory course comprises the following four topics, i) atomic structure and application of spectroscopic methods, introduction of analytic methods ii) chemical reactions (qualitative analysis), bonding types, reaction types, reaction equations  iii) acid-base concepts, acid-base reactions in water, buffer solution, quantitative analysis (titration) iv), redox processes in water, redox potential, Nernst theory describing the concentration dependence of redox potentials, galvanic elements and electrolysis.

Prior to every experiement, a seminar takes place in small groups (12-15 students). The students participate orally. Team work and cooperation are forwarded because the experiments in the lab and the writing of the reports is conducted in groups of three or four students. Additionally, acedemic writing conveyed (documentation of experiment results in lab journals, literature citations in reports).

Literature

Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3

Chemie, Charles Mortimer (Deutsch und Englisch verfügbar)

Analytische und anorganische Chemie, Jander/Blasius

Maßanalyse, Jander/Jahr


Course L1941: Fundamentals in Inorganic Chemistry
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerrit A. Luinstra
Language DE
Cycle WiSe
Content

This course has 4 major parts: i) decribing molecules and solids of the s-, p- and d-elements of the periodic table in terms of orbital theory (only octahedral field), interactions between molecules in all phases; ii) description of chemical reactions in context of concentrations, mass and energy balance (enthalpy and entropy), kinetics and concepts of activation energy; iii) acid-base concepts according to Lewis and Brönsted, pH measurement and calculations, titration; iv) redox reactions in water, redox potential and Nernst equation, overpotentials and local elements in the matter of corrosion. 

Literature

Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3<br />Chemie, Charles Mortimer (Deutsch und Englisch verfügbar)<br />http://www.chemgapedia.de</p> 

Module M1760: Introduction to Chemical and Bioengineering

Courses
Title Typ Hrs/wk CP
Introduction to Chemical and Bioengineering (L2892) Lecture 2 3
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Written elaboration
Examination duration and scale max. 5 pages
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Course L2892: Introduction to Chemical and Bioengineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dozenten des SD V
Language DE
Cycle WiSe
Content
Literature

Module M0850: Mathematics I

Courses
Title Typ Hrs/wk CP
Mathematics I (L2970) Lecture 4 4
Mathematics I (L2971) Recitation Section (large) 2 2
Mathematics I (L2972) Recitation Section (small) 2 2
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge

School mathematics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2970: Mathematics I
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Anusch Taraz
Language DE
Cycle WiSe
Content

Mathematical Foundations:

sets, statements, induction, mappings, trigonometry

Analysis: Foundations of differential calculus in one variable

  • natural and real numbers
  • convergence of sequences and series
  • continuous and differentiable functions
  • mean value theorems
  • Taylor series
  • calculus
  • error analysis
  • fixpoint iteration

Linear Algebra: Foundations of linear algebra in Rn

  • vectors: rules, linear combinations, inner and cross product, lines and planes
  • systems of linear equations: Gauß elimination, linear mappings, matrix multiplication, inverse matrices, determinants 
  • orthogonal projection in R^n, Gram-Schmidt-Orthonormalization


Literature
  • T. Arens u.a. : Mathematik, Springer Spektrum, Heidelberg 2015
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013
Course L2971: Mathematics I
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2972: Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1802: Engineering Mechanics I (Stereostatics)

Courses
Title Typ Hrs/wk CP
Engineering Mechanics I (Statics) (L1001) Lecture 2 3
Engineering Mechanics I (Statics) (L1003) Recitation Section (large) 1 1
Engineering Mechanics I (Statics) (L1002) Recitation Section (small) 2 2
Module Responsible Prof. Benedikt Kriegesmann
Admission Requirements None
Recommended Previous Knowledge

Solid school knowledge in mathematics and physics.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge in stereostatics.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic statical methods to engineering problems;
  • estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.
Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Specialisation II. Application: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L1001: Engineering Mechanics I (Statics)
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer NN
Language DE
Cycle WiSe
Content
  • Tasks in Mechanics
  • Modelling and model elements
  • Vector calculus for forces and torques
  • Forces and equilibrium in space
  • Constraints and reactions, characterization of constraint systems
  • Planar and spatial truss structures
  • Internal forces and moments for beams and frames
  • Center of mass, volumn, area and line
  • Computation of center of mass by intergals, joint bodies
  • Friction (sliding and sticking)
  • Friction of ropes
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1003: Engineering Mechanics I (Statics)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer NN
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1002: Engineering Mechanics I (Statics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer NN
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).

Module M1761: Biological and Biochemical Fundamentals

Courses
Title Typ Hrs/wk CP
Biological and Biochemical Fundamentals (L2900) Lecture 2 2
Fundamental Biological and Biochemical Practical Course (L2901) Practical Course 3 3
Introduction to the Biological and Biochemical Practical Course (L2902) Lecture 1 1
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

The module is divided into two parts. In the winter semester, a lecture with 2 semester hours per week is offered. No previous knowledge is required for this lecture. In the following summer semester, the second part of the module is offered. This is divided into an internship and an introductory lecture. For these two parts of the module, attendance of the lecture in the winter semester is strongly recommended. 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims to teach you the basic principles of biological systems and biocatalysts. You will learn how organisms are constructed and what basic characteristics can be used to distinguish organisms from the three kingdoms of life. You will learn about the ways in which biological systems can produce energy and you will apply the principles of biological thermodynamics. In addition, you will learn how enzymes are constructed and, using some classes of enzymes as examples, you will learn how enzymes exert their effect. 

At the end of the module

- you will be able to describe basic principles of living systems and explain the metabolism of organisms by applying them.

- you will be able to assign organisms to the three kingdoms of life based on some basic characteristics

- you will be able to describe the tasks of enzymes generically on the basis of some example reactions

- you will be able to deduce from the basic characteristics of organisms and enzymes which biotechnological applications are possible with these systems. 

- you can understand and use the technical vocabulary of biological systems and processes

- you will be able to perform simple bioinformatic operations to assign DNA sequences to a function

- you can confidently apply the basic principles of using primary literature 

Skills

The students master the basic techniques of sterile work and molecular diagnostics. They can independently prepare media and maintain microorganisms in culture. In addition, they can isolate and characterize organisms from enrichment cultures and environmental samples. 

Personal Competence
Social Competence

The students are able,

- to gather knowledge in groups of about 2 to 10 students

- to introduce their own knowledge and to argue their view in discussions in teams

- to divide a complex task into subtasks, solve these and to present the combined results 

Autonomy

Students are able to independently structure their internship days and prioritize tasks. Furthermore, they are able to collect and process basic information on microorganisms via a literature search.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation Zusammenstellung der Ergebnisse des Praktikums
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Course L2900: Biological and Biochemical Fundamentals
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language DE
Cycle WiSe
Content

In the lecture we will learn the basic characteristics of organisms of all kingdoms of life. This includes cell biology as well as cell physiology. We understand the energetic foundations of living systems and the variety of possible metabolic concepts of life. From these basic laws we will understand how and to what extent an application and genetic reprogramming of organisms for application can take place.

Literature

Fuchs: Allgemeine Mikrobiologie, 11. vollständig überarbeitete Auflage 2022; ISBN: 9783132434776

Brock: Biology of Microorganisms, ISBN-13:  9780134626109

Course L2901: Fundamental Biological and Biochemical Practical Course
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Johannes Gescher
Language DE
Cycle SoSe
Content

The aim of the practical course is to teach basic microbiological and molecular biological techniques on the basis of individual research assignments and control experiments. In doing so, organisms are to be isolated in this practical course, which will be further processed by students of the 4th and 6th semester in two independent modules. 

Literature

Steinbüchel: Mikrobiologisches Praktikum, ISBN:  978-3-662-63234-5

Course L2902: Introduction to the Biological and Biochemical Practical Course
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Johannes Gescher
Language DE
Cycle SoSe
Content

The aim of the introductory lecture is to explain different methods used and their range of application. In addition, we will clarify specific physiological characteristics of the microorganisms to be isolated.  

Literature

Steinbüchel: Mikrobiologisches Praktikum, ISBN:  978-3-662-63234-5

Module M1755: Linking theory and practice (dual study program, Bachelor's degree)

Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

… can describe and classify selected classic and modern theories, concepts and methods 

  • related to self-management, and organising work and learning 
  • self-competence and 
  • social skills

... and apply them to specific situations, projects and plans in a personal and professional context.


Skills

Dual students…

  • ... anticipate typical difficulties, positive and negative effects, as well as success and failure factors in the engineering sector, evaluate them and consider promising strategies and courses of action.


Personal Competence
Social Competence

Dual students…

  • … work together in a problem-oriented and interdisciplinary manner as part of expert and work teams.
  • … are able to assemble and lead working groups.
  • … present complex, subject-related solutions to problems to experts and stakeholders and can develop these further together.
Autonomy

Dual students…

  • … define, reflect and evaluate goals for learning and work processes.
  • … design their learning and work processes independently and sustainably at the university and company.
  • … take responsibility for their learning and work processes.
  • … are able to consciously think through their ideas or actions and relate them to their self-image to develop conclusions for future action based on this.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz.
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M1750: Practical module 1 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 1 (dual study program, Bachelor's degree) (L2879) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge

A: Self-management, organising work and learning in engineering (for dual study program)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

  • … describe their employer’s organisation (company) and the associated regulations that relate to how tasks and competences are distributed, as well as how work processes are handled. 
  • … understand the structure and objectives of the dual study programme and the increasing requirements throughout the course of study.
Skills

Dual students…

  • … use equipment and resources professionally in accordance with the assigned work areas and tasks, and describe operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.


Personal Competence
Social Competence

Dual students…

  • … have familiarised themselves with their new working environment (learning environment) and the associated tasks/processes/working relationships. 
  • … know their central points of contact and company colleagues, and exchange ideas with them constructively.
  • … coordinate work tasks with their professional supervisor and ask for support as needed.
  • … help shape the work in the assigned work area and offer their colleagues support to complete their work. 
  • … work together with others in smaller work teams in a result-oriented manner.


Autonomy

Dual students…

  • … structure their work and learning processes within the company independently in line with their responsibilities and authorisations, and coordinate them with their professional supervisor. 
  • … complete work tasks/assignments with the support of colleagues. 
  • … coordinate the practical phase with any individual preparation required for the examination phase at TUHH. 
  • … document and reflect on how their foundational subjects link with their work as an engineer.


Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2879: Practical term 1 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning initial work areas (supervisor, colleagues)
  • Assigning a contact person within the company (usually the HR department) 
  • Assigning a professional mentor in the work area (relating to practical application) 
  • Responsibilities and authorisations of the dual student within the company
  • Supporting/working with colleagues
  • Scheduling the relevant practical modules with initial work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: organisational structure, corporate strategy, business and work areas, work procedures and processes, operational levels
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • Creating an e-portfolio
  • Relevance of foundational subjects when working as an engineer
  • Comparing the learning and working processes of different learning environments with regard to their results and effects 

Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0888: Organic Chemistry

Courses
Title Typ Hrs/wk CP
Organic Chemistry (L0831) Lecture 4 4
Organic Chemistry (L0832) Practical Course 3 2
Module Responsible Prof. Ralph Holl
Admission Requirements None
Recommended Previous Knowledge High School Chemistry and/or lecture "general and inorganic chemistry"
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are familiar with basic concepts of organic chemistry. They are able to classify organic molecules and to identify functional groups and to describe the respective synthesis routes. Fundamental reaction mechanisms like nucleophilic substitution, eliminations, additions and aromatic substitution can be described. Students are capable to describe in general modern reaction mechanisms.

Skills

Students are able to use basics of organic chemistry for the design of technical processes. Especially they are able to formulate basic routes to synthesize small organic molecules and by this to optimise technical processes in Process Engineering. They are able to transform a verbally formulated message into an abstract formal procedure.

The students are able to document and interpret their working process and results scientifically.

Personal Competence
Social Competence

The students are able to discuss in small groups and develop an approach for given tasks.

Autonomy

Students are able to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.

Workload in Hours Independent Study Time 82, Study Time in Lecture 98
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0831: Organic Chemistry
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Ralph Holl, Prof. Pierre Stallforth
Language DE
Cycle SoSe
Content The lecture covers basic concepts of organic chemistry. This includes simple carbon compounds, alkanes, alkenes, aromatic compounds, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and amino acids. Further, fundamentals of reaction mechanisms will be described. This includes nucleophilic substitution, eliminations, additions and aromatic substitution. Also modern reaction mechanisms will be described.
Literature gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH
Course L0832: Organic Chemistry
Typ Practical Course
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Prof. Ralph Holl, Prof. Pierre Stallforth
Language DE
Cycle SoSe
Content

The lecture covers basic concepts of organic chemistry. This includes simple carbon compounds, alkanes, alkenes, aromatic compounds, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and amino acids. Further, fundamentals of reaction mechanisms will be described. This includes nucleophilic substitution, eliminations, additions and aromatic substitution. Also modern reaction mechanisms will be described.

Prior to each experiment, an oral colloquium takes place in small groups. In the colloquium are security aspects of the experiments are discussed, as well as the topics of the experiments. Solutions to previously provided questions are answered. In the colloquia the students acquire the skill to express scientific matters orally in a scientifically correct language and to describe theoretical basics.

The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course.

Literature gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH

Module M0671: Technical Thermodynamics I

Courses
Title Typ Hrs/wk CP
Technical Thermodynamics I (L0437) Lecture 2 4
Technical Thermodynamics I (L0439) Recitation Section (large) 1 1
Technical Thermodynamics I (L0441) Recitation Section (small) 1 1
Module Responsible Prof. Dr. Arne Speerforck
Admission Requirements None
Recommended Previous Knowledge Elementary knowledge in Mathematics and Mechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are familiar with the laws of Thermodynamics. They know the relation of the kinds of energy according to 1st law of Thermodynamics and are aware about the limits of energy conversions according to 2nd law of Thermodynamics. They are able to distinguish between state variables and process variables and know the meaning of different state variables like temperature, enthalpy, entropy and also the meaning of exergy and anergy. They are able to draw the Carnot cycle in a Thermodynamics related diagram. They know the physical difference between an ideal and a real gas and are able to use the related equations of state. They know the meaning of a fundamental state of equation and know the basics of two phase Thermodynamics.


Skills

Students are able to calculate the internal energy, the enthalpy, the kinetic and the potential energy as well as work and heat for simple change of states and to use this calculations for the Carnot cycle. They are able to calculate state variables for an ideal and for a real gas from measured thermal state variables.


Personal Competence
Social Competence

The students can discuss in small groups and work out a solution. You can answer comprehension questions about the content that are provided in the lecture with the ClickerOnline tool "TurningPoint" after discussions with other students.

Autonomy

Students can understand the problems posed in tasks physically. They are able to select the methods taught in the lecture and exercise to solve problems and apply them independently to different types of tasks.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Course L0437: Technical Thermodynamics I
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle SoSe
Content
  1. Introduction
  2. Fundamental terms
  3. Thermal Equilibrium and temperature
    3.1 Thermal equation of state
  4. First law
    4.1 Heat and work
    4.2 First law for closed systems
    4.3 First law for open systems
    4.4 Examples
  5. Equations of state and changes of state
    5.1 Changes of state
    5.2 Cycle processes
  6. Second law
    6.1 Carnot process
    6.2 Entropy
    6.3 Examples
    6.4 Exergy
  7. Thermodynamic properties of pure fluids
    7.1 Fundamental equations of Thermodynamics
    7.2 Thermodynamic potentials
    7.3 Calorific state variables for arbritary fluids
    7.4 state equations (van der Waals u.a.)

Literature
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993



Course L0439: Technical Thermodynamics I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0441: Technical Thermodynamics I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0851: Mathematics II

Courses
Title Typ Hrs/wk CP
Mathematics II (L2976) Lecture 4 4
Mathematics II (L2977) Recitation Section (large) 2 2
Mathematics II (L2978) Recitation Section (small) 2 2
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name further concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2976: Mathematics II
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content
Literature
Course L2977: Mathematics II
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L2978: Mathematics II
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1276: Fundamentals of Technical Drawing

Courses
Title Typ Hrs/wk CP
Fundamentals of Technical Drawing (L1741) Lecture 1 1
Fundamentals of Technical Drawing (L1742) Recitation Section (large) 1 2
Module Responsible Dr. Marko Hoffmann
Admission Requirements None
Recommended Previous Knowledge
  • Basic internship
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students will learn how to generate technical drawing/create technical drawings according to norms
  • Students will become acquainted with the various types of views in drawings (procection methods, views, sectional representations)
  • Students will learn how to insert the dimensions in technical drawings
  • Students will acquire the skills to render data in detailed drawings according to norms (e.g. tolerance dimensioning, fits and surface specifications)
Skills
  • Students are capable to construct simple technical drawings, considering tolerances and fits.
  • Students are capable to strengthen the spatial sense.

Personal Competence
Social Competence
  • Students are able to work together in basic groups on subject related tasks and small design studies and present their results.
Autonomy
  • They work on their homework by their own and get feedback in their particular basis group to evaluate their actual knowledge.
  • Students are capable to self-reliantly gather information from subject related, professional publications and relate that information to the context of the lecture, e.g. preparing of technical drawings or choosing of a construction material for a process equipment.
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement
Compulsory Bonus Form Description
No 5 % Excercises
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1741: Fundamentals of Technical Drawing
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Marko Hoffmann
Language DE
Cycle SoSe
Content
  • Technical drawing basics (contents, kinds of drawings and generation of drawings according to relevant standards)
  • Projective geometry (basics, orthographic projections, isometric projections, cuts, developed views, penetration views)
Literature
  • Hoischen, Hans; Fritz, Andreas (Hrsg.): "Hoischen/Technisches Zeichnen: Grundlagen, Normen, Beispiele, Darstellende Geometrie", 35. überarbeitete und aktualisierte Auflage, Cornelsen Verlag, Berlin, 2016.
  • Fritz, Andreas; Hoischen, Hans; Rund, Wolfgang (Hrsg.): "Praxis des Technischen Zeichnens Metall / Erklärungen, Übungen, Tests", 17. überarbeitete Auflage; Cornelsen Verlag, Berlin, 2016.
  • Labisch, Susanna; Weber, Christian: "Technisches Zeichnen : Selbstständig lernen und effektiv üben", 4. überarbeitete und erweiterte Auflage, Springer Vieweg Verlag, Wiesbaden, 2013.
  • Kurz, Ulrich; Wittel, Herbert: "Böttcher/Forberg Technisches Zeichnen : Grundlagen, Normung, Übungen und Projektaufgaben", 26. überarbeitete und erweiterte Auflage, Springer Vieweg Verlag, Wiesbaden, 2014.
  • Klein, Martin; Alex, Dieter u.a.; DIN: Deutsches Institut für Normung e.V. (Hrsg.): "Einführung in die DIN-Normen"; 14. neubearbeitete Auflage, Teubner u.a., Stuttgart u.a., 2008.
Course L1742: Fundamentals of Technical Drawing
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Marko Hoffmann
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1803: Engineering Mechanics II (Elastostatics)

Courses
Title Typ Hrs/wk CP
Engineering Mechanics II (Elastostatics) (L0493) Lecture 2 2
Engineering Mechanics II (Elastostatics) (L1691) Recitation Section (large) 2 2
Engineering Mechanics II (Elastostatics) (L0494) Recitation Section (small) 2 2
Module Responsible Prof. Christian Cyron
Admission Requirements None
Recommended Previous Knowledge

Engineering Mechanics I, Mathematics I (basic knowledge of rigid body mechanics such as balance of linear and angular momentum, basic knowledge of linear algebra like vector-matrix calculus, basic knowledge of analysis such as differential and integral calculus)


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures.

Skills

Having accomplished this module, the students are able to
- apply the fundamental concepts of mathematical and mechanical modeling and analysis to problems of their choice
- apply the basic methods of elastostatics to problems of engineering, in particular in the design of mechanical structures
- to educate themselves about more advanced aspects of elastostatics

Personal Competence
Social Competence Ability to communicate complex problems in elastostatics, to work out solution to these problems together with others, and to communicate these solutions
Autonomy self-discipline and endurance in tackling independently complex challenges in elastostatics; ability to learn also very abstract knowledge
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L0493: Engineering Mechanics II (Elastostatics)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content

The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on: 

  • basis of continuum mechanics: stress, strain, constitutive laws
  • truss
  • torsion bar
  • beam theory: bending, moment of inertia of area, transverse shear
  • energy methods: Maxwell-Betti reciprocal work theorem, Castigliano's second theorem, theorem of Menabrea
  • strength of materials: maximum principle stress criterion, yield criteria according to Tresca and von Mises
  • stability of mechanical structures: Euler buckling strut
Literature
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 1, Springer
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 2 Elastostatik, Springer


Course L1691: Engineering Mechanics II (Elastostatics)
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron, Dr. Konrad Schneider
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0494: Engineering Mechanics II (Elastostatics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1751: Practical module 2 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 2 (dual study program, Bachelor's degree) (L2880) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 1 as part of the dual Bachelor’s course
  • course A from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … describe their employer’s organisational structure (company) and differentiate between associated regulations that relate to how tasks and competences are distributed, as well as how work processes are handled. 
  • … understand the structure and objectives of the dual study programme and the increasing requirements throughout the course of study.


Skills

Dual students …

  • … use equipment and resources professionally in accordance with the assigned work areas and tasks, and assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … have familiarised themselves with their new working environment (learning environment) and the associated tasks/processes/working relationships. 
  • … know their central points of contact and colleagues, and are integrated into the designated tasks and work areas. 
  • … coordinate work tasks with their professional supervisor and justify procedures and intended results. 
  • … help shape the work in the assigned work area and offer their colleagues support to complete their work or ask for support based on their needs. 
  • … work together with others in interdisciplinary work teams in a result-oriented manner.
Autonomy

Dual students …

  • … structure their work and learning processes within the company independently in line with their responsibilities and authorisations, and coordinate them with their professional supervisor. 
  • … complete work tasks/assignments independently and/or with the support of colleagues. 
  • … coordinate the practical phase with any individual preparation required for the examination phase at TUHH. 
  • … document and reflect on how their foundational subjects link with their work as an engineer.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2880: Practical term 2 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle SoSe
Content

Company onboarding process

  • Assigning work areas (supervisor, colleagues)
  • Assigning a contact person within the company (usually the HR department) 
  • Assigning a professional mentor in the work area (relating to practical application) 
  • Responsibilities and authorisations of the dual student within the company
  • Supporting/working with colleagues
  • Scheduling the relevant practical modules with work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: organisational structure, corporate strategy, business and work areas, work procedures and processes, operational levels
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • Creating an e-portfolio
  • Relevance of foundational subjects when working as an engineer
  • Comparing the learning and working processes of different learning environments with regard to their results and effects
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M1764: Bioprocess Technology I

Courses
Title Typ Hrs/wk CP
Bioprocess Technology I (L2906) Lecture 2 2
Bioprocess Technology I (L2907) Recitation Section (large) 2 2
Bioprocess Technology I - Fundamental Practical Course (L2908) Practical Course 2 2
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Course L2906: Bioprocess Technology I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language DE
Cycle WiSe
Content
Literature
Course L2907: Bioprocess Technology I
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L2908: Bioprocess Technology I - Fundamental Practical Course
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language DE
Cycle WiSe
Content
Literature

Module M0892: Chemical Reaction Engineering

Courses
Title Typ Hrs/wk CP
Chemical Reaction Engineering (Fundamentals) (L0204) Lecture 2 2
Chemical Reaction Engineering (Fundamentals) (L0244) Recitation Section (large) 2 2
Experimental Course Chemical Engineering (Fundamentals) (L0221) Practical Course 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Contents of the previous modules mathematics I-III, physical chemistry, technical thermodynamics I+II as well as computational methods for engineers.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to explain basic concepts of chemical reaction engineering. They are able to point out differences between thermodynamical and kinetical processes. The students have a strong ability to outline parts of isothermal and non-isothermal ideal reactors and to describe their properties.
Skills

After successful completion of the module, students are able to:

- apply different computational methods to dimension isothermal and non-isothermal ideal reactors,

- determine and compute stable operation points for these reactors ,

- conduct experiments on a lab-scale pilot plants and document these according to scientific guidelines.

Personal Competence
Social Competence After successful completition of the lab-course the students have a strong ability to organize themselfes in small groups to solve issues in chemical reaction engineering. The students can discuss their subject related knowledge among each other and with their teachers.
Autonomy The students are able to obtain further information and assess their relevance autonomously. Students can apply their knowldege discretely to plan, prepare and conduct experiments.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0204: Chemical Reaction Engineering (Fundamentals)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE
Cycle WiSe
Content

Fundamentals of chemical reaction engineering, definitions, calculation of species concentrations (reactor, reaction mixture, reactants, products, inerts and solvents, reaction volume, Reaktor volume, chemical reaction, mass, moles, mole fraction, volume, density, molar concentration, mass-concentration, molality, partial pressure, hydrodynamic residence time, space time, extent of reaction, reactor throughput, reactor load, conversion, selectivity, yield, concentration calculations in stationary and flowing multicomponent-mixtures)

Stoichiometry and stoichiometric calculations (simple reactions, complex reactions, key reactions, key species, matrix of stoichiometric coefficients, linear dependent and independent reactions, element-species-matrix, row reduced form of a matrix, rank of a matrix, Gauss Jordan elimination, relation between stoichiometry and kinetics, calculating the extent of reaction from mole number changes in complex reactions)

Thermodynamics (What is thermodynamics?, importance of thermodynamics in chemical reaction engineering, zeroth law of thermodynamics, temperature scales, temperature measurements in praxis, first law of thermodynamics, internal energy, enthalpy, calorimeter, heat of reaction, standard heat of formation, Hess law, heat capacity, Kirchhoff law, standard heat of reaction, pressure dependence of the heat of reaction, second law of thermodynamics, reversible and irreversible processes, entropy, Clausius inequality, free energy, Gibbs Energy, chemical potential, chemical equilibrium, activity, van't Hoff law, calculation of chemical equilibrium, principle of Le Chatelier and Braun, equilibrium calculations in multiple reaction systems, Lagrange Multipliers)

Chemical kinetics (reversible and irreversible reactions, homogeneous and heterogeneous reactions, elementary step, reaction mechanism, microkinetics, macrokinetics, formal kinetics, reaction rate, rate of change of species mole number, Arrhenius-equation, activation energy and pre-exponential factor for komplex reactions, reactions of 0., 1. and 2. order, analytical integration of rate laws, Damköhler-number, differential and integral method of kinetic analysis, laboratory reactors for kinetic measurements, half life, kinetics of complex reactions, parallel reactions, reversible reactions, sequence of reactions, irreversible reaction with pre-equilibrium, reduction of reaction mechanisms, quasi-stationarity principle of Bodenstein, rate limiting step, Michaelis-Menten kinetics, analytical integration of first order differential equations - integrating factor, numerical integration of complex kinetics)

Types of chemical Reaktors (chemical reactors in industry and laboratory, ideal vs. real reaktors, discontinuous, half continuous and continuous reactors, single phase - biphasic- and multiphase reactors, batch-reactor, semi-batch reactor, CSTR, Plug Flow reactor, fixed bed reactor, adiabatic staged reactors, rotating furnaces, fluidized bed reactors, gas-liquid-reactors, multi-phase reactors)

Isothermal ideal reactors (mole-balance of a chemical reactor, mole balance of a batch reactor, integration of the batch reactor mole balance for various kinetics, partial fraction decomposition, mole balance of the semi-batch reactor, mole balance of the plug flow reactor, analogy batch reactor - plug flow reactor, design of plug flow reactors for reactions with volume change and complex reactions, mole balance of a fixed bed reactor, design of a membrane reactor, mole balance of a continuously stirred tank reactor, comparison of CSTR and PFR with respect to conversion and selectivity, mole-balance of a cascade of tank reactors, numerical-interative calculation of a cascade of tank reactors, Newton-Raphson method, graphical analysis of a cascade of tank reactors)

non-isothermal ideal reactors (energy balance of a reactor, adiabatic reactor, adiabatic temperature rise, staged reactor for adiabatic exothermic reactions limited by chemical equilibrium, design of an adiabatic plug flow reactor, Levenspiel-plots, heat transfer through a reactor wall, heat transfer by convection, heat conduction, heat transfer through a cylindrical wall, design of a plug flow reactor in parallel and counter flow, heat balance of the cooling fluid, CSTR with heat exchange, multiple stationary states, ignition-extinction behavior, stability of a CSTR, complex reactions in non-isothermal reactors, optimum temperature profile of a reactor)

Literature

lecture notes Raimund Horn

skript Frerich Keil

Books:

M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

G. Emig, E. Klemm, Technische Chemie, Springer

A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill

G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010

A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH 



Course L0244: Chemical Reaction Engineering (Fundamentals)
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn, Dr. Oliver Korup
Language DE
Cycle WiSe
Content

Fundamentals of chemical reaction engineering, definitions, calculation of species concentrations (reactor, reaction mixture, reactants, products, inerts and solvents, reaction volume, Reaktor volume, chemical reaction, mass, moles, mole fraction, volume, density, molar concentration, mass-concentration, molality, partial pressure, hydrodynamic residence time, space time, extent of reaction, reactor throughput, reactor load, conversion, selectivity, yield, concentration calculations in stationary and flowing multicomponent-mixtures)

Stoichiometry and stoichiometric calculations (simple reactions, complex reactions, key reactions, key species, matrix of stoichiometric coefficients, linear dependent and independent reactions, element-species-matrix, row reduced form of a matrix, rank of a matrix, Gauss Jordan elimination, relation between stoichiometry and kinetics, calculating the extent of reaction from mole number changes in complex reactions)

Thermodynamics (What is thermodynamics?, importance of thermodynamics in chemical reaction engineering, zeroth law of thermodynamics, temperature scales, temperature measurements in praxis, first law of thermodynamics, internal energy, enthalpy, calorimeter, heat of reaction, standard heat of formation, Hess law, heat capacity, Kirchhoff law, standard heat of reaction, pressure dependence of the heat of reaction, second law of thermodynamics, reversible and irreversible processes, entropy, Clausius inequality, free energy, Gibbs Energy, chemical potential, chemical equilibrium, activity, van't Hoff law, calculation of chemical equilibrium, principle of Le Chatelier and Braun, equilibrium calculations in multiple reaction systems, Lagrange Multipliers)

Chemical kinetics (reversible and irreversible reactions, homogeneous and heterogeneous reactions, elementary step, reaction mechanism, microkinetics, macrokinetics, formal kinetics, reaction rate, rate of change of species mole number, Arrhenius-equation, activation energy and pre-exponential factor for komplex reactions, reactions of 0., 1. and 2. order, analytical integration of rate laws, Damköhler-number, differential and integral method of kinetic analysis, laboratory reactors for kinetic measurements, half life, kinetics of complex reactions, parallel reactions, reversible reactions, sequence of reactions, irreversible reaction with pre-equilibrium, reduction of reaction mechanisms, quasi-stationarity principle of Bodenstein, rate limiting step, Michaelis-Menten kinetics, analytical integration of first order differential equations - integrating factor, numerical integration of complex kinetics)

Types of chemical Reaktors (chemical reactors in industry and laboratory, ideal vs. real reaktors, discontinuous, half continuous and continuous reactors, single phase - biphasic- and multiphase reactors, batch-reactor, semi-batch reactor, CSTR, Plug Flow reactor, fixed bed reactor, adiabatic staged reactors, rotating furnaces, fluidized bed reactors, gas-liquid-reactors, multi-phase reactors)

Isothermal ideal reactors (mole-balance of a chemical reactor, mole balance of a batch reactor, integration of the batch reactor mole balance for various kinetics, partial fraction decomposition, mole balance of the semi-batch reactor, mole balance of the plug flow reactor, analogy batch reactor - plug flow reactor, design of plug flow reactors for reactions with volume change and complex reactions, mole balance of a fixed bed reactor, design of a membrane reactor, mole balance of a continuously stirred tank reactor, comparison of CSTR and PFR with respect to conversion and selectivity, mole-balance of a cascade of tank reactors, numerical-interative calculation of a cascade of tank reactors, Newton-Raphson method, graphical analysis of a cascade of tank reactors)

non-isothermal ideal reactors (energy balance of a reactor, adiabatic reactor, adiabatic temperature rise, staged reactor for adiabatic exothermic reactions limited by chemical equilibrium, design of an adiabatic plug flow reactor, Levenspiel-plots, heat transfer through a reactor wall, heat transfer by convection, heat conduction, heat transfer through a cylindrical wall, design of a plug flow reactor in parallel and counter flow, heat balance of the cooling fluid, CSTR with heat exchange, multiple stationary states, ignition-extinction behavior, stability of a CSTR, complex reactions in non-isothermal reactors, optimum temperature profile of a reactor)

Literature

lecture notes Raimund Horn

skript Frerich Keil

Books:

M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

G. Emig, E. Klemm, Technische Chemie, Springer

A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill

G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010

A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH 

Course L0221: Experimental Course Chemical Engineering (Fundamentals)
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE/EN
Cycle SoSe
Content

Performing and evaluation of experiments concerning chemical reaction engineering with emphasis on ideal reactors:

* Batch reactor - Estimation of kinetic parameters for the saponification of ethylacetate

*CSTR - Residence time distribution, reaction

*CSTR in Series - Residence time distribution, reaction

* Plug Flow Reactor - Residence time distribution, reaction

Before the practical conduct of the experiments a colloquium takes place in which the students explain, reflect and discuss the theoretical basics and their translation into practice.

The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course.




Literature

Levenspiel, O.: Chemical reaction engineering; John Wiley & Sons, New York, 3. Ed., 1999 VTM 309(LB)

Praktikumsskript

Skript Chemische Verfahrenstechnik 1 (F.Keil)



Module M0688: Technical Thermodynamics II

Courses
Title Typ Hrs/wk CP
Technical Thermodynamics II (L0449) Lecture 2 4
Technical Thermodynamics II (L0450) Recitation Section (large) 1 1
Technical Thermodynamics II (L0451) Recitation Section (small) 1 1
Module Responsible Prof. Dr. Arne Speerforck
Admission Requirements None
Recommended Previous Knowledge

Elementary knowledge in Mathematics, Mechanics and Technical Thermodynamics I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are familiar with different cycle processes like Joule, Otto, Diesel, Stirling, Seiliger and Clausius-Rankine. They are able to derive energetic and exergetic efficiencies and know the influence different factors. They know the difference between anti clockwise and clockwise cycles (heat-power cycle, cooling cycle). They have increased knowledge of steam cycles and are able to draw the different cycles in Thermodynamics related diagrams. They know the laws of gas mixtures, especially of humid air processes and are able to perform simple combustion calculations. They are provided with basic knowledge in gas dynamics and know the definition of the speed of sound and know about a Laval nozzle.


Skills

Students are able to use thermodynamic laws for the design of technical processes. Especially they are able to formulate energy, exergy- and entropy balances and by this to optimise technical processes. They are able to perform simple safety calculations in regard to an outflowing gas from a tank. They are able to transform a verbal formulated message into an abstract formal procedure.



Personal Competence
Social Competence

The students are able to discuss in small groups and develop an approach. You can answer comprehension questions about the content that are provided in the lecture with the ClickerOnline tool "TurningPoint" after discussions with other students.

Autonomy

Students can physically understand and explain the complex problems (cycle processes, air conditioning processes, combustion processes) set in tasks. They are able to select the methods taught in the lecture and exercise to solve complex problems and apply them independently to different types of tasks.





Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Energy Systems: Technical Complementary Course Core Studies: Elective Compulsory
Engineering Science: Specialisation Mechanical Engineering: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0449: Technical Thermodynamics II
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle WiSe
Content

8. Cycle processes

7. Gas - vapor - mixtures

10. Open sytems with constant flow rates

11. Combustion processes

12. Special fields of Thermodynamics

Literature
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993
Course L0450: Technical Thermodynamics II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0451: Technical Thermodynamics II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Dr. Arne Speerforck
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0853: Mathematics III

Courses
Title Typ Hrs/wk CP
Analysis III (L1028) Lecture 2 2
Analysis III (L1029) Recitation Section (small) 1 1
Analysis III (L1030) Recitation Section (large) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1031) Lecture 2 2
Differential Equations 1 (Ordinary Differential Equations) (L1032) Recitation Section (small) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1033) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I + II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in the area of analysis and differential equations. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in the area of analysis and differential equations with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Course achievement None
Examination Written exam
Examination duration and scale 60 min (Analysis III) + 60 min (Differential Equations 1)
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Digital Mechanical Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory
Course L1028: Analysis III
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of differential and integrational calculus of several variables 

  • Differential calculus for several variables
  • Mean value theorems and Taylor's theorem
  • Maximum and minimum values
  • Implicit functions
  • Minimization under equality constraints
  • Newton's method for multiple variables
  • Double integrals over general regions
  • Line and surface integrals
  • Theorems of Gauß and Stokes
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1029: Analysis III
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1030: Analysis III
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1031: Differential Equations 1 (Ordinary Differential Equations)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of the theory and numerical treatment of ordinary differential equations 

  • Introduction and elementary methods
  • Exsitence and uniqueness of initial value problems
  • Linear differential equations
  • Stability and qualitative behaviour of the solution
  • Boundary value problems and basic concepts of calculus of variations
  • Eigenvalue problems
  • Numerical methods for the integration of initial and boundary value problems
  • Classification of partial differential equations

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1032: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1033: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1497: Measurement Technology for Chemical and Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Practical Course Measurement Technology (L2270) Practical Course 2 2
Measurement Technology (L2268) Lecture 2 2
Physical Fundamentals of Measurement Technology (L2269) Lecture 2 2
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge

Technical interest, logical skills, integral- and differential calculus, basic physical concepts such as temperature, mass, velocity, etc..

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Physical basics: kinematics and dynamics (theory of motion), rotation of rigid bodies, energy and momentum, electricity, magnetism, basics of hydrodynamics, temperature and heat, ideal gas.

Metrology: SI units, measurement and measurement uncertainty, basics of sensor technology, physical principles, temperature measurement, pressure measurement, level measurement, flow measurement. Usage of Matlab scripts.

Practical course: Pressure drop in piping, calorimetry, image data acquisition, flow measurement, concentration measurement and mass transfer, capacitive measurements of solid concentrations, spectroscopy, error calculation, chromatography

Skills

Literature research, categorisation of thematical topics, analysis of an experimental test stand, preparation of test protocol, first programming with Matlab, use of relevant laboratory measurement technology, preparation of a test protocol, execution of calculations.

Personal Competence
Social Competence

Arrangement and division of work in practical training and learning groups, assessment of own level of knowledge, work on the experimental stand in groups, consultation with persons responsible for teaching, presentation of the preparation of the experiment, tolerance of frustration

Autonomy

Time management of the workload, independent development of the thematic basics, personal responsibility for the provision of protective equipment and work clothing, practice of presentation in front of a group, active participation in the lectures, formulation of enquiries/detailed questions by using clicker.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Excercises Popup-Quizzes währen der Vorlesung
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L2270: Practical Course Measurement Technology
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Penn
Language DE
Cycle WiSe
Content

In the Practical Course in Measurement Technology the theory from the lectures "Physical Fundamentals of Measurement Technology" and "Measurement Technology" will be applied in practice. In small groups students learn how to handle different measurement techniques from industry and research. During the practical course, a wide range of different measurement methods will be taught, including the use of HLPC columns for qualitative mass analysis, the determination of mass transfer coefficients using optical oxygen sensors or the evaluation of image data to obtain process parameters. The practical course also teaches how measurement data are statistically evaluated and experiments are correctly documented. 

Literature

Hug, H.: Instrumentelle Analytik. Theorie und Praxis. Verlag Europa-Lehrmittel, Haan-Gruiten, 2015.

Kamke, W.: Der Umgang mit experimentellen Daten, insbesondere Fehleranalyse, im physikalischen Anfänger-Praktikum. Eine elementare Einführung. W. Kamke, Kirchzarten [Keltenring 197], 2010.

Strohrmann, G.: Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. Oldenbourg, München, 2004.

Course L2268: Measurement Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Alexander Penn
Language DE
Cycle WiSe
Content

Basic introduction to measurement technology for process engineers. Includes error calculation, measurement units, calibration, measurement data analysis, measurement techniques and sensors. Particular attention is paid to the measurement of temperature, pressure, flow and level. The lecture provides insights into the latest developments in sensor technology in measurement technology and process engineering.



Literature

Fraden, Jacob (2016): Handbook of Modern Sensors. Physics, Designs, and Applications. 5th ed. 2016. Cham, New York: Springer. Online verfügbar unter http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1081958.

Hering, Ekbert; Schönfelder, Gert (2018): Sensoren in Wissenschaft und Technik. Funktionsweise und Einsatzgebiete. 2. Aufl. 2018. Online verfügbar unter http://dx.doi.org/10.1007/978-3-658-12562-2.

Strohrmann, Günther (2004): Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. 10., durchges. Aufl. München: Oldenbourg.

Tränkler, Hans-Rolf; Reindl, Leonhard M. (2014): Sensortechnik. Handbuch für Praxis und Wissenschaft. 2., völlig neu bearb. Aufl. Berlin: Springer Vieweg (VDI-Buch). Online verfügbar unter http://dx.doi.org/10.1007/978-3-642-29942-1.

Webster, John G.; Eren, Halit B. (2014): Measurement, Instrumentation, and Sensors Handbook, Second Edition. Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement. 2nd ed. Hoboken: Taylor and Francis. Online verfügbar unter http://gbv.eblib.com/patron/FullRecord.aspx?p=1407945.


Course L2269: Physical Fundamentals of Measurement Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Schroer
Language DE
Cycle WiSe
Content

Classical mechanics - kinematics, dynamics, energy, momentum and conservation laws, rigid bodies, translation and rotation, angular momentum.
Mechanics of gases and fluids - hydrostatics and hydrodynamics 
Thermodynamics - temperature, heat, heat transport, ideal gas, changes of state, cyclic processes, laws of thermodynamics
Electricity - electrostatics, electrical conduction, magnetism, Lorentz force, Maxwell's equations (integral form)

Literature Paul A. Tipler, Gene Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum Verlag

D. Meschede (Hrsg.): Gerthsen Physik, Springer-Verlag

Jay Orear: Physik, Hanser Verlag

D. Halliday, R. Resnick, J. Walker: Physik, Wiley VCH

Module M1752: Practical module 3 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 3 (dual study program, Bachelor's degree) (L2881) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 2 as part of the dual Bachelor’s course
  • course B from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … understand the company’s strategic orientation, as well as the functions and organisation of central departments with their decision-making structures, network relationships.
  • … understand the requirements of the engineering profession and correctly estimate the resulting responsibility. 
  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity.


Skills

Dual students …

  • … apply technical theoretical knowledge to current problems in their own area of work, and evaluate work processes and results.
  • … use technology, equipment and resources in accordance with the assigned work areas and tasks, and assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … plan work processes cooperatively, including across work areas. 
  • … communicate professionally with operational stakeholders and present complex issues in a structured, targeted and convincing manner.
Autonomy

Dual students …

  • … assume responsibility for work assignments and areas.
  • … document and reflect on the relevance of subject modules and specialisations for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2881: Practical term 3 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning work area(s)
  • Extending responsibilities and authorisations of the dual student within the company
  • Independent work tasks and areas
  • Participating in project teams
  • Scheduling the relevant practical modules with work tasks
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: strategic direction, organisation of central business and work areas, departments, decision-making structures, network relationships and internal communication
  • Linking facts, principles and theories with practical knowledge
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational technology, equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M1693: Computer Science for Engineers - Programming Concepts, Data Handling & Communication

Courses
Title Typ Hrs/wk CP
Computer Science for Engineers - Programming Concepts, Data Handling & Communication (L2689) Lecture 3 3
Computer Science for Engineers - Programming Concepts, Data Handling & Communication (L2690) Recitation Section (small) 2 3
Module Responsible Prof. Sibylle Fröschle
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills


Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Attestation Testate finden semesterbegleitend statt.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Compulsory
Mechatronics: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory
Course L2689: Computer Science for Engineers - Programming Concepts, Data Handling & Communication
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Sibylle Fröschle
Language DE
Cycle SoSe
Content
Literature

John V. Guttag: Introduction to Computation and Programming Using Python.
With Application to Understanding Data. 2nd Edition. The MIT Press, 2016.

Course L2690: Computer Science for Engineers - Programming Concepts, Data Handling & Communication
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sibylle Fröschle
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0544: Phase Equilibria Thermodynamics

Courses
Title Typ Hrs/wk CP
Phase Equilibria Thermodynamics (L0114) Lecture 2 2
Phase Equilibria Thermodynamics (L0140) Recitation Section (small) 1 2
Phase Equilibria Thermodynamics (L0142) Recitation Section (large) 1 2
Module Responsible Prof. Irina Smirnova
Admission Requirements None
Recommended Previous Knowledge

Mathematics, Physical Chemistry, Thermodynamics I and II


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Starting from the very basics of thermodynamics, the students learn the mathematical tools to describe thermodynamic equilibria.
  • They learn how state variables are influenced by the mixing of compounds and learn concepts to quantitatively describe these properties.
  • Moreover, the students learn how phase equilibria can be described mathematically and which phenomena may occur if different phases (vapor, liquid, solid) coexist in equilibrium. Furthermore the fundamentals of reaction equilibria are taught.
  • For different phase equilibria, several examples relevant for different kinds of processes are shown and the necessary knowledge for plotting and interpreting the equilibria are taught.




Skills
  • Applying their knowledge, the students are able to identify the correct equation for the determination of the equilibrium state and know how to simplify these equations meaningfully.
  • The students know models which can be used to determine the properties of the system in the equilibrium state and they are able to solve the resulting mathematical relations.
  • For specific applications, they are able to self-reliantly find necessary physico-chemical properties of compounds as well as model parameters in literature sources.
  • Beside pure compound properties the students are capable of describing the properties of mixtures.
  • The students know how to visualize phase equilibria graphically and they know how to interpret the occurring phenomena.
  • Based on their knowledge, the students are able to understand fundamental concepts that are the basis for many separation and reaction processes in chemical engineering.


Personal Competence
Social Competence The students are able to work in small groups, to solve the corresponding problems and to present them oraly to the tutors and other students
Autonomy
  • The students are able to find necessary information self-reliantly in literature sources and to judge their quality.
  • During the semester the students are able to check their learning progress continuously in exercises. Based on this knowledge the students can adept their learning process.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes; theoretical questions and calculations
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0114: Phase Equilibria Thermodynamics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Irina Smirnova
Language DE
Cycle SoSe
Content


  1. Introduction: Applications of thermodynamics of mixtures
  2. Thermodynamic equations in multi-component systems: Fundamental equations, chemical potential, fugacity
  3. Phase equilibria of pure substances: thermodynamic equilibrium, vapor pressure, Gibbs’ phase rule
  4. Equations of state: virial equations, van-der-Waals equation, generalized equations of state
  5. Mixing properties: ideal and real mixtures, excess properties, partial molar properties
  6. Vapor-liquid-equilibria: binary systems, azeotropes, equilibrium condition
  7. Gas-liquid-equilibria: equilibrium condition, Henry-coefficient
  8. GE-Models: Hildebrand-model, Flory-Huggins-model, Wilson-model, UNIQUAC, UNIFAC
  9. Liquid-liquid-equilibria: equilibrium condition, phase equilibria in binary and ternary systems
  10. Solid-liquid-equilibria: equilibrium condition, binary systems
  11. Chemical reactions: reaction coordinate, mass action law, influence of pressure and temperature
  12. Osmotic pressure
Literature
  • Jürgen Gmehling, Bärbel Kolbe: Thermodynamik. VCH 1992
  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed. Prentice Hall, 1999.
  • J.W. Tester, M. Modell: Thermodynamics and its Applications. 3rd ed. Prentice Hall, 1997.J.P. O´Connell, J.M. Haile: Thermodynamics. Cambridge University Press, 2005.




Course L0140: Phase Equilibria Thermodynamics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE
Cycle SoSe
Content
  1. Introduction: Applications of thermodynamics of mixtures
  2. Thermodynamic equations in multi-component systems: Fundamental equations, chemical potential, fugacity
  3. Phase equilibria of pure substances: thermodynamic equilibrium, vapor pressure, Gibbs’ phase rule
  4. Equations of state: virial equations, van-der-Waals equation, generalized equations of state
  5. Mixing properties: ideal and real mixtures, excess properties, partial molar properties
  6. Vapor-liquid-equilibria: binary systems, azeotropes, equilibrium condition
  7. Gas-liquid-equilibria: equilibrium condition, Henry-coefficient
  8. GE-Models: Hildebrand-model, Flory-Huggins-model, Wilson-model, UNIQUAC, UNIFAC
  9. Liquid-liquid-equilibria: equilibrium condition, phase equilibria in binary and ternary systems
  10. Solid-liquid-equilibria: equilibrium condition, binary systems
  11. Chemical reactions: reaction coordinate, mass action law, influence of pressure and temperature
  12. Osmotic pressure

The students work on tasks in small groups and present their results in front of all students.

Literature
  • Jürgen Gmehling, Bärbel Kolbe: Thermodynamik. VCH 1992
  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed. Prentice Hall, 1999.
  • J.W. Tester, M. Modell: Thermodynamics and its Applications. 3rd ed. Prentice Hall, 1997.J.P. O´Connell, J.M. Haile: Thermodynamics. Cambridge University Press, 2005.



Course L0142: Phase Equilibria Thermodynamics
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE
Cycle SoSe
Content
  1. Introduction: Applications of thermodynamics of mixtures
  2. Thermodynamic equations in multi-component systems: Fundamental equations, chemical potential, fugacity
  3. Phase equilibria of pure substances: thermodynamic equilibrium, vapor pressure, Gibbs’ phase rule
  4. Equations of state: virial equations, van-der-Waals equation, generalized equations of state
  5. Mixing properties: ideal and real mixtures, excess properties, partial molar properties
  6. Vapor-liquid-equilibria: binary systems, azeotropes, equilibrium condition
  7. Gas-liquid-equilibria: equilibrium condition, Henry-coefficient
  8. GE-Models: Hildebrand-model, Flory-Huggins-model, Wilson-model, UNIQUAC, UNIFAC
  9. Liquid-liquid-equilibria: equilibrium condition, phase equilibria in binary and ternary systems
  10. Solid-liquid-equilibria: equilibrium condition, binary systems
  11. Chemical reactions: reaction coordinate, mass action law, influence of pressure and temperature
  12. Osmotic pressure


Literature
  • Jürgen Gmehling, Bärbel Kolbe: Thermodynamik. VCH 1992
  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed. Prentice Hall, 1999.
  • J.W. Tester, M. Modell: Thermodynamics and its Applications. 3rd ed. Prentice Hall, 1997.J.P. O´Connell, J.M. Haile: Thermodynamics. Cambridge University Press, 2005.


Module M0536: Fundamentals of Fluid Mechanics

Courses
Title Typ Hrs/wk CP
Fundamentals of Fluid Mechanics (L0091) Lecture 2 2
Fundamentals on Fluid Mechanics (L2933) Recitation Section (small) 2 2
Fluid Mechanics for Process Engineering (L0092) Recitation Section (large) 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I+II+III
  • Technical Mechanics I+II
  • Technical Thermodynamics I+II
  • Working with force balances
  • Simplification and solving of partial differential equations
  • Integration
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • explain the difference between different types of flow
  • give an overview for different applications of the Reynolds Transport-Theorem in process engineering
  • explain simplifications of the Continuity- and Navier-Stokes-Equation by using physical boundary conditions
Skills

The students are able to

  • describe and model incompressible flows mathematically
  • reduce the governing equations of fluid mechanics by simplifications to archive quantitative solutions e.g. by integration
  • notice the dependency between theory and technical applications
  • use the learned basics for fluid dynamical applications in fields of process engineering 
Personal Competence
Social Competence

The students

  • are capable to gather information from subject related, professional publications and relate that information to the context of the lecture and
  • able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during small group exercises)
  • are able to work out solutions for exercises by themselves, to discuss the solutions orally and to present the results.
Autonomy

The students are able to

  • search further literature for each topic and to expand their knowledge with this literature,
  • work on their exercises by their own and to evaluate their actual knowledge with the feedback.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 5 % Midterm
Examination Written exam
Examination duration and scale 3 hours
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Course L0091: Fundamentals of Fluid Mechanics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle SoSe
Content
  • fluid properties
  • hydrostatic
  • overall balances - theory of streamline
  • overall balances- conservation equations
  • differential balances - Navier Stokes equations
  • irrotational flows - Potenzialströmungen
  • flow around bodies - theory of physical similarity
  • turbulent flows
  • compressible flows
Literature
  1. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  2. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  3. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994
  4. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006
  5. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008
  6. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  7. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2009
  8. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007
  9. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008
  10. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006
  11. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.
  12. White, F.: Fluid Mechanics, Mcgraw-Hill, ISBN-10: 0071311211, ISBN-13: 978-0071311212, 2011
Course L2933: Fundamentals on Fluid Mechanics
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle SoSe
Content

In the group exercise, the contents of the lecture are taken up and deepened by means of exercises. The exercise tasks correspond in quality and scope to the tasks of the written exam. Topics: Reynolds transport-theorem, pipe flow, free jet, angular momentum, Navier-Stokes equations, potential theory, mock exam, pipe hydraulics, pump design.

Literature

Heinz Herwig: Strömungsmechanik, Eine Einführung in die Physik und die mathematische Modellierung von Strömungen, Springer Verlag, Berlin, 978-3-540-32441-6 (ISBN)

Herbert Oertel, Martin Böhle, Thomas Reviol: Strömungsmechanik für Ingenieure und Naturwissenschaftler, Springer Verlag, Berlin, ISBN: 978-3-658-07786-0

Joseph Spurk, Nuri Aksel: Strömungslehre, Einführung in die Theorie der Strömungen, Springer Verlag, Berlin, ISBN: 978-3-642-13143-1.

Course L0092: Fluid Mechanics for Process Engineering
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle SoSe
Content

In the exercise-lecture the topics from the main lecture are discussed intensively and transferred into application. For that, the students receive example tasks for download. The students solve these problems based on the lecture material either independently or in small groups. The solution is discussed with the students under scientific supervision and parts of the solutions are presented on the chalk board. At the end of each exercise-lecture, the correct solution is presented on the chalk board. Parallel to the exercise-lecture tutorials are held where the student solve exam questions under a set time-frame in small groups and discuss the solutions afterwards.

  

Literature
  1. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  2. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  3. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994
  4. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006
  5. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008
  6. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  7. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2009
  8. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007
  9. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008
  10. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006
  11. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.
  12. White, F.: Fluid Mechanics, Mcgraw-Hill, ISBN-10: 0071311211, ISBN-13: 978-0071311212, 2011

Module M1753: Practical module 4 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 4 (dual study program, Bachelor's degree) (L2882) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 3 as part of the dual Bachelor’s course
  • course B from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … understand the company’s strategic orientation, as well as the functions and organisation of central departments with their decision-making structures, network relationships, and relevant company communication.
  • … have developed an understanding of the requirements and responsibilities of the engineering profession, know the scope and limits of the professional field of activity. 
  • … can combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity.


Skills

Dual students …

  • … apply technical theoretical knowledge to current problems in their own field of work, and evaluate work processes and results, taking into account different possible courses of action.
  • … use technology, equipment and resources in accordance with the assigned work areas and tasks, and can assess operational processes and procedures with regard to the intended work results/objectives.
  • … implement the university’s application recommendations in relation to their current tasks.
Personal Competence
Social Competence

Dual students …

  • … are able to plan work processes cooperatively, across work areas and in heterogeneous groups.
  • … communicate professionally with operational stakeholders and present complex issues in a structured, targeted and convincing manner.
Autonomy

Dual students …

  • … assume responsibility for work assignments and areas, and coordinate the associated work processes.
  • … document and reflect on the relevance of subject modules and specialisations for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2882: Practical term 4 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle SoSe
Content

Company onboarding process

  • Assigning work area(s)
  • Extending responsibilities and authorisations of the dual student within the company
  • Independent work tasks and areas
  • Participating in project teams
  • Scheduling the relevant practical module 
  • Theory/practice transfer options
  • Scheduling the examination phase/subsequent study semester

Operational knowledge and skills

  • Company-specific: strategic direction, organisation of central business and work areas, departments, decision-making structures, network relationships and internal communication
  • Linking facts, principles and theories with practical knowledge
  • Process and procedure options within the labour-market-relevant field of engineering
  • Operational technology, equipment and resources
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer 
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M1775: Economic and environmental project assessment

Courses
Title Typ Hrs/wk CP
Case studies project assessment (L1054) Recitation Section (small) 1 1
Environmental Assessment (L0860) Lecture 2 2
Economic basics (L2918) Lecture 2 3
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Course L1054: Case studies project assessment
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt, Dozenten des SD V
Language DE
Cycle WiSe
Content

Presentation and application of free software programs in order to understand  the concepts of environmental assessment methods better.

Within the group exercise students discuss the various technical and scientific tasks, both subject-specific and multidisciplinary. They discuss different approaches to the task as well as it's theoretical or practical implementation.

Literature

Power point Präsentationen


Course L0860: Environmental Assessment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Anne Rödl, Dr. Christoph Hagen Balzer
Language DE/EN
Cycle WiSe
Content

Contaminants:  Impact- and Risk Assessment

Environmental damage  & precautionary principle: Environmental Risk Assessment  (ERA)

Resource  and water consumption: Material flow analysis

Energy consumption: Cumulated energy demand (CED), cost analysis

Life cycle concept: Life cycle assessment (LCA)

Sustainability:  Comprehensive product system assessment , SEE-Balance

Management:  Environmental and Sustainability management (EMAS)

Complex systems: MCDA and scenario method


Literature

Foliensätze der Vorlesung

Studie: Instrumente zur Nachhaltigkeitsbewertung - Eine Synopse (Forschungszentrum Jülich GmbH)


Course L2918: Economic basics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Justus Kellner
Language DE
Cycle WiSe
Content
Literature

Module M0546: Thermal Separation Processes

Courses
Title Typ Hrs/wk CP
Thermal Separation Processes (L0118) Lecture 2 2
Thermal Separation Processes (L0119) Recitation Section (small) 2 2
Thermal Separation Processes (L0141) Recitation Section (large) 1 1
Separation Processes (L1159) Practical Course 1 1
Module Responsible Prof. Irina Smirnova
Admission Requirements None
Recommended Previous Knowledge Recommended requirements: Thermodynamics III


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can distinguish and describe different types of separation processes such as distillation, extraction, and adsorption
  • The students develop an understanding for the course of concentration during a separation process, the estimation of the energy demand of a process, the possibilities of energy saving, and the selection of separation systems
  • They have good knowledge of designing methods for separation processes and devices



Skills
  • Using the gained knowledge the students can select a reasonable system boundary for a given separation process and can close the associated energy and material balances
  • The students can use different graphical methods for the designing of a separation process and define the amount of theoretical stages required
  • They can select and design a basic type of thermal separation process for a given case based on the advantages and disadvantages of the process
  • The students are capable to obtain independently the needed material properties from appropriate sources (diagrams and tables)
  • They can calculate continuous and discontinuous processes
  • The students are able to prove their theoretical knowledge in the experimental lab work.
  • The students are able to discuss the theoretical background and the content of the experimental work with the teachers in colloquium.

The students are capable of linking their gained knowledge with the content of other lectures and use it together for the solution of technical problems. Other lectures such as thermodynamics, fluid mechanics and chemical engineering.


Personal Competence
Social Competence
  • The students can work technical assignments in small groups and present the combined results in the tutorial

  • The students are able to carry out practical lab work in small groups and organize a functional division of labor between them. They are able to discuss their results and to document them scientifically in a report.
Autonomy
  • The students are capable to obtain the needed information from suitable sources by themselves and assess their quality
  • The students can proof the state of their knowledge with exam resembling assignments and in this way control their learning process


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes; theoretical questions and calculations
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0118: Thermal Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content
  • Introduction in the thermal process engineering and to the main features of separation processes
  • Simple equilibrium processes, several steps processes
  • Distillation of binary mixtures, enthalpy-concentration diagrams
  • Extractive and azeotrope distillation, water vapor distillation, stepwise distillation
  • Extraction: separation ternary systems, ternary diagram
  • Multiphase separation including complex mixtures
  • Designing of separation devices without discrete stages
  • Drying
  • Chromatographic separation processes
  • Membrane separation
  • Energy demand of separation processes
  • Advance overview of separation processes
  • Selection of separation processes


Literature
  • G. Brunner: Skriptum Thermische Verfahrenstechnik
  • J. King: Separation Processes, McGraw-Hill, 2. Aufl. 1980
  • Sattler: Thermische Trennverfahren, VCH, Weinheim 1995
  • J.D. Seader, E.J. Henley: Separation Process Principles, Wiley, New York, 1998.
  • Mersmann: Thermische Verfahrenstechnik, Springer, 1980
  • Grassmann, Widmer, Sinn: Einführung in die Thermische Verfahrenstechnik, 3. Aufl., Walter de Gruyter, Berlin 1997
  • Brunner, G.: Gas extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt; Springer, New York; 1994. ISBN 3-7985-0944-1 ; ISBN 0-387-91477-3 .
  • R. Goedecke (Hrsg.): Fluid-Verfahrenstechnik, Wiley-VCH Verlag, Weinheim, 2006.
    • Perry"s Chemical Engineers" Handbook, R.H. Perry, D.W. Green, J.O. Maloney (Hrsg.), 6th ed., McGraw-Hill, New York 1984 Ullmann"s Enzyklopädie der Technischen Chemie


Course L0119: Thermal Separation Processes
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content
  • Introduction in the thermal process engineering and to the main features of separation processes
  • Simple equilibrium processes, several steps processes
  • Distillation of binary mixtures, enthalpy-concentration diagrams
  • Extractive and azeotrope distillation, water vapor distillation, stepwise distillation
  • Extraction: separation ternary systems, ternary diagram
  • Multiphase separation including complex mixtures
  • Designing of separation devices without discrete stages
  • Drying
  • Chromatographic separation processes
  • Membrane separation
  • Energy demand of separation processes
  • Advance overview of separation processes
  • Selection of separation processes

The students work on tasks in small groups and present their results in front of all students.

Literature
  • G. Brunner: Skriptum Thermische Verfahrenstechnik
  • J. King: Separation Processes, McGraw-Hill, 2. Aufl. 1980
  • Sattler: Thermische Trennverfahren, VCH, Weinheim 1995
  • J.D. Seader, E.J. Henley: Separation Process Principles, Wiley, New York, 1998.
  • Mersmann: Thermische Verfahrenstechnik, Springer, 1980
  • Grassmann, Widmer, Sinn: Einführung in die Thermische Verfahrenstechnik, 3. Aufl., Walter de Gruyter, Berlin 1997
  • Brunner, G.: Gas extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt; Springer, New York; 1994. ISBN 3-7985-0944-1 ; ISBN 0-387-91477-3 .
  • R. Goedecke (Hrsg.): Fluid-Verfahrenstechnik, Wiley-VCH Verlag, Weinheim, 2006.
  • Perry"s Chemical Engineers" Handbook, R.H. Perry, D.W. Green, J.O. Maloney (Hrsg.), 6th ed., McGraw-Hill, New York 1984 Ullmann"s Enzyklopädie der Technischen Chemie


Course L0141: Thermal Separation Processes
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content
  • Introduction in the thermal process engineering and to the main features of separation processes
  • Simple equilibrium processes, several steps processes
  • Distillation of binary mixtures, enthalpy-concentration diagrams
  • Extractive and azeotrope distillation, water vapor distillation, stepwise distillation
  • Extraction: separation ternary systems, ternary diagram
  • Multiphase separation including complex mixtures
  • Designing of separation devices without discrete stages
  • Drying
  • Chromatographic separation processes
  • Membrane separation
  • Energy demand of separation processes
  • Advance overview of separation processes
  • Selection of separation processes


Literature
  • G. Brunner: Skriptum Thermische Verfahrenstechnik
  • J. King: Separation Processes, McGraw-Hill, 2. Aufl. 1980
  • Sattler: Thermische Trennverfahren, VCH, Weinheim 1995
  • J.D. Seader, E.J. Henley: Separation Process Principles, Wiley, New York, 1998.
  • Mersmann: Thermische Verfahrenstechnik, Springer, 1980
  • Grassmann, Widmer, Sinn: Einführung in die Thermische Verfahrenstechnik, 3. Aufl., Walter de Gruyter, Berlin 1997
  • Brunner, G.: Gas extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt; Springer, New York; 1994. ISBN 3-7985-0944-1 ; ISBN 0-387-91477-3 .
  • R. Goedecke (Hrsg.): Fluid-Verfahrenstechnik, Wiley-VCH Verlag, Weinheim, 2006.
  • Perry"s Chemical Engineers" Handbook, R.H. Perry, D.W. Green, J.O. Maloney (Hrsg.), 6th ed., McGraw-Hill, New York 1984 Ullmann"s Enzyklopädie der Technischen Chemie


Course L1159: Separation Processes
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE/EN
Cycle WiSe
Content

The students work on eight different experiments in this practical course. For every one of the eight experiments, a colloquium takes place in which the students explain and discuss the theoretical background and its translation into practice with staff and fellow students.

The students work small groups with a high degree of division of labor. For every experiment, the students write a report. They receive instructions in terms of scientific writing as well as feedback on their own reports and level of scientific writing so they can increase their capabilities in this area.

Topics of the practical course:

  • Introduction in the thermal process engineering and to the main features of separation processes
  • Simple equilibrium processes, several steps processes
  • Distillation of binary mixtures, enthalpy-concentration diagrams
  • Extractive and azeotrope distillation, water vapor distillation, stepwise distillation
  • Extraction: separation ternary systems, ternary diagram
  • Multiphase separation including complex mixtures
  • Designing of separation devices without discrete stages
  • Drying
  • Chromatographic separation processes
  • Membrane separation
  • Energy demand of separation processes
  • Advance overview of separation processes
  • Selection of separation processes


Literature
  • G. Brunner: Skriptum Thermische Verfahrenstechnik
  • J. King: Separation Processes, McGraw-Hill, 2. Aufl. 1980
  • Sattler: Thermische Trennverfahren, VCH, Weinheim 1995
  • J.D. Seader, E.J. Henley: Separation Process Principles, Wiley, New York, 1998.
  • Mersmann: Thermische Verfahrenstechnik, Springer, 1980
  • Grassmann, Widmer, Sinn: Einführung in die Thermische Verfahrenstechnik, 3. Aufl., Walter de Gruyter, Berlin 1997
  • Brunner, G.: Gas extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt; Springer, New York; 1994. ISBN 3-7985-0944-1 ; ISBN 0-387-91477-3 .
  • R. Goedecke (Hrsg.): Fluid-Verfahrenstechnik, Wiley-VCH Verlag, Weinheim, 2006.
  • Perry"s Chemical Engineers" Handbook, R.H. Perry, D.W. Green, J.O. Maloney (Hrsg.), 6th ed., McGraw-Hill, New York 1984 Ullmann"s Enzyklopädie der Technischen Chemie


Module M0538: Heat and Mass Transfer

Courses
Title Typ Hrs/wk CP
Heat and Mass Transfer (L0101) Lecture 2 2
Heat and Mass Transfer (L0102) Recitation Section (small) 1 2
Heat and Mass Transfer (L1868) Recitation Section (large) 1 2
Module Responsible Prof. Irina Smirnova
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge: Technical Thermodynamics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students are capable of explaining qualitative and determining quantitative heat transfer in procedural apparatus (e. g. heat exchanger, chemical reactors).
  • They are capable of distinguish and characterize different kinds of heat transfer mechanisms namely heat conduction, heat transfer and thermal radiation.
  • The students have the ability to explain the physical basis for mass transfer in detail and to describe mass transfer qualitative and quantitative by using suitable mass transfer theories.
  • They are able to depict the analogy between heat- and mass transfer and to describe complex linked processes in detail.



Skills
  • The students are able to set reasonable system boundaries for a given transport problem by using the gained knowledge and to balance the corresponding energy and mass flow, respectively.
  • They are capable to solve specific heat transfer problems (e.g. heated chemical reactors, temperature alteration in fluids) and to calculate the corresponding heat flows.
  • Using dimensionless quantities, the students can execute scaling up of technical processes or apparatus.
  • They are able to distinguish between diffusion, convective mass transition and mass transfer. They can use this knowledge for the description and design of apparatus (e.g. extraction column, rectification column).
  • In this context, the students are capable to choose and design fundamental types of heat and mass exchanger for a specific application considering their advantages and disadvantages, respectively.
  • In addition, they can calculate both, steady-state and non-steady-state processes in procedural apparatus.
  •  The students are capable to connect their knowledge obtained in this course  with knowlegde of other courses (In particular the courses thermodynamics, fluid mechanics and chemical process engineering) to solve concrete technical problems.


Personal Competence
Social Competence
  • The students are capable to work on subject-specific challenges in teams and to present the results orally in a reasonable manner to tutors and other students.


Autonomy
  • The students are able to find and evaluate necessary information from suitable sources
  • They are able to prove their level of knowledge during the course with accompanying procedure continuously (clicker-system, exam-like assignments) and on this basis they can control their learning processes.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 minutes; theoretical questions and calculations
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0101: Heat and Mass Transfer
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content
  1. Heat transfer
    • Introduction, one-dimensional heat conduction
    • Convective heat transfer
    • Multidimensional heat conduction
    • Non-steady heat conduction
    • Thermal radiation
  2. Mass transfer
    • one-way diffusion, equimolar countercurrent diffusion
    • boundary layer theory, non-steady mass transfer
    • Heat and mass transfer single particle/ fixed bed
    • Mass transfer and chemical reactions

Literature
  1. H.D. Baehr und K. Stephan: Wärme- und Stoffübertragung, Springer
  2. VDI-Wärmeatlas



Course L0102: Heat and Mass Transfer
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1868: Heat and Mass Transfer
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Irina Smirnova
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0833: Introduction to Control Systems

Courses
Title Typ Hrs/wk CP
Introduction to Control Systems (L0654) Lecture 2 4
Introduction to Control Systems (L0655) Recitation Section (small) 2 2
Module Responsible Prof. Herbert Werner
Admission Requirements None
Recommended Previous Knowledge

Representation of signals and systems in time and frequency domain, Laplace transform


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can represent dynamic system behavior in time and frequency domain, and can in particular explain properties of first and second order systems
  • They can explain the dynamics of simple control loops and interpret dynamic properties in terms of frequency response and root locus
  • They can explain the Nyquist stability criterion and the stability margins derived from it.
  • They can explain the role of the phase margin in analysis and synthesis of control loops
  • They can explain the way a PID controller affects a control loop in terms of its frequency response
  • They can explain issues arising when controllers designed in continuous time domain are implemented digitally
Skills
  • Students can transform models of linear dynamic systems from time to frequency domain and vice versa
  • They can simulate and assess the behavior of systems and control loops
  • They can design PID controllers with the help of heuristic (Ziegler-Nichols) tuning rules
  • They can analyze and synthesize simple control loops with the help of root locus and frequency response techniques
  • They can calculate discrete-time approximations of controllers designed in continuous-time and use it for digital implementation
  • They can use standard software tools (Matlab Control Toolbox, Simulink) for carrying out these tasks
Personal Competence
Social Competence Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs
Autonomy

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Data Science: Core Qualification: Elective Compulsory
Data Science: Specialisation II. Application: Elective Compulsory
Electrical Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Integrated Building Technology: Core Qualification: Elective Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory
Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory
Course L0654: Introduction to Control Systems
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content

Signals and systems

  • Linear systems, differential equations and transfer functions
  • First and second order systems, poles and zeros, impulse and step response
  • Stability

Feedback systems

  • Principle of feedback, open-loop versus closed-loop control
  • Reference tracking and disturbance rejection
  • Types of feedback, PID control
  • System type and steady-state error, error constants
  • Internal model principle

Root locus techniques

  • Root locus plots
  • Root locus design of PID controllers

Frequency response techniques

  • Bode diagram
  • Minimum and non-minimum phase systems
  • Nyquist plot, Nyquist stability criterion, phase and gain margin
  • Loop shaping, lead lag compensation
  • Frequency response interpretation of PID control

Time delay systems

  • Root locus and frequency response of time delay systems
  • Smith predictor

Digital control

  • Sampled-data systems, difference equations
  • Tustin approximation, digital implementation of PID controllers

Software tools

  • Introduction to Matlab, Simulink, Control toolbox
  • Computer-based exercises throughout the course
Literature
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010
Course L0655: Introduction to Control Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1754: Practical module 5 (dual study program, Bachelor's degree)

Courses
Title Typ Hrs/wk CP
Practical term 5 (dual study program, Bachelor's degree) (L2883) 0 6
Module Responsible Dr. Henning Haschke
Admission Requirements None
Recommended Previous Knowledge
  • Successful completion of practical module 4 as part of the dual Bachelor’s course
  • course C from the module on interlinking theory and practice as part of the dual Bachelor’s course
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students …

  • … combine their knowledge of facts, principles, theories and methods gained from previous study content with acquired practical knowledge - in particular their knowledge of practical professional procedures and approaches, in the current field of activity. 
  • … have a critical understanding of the practical applications of their engineering subject.


Skills

Dual students …

  • … apply technical theoretical knowledge to complex, interdisciplinary problems within the company, and evaluate the associated work processes and results, taking into account different possible courses of action.
  • … implement the university’s application recommendations with regard to their current tasks. 
  • … develop new solutions as well as procedures and approaches in their field of activity and area of responsibility - including in the case of frequently changing requirements (systemic skills).
  • … are able to analyse and evaluate operational issues using academic methods.
Personal Competence
Social Competence

Dual students …

  • … work responsibly in operational project teams and proactively deal with problems within their team.
  • … represent complex engineering viewpoints, facts, problems and solution approaches in discussions with internal and external stakeholders and develop these further together.
Autonomy

Dual students …

  • … define goals for their own learning and working processes as engineers.
  • … document and reflect on learning and work processes in their area of responsibility.
  • … document and reflect on the relevance of subject modules, specialisations and research for work as an engineer, as well as the implementation of the university’s application recommendations and the associated challenges of a positive transfer of knowledge between theory and practice.
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase.
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Core Qualification: Compulsory
Civil- and Environmental Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Computer Science: Core Qualification: Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Core Qualification: Compulsory
Mechatronics: Core Qualification: Compulsory
Naval Architecture: Core Qualification: Compulsory
Technomathematics: Core Qualification: Compulsory
Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory
Course L2883: Practical term 5 (dual study program, Bachelor's degree)
Typ
Hrs/wk 0
CP 6
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Lecturer Dr. Henning Haschke
Language DE
Cycle WiSe
Content

Company onboarding process

  • Assigning a future professional field of activity as an engineer (B.Sc.) and associated areas of work
  • Extending responsibilities and authorisations of the dual student within the company up to the intended first assignment after completing their studies or to the assignment completed during the subsequent dual Master’s course
  • Taking personal responsibility within a team - in their own area of responsibility and across departments
  • Scheduling the final practical module with a clear correlation to work structures 
  • Internal agreement on a potential topic for the Bachelor’s dissertation
  • Planning the Bachelor’s dissertation within the company in cooperation with TU Hamburg  
  • Scheduling the examination phase/sixth study semester

Operational knowledge and skills

  • Company-specific: dealing with change, team development, responsibility as an engineer in their own future field of work (B.Sc.), dealing with complex contexts and unresolved problems, developing and implementing innovative solutions
  • Specialising in one field of work (final dissertation)
  • Systemic skills
  • Implementing the university’s application recommendations (theory-practice transfer) in corresponding work and task areas across the company 

Sharing/reflecting on learning

  • E-portfolio
  • Relevance of subject modules and specialisations when working as an engineer
  • Importance of research and innovation when working as an engineer 
  • University application recommendations for transferring knowledge between theory and practice
Literature
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Module M0539: Process and Plant Engineering I

Courses
Title Typ Hrs/wk CP
Process and Plant Engineering I (L0095) Lecture 2 4
Process and Plant Engineering I (L0096) Recitation Section (large) 1 1
Process and Plant Engineering I (L1214) Recitation Section (small) 1 1
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

unit operation of thermal an dmechanical separation processes

chemical reactor eingineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

classify and formulate blobal balance equations of chemical processes

specify linear component equations of complex chemical processes

explain linear regression and data reconcilliation problems

explain pfd-diagrams

Skills

students are capable of

- formulation of mass and energy balance equations and estimation of product streams

- estimation of component streams of chemical plants using linear component balance models

- solution of data reconcilliation tasks

- conduction of process synthesis

- economic evaluation of processes and the estimation of production costs

Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 Min. lectures notes and books
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0095: Process and Plant Engineering I
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle SoSe
Content
  1. Introduction
    Structure and operation of production plants
    Operational business process
    Technical process design
    Motivation and targets of process development
    Life cycle of production plants
  2. Engineering methods and tools
    Mass and energy balances
    Strategies of  process synthesis
    Graphical representation of processes
    Multidimensional regression
    Data reconciliation and data validation
  3. Process Synthesis
    Decision levels
    Experimental process development
    Reactor synthesis
    Synthesis of separation processes (process alternatives and criteria for selection)
    Integration of reaction systems/separation systems (interactions, recycle streams)
  4. Process safety
  5. Cost estimation of production plants
    Production costs, capital costs, economic evaluation


Literature

S.D. Barnicki, J.R. Fair, Ind. End. Chem., 29(1990), S. 421, Ind. End. Chem., 31(1992), S. 1679

H. Becker, S. Godorr, H. Kreis, Chemical Engineering, January 2001, S. 68-74

Behr, W. Ebbers, N. Wiese, Chem. -Ing.-Tech. 72(2000)Nr. 10, S.1157

E. Blass, Entwicklung verfahrenstechnischer Prozesse, Springer-Verlag, 2. Auflage 1997

M. H. Bauer, J. Stichlmair, Chem.-Ing.-Tech., 68(1996), Nr. 8, 911-916

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik. Prozesse und Produkte,

     Band 2, Neue Technologien, 5. Auflage, Wiley-VCH GmbH&Co.KGaA, Weinheim, 2004

J.M. Douglas, Conceptual Design of Chemical Processes, Mc Graw-Hill, NY, 1988

G. Fieg, Inz. Chem. Proc., 5(1979), S.15-19

G. Fieg, G. Wozny, L. Jeromin, Chem. Eng. Technol. 17(1994),5, 301-306

G. Fieg, Heat and Mass Transfer 32(1996), S. 205-213

G. Fieg, Chem. Eng. Processing, Vol. 41/2(2001), S. 123-133

U.H. Felcht, Chemie eine reife Industrie oder weiterhin Innovationsmotor, Universitätsbuchhandlung Blazek und Bergamann, Frankfurt, 2000

J.P. van Gigch, Systems Design, Modeling and Metamodeling, Plenum Press, New York, 1991

T.F. Edgar, D.M. Himmelblau, L.S. Lasdon, Optimization of Chemical Processes, McGraw-Hill, 2001

G. Gruhn, Vorlesungsmanuskript „Prozess- und Anlagentechnik, TU Hamburg-Harburg

D. Hairston, Chemical Engineering, October 2001, S. 31-37

J.L.A. Koolen, Design of Simple and Robust Process Plants, Wiley-VCH, Weinheim, 2002

J. Krekel, G. Siekmann, Chem. -Ing.-Tech. 57(1985)Nr. 6, S. 511

K. Machej, G. Fieg, J. Wojcik, Inz. Chem. Proc., 2(1981), S.815-824

S. Meier, G. Kaibel, Chem. -Ing.-Tech. 62(1990)Nr. 13, S.169

J. Mittelstraß, Chem. -Ing.-Tech. 66(1994), S. 309

P. Li, M. Flender, K. Löwe, G. Wozny, G. Fieg, Fett/Lipid 100(1998), Nr. 12, S. 528-534

G. Kaibel, Dissertation, TU München, 1987

G. Kaibel, Chem.-Ing.-Tech. 61 (1989), Nr. 2, S. 104-112

G. Kaibel, Chem. Eng. Technol., 10(1987), Nr. 2, S. 92-98

H.J. Lang, Chem. Eng. 54(10),117, 1947

H.J. Lang, Chem. Eng. 55(6), 112, 1948

F. Lestak, C. Collins, Chemical Engineering, July 1997, S. 72-76

Course L0096: Process and Plant Engineering I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1214: Process and Plant Engineering I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0670: Particle Technology and Solids Process Engineering

Courses
Title Typ Hrs/wk CP
Particle Technology I (L0434) Lecture 2 3
Particle Technology I (L0435) Recitation Section (small) 1 1
Particle Technology I (L0440) Practical Course 2 2
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge keine
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • name and explain  processes and unit-operations of solids process engineering,
  • characterize particles, particle distributions and to discuss their bulk properties


Skills

Students are able to

  • choose and design apparatuses and processes for solids processing according to the desired solids properties of the product
  • asses solids with respect to their behavior in solids processing steps
  • document their work scientifically.
Personal Competence
Social Competence The students are able to discuss scientific topics orally with other students or scientific personal and to develop solutions for technical-scientific issues in a group.
Autonomy

Students are able to analyze and solve questions regarding solid particles independently.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration sechs Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Water and Environmental Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Energy and Environmental Engineering: Core Qualification: Elective Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Water: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0434: Particle Technology I
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE
Cycle SoSe
Content
  • Description of particles and particle distributions
  • Description of a separation process
  • Description of a particle mixture
  • Particle size reduction
  • Agglomeration, particle size enlargement
  • Storage and flow of bulk solids
  • Basics of fluid/particle flows
  • classifying processes
  • Separation of particles from fluids
  • Basic fluid mechanics of fluidized beds
  • Pneumatic and hydraulic transport


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Course L0435: Particle Technology I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0440: Particle Technology I
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle SoSe
Content
  • Sieving
  • Bulk properties
  • Size reduction
  • Mixing
  • Gas cyclone
  • Blaine-test, filtration
  • Sedimentation


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Specialization Bio Engineering

Module M0877: Fundamentals in Molecular Biology

Courses
Title Typ Hrs/wk CP
Genetics and Molecular Biology (L0889) Project-/problem-based Learning 1 1
Genetics and Molecular Biology (L0886) Lecture 2 2
Lab Course in Microbiology and Biochemistry (L0890) Practical Course 3 3
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

Lecture Biochemistry

Lecture Microbiology

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successfully finishing this module students are able

  • to give an overview of the basic genetic processes in the cell
  • to explain basic molecularbiological methods
  • to give an overview of -omics strategies
  • to explain genetic differences between pro- and eukaryotes

Skills

Students are able to

  • consider safety measurements when working in the laboratory
  • work sterile
  • cultivate microorganisms aerobically
  • measure enzyme activity
  • identify microorganisms based and physiological assays and 16S rRNA encoding gene sequences
  • apply core knowledge of the lectures "Biochemistry" and "Microbiology" in laboratory experiments
  • scientific poster design and presentation
Personal Competence
Social Competence

Students are able to

  • conduct laboratory experiments in teams
  • write protocols in teams
  • develop solutions for given problems
  • develop and distribute work assignments for given problems
  • present and reflect their specific knowledge in discussions with fellow students and tutors
  • present and discuss their own scientific poster
Autonomy

Students are able to

  • search information for a given problem by themselves
  • prepare summaries of their search results for the team
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work Erstellung und Präsentation eines wissenschaftlichen Posters
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Compulsory
Course L0889: Genetics and Molecular Biology
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Johannes Gescher
Language DE
Cycle WiSe/SoSe
Content See interlocking course
Literature See interlocking course
Course L0886: Genetics and Molecular Biology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language DE
Cycle WiSe/SoSe
Content

- Organisation, structure and function of procaryotic DNA

- DNA replication, transcription, translation

- Regulation of gene expression

- Mechanisms of gene transfer, recombination, transposition

- Mutatuion and DNA repair

- DNA cloning

- DNA sequencing

- Polymerase chain reaction

- Genome sequencing, (meta)genomics, transcriptomics, proteomics


Literature

Rolf Knippers, Molekulare Genetik, Georg Thieme Verlag Stuttgart

Munk, K. (ed.), Genetik, 2010, Thieme Verlag

John Ringo, Genetik kompakt, 2006, Elsevier GmbH, München

T. A. Brown, Gene und Genome, 2007, 3. Aufl., Spektrum Akademischer Verlag,

Jochen Graw, Genetik, Springer Verlag, Berlin Heidelberg 

Course L0890: Lab Course in Microbiology and Biochemistry
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Johannes Gescher, Dr. Paul Bubenheim
Language DE
Cycle WiSe/SoSe
Content

Widespread techniques of microbiological, biochemical and genetic approaches will be taught during this course.

Before the practical conduct of the experiments a colloquium takes place in which the students explain, reflect and discuss the theoretical basics and their translation into practice.

The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course.

Topics and Methods of the course include:

- Morphology and growth of different bacteria strains

- Measuring of microbial growth by turbidity

- Preparation of several culture media

- Strain identification by gram staining and analytical profile index (API test)

- Genetic background identification by 16S rRNA analysis

- Microscopy

- BLAST analyses

- Colony PCR procedure

- Enzyme activity measurements and kinetics (Michaelis-Menten equation, Lineweaver-Burk plot)

- Enzymes as biocatalysts (exemplarily use of enzymes in detergents)

- Measurement of protein concentrations (Bradford protein assay)

- Qualitative and quantitative enzyme activity assay

Literature

Brock Mikrobiologie / Brock Microbiology (Michael T. Madigan, John M. Martinko)


Mikrobiologisches Grundpraktikum (Steve K. Alexander, Dennis Strete)

Module M1765: Bioprocess Technology II

Courses
Title Typ Hrs/wk CP
Bioprocess Technology II (L2896) Lecture 2 3
Bioprocess Technology II (L2897) Recitation Section (small) 2 3
Module Responsible Prof. Ralf Pörtner
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Compulsory
Course L2896: Bioprocess Technology II
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Pörtner, Prof. Andreas Liese
Language EN
Cycle WiSe
Content
Literature
Course L2897: Bioprocess Technology II
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Pörtner, Prof. Andreas Liese
Language EN
Cycle WiSe
Content
Literature

Module M1766: Advanced Practical Course in Bioengineering

Courses
Title Typ Hrs/wk CP
Advanced Practical Course in Bioengineering (L2898) Practical Course 2 3
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Presentation and colloqium
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Compulsory
Course L2898: Advanced Practical Course in Bioengineering
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language DE
Cycle WiSe
Content
Literature

Module M1762: Material Engineering

Courses
Title Typ Hrs/wk CP
Material Engineering (L2894) Lecture 2 3
Module Responsible Dr. Marko Hoffmann
Admission Requirements None
Recommended Previous Knowledge
  • General and Inorganic Chemistry
  • Phase Equilibria Thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

A basic knowledge of materials science is necessary for the design of process plants and apparatus with the associated piping. This module therefore focuses on ferrous materials, although polymer materials and ceramics are also covered. A basic understanding of atomic structure, microstructure, phase transformation, diffusion, state diagrams, and alloy formation, among other things, is necessary for materials selection and for the evaluation of corrosion and wear processes, which students should acquire in this one-semester module. Students will also have basic knowledge in the area of mechanical properties of materials including the essential methods of materials testing and the corrosion processes that are very relevant in practice. In addition, students gain knowledge of the main types of steel used in process engineering and knowledge of the most important heat treatment processes of steels in practice in the context of time-temperature transformation diagrams (TTT diagrams).

Skills

Students will be able to select suitable materials for the design of process plants and apparatus. Mechanical properties such as strength, ductility, toughness and fatigue strength are taken into account. Students can also specify measures to increase corrosion resistance. In addition to specifying strength-increasing measures, students may select other measures to modify mechanical properties, such as heat treatment processes.

Personal Competence
Social Competence

The students are able to work out results in groups and document them, provide appropriate feedback and handle feedback on their own performance constructively.

Autonomy

Students are able to independently assess their level of learning and reflect on their weaknesses and strengths in the field of materials engineering. Students are also able to independently seek out information from subject-specific publications and relate this to the context of the course, e.g. when selecting a material for a process engineering apparatus.

Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Compulsory
Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Course L2894: Material Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marko Hoffmann
Language DE
Cycle WiSe
Content
  • Introduction
  • Atomic structure and bonding
  • Structure of solids
  • Miller indices
  • Imperfections in solids
  • Texture
  • Diffusion
  • Mechanical properties
  • Dislocations and strengthening mechanisms
  • Phase transformations
  • Phase diagrams, iron-carbon phase diagram
  • Metallic materials
  • Corrosion
  • Polymeric materials
  • Ceramic materials
Literature
  • Bargel, H.-J.; Schulze, G. (Hrsg.): Werkstoffkunde. Berlin u.a., Springer Vieweg, 2012.
  • Bergmann, W.: Werkstofftechnik 1. München u.a., Hanser, 2009.
  • Bergmann, W.: Werkstofftechnik 2. München u.a., Hanser, 2008.
  • Callister, W. D.; Rethwisch, D. G.: Materialwissenschaften und Werkstofftechnik: eine Einführung, Übersetzungshrsg.: Scheffler, M., 1. Auflage, Weinheim, Wiley-VCH, 2013.
  • Seidel, W. W.,Hahn, F.: Werkstofftechnik. München u.a., Hanser, 2012.

Module M1498: Practice of Process Engineering

Courses
Title Typ Hrs/wk CP
Practice in Process Engineering (L2271) Project Seminar 2 2
Lectures for Pratice of Process Engineering (L2272) Seminar 1 1
Module Responsible Prof. Irina Smirnova
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After passing this module the students have the ability to:

  • give an overview of a certain important field on process and bioprocess engineering,
  • explain some working methods for different fields in process engineering. 
Skills

After successfully completing this module, students are able to

  • prepare a written summary of a process engineering topic
  • to briefly present and discuss a topic in a short presentation
  • to roughly describe independently typical process engineering and biotechnological processes by means of notes.
Personal Competence
Social Competence

The students are able to

  • work out results in groups and document them,
  • provide appropriate feedback and handle feedback on their own performance constructively. 
Autonomy

The students are able to estimate their progress of learning by themselves and to deliberate their lack of knowledge in Process Engineering and Bioprocess Engineering.

Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Credit points 3
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 1 DIN A4 page report to be handed out to the person responsible for the module + presentation at the end of the semester
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L2271: Practice in Process Engineering
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des SD V
Language DE
Cycle WiSe/SoSe
Content

The following activities can be credited to students:

  • Internships in industry (e.g. also during the semester break)
  • Completed practical projects with construction and workshop activities (basic internship) at institutes of the faculty
  • Activities on experimental plants at institutes of the faculty 
  • Own project in the student workshop
  • Small projects in the FabLab

For further information please visit: https://www.tuhh.de/verfahrenstechnik/lehre.html

Literature
Course L2272: Lectures for Pratice of Process Engineering
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content

The following events can be credited as lectures:

  • Ring-Lectures
  • VT Colloquia
  • Presentations of Master Thesises

For further information please visit https://www.tuhh.de/verfahrenstechnik/lehre.html

Literature

Module M1770: Bioinformatics

Courses
Title Typ Hrs/wk CP
Bioinformatics (L2899) Seminar 2 3
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Presentation and colloqium
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Course L2899: Bioinformatics
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language DE
Cycle SoSe
Content
Literature

Module M1769: Regulatory aspects of biological agents

Courses
Title Typ Hrs/wk CP
Regulatory aspects of biological agents (L2865) Lecture 2 3
Module Responsible Dr. Johannes Möller
Admission Requirements None
Recommended Previous Knowledge

1. Experience in the general operation of industrial chemical and bioprocesses

2. Knowledge of biological relationships and substance groups

3. Experience with the handling of hazardous substances, which has been acquired in laboratory experiments

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successfully participating in the course "Regulatory Aspects of Biological Agents", students can

- explain the legal framework for biotechnological and chemical work,

- Illustrate excerpts from e.g. the Act on the Implementation of Measures of Occupational Safety and Health, Biological Agents Ordinance, Infection Protection Act, German Chemicals Act, Hazardous Substances Ordinance, Genetic Engineering Act Stem Cell Act, and Embryo Protection Act,

- Assign genetic engineering work and equipment in biotechnological genetic laboratories according to the security level,

- Assign current Good Manufacturing Practice (cGMP) with reference to the EU-GMP guidelines as well as international regulations and guidelines for biopharmaceuticals (ICH guidelines).


Skills

Students will be able to evaluate biotechnological work with not modified and genetically modified organisms based on the legal framework. 

Personal Competence
Social Competence

Students are prepared for the independent assessment of legal issues, especially in the biotechnological field. 

Autonomy

Students will be able to responsibly align and perform their own work with knowledge of the legal situation and assist colleagues in assessing the legal situation.

Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Course L2865: Regulatory aspects of biological agents
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Johannes Möller
Language DE
Cycle SoSe
Content

This lecture deals with the legal framework of biotechnological and chemical work. On the basis of the acts and ordinacesto be considered (e.g. Occupational Health and Safety Act, Biological Substances Ordinance, Genetic Engineering Act, etc.), the legal frameworks are explained. In addition, requirements for safety classifications of genetic engineering work and the equipment of laboratories for genetic engineering work genetic are presented. Furthermore, national and international requirements for drug production with industrial reference are discussed.

Literature

Die zum Zeitpunkt der Vorlesung gültigen Gesetze werden in der Vorlesung dargestellt und bekanntgegeben. 


Specialization Chemical Engineering

Module M1715: Renewable Energies

Courses
Title Typ Hrs/wk CP
Renewable Energies I (L2740) Lecture 2 2
Renewable Energies I (L2742) Recitation Section (large) 1 1
Renewable Energies II (L2741) Lecture 2 2
Renewable Energies II (L2743) Recitation Section (large) 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Upon completion of this module, students will be able to provide an overview of characteristics of renewable energy systems. They will be able to explain the issues that arise in these systems. Furthermore, they are able to explain knowledge of energy supply, energy distribution and energy trading in this context, taking into account contexts bordering on specific disciplines. The students can explain this knowledge in detail for such energy systems and take a critical stand on it. Furthermore, they can explain the environmental impact of using renewable energy systems and have an overview of the economic classification of the respective options.

Skills

Students are able to apply methodologies for determining energy demand or energy supply to different types of renewable energy systems. Furthermore, they can evaluate such energy systems technically, ecologically and economically as well as systemically and also design them under certain given conditions. They are able to select the regulations necessary for this in a subject-specific manner, especially by means of non-standard solutions to a problem.

Students are able to orally explain issues from the subject area and approaches to dealing with them and to classify them in the respective context.

Personal Competence
Social Competence

Students are able to investigate suitable technical alternatives and ultimately evaluate them based on technical, economic and ecological criteria - and thus from a sustainability perspective.


Autonomy

Students will be able to independently access sources about the field, acquire knowledge and transform it to address new issues.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory
Civil- and Environmental Engineering: Specialisation Civil Engineering: Elective Compulsory
Civil- and Environmental Engineering: Specialisation Traffic and Mobility: Elective Compulsory
Civil- and Environmental Engineering: Specialisation Water and Environment: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Compulsory
Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L2740: Renewable Energies I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content

This module includes a presentation of the renewable energy supply and a discussion of the respective technologies for providing the desired final or useful energy. Specifically, this includes the options for solar energy use for heat and power generation (i.e., passive solar energy use, solar collectors for low-temperature heat provision, solar thermal power generation, photovoltaic power generation), wind energy use for power generation (i.e. onshore and offshore wind power use), hydroelectric power use for electricity generation (i.e., run-of-river and storage hydroelectric power), ocean energy use for electricity generation (including tidal power plants), and geothermal energy use for heat and electricity generation (i.e., near-surface use by means of heat pumps, deep geothermal energy use for heat and/or electricity generation).

Literature

Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2020, 6. Auflage

Course L2742: Renewable Energies I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content

Students work on different tasks in the field of renewable energies. They present their solutions in the exercise lesson and discuss it with other students and the lecturer.

Possible tasks in the field of renewable energies are:

  • Solar thermal heat
  • Concentrating solare power
  • Photovoltaic
  • Windenergie
  • Hydropower
  • Heat pump

Deep geothermal energy

Literature

Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2020, 6. Auflage

Course L2741: Renewable Energies II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content

This lecture covers all options for energy supply from biomass; this includes the supply of heat, electricity and fuels. The biomass resource and its origin will be discussed first. Afterwards the biomass supply is addressed, which bridges the gap between biomass generation and utilization. Subsequently, the different conversion options are discussed. Only those options are presented in depth that have a corresponding significance on the market in Germany and Europe. This includes

(a) heat generation from biogenic solid fuels in small and large-scale plants

(b) power generation from solid biomass via combustion

(c) a biogas production from residues, by-products and waste,

(d) alcohol production from sugar and starch

(e) biodiesel production from vegetable oils.

Special attention is also paid to the corresponding environmental aspects. An economic classification of the various options is also provided.

Literature Unterlagen der Vorlesung
Course L2743: Renewable Energies II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content

The students work on tasks in the field of renewable energies the field "energy from biomass". They present their solution approaches in the exercise group and discuss them with their fellow students and the teaching staff afterwards.

Literature

Unterlagen der Vorlesung

Module M0729: Construction and Apparatus Engineering

Courses
Title Typ Hrs/wk CP
Construction and Apparatus Engineering (L0617) Lecture 2 3
Construction and Apparatus Engineering (L0619) Recitation Section (small) 2 3
Module Responsible Dr. Marko Hoffmann
Admission Requirements None
Recommended Previous Knowledge
  • Fundamentals of Technical Drawing
  • Engineering Mechanics I (Stereostatics)
  • Engineering Mechanics II (Elastostatics)
  • Measurement Technology for Chemical and Bioprocess Engineerin
  • Basic internship 






Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can reproduce an overview of the important basic materials in engineering applications with priority on apparatus and plant engineering.
  • Students can reproduce fundamentals of design, strength of material calculation and material selection for elements of process equipment.
  • Students can reproduce basic principles of connecting and combining elements of apparatuses.
  • Students have basic knowledge in the following areas: haft-hub connections, bearings, screwed connections, welded connections and sealings
Skills
  • Students are capable to read and interpret complex technical drawings.
  • Students are capable to calculate wall thickness of simple elements.
  • Students are capable to design bolted flange connections.
  • Students are capable to roughly design shell-and-tube heat exchangers.


 



Personal Competence
Social Competence
  • Students are able to work together in basic groups on subject related tasks and small design studies and present their results.
Autonomy
  • Students are capable to self-reliantly gather information from subject related, professional publications and relate that information to the context of the lecture, e.g. preparing of technical drawings or choosing of a construction material for a process equipment.
  • They work on their homework by their own and get feedback in their particular basis group to evaluate their actual knowledge.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 5 % Excercises
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Compulsory
Orientation Studies: Core Qualification: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0617: Construction and Apparatus Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marko Hoffmann
Language DE
Cycle WiSe
Content
  • Introduction and terminology
  • Basic materials for process engineering
  • Examples of apparatuses and their elements
  • Construction conforming to standards of technical drawings and flow diagram
  • Perspective illustration of pipe systems and apparatus elements
  • Boiler formula
  • Stresses and strains of thick-walled cylindrical shells
  • Wall thickness calculations of thin-walled cylindrical shells applying mechanical strength criterion and equivalent stresses
  • System flange-bolt-gasket, sealings
  • Shaft-hub connections
  • Bearings
  • Screwed connections
  • Welded connections
  • Heat exchangers
Literature
  • Bargel, H.-J.; Schulze, G. (Hrsg.): Werkstoffkunde. Berlin u.a., Springer Vieweg, 2012.
  • Bergmann, W.:  Werkstofftechnik 1. München u.a., Hanser, 2009.
  • Bergmann, W.:  Werkstofftechnik 2. München u.a., Hanser, 2008.
  • Callister, W. D.; Rethwisch, D. G.: Materialwissenschaften und Werkstofftechnik: eine Einführung, Übersetzungshrsg.: Scheffler, M., 1. Auflage, Weinheim, Wiley-VCH, 2013.
  • Klapp, E.: Apparate- und Anlagentechnik, Springer, Berlin, 2002.
  • Tietze, W.: Taschenbuch Dichtungstechnik, Vulkan, Essen, 2005.
  • Titze, H., Wilke, H.-P.: Elemente des Apparatebaus, Springer, Berlin, 1992.
  • Schwaigerer, S., Mühlenbeck, G.: Festigkeitsberechnung im Dampfkessel-, Behälter- und Rohrleitungsbau, Springer, Berlin, 1997.
  • Seidel, W. W.,Hahn, F.: Werkstofftechnik. München u.a., Hanser, 2012. 
  • Wagner, W.: Festigkeitsberechnungen im Apparate- und Rohrleitungsbau, Würzburg, Vogel, 2007.
  • Wittel, H., Muhs, D., Jannasch, D.; Voßiek, J.: Roloff/Matek Maschinenelemente, Wiesbaden, Springer Vieweg, 22. Auflage, 2015.
Course L0619: Construction and Apparatus Engineering
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marko Hoffmann
Language DE
Cycle WiSe
Content
  • Introduction and terminology
  • Basic materials for process engineering
  • Examples of apparatuses and their elements
  • Construction conforming to standards of technical drawings and flow diagram
  • Perspective illustration of pipe systems and apparatus elements
  • Boiler formula
  • Stresses and strains of thick-walled cylindrical shells
  • Wall thickness calculations of thin-walled cylindrical shells applying mechanical strength criterion and equivalent stresses
  • System flange-bolt-gasket, sealings
  • Shaft-hub connections
  • Bearings
  • Screwed connections
  • Welded connections
  • Heat exchangers
Literature
  • Bargel, H.-J.; Schulze, G. (Hrsg.): Werkstoffkunde. Berlin u.a., Springer Vieweg, 2012.
  • Bergmann, W.:  Werkstofftechnik 1. München u.a., Hanser, 2009.
  • Bergmann, W.:  Werkstofftechnik 2. München u.a., Hanser, 2008.
  • Callister, W. D.; Rethwisch, D. G.: Materialwissenschaften und Werkstofftechnik: eine Einführung, Übersetzungshrsg.: Scheffler, M., 1. Auflage, Weinheim, Wiley-VCH, 2013.
  • Klapp, E.: Apparate- und Anlagentechnik, Springer, Berlin, 2002.
  • Tietze, W.: Taschenbuch Dichtungstechnik, Vulkan, Essen, 2005.
  • Titze, H., Wilke, H.-P.: Elemente des Apparatebaus, Springer, Berlin, 1992.
  • Schwaigerer, S., Mühlenbeck, G.: Festigkeitsberechnung im Dampfkessel-, Behälter- und Rohrleitungsbau, Springer, Berlin, 1997.
  • Seidel, W. W.,Hahn, F.: Werkstofftechnik. München u.a., Hanser, 2012. 
  • Wagner, W.: Festigkeitsberechnungen im Apparate- und Rohrleitungsbau, Würzburg, Vogel, 2007.
  • Wittel, H., Muhs, D., Jannasch, D.; Voßiek, J.: Roloff/Matek Maschinenelemente, Wiesbaden, Springer Vieweg, 22. Auflage, 2015.

Module M1762: Material Engineering

Courses
Title Typ Hrs/wk CP
Material Engineering (L2894) Lecture 2 3
Module Responsible Dr. Marko Hoffmann
Admission Requirements None
Recommended Previous Knowledge
  • General and Inorganic Chemistry
  • Phase Equilibria Thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

A basic knowledge of materials science is necessary for the design of process plants and apparatus with the associated piping. This module therefore focuses on ferrous materials, although polymer materials and ceramics are also covered. A basic understanding of atomic structure, microstructure, phase transformation, diffusion, state diagrams, and alloy formation, among other things, is necessary for materials selection and for the evaluation of corrosion and wear processes, which students should acquire in this one-semester module. Students will also have basic knowledge in the area of mechanical properties of materials including the essential methods of materials testing and the corrosion processes that are very relevant in practice. In addition, students gain knowledge of the main types of steel used in process engineering and knowledge of the most important heat treatment processes of steels in practice in the context of time-temperature transformation diagrams (TTT diagrams).

Skills

Students will be able to select suitable materials for the design of process plants and apparatus. Mechanical properties such as strength, ductility, toughness and fatigue strength are taken into account. Students can also specify measures to increase corrosion resistance. In addition to specifying strength-increasing measures, students may select other measures to modify mechanical properties, such as heat treatment processes.

Personal Competence
Social Competence

The students are able to work out results in groups and document them, provide appropriate feedback and handle feedback on their own performance constructively.

Autonomy

Students are able to independently assess their level of learning and reflect on their weaknesses and strengths in the field of materials engineering. Students are also able to independently seek out information from subject-specific publications and relate this to the context of the course, e.g. when selecting a material for a process engineering apparatus.

Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Compulsory
Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Course L2894: Material Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marko Hoffmann
Language DE
Cycle WiSe
Content
  • Introduction
  • Atomic structure and bonding
  • Structure of solids
  • Miller indices
  • Imperfections in solids
  • Texture
  • Diffusion
  • Mechanical properties
  • Dislocations and strengthening mechanisms
  • Phase transformations
  • Phase diagrams, iron-carbon phase diagram
  • Metallic materials
  • Corrosion
  • Polymeric materials
  • Ceramic materials
Literature
  • Bargel, H.-J.; Schulze, G. (Hrsg.): Werkstoffkunde. Berlin u.a., Springer Vieweg, 2012.
  • Bergmann, W.: Werkstofftechnik 1. München u.a., Hanser, 2009.
  • Bergmann, W.: Werkstofftechnik 2. München u.a., Hanser, 2008.
  • Callister, W. D.; Rethwisch, D. G.: Materialwissenschaften und Werkstofftechnik: eine Einführung, Übersetzungshrsg.: Scheffler, M., 1. Auflage, Weinheim, Wiley-VCH, 2013.
  • Seidel, W. W.,Hahn, F.: Werkstofftechnik. München u.a., Hanser, 2012.

Module M1498: Practice of Process Engineering

Courses
Title Typ Hrs/wk CP
Practice in Process Engineering (L2271) Project Seminar 2 2
Lectures for Pratice of Process Engineering (L2272) Seminar 1 1
Module Responsible Prof. Irina Smirnova
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After passing this module the students have the ability to:

  • give an overview of a certain important field on process and bioprocess engineering,
  • explain some working methods for different fields in process engineering. 
Skills

After successfully completing this module, students are able to

  • prepare a written summary of a process engineering topic
  • to briefly present and discuss a topic in a short presentation
  • to roughly describe independently typical process engineering and biotechnological processes by means of notes.
Personal Competence
Social Competence

The students are able to

  • work out results in groups and document them,
  • provide appropriate feedback and handle feedback on their own performance constructively. 
Autonomy

The students are able to estimate their progress of learning by themselves and to deliberate their lack of knowledge in Process Engineering and Bioprocess Engineering.

Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Credit points 3
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 1 DIN A4 page report to be handed out to the person responsible for the module + presentation at the end of the semester
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L2271: Practice in Process Engineering
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des SD V
Language DE
Cycle WiSe/SoSe
Content

The following activities can be credited to students:

  • Internships in industry (e.g. also during the semester break)
  • Completed practical projects with construction and workshop activities (basic internship) at institutes of the faculty
  • Activities on experimental plants at institutes of the faculty 
  • Own project in the student workshop
  • Small projects in the FabLab

For further information please visit: https://www.tuhh.de/verfahrenstechnik/lehre.html

Literature
Course L2272: Lectures for Pratice of Process Engineering
Typ Seminar
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content

The following events can be credited as lectures:

  • Ring-Lectures
  • VT Colloquia
  • Presentations of Master Thesises

For further information please visit https://www.tuhh.de/verfahrenstechnik/lehre.html

Literature

Module M1768: Fundamentals of Chemical Kinetics

Courses
Title Typ Hrs/wk CP
Fundamentals of Chemical Kinetics (L2895) Lecture 2 3
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Credit points 3
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Elective Compulsory
Course L2895: Fundamentals of Chemical Kinetics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE
Cycle SoSe
Content
Literature

Thesis

Module M1800: Bachelor thesis (dual study program)

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Dual students…

  • … choose central theoretical principles from their field of study (facts, theories, methods) in relation to problems and applications, present them and discuss them critically.
  • … further develop their subject-related and practical knowledge as appropriate and link both areas of knowledge together. 
  • … present the current research available on a chosen topic or on a chosen operational issue linked to their subject.

Skills

Dual students…

  • … evaluate both the basic knowledge linked to their field of study acquired at the university and professional knowledge gained through the company, then purposefully use it to solve technical and application-related problems.
  • … analyse questions and problems using the methods learned throughout their studies (including practical phases), reach factually justifiable decisions and develop application-specific solutions.
  • … critically analyse the results of their own research work from a subject-specific and professional perspective.

Personal Competence
Social Competence

Dual students…

  • … present a professional problem in the form of an academic question for a specialist audience in a structured, comprehensible and factually correct manner, both orally and in writing. 
  • … respond to questions as part of a specialist discussion and answer them appropriately. In doing so, they argue their own evaluations and points of view convincingly.


Autonomy

Dual students…

  • … structure a comprehensive, chronological workflow and work independently on a question to a high academic level within a given period of time.
  • … identify, develop and link necessary knowledge and material to handle an academic and application-related problem. 
  • … apply the essential techniques of academic work when conducting their own research on an operational issue.


Workload in Hours Independent Study Time 360, Study Time in Lecture 0
Credit points 12
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Thesis: Compulsory
Civil- and Environmental Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Data Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Engineering Science: Thesis: Compulsory
Green Technologies: Energy, Water, Climate: Thesis: Compulsory
Computer Science in Engineering: Thesis: Compulsory
Mechanical Engineering: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Naval Architecture: Thesis: Compulsory
Technomathematics: Thesis: Compulsory
Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory