Program description

Content



Learning target

Knowledge

Graduates are able to recount extensive, in-depth engineering, mathematical, and scientific knowledge and critically assess recent findings in their discipline.

Skills

On successful completion of the program, graduates are able to:

  • Work scientifically in process engineering with a focus on biotechnologies and related disciplines.
  • Analyze and solve problems scientifically even if they are unusual or are defined incompletely and involve competing specifications.
  • Abstract and formulate complex problems from a new or emerging area of their discipline.
  • Apply innovative methods to fundamental problem solving and develop new scientific methods.
  • Plan and implement theoretical and experimental investigations, evaluate critically the data received, and reach conclusions accordingly.
  • Investigate and evaluate the application of new and upcoming technologies.
  • Create and develop new products, processes, and methods.

Social Competence

Graduates are qualified to:

  • Collaborate with professionals or specialists in other disciplines and to present the findings of their work orally and in writing in a way that is appropriate to the addressees.
  • Communicate in German and English with professionals or specialists and non-specialists on contents and problems of bioprocess engineering. They can respond appropriately to inquiries, additions, and comments.
  • Work in groups. They can define, distribute, and integrate subtasks. They are able to make time arrangements and interact socially.

Self-reliance

Graduates have acquired the skills required to:

  • Recognize a need for information and find and procure relevant information.
  • Familiarize themselves with new tasks systematically and in a short time.

Reflect systematically on non-technical repercussions of engineering activity and incorporate their findings responsibly into what they do.




Program structure


Core Qualification

Module M0523: Business & Management

Module Responsible Prof. Matthias Meyer
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way around selected special areas of management within the scope of business management.
  • Students are able to explain basic theories, categories, and models in selected special areas of business management.
  • Students are able to interrelate technical and management knowledge.


Skills
  • Students are able to apply basic methods in selected areas of business management.
  • Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.


Personal Competence
Social Competence
  • Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems

Autonomy
  • Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.


Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Non-technical Courses for Master

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Nontechnical Academic Programms (NTA)

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”.

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • explain specialized areas in context of the relevant non-technical disciplines,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic and specific methods of the said scientific disciplines,
  • aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.



Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.





Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)     



Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0540: Transport Processes

Courses
Title Typ Hrs/wk CP
Multiphase Flows (L0104) Lecture 2 2
Reactor design under consideration of local transport processes (L0105) Project-/problem-based Learning 2 2
Heat & Mass Transfer in Process Engineering (L0103) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge All lectures from the undergraduate studies, especially mathematics, chemistry, thermodynamics, fluid mechanics, heat- and mass transfer.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to:

  • describe transport processes in single- and multiphase flows and they know the analogy between heat- and mass transfer as well as the limits of this analogy.
  • explain the main transport laws and their application as well as the limits of application.
  • describe how transport coefficients for heat- and mass transfer can be derived experimentally.
  • compare different multiphase reactors like trickle bed reactors, pipe reactors, stirring tanks and bubble column reactors.
  • are known. The Students are able to perform mass and energy balances for different kind of reactors. Further more the industrial application of multiphase reactors for heat- and mass transfer are known.
Skills

The students are able to:

  • optimize multiphase reactors by using mass- and energy balances,
  • use transport processes for the design of technical processes,
  • to choose a multiphase reactor for a specific application.


Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to define independently tasks, to solve the problem "design of a multiphase reactor". The knowledge that s necessary is worked out by the students themselves on the basis of the existing knowledge from the lecture. The students are able to decide by themselves what kind of equation and model is applicable to their certain problem. They are able to organize their own team and to define priorities for different tasks.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 15 min Presentation + 90 min multiple choice written examen
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0104: Multiphase Flows
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content
  • Interfaces in MPF (boundary layers, surfactants)
  • Hydrodynamics & pressure drop in Film Flows
  • Hydrodynamics & pressure drop in Gas-Liquid Pipe Flows
  • Hydrodynamics & pressure drop in Bubbly Flows
  • Mass Transfer in Film Flows
  • Mass Transfer in Gas-Liquid Pipe Flows
  • Mass Transfer in Bubbly Flows
  • Reactive mass Transfer in Multiphase Flows
  • Film Flow: Application Trickle Bed Reactors
  • Pipe Flow: Application Turbular Reactors
  • Bubbly Flow: Application Bubble Column Reactors
Literature

Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
Clift, R.; Grace, J.R.; Weber, M.E.: Bubbles, Drops and Particles, Academic Press, New York, 1978.
Fan, L.-S.; Tsuchiya, K.: Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth-Heinemann Series in Chemical Engineering, Boston, USA, 1990.
Hewitt, G.F.; Delhaye, J.M.; Zuber, N. (Ed.): Multiphase Science and Technology. Hemisphere Publishing Corp, Vol. 1/1982 bis Vol. 6/1992.
Kolev, N.I.: Multiphase flow dynamics. Springer, Vol. 1 and 2, 2002.
Levy, S.: Two-Phase Flow in Complex Systems. Verlag John Wiley & Sons, Inc, 1999.
Crowe, C.T.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, Fla, 1998.

Course L0105: Reactor design under consideration of local transport processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content

In this Problem-Based Learning unit the students have to design a multiphase reactor for a fast chemical reaction concerning optimal hydrodynamic conditions of the multiphase flow. 

The four students in each team have to:

  • collect and discuss material properties and equations for design from the literature,
  • calculate the optimal hydrodynamic design,
  • check the plausibility of the results critically,
  • write an exposé with the results.

This exposé will be used as basis for the discussion within the oral group examen of each team.

Literature

Bird, R.B.; Stewart, W.R.; Lightfoot, E.N.: Transport Phenomena, John Wiley & Sons Inc (2007), ISBN 978-0-470-11539-8.

Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion; Verlag Sauerländer, Aarau und Frankfurt am Main (1971), ISBN: 3794100085.

Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen, Sauerländer, 1971, 

Clift, R.; Grace, J.R.; Weber, M.E.: Bubbles, Drops, and Particles, Verlag Academic Press, 1978, ISBN 012176950X, 9780121769505

Deckwer, W.-D.: Reaktionstechnik in Blasensäulen, Salle Verlag und Verlag Sauerländer, Aarau, Frankfurt am Main, Berlin, München, Salzburg (1985), DOI 10.1002/CITE.330590530

Deckwer, W.-D.: Bubble Column Reactors. Wiley, New York (1992), DOI 10.1002/AIC.690380821.

Fan, L.; Tsuchiya, K.: Bubble wake dynamics in liquids and liquid-solid suspension. Butterworth-Heinemann, (1990), DOI 10.1016/c2009-0-24002-5.

Kraume, M., Transportvorgänge in der Verfahrenstechnik, Springer Berlin, 2020, ISBN 978-3-662-60392-5.

Lienhard, J. H. (2019). A Heat Transfer Textbook, Dover Publications. ISBN:9780486837352, 0486837351.




Course L0103: Heat & Mass Transfer in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle WiSe
Content
  • Introduction - Transport Processes in Chemical Engineering
  • Molecular Heat- and Mass Transfer: Applications of Fourier's and Fick's Law
  • Convective Heat and Mass Transfer: Applications in Process Engineering
  • Unsteady State Transport Processes: Cooling & Drying
  • Transport at fluidic Interfaces: Two Film, Penetration, Surface Renewal
  • Transport Laws & Balance Equations  with turbulence, sinks and sources
  • Experimental Determination of Transport Coefficients
  • Design and Scale Up of Reactors for Heat- and Mass Transfer
  • Reactive Mass Transfer 
  • Processes with Phase Changes – Evaporization and Condensation 
  • Radiative Heat Transfer - Fundamentals
  • Radiative Heat Transfer - Solar Energy

Literature
  1. Baehr, Stephan: Heat and Mass Transfer, Wiley 2002.
  2. Bird, Stewart, Lightfood: Transport Phenomena, Springer, 2000.
  3. John H. Lienhard: A Heat Transfer Textbook,  Phlogiston Press, Cambridge Massachusetts, 2008.
  4. Myers: Analytical Methods in Conduction Heat Transfer, McGraw-Hill, 1971.
  5. Incropera, De Witt: Fundamentals of Heat and Mass Transfer, Wiley, 2002.
  6. Beek, Muttzall: Transport Phenomena, Wiley, 1983.
  7. Crank: The Mathematics of Diffusion, Oxford, 1995. 
  8. Madhusudana: Thermal Contact Conductance, Springer, 1996.
  9. Treybal: Mass-Transfer-Operation, McGraw-Hill, 1987.




Module M0545: Separation Technologies for Life Sciences

Courses
Title Typ Hrs/wk CP
Chromatographic Separation Processes (L0093) Lecture 2 2
Unit Operations for Bio-Related Systems (L0112) Lecture 2 2
Unit Operations for Bio-Related Systems (L0113) Project-/problem-based Learning 2 2
Module Responsible Dr. Pavel Gurikov
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Fluid Process Engineering, Thermal Separation Processes, Chemical Engineering, Chemical Engineering, Bioprocess Engineering

Basic knowledge in thermodynamics and in unit operations related to thermal separation processes




Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

On completion of the module, students are able to present an overview of the basic thermal process technology operations that are used, in particular, in the separation and purification of biochemically manufactured products. Students can describe chromatographic separation techniques and classic and new basic operations in thermal process technology and their areas of use. In their choice of separation operation students are able to take the specific properties and limitations of biomolecules into consideration. Using different phase diagrams they can explain the principle behind the basic operation and its suitability for bioseparation problems.



Skills

On completion of the module, students are able to assess the separation processes for bio- and pharmaceutical products that have been dealt with for their suitability for a specific separation problem. They can use simulation software to establish the productivity and economic efficiency of bioseparation processes. In small groups they are able to jointly design a downstream process and to present their findings in plenary and summarize them in a joint report.


Personal Competence
Social Competence

Students are able in small heterogeneous groups to jointly devise a solution to a technical problem by using project management methods such as keeping minutes and sharing tasks and information.





Autonomy

Students are able to prepare for a group assignment by working their way into a given problem on their own. They can procure the necessary information from suitable literature sources and assess its quality themselves. They are also capable of independently preparing the information gained in a way that all participants can understand (by means of reports, minutes, and presentations).



Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Written exam
Examination duration and scale 120 minutes; theoretical questions and calculations
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0093: Chromatographic Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle WiSe
Content
  • Introduction: overview, history of chromatography, LC (HPLC), GC, SFC
  • Fundamentals of linear (analytical) chromatography, retention time/factor, separation factor, peak resolution, band broadening, Van-Deemter equation
  • Fundamentals of nonlinear chromatography, discontinuous and continuous preparative chromatography (annular, true moving bed - TMB, simulated moving bed - SMB)
  • Adsorption equilibrium: experimental determination of adsorption isotherms and modeling
  • Equipment for chromatography, production and characterization of chromatographic adsorbents
  • Method development, scale up methods, process design, modeling of chromatographic processes, economic aspects
  • Applications: e.g. normal phase chromatography, reversed phase chromatography, hydrophobic interaction chromatography, chiral chromatography, bioaffinity chromatography, ion exchange chromatography
Literature
  • Schmidt-Traub, H.: Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents. Weinheim: Wiley-VCH (2005) - eBook
  • Carta, G.: Protein chromatography: process development and scale-up. Weinheim: Wiley-VCH (2010)
  • Guiochon, G.; Lin, B.: Modeling for Preparative Chromatography. Amsterdam: Elsevier (2003)
  • Hagel, L.: Handbook of process chromatography: development, manufacturing, validation and economics. London ;Burlington, MA Academic (2008) - eBook


Course L0112: Unit Operations for Bio-Related Systems
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Pavel Gurikov
Language EN
Cycle WiSe
Content Contents:
  • Introduction: overview about the separation process in biotechnology and pharmacy
  • Handling of multicomponent systems
  • Adsorption of biologic molecules
  • Crystallization of biologic molecules
  • Reactive extraction
  • Aqueous two-phase systems
  • Micellar systems: micellar extraction and micellar chromatographie
  • Electrophoresis
  •  Choice of the separation process for the specific systems
Learning Outcomes:
  • Basic knowledge of separation processes for biotechnological and pharmaceutical processes
  • Identification of specific features and limitations in bio-related systems
  • Proof of economical value of the process


Literature

"Handbook of Bioseparations", Ed. S. Ahuja

http://www.elsevier.com/books/handbook-of-bioseparations-2/ahuja/978-0-12-045540-9

"Bioseparations Engineering" M. R. Ladish

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471244767.html


Course L0113: Unit Operations for Bio-Related Systems
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Pavel Gurikov
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0973: Biocatalysis

Courses
Title Typ Hrs/wk CP
Biocatalysis and Enzyme Technology (L1158) Lecture 2 3
Technical Biocatalysis (L1157) Lecture 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of this course, students will be able to

  • reflect a broad knowledge about enzymes and their applications in academia and industry
  • have an overview of relevant biotransformations und name the general definitions
Skills

After successful completion of this course, students will be able to

  • understand the fundamentals of biocatalysis and enzyme processes and transfer this to new tasks
  • know the several enzyme reactors and the important parameters of enzyme processes
  • use their gained knowledge about the realisation of processes. Transfer this to new tasks
  • analyse and discuss special tasks of processes in plenum and give solutions
  • communicate and discuss in English
Personal Competence
Social Competence

After completion of this module, participants will be able to debate technical and biocatalytical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

Autonomy

After completion of this module, participants will be able to solve a technical problem independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1158: Biocatalysis and Enzyme Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language EN
Cycle WiSe
Content

1. Introduction: Impact and potential of enzyme-catalysed processes in biotechnology.

2. History of microbial and enzymatic biotransformations.

3. Chirality - definition & measurement

4. Basic biochemical reactions, structure and function of enzymes.

5. Biocatalytic retrosynthesis of asymmetric molecules

6. Enzyme kinetics: mechanisms, calculations, multisubstrate reactions.

7. Reactors for biotransformations.

Literature
  • K. Faber: Biotransformations in Organic Chemistry, Springer, 5th Ed., 2004
  • A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH, 2006
  • R. B. Silverman: The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, 2000
  • K. Buchholz, V. Kasche, U. Bornscheuer: Biocatalysts and Enzyme Technology. VCH, 2005.
  • R. D. Schmidt: Pocket Guide to Biotechnology and Genetic Engineering, Woley-VCH, 2003
Course L1157: Technical Biocatalysis
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Andreas Liese
Language EN
Cycle WiSe
Content

1. Introduction

2. Production and Down Stream Processing of Biocatalysts

3. Analytics (offline/online)

4. Reaction Engineering & Process Control

  • Definitions
  • Reactors
  • Membrane Processes
  • Immobilization

5. Process Optimization

  • Simplex / DOE / GA

6. Examples of Industrial Processes

  • food / feed
  • fine chemicals

7. Non-Aqueous Solvents as Reaction Media

  • ionic liquids
  • scCO2
  • solvent free
Literature
  •  A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH, 2006
  •  H. Chmiel: Bioprozeßtechnik, Elsevier, 2005
  •  K. Buchholz, V. Kasche, U. Bornscheuer: Biocatalysts and Enzyme Technology, VCH, 2005
  •  R. D. Schmidt: Pocket Guide to Biotechnology and Genetic Engineering, Woley-VCH, 2003

Module M1970: Process modeling and control

Courses
Title Typ Hrs/wk CP
Process modeling and control (L3220) Lecture 2 3
Process modeling and control (L3221) Recitation Section (small) 3 3
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Engineering fundamentals

Unit operations of mechanical and thermal process engineering as well as chemical reaction engineering

Conceptual Process Design

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

- classify types of process models and model equations

- explain numerical methods for simulation

- explain the solution system for flow diagram simulation

- classify control structures and present process control concepts for different apparatus and complex process engineering systems

Skills

Students are able to

- formulate and implement process control objectives

- design and evaluate control strategies and structures

- analyze model structure and model parameters from the simulation of processes

Personal Competence
Social Competence

Students are enabled to develop solutions together in groups

Autonomy

Students are enabled to acquire knowledge on the basis of further literature

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Midterm
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L3220: Process modeling and control
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle WiSe
Content

Process modeling: introduction, mathematical modeling, model building blocks, structured model development, analysis of model equations

Process simulation: numeric, validation, flow sheet simulation, solution strategies

Process control: process variables, control loops, model-based methods, plant-wide control

Literature
Course L3221: Process modeling and control
Typ Recitation Section (small)
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0895: Advanced Chemical Reaction Engineering

Courses
Title Typ Hrs/wk CP
Chemical Reaction Engineering (Advanced Topics) (L0222) Lecture 2 2
Chemical Reaction Engineering (Advanced Topics) (L0245) Recitation Section (large) 2 2
Experimental Course Chemical Engineering (Advanced Topics) (L0287) Practical Course 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Content of the bachelor-lecture "basics of chemical reaction engineering".
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After completition of the module, students are able to:

- identify differences between ideal and non-ideal rectors,

- infer fundamental differences in kinetic models for catalyzed reactions,

- name modelling algorithms for non-ideal reactors.

Skills

After successfull completition of the module the students are able to

-evaluate properties of non-ideal reactors

-compare kinetic modells of heterogeneous-catalyzed reactions and develop measuring techniques thereof 

-choose instruments for temperature, pressure- concentration and mass-flow measurements regarding process conditions

-develop a concept for design of experiments

Personal Competence
Social Competence The students are able to analyze scientific challenges and elaborate suitable solutions in small groups. Moreover they are able to document these approaches according to scientific guidelines.

After successful completition of the lab-course the students have a strong ability to organize themselfes in small groups to solve issues in chemical reaction engineering. The students can discuss their subject related knowledge among each other and with their teachers.

Autonomy

The students are able to obtain further information for experimental planning and assess their relevance autonomously.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0222: Chemical Reaction Engineering (Advanced Topics)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE
Cycle SoSe
Content

1. Real reactors (residence time distribution E(t), F(t)-curve, measurement of E(t) or F(t), residence time distribution of ideal reactors, modeling of real reactors, segregated flow model, tanks in series model, dispersion model, compartment models)

2. Heterogeneous catalysis (what is a catalyst, operation principle of a catalyst, volcano plot, homogeneous catalysis, heterogeneous catalysis, biocatalysis, physisorption and chemisorption, turn-over frequency (TOF), Sabatier's principle, Bronstedt-Evans-Polyani-relationship, Adsorption isotherms of single and multi-component systems, kinetic models of heterogeneous catalytic reactions, Langmuir-Hinshelwood kinetics, Eley-Rideal kinetics, power law rate equations, kinetic measurements on heterogeneously catalyzed reactions in the laboratory , microkinetic modeling, catalyst characterization)

3. Diffusion in heterogeneous catalysis (diffusion regimes, Knudsen-diffusion, molecular diffusion, surface diffusion, single-file diffusion, reference systems, Stefan-Maxwell-Equations, Fick's law, pore effectiveness factor, impact of diffusion limitations in heterogeneous catalysis, Damköhler-relation, mass- and energy balance of heterogeneous catalytic reactors)

4. Laboratory measurements in heterogeneous catalysis (temperature, pressure, concentration, mass flow controllers, laboratory reactors, experimental design)


Literature

1. Vorlesungsfolien R. Horn

2. Skript zur Vorlesung F. Keil

3. M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

4. G. Emig, E. Klemm, Technische Chemie, Springer

5. A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

6. E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

7. J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

8. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

9. H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

10. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

11. L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

12. J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

13. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

14. M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill 15. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010                                                        

16. A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH

17. C. G. Hill, An Introduction to Chemical Engineering Kinetics & Reactor Design, John Wiley & Sons


Course L0245: Chemical Reaction Engineering (Advanced Topics)
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn, Dr. Oliver Korup
Language DE
Cycle SoSe
Content

1. Real reactors (residence time distribution E(t), F(t)-curve, measurement of E(t) or F(t), residence time distribution of ideal reactors, modeling of real reactors, segregated flow model, tanks in series model, dispersion model, compartment models)

2. Heterogeneous catalysis (what is a catalyst, operation principle of a catalyst, volcano plot, homogeneous catalysis, heterogeneous catalysis, biocatalysis, physisorption and chemisorption, turn-over frequency (TOF), Sabatier's principle, Bronstedt-Evans-Polyani-relationship, Adsorption isotherms of single and multi-component systems, kinetic models of heterogeneous catalytic reactions, Langmuir-Hinshelwood kinetics, Eley-Rideal kinetics, power law rate equations, kinetic measurements on heterogeneously catalyzed reactions in the laboratory , microkinetic modeling, catalyst characterization)

3. Diffusion in heterogeneous catalysis (diffusion regimes, Knudsen-diffusion, molecular diffusion, surface diffusion, single-file diffusion, reference systems, Stefan-Maxwell-Equations, Fick's law, pore effectiveness factor, impact of diffusion limitations in heterogeneous catalysis, Damköhler-relation, mass- and energy balance of heterogeneous catalytic reactors)

4. Laboratory measurements in heterogeneous catalysis (temperature, pressure, concentration, mass flow controllers, laboratory reactors, experimental design)

Literature

1. Vorlesungsfolien R. Horn

2. Skript zur Vorlesung F. Keil

3. M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH

4. G. Emig, E. Klemm, Technische Chemie, Springer

5. A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie 

6. E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag

7. J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH

8. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B

9. H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall

10. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 

11. L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009

12. J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker

13. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000

14. M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill 15. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010                                                        

16. A. Jess, P. Wasserscheid, Chemical Technology  An Integrated Textbook, WILEY-VCH

17. C. G. Hill, An Introduction to Chemical Engineering Kinetics & Reactor Design, John Wiley & Sons

Course L0287: Experimental Course Chemical Engineering (Advanced Topics)
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language DE/EN
Cycle SoSe
Content

Execution and evaluation of several experiments in chemical reaction engineering.

* Calculation of error propagation and error analysis
* Steady state Wicke-Kallenbach measurements of diffusivities in a catalyst pellet
* Interaction of reaction and diffusion in a catalyst particle, dissociation of methanol on zinc oxide
* Mass transfer in gas/liquid system
* Stability of a CSTR (hydrolysis of acetic anhydride)

Literature

Skript zur Vorlesung, als Buch in der TU-Bibliothek

Praktikumsskript

Levenspiel, O.: Chemical reaction engineering; John Wiley & Sons, New York, 3. Ed., 1999 VTM 309(LB)

Smith, J. M.: Chemical Engineering Kinetics, McGraw Hill, New York, 1981.

Hill, C.: Chemical Engineering Kinetics & Reactor Design, John Wiley, New York, 1977.

Fogler, H. S. : Elements of Chemical Reaction Engineering , Prentice Hall, 2006

M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken: Technische Chemie, VCH , 2006

G. F. Froment, K. B. Bischoff: Chemical Reactor Analysis and Design, Wiley, 1990

Module M0896: Bioprocess and Biosystems Engineering

Courses
Title Typ Hrs/wk CP
Bioreactor Design and Operation (L1034) Lecture 2 2
Bioreactors and Biosystems Engineering (L1037) Project-/problem-based Learning 1 2
Biosystems Engineering (L1036) Lecture 2 2
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After completion of this module, participants will be able to:

  • differentiate between different kinds of bioreactors and describe their key features
  • identify and characterize the peripheral and control systems of bioreactors
  • depict integrated biosystems (bioprocesses including up- and downstream processing)
  • name different sterilization methods and evaluate those in terms of different applications
  • recall and define the advanced methods of modern systems-biological approaches
  • connect the multiple "omics"-methods and evaluate their application for biological questions
  • recall the fundamentals of modeling and simulation of biological networks and biotechnological processes and to discuss their methods
  • assess and apply methods and theories of genomics, transcriptomics, proteomics and metabolomics in order to quantify and optimize biological processes at molecular and process levels.


Skills

After completion of this module, participants will be able to:

  • describe different process control strategies for bioreactors and chose them after analysis of characteristics of a given bioprocess
  • plan and construct a bioreactor system including peripherals from lab to pilot plant scale
  • adapt a present bioreactor system to a new process and optimize it
  • develop concepts for integration of bioreactors into bioproduction processes
  • combine the different modeling methods into an overall modeling approach, to apply these methods to specific problems and to evaluate the achieved results critically
  • connect all process components of biotechnological processes for a holistic system view.


Personal Competence
Social Competence

After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

The students can reflect their specific knowledge orally and discuss it with other students and teachers.

Autonomy

After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.



Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1034: Bioreactor Design and Operation
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anna-Lena Heins, Dr. Johannes Möller
Language EN
Cycle SoSe
Content

Design of bioreactors and peripheries:

  • reactor types and geometry
  • materials and surface treatment
  • agitation system design
  • insertion of stirrer
  • sealings
  • fittings and valves
  • peripherals
  • materials
  • standardization
  • demonstration in laboratory and pilot plant

Sterile operation:

  • theory of sterilisation processes
  • different sterilisation methods
  • sterilisation of reactor and probes
  • industrial sterile test, automated sterilisation
  • introduction of biological material
  • autoclaves
  • continuous sterilisation of fluids
  • deep bed filters, tangential flow filters
  • demonstration and practice in pilot plant

Instrumentation and control:

  • temperature control and heat exchange 
  • dissolved oxygen control and mass transfer 
  • aeration and mixing 
  • used gassing units and gassing strategies
  • control of agitation and power input 
  • pH and reactor volume, foaming, membrane gassing

Bioreactor selection and scale-up:

  • selection criteria
  • scale-up and scale-down
  • reactors for mammalian cell culture

Integrated biosystem:

  • interactions and integration of microorganisms, bioreactor and downstream processing
  • Miniplant technologies 

Team work with presentation:

  • Operation mode of selected bioprocesses (e.g. fundamentals of batch, fed-batch and continuous cultivation)


Literature
  • Storhas, Winfried, Bioreaktoren und periphere Einrichtungen, Braunschweig: Vieweg, 1994
  • Chmiel, Horst, Bioprozeßtechnik; Springer 2011
  • Krahe, Martin, Biochemical Engineering, Ullmann‘s Encyclopedia of Industrial Chemistry
  • Pauline M. Doran, Bioprocess Engineering Principles, Second Edition, Academic Press, 2013
  • Other lecture materials to be distributed  
Course L1037: Bioreactors and Biosystems Engineering
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Anna-Lena Heins, Dr. Johannes Möller
Language EN
Cycle SoSe
Content

Introduction to Biosystems Engineering (Exercise)


Experimental basis and methods for biosystems analysis

  • Introduction to genomics, transcriptomics and proteomics
  • More detailed treatment of metabolomics
  • Determination of in-vivo kinetics
  • Techniques for rapid sampling
  • Quenching and extraction
  • Analytical methods for determination of metabolite concentrations


Analysis, modelling and simulation of biological networks

  • Metabolic flux analysis
  • Introduction
  • Isotope labelling
  • Elementary flux modes
  • Mechanistic and structural network models
  • Regulatory networks
  • Systems analysis
  • Structural network analysis
  • Linear and non-linear dynamic systems
  • Sensitivity analysis (metabolic control analysis)


Modelling and simulation for bioprocess engineering

  • Modelling of bioreactors
  • Dynamic behaviour of bioprocesses 

Selected projects for biosystems engineering

  • Miniaturisation of bioreaction systems
  • Miniplant technology for the integration of biosynthesis and downstream processin
  • Technical and economic overall assessment of bioproduction processes
Literature

E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006

R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006

G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998

I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003

Lecture materials to be distributed

Course L1036: Biosystems Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher, Prof. Anna-Lena Heins
Language EN
Cycle SoSe
Content

Introduction to Biosystems Engineering


Experimental basis and methods for biosystems analysis

  • Introduction to genomics, transcriptomics and proteomics
  • More detailed treatment of metabolomics
  • Determination of in-vivo kinetics
  • Techniques for rapid sampling
  • Quenching and extraction
  • Analytical methods for determination of metabolite concentrations


Analysis, modelling and simulation of biological networks

  • Metabolic flux analysis
  • Introduction
  • Isotope labelling
  • Elementary flux modes
  • Mechanistic and structural network models
  • Regulatory networks
  • Systems analysis
  • Structural network analysis
  • Linear and non-linear dynamic systems
  • Sensitivity analysis (metabolic control analysis)


Modelling and simulation for bioprocess engineering

  • Modelling of bioreactors
  • Dynamic behaviour of bioprocesses 


Selected projects for biosystems engineering

  • Miniaturisation of bioreaction systems
  • Miniplant technology for the integration of biosynthesis and downstream processin
  • Technical and economic overall assessment of bioproduction processes


Literature

E. Klipp et al. Systems Biology in Practice, Wiley-VCH, 2006

R. Dohrn: Miniplant-Technik, Wiley-VCH, 2006

G.N. Stephanopoulos et. al.: Metabolic Engineering, Academic Press, 1998

I.J. Dunn et. al.: Biological Reaction Engineering, Wiley-VCH, 2003

Lecture materials to be distributed


Module M0914: Technical Microbiology

Courses
Title Typ Hrs/wk CP
Applied Molecular Biology (L0877) Lecture 2 3
Technical Microbiology (L0999) Lecture 2 2
Technical Microbiology (L1000) Recitation Section (large) 1 1
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

Bachelor with basic knowledge in microbiology and genetics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successfully finishing this module, students are able

  • to give an overview of genetic processes in the cell
  • to explain the application of industrial relevant biocatalysts
  • to explain and prove genetic differences between pro- and eukaryotes


Skills

After successfully finishing this module, students are able

  • to explain and use advanced molecularbiological methods
  • to recognize problems in interdisciplinary fields 

Personal Competence
Social Competence

Students are able to

  • write protocols and PBL-summaries in teams
  • to lead and advise members within a PBL-unit in a group
  • develop and distribute work assignments for given problems


Autonomy

Students are able to

  • search information for a given problem by themselves
  • prepare summaries of their search results for the team
  • make themselves familiar with new topics


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min exam
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0877: Applied Molecular Biology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content

Lecture and PBL

- Methods in genetics / molecular cloning

- Industrial relevance of microbes and their biocatalysts

- Biotransformation at extreme conditions

- Genomics

- Protein engineering techniques

- Synthetic biology

Literature

Relevante Literatur wird im Kurs zur Verfügung gestellt.

Grundwissen in Molekularbiologie, Genetik, Mikrobiologie und Biotechnologie erforderlich.

Lehrbuch: Brock - Mikrobiologie / Microbiology (Madigan et al.)

Course L0999: Technical Microbiology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content
  • History of microbiology and biotechnology
  • Enzymes
  • Molecular biology
  • Fermentation
  • Downstream Processing
  • Industrial microbiological processes
  • Technical enzyme application
  • Biological Waste Water treatment 
Literature

Microbiology,  2013, Madigan, M., Martinko, J. M., Stahl, D. A., Clark, D. P. (eds.), formerly „Brock“, Pearson

Industrielle Mikrobiologie, 2012, Sahm, H., Antranikian, G., Stahmann, K.-P., Takors, R. (eds.) Springer Berlin, Heidelberg, New York, Tokyo. 

Angewandte Mikrobiologie, 2005, Antranikian, G. (ed.), Springer, Berlin, Heidelberg, New York, Tokyo.

Course L1000: Technical Microbiology
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Johannes Gescher
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0904: Process Design Project

Courses
Title Typ Hrs/wk CP
Process Design Project (L1050) Projection Course 6 6
Module Responsible Dozenten des SD V
Admission Requirements None
Recommended Previous Knowledge
  • Particle Technology and Solid Process Engineering  
  • Transport Processes  
  • Process- and Plant Design II  
  • Fluid Mechanics for Process Engineering 
  • Chemical Reaction Engineering  
  • Bioprocess- and Biosystems-Engineering 
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After the students passed the project course successfully they know:

  • how a team is working together so solve a complex task in process engineering
  • what kind of tools are necessary to design a process
  • what kind of drawbacks and difficulties are coming up by designing a process
Skills

After passing the Module successfully the students are able to:

  • utilize tools for process design for a specific given process engineering task,
  • choose and connect apparatusses for a complete process,
  •   collecting all relevant data for an economical and ecological evaluation,
  • optimization of calculation sequence with respect to flowsheet simulation.
Personal Competence
Social Competence

The students are able to discuss in international teams in english and develop an approach under pressure of time.

Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. They are able to organize their own team and to define priorities.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale .
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Process Engineering: Core Qualification: Compulsory
Course L1050: Process Design Project
Typ Projection Course
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe
Content

In the Process Design Project the students have to design in teams an energy or process engineering plant by calculating and designing single plant components. The calculation of costs as well as the process safety is another important aspect of this course. Furthermore the approval procedures have to be taken into account.

Literature

Module M0951: Bioprocess Engineering Advanced Practical Course

Courses
Title Typ Hrs/wk CP
Bioprocess Engineering Advanced Practical Course (L1112) Practical Course 3 3
Advanced Practical Course in Microbiology (L0878) Practical Course 3 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Bioprocess Engineering - Fundamental Practical Course

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After completing this module, students are able to perform and explain the essential steps of a process for the production of the semi-synthetic beta-lactam antibiotic amoxicillin using microorganisms as well as cell-free enzymes.


Skills

The students can perform practical tasks in a chemical / biotechnological laboratory. This especially includes the fermentation of filamentous fungi in submersed culture, the recovery of intermediates from the fermentation broth and the processing of those intermediates using cell-free enzymes. They can record and interpret the results of guided experiments and create an error analysis and present the results.

Personal Competence
Social Competence

Sudents can reflect their specific knowledge orally and discuss this with other students and teachers.



Autonomy

After completing the module the students are able to independently protocol experiments and to discuss, analyze and record the results. They can present those results as a team.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written report
Assignment for the Following Curricula Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Course L1112: Bioprocess Engineering Advanced Practical Course
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Ralf Pörtner, Prof. Andreas Liese, Prof. Anna-Lena Heins
Language DE
Cycle WiSe
Content

This experimental course focuses on a complete process from starting material like glucose over several production steps to a valuable final product.

Production of the semi-synthetic beta-lactam antibiotic amoxicillin is investigated and conducted as an example for industrial processes on a laboratory scale involving microorganisms as well as cell free enzymes. The first step - fermentation of Penicillium chrysogenum to produce penicillin G - is carried out in the Institute of Bioprocess and Biosystems Engineering of Prof. Zeng. After recovery of penicillin G it is hydrolysed by penicillin acylase (Escherichia coli) to produce 6-aminopenicillanic acid which is further acylated by the same enzyme to produce amoxicillin. The enzymatic steps are done in the Institute of Technical Biocatalysis of Prof. Liese.

A colloquium is part of the course.

Literature

Liese A, Seelbach K, Wandrey C, Industrial Biotransformations, Wiley-VCH, 2006

Chmiel H, Einführung in die Bioverfahrenstechnik, Elsevier Spektrum Akademischer Verlag, 2006

Schügerl K, Bioreaktionstechnik: Bioprozesse mit Mikroorganismen und Zellen. Prozeßüberwachung, Birkhäuser, 1997


Course L0878: Advanced Practical Course in Microbiology
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Johannes Gescher
Language EN
Cycle WiSe
Content

Participation in actual projects:

- From gene to product in heterologous hosts

- Molecular biology

- Enzyme assays

- Taxonomy

Literature

-Molekulare Biotechnologie: Grundlagen und Anwendungen David Clark.

-Watson Molekularbiologie 6., aktualisierte Auflage. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick

-Allgemeine Mikrobiologie. Georg Fuchs, Marc Bramkamp, Petra Dersch, Thomas Eitinger, Johann Heider

-Course Script of the respective lecture and practical course script

Specialization A - General Bioprocess Engineering

Module M0513: System Aspects of Renewable Energies

Courses
Title Typ Hrs/wk CP
Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage (L0021) Lecture 2 2
Energy Trading (L0019) Lecture 1 1
Energy Trading (L0020) Recitation Section (small) 1 1
Deep Geothermal Energy (L0025) Lecture 2 2
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Module: Technical Thermodynamics I

Module: Technical Thermodynamics II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy.

Skills

Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode.

Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. 

Personal Competence
Social Competence

Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module.

Autonomy

Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Aeronautics: Core Qualification: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Fröba
Language DE
Cycle SoSe
Content
  1. Introduction to electrochemical energy conversion
  2. Function and structure of electrolyte
  3. Low-temperature fuel cell
    • Types
    • Thermodynamics of the PEM fuel cell
    • Cooling and humidification strategy
  4. High-temperature fuel cell
    • The MCFC
    • The SOFC
    • Integration Strategies and partial reforming
  5. Fuels
    • Supply of fuel
    • Reforming of natural gas and biogas
    • Reforming of liquid hydrocarbons
  6. Energetic Integration and control of fuel cell systems


Literature
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003


Course L0019: Energy Trading
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Robert Gersdorf
Language DE
Cycle SoSe
Content
  • Basic concepts and tradable products in energy markets
  • Primary energy markets
  • Electricity Markets
  • European Emissions Trading Scheme
  • Influence of renewable energy
  • Real options
  • Risk management

Within the exercise the various tasks are actively discussed and applied to various cases of application.

Literature
Course L0020: Energy Trading
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Robert Gersdorf
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0025: Deep Geothermal Energy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Ben Norden
Language DE
Cycle SoSe
Content
  1. Introduction to the deep geothermal use
  2. Geological Basics I
  3. Geological Basics II
  4. Geology and thermal aspects
  5. Rock Physical Aspects
  6. Geochemical aspects
  7. Exploration of deep geothermal reservoirs
  8. Drilling technologies, piping and expansion
  9. Borehole Geophysics
  10. Underground system characterization and reservoir engineering
  11. Microbiology and Upper-day system components
  12. Adapted investment concepts, cost and environmental aspect
Literature
  • Dipippo, R.: Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Butterworth Heinemann; 3rd revised edition. (29. Mai 2012)
  • www.geo-energy.org
  • Edenhofer et al. (eds): Renewable Energy Sources and Climate Change Mitigation; Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2012.
  • Kaltschmitt et al. (eds): Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, 5. Aufl. 2013.
  • Kaltschmitt et al. (eds): Energie aus Erdwärme. Spektrum Akademischer Verlag; Auflage: 1999 (3. September 2001)
  • Huenges, E. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 1. Auflage (19. April 2010)


Module M0874: Wastewater Systems

Courses
Title Typ Hrs/wk CP
Biological Wastewater Treatment (L0517) Lecture 2 2
Biological Wastewater Treatment (L3122) Recitation Section (large) 1 1
Advanced Wastewater Treatment (L0357) Lecture 2 2
Advanced Wastewater Treatment (L0358) Recitation Section (large) 1 1
Module Responsible Dr. Joachim Behrendt
Admission Requirements None
Recommended Previous Knowledge

Knowledge of wastewater management and the key processes involved in wastewater treatment.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to outline key areas of the full range of treatment systems in waste water management, as well as their mutual dependence for sustainable water protection. They can describe relevant economic, environmental and social factors.

Skills

Students are able to pre-design and explain the available wastewater treatment processes and the scope of their application in municipal and for some industrial treatment plants.

Personal Competence
Social Competence

Social skills are not targeted in this module.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Environmental Engineering: Specialisation Water Quality and Water Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Compulsory
Course L0517: Biological Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle SoSe
Content

Charaterisation of Wastewater
Metobolism of Microorganisms
Kinetic of mirobiotic processes
Calculation of bioreactor for wastewater treatment
Concepts of Wastewater treatment
Design of WWTP
Excursion to a WWTP
Biofilms
Biofim Reactors
Anaerobic Wastewater and sldge treatment
resources oriented sanitation technology
Future challenges of wastewater treatment

Literature

Gujer, Willi
Siedlungswasserwirtschaft : mit 84 Tabellen
ISBN: 3540343296 (Gb.) URL: http://www.gbv.de/dms/bs/toc/516261924.pdf URL: http://deposit.d-nb.de/cgi-bin/dokserv?id=2842122&prov=M&dok_var=1&dok_ext=htm
Berlin [u.a.] : Springer, 2007
TUB_HH_Katalog
Henze, Mogens
Wastewater treatment : biological and chemical processes
ISBN: 3540422285 (Pp.)
Berlin [u.a.] : Springer, 2002
TUB_HH_Katalog
Imhoff, Karl (Imhoff, Klaus R.;)
Taschenbuch der Stadtentwässerung : mit 10 Tafeln
ISBN: 3486263331 ((Gb.))
München [u.a.] : Oldenbourg, 1999
TUB_HH_Katalog
Lange, Jörg (Otterpohl, Ralf; Steger-Hartmann, Thomas;)
Abwasser : Handbuch zu einer zukunftsfähigen Wasserwirtschaft
ISBN: 3980350215 (kart.) URL: http://www.gbv.de/du/services/agi/52567E5D44DA0809C12570220050BF25/000000700334
Donaueschingen-Pfohren : Mall-Beton-Verl., 2000
TUB_HH_Katalog
Mudrack, Klaus (Kunst, Sabine;)
Biologie der Abwasserreinigung : 18 Tabellen
ISBN: 382741427X URL: http://www.gbv.de/du/services/agi/94B581161B6EC747C1256E3F005A8143/420000114903
Heidelberg [u.a.] : Spektrum, Akad. Verl., 2003
TUB_HH_Katalog
Tchobanoglous, George (Metcalf & Eddy, Inc., ;)
Wastewater engineering : treatment and reuse
ISBN: 0070418780 (alk. paper) ISBN: 0071122508 (ISE (*pbk))
Boston [u.a.] : McGraw-Hill, 2003
TUB_HH_Katalog
Henze, Mogens
Activated sludge models ASM1, ASM2, ASM2d and ASM3
ISBN: 1900222248
London : IWA Publ., 2002
TUB_HH_Katalog
Kunz, Peter
Umwelt-Bioverfahrenstechnik
Vieweg, 1992
Bauhaus-Universität., Arbeitsgruppe Weiterbildendes Studium Wasser und Umwelt (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, ;)
Abwasserbehandlung : Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren, Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen
ISBN: 3860682725 URL: http://www.gbv.de/dms/weimar/toc/513989765_toc.pdf URL: http://www.gbv.de/dms/weimar/abs/513989765_abs.pdf
Weimar : Universitätsverl, 2006
TUB_HH_Katalog
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
DWA-Regelwerk
Hennef : DWA, 2004
TUB_HH_Katalog
Wiesmann, Udo (Choi, In Su; Dombrowski, Eva-Maria;)
Fundamentals of biological wastewater treatment
ISBN: 3527312196 (Gb.) URL: http://deposit.ddb.de/cgi-bin/dokserv?id=2774611&prov=M&dok_var=1&dok_ext=htm
Weinheim : WILEY-VCH, 2007
TUB_HH_Katalog

Course L3122: Biological Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0357: Advanced Wastewater Treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Survey on advanced wastewater treatment

reuse of reclaimed municipal wastewater

Precipitation

Flocculation

Depth filtration

Membrane Processes

Activated carbon adsorption

Ozonation

"Advanced Oxidation Processes"

Disinfection

Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003
Course L0358: Advanced Wastewater Treatment
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Joachim Behrendt
Language EN
Cycle SoSe
Content

Aggregate organic compounds (sum parameters)

Industrial wastewater

Processes for industrial wastewater treatment

Precipitation

Flocculation

Activated carbon adsorption

Recalcitrant organic compounds


Literature

Metcalf & Eddy, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston 2003

Wassertechnologie, H.H. Hahn, Springer-Verlag, Berlin 1987

Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, T. Melin und R. Rautenbach, Springer-Verlag, Berlin 2007

Trinkwasserdesinfektion: Grundlagen, Verfahren, Anlagen, Geräte, Mikrobiologie, Chlorung, Ozonung, UV-Bestrahlung, Membranfiltration, Qualitätssicherung, W. Roeske, Oldenbourg-Verlag, München 2006

Organische Problemstoffe in Abwässern, H. Gulyas, GFEU, Hamburg 2003

Module M0617: High Pressure Chemical Engineering

Courses
Title Typ Hrs/wk CP
High pressure plant and vessel design (L1278) Lecture 2 2
Industrial Processes Under High Pressure (L0116) Lecture 2 2
Advanced Separation Processes (L0094) Lecture 2 2
Module Responsible Dr. Monika Johannsen
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Chemical Engineering, Fluid Process Engineering, Thermal Separation Processes, Thermodynamics, Heterogeneous Equilibria


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After a successful completion of this module, students can:

  • explain the influence of pressure on the properties of compounds, phase equilibria, and production processes,
  • describe the thermodynamic fundamentals of separation processes with supercritical fluids,
  • exemplify models for the description of solid extraction and countercurrent extraction,
  • discuss parameters for optimization of processes with supercritical fluids.


Skills

After successful completion of this module, students are able to:

  • compare separation processes with supercritical fluids and conventional solvents,
  • assess the application potential of high-pressure processes at a given separation task,
  • include high pressure methods in a given multistep industrial application,
  • estimate economics of high-pressure processes in terms of investment and operating costs,
  • perform an experiment with a high pressure apparatus under guidance,
  • evaluate experimental results,
  • prepare an experimental protocol.


Personal Competence
Social Competence

After successful completion of this module, students are able to:

  • present a scientific topic from an original publication in teams of 2 and defend the contents together.


Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1278: High pressure plant and vessel design
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Häring
Language DE/EN
Cycle SoSe
Content
  1. Basic laws and certification standards
  2. Basics for calculations of pressurized vessels
  3. Stress hypothesis
  4. Selection of materials and fabrication processes
  5. vessels with thin walls
  6. vessels with thick walls
  7. Safety installations
  8. Safety analysis

    Applications:

    - subsea technology (manned and unmanned vessels)
    - steam vessels
    - heat exchangers
    - LPG, LEG transport vessels
Literature Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag
Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag
AD-Merkblätter, Heumanns Verlag
Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag
Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag
Klapp: Apparate- und Anlagentechnik, Springer Verlag
Course L0116: Industrial Processes Under High Pressure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Carsten Zetzl
Language EN
Cycle SoSe
Content Part I : Physical Chemistry and Thermodynamics

1.      Introduction: Overview, achieving high pressure, range of parameters.

2.       Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy,     entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension.

3.      Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria

4.      Overview on calculation methods for (high pressure) phase equilibria).
Influence of pressure on transport processes, heat and mass transfer.

Part II : High Pressure Processes

5.      Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases)

6.      Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation)

7.      Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure

Part III :  Industrial production

8.      Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO)

9.      Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery

10.  Industrial High Pressure Applications in Biofuel and Biodiesel Production

11.  Sterilization and Enzyme Catalysis

12.  Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor.

13.   Supercritical fluids for materials processing.

14.  Cost Engineering

Learning Outcomes:  

After a successful completion of this module, the student should be able to

-         understand of the influences of pressure on properties of compounds, phase equilibria, and production processes.

-         Apply high pressure approches in the complex process design tasks

-         Estimate Efficiency of high pressure alternatives with respect to investment and operational costs


Performance Record:

1.  Presence  (28 h)

2. Oral presentation of original scientific article (15 min) with written summary

3. Written examination and Case study 

    ( 2+3 : 32 h Workload)

Workload:

60 hours total

Literature

Literatur:

Script: High Pressure Chemical Engineering.
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Course L0094: Advanced Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle SoSe
Content
  • Introduction/Overview on Properties of Supercritical Fluids (SCF)and their Application in Gas Extraction Processes
  • Solubility of Compounds in Supercritical Fluids and Phase Equilibrium with SCF
  • Extraction from Solid Substrates: Fundamentals, Hydrodynamics and Mass Transfer
  • Extraction from Solid Substrates: Applications and Processes (including Supercritical Water)
  • Countercurrent Multistage Extraction: Fundamentals and Methods, Hydrodynamics and Mass Transfer
  • Countercurrent Multistage Extraction: Applications and Processes
  • Solvent Cycle, Methods for Precipitation
  • Supercritical Fluid Chromatography (SFC): Fundamentals and Application
  • Simulated Moving Bed Chromatography (SMB)
  • Membrane Separation of Gases at High Pressures
  • Separation by Reactions in Supercritical Fluids (Enzymes)
Literature

G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Module M0875: Nexus Engineering - Water, Soil, Food and Energy

Courses
Title Typ Hrs/wk CP
Ecological Town Design - Water, Energy, Soil and Food Nexus (L1229) Seminar 2 2
Water & Wastewater Systems in a Global Context (L0939) Lecture 2 4
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, migration to cities, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe the facets of the global water situation. Students can judge the enormous potential of the implementation of synergistic systems in Water, Soil, Food and Energy supply.

Skills

Students are able to design ecological settlements for different geographic and socio-economic conditions for the main climates around the world.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information can be found at the beginning of the smester in the StudIP course module handbook.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Elective Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L1229: Ecological Town Design - Water, Energy, Soil and Food Nexus
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content
  • Participants Workshop: Design of the most attractive productive Town
  • Keynote lecture and video
  • The limits of Urbanization / Green Cities
  • The tragedy of the Rural: Soil degradation, agro chemical toxification, migration to cities
  • Global Ecovillage Network: Upsides and Downsides around the World
  • Visit of an Ecovillage
  • Participants Workshop: Resources for thriving rural areas, Short presentations by participants, video competion
  • TUHH Rural Development Toolbox
  • Integrated New Town Development
  • Participants workshop: Design of New Towns: Northern, Arid and Tropical cases
  • Outreach: Participants campaign
  • City with the Rural: Resilience, quality of live and productive biodiversity


Literature
  • Ralf Otterpohl 2013: Gründer-Gruppen als Lebensentwurf: "Synergistische Wertschöpfung in erweiterten Kleinstadt- und Dorfstrukturen", in „Regionales Zukunftsmanagement Band 7: Existenzgründung unter regionalökonomischer Perspektive, Pabst Publisher, Lengerich
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)
  • TEDx New Town Ralf Otterpohl: http://youtu.be/_M0J2u9BrbU
Course L0939: Water & Wastewater Systems in a Global Context
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle SoSe
Content


  • Keynote lecture and video
  • Water & Soil: Water availability as a consequence of healthy soils
  • Water and it’s utilization, Integrated Urban Water Management
  • Water & Energy, lecture and panel discussion pro and con for a specific big dam project
  • Rainwater Harvesting on Catchment level, Holistic Planned Grazing, Multi-Use-Reforestation
  • Sanitation and Reuse of water, nutrients and soil conditioners, Conventional and Innovative Approaches
  • Why are there excreta in water? Public Health, Awareness Campaigns
  • Rehearsal session, Q&A


Literature
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press
  • Liu, John D.: http://eempc.org/hope-in-a-changing_climate/ (Integrated regeneration of the Loess Plateau, China, and sites in Ethiopia and Rwanda)
  • http://youtu.be/9hmkgn0nBgk (Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation)

Module M0714: Numerical Methods for Ordinary Differential Equations

Courses
Title Typ Hrs/wk CP
Numerical Treatment of Ordinary Differential Equations (L0576) Lecture 2 3
Numerical Treatment of Ordinary Differential Equations (L0582) Recitation Section (small) 2 3
Module Responsible Prof. Daniel Ruprecht
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I, II, III for Engineers (German or English) or Analysis & Linear Algebra I + II plus Analysis III for Technomathematiker.
  • Basic knowledge of MATLAB, Python or a similar programming language.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • name numerical methods for the solution of ordinary differential equations and explain their core ideas,
  • formulate convergence statements for the taught numerical methods (including the necessary assumptions about the solved problem),
  • explain aspects regarding the practical realisation of a method,
  • select the appropriate numerical method for specific problems, implement the numerical algorithms efficiently and interpret the numerical results.
Skills

Students are able to

  • implement, apply and compare numerical methods for the solution of ordinary differential equations,
  • explain the convergence behaviour of numerical methods, taking into consideration the solved problem and selected algorithm,
  • develop a suitable solution approach for a given problem, if necessary by combining multiple algorithms, realise this approach and critically evaluate results.

Personal Competence
Social Competence

Students are able to

  • work together in heterogeneous teams (i.e., teams from different study programs and with different background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the provided theoretical and practical excercises are better solved individually or in a team and
  • to assess their individual progress and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Technical Complementary Course: Elective Compulsory
Computer Science: Specialisation III. Mathematics: Elective Compulsory
Data Science: Specialisation I. Mathematics: Elective Compulsory
Data Science: Specialisation IV. Special Focus Area: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Energy Systems: Core Qualification: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Interdisciplinary Mathematics: Specialisation II. Numerical - Modelling Training: Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Technomathematics: Specialisation I. Mathematics: Elective Compulsory
Theoretical Mechanical Engineering: Core Qualification: Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0576: Numerical Treatment of Ordinary Differential Equations
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content

Numerical methods for Initial Value Problems

  • single step methods
  • multistep methods
  • stiff problems
  • differential algebraic equations (DAE) of index 1

Numerical methods for Boundary Value Problems

  • multiple shooting method
  • difference methods
Literature
  • E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems.
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.
  • D. Griffiths, D. Higham: Numerical Methods for Ordinary Differential Equations.
Course L0582: Numerical Treatment of Ordinary Differential Equations
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Daniel Ruprecht
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1033: Special Areas of Process Engineering and Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Bioeconomy (L2797) Lecture 2 2
Chemical Kinetics (L0508) Lecture 2 2
Solid Matter Process Technology for Biomass (L0052) Lecture 2 3
Solid Matter Process in Chemical Industry (L2021) Lecture 2 2
Optics for Engineers (L2437) Lecture 3 3
Optics for Engineers (L2438) Project-/problem-based Learning 3 3
Safety of Chemical Reactions (L1321) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge The students should have passed the Bachelor modules "Process Engineering" successfully.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to find their way around selected special areas of Process Engineering within the scope of Process Engineering.
Students are able to explain technical dependencies and models in selected special areas of Process Engineering.

Skills

Students are able to apply basic methods in selected areas of process engineering.

Personal Competence
Social Competence

Students can discuss in English in international teams and work out a solution under time pressure.

Autonomy

Students can chose independently, in which field the want to deepen their knowledge and skills through the election of courses.

Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2797: Bioeconomy
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Garabed Antranikian
Language EN
Cycle WiSe/SoSe
Content

Bioeconomy is the production, utilization and conservation of biological resources, including related knowledge, science, technology, and innovation, to provide information products, processes, and services across all economic sectors aiming towards a sustainable biobased technology. In this course the significance of various topics including the production and processing of biomass, economics, logistic as well as management will be discussed. Technologies aiming at the production of renewable biological resources and the conversion of these resources and waste streams into value-added products, such as food, feed, bio-based products (textiles, bioplastics, chemicals, pharmaceuticals) and bioenergy will be presented. Biological tools including microorganisms and enzymes will be introduced. This approach with a focus on chemical and process engineering will provide a smooth transition from crude oil-based industry to Sustainable Circular Bioeconomy taking into consideration the environmental issues. This sustainable use of renewable resources for industrial purposes will ensure environmental protection and a long-term balance of social and economic gains.

Literature
Course L0508: Chemical Kinetics
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 120 Minuten
Lecturer Prof. Raimund Horn
Language EN
Cycle WiSe
Content

- Micro kinetics, formal kinetics, molecularity, reaction order, integrated rate laws

- Complex reactions, reversible reactions, consecutive reactions, parallel reactions, approximation methods: steady-state, pseudo-first order, numerical solution of rate equations , example : Belousov-Zhabotinskii reaction

- Experimental methods of kinetics, integral approach, differential approach, initial rate method, method of half-life, relaxation methods

- Collision theory, Maxwell velocity distribution, collision numbers, line of centers model

- Transition state theory, partition functions of atoms and molecules, examples, calculating reaction equilibria on the basis of molecular data only, heats of reaction, calculating rates of reaction by means of statistical thermodynamics

- Kinetics of heterogeneous reactions, peculiarities of heterogeneous reactions, mean-field approximation, Langmuir adsorption isotherm, reaction mechanisms, Langmuir-Hinshelwood Mechanism, Eley-Rideal Mechanism, steady-state approximation, quasi-equilibrium approximation, most abundant reaction intermediate (MARI), reaction order, apparent activation energy, example: CO oxidation, transition state theory of surface reactions, Sabatier´s principle, sticking coefficient, parameter fitting

- Explosions, cold flames

Literature

J. I. Steinfeld, J. S. Francisco, W. L . Hase: Chemical Kinetics & Dynamics, Prentice Hall

K. J. Laidler: Chemical Kinetics, Harper & Row Publishers

R. K. Masel. Chemical Kinetics & Catalysis , Wiley

I. Chorkendorff,, J. W. Niemantsverdriet: Concepts of modern Catalysis and Kinetics, Wiley

Course L0052: Solid Matter Process Technology for Biomass
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Werner Sitzmann
Language DE
Cycle SoSe
Content The industrial application of unit operations as part of process engineering is explained by actual examples of solid biomass processes. Size reduction, transportation and dosing, drying and agglomeration of renewable resources are described as important unit operations when producing solid fuels and bioethanol, producing and refining edible oils, when making Btl - and WPC - products. Aspects of explosion protection and plant design complete the lecture.
Literature

Kaltschmitt M., Hartmann H. (Hrsg.): Energie aus Bioamsse, Springer Verlag, 2001, ISBN 3-540-64853-4

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Schriftenreihe Nachwachsende Rohstoffe,

Fachagentur Nachwachsende Rohstoffe e.V. www.nachwachsende-rohstoffe.de

Bockisch M.: Nahrungsfette und -öle, Ulmer Verlag, 1993, ISBN 380000158175


Course L2021: Solid Matter Process in Chemical Industry
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 12 Seiten
Lecturer Prof. Frank Kleine Jäger
Language DE
Cycle SoSe
Content
Literature
Course L2437: Optics for Engineers
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content
  • Basic values for optical systems and lighting technology
  • Spectrum, black-bodies, color-perception
  • Light-Sources und their characterization
  • Photometrics
  • Ray-Optics
  • Matrix-Optics
  • Stops, Pupils and Windows
  • Light-field Technology
  • Introduction to Wave-Optics
  • Introduction to Holography
Literature  
Course L2438: Optics for Engineers
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Vorstellung eines eigenen Optikentwurfs mit anschließender Diskussion, 10 Minuten Vorstellung + maximal 20 Minuten Diskussion
Lecturer Prof. Thorsten Kern
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1321: Safety of Chemical Reactions
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale 30 min
Lecturer Dr. Marko Hoffmann
Language DE
Cycle SoSe
Content
Literature

Module M0898: Heterogeneous Catalysis

Courses
Title Typ Hrs/wk CP
Analysis and Design of Heterogeneous Catalytic Reactors (L0223) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0533) Lecture 2 2
Modern Methods in Heterogeneous Catalysis (L0534) Project-/problem-based Learning 2 2
Module Responsible Prof. Raimund Horn
Admission Requirements None
Recommended Previous Knowledge Content of the bachelor-modules "process technology", as well as particle technology, fluidmechanics in process-technology and transport processes.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to apply their knowledge to explain industrial catalytic processes as well as indicate different synthesis routes of established catalyst systems. They are capable to outline dis-/advantages of supported and full-catalysts with respect to their application. Students are able to identify anayltical tools for specific catalytic applications.
Skills After successfull completition of the module, students are able to use their knowledge to identify suitable analytical tools for specific catalytic applications and to explain their choice. Moreover the students are able to choose and formulate suitable reactor systems for the current synthesis process. Students can apply their knowldege discretely to develop and conduct experiments. They are able to appraise achieved results into a more general context and draw conclusions out of them.
Personal Competence
Social Competence

The students are able to plan, prepare, conduct and document experiments according to scientific guidelines in small groups.

The students can discuss their subject related knowledge among each other and with their teachers.

Autonomy

The students are able to obtain further information for experimental planning and assess their relevance autonomously.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0223: Analysis and Design of Heterogeneous Catalytic Reactors
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

1. Material- and Energybalance of the two-dimensionsal zweidimensionalen pseudo-homogeneous reactor model

2. Numerical solution of ordinary differential equations (Euler, Runge-Kutta, solvers for stiff problems, step controlled solvers)

3. Reactor design with one-dimensional models (ethane cracker, catalyst deactivation, tubular reactor with deactivating catalyst, moving bed reactor with regenerating catalyst, riser reactor, fluidized bed reactor)

4. Partial differential equations (classification, numerical solution Lösung, finite difference method, method of lines)

5. Examples of reactor design (isothermal tubular reactor with axial dispersion, dehydrogenation of ethyl benzene, wrong-way behaviour)

6. Boundary value problems (numerical solution, shooting method, concentration- and temperature profiles in a catalyst pellet, multiphase reactors, trickle bed reactor)


Literature

1. Lecture notes R. Horn

2. Lecture notes F. Keil

3.  G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010

4. R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000



Course L0533: Modern Methods in Heterogeneous Catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content

Heterogeneous Catalysis and Chemical Reaction Engineering are inextricably linked. About 90% of all chemical intermediates and consumer products (fuels, plastics, fertilizers etc.) are produced with the aid of catalysts. Most of them, in particular large scale products, are produced by heterogeneous catalysis viz. gaseous or liquid reactants react on solid catalysts. In multiphase reactors gases, liquids and a solid catalyst are present.

Heterogeneous catalysis plays also a key role in any future energy scenario (fuel cells, electrocatalytic splitting of water) and in environmental engineering (automotive catalysis, photocatalyic abatement of water pollutants).

Heterogeneous catalysis is an interdisciplinary science requiring knowledge of different scientific disciplines such as

  • Materials Science (synthesis and characterization of solid catalysts)
  • Physics (structure and electronic properties of solids, defects)
  • Physical Chemistry (thermodynamics, reaction mechanisms, chemical kinetics, adsorption, desorption, spectroscopy, surface chemistry, theory)
  • Reaction Engineering (catalytic reactors, mass- and heat transport in catalytic reactors, multi-scale modeling, application of heterogeneous catalysis)
The class „Modern Methods in Heterogeneous Catalysis“ will deal with the above listed aspects of heterogeneous catalysis beyond the material presented in the normal curriculum of chemical reaction engineering classes. In the corresponding laboratory will have the opportunity to apply their aquired theoretical knowledge by synthesizing a solid catalyst, characterizing it with a variety of modern instrumental methods (e.g. BET, chemisorption, pore analysis, XRD, Raman-Spectroscopy, Electron Microscopy) and measuring its kinetics. Class and laboratory „Modern Methods in Heterogeneous Catalysis“ in combination with the lecture „Analysis and Design of Heterogeneous Catalytic Reactors“ will give interested students the opportunity to specialize in this vibrant, multifaceted and application oriented field of research.


Literature
  • J.M. Thomas, W.J. Thomas: Principles and Practice of Heterogeneous Catalysis, VCH
  • I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, WILEY-VCH
  • B.C. Gates: Catalytic Chemistry, John Wiley
  • R.A. van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn, B.A. Averill (Eds.): Catalysis: an integrated approach, Elsevier
  • D.P. Woodruff, T.A. Delchar: Modern Techniques of Surface Science, Cambridge Univ. Press
  • J.W. Niemantsverdriet: Spectrocopy in Catalysis, VCH
  • F. Delannay (Ed.): Characterization of heterogeneous catalysts, Marcel Dekker
  • C.H. Bartholomew, R.J. Farrauto: Fundamentals of Industrial Catalytic Processes (2nd Ed.),Wiley


Course L0534: Modern Methods in Heterogeneous Catalysis
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Raimund Horn
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0952: Industrial Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Biotechnical Processes (L1065) Project-/problem-based Learning 2 3
Development of bioprocess engineering processes in industrial practice (L1172) Seminar 2 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective biotechnological production processes
Skills

After successful completion of the module students are able to

  • analyzing and evaluate current research approaches
  • Lay-out biotechnological production processes basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.



Autonomy



After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale oral presentation + discussion (45 min) + Written report (10 pages)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1065: Biotechnical Processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language DE/EN
Cycle SoSe
Content

This course gives an overview of the most important biotechnological production processes. In addition to the individual methods and their specific requirements, general aspects of industrial reality are also addressed, such as:
• Asset Lifecycle
• Digitization in the bioprocess industry
• Basic principles of industrial bioprocess development
• Sustainability aspects in the development of bioprocess engineering processes

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986. 

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts


Course L1172: Development of bioprocess engineering processes in industrial practice
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language DE/EN
Cycle SoSe
Content

This course gives an insight into the methodology used in the development of industrial biotechnology processes. Important aspects of this are, for example, the development of the fermentation and the work-up steps for the respective target molecule, the integration of the partial steps into an overall process, and the cost-effectiveness of the process.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1308: Modelling and Technical Design of Bio Refinery Processes

Courses
Title Typ Hrs/wk CP
Biorefineries - Technical Design and Optimization (L1832) Project-/problem-based Learning 3 3
CAPE in Energy Engineering (L0022) Projection Course 3 3
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The tudents can completely design a technical process including mass and energy balances, calculation and layout of different process devices, layout of measurement- and control systems as well as modeling of the overall process.

Furthermore, they can describe the basics of the general procedure for the processing of modeling tasks, especially with ASPEN PLUS ® and ASPEN CUSTOM MODELER ®.

Skills Students are able to simulate and solve scientific task in the context of renewable energy technologies by:    
  • development of modul-comprehensive approaches for the dimensioning and design of production processes
  • evaluating alternatives input parameter to solve the particular task even with incomplete information,
  • a systematic documentation of the work results in form of a written version, the presentation itself and the defense of contents.

They can use the ASPEN PLUS ® and ASPEN CUSTOM MODELER ® for modeling energy systems and to evaluate the simulation solutions.

Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Personal Competence
Social Competence Students can
  • respectfully work together as a team with around 2-3 members,
  • participate in subject-specific and interdisciplinary discussions in the area of dimensioning and design of production processes, and can develop cooperated solutions,
  • defend their own work results in front of fellow students and

assess the performance of fellow students in comparison to their own performance. Furthermore, they can accept professional constructive criticism.

Autonomy

Students can independently tap knowledge regarding to the given task. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written report incl. presentation
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1832: Biorefineries - Technical Design and Optimization
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle SoSe
Content

I. Repetition of engineering basics

  1. Shell and tube heat exchangers
  2. Steam generators and refrigerating machines
  3. Pumps and turbines
  4. Flow in piping networks
  5. Pumping and mixing of non-newtonian fluids
  6. Requirements to a detailed layout plan 

 II. Calculation:

  1. Planning and design of a specific bio-refinery plant section, such as Ethanol distillation and fermentation. This is based on empirical valuse of a real, industrial plant.
    • Mass and energy balances (Aspen)
    • Equipment design (heat exchangers, pumps, pipes, tanks, etc.) (
    • Isolation, wall thickness and material selection
    • Energy demand (electrical, heat or cooling), design of steam boilers and appliances
    • Selection of fittings, measuring instruments and safety equipment
    • Definition of main control loops
  2. Hereby, the dependencies of transport phenomena between certain plant sections become evident and methods of calculation are introduced.
  3. In Detail Engineering , it is focused on aspects of plant engineering planning that are relevant for the subsequent construction of the plant.
  4. Depending of time requirement and group size a cost estimation and preparation of a complete R&I flow chart can be implemented as well.
Literature

Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007

Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014

Course L0022: CAPE in Energy Engineering
Typ Projection Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content
  • CAPE = Computer-Aided-Project-Engineering

  • INTRODUCTION TO THE THEORY    
    • Classes of simulation programs
    • Sequential modular approach
    • Equation-oriented approach
    • Simultaneous modular approach
    • General procedure for the processing of modeling tasks
    • Special procedure for solving models with repatriations
  • COMPUTER EXERCISES renewable energy projects WITH ASPEN PLUS ® AND ASPEN CUSTOM MODELER ®    
    • Scope, potential and limitations of Aspen Plus ® and Aspen Custom Modeler ®
    • Use of integrated databases for material data
    • Methods for estimating non-existent physical property data
    • Use of model libraries and Process Synthesis
    • Application of design specifications and sensitivity analyzes
    • Solving optimization problems

Within the seminar, the various tasks are actively discussed and applied to various cases of application.

Literature
  • Aspen Plus® - Aspen Plus User Guide
  • William L. Luyben; Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5

Module M1709: Applied optimization in energy and process engineering

Courses
Title Typ Hrs/wk CP
Applied optimization in energy and process engineering (L2693) Integrated Lecture 2 3
Applied optimization in energy and process engineering (L2695) Recitation Section (small) 3 3
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.


In particular the contents of the module Process and Plant Engineering II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

• Introduction to Applied Optimization

• Formulation of optimization problems

• Linear Optimization

• Nonlinear Optimization

• Mixed-integer (non)linear optimization

• Multi-objective optimization

• Global optimization

Skills

After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly.


Personal Competence
Social Competence

Students are capable of:

•develop solutions in heterogeneous small groups
Autonomy

Students are capable of:

•taping new knowledge on a special subject by literature research
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Midterm Bonuspunkte
Examination Oral exam
Examination duration and scale 35 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2693: Applied optimization in energy and process engineering
Typ Integrated Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski
Language EN
Cycle SoSe
Content

The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well.

- Introduction to Applied Optimization

- Formulation of optimization problems

- Linear Optimization

- Nonlinear Optimization

- Mixed-integer (non)linear optimization

- Multi-objective optimization

- Global optimization

Literature

Weicker, K., Evolutionäre Algortihmen, Springer, 2015

Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001

Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010

Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002

Course L2695: Applied optimization in energy and process engineering
Typ Recitation Section (small)
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M2029: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging Practicals (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed. An interest in imaging techniques and image processing is helpful but not mandatory.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.


Skills

After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 70% written examination, 30% active participation and final presentation of the problem-based learning units with a 5-10 page report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content

The lecture focuses primarily on presenting and discussing established imaging techniques relevant to the field of engineering including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging Practicals
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M1954: Process Simulation and Process Safety

Courses
Title Typ Hrs/wk CP
CAPE with Computer Exercises (L1039) Integrated Lecture 3 4
Methods of Process Safety and Dangerous Substances (L1040) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

thermal separation processes

heat and mass transport processes

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- outline types of simulation tools

- describe principles of flowsheet  and equation oriented simulation tools

- describe the setting of flowsheet simulation tools

- explain the main differences between steady state and dynamic simulations

- present the fundamentals of toxicology and hazardous materials

- explain the main methods of safety engineering

- present the importance of safety analysis with respect to plant design

- describe the definitions within the legal accident insurance

accident insurance


Skills

students can:

- conduct steady state and dynamic simulations

- evaluate simulation results and transform them in the practice

- choose and combine suitable simulation models into a production plant

- evaluate the achieved simulation results regarding practical importance
- evaluate the results of many experimental methods regarding safety aspects

- review, compare and  use results of safety considerations for a plant design

Personal Competence
Social Competence

students are able to:

- work together in teams in order to simulate process elements  and develop an integral process

- develop in teams a safety concept for a process and present it to the audience


Autonomy

students are able to

- act responsible with respect to environment and needs of the society

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Exam 90 minutes and written report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1039: CAPE with Computer Exercises
Typ Integrated Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language EN
Cycle SoSe
Content

I. Introduction

       1. Fundamentals of steady state process simulation

       1.1. Classes of simulation tools
       1.2. Sequential-modularer approach
       1.3. Operating mode of ASPEN PLUS
       2. Introduction in ASPEN PLUS
       2.1. GUI
       2.2. Estimation methods of physical properties
       2.3. Aspen tools (z.B. Designspecification)
       2.4. Convergence methods

II. Exercices using ASPEN PLUS and ACM

            Performance and constraints of ASPEN PLUS
            ASPEN datenbank using
            Estimation methods of physical properties

            Application of model databank, process synthesis

            Design specifications

            Sensitivity analysis
            Optimization tasks
            Industrial cases

Literature

- G. Fieg: Lecture notes
-
Seider, W.D.; Seader, J.D.; Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis,
  and Evaluation; Hoboken, J. Wiley & Sons, 2010


Course L1040: Methods of Process Safety and Dangerous Substances
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle SoSe
Content

Practical implementation of safety analyses (methods)

Safety-related parameters and methods for their determination

Hazard characteristics according to the Chemicals Act

GHS (Globally Harmonized System) for the classification and labelling of chemicals

Hazardous substances

Toxicology

Personal safety

Safety considerations in plant design

Inherently safe process design

Technical measures for plant safety

Literature

Bender, H.: Sicherer Umgang mit Gefahrstoffen; Weinheim (2005)
Bender, H.: Das Gefahrstoffbuch. Sicherer Umgang mit Gefahrstoffen in der Praxis; Weinheim (2002)
Birett, K.: Umgang mit Gefahrstoffen; Heidelberg (2011)
Birgersson, B.; Sterner, O.; Zimerson, E.: Chemie und Gesundheit; Weinheim (1988)

O. Antelmann, Diss. an der TU Berlin, 2001

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Prozesse und Produkte, Band 1

    Methodische Grundlagen, VCH, 2004-2006, S. 719

H. Pohle, Chemische Industrie, Umweltschutz, Arbeitsschutz, Anlagensicherheit, VCH, Weinheim, 1991

J. Steinbach, Chemische Sicherheitstechnik, VCH, Weinheim, 1995

G. Suter, Identifikation sicherheitskritischer Prozesse, P&A Kompendium, 2004

Module M2028: Computational Fluid Dynamics in Process Engineering

Courses
Title Typ Hrs/wk CP
Lagrangian transport in turbulent flows (L2301) Lecture 2 3
Computational Fluid Dynamics - Exercises in OpenFoam (L1375) Recitation Section (small) 1 1
Computational Fluid Dynamics in Process Engineering (L1052) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-IV
  • Basic knowledge in Fluid Mechanics
  • Basic knowledge in chemical thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students are able to

  • explain the the basic principles of statistical thermodynamics (ensembles, simple systems) 
  • describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles
  • discuss examples of computer programs in detail,
  • evaluate the application of numerical simulations,
  • list the possible start and boundary conditions for a numerical simulation.
Skills

The students are able to:

  • set up computer programs for solving simple problems by Monte Carlo or molecular dynamics,
  • solve problems by molecular modeling,
  • set up a numerical grid,
  • perform a simple numerical simulation with OpenFoam,
  • evaluate the result of a numerical simulation.

Personal Competence
Social Competence

The students are able to

  • develop joint solutions in mixed teams and present them in front of the other students,
  • to collaborate in a team and to reflect their own contribution toward it.




Autonomy

The students are able to:

  • evaluate their learning progress and to define the following steps of learning on that basis,
  • evaluate possible consequences for their profession.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2301: Lagrangian transport in turbulent flows
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Yan Jin
Language EN
Cycle SoSe
Content

Contents

- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)

- An overview of Lagrange analysis methods and experiments in fluid mechanics

- Critical examination of the concept of turbulence and turbulent structures.

-Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.)

- Implementation of a Runge-Kutta 4th-order in Matlab

- Introduction to particle integration using ODE solver from Matlab

- Problems from turbulence research

- Application analytical methods with Matlab.


Structure:

- 14 units a 2x45 min. 

- 10 units lecture

- 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague


Learning goals:

Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge

The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills

The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence

Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence


Required knowledge:

Fluid mechanics 1 and 2 advantageous

Programming knowledge advantageous



Literature

Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag.

Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726.

Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press.

Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1.

Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502.

Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033.

Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley.

LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002.

Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO.

Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002.

Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109.

Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press.

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literature OpenFoam Tutorials (StudIP)
Course L1052: Computational Fluid Dynamics in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literature

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Module M0633: Industrial Process Automation

Courses
Title Typ Hrs/wk CP
Industrial Process Automation (L0344) Lecture 2 3
Industrial Process Automation (L0345) Recitation Section (small) 2 3
Module Responsible Prof. Alexander Schlaefer
Admission Requirements None
Recommended Previous Knowledge

mathematics and optimization methods
principles of automata 
principles of algorithms and data structures
programming skills

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'.


Skills

The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs.

Personal Competence
Social Competence

The students can independently define work processes within their groups, distribute tasks within the group and develop solutions collaboratively.



Autonomy

The students are able to assess their level of knowledge and to document their work results adequately.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0344: Industrial Process Automation
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content

- foundations of problem solving and system modeling, discrete event systems
- properties of processes, modeling using automata and Petri-nets
- design considerations for processes (mutex, deadlock avoidance, liveness)
- optimal scheduling for processes
- optimal decisions when planning manufacturing systems, decisions under uncertainty
- software design and software architectures for automation, PLCs

Literature

J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012
Reisig: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien; Vieweg+Teubner 2010
Hrúz, Zhou: Modeling and Control of Discrete-event Dynamic Systems; Springer 2007
Li, Zhou: Deadlock Resolution in Automated Manufacturing Systems, Springer 2009
Pinedo: Planning and Scheduling in Manufacturing and Services, Springer 2009

Course L0345: Industrial Process Automation
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Schlaefer
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0900: Examples in Solid Process Engineering

Courses
Title Typ Hrs/wk CP
Fluidization Technology (L0431) Lecture 2 2
Practical Course Fluidization Technology (L1369) Practical Course 1 1
Technical Applications of Particle Technology (L0955) Lecture 2 2
Exercises in Fluidization Technology (L1372) Recitation Section (small) 1 1
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Knowledge from the module particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe based on examples the assembly of solids engineering processes consisting of multiple apparatuses and subprocesses. They are able to describe the coaction and interrelation of subprocesses.
Skills Students are able to analyze tasks in the field of solids process engineering and to combine suitable subprocesses in a process chain.
Personal Competence
Social Competence Students are able to discuss technical problems in a scientific manner.
Autonomy Students are able to acquire scientific knowledge independently and discuss technical problems in a scientific manner.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration drei Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0431: Fluidization Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Introduction: definition, fluidization regimes, comparison with other types of gas/solids reactors
Typical fluidized bed applications
Fluidmechanical principle
Local fluid mechanics of gas/solid fluidization
Fast fluidization (circulating fluidized bed)
Entrainment
Solids mixing in fluidized beds
Application of fluidized beds to granulation and drying processes


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L1369: Practical Course Fluidization Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Experiments:

  • Determination of the minimum fluidization velocity
  • heat transfer
  • granulation
  • drying


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Course L0955: Technical Applications of Particle Technology
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Werner Sitzmann
Language DE
Cycle WiSe
Content Unit operations like mixing, separation, agglomeration and size reduction are discussed concerning their technical applicability from the perspective of the practician. Machines and apparatuses are presented, their designs and modes of action are explained and their application in production processes for chemicals, food and feed and in recycling processes are illustrated.
Literature Stieß M: Mechanische Verfahrenstechnik I und II, Springer - Verlag, 1997
Course L1372: Exercises in Fluidization Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language EN
Cycle WiSe
Content

Exercises and calculation examples for the lecture Fluidization Technology


Literature

Kunii, D.; Levenspiel, O.: Fluidization Engineering. Butterworth Heinemann, Boston, 1991.


Module M0537: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications

Courses
Title Typ Hrs/wk CP
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0100) Lecture 4 3
Applied Thermodynamics: Thermodynamic Properties for Industrial Applications (L0230) Recitation Section (small) 2 3
Module Responsible Dr. Simon Müller
Admission Requirements None
Recommended Previous Knowledge

Thermodynamics III

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are capable to formulate thermodynamic problems and to specify possible solutions. Furthermore, they can describe the current state of research in thermodynamic property predictions.




Skills

The students are capable to apply modern thermodynamic calculation methods to multi-component mixtures and relevant biological systems. They can calculate phase equilibria and partition coefficients by applying equations of state, gE models, and COSMO-RS methods. They can provide a comparison and a critical assessment of these methods with regard to their industrial relevance. The students are capable to use the software COSMOtherm and relevant property tools of ASPEN and to write short programs for the specific calculation of different thermodynamic properties. They can judge and evaluate the results from thermodynamic calculations/predictions for industrial processes.


Personal Competence
Social Competence

Students are capable to develop and discuss solutions in small groups; further they can translate these solutions into calculation algorithms. 


Autonomy

Students can rank the field of “Applied Thermodynamics” within the scientific and social context.  They are capable to define research projects within the field of thermodynamic data calculation.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Oral exam
Examination duration and scale 1 Stunde Gruppenprüfung
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0100: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Lecture
Hrs/wk 4
CP 3
Workload in Hours Independent Study Time 34, Study Time in Lecture 56
Lecturer Prof. Ralf Dohrn
Language EN
Cycle WiSe
Content


  • Phase equilibria in multicomponent systems
  • Partioning in biorelevant systems
  • Calculation of phase equilibria in colloidal systems: UNIFAC, COSMO-RS (exercises in computer pool)
  • Calculation of partitioning coefficients in biological membranes: COSMO-RS (exercises in computer pool)
  • Application of equations of state (vapour pressure, phase equilibria, etc.) (exercises in computer pool) 
  • Intermolecular forces, interaction Potenitials
  • Introduction in statistical thermodynamics
Literature
Course L0230: Applied Thermodynamics: Thermodynamic Properties for Industrial Applications
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Simon Müller
Language EN
Cycle WiSe
Content

exercises in computer pool, see lecture description for more details

Literature -

Module M0949: Rural Development and Resources Oriented Sanitation for different Climate Zones

Courses
Title Typ Hrs/wk CP
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0942) Seminar 2 3
Rural Development and Resources Oriented Sanitation for different Climate Zones (L0941) Lecture 2 3
Module Responsible Prof. Ralf Otterpohl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of the global situation with rising poverty, soil degradation, lack of water resources and sanitation

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can describe resources oriented wastewater systems mainly based on source control in detail. They can comment on techniques designed for reuse of water, nutrients and soil conditioners.

Students are able to discuss a wide range of proven approaches in Rural Development from and for many regions of the world.


Skills

Students are able to design low-tech/low-cost sanitation, rural water supply, rainwater harvesting systems, measures for the rehabilitation of top soil quality combined with food and water security. Students can consult on the basics of soil building through “Holisitc Planned Grazing” as developed by Allan Savory.

Personal Competence
Social Competence

The students are able to develop a specific topic in a team and to work out milestones according to a given plan.

Autonomy

Students are in a position to work on a subject and to organize their work flow independently. They can also present on this subject.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale During the course of the semester, the students work towards mile stones. The work includes presentations and papers. Detailed information will be provided at the beginning of the smester.
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Environment and Climate: Elective Compulsory
Environmental Engineering: Specialisation Water Quality and Water Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0942: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content


  • Central part of this module is a group work on a subtopic of the lectures. The focus of these projects will be based on an interview with a target audience, practitioners or scientists.
  • The group work is divided into several Milestones and Assignments. The outcome will be presented in a final presentation at the end of the semester.



Literature
  • J. Lange, R. Otterpohl 2000: Abwasser - Handbuch zu einer zukunftsfähigen Abwasserwirtschaft. Mallbeton Verlag (TUHH Bibliothek)
  • Winblad, Uno and Simpson-Hébert, Mayling 2004: Ecological Sanitation, EcoSanRes, Sweden (free download)
  • Schober, Sabine: WTO/TUHH Award winning Terra Preta Toilet Design: http://youtu.be/w_R09cYq6ys
Course L0941: Rural Development and Resources Oriented Sanitation for different Climate Zones
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Ralf Otterpohl
Language EN
Cycle WiSe
Content
  • Living Soil - THE key element of Rural Development
  • Participatory Approaches
  • Rainwater Harvesting
  • Ecological Sanitation Principles and practical examples
  • Permaculture Principles of Rural Development
  • Performance and Resilience of Organic Small Farms
  • Going Further: The TUHH Toolbox for Rural Development
  • EMAS Technologies, Low cost drinking water supply


Literature
  • Miracle Water Village, India, Integrated Rainwater Harvesting, Water Efficiency, Reforestation and Sanitation: http://youtu.be/9hmkgn0nBgk
  • Montgomery, David R. 2007: Dirt: The Erosion of Civilizations, University of California Press

Module M0542: Fluid Mechanics in Process Engineering

Courses
Title Typ Hrs/wk CP
Applications of Fluid Mechanics in Process Engineering (L0106) Recitation Section (large) 2 2
Fluid Mechanics II (L0001) Lecture 2 4
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-III
  • Fundamentals in Fluid Mechanics
  • Technical Thermodynamics I-II
  • Heat- and Mass Transfer
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe different applications of fluid mechanics in Process Engineering, Bioprocess Engineering, Energy- and Environmental Process Engineering and Renewable Energies. They are able to use the fundamentals of fluid mechanics for calculations of certain engineering problems. The students are able to estimate if a problem can be solved with an analytical solution and what kind of alternative possibilities are available (e.g. self-similarity in an example of free jets, empirical solutions in an example with the Forchheimer equation, numerical methods in an example of Large Eddy Simulation.

Skills

Students are able to use the governing equations of Fluid Dynamics for the design of technical processes. Especially they are able to formulate momentum and mass balances to optimize the hydrodynamics of technical processes. They are able to transform a verbal formulated message into an abstract formal procedure.

Personal Competence
Social Competence

The students are able to discuss a given problem in small groups and to develop an approach.

Autonomy

Students are able to define independently tasks for problems related to fluid mechanics. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0106: Applications of Fluid Mechanics in Process Engineering
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle WiSe
Content The Exercise-Lecture will bridge the gap between the theoretical content from the lecture and practical calculations. For this aim a special exercise is calculated at the blackboard that shows how the theoretical knowledge from the lecture can be used to solve real problems in Process Engineering.
Literature
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  
  14. White, F.: Fluid Mechanics, Mcgraw-Hill, ISBN-10: 0071311211, ISBN-13: 978-0071311212, 2011.
Course L0001: Fluid Mechanics II
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language DE
Cycle WiSe
Content
  • Differential equations for momentum-, heat and mass transfer   
  • Examples for simplifications of the Navier-Stokes Equations 
  • Unsteady momentum transfer
  • Free shear layer, turbulence and free jets
  • Flow around particles - Solids Process Engineering
  • Coupling of momentum and heat transfer - Thermal Process Engineering
  • Rheology – Bioprocess Engineering
  • Coupling of momentum- and mass transfer – Reactive mixing, Chemical Process Engineering 
  • Flow threw porous structures - heterogeneous catalysis
  • Pumps and turbines - Energy- and Environmental Process Engineering 
  • Wind- and Wave-Turbines - Renewable Energy
  • Introduction into Computational Fluid Dynamics

Literature
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  

Module M0990: Study work Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Study Work Bioprocess Engineering (L1192) Practical Course 6 6
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the research project they have worked on and relate it to current issues of bioprocess engineering.

They can explain the basic scientific methods they have worked with.


Skills

Students are capable of completing a small, independent sub-project of currently ongoing research projects in the institutes engaged in their specialization. Students can justify and explain their approach for problem solving, they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alterantive approaches with their own with regard to given criteria.


Personal Competence
Social Competence

Students are able to discuss their work progress with research assistants of the supervising institute .  They are capable of presenting their results in front of a professional audience.



Autonomy

Based on their competences gained so far students are capable of defining meaningful tasks within ongoing research project for themselves. They are able to develop the necessary understanding  and problem solving methods.

They can schedule the execution of the necessary experiments and organize themselves.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale according to specific regulations
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Course L1192: Study Work Bioprocess Engineering
Typ Practical Course
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content
Literature

Module M0742: Thermal Energy Systems

Courses
Title Typ Hrs/wk CP
Thermal Engergy Systems (L0023) Lecture 3 5
Thermal Engergy Systems (L0024) Recitation Section (large) 1 1
Module Responsible Prof. Arne Speerforck
Admission Requirements None
Recommended Previous Knowledge Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students know the different energy conversion stages and the difference between efficiency and annual efficiency. They have increased knowledge in heat and mass transfer, especially in regard to buildings and mobile applications. They are familiar with German energy saving code and other technical relevant rules. They know to differ different heating systems in the domestic and industrial area and how to control such heating systems. They are able to model a furnace and to calculate the transient temperatures in a furnace. They have the basic knowledge of emission formations in the flames of small burners  and how to conduct the flue gases into the atmosphere. They are able to model thermodynamic systems with object oriented languages.


Skills

Students are able to calculate the heating demand for different heating systems and to choose the suitable components. They are able to calculate a pipeline network and have the ability to perform simple planning tasks, regarding solar energy. They can write Modelica programs and can transfer research knowledge into practice. They are able to perform scientific work in the field of thermal engineering.


Personal Competence
Social Competence

In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions.


Autonomy

Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results.




Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Compulsory
Energy Systems: Specialisation Marine Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory
Product Development, Materials and Production: Core Qualification: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0023: Thermal Engergy Systems
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Gerhard Schmitz, Prof. Arne Speerforck
Language DE
Cycle WiSe
Content

1. Introduction

2. Fundamentals of Thermal Engineering 2.1 Heat Conduction 2.2 Convection 2.3 Radiation 2.4 Heat transition 2.5 Combustion parameters 2.6 Electrical heating 2.7 Water vapor transport

3. Heating Systems 3.1 Warm water heating systems 3.2 Warm water supply 3.3 piping calculation 3.4 boilers, heat pumps, solar collectors 3.5 Air heating systems 3.6 radiative heating systems

4. Thermal traetment systems 4.1 Industrial furnaces 4.2 Melting furnaces 4.3 Drying plants 4.4 Emission control 4.5 Chimney calculation 4.6 Energy measuring

5. Laws and standards 5.1 Buildings 5.2 Industrial plants

Literature
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Course L0024: Thermal Engergy Systems
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Arne Speerforck
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1017: Food Technology

Courses
Title Typ Hrs/wk CP
Food Technology (L1216) Lecture 2 3
Experimental Course: Brewing Technology (L1242) Practical Course 2 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge of partice technology
  • Separation Technique; Heat and Mass Transfer I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module students are able to

  • discuss the material properties of food
  • explain basic of production processes in food engineering
  • describe some selected processes
Skills

Students are able to

  • choose and design process chains for the processing of food
  • asses the effect of the single process steps on the material properties of food
Personal Competence
Social Competence Students are enabled to discuss knowledge in a scientific environment.
Autonomy

Students are able to acquire scientific knowledge independently and knowledge in a scientific manner.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration 10 - 15 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1216: Food Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich, Prof. Stefan Palzer
Language DE
Cycle WiSe
Content

1. Material properties: Rheology, Transport coefficients, Measuring devices, Quality aspects

2. Processes at ambient condition, at elevated temperature and pressure

3. energy analysis

4. Selected processes: Seed oil production; Roasted Coffee 

Literature

M. Bockisch: Handbuch der Lebensmitteltechnologie , Stuttgart, 1993

R. Eggers: Vorlesungsmanuskript

Course L1242: Experimental Course: Brewing Technology
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich, Prof. Stefan Palzer
Language DE/EN
Cycle WiSe
Content

In the frame of the course the basics of fermentation, fluid processing and process engineering will be repeated.

Following all aspects of manufacturing of beer will be explained: selection and processing of raw materials, different liquid and solid unit operations, packaging technology and final quality assurance/sensory evaluation.

The students will perform all unit operations in pilot scale. The objective is that student experience and adopt a holistic view of food manufacturing.

Literature

Ludwig Narziss: Abriss der Bierbrauerei, 7. Auflage, Wiley VCH

Module M0802: Membrane Technology

Courses
Title Typ Hrs/wk CP
Membrane Technology (L0399) Lecture 2 3
Membrane Technology (L0400) Recitation Section (small) 1 2
Membrane Technology (L0401) Practical Course 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures.

Skills

Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. 

Personal Competence
Social Competence

Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. 

Autonomy

Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Technical Complementary Course: Elective Compulsory
Environmental Engineering: Specialisation Water Quality and Water Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0399: Membrane Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content

The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well.

Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis.

The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. 

Literature
  • T. Melin, R. Rautenbach: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung (2., erweiterte Auflage), Springer-Verlag, Berlin 2004.
  • Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Richard W. Baker, Membrane Technology and Applications, Second Edition, John Wiley & Sons, Ltd., 2004
Course L0400: Membrane Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0401: Membrane Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1294: Bioenergy

Courses
Title Typ Hrs/wk CP
Biofuels Process Technology (L0061) Lecture 1 1
Biofuels Process Technology (L0062) Recitation Section (small) 1 1
World Market for Commodities from Agriculture and Forestry (L1769) Lecture 1 1
Thermal Biomass Utilization (L1767) Lecture 2 2
Thermal Biomass Utilization (L2386) Practical Course 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce an in-depth outline of energy production from biomass, aerobic and anaerobic waste treatment processes, the gained products and the treatment of produced emissions.

Skills

Students can apply the learned theoretical knowledge of biomass-based energy systems to explain relationships for different tasks, like dimesioning and design of biomass power plants.  In this context, students are also able to solve computational tasks for combustion, gasification and biogas, biodiesel and bioethanol use.

Personal Competence
Social Competence

Students can participate in discussions to design and evaluate energy systems using biomass as an energy source.

Autonomy

Students can independently exploit sources with respect to the emphasis of the lectures. They can choose and aquire the for the particular task useful knowledge. Furthermore, they can solve computational tasks of biomass-based energy systems independently with the assistance of the lecture. Regarding to this they can assess their specific learning level and can consequently define the further workflow. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
No 10 % Presentation
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0061: Biofuels Process Technology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • General introduction
  • What are biofuels?
  • Markets & trends 
  • Legal framework
  • Greenhouse gas savings 
  • Generations of biofuels 
    • first-generation bioethanol 
      • raw materials
      • fermentation distillation 
    • biobutanol / ETBE
    • second-generation bioethanol 
      • bioethanol from straw
    • first-generation biodiesel 
      • raw materials 
      • Production Process
      • Biodiesel & Natural Resources
    • HVO / HEFA 
    • second-generation biodiesel
      • Biodiesel from Algae
  • Biogas as fuel
    • the first biogas generation 
      • raw materials 
      • fermentation 
      • purification to biomethane 
    • Biogas second generation and gasification processes
  • Methanol / DME from wood and Tall oil ©

Literature
  • Skriptum zur Vorlesung
  • Drapcho, Nhuan, Walker; Biofuels Engineering Process Technology
  • Harwardt; Systematic design of separations for processing of biorenewables
  • Kaltschmitt; Hartmann; Energie aus Biomasse: Grundlagen, Techniken und Verfahren
  • Mousdale; Biofuels - Biotechnology, Chemistry and Sustainable Development
  • VDI Wärmeatlas


Course L0062: Biofuels Process Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • Life Cycle Assessment
    • Good example for the evaluation of CO2 savings potential by alternative fuels - Choice of system boundaries and databases
  • Bioethanol production
    • Application task in the basics of thermal separation processes (rectification, extraction) will be discussed. The focus is on a column design, including heat demand, number of stages, reflux ratio ...
  • Biodiesel production
    • Procedural options for solid / liquid separation, including basic equations for estimating power, energy demand, selectivity and throughput
  • Biomethane production
    • Chemical reactions that are relevant in the production of biofuels, including equilibria, activation energies, shift reactions


Literature

Skriptum zur Vorlesung

Course L1769: World Market for Commodities from Agriculture and Forestry
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Köhl, Bernhard Chilla
Language DE
Cycle WiSe
Content

1) Markets for Agricultural Commodities
What are the major markets and how are markets functioning
Recent trends in world production and consumption.
World trade is growing fast. Logistics. Bottlenecks.
The major countries with surplus production
Growing net import requirements, primarily of China, India and many other countries.
Tariff and non-tariff market barriers. Government interferences.


2) Closer Analysis of Individual Markets
Thomas Mielke will analyze in more detail the global vegetable oil markets, primarily palm oil, soya oil,
rapeseed oil, sunflower oil. Also the raw material (the oilseed) as well as the by-product (oilmeal) will
be included. The major producers and consumers.
Vegetable oils and oilmeals are extracted from the oilseed. The importance of vegetable oils and
animal fats will be highlighted, primarily in the food industry in Europe and worldwide. But in the past
15 years there have also been rapidly rising global requirements of oils & fats for non-food purposes,
primarily as a feedstock for biodiesel but also in the chemical industry.
Importance of oilmeals as an animal feed for the production of livestock and aquaculture
Oilseed area, yields per hectare as well as production of oilseeds. Analysis of the major oilseeds
worldwide. The focus will be on soybeans, rapeseed, sunflowerseed, groundnuts and cottonseed.
Regional differences in productivity. The winners and losers in global agricultural production.


3) Forecasts: Future Global Demand & Production of Vegetable Oils
Big challenges in the years ahead: Lack of arable land for the production of oilseeds, grains and other
crops. Competition with livestock. Lack of water. What are possible solutions? Need for better
education & management, more mechanization, better seed varieties and better inputs to raise yields.
The importance of prices and changes in relative prices to solve market imbalances (shortage
situations as well as surplus situations). How does it work? Time lags.
Rapidly rising population, primarily the number of people considered “middle class” in the years ahead.
Higher disposable income will trigger changing diets in favour of vegetable oils and livestock products.
Urbanization. Today, food consumption per caput is partly still very low in many developing countries,
primarily in Africa, some regions of Asia and in Central America. What changes are to be expected?
The myth and the realities of palm oil in the world of today and tomorrow.
Labour issues curb production growth: Some examples: 1) Shortage of labour in oil palm plantations in
Malaysia. 2) Structural reforms overdue for the agriculture in India, China and other countries to
become more productive and successful, thus improving the standard of living of smallholders.

Literature Lecture material
Course L1767: Thermal Biomass Utilization
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle WiSe
Content

Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented.

The course is structured as follows:

  • Biomass as an energy carrier within the energy system; use of biomass in Germany and world-wide, overview on the content of the course
  • Photosynthesis, composition of organic matter, plant production, energy crops, residues, organic waste
  • Biomass provision chains for woody and herbaceous biomass, harvesting and provision, transport, storage, drying
  • Thermo-chemical conversion of solid biofuels
    • Basics of thermo-chemical conversion
    • Direct thermo-chemical conversion through combustion: combustion technologies for small and large scale units, electricity generation technologies, flue gas treatment technologies, ashes and their use
    • Gasification: Gasification technologies, producer gas cleaning technologies, options to use the cleaned producer gas for the provision of heat, electricity and/or fuels
    • Fast and slow pyrolysis: Technologies for the provision of bio-oil and/or for the provision of charcoal, oil cleaning technologies, options to use the pyrolysis oil and charcoal as an energy carrier as well as a raw material
  • Physical-chemical conversion of biomass containing oils and/or fats: Basics, oil seeds and oil fruits, vegetable oil production, production of a biofuel with standardized characteristics (trans-esterification, hydrogenation, co-processing in existing refineries), options to use this fuel, options to use the residues (i.e. meal, glycerine)
  • Bio-chemical conversion of biomass
    • Basics of bio-chemical conversion
    • Biogas: Process technologies for plants using agricultural feedstock, sewage sludge (sewage gas), organic waste fraction (landfill gas), technologies for the provision of bio methane, use of the digested slurry
    • Ethanol production: Process technologies for feedstock containing sugar, starch or celluloses, use of ethanol as a fuel, use of the stillage
Literature

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Course L2386: Thermal Biomass Utilization
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger
Language DE
Cycle WiSe
Content

The experiments of the practical lab course illustrate the different aspects of heat generation from biogenic solid fuels. First, different biomasses (e.g. wood, straw or agricultural residues) will be investigated; the focus will be on the calorific value of the biomass. Furthermore, the used biomass will be pelletized, the pellet properties analysed and a combustion test carried out on a pellet combustion system. The gaseous and solid pollutant emissions, especially the particulate matter emissions, are measured and the composition of the particulate matter is investigated in a further experiment. Another focus of the practical course is the consideration of options for the reduction of particulate matter emissions from biomass combustion. In the practical course, a method for particulate matter reduction will be developed and tested. All experiments will be evaluated and the results presented.

Within the practical lab course the students discuss different technical-scientific tasks, both subject-specifically and interdisciplinary. They
discuss various approaches to solving the problem and advise on the theoretical or practical implementation.

Literature

- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage. Berlin Heidelberg: Springer Science & Business Media, 2016. -ISBN 978-3-662-47437-2
- Versuchsskript

Module M0662: Numerical Mathematics I

Courses
Title Typ Hrs/wk CP
Numerical Mathematics I (L0417) Lecture 2 3
Numerical Mathematics I (L0418) Recitation Section (small) 2 3
Module Responsible Prof. Sabine Le Borne
Admission Requirements None
Recommended Previous Knowledge
  • Mathematik I + II for Engineering Students (german or english) or Analysis & Linear Algebra I + II for Technomathematicians
  • basic MATLAB/Python knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to

  • name numerical methods for interpolation, integration, least squares problems, eigenvalue problems, nonlinear root finding problems and to explain their core ideas,
  • repeat convergence statements for the numerical methods,
  • explain aspects for the practical execution of numerical methods with respect to computational and storage complexitx.


Skills

Students are able to

  • implement, apply and compare numerical methods using MATLAB/Python,
  • justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm,
  • select and execute a suitable solution approach for a given problem.
Personal Competence
Social Competence

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Autonomy

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Data Science: Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Data Science: Core Qualification: Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Core Qualification: Compulsory
Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory
Computer Science in Engineering: Core Qualification: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0417: Numerical Mathematics I
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne
Language EN
Cycle WiSe
Content
  1. Finite precision arithmetic, error analysis, conditioning and stability
  2. Linear systems of equations: LU and Cholesky factorization, condition
  3. Interpolation: polynomial, spline and trigonometric interpolation
  4. Nonlinear equations: fixed point iteration, root finding algorithms, Newton's method
  5. Linear and nonlinear least squares problems: normal equations, Gram Schmidt and Householder orthogonalization, singular value decomposition, regularizatio, Gauss-Newton and Levenberg-Marquardt methods
  6. Eigenvalue problems: power iteration, inverse iteration, QR algorithm
  7. Numerical differentiation
  8. Numerical integration: Newton-Cotes rules, error estimates, Gauss quadrature, adaptive quadrature
Literature
  • Gander/Gander/Kwok: Scientific Computing: An introduction using Maple and MATLAB, Springer (2014)
  • Stoer/Bulirsch: Numerische Mathematik 1, Springer
  • Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer


Course L0418: Numerical Mathematics I
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1736: Industrial Homogeneous Catalysis

Courses
Title Typ Hrs/wk CP
Homogeneous catalysis in application (L2804) Practical Course 1 2
Industrial homogeneous catalysis (L2802) Lecture 2 2
Industrial homogeneous catalysis (L2803) Recitation Section (large) 1 2
Module Responsible Prof. Jakob Albert
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge from the Bachelor's degree course in process engineering
  • Chemical reaction engineering
  • Process and plant engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can:

  • explain the principle of homogeneous catalysis,
  • give an overview of the versatile applications of homogeneous catalysis in industry
  • evaluate different homogeneously catalysed reactions with regard to their technical challenges and economic significance.
Skills

The students are able to

  • develop concepts for the technical implementation of homogeneously catalysed reactions,
  • evaluate practical aspects of homogeneous catalysis using laboratory experiments,
  • apply the acquired knowledge to different homogeneously catalysed reactions.
Personal Competence
Social Competence

The students:

  • are able to work out the practical aspects of homogeneous catalysis on the basis of laboratory experiments, to carry out and evaluate the analytics of the products and to precisely summarise the results of the experiments in a protocol.
  • are able to independently discuss approaches to solutions and problems in the field of homogeneous catalysis in an interdisciplinary small group,
  • are able to work together in small groups on subject-specific tasks,
    Translated with www.DeepL.com/Translator (free version)
Autonomy

The students

  • are able to independently obtain extensive literature on the topic and to gain knowledge from it,
  • are able to independently solve tasks on the topic and assess their learning status based on the feedback given,
  • are able to independently conduct experimental studies on the topic.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Technical Complementary Course: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L2804: Homogeneous catalysis in application
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Jakob Albert
Language EN
Cycle WiSe
Content

In the laboratory practical course, practical experiments are carried out with reference to industrial application of homogeneous catalysis. The hurdles to the technical implementation of homogeneously catalysed reactions are made clear to the students. The associated analysis of the experimental samples is also part of the laboratory practical course and is carried out and evaluated by the students themselves. The results are precisely summarised and scientifically presented in an experimental protocol.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2802: Industrial homogeneous catalysis
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Maximilian Poller
Language EN
Cycle WiSe
Content
  • Introduction to homogeneous catalysis
  • Elementary steps of catalysis
  • Homogeneous transition metal catalysis
  • Hydroformylation
  • Wacker process
  • Monsanto process
  • Shell higher olefin process (SHOP)
  • Extractive-oxidative desulphurisation (ECODS)
  • Phase transfer catalysis
  • Liquid-liquid two-phase catalysis
  • Catalyst recycling
  • Reactor concepts
Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008
Course L2803: Industrial homogeneous catalysis
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Samrin Shaikh, Dr. Maximilian Poller
Language EN
Cycle WiSe
Content

In this exercise the contents of the lecture are further deepened and transferred into practical application. This is done using example tasks from practice, which are made available to the students. The students are to solve these tasks independently or in groups with the help of the lecture material. The solution is then discussed with students under scientific guidance, with parts of the task being presented on the blackboard.

Literature
  1. A. Jess, P. Wasserscheid, „Chemical Technology“, Wiley VCH, 2013
  2. A. Behr, „Angewandte homogene Katalyse“, Wiley-VCH, 2008

Module M0899: Synthesis and Design of Industrial Processes

Courses
Title Typ Hrs/wk CP
Synthesis and Design of Industrial Facilities (L1048) Lecture 1 2
Industrial Plant Design and Economics (L1977) Project-/problem-based Learning 3 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

process and plant engineering I and II

thermal separation processes

heat and mass transport processes

CAPE (absolut necessarily!)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- reproduce the main elements of design of industrial processes

- give an overview and explain the phases of design

- describe and explain energy, mass balances, cost estimation methods and economic evaluation of invest projects

- justify  and discuss process control concepts and fundamentals of process optimization

Skills

students are capable of:

-conduction and evaluation of design of unit operations

- combination of unit operation to a complex process plant

- use of cost estimation methods for the prediction of production costs

- carry out the pfd-diagram

Personal Competence
Social Competence

students are able to discuss and develop in groups the design of an industrial process

Autonomy

students are able to reflect the consequences of their professional activity


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Engineering Handbook and oral exam (20 min)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1048: Synthesis and Design of Industrial Facilities
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Presentation of the task
Introduction to design and analysis of a chemical processing plant (example chemical processing plants)
Discussion of the process, preparation of process flow diagram
Calculation of material balance
Calculation of energy balance
Designing/Sizing of the equipment
Capital cost estimation
Production cost estimation
Process control & HAZOP Study
Lecture 11 = Process optimization
Lecture 12 = Final Project Presentation

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Course L1977: Industrial Plant Design and Economics
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Creation of a flowsheet for an industrial process

Calculation of the mass and energy balance

Calculation of investment and manufacturing costs

Possibilities of process intensification

Comparison of conventional and intensified processes

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Module M1354: Advanced Fuels

Courses
Title Typ Hrs/wk CP
Second generation biofuels and electricity based fuels (L2414) Lecture 2 2
Carbon dioxide as an economic determinant in the mobility sector (L1926) Lecture 1 1
Mobility and climate protection (L2416) Recitation Section (small) 2 2
Sustainability aspects and regulatory framework (L2415) Lecture 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors.


Skills

After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:

  • Module-spanning solutions for the design and presentation of fuel production processes resp. the fuel provision chains
  • Comprehensive analysis of various fuel production options in technical, ecological and economic terms

Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice.

Personal Competence
Social Competence

The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions.

Autonomy

The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. 


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration Details werden in der ersten Veranstaltung bekannt gegeben.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2414: Second generation biofuels and electricity based fuels
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE/EN
Cycle WiSe
Content
  • General overview of various power-based fuels and their process paths, including power-to-liquid process (Fischer-Tropsch synthesis, methanol synthesis), power-to-gas (Sabatier process)
  • Origin, production and use of these fuels
Literature
  • Vorlesungsskript
Course L1926: Carbon dioxide as an economic determinant in the mobility sector
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content
  • General overview of various advanced biofuels and their process pathways (including gas-to-liquid, HEFA and Alcohol-to-Jet processes)
  • Origin, production and use of these fuels


Literature
  • Babu, V.: Biofuels Production. Beverly, Mass: Scrivener [u.a.], 2013
  • Olsson, L.: Biofuels. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007
  • William, L. L.: Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
  • Perry, R.; Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 20
  • Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014
  • Kaltschmitt, M.; Neuling, U. (Ed.): Biokerosene - Status and Prospects; Springer, Berlin, Heidelberg, 2018



Course L2416: Mobility and climate protection
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Benedikt Buchspies, Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content

Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice

  • Design and simulation of sub-processes of production processes in Aspen Plus ®
  • Ecological and economic analysis of fuel supply paths
  • Classification of case studies into applicable regulations
Literature
  • Skriptum zur Vorlesung
  • Aspen Plus® - Aspen Plus User Guide
Course L2415: Sustainability aspects and regulatory framework
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Benedikt Buchspies
Language DE/EN
Cycle WiSe
Content

Holistic examination of the different fuel paths with the following main topics, among others:

  • Consideration of the environmental impact of the various alternative fuels
  • Economic consideration of the different alternative fuels
  • Regulatory framework for alternative fuels
  • Certification of alternative fuels
  • Market introduction models of alternative fuels
Literature
  • European Commission - Joint Research Center (2010): International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Joint Research Center (JRC) Institut for Environment and Sustainability, Luxembourg
  • Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen

Module M1796: Magnetic resonance in engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Magnetic Resonance (L2968) Lecture 3 3
Magnetic Resonance in Engineering (L2969) Project-/problem-based Learning 3 3
Module Responsible Dr. Stefan Benders
Admission Requirements None
Recommended Previous Knowledge

No special previous knowledge is necessary.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module covers the fundamentals of nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) and their applications in engineering disciplines. The module consists of a classical lecture complemented by a problem-based learning course that includes practical hands-on experience on magnetic resonance devices. The module will be held in English.



Skills

After the successful completion of the course the students shall:

  1. Understand the physical principles and practical aspects of magnetic resonance in engineering.
  2. Know how to safely operate NMR and MRI systems.
  3. Know how to run standard experimental sequences and how to implement more advanced sequence protocols.
  4. Have an overview of the current capabilities and limits of the MR technique
Personal Competence
Social Competence

In the problem-based course Magnetic Resonance in Engineering, the students will obtain hands-on experience on how to operate NMR spectrometers and high-field and low-field MRI systems. The course will cover safety aspects, pulse sequence design, spectral image analysis, and image reconstruction. The students will work in small groups on practical tasks on different NMR and MRI systems located at the campus of TUHH.


Autonomy

Through the practical character of the PBL course, the student shall improve their communication skills.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 120 Minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Materials Science and Engineering: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2968: Fundamentals of Magnetic Resonance
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

This lecture covers the fundamentals magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (NMR). It focuses on the following topics:

  1. The fundamentals of magnetic resonance: magnetism, magnetic fields, radiofrequency, spin, relaxation
  2. Hardware for magnetic resonance: magnets (high-field and low-field), radiofrequency coil design, magnetic field gradients
  3. NMR-Spectroscopy: chemical shift, J-Coupling, 2D NMR, solid-state, MAS
  4. Relaxometry: single-sided NMR, contrasts,
  5. Magnetic resonance imaging (MRI): gradients, coils, k-space, imaging sequences, ultrafast Imaging, parallel imaging, velocimetry, CEST
  6. Hyperpolarization techniques: DNP, p-H2, optical pumping with Xe
  7. Applications of magnetic resonance in chemical engineering
  8. Applications of magnetic resonance in material science and engineering
  9. Applications of magnetic resonance in biomedical engineering    
Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524 , doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953

Haber-Pohlmeier, Sabina, Bernhard Blumich, and Luisa Ciobanu, (2022) Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science, and Energy Research. John Wiley & Sons



Course L2969: Magnetic Resonance in Engineering
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

In this course, the theoretical basics of magnetic resonance spectroscopy and magnetic resonance tomography are supplemented with practical experiments on the respective devices. The practical handling and operation of the equipment will be learned. 

Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8 

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524, doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953



Module M1955: Process Intensification in Process Engineering

Courses
Title Typ Hrs/wk CP
Process Intensification in Process Engineering (L1978) Lecture 2 2
Process Intensification in Process Engineering (L1715) Project-/problem-based Learning 2 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Process and Plant Engineering 1

Process and Plant Engineering 2

Basics in Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Students are able to evaluate hybrid processes
Skills
Students are able to evaluate processes with regard to their suitability as hybrid processes and to interpret them accordingly.
Personal Competence
Social Competence
Students are able to apply the principles of project management for small groups.
Autonomy
Students are able to acquire and discuss specialized knowledge about hybrid processes.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Project report incl. PM-documents and Midterm
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1978: Process Intensification in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga, Prof. Mirko Skiborowski
Language EN
Cycle WiSe
Content

Introduction to integrated and hybrid processes in chemical and biotechnological process engineering; advantages and disadvantages, process windows, differentiation criteria;

Process synthesis and process modeling

Process examples from industry and research: reactive distillation, dividing wall columns, reactive dividing wall columns, SHOP and MerOX, centrifuges, membrane-supported processes

Literature

- H. Schmidt-Traub; Integrated Reaction and Separation Operations: Modelling and Experimental Validation; Springer 2006
- K. Sundmacher, A. Kienle, A. Seidel-Morgenstern; Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control; Wiley-VCH 2005
- Mexandre C. Dimian (Ed); Integrated Design and Simulation of Chemical Processes; in Computer Aided Chemical Engineering, Volume 13, Pages 1-698 (2003)

Course L1715: Process Intensification in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga, Prof. Mirko Skiborowski
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1966: Mathematical Image Processing

Courses
Title Typ Hrs/wk CP
Mathematical Image Processing (L0991) Lecture 3 4
Mathematical Image Processing (L0992) Recitation Section (small) 1 2
Module Responsible Prof. Marko Lindner
Admission Requirements None
Recommended Previous Knowledge
  • Analysis: partial derivatives, gradient, directional derivative
  • Linear Algebra: eigenvalues, least squares solution of a linear system
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to 

  • characterize and compare diffusion equations
  • explain elementary methods of image processing
  • explain methods of image segmentation and registration
  • sketch and interrelate basic concepts of functional analysis 
Skills

Students are able to 

  • implement and apply elementary methods of image processing  
  • explain and apply modern methods of image processing
Personal Competence
Social Competence

Students are able to work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge) and to explain theoretical foundations.

Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 20 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Computer Science: Specialisation III. Mathematics: Elective Compulsory
Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory
Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Technomathematics: Specialisation I. Mathematics: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0991: Mathematical Image Processing
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Marko Lindner
Language DE/EN
Cycle WiSe
Content
  • basic methods of image processing
  • smoothing filters
  • the diffusion / heat equation
  • variational formulations in image processing
  • edge detection
  • de-convolution
  • inpainting
  • image segmentation
  • image registration
Literature Bredies/Lorenz: Mathematische Bildverarbeitung
Course L0992: Mathematical Image Processing
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Marko Lindner
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0519: Particle Technology and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Advanced Particle Technology II (L0051) Project-/problem-based Learning 1 1
Advanced Particle Technology II (L0050) Lecture 2 2
Experimental Course Particle Technology (L0430) Practical Course 3 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Basic knowledge of solids processes and particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe and explain processes for solids processing in detail based on microprocesses on the particle level.
Skills Students are able to choose process steps and apparatuses for the focused treatment of solids depending on the specific characteristics. They furthermore are able to adapt these processes and to simulate them.
Personal Competence
Social Competence Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scientific researchers.
Autonomy Students are able to analyze and solve problems regarding solid particles independently or in small groups.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration fünf Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0051: Advanced Particle Technology II
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0050: Advanced Particle Technology II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Exercise in form of "Project based Learning"
  • Agglomeration, particle size enlargement
  • advanced particle size reduction
  • Advanced theorie of fluid/particle flows
  • CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling
  • Treatment of simulation problems with distributed properties, solution of population balances


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Course L0430: Experimental Course Particle Technology
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Fluidization
  • Agglomeration
  • Granulation
  • Drying
  • Determination of mechanical properties of agglomerats


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Module M0636: Cell and Tissue Engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Cell and Tissue Engineering (L0355) Lecture 2 3
Bioprocess Engineering for Medical Applications (L0356) Lecture 2 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students 

- know the basic principles of cell and tissue culture

- know the relevant metabolic and physiological properties of animal and human cells

- are able to explain and describe the basic underlying principles of bioreactors for cell and tissue cultures, in contrast to microbial fermentations

- are able to explain the essential steps (unit operations) in downstream

- are able to explain, analyze and describe the kinetic relationships and significant litigation strategies for cell culture reactors

Skills

The students are able

- to analyze and perform mathematical modeling to cellular metabolism at a higher level

- are able to to develop process control strategies for cell culture systems

Personal Competence
Social Competence


After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

The students can reflect their specific knowledge orally and discuss it with other students and teachers.

Autonomy


After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0355: Fundamentals of Cell and Tissue Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Johannes Möller
Language EN
Cycle WiSe
Content Overview of cell culture technology and tissue engineering (cell culture product manufacturing, complexity of protein therapeutics, examples of tissue engineering) (Pörtner, Zeng) Fundamentals of cell biology for process engineering (cells: source, composition and structure. interactions with environment, growth and death - cell cycle, protein glycolysation) (Pörtner) Cell physiology for process engineering (Overview of central metabolism, genomics etc.) (Zeng) Medium design (impact of media on the overall cell culture process, basic components of culture medium, serum and protein-free media) (Pörtner) Stochiometry and kinetics of cell growth and product formation (growth of mammalian cells, quantitative description of cell growth & product formation, kinetics of growth)


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Course L0356: Bioprocess Engineering for Medical Applications
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Johannes Möller
Language EN
Cycle WiSe
Content Requirements for cell culture processess, shear effects, microcarrier technology Reactor systems for mammalian cell culture (production systems) (design, layout, scale-up: suspension reactors (stirrer, aeration, cell retention), fixed bed, fluidized bed (carrier), hollow fiber reactors (membranes), dialysis reactors, Reactor systems for Tissue Engineering, Prozess strategies (batch, fed-batch, continuous, perfusion, mathematical modelling), control (oxygen, substrate etc.) • Downstream


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Module M2006: Waste Treatment and Recycling

Courses
Title Typ Hrs/wk CP
Planning of waste treatment plants (L3267) Project-/problem-based Learning 3 3
Recycling technologies and thermal waste treatment (L3265) Lecture 2 2
Recycling technologies and thermal waste treatment (L3266) Recitation Section (small) 1 1
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge
  • Basics of thermo dynamics
  • Basics of fluid dynamics
  • fluid dynamics chemistry
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can name, describe current issue and problems in the field of waste treatment (mechanical, chemical and thermal) and contemplate them in the context of their field. 

The industrial application of unit operations as part of process engineering is explained by actual examples of waste  technologies . Compostion, particle sizes, transportation and dosing of wastes are described as important unit operations .

Students will be able to design and  design waste treatment technology equipment.

Skills

The students are able to select suitable processes for the treatment of wastes or raw material with respect to their characteristics and the process aims. They can evaluate the efforts and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence

Students can

  • respectfully work together as a team and discuss technical tasks
  • participate in subject-specific and interdisciplinary discussions,
  • develop cooperated solutions 
  •  promote the scientific development and accept professional constructive criticism.
Autonomy

Students can independently tap knowledge of the subject area and transform it to new questions. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L3267: Planning of waste treatment plants
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Rüdiger Siechau
Language EN
Cycle WiSe
Content

The focus is on getting to know the organization and practice of waste management companies. Topics such as planning, financing and logistics will be discussed and there will be an excursion (waste incineration plant, vehicle fleet and collection systems / containers).

Project based learning: You will be given a task to work on independently in groups of 4 to 6 students. All tools and data needed for the project work will be discussed in the lecture "Recycling Technologies and Thermal Waste Treatment". Course documents can be downloaded from StudIP. Communication during the project work also takes place via StudIP.

Literature
  • Einführung in die Abfallwirtschaft; Martin Kranert, Klaus Cord-Landwehr (Hrsg.); Vieweg + Teubner Verlag; 2010 
  • PowerPoint Präsentationen in Stud IP
Course L3265: Recycling technologies and thermal waste treatment
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  • Introduction, actual state-of-the-art of waste incineration, aims. legal background, reaction principals
  • basics of incineration processes: waste composition, calorific value, calculation of air demand and flue gas composition 
  • Incineration techniques: grate firing, ash transfer, boiler
  • Flue gas cleaning: Volume, composition, legal frame work and emission limits, dry treatment, scrubber, de-nox techniques, dioxin elimination, Mercury elimination
  • Ash treatment: Mass, quality, treatment concepts, recycling, disposal
Literature

Thomé-Kozmiensky, K. J. (Hrsg.): Thermische Abfallbehandlung Bande 1-7. EF-Verlag für Energie- und Umwelttechnik, Berlin, 196 - 2013.

Course L3266: Recycling technologies and thermal waste treatment
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M2003: Biological Waste Treatment

Courses
Title Typ Hrs/wk CP
Waste and Environmental Chemistry (L0328) Practical Course 2 2
Biological Waste Treatment (L0318) Project-/problem-based Learning 3 4
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge chemical and biological basics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module aims possess knowledge concerning the planning of biological waste treatment plants. Students are able to explain the design and layout of anaerobic and aerobic waste treatment plants in detail, describe different techniques for waste gas treatment plants for biological waste treatment plants and explain different methods for waste analytics.


Skills

The students are able to discuss the compilation of design and layout of plants. They can critically evaluate techniques and quality control measurements. The students can recherché and evaluate literature and date connected to the tasks given in der module and plan additional tests. They are capable of reflecting and evaluating findings in the group.


Personal Competence
Social Competence

Students can participate in subject-specific and interdisciplinary discussions, develop cooperated solutions and defend their own work results in front of others and promote the scientific development in front of colleagues. Furthermore, they can give and accept professional constructive criticism.


Autonomy

Students can independently tap knowledge from literature, business or test reports and transform it to the course projects. They are capable, in consultation with supervisors as well as in the interim presentation, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Presentation
Examination duration and scale Elaboration and Presentation (15-25 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Environmental Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Course L0328: Waste and Environmental Chemistry
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content

The participants are divided into groups. Each group prepares a transcript on the experiment performed, which is then used as basis for discussing the results and to evaluate the performance of the group and the individual student.

In some experiments the test procedure and the results are presented in seminar form, accompanied by discussion and results evaluation.

Experiments ar e.g.

Screening  and particle size determination

Fos/Tac

AAS

Chalorific value

Literature Scripte
Course L0318: Biological Waste Treatment
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content
  1. Introduction
  2. biological basics
  3. determination process specific material characterization
  4. aerobic degradation ( Composting, stabilization)
  5. anaerobic degradation (Biogas production, fermentation)
  6. Technical layout and process design
  7. Flue gas treatment
  8. Plant design practical phase
Literature

Specialization B - Industrial Bioprocess Engineering

Module M0617: High Pressure Chemical Engineering

Courses
Title Typ Hrs/wk CP
High pressure plant and vessel design (L1278) Lecture 2 2
Industrial Processes Under High Pressure (L0116) Lecture 2 2
Advanced Separation Processes (L0094) Lecture 2 2
Module Responsible Dr. Monika Johannsen
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Chemistry, Chemical Engineering, Fluid Process Engineering, Thermal Separation Processes, Thermodynamics, Heterogeneous Equilibria


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After a successful completion of this module, students can:

  • explain the influence of pressure on the properties of compounds, phase equilibria, and production processes,
  • describe the thermodynamic fundamentals of separation processes with supercritical fluids,
  • exemplify models for the description of solid extraction and countercurrent extraction,
  • discuss parameters for optimization of processes with supercritical fluids.


Skills

After successful completion of this module, students are able to:

  • compare separation processes with supercritical fluids and conventional solvents,
  • assess the application potential of high-pressure processes at a given separation task,
  • include high pressure methods in a given multistep industrial application,
  • estimate economics of high-pressure processes in terms of investment and operating costs,
  • perform an experiment with a high pressure apparatus under guidance,
  • evaluate experimental results,
  • prepare an experimental protocol.


Personal Competence
Social Competence

After successful completion of this module, students are able to:

  • present a scientific topic from an original publication in teams of 2 and defend the contents together.


Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 15 % Presentation
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1278: High pressure plant and vessel design
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Hans Häring
Language DE/EN
Cycle SoSe
Content
  1. Basic laws and certification standards
  2. Basics for calculations of pressurized vessels
  3. Stress hypothesis
  4. Selection of materials and fabrication processes
  5. vessels with thin walls
  6. vessels with thick walls
  7. Safety installations
  8. Safety analysis

    Applications:

    - subsea technology (manned and unmanned vessels)
    - steam vessels
    - heat exchangers
    - LPG, LEG transport vessels
Literature Apparate und Armaturen in der chemischen Hochdrucktechnik, Springer Verlag
Spain and Paauwe: High Pressure Technology, Vol. I und II, M. Dekker Verlag
AD-Merkblätter, Heumanns Verlag
Bertucco; Vetter: High Pressure Process Technology, Elsevier Verlag
Sherman; Stadtmuller: Experimental Techniques in High-Pressure Research, Wiley & Sons Verlag
Klapp: Apparate- und Anlagentechnik, Springer Verlag
Course L0116: Industrial Processes Under High Pressure
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Carsten Zetzl
Language EN
Cycle SoSe
Content Part I : Physical Chemistry and Thermodynamics

1.      Introduction: Overview, achieving high pressure, range of parameters.

2.       Influence of pressure on properties of fluids: P,v,T-behaviour, enthalpy, internal energy,     entropy, heat capacity, viscosity, thermal conductivity, diffusion coefficients, interfacial tension.

3.      Influence of pressure on heterogeneous equilibria: Phenomenology of phase equilibria

4.      Overview on calculation methods for (high pressure) phase equilibria).
Influence of pressure on transport processes, heat and mass transfer.

Part II : High Pressure Processes

5.      Separation processes at elevated pressures: Absorption, adsorption (pressure swing adsorption), distillation (distillation of air), condensation (liquefaction of gases)

6.      Supercritical fluids as solvents: Gas extraction, cleaning, solvents in reacting systems, dyeing, impregnation, particle formation (formulation)

7.      Reactions at elevated pressures. Influence of elevated pressure on biochemical systems: Resistance against pressure

Part III :  Industrial production

8.      Reaction : Haber-Bosch-process, methanol-synthesis, polymerizations; Hydrations, pyrolysis, hydrocracking; Wet air oxidation, supercritical water oxidation (SCWO)

9.      Separation : Linde Process, De-Caffeination, Petrol and Bio-Refinery

10.  Industrial High Pressure Applications in Biofuel and Biodiesel Production

11.  Sterilization and Enzyme Catalysis

12.  Solids handling in high pressure processes, feeding and removal of solids, transport within the reactor.

13.   Supercritical fluids for materials processing.

14.  Cost Engineering

Learning Outcomes:  

After a successful completion of this module, the student should be able to

-         understand of the influences of pressure on properties of compounds, phase equilibria, and production processes.

-         Apply high pressure approches in the complex process design tasks

-         Estimate Efficiency of high pressure alternatives with respect to investment and operational costs


Performance Record:

1.  Presence  (28 h)

2. Oral presentation of original scientific article (15 min) with written summary

3. Written examination and Case study 

    ( 2+3 : 32 h Workload)

Workload:

60 hours total

Literature

Literatur:

Script: High Pressure Chemical Engineering.
G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Course L0094: Advanced Separation Processes
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Monika Johannsen
Language EN
Cycle SoSe
Content
  • Introduction/Overview on Properties of Supercritical Fluids (SCF)and their Application in Gas Extraction Processes
  • Solubility of Compounds in Supercritical Fluids and Phase Equilibrium with SCF
  • Extraction from Solid Substrates: Fundamentals, Hydrodynamics and Mass Transfer
  • Extraction from Solid Substrates: Applications and Processes (including Supercritical Water)
  • Countercurrent Multistage Extraction: Fundamentals and Methods, Hydrodynamics and Mass Transfer
  • Countercurrent Multistage Extraction: Applications and Processes
  • Solvent Cycle, Methods for Precipitation
  • Supercritical Fluid Chromatography (SFC): Fundamentals and Application
  • Simulated Moving Bed Chromatography (SMB)
  • Membrane Separation of Gases at High Pressures
  • Separation by Reactions in Supercritical Fluids (Enzymes)
Literature

G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Steinkopff, Darmstadt, Springer, New York, 1994.

Module M0952: Industrial Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Biotechnical Processes (L1065) Project-/problem-based Learning 2 3
Development of bioprocess engineering processes in industrial practice (L1172) Seminar 2 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective biotechnological production processes
Skills

After successful completion of the module students are able to

  • analyzing and evaluate current research approaches
  • Lay-out biotechnological production processes basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.



Autonomy



After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale oral presentation + discussion (45 min) + Written report (10 pages)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1065: Biotechnical Processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language DE/EN
Cycle SoSe
Content

This course gives an overview of the most important biotechnological production processes. In addition to the individual methods and their specific requirements, general aspects of industrial reality are also addressed, such as:
• Asset Lifecycle
• Digitization in the bioprocess industry
• Basic principles of industrial bioprocess development
• Sustainability aspects in the development of bioprocess engineering processes

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986. 

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts


Course L1172: Development of bioprocess engineering processes in industrial practice
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language DE/EN
Cycle SoSe
Content

This course gives an insight into the methodology used in the development of industrial biotechnology processes. Important aspects of this are, for example, the development of the fermentation and the work-up steps for the respective target molecule, the integration of the partial steps into an overall process, and the cost-effectiveness of the process.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1954: Process Simulation and Process Safety

Courses
Title Typ Hrs/wk CP
CAPE with Computer Exercises (L1039) Integrated Lecture 3 4
Methods of Process Safety and Dangerous Substances (L1040) Lecture 2 2
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

thermal separation processes

heat and mass transport processes

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- outline types of simulation tools

- describe principles of flowsheet  and equation oriented simulation tools

- describe the setting of flowsheet simulation tools

- explain the main differences between steady state and dynamic simulations

- present the fundamentals of toxicology and hazardous materials

- explain the main methods of safety engineering

- present the importance of safety analysis with respect to plant design

- describe the definitions within the legal accident insurance

accident insurance


Skills

students can:

- conduct steady state and dynamic simulations

- evaluate simulation results and transform them in the practice

- choose and combine suitable simulation models into a production plant

- evaluate the achieved simulation results regarding practical importance
- evaluate the results of many experimental methods regarding safety aspects

- review, compare and  use results of safety considerations for a plant design

Personal Competence
Social Competence

students are able to:

- work together in teams in order to simulate process elements  and develop an integral process

- develop in teams a safety concept for a process and present it to the audience


Autonomy

students are able to

- act responsible with respect to environment and needs of the society

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Exam 90 minutes and written report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1039: CAPE with Computer Exercises
Typ Integrated Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski
Language EN
Cycle SoSe
Content

I. Introduction

       1. Fundamentals of steady state process simulation

       1.1. Classes of simulation tools
       1.2. Sequential-modularer approach
       1.3. Operating mode of ASPEN PLUS
       2. Introduction in ASPEN PLUS
       2.1. GUI
       2.2. Estimation methods of physical properties
       2.3. Aspen tools (z.B. Designspecification)
       2.4. Convergence methods

II. Exercices using ASPEN PLUS and ACM

            Performance and constraints of ASPEN PLUS
            ASPEN datenbank using
            Estimation methods of physical properties

            Application of model databank, process synthesis

            Design specifications

            Sensitivity analysis
            Optimization tasks
            Industrial cases

Literature

- G. Fieg: Lecture notes
-
Seider, W.D.; Seader, J.D.; Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis,
  and Evaluation; Hoboken, J. Wiley & Sons, 2010


Course L1040: Methods of Process Safety and Dangerous Substances
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle SoSe
Content

Practical implementation of safety analyses (methods)

Safety-related parameters and methods for their determination

Hazard characteristics according to the Chemicals Act

GHS (Globally Harmonized System) for the classification and labelling of chemicals

Hazardous substances

Toxicology

Personal safety

Safety considerations in plant design

Inherently safe process design

Technical measures for plant safety

Literature

Bender, H.: Sicherer Umgang mit Gefahrstoffen; Weinheim (2005)
Bender, H.: Das Gefahrstoffbuch. Sicherer Umgang mit Gefahrstoffen in der Praxis; Weinheim (2002)
Birett, K.: Umgang mit Gefahrstoffen; Heidelberg (2011)
Birgersson, B.; Sterner, O.; Zimerson, E.: Chemie und Gesundheit; Weinheim (1988)

O. Antelmann, Diss. an der TU Berlin, 2001

R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik, Prozesse und Produkte, Band 1

    Methodische Grundlagen, VCH, 2004-2006, S. 719

H. Pohle, Chemische Industrie, Umweltschutz, Arbeitsschutz, Anlagensicherheit, VCH, Weinheim, 1991

J. Steinbach, Chemische Sicherheitstechnik, VCH, Weinheim, 1995

G. Suter, Identifikation sicherheitskritischer Prozesse, P&A Kompendium, 2004

Module M2029: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging Practicals (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed. An interest in imaging techniques and image processing is helpful but not mandatory.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.


Skills

After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 70% written examination, 30% active participation and final presentation of the problem-based learning units with a 5-10 page report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content

The lecture focuses primarily on presenting and discussing established imaging techniques relevant to the field of engineering including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging Practicals
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M2028: Computational Fluid Dynamics in Process Engineering

Courses
Title Typ Hrs/wk CP
Lagrangian transport in turbulent flows (L2301) Lecture 2 3
Computational Fluid Dynamics - Exercises in OpenFoam (L1375) Recitation Section (small) 1 1
Computational Fluid Dynamics in Process Engineering (L1052) Lecture 2 2
Module Responsible Prof. Michael Schlüter
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics I-IV
  • Basic knowledge in Fluid Mechanics
  • Basic knowledge in chemical thermodynamics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students are able to

  • explain the the basic principles of statistical thermodynamics (ensembles, simple systems) 
  • describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles
  • discuss examples of computer programs in detail,
  • evaluate the application of numerical simulations,
  • list the possible start and boundary conditions for a numerical simulation.
Skills

The students are able to:

  • set up computer programs for solving simple problems by Monte Carlo or molecular dynamics,
  • solve problems by molecular modeling,
  • set up a numerical grid,
  • perform a simple numerical simulation with OpenFoam,
  • evaluate the result of a numerical simulation.

Personal Competence
Social Competence

The students are able to

  • develop joint solutions in mixed teams and present them in front of the other students,
  • to collaborate in a team and to reflect their own contribution toward it.




Autonomy

The students are able to:

  • evaluate their learning progress and to define the following steps of learning on that basis,
  • evaluate possible consequences for their profession.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L2301: Lagrangian transport in turbulent flows
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Yan Jin
Language EN
Cycle SoSe
Content

Contents

- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)

- An overview of Lagrange analysis methods and experiments in fluid mechanics

- Critical examination of the concept of turbulence and turbulent structures.

-Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.)

- Implementation of a Runge-Kutta 4th-order in Matlab

- Introduction to particle integration using ODE solver from Matlab

- Problems from turbulence research

- Application analytical methods with Matlab.


Structure:

- 14 units a 2x45 min. 

- 10 units lecture

- 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague


Learning goals:

Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge

The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills

The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence

Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence


Required knowledge:

Fluid mechanics 1 and 2 advantageous

Programming knowledge advantageous



Literature

Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag.

Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726.

Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press.

Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1.

Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211.

Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502.

Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033.

Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley.

LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002.

Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO.

Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002.

Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109.

Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press.

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literature OpenFoam Tutorials (StudIP)
Course L1052: Computational Fluid Dynamics in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Michael Schlüter
Language EN
Cycle SoSe
Content
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literature

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Module M0519: Particle Technology and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Advanced Particle Technology II (L0051) Project-/problem-based Learning 1 1
Advanced Particle Technology II (L0050) Lecture 2 2
Experimental Course Particle Technology (L0430) Practical Course 3 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Basic knowledge of solids processes and particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe and explain processes for solids processing in detail based on microprocesses on the particle level.
Skills Students are able to choose process steps and apparatuses for the focused treatment of solids depending on the specific characteristics. They furthermore are able to adapt these processes and to simulate them.
Personal Competence
Social Competence Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scientific researchers.
Autonomy Students are able to analyze and solve problems regarding solid particles independently or in small groups.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration fünf Berichte (pro Versuch ein Bericht) à 5-10 Seiten
Examination Written exam
Examination duration and scale 120 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Process Engineering: Core Qualification: Compulsory
Course L0051: Advanced Particle Technology II
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0050: Advanced Particle Technology II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Exercise in form of "Project based Learning"
  • Agglomeration, particle size enlargement
  • advanced particle size reduction
  • Advanced theorie of fluid/particle flows
  • CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling
  • Treatment of simulation problems with distributed properties, solution of population balances


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Course L0430: Experimental Course Particle Technology
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Stefan Heinrich
Language DE/EN
Cycle WiSe
Content
  • Fluidization
  • Agglomeration
  • Granulation
  • Drying
  • Determination of mechanical properties of agglomerats


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Module M0802: Membrane Technology

Courses
Title Typ Hrs/wk CP
Membrane Technology (L0399) Lecture 2 3
Membrane Technology (L0400) Recitation Section (small) 1 2
Membrane Technology (L0401) Practical Course 1 1
Module Responsible Prof. Mathias Ernst
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of water chemistry. Knowledge of the core processes involved in water, gas and steam treatment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students will be able to rank the technical applications of industrially important membrane processes. They will be able to explain the different driving forces behind existing membrane separation processes. Students will be able to name materials used in membrane filtration and their advantages and disadvantages. Students will be able to explain the key differences in the use of membranes in water, other liquid media, gases and in liquid/gas mixtures.

Skills

Students will be able to prepare mathematical equations for material transport in porous and solution-diffusion membranes and calculate key parameters in the membrane separation process. They will be able to handle technical membrane processes using available boundary data and provide recommendations for the sequence of different treatment processes. Through their own experiments, students will be able to classify the separation efficiency, filtration characteristics and application of different membrane materials. Students will be able to characterise the formation of the fouling layer in different waters and apply technical measures to control this. 

Personal Competence
Social Competence

Students will be able to work in diverse teams on tasks in the field of membrane technology. They will be able to make decisions within their group on laboratory experiments to be undertaken jointly and present these to others. 

Autonomy

Students will be in a position to solve homework on the topic of membrane technology independently. They will be capable of finding creative solutions to technical questions.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Civil Engineering: Specialisation Water and Traffic: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Technical Complementary Course: Elective Compulsory
Environmental Engineering: Specialisation Water Quality and Water Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Water and Environmental Engineering: Specialisation Water: Elective Compulsory
Water and Environmental Engineering: Specialisation Environment: Elective Compulsory
Water and Environmental Engineering: Specialisation Cities: Elective Compulsory
Course L0399: Membrane Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content

The lecture on membrane technology supply provides students with a broad understanding of existing membrane treatment processes, encompassing pressure driven membrane processes, membrane application in electrodialyis, pervaporation as well as membrane distillation. The lectures main focus is the industrial production of drinking water like particle separation or desalination; however gas separation processes as well as specific wastewater oriented applications such as membrane bioreactor systems will be discussed as well.

Initially, basics in low pressure and high pressure membrane applications are presented (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). Students learn about essential water quality parameter, transport equations and key parameter for pore membrane as well as solution diffusion membrane systems. The lecture sets a specific focus on fouling and scaling issues and provides knowledge on methods how to tackle with these phenomena in real water treatment application. A further part of the lecture deals with the character and manufacturing of different membrane materials and the characterization of membrane material by simple methods and advanced analysis.

The functions, advantages and drawbacks of different membrane housings and modules are explained. Students learn how an industrial membrane application is designed in the succession of treatment steps like pre-treatment, water conditioning, membrane integration and post-treatment of water. Besides theory, the students will be provided with knowledge on membrane demo-site examples and insights in industrial practice. 

Literature
  • T. Melin, R. Rautenbach: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung (2., erweiterte Auflage), Springer-Verlag, Berlin 2004.
  • Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Richard W. Baker, Membrane Technology and Applications, Second Edition, John Wiley & Sons, Ltd., 2004
Course L0400: Membrane Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0401: Membrane Technology
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Mathias Ernst
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0990: Study work Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Study Work Bioprocess Engineering (L1192) Practical Course 6 6
Module Responsible Prof. Johannes Gescher
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the research project they have worked on and relate it to current issues of bioprocess engineering.

They can explain the basic scientific methods they have worked with.


Skills

Students are capable of completing a small, independent sub-project of currently ongoing research projects in the institutes engaged in their specialization. Students can justify and explain their approach for problem solving, they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alterantive approaches with their own with regard to given criteria.


Personal Competence
Social Competence

Students are able to discuss their work progress with research assistants of the supervising institute .  They are capable of presenting their results in front of a professional audience.



Autonomy

Based on their competences gained so far students are capable of defining meaningful tasks within ongoing research project for themselves. They are able to develop the necessary understanding  and problem solving methods.

They can schedule the execution of the necessary experiments and organize themselves.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Study work
Examination duration and scale according to specific regulations
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Course L1192: Study Work Bioprocess Engineering
Typ Practical Course
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Dozenten des SD V
Language DE/EN
Cycle WiSe/SoSe
Content
Literature

Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M0899: Synthesis and Design of Industrial Processes

Courses
Title Typ Hrs/wk CP
Synthesis and Design of Industrial Facilities (L1048) Lecture 1 2
Industrial Plant Design and Economics (L1977) Project-/problem-based Learning 3 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

process and plant engineering I and II

thermal separation processes

heat and mass transport processes

CAPE (absolut necessarily!)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

students can:

- reproduce the main elements of design of industrial processes

- give an overview and explain the phases of design

- describe and explain energy, mass balances, cost estimation methods and economic evaluation of invest projects

- justify  and discuss process control concepts and fundamentals of process optimization

Skills

students are capable of:

-conduction and evaluation of design of unit operations

- combination of unit operation to a complex process plant

- use of cost estimation methods for the prediction of production costs

- carry out the pfd-diagram

Personal Competence
Social Competence

students are able to discuss and develop in groups the design of an industrial process

Autonomy

students are able to reflect the consequences of their professional activity


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Engineering Handbook and oral exam (20 min)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L1048: Synthesis and Design of Industrial Facilities
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Presentation of the task
Introduction to design and analysis of a chemical processing plant (example chemical processing plants)
Discussion of the process, preparation of process flow diagram
Calculation of material balance
Calculation of energy balance
Designing/Sizing of the equipment
Capital cost estimation
Production cost estimation
Process control & HAZOP Study
Lecture 11 = Process optimization
Lecture 12 = Final Project Presentation

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Course L1977: Industrial Plant Design and Economics
Typ Project-/problem-based Learning
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Mirko Skiborowski, Dr. Thomas Waluga
Language EN
Cycle WiSe
Content

Creation of a flowsheet for an industrial process

Calculation of the mass and energy balance

Calculation of investment and manufacturing costs

Possibilities of process intensification

Comparison of conventional and intensified processes

Literature

Richard Turton; Analysis, Synthesis and Design of Chemical Processes:International Edition

Harry Silla; Chemical Process Engineering: Design And Economics

Coulson and Richardson's Chemical Engineering, Volume 6, Second Edition: Chemical Engineering Design

Lorenz T. Biegler;Systematic Methods of Chemical Process Design

Max S. Peters, Klaus Timmerhaus; Plant Design and Economics for Chemical Engineers

James Douglas; Conceptual Design of Chemical Processes

Robin Smith; Chemical Process: Design and Integration

Warren D. Seider; Process design principles, synthesis analysis and evaluation

Module M1354: Advanced Fuels

Courses
Title Typ Hrs/wk CP
Second generation biofuels and electricity based fuels (L2414) Lecture 2 2
Carbon dioxide as an economic determinant in the mobility sector (L1926) Lecture 1 1
Mobility and climate protection (L2416) Recitation Section (small) 2 2
Sustainability aspects and regulatory framework (L2415) Lecture 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors.


Skills

After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:

  • Module-spanning solutions for the design and presentation of fuel production processes resp. the fuel provision chains
  • Comprehensive analysis of various fuel production options in technical, ecological and economic terms

Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice.

Personal Competence
Social Competence

The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions.

Autonomy

The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. 


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration Details werden in der ersten Veranstaltung bekannt gegeben.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2414: Second generation biofuels and electricity based fuels
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE/EN
Cycle WiSe
Content
  • General overview of various power-based fuels and their process paths, including power-to-liquid process (Fischer-Tropsch synthesis, methanol synthesis), power-to-gas (Sabatier process)
  • Origin, production and use of these fuels
Literature
  • Vorlesungsskript
Course L1926: Carbon dioxide as an economic determinant in the mobility sector
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content
  • General overview of various advanced biofuels and their process pathways (including gas-to-liquid, HEFA and Alcohol-to-Jet processes)
  • Origin, production and use of these fuels


Literature
  • Babu, V.: Biofuels Production. Beverly, Mass: Scrivener [u.a.], 2013
  • Olsson, L.: Biofuels. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007
  • William, L. L.: Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
  • Perry, R.; Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 20
  • Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014
  • Kaltschmitt, M.; Neuling, U. (Ed.): Biokerosene - Status and Prospects; Springer, Berlin, Heidelberg, 2018



Course L2416: Mobility and climate protection
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Benedikt Buchspies, Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content

Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice

  • Design and simulation of sub-processes of production processes in Aspen Plus ®
  • Ecological and economic analysis of fuel supply paths
  • Classification of case studies into applicable regulations
Literature
  • Skriptum zur Vorlesung
  • Aspen Plus® - Aspen Plus User Guide
Course L2415: Sustainability aspects and regulatory framework
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Benedikt Buchspies
Language DE/EN
Cycle WiSe
Content

Holistic examination of the different fuel paths with the following main topics, among others:

  • Consideration of the environmental impact of the various alternative fuels
  • Economic consideration of the different alternative fuels
  • Regulatory framework for alternative fuels
  • Certification of alternative fuels
  • Market introduction models of alternative fuels
Literature
  • European Commission - Joint Research Center (2010): International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Joint Research Center (JRC) Institut for Environment and Sustainability, Luxembourg
  • Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen

Module M1796: Magnetic resonance in engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Magnetic Resonance (L2968) Lecture 3 3
Magnetic Resonance in Engineering (L2969) Project-/problem-based Learning 3 3
Module Responsible Dr. Stefan Benders
Admission Requirements None
Recommended Previous Knowledge

No special previous knowledge is necessary.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module covers the fundamentals of nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) and their applications in engineering disciplines. The module consists of a classical lecture complemented by a problem-based learning course that includes practical hands-on experience on magnetic resonance devices. The module will be held in English.



Skills

After the successful completion of the course the students shall:

  1. Understand the physical principles and practical aspects of magnetic resonance in engineering.
  2. Know how to safely operate NMR and MRI systems.
  3. Know how to run standard experimental sequences and how to implement more advanced sequence protocols.
  4. Have an overview of the current capabilities and limits of the MR technique
Personal Competence
Social Competence

In the problem-based course Magnetic Resonance in Engineering, the students will obtain hands-on experience on how to operate NMR spectrometers and high-field and low-field MRI systems. The course will cover safety aspects, pulse sequence design, spectral image analysis, and image reconstruction. The students will work in small groups on practical tasks on different NMR and MRI systems located at the campus of TUHH.


Autonomy

Through the practical character of the PBL course, the student shall improve their communication skills.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 120 Minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Materials Science and Engineering: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2968: Fundamentals of Magnetic Resonance
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

This lecture covers the fundamentals magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (NMR). It focuses on the following topics:

  1. The fundamentals of magnetic resonance: magnetism, magnetic fields, radiofrequency, spin, relaxation
  2. Hardware for magnetic resonance: magnets (high-field and low-field), radiofrequency coil design, magnetic field gradients
  3. NMR-Spectroscopy: chemical shift, J-Coupling, 2D NMR, solid-state, MAS
  4. Relaxometry: single-sided NMR, contrasts,
  5. Magnetic resonance imaging (MRI): gradients, coils, k-space, imaging sequences, ultrafast Imaging, parallel imaging, velocimetry, CEST
  6. Hyperpolarization techniques: DNP, p-H2, optical pumping with Xe
  7. Applications of magnetic resonance in chemical engineering
  8. Applications of magnetic resonance in material science and engineering
  9. Applications of magnetic resonance in biomedical engineering    
Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524 , doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953

Haber-Pohlmeier, Sabina, Bernhard Blumich, and Luisa Ciobanu, (2022) Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science, and Energy Research. John Wiley & Sons



Course L2969: Magnetic Resonance in Engineering
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

In this course, the theoretical basics of magnetic resonance spectroscopy and magnetic resonance tomography are supplemented with practical experiments on the respective devices. The practical handling and operation of the equipment will be learned. 

Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8 

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524, doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953



Module M1955: Process Intensification in Process Engineering

Courses
Title Typ Hrs/wk CP
Process Intensification in Process Engineering (L1978) Lecture 2 2
Process Intensification in Process Engineering (L1715) Project-/problem-based Learning 2 4
Module Responsible Prof. Mirko Skiborowski
Admission Requirements None
Recommended Previous Knowledge

Process and Plant Engineering 1

Process and Plant Engineering 2

Basics in Process Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Students are able to evaluate hybrid processes
Skills
Students are able to evaluate processes with regard to their suitability as hybrid processes and to interpret them accordingly.
Personal Competence
Social Competence
Students are able to apply the principles of project management for small groups.
Autonomy
Students are able to acquire and discuss specialized knowledge about hybrid processes.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale Project report incl. PM-documents and Midterm
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Course L1978: Process Intensification in Process Engineering
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga, Prof. Mirko Skiborowski
Language EN
Cycle WiSe
Content

Introduction to integrated and hybrid processes in chemical and biotechnological process engineering; advantages and disadvantages, process windows, differentiation criteria;

Process synthesis and process modeling

Process examples from industry and research: reactive distillation, dividing wall columns, reactive dividing wall columns, SHOP and MerOX, centrifuges, membrane-supported processes

Literature

- H. Schmidt-Traub; Integrated Reaction and Separation Operations: Modelling and Experimental Validation; Springer 2006
- K. Sundmacher, A. Kienle, A. Seidel-Morgenstern; Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control; Wiley-VCH 2005
- Mexandre C. Dimian (Ed); Integrated Design and Simulation of Chemical Processes; in Computer Aided Chemical Engineering, Volume 13, Pages 1-698 (2003)

Course L1715: Process Intensification in Process Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Thomas Waluga, Prof. Mirko Skiborowski
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0636: Cell and Tissue Engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Cell and Tissue Engineering (L0355) Lecture 2 3
Bioprocess Engineering for Medical Applications (L0356) Lecture 2 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module the students 

- know the basic principles of cell and tissue culture

- know the relevant metabolic and physiological properties of animal and human cells

- are able to explain and describe the basic underlying principles of bioreactors for cell and tissue cultures, in contrast to microbial fermentations

- are able to explain the essential steps (unit operations) in downstream

- are able to explain, analyze and describe the kinetic relationships and significant litigation strategies for cell culture reactors

Skills

The students are able

- to analyze and perform mathematical modeling to cellular metabolism at a higher level

- are able to to develop process control strategies for cell culture systems

Personal Competence
Social Competence


After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. 

The students can reflect their specific knowledge orally and discuss it with other students and teachers.

Autonomy


After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Course L0355: Fundamentals of Cell and Tissue Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Johannes Möller
Language EN
Cycle WiSe
Content Overview of cell culture technology and tissue engineering (cell culture product manufacturing, complexity of protein therapeutics, examples of tissue engineering) (Pörtner, Zeng) Fundamentals of cell biology for process engineering (cells: source, composition and structure. interactions with environment, growth and death - cell cycle, protein glycolysation) (Pörtner) Cell physiology for process engineering (Overview of central metabolism, genomics etc.) (Zeng) Medium design (impact of media on the overall cell culture process, basic components of culture medium, serum and protein-free media) (Pörtner) Stochiometry and kinetics of cell growth and product formation (growth of mammalian cells, quantitative description of cell growth & product formation, kinetics of growth)


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Course L0356: Bioprocess Engineering for Medical Applications
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Johannes Möller
Language EN
Cycle WiSe
Content Requirements for cell culture processess, shear effects, microcarrier technology Reactor systems for mammalian cell culture (production systems) (design, layout, scale-up: suspension reactors (stirrer, aeration, cell retention), fixed bed, fluidized bed (carrier), hollow fiber reactors (membranes), dialysis reactors, Reactor systems for Tissue Engineering, Prozess strategies (batch, fed-batch, continuous, perfusion, mathematical modelling), control (oxygen, substrate etc.) • Downstream


Literature

Butler, M (2004) Animal Cell Culture Technology - The basics, 2nd ed. Oxford University Press

Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis Group, New York

Eibl, R.; D. Eibl; R. Pörtner; G. Catapano and P. Czermak: Cell and Tissue Reaction Engineering, Springer (2008). ISBN 978-3-540-68175-5

Pörtner R (ed) (2013) Animal Cell Biotechnology - Methods and Protocols. Humana Press


Focus Energy and Bioprocess Technology

Module M1303: Energy Projects - Development and Assessment

Courses
Title Typ Hrs/wk CP
Aspects of Sustainability Management (L0007) Lecture 1 1
Development of Energy Projects (L0003) Lecture 2 2
Renewable Energy Projects in Emerged Markets (L0014) Project Seminar 2 2
Economic Aspects of Energy Projects (L0005) Lecture 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Environmental Assessment

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

By ending this module, students can describe the planning and development of projects using renewable energy sources. Furthermore they are able to explain the special emphasis on the economic and legal aspects in this context. 

The learning content of the different topics of the module are use-oriented; thus students can apply them i.a. in professional fields of consultation or supervision of energy projects.

Skills

By ending the module the students can apply the learned theoretical foundations of the development of renewable energy projects to exemplary energy projects and can explain technically and conceptually the resulting correlations with respect to legal and economic requirements.

As a basis for the design of renewable energy systems they can calculate the demand for thermal and/or electrical energy at operating and regional level. Regarding to this calculation they can choose and dimension possible energy systems. 

To assess sustainability aspects of renewable energy projects, the students can choose and discuss the right methodology according to the particular task. 

Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Personal Competence
Social Competence

Students will be able to edit scientific tasks in the context of the economic analysis of renewable energy projects in a group with a high number of participants and can organize the processing time within the group. They can perform subject-specific and interdisciplinary discussions. Consequently, they can asses the knowledge of their fellow students and are able to deal with feedback on their own performance. Students can present their group results in front of others.

Autonomy

Regarding to the contents of the lectures and to solve the tasks for the economical analysis of renewable energy projects the students are able to exploit sources and acquire the particular knowledge about the subject area independently and self-organized. Based on this expertise they are able to use indenpendently calculation methods for these tasks. Regarding to these calculations, guided by the lecturers, the students can recognize self-organized theri personal level of knowledge.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 150 minutes written exam + Written assay from project seminar
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0007: Aspects of Sustainability Management
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Charlotte Weinspach
Language DE
Cycle WiSe
Content

The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:

  • What is "sustainability"?
  • Why is this concept an important topic for companies?
  • What opportunities and business risks are addressed or are associated with it?
  • How can the often mentioned three pillars of sustainability - economy, ecology, and social- be meaningfully integrated into corporate management despite their sometimes contradictory tendencies, and how a corresponding compromise can be found?
  • What concepts or frameworks exist for the implementation of sustainability management in companies?
  • Which sustainability labels exist for products or companies? What do they have in common, and where do they differ?

Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes.

In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions.

Literature

Die folgenden Bücher bieten einen Überblick:

Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage

Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag.


Course L0003: Development of Energy Projects
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle WiSe
Content
  • Development of renewable energy projects from the analysis of the local situation to the final energy project: what steps have to be completed in order to implement a successful regenerative energy project and what factors must be considered
  • Survey of energy demand; methods to collect the demand for thermal and/or electrical energy at operational and regional level until the point of a development of an energy master plan
  • Technology of renewable energy: how to combine the various options for using renewable energy with different supply situation in the most reasonable way? How can under certain conditions ideal combinations look like?
  • Feasibility study, requirements and content of a feasibility study
  • Legal framework for plant construction; representation of authorization rights, including the entire formal procedure for the different approval procedures in the context of the BImSch legislation; further legal requirements (including laws pertaining to construction, water and waterways, noise, etc.
  • Company structures; which company structure is the most appropriate
    for the various applications? What are the pros and cons?
  • Risk management: how the risks of renewable energy projects
    can be best determined? How the minimizing of risk can be ensured?
  • Insurance: which kinds of insurance exit? Why do you need insurance? What requirements must be met in order to obtain certain types of insurance for certain renewable energy projects for the construction and operational phase?
  • Acceptance: how the acceptance of an application for the use of renewable energy can be assessed and improved? How the acceptance can be measured?
  • Organization of realization of a project: how the construction phase of a renewable energy system is organized after the end of the planning period?
  • Acceptance: Which are the acceptance steps until the regular continuous operation (VOB acceptance, safety acceptance, approval by authority)
  • Examples: good and less good examples of project development
Literature
  • Script zur Vorlesung mit Literaturhinweisen


Course L0014: Renewable Energy Projects in Emerged Markets
Typ Project Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Wiese
Language DE
Cycle WiSe
Content
  1. Introduction
    • Development of renewable energies worldwide
      • History
      • Future markets
    • Special challenges in new markets - Overview
  2. Sample project wind farm Korea
    • Survey
    • Technical Description
    • Project phases and characteristics
  3. Funding and financing instruments for EE projects in new markets
    • Overview funding opportunitie
    • Overview countries with feed-in laws
    • Major funding programs
  4. CDM projects - why, how , examples
    • Overview CDM process
    • Examples
    • Exercise CDM
  5. Rural electrification and hybrid systems - an important future market for EE
    • Rural Electrification - Introduction
    • Types of Elektrizifierungsprojekten
    • The role of the EEInterpretation of hybrid systems
    • Project example: hybrid system Galapagos Islands
  6. Tendering process for EE projects - examples
    • South Africa
    • Brazil
  7. Selected projects from the perspective of a development bank - Wesley Urena Vargas, KfW Development Bank
    • Geothermal
    • Wind or CSP

Within the seminar, the various topics are actively discussed and applied to various cases of application.

Literature Folien der Vorlesung
Course L0005: Economic Aspects of Energy Projects
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Andreas Wiese
Language DE
Cycle WiSe
Content
  • Introduction: definitions; importance of cost and profitability statements for projects in the "Renewable Energies"; prices and costs; efficiency of energy systems versus profitability of individual project
  • Cost estimates and cost calculations
    • Definitions
    • Cost calculation
    • Cost estimation
    • Calculation of costs for the provision of work and power
    • Cost summaries for renewable energy technologies
    • Energy Storage: cost overviews; impact on the cost of renewable energy projects
  • Efficiency calculation
    • Definitions
    • Methods: static methods, dynamic methods (eg. LCOE (levelised cost of electricity))
    • Economic versus national economic approach
    • Power and work in cost accounting
    • Energy storage and its influence on the efficiency calculation
  • The due diligence process as an attendant of economic analysis
  • Consideration of uncertainty in projects for renewable energy
    • Definitions
    • Technical uncertainty
    • Cost uncertainties
    • Other uncertainties
  • Project financing
    • Definitions
    • Project -versus corporate finance
    • Funding models
    • Equity ratio , DSCR
    • Treatment of risks in project financing
    • Funding opportunities for renewable energy projects
    • Possible funding approaches
    • Legal requirements in Germany (EEG )
    • Emissions trading and carbon credits
Literature

Script der Vorlesung


Module M1294: Bioenergy

Courses
Title Typ Hrs/wk CP
Biofuels Process Technology (L0061) Lecture 1 1
Biofuels Process Technology (L0062) Recitation Section (small) 1 1
World Market for Commodities from Agriculture and Forestry (L1769) Lecture 1 1
Thermal Biomass Utilization (L1767) Lecture 2 2
Thermal Biomass Utilization (L2386) Practical Course 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce an in-depth outline of energy production from biomass, aerobic and anaerobic waste treatment processes, the gained products and the treatment of produced emissions.

Skills

Students can apply the learned theoretical knowledge of biomass-based energy systems to explain relationships for different tasks, like dimesioning and design of biomass power plants.  In this context, students are also able to solve computational tasks for combustion, gasification and biogas, biodiesel and bioethanol use.

Personal Competence
Social Competence

Students can participate in discussions to design and evaluate energy systems using biomass as an energy source.

Autonomy

Students can independently exploit sources with respect to the emphasis of the lectures. They can choose and aquire the for the particular task useful knowledge. Furthermore, they can solve computational tasks of biomass-based energy systems independently with the assistance of the lecture. Regarding to this they can assess their specific learning level and can consequently define the further workflow. 

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
No 10 % Presentation
Examination Written exam
Examination duration and scale 3 hours written exam
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0061: Biofuels Process Technology
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • General introduction
  • What are biofuels?
  • Markets & trends 
  • Legal framework
  • Greenhouse gas savings 
  • Generations of biofuels 
    • first-generation bioethanol 
      • raw materials
      • fermentation distillation 
    • biobutanol / ETBE
    • second-generation bioethanol 
      • bioethanol from straw
    • first-generation biodiesel 
      • raw materials 
      • Production Process
      • Biodiesel & Natural Resources
    • HVO / HEFA 
    • second-generation biodiesel
      • Biodiesel from Algae
  • Biogas as fuel
    • the first biogas generation 
      • raw materials 
      • fermentation 
      • purification to biomethane 
    • Biogas second generation and gasification processes
  • Methanol / DME from wood and Tall oil ©

Literature
  • Skriptum zur Vorlesung
  • Drapcho, Nhuan, Walker; Biofuels Engineering Process Technology
  • Harwardt; Systematic design of separations for processing of biorenewables
  • Kaltschmitt; Hartmann; Energie aus Biomasse: Grundlagen, Techniken und Verfahren
  • Mousdale; Biofuels - Biotechnology, Chemistry and Sustainable Development
  • VDI Wärmeatlas


Course L0062: Biofuels Process Technology
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle WiSe
Content
  • Life Cycle Assessment
    • Good example for the evaluation of CO2 savings potential by alternative fuels - Choice of system boundaries and databases
  • Bioethanol production
    • Application task in the basics of thermal separation processes (rectification, extraction) will be discussed. The focus is on a column design, including heat demand, number of stages, reflux ratio ...
  • Biodiesel production
    • Procedural options for solid / liquid separation, including basic equations for estimating power, energy demand, selectivity and throughput
  • Biomethane production
    • Chemical reactions that are relevant in the production of biofuels, including equilibria, activation energies, shift reactions


Literature

Skriptum zur Vorlesung

Course L1769: World Market for Commodities from Agriculture and Forestry
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Michael Köhl, Bernhard Chilla
Language DE
Cycle WiSe
Content

1) Markets for Agricultural Commodities
What are the major markets and how are markets functioning
Recent trends in world production and consumption.
World trade is growing fast. Logistics. Bottlenecks.
The major countries with surplus production
Growing net import requirements, primarily of China, India and many other countries.
Tariff and non-tariff market barriers. Government interferences.


2) Closer Analysis of Individual Markets
Thomas Mielke will analyze in more detail the global vegetable oil markets, primarily palm oil, soya oil,
rapeseed oil, sunflower oil. Also the raw material (the oilseed) as well as the by-product (oilmeal) will
be included. The major producers and consumers.
Vegetable oils and oilmeals are extracted from the oilseed. The importance of vegetable oils and
animal fats will be highlighted, primarily in the food industry in Europe and worldwide. But in the past
15 years there have also been rapidly rising global requirements of oils & fats for non-food purposes,
primarily as a feedstock for biodiesel but also in the chemical industry.
Importance of oilmeals as an animal feed for the production of livestock and aquaculture
Oilseed area, yields per hectare as well as production of oilseeds. Analysis of the major oilseeds
worldwide. The focus will be on soybeans, rapeseed, sunflowerseed, groundnuts and cottonseed.
Regional differences in productivity. The winners and losers in global agricultural production.


3) Forecasts: Future Global Demand & Production of Vegetable Oils
Big challenges in the years ahead: Lack of arable land for the production of oilseeds, grains and other
crops. Competition with livestock. Lack of water. What are possible solutions? Need for better
education & management, more mechanization, better seed varieties and better inputs to raise yields.
The importance of prices and changes in relative prices to solve market imbalances (shortage
situations as well as surplus situations). How does it work? Time lags.
Rapidly rising population, primarily the number of people considered “middle class” in the years ahead.
Higher disposable income will trigger changing diets in favour of vegetable oils and livestock products.
Urbanization. Today, food consumption per caput is partly still very low in many developing countries,
primarily in Africa, some regions of Asia and in Central America. What changes are to be expected?
The myth and the realities of palm oil in the world of today and tomorrow.
Labour issues curb production growth: Some examples: 1) Shortage of labour in oil palm plantations in
Malaysia. 2) Structural reforms overdue for the agriculture in India, China and other countries to
become more productive and successful, thus improving the standard of living of smallholders.

Literature Lecture material
Course L1767: Thermal Biomass Utilization
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle WiSe
Content

Goal of this course is it to discuss the physical, chemical, and biological as well as the technical, economic, and environmental basics of all options to provide energy from biomass from a German and international point of view. Additionally different system approaches to use biomass for energy, aspects to integrate bioenergy within the energy system, technical and economic development potentials, and the current and expected future use within the energy system are presented.

The course is structured as follows:

  • Biomass as an energy carrier within the energy system; use of biomass in Germany and world-wide, overview on the content of the course
  • Photosynthesis, composition of organic matter, plant production, energy crops, residues, organic waste
  • Biomass provision chains for woody and herbaceous biomass, harvesting and provision, transport, storage, drying
  • Thermo-chemical conversion of solid biofuels
    • Basics of thermo-chemical conversion
    • Direct thermo-chemical conversion through combustion: combustion technologies for small and large scale units, electricity generation technologies, flue gas treatment technologies, ashes and their use
    • Gasification: Gasification technologies, producer gas cleaning technologies, options to use the cleaned producer gas for the provision of heat, electricity and/or fuels
    • Fast and slow pyrolysis: Technologies for the provision of bio-oil and/or for the provision of charcoal, oil cleaning technologies, options to use the pyrolysis oil and charcoal as an energy carrier as well as a raw material
  • Physical-chemical conversion of biomass containing oils and/or fats: Basics, oil seeds and oil fruits, vegetable oil production, production of a biofuel with standardized characteristics (trans-esterification, hydrogenation, co-processing in existing refineries), options to use this fuel, options to use the residues (i.e. meal, glycerine)
  • Bio-chemical conversion of biomass
    • Basics of bio-chemical conversion
    • Biogas: Process technologies for plants using agricultural feedstock, sewage sludge (sewage gas), organic waste fraction (landfill gas), technologies for the provision of bio methane, use of the digested slurry
    • Ethanol production: Process technologies for feedstock containing sugar, starch or celluloses, use of ethanol as a fuel, use of the stillage
Literature

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Course L2386: Thermal Biomass Utilization
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger
Language DE
Cycle WiSe
Content

The experiments of the practical lab course illustrate the different aspects of heat generation from biogenic solid fuels. First, different biomasses (e.g. wood, straw or agricultural residues) will be investigated; the focus will be on the calorific value of the biomass. Furthermore, the used biomass will be pelletized, the pellet properties analysed and a combustion test carried out on a pellet combustion system. The gaseous and solid pollutant emissions, especially the particulate matter emissions, are measured and the composition of the particulate matter is investigated in a further experiment. Another focus of the practical course is the consideration of options for the reduction of particulate matter emissions from biomass combustion. In the practical course, a method for particulate matter reduction will be developed and tested. All experiments will be evaluated and the results presented.

Within the practical lab course the students discuss different technical-scientific tasks, both subject-specifically and interdisciplinary. They
discuss various approaches to solving the problem and advise on the theoretical or practical implementation.

Literature

- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage. Berlin Heidelberg: Springer Science & Business Media, 2016. -ISBN 978-3-662-47437-2
- Versuchsskript

Module M1308: Modelling and Technical Design of Bio Refinery Processes

Courses
Title Typ Hrs/wk CP
Biorefineries - Technical Design and Optimization (L1832) Project-/problem-based Learning 3 3
CAPE in Energy Engineering (L0022) Projection Course 3 3
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The tudents can completely design a technical process including mass and energy balances, calculation and layout of different process devices, layout of measurement- and control systems as well as modeling of the overall process.

Furthermore, they can describe the basics of the general procedure for the processing of modeling tasks, especially with ASPEN PLUS ® and ASPEN CUSTOM MODELER ®.

Skills Students are able to simulate and solve scientific task in the context of renewable energy technologies by:    
  • development of modul-comprehensive approaches for the dimensioning and design of production processes
  • evaluating alternatives input parameter to solve the particular task even with incomplete information,
  • a systematic documentation of the work results in form of a written version, the presentation itself and the defense of contents.

They can use the ASPEN PLUS ® and ASPEN CUSTOM MODELER ® for modeling energy systems and to evaluate the simulation solutions.

Through active discussions of various topics within the seminars and exercises of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice.

Personal Competence
Social Competence Students can
  • respectfully work together as a team with around 2-3 members,
  • participate in subject-specific and interdisciplinary discussions in the area of dimensioning and design of production processes, and can develop cooperated solutions,
  • defend their own work results in front of fellow students and

assess the performance of fellow students in comparison to their own performance. Furthermore, they can accept professional constructive criticism.

Autonomy

Students can independently tap knowledge regarding to the given task. They are capable, in consultation with supervisors, to assess their learning level and define further steps on this basis. Furthermore, they can define targets for new application-or research-oriented duties in accordance with the potential social, economic and cultural impact.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Written report incl. presentation
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Renewable Energies: Core Qualification: Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1832: Biorefineries - Technical Design and Optimization
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Oliver Lüdtke
Language DE
Cycle SoSe
Content

I. Repetition of engineering basics

  1. Shell and tube heat exchangers
  2. Steam generators and refrigerating machines
  3. Pumps and turbines
  4. Flow in piping networks
  5. Pumping and mixing of non-newtonian fluids
  6. Requirements to a detailed layout plan 

 II. Calculation:

  1. Planning and design of a specific bio-refinery plant section, such as Ethanol distillation and fermentation. This is based on empirical valuse of a real, industrial plant.
    • Mass and energy balances (Aspen)
    • Equipment design (heat exchangers, pumps, pipes, tanks, etc.) (
    • Isolation, wall thickness and material selection
    • Energy demand (electrical, heat or cooling), design of steam boilers and appliances
    • Selection of fittings, measuring instruments and safety equipment
    • Definition of main control loops
  2. Hereby, the dependencies of transport phenomena between certain plant sections become evident and methods of calculation are introduced.
  3. In Detail Engineering , it is focused on aspects of plant engineering planning that are relevant for the subsequent construction of the plant.
  4. Depending of time requirement and group size a cost estimation and preparation of a complete R&I flow chart can be implemented as well.
Literature

Perry, R.;Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 2007

Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014

Course L0022: CAPE in Energy Engineering
Typ Projection Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Martin Kaltschmitt
Language DE
Cycle SoSe
Content
  • CAPE = Computer-Aided-Project-Engineering

  • INTRODUCTION TO THE THEORY    
    • Classes of simulation programs
    • Sequential modular approach
    • Equation-oriented approach
    • Simultaneous modular approach
    • General procedure for the processing of modeling tasks
    • Special procedure for solving models with repatriations
  • COMPUTER EXERCISES renewable energy projects WITH ASPEN PLUS ® AND ASPEN CUSTOM MODELER ®    
    • Scope, potential and limitations of Aspen Plus ® and Aspen Custom Modeler ®
    • Use of integrated databases for material data
    • Methods for estimating non-existent physical property data
    • Use of model libraries and Process Synthesis
    • Application of design specifications and sensitivity analyzes
    • Solving optimization problems

Within the seminar, the various tasks are actively discussed and applied to various cases of application.

Literature
  • Aspen Plus® - Aspen Plus User Guide
  • William L. Luyben; Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5

Module M0952: Industrial Bioprocess Engineering

Courses
Title Typ Hrs/wk CP
Biotechnical Processes (L1065) Project-/problem-based Learning 2 3
Development of bioprocess engineering processes in industrial practice (L1172) Seminar 2 3
Module Responsible Prof. Anna-Lena Heins
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective biotechnological production processes
Skills

After successful completion of the module students are able to

  • analyzing and evaluate current research approaches
  • Lay-out biotechnological production processes basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.



Autonomy



After completion of this module, participants will be able to solve a technical problem in teams of approx. 8-12 persons independently including a presentation of the results.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale oral presentation + discussion (45 min) + Written report (10 pages)
Assignment for the Following Curricula Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L1065: Biotechnical Processes
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language DE/EN
Cycle SoSe
Content

This course gives an overview of the most important biotechnological production processes. In addition to the individual methods and their specific requirements, general aspects of industrial reality are also addressed, such as:
• Asset Lifecycle
• Digitization in the bioprocess industry
• Basic principles of industrial bioprocess development
• Sustainability aspects in the development of bioprocess engineering processes

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986. 

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts


Course L1172: Development of bioprocess engineering processes in industrial practice
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language DE/EN
Cycle SoSe
Content

This course gives an insight into the methodology used in the development of industrial biotechnology processes. Important aspects of this are, for example, the development of the fermentation and the work-up steps for the respective target molecule, the integration of the partial steps into an overall process, and the cost-effectiveness of the process.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M2029: Process Imaging

Courses
Title Typ Hrs/wk CP
Process Imaging (L2723) Lecture 3 3
Process Imaging Practicals (L2724) Project-/problem-based Learning 3 3
Module Responsible Prof. Alexander Penn
Admission Requirements None
Recommended Previous Knowledge No special prerequisites needed. An interest in imaging techniques and image processing is helpful but not mandatory.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.


Skills

After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Personal Competence
Social Competence In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 70% written examination, 30% active participation and final presentation of the problem-based learning units with a 5-10 page report
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Core Qualification: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Mechatronics: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2723: Process Imaging
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn
Language EN
Cycle SoSe
Content

The lecture focuses primarily on presenting and discussing established imaging techniques relevant to the field of engineering including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography. Moreover, it presents and discusses a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurement techniques work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Course L2724: Process Imaging Practicals
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Alexander Penn, Dr. Stefan Benders
Language EN
Cycle SoSe
Content

Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:

  1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
  2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
  3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

  1. understand the physical principles and practical aspects of the most common imaging methods,
  2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
  3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.
Literature

Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. 

Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395



Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Module M1796: Magnetic resonance in engineering

Courses
Title Typ Hrs/wk CP
Fundamentals of Magnetic Resonance (L2968) Lecture 3 3
Magnetic Resonance in Engineering (L2969) Project-/problem-based Learning 3 3
Module Responsible Dr. Stefan Benders
Admission Requirements None
Recommended Previous Knowledge

No special previous knowledge is necessary.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module covers the fundamentals of nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) and their applications in engineering disciplines. The module consists of a classical lecture complemented by a problem-based learning course that includes practical hands-on experience on magnetic resonance devices. The module will be held in English.



Skills

After the successful completion of the course the students shall:

  1. Understand the physical principles and practical aspects of magnetic resonance in engineering.
  2. Know how to safely operate NMR and MRI systems.
  3. Know how to run standard experimental sequences and how to implement more advanced sequence protocols.
  4. Have an overview of the current capabilities and limits of the MR technique
Personal Competence
Social Competence

In the problem-based course Magnetic Resonance in Engineering, the students will obtain hands-on experience on how to operate NMR spectrometers and high-field and low-field MRI systems. The course will cover safety aspects, pulse sequence design, spectral image analysis, and image reconstruction. The students will work in small groups on practical tasks on different NMR and MRI systems located at the campus of TUHH.


Autonomy

Through the practical character of the PBL course, the student shall improve their communication skills.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 120 Minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Materials Science and Engineering: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2968: Fundamentals of Magnetic Resonance
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

This lecture covers the fundamentals magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (NMR). It focuses on the following topics:

  1. The fundamentals of magnetic resonance: magnetism, magnetic fields, radiofrequency, spin, relaxation
  2. Hardware for magnetic resonance: magnets (high-field and low-field), radiofrequency coil design, magnetic field gradients
  3. NMR-Spectroscopy: chemical shift, J-Coupling, 2D NMR, solid-state, MAS
  4. Relaxometry: single-sided NMR, contrasts,
  5. Magnetic resonance imaging (MRI): gradients, coils, k-space, imaging sequences, ultrafast Imaging, parallel imaging, velocimetry, CEST
  6. Hyperpolarization techniques: DNP, p-H2, optical pumping with Xe
  7. Applications of magnetic resonance in chemical engineering
  8. Applications of magnetic resonance in material science and engineering
  9. Applications of magnetic resonance in biomedical engineering    
Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524 , doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953

Haber-Pohlmeier, Sabina, Bernhard Blumich, and Luisa Ciobanu, (2022) Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science, and Energy Research. John Wiley & Sons



Course L2969: Magnetic Resonance in Engineering
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Dr. Stefan Benders
Language EN
Cycle WiSe
Content

In this course, the theoretical basics of magnetic resonance spectroscopy and magnetic resonance tomography are supplemented with practical experiments on the respective devices. The practical handling and operation of the equipment will be learned. 

Literature

Stapf, S., & Han, S. (2006). NMR imaging in chemical engineering. Weinheim: Wiley-VCH. ISBN: 978-3-527-60719-8 

Blümich B., (2003) NMR imaging of materials. Oxford University Press, Online- ISBN: 9780191709524, doi: https://doi.org/10.1093/acprof:oso/9780198526766.001.0001

Brown R. W., Cheng Y. N., Haacke E. M., Thompson M. R., Venkatesan R., (2014) Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition, John Wiley & Sons, Inc., doi: 10.1002/9781118633953



Module M1354: Advanced Fuels

Courses
Title Typ Hrs/wk CP
Second generation biofuels and electricity based fuels (L2414) Lecture 2 2
Carbon dioxide as an economic determinant in the mobility sector (L1926) Lecture 1 1
Mobility and climate protection (L2416) Recitation Section (small) 2 2
Sustainability aspects and regulatory framework (L2415) Lecture 1 1
Module Responsible Prof. Martin Kaltschmitt
Admission Requirements None
Recommended Previous Knowledge

Bachelor degree in Process Engineering, Bioprocess Engineering or Energy- and Environmental Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Within the module, students learn about different provision pathways for the production of advanced fuels (biofuels like e.g. alcohol-to-jet; electricity-based fuels like e.g. power-to-liquid). The different processes chains are explained and the regulatory framework for sustainable fuel production is examined. This includes, for example, the requirements of the Renewable Energies Directive II and the conditions and aspects for a market ramp-up of these fuels. For the holistic assessment of the various fuel options, they are also examined under environmental and economic factors.


Skills

After successfully participating, the students are able to solve simulation and application tasks of renewable energy technology:

  • Module-spanning solutions for the design and presentation of fuel production processes resp. the fuel provision chains
  • Comprehensive analysis of various fuel production options in technical, ecological and economic terms

Through active discussions of the various topics within the lectures and exercises of the module, the students improve their understanding and application of the theoretical foundations and are thus able to transfer the learned to the practice.

Personal Competence
Social Competence

The students can discuss scientific tasks in a subject-specific and interdisciplinary way and develop joint solutions.

Autonomy

The students are able to access independent sources about the questions to be addressed and to acquire the necessary knowledge. They are able to assess their respective learning situation concretely in consultation with their supervisor and to define further questions and solutions. 


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Written elaboration Details werden in der ersten Veranstaltung bekannt gegeben.
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Energy Systems: Specialisation Energy Systems: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2414: Second generation biofuels and electricity based fuels
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Martin Kaltschmitt
Language DE/EN
Cycle WiSe
Content
  • General overview of various power-based fuels and their process paths, including power-to-liquid process (Fischer-Tropsch synthesis, methanol synthesis), power-to-gas (Sabatier process)
  • Origin, production and use of these fuels
Literature
  • Vorlesungsskript
Course L1926: Carbon dioxide as an economic determinant in the mobility sector
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content
  • General overview of various advanced biofuels and their process pathways (including gas-to-liquid, HEFA and Alcohol-to-Jet processes)
  • Origin, production and use of these fuels


Literature
  • Babu, V.: Biofuels Production. Beverly, Mass: Scrivener [u.a.], 2013
  • Olsson, L.: Biofuels. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007
  • William, L. L.: Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
  • Perry, R.; Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 20
  • Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014
  • Kaltschmitt, M.; Neuling, U. (Ed.): Biokerosene - Status and Prospects; Springer, Berlin, Heidelberg, 2018



Course L2416: Mobility and climate protection
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Benedikt Buchspies, Dr. Karsten Wilbrand
Language DE/EN
Cycle WiSe
Content

Application of the acquired theoretical knowledge from the respective lectures on the basis of concrete tasks from practice

  • Design and simulation of sub-processes of production processes in Aspen Plus ®
  • Ecological and economic analysis of fuel supply paths
  • Classification of case studies into applicable regulations
Literature
  • Skriptum zur Vorlesung
  • Aspen Plus® - Aspen Plus User Guide
Course L2415: Sustainability aspects and regulatory framework
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Benedikt Buchspies
Language DE/EN
Cycle WiSe
Content

Holistic examination of the different fuel paths with the following main topics, among others:

  • Consideration of the environmental impact of the various alternative fuels
  • Economic consideration of the different alternative fuels
  • Regulatory framework for alternative fuels
  • Certification of alternative fuels
  • Market introduction models of alternative fuels
Literature
  • European Commission - Joint Research Center (2010): International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Joint Research Center (JRC) Institut for Environment and Sustainability, Luxembourg
  • Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen

Focus Management and Controlling

Module M1002: Production and Logistics Management

Courses
Title Typ Hrs/wk CP
Operative Production and Logistics Management (L1198) Lecture 2 2
Strategic Production and Logistics Management (L1089) Lecture 2 2
Strategic Production and Logistics Management (L3152) Project-/problem-based Learning 1 2
Module Responsible Prof. Wolfgang Kersten
Admission Requirements None
Recommended Previous Knowledge

Introduction to Business and Management


The previous knowledge, that is necessary for the successful participation in this module is accessable via e-learning. Log-in and additional information will be distributed during the admission process.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

 Students will be able
-    to differentiate between strategic and operational production and logistics management,
-    to describe the areas of production and logistics management,
-    understand the difference between traditional and new concepts of production planning and control,
-    to describe and explain the actual challenges and research areas of production and logistics management, esp. in an international context.


Skills
Based on the acquired knowledge students are capable of

-    Applying methods of production and logistics management in an international context,
-    Selecting sufficient methods of production and logistics management to solve practical problems,
-    Selecting appropriate methods of production and logistics management also for non-standardized problems,
-    Making a holistic assessment of areas of decision in production and logistics management and relevant influence factors,

-    Design a production and logistics strategy and a global manufacturing footprint systematically.

Personal Competence
Social Competence After completion of the module students can
-    lead discussions and team sessions,
-    arrive at work results in groups and document them,
-    develop joint solutions in mixed teams and present them to others,
-    present solutions to specialists and develop ideas further.
Autonomy

After completion of the module students can

- assess possible consequences of their professional activity,

- define tasks independently, acquire the requisite knowledge and use suitable means of implementation,

- define and carry out research tasks bearing in mind possible societal consequences.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 2.5 % Excercises Online-Modul
No 15 % Subject theoretical and practical work PBL
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
International Management and Engineering: Core Qualification: Compulsory
Logistics, Infrastructure and Mobility: Core Qualification: Compulsory
Course L1198: Operative Production and Logistics Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Thorsten Blecker
Language DE
Cycle WiSe
Content
  • Further knowledge of operational production management
  • Traditional production planning and control concepts
  • Recent production planning and control concepts
  • Understanding and application of quantitative methods
  • Further concepts regarding operational production management


Literature


Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009.

Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010.

Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011.

Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.

Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005.

Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003.

Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994.

Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010.

Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996

Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001


Course L1089: Strategic Production and Logistics Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Wolfgang Kersten
Language DE
Cycle WiSe
Content
  • Identification of the scope of production, operations and logistics management
  • Understanding of actual challenges concerning production and logistics strategy
  • Understanding operations as a competitive weapon
  • Identification and design of the main elements of an operations strategy (level of vertical integration, technology strategy, location strategy, capacity strategy) of a company
  • Understanding of international conditions for the development of a production and logistics strategy
  • In depth discussion of different roles and design elements of a global manufacturing footprint
  • Evaluation of operation strategies of different companies and industrial sectors
  • In depth discussion of methods and concepts of production and logistics management
  • In depth discussion of lean management: Main goals and measures of lean management and lean production concepts, impact of lean management on production and logistics strategies
  • Analysis of the impact of digitalization on production and logistics strategies
  • Presentation and discussion of current research topics in the field of production and logistics management
  • Integration of Problem-Based-Learning sessions in order to enhance teamworking and problem solving skills as well as presentation skills


Literature

Arvis, J.-F. et al. (2018): Connecting to Compete - Trade Logistics in the Global Economy, Washington, DC, USA: The World Bank Group, Download: https://openknowledge.worldbank.org/handle/10986/29971

Corsten, H. /Gössinger, R. (2016): Produktionswirtschaft - Einführung in das industrielle Produktionsmanagement, 14. Auflage, Berlin/ Boston: De Gruyter/ Oldenbourg.  

Heizer, J./ Render, B./ Munson, Ch. (2016): Operations Management (Global Edition), 12. Auflage, Pearson Education Ltd.: Harlow, England.

Kersten, W. et al. (2017): Chancen der digitalen Transformation. Trends und Strategien in Logistik und Supply Chain Management, Hamburg: DVV Media Group

Nyhuis, P./ Nickel, R./ Tullius, K. (2008): Globales Varianten Produktionssystem - Globalisierung mit System, Garbsen: Verlag PZH Produktionstechnisches Zentrum GmbH.

Porter, M. E. (2013): Wettbewerbsstrategie - Methoden zur Analyse von Branchen und Konkurrenten, 12. Auflage, Frankfurt/Main: CampusVerlag.

Schröder, M./ Wegner, K., Hrsg. (2019): Logistik im Wandel der Zeit - Von der Produktionssteuerung zu vernetzten Supply Chains, Wiesbaden: Springer Gabler

Slack, N./ Lewis, M. (2017): Operations Strategy, 5/e Pearson Education Ltd.: Harlow, England.

Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J. (2011): Managing Operations across the Supply Chain, New York u.a.

Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88

Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York.

Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart:  Lucius & Lucius

Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a.


Course L3152: Strategic Production and Logistics Management
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Wolfgang Kersten
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1003: Management Control Systems for Operations

Courses
Title Typ Hrs/wk CP
Management Control Systems for Operations (L1219) Lecture 2 2
Management Control Systems for Operations (Seminar) (L2967) Seminar 2 3
Management Control Systems for Operations (Exercise) (L1224) Recitation Section (small) 1 1
Module Responsible Prof. Wolfgang Kersten
Admission Requirements None
Recommended Previous Knowledge

Introduction to Business and Management


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students have acquired in depth knowledge in the following areas and can

  • explain the function and the requirements of management control systems,
  • explain the targets and the tasks of production and supply chain comtrolling,
  • understand management control systems for production in an international context,
  • explain the major aspects of investment planning and control,
  • explain the major aspects of cost management,
  • explain and understand the procedures of budgeting,
  • present and give a detailed explanation of methods and tools of management control systems for production and supply chains,
  • describe opportunities and risks of digitalization for the design of management control systems for production and supply chains,
  • give an overview of relevant research topics for management control systems for production and supply chains.


Skills

Based on the acquired knowledge students are capable of

-    Applying methods of managerial accounting in production and logistics in an international context,
-    Selecting sufficient methods of managerial accounting in production and logistics to solve practical problems,
-    Selecting appropriate methods of managerial accounting in production and logistics also for non-standardized problems,
-    Making a holistic assessment of areas of decision in management control systems for production and logistics and relevant influence factors.


Personal Competence
Social Competence

After completion of the module students can
-    lead discussions and team sessions,
-    arrive at work results in groups and document them,
-    develop joint solutions in mixed teams and present them to others,
-    present solutions to specialists and develop ideas further.


Autonomy

After completion of the module students can

- assess possible consequences of their professional activity,

- define tasks independently, acquire the requisite knowledge and use suitable means of implementation,

- define and carry out research tasks bearing in mind possible societal consequences.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
International Management and Engineering: Specialisation I. Electives Management: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Course L1219: Management Control Systems for Operations
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Wolfgang Kersten
Language DE
Cycle WiSe
Content
  • Identification of missions and changing requirements on controlling
  • Differentiating managerial accounting, production management, logistics and supply chain controlling
  • Considering global dispersed supply chain networks in production management and supply chain controlling
  • Analyzing investment projects and resulting effects (investment control, risk management in investment)
  • In depth knowledge in planning, realizing and controlling investments
  • Developing characteristics of differentiation for cost and activity accounting (aim, purpose, opportunities in structuring etc.)
  • In depth knowledge in cost management (cost types and units)
  • Budgeting in practice; Analysis of existing methods
  • Development of an approach in activity based costing
  • Application of target costing
  • Knowing the importance and method of life cycle costing
  • Applying performance figures in production and logistics
  • Discussion of opportunities and risks of digitalization for the design of management control systems for production and supply chains
  • Developing recommendations for problem solving by using research oriented problem based learning sessions for relevant actual topics and cases; thereby preparing and presenting results in intercultural teams


Literature

Altrogge, G. (1996): Investition, 4. Aufl., Oldenbourg, München

Arvis, J.-F. et al. (2018): Connecting to Compete - Trade Logistics in the Global Economy, The World Bank Group, Washington, DC, USA; Download: https://openknowledge.worldbank.org/handle/10986/29971

Betge, P. (2000): Investitionsplanung: Methoden, Modelle, Anwendungen, 4. Aufl., Vahlen, München.

Christopher, M. (2005): Logistics and Supply Chain Management, 3. Aufl., Pearson Education, Edinburgh.

Corsten, H., Gössinger, R., Spengler, Th. (Hrsg., 2018): Handbuch Produktions- und Logistikmanagement in Wertschöpfungsnetzwerken, Berlin/Boston.

Eversheim, W., Schuh, G. (2000): Produktion und Management. Betriebshütte: 2 Bde., 7. Aufl., Springer Verlag, Berlin.

Friedl, G., Hofmann, C., Pedell, B. (2017): Kostenrechnung - Eine entscheidungsorientierte Einführung, 3. Aufl., Vahlen, München.

Günther, H.-O., Tempelmeier, H. (2005): Produktion und Logistik, 6. Aufl., Springer Verlag, Berlin.

Hahn, D. Horváth, P., Frese, E. (2000): Operatives und strategisches Controlling, in: Eversheim, W., Schuh, G. (Hrsg.): Produktion und Management. Betriebshütte: 2 Bde. Springer Verlag, Berlin.

Hansmann, K.-W. (1987): Industriebetriebslehre, 2. Aufl., Oldenbourg, München.

Hoitsch, H.-J. (1993): Produktionswirtschaft: Grundlagen einer industriellen Betriebswirtschaftslehre, 2. Aufl., Vahlen, München.

Horváth, P./ Gleich, R./ Seiter, M. (2020): Controlling, 14. Aufl., Vahlen, München.

Kersten, W. et al. (2017): Chancen der digitalen Transformation. Trends und Strategien in Logistik und Supply Chain Management, DVV Media Group, Hamburg.

Kruschwitz, L. (2009): Investitionsrechnung, 12. Aufl., Oldenbourg, München.

Obermaier, Robert (Hrsg., 2019): Handbuch Industrie 4.0 und Digitale Transformation: Betriebswirtschaftliche, technische und rechtliche Herausforderungen, Wiesbaden

Preißler, P. R. (2000): Controlling. 12. Aufl., Oldenbourg Wissenschaftsverlag, München.

Weber, J./ Wallenburg, C. M. (2010): Logistik- und Supply Chain Controlling, 6. Auflage, Schaeffer Poeschel Verlag, Stuttgart.

Wildemann, H. (1987): Strategische Investitionsplanung, Methoden zur Bewertung neuer Produktionstechnologien, Gabler, Wiesbaden.

Wildemann, H. (2001): Produktionscontrolling: Systemorientiertes Controlling schlanker Produktionsstrukturen, 4. Aufl. TCW, München.


Course L2967: Management Control Systems for Operations (Seminar)
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Wolfgang Kersten
Language DE
Cycle WiSe
Content
Literature

Die angewandte Fachliteratur ist von den jeweils gewählten Themen abhängig und wird passend zu den Semesterthemen aktualisiert. Darüberhinaus steht die Fachliteratur der korrespondierenden Vorlesung zur Verfügung.

Course L1224: Management Control Systems for Operations (Exercise)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Wolfgang Kersten
Language DE
Cycle WiSe
Content
  • Identification of missions and changing requirements on controlling
  • Differentiating managerial accounting, production management, logistics and supply chain controlling
  • Considering global dispersed supply chain networks in production management and supply chain controlling
  • Analyzing investment projects and resulting effects (investment control, risk management in investment)
  • In depth knowledge in planning, realizing and controlling investments
  • Developing characteristics of differentiation for cost and activity accounting (aim, purpose, opportunities in structuring etc.)
  • In depth knowledge in cost management (cost types and units)
  • Budgeting in practice; Analysis of existing methods
  • Development of an approach in activity based costing
  • Application of target costing
  • Knowing the importance and method of life cycle costing
  • Applying performance figures in production and logistics
  • Developing recommendations for problem solving  by using problem based learning sessions for case studies; thereby preparing and presenting results in intercultural teams


Literature

Altrogge, G. (1996): Investition, 4. Aufl., Oldenbourg, München

Betge, P. (2000): Investitionsplanung: Methoden, Modelle, Anwendungen, 4. Aufl., Vahlen, München.

Christopher, M. (2005): Logistics and Supply Chain Management, 3. Aufl., Pearson Education, Edinburgh.

Eversheim, W., Schuh, G. (2000): Produktion und Management. Betriebshütte: 2 Bde., 7. Aufl., Springer Verlag, Berlin.

Günther, H.-O., Tempelmeier, H. (2005): Produktion und Logistik, 6. Aufl., Springer Verlag, Berlin.

Hahn, D. Horváth, P., Frese, E. (2000): Operatives und strategisches Controlling, in: Eversheim, W., Schuh, G. (Hrsg.): Produktion und Management. Betriebshütte: 2 Bde. Springer Verlag, Berlin.

Hansmann, K.-W. (1987): Industriebetriebslehre, 2. Aufl., Oldenbourg, München.

Hoitsch, H.-J. (1993): Produktionswirtschaft: Grundlagen einer industriellen Betriebswirtschaftslehre, 2. Aufl., Vahlen, München.

Horváth, P. (2011): Controlling, 12. Aufl., Vahlen, München.

Kruschwitz, L. (2009): Investitionsrechnung, 12. Aufl., Oldenbourg, München.

Martinich, J. S. (1997): Production and operations management: an applied modern approach. Wiley.

Preißler, P. R. (2000): Controlling. 12. Aufl., Oldenbourg Wissenschaftsverlag, München.

Weber, J. (2002): Logistik- und Supply Chain Controlling, 5. Auflage, Schaeffer-Poeschel Verlag, Stuttgart.

Wildemann, H. (1987): Strategische Investitionsplanung, Methoden zur Bewertung neuer Produktionstechnologien, Gabler, Wiesbaden.

Wildemann, H. (2001): Produktionscontrolling: Systemorientiertes Controlling schlanker Produktionsstrukturen, 4. Aufl. TCW, München.


Module M1888: Environmental protection management

Courses
Title Typ Hrs/wk CP
Health, Safety and Environmental Management (L0387) Integrated Lecture 3 3
Air Pollution Abatement (L0203) Lecture 2 3
Module Responsible Dr. Swantje Pietsch-Braune
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L0387: Health, Safety and Environmental Management
Typ Integrated Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Hans-Joachim Nau
Language EN
Cycle WiSe
Content
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literature

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Course L0203: Air Pollution Abatement
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Swantje Pietsch-Braune, Christian Eichler
Language EN
Cycle WiSe
Content

In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators.

Literature

Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002
Atmospheric pollution : history, science, and regulation, Mark Zachary Jacobson. - Cambridge [u.a.] : Cambridge Univ. Press, 2002
Air pollution control technology handbook, Karl B. Schnelle. - Boca Raton [u.a.] : CRC Press, c 2002
Air pollution, Jeremy Colls. - 2. ed. - London [u.a.] : Spon, 2002

Module M2004: Sustainable Circular Economy

Courses
Title Typ Hrs/wk CP
Circular Economy (L3264) Seminar 2 3
Environment and Sustainability (L0319) Lecture 2 3
Module Responsible Prof. Kerstin Kuchta
Admission Requirements None
Recommended Previous Knowledge none
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe single techniques and to give an overview for the field of safety and risk assessment, Circular Economy  as well as environmental and sustainable engineering, in detail:

  • basics in safety and reliability of technical facilities
  • risk assessment and reliability analysis methods
  • Circularity of material
  • Identification and evaluation of material flows
  • energy production and supply
  • sustainable product design


Skills

Students are able apply interdisciplinary system-oriented methods for Circularity and risk assessment as well as sustainability reporting. They can evaluate the effort and costs for processes and select economically feasible treatment concepts.

Personal Competence
Social Competence
Autonomy

Students can gain knowledge of the subject area from given sources and transform it to new questions. Furthermore, they can define targets for new application or research-oriented duties in for risk management and sustainability concepts accordance with the potential social, economic and cultural impact.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written elaboration
Examination duration and scale Elaboration and presentation (45 minutes in groups)
Assignment for the Following Curricula Civil Engineering: Core Qualification: Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Chemical and Bio process Engineering: Elective Compulsory
Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Elective Compulsory
Water and Environmental Engineering: Core Qualification: Compulsory
Course L3264: Circular Economy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Marco Ritzkowski
Language EN
Cycle WiSe
Content
Literature
Course L0319: Environment and Sustainability
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe
Content

This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility.

The following list shows examples:

  • Production and use of biochar
  • Energy production with algae
  • Environmentally friendly product design
  • Clean development mechanisms
  • Democracy and energy
  • Alternative mobility


Literature Wird in der Veranstaltung bekannt gegeben.

Module M0996: Supply Chain Management

Courses
Title Typ Hrs/wk CP
Advanced Topics in Supply Chain Management (L3228) Project-/problem-based Learning 2 3
Supply Chain Management (L1218) Lecture 2 3
Module Responsible Prof. Christian Thies
Admission Requirements None
Recommended Previous Knowledge no
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

 Current developments in international business activities such as outsourcing, offshoring, internationalization and globalization and emerging markets illustrated by examples from practice.
• Theoretical Approaches and methods in logistics and supply chain management and use in practice.
• to identify fields of decision in SCM .
• reasons for the formation of networks based on various theories from institutional economics (transaction cost theory, principal-agent theory, property-right theory) and the resource-based view.
• Selected approaches to explain the development of networks.
• to illustrate phases of network formation.
• to understand the functional mechanisms of inter-organizational and international network relationships.
• to explain and categorize relationships within networks.
• to categorize sourcing concepts and explain motives/ barriers or advantages and disadvantages.
• advantages and disadvantages of offshoring and outsourcing and to illustrate the distinction between the two terms .
• to state criteria/ factors/ parameters that influence production location decisions at the global level (total network costs).
• to explain methods for location finding/evaluation.
• to interpret phenotypes of production networks.
• recognize relationships between R & D and production and their locations and to describe coherent models.
• to solve sub-problems with the configuration of logistics networks (distribution and spare parts networks ) by the use of appropriate approaches.
• to categorise special waste logistics including their duties & objectives and to state and describe practical examples of good networking.

Skills

• to asses trends and challenges in national and international supply chains and logistics networks and their consequences for companies.
• to evaluate, anaylse and systematise networks and network relations based on the lecture.
• to anaylse partners and their suitability for co-operation in collaborations and cooperative relations.
• to select sourcing concepts for specific products / product components based on the lecture as well as advantages and disadvantages of each approach.
• to evaluate location decisions for production and R & D based on concepts.
• to recognize relationships between R & D and production as well as their locations and to evaluate the suitability of specific models for different situations.
• to transfer the analyzed concepts to international practices.
• to analyse and evaluate the product development processes.
• to anaylse concepts of Information and communication management  in logistics.
• to design subcontracting, procurement, production and disposal as well as R & D networks to shape,
• to plan reorganise efficient and flow-oriented enterprise networks.
• to adopt methods of complexity management and risk management in logistics.

Personal Competence
Social Competence

• to evaluate intercultural and international relationships based on discussed case studies.
• advance planning  and design of network formation and their objectives based on content discussed in the lecture.
• definition of procurement strategies for individual parts using the gained knowledge of procurement networks.
• design of the procurement network (external/internal/modules etc.) based on the sourcing concepts and core competencies, as well as on the findings of the case studies.
• to make decision of location for production taking into account global contexts, evaluation methods and buying/selling markets, which were also discussed in the case studies and their dependence on R & D.
• Decision on R & D locations based on the insights gained from case studies / practical examples and the selection of an appropriate model.

Autonomy

After completing the module students are capable to work independently on the subject of Supply Chain Management and transfer the acquired knowledge to new problems.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 20 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
International Management and Engineering: Specialisation I. Electives Management: Elective Compulsory
Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
Course L3228: Advanced Topics in Supply Chain Management
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Christian Thies
Language EN
Cycle SoSe
Content
Literature
Course L1218: Supply Chain Management
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Christian Thies
Language EN
Cycle SoSe
Content
  • Vermittlung eines tiefgreifenden Verständnisses von Logistik und Supply Chain Management 
  • Vermittlung umfassender theoretischer Ansätze und Methoden in der Logistik und im Supply Chain Management; Übertragung der analysierten Konzepte auf Praxisbeispiele
  • Ausarbeitung und kritische Diskussion unterschiedlicher Supply Chain Konfigurationen sowie strategischer Supply Chain Ansätze (z.B. Effizienz vs. Reaktionsfähigkeit)
  • Einführung in die Managementprozesse des SCOR-Modells; Vermittlung von Konzepten der Bereiche Planung, Beschaffung/Einkauf und Distribution
  • Vermittlung von Grundlagen des Supply Chain Risikomanagements; Übertragung der Konzepte auf Praxisbeispiele 
  • Einführung in die digitale Transformation; Identifikation von Trends und Strategien in der Logistik und Supply Chain Management; Ableitung von Chancen der digitalen Transformation in der Logistik und Supply Chain Management
  • Einführung in die Datenanalyse und -visualisierung mithilfe eines Tools; Anwenden der Kenntnisse auf Themengebiete in der Logistik und Supply Chain Management; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literature

Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2010): Supply chain logistics management, 3rd edition, Boston [u.a.]: McGraw-Hill/Irwin. 

Chopra, S. und Meindl, P. (2016): Supply chain management: strategy, planning, and operation, 6th edition, Boston [u.a.]: Pearson. 

Corsten, H., Gössinger, R. (2007): Einführung in das Supply Chain Management, 2. Aufl., München/Wien: Oldenbourg.

Corsten, H., Gössinger, R., Spengler, Th. (Hrsg., 2018): Handbuch Produktions- und Logistikmanagement in Wertschöpfungsnetzwerken, Berlin/Boston.

Heiserich O., Helbig, K. und Ullmann, W. (2011): Logistik, 4. vollständig überarbeitete und erweiterte Auflage, Wiesbaden: Gabler Verlag/ Springer Fachmedien.

Heizer, J., Render, B., Munson, Ch. (2020): Principles of Operations Management, 11th edition, Boston: Pearson.

Hugos, M. (2018): Essentials of Supply Chain Management, Wiley.

Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-117. 

Kersten, W. Seiter, M., von See, B, and Hackius, N. und Maurer, T. (2017): Trends und Strategien in Logistik und Supply Chain Management: Chancen der digitalen Transformation, DVV Media Group GmbH: Hamburg.

Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.]: Springer.

Larson, P., Poist, R. and Halldórsson, Á. (2007): Perspectives on logistics vs. SCM: a survey of SCM professionals, in: Journal of Business Logistics, Vol. 28, No. 1, S. 1-24.

Kummer, S., Grün, O. und Jammernegg, W. (2018): Grundzüge der Beschaffung, Produktion und Logistik, 4. aktualisierte Auflage, München: Pearson Studium.

Obermaier, Robert (Hrsg., 2019): Handbuch Industrie 4.0 und Digitale Transformation: Betriebswirtschaftliche, technische und rechtliche Herausforderungen, Wiesbaden.

Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, S. 9-40. 

Schröder, M./ Wegner, K., Hrsg. (2019): Logistik im Wandel der Zeit - Von der Produktionssteuerung zu vernetzten Supply Chains, Wiesbaden: Springer Gabler

Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3rd edition, Boston [u.a.]: McGraw-Hill/Irwin. 

Supply Chain Council (2014): Supply Chain Operations Reference (SCOR) model: Overview - Version 11.0.

Swink, M., Melnyk, S. A., Cooper, M. B. und Hartley, J. L. (2011): Managing Operations - Across the Supply Chain. 2nd edition, New York, NY: McGraw-Hill/Irwin.

Weele , A. J. v. (2005): Purchasing & supply chain management, 4th edition, London [u.a.]: Thomson Learning.


Module M0975: Industrial Bioprocesses in Practice

Courses
Title Typ Hrs/wk CP
Industrial biotechnology in Chemical Industriy (L2276) Seminar 2 3
Practice in bioprocess engineering (L2275) Seminar 2 3
Module Responsible Prof. Andreas Liese
Admission Requirements None
Recommended Previous Knowledge

Knowledge of bioprocess engineering and process engineering at bachelor level

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module    

  • the students can outline the current status of research on the specific topics discussed
  • the students can explain the basic underlying principles of the respective industrial biotransformations
Skills

After successful completion of the module students are able to

  • analyze and evaluate current research approaches
  • plan industrial biotransformations basically
Personal Competence
Social Competence

Students are able to work together as a team with several students to solve given tasks and discuss their results in the plenary and to defend them.

Autonomy

The students are able independently to present the results of their subtasks in a presentation

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale each seminar 15 min lecture and 15 min discussion
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Management and Controlling: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory
Course L2276: Industrial biotechnology in Chemical Industriy
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Stephan Freyer
Language EN
Cycle WiSe
Content

This course gives an insight into the applications, processes, structures and boundary conditions in industrial practice. Various concrete applications of the technology, markets and other questions that will significantly influence the plant and process design will be shown.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Course L2275: Practice in bioprocess engineering
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Wilfried Blümke
Language EN
Cycle WiSe
Content Content of this course is a concrete insight into the principles, processes and structures of an industrial biotechnology company. In addition to practical illustrative examples, aspects beyond the actual process engineering area are also addressed, such as e.g. Sustainability and engineering.

Literature

Chmiel H (ed). Bioprozesstechnik, Springer 2011, ISBN: 978-3-8274-2476-1 [Titel anhand dieser ISBN in Citavi-Projekt übernehmen]

Bailey, James and David F. Ollis: Biochemical Engineering Fundamentals. ‑2nd ed.; New York: McGraw Hill, 1986.

Becker, Th. et al. (2008) Biotechnology. Ullmann's Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a04_107/current/abstract

Doran, Pauline M.: Bioprocess Engineering Principles, Academic Press, 2003

Hass, V. und R. Pörtner: Praxis der Bioprozesstechnik. Spektrum Akademischer Verlag (2011), 2. Auflage

Krahe M (2003) Biochemical Engineering. Ullmann´s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/b04_381/frame.html

Schuler, M.L. / Kargi, F.: Bioprocess Engineering - Basic concepts

Thesis

Module M-002: Master Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §21 (1):

    At least 60 credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues.
  • The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing current developments and taking up a critical position on them.
  • The students can place a research task in their subject area in its context and describe and critically assess the state of research.


Skills

The students are able:

  • To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
  • To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incompletely defined problems in a solution-oriented way.
  • To develop new scientific findings in their subject area and subject them to a critical assessment.
Personal Competence
Social Competence

Students can

  • Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly.


Autonomy

Students are able:

  • To structure a project of their own in work packages and to work them off accordingly.
  • To work their way in depth into a largely unknown subject and to access the information required for them to do so.
  • To apply the techniques of scientific work comprehensively in research of their own.
Workload in Hours Independent Study Time 900, Study Time in Lecture 0
Credit points 30
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Civil Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Data Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy Systems: Thesis: Compulsory
Environmental Engineering: Thesis: Compulsory
Aircraft Systems Engineering: Thesis: Compulsory
Global Innovation Management: Thesis: Compulsory
Computer Science in Engineering: Thesis: Compulsory
Information and Communication Systems: Thesis: Compulsory
Interdisciplinary Mathematics: Thesis: Compulsory
International Production Management: Thesis: Compulsory
International Management and Engineering: Thesis: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
Logistics, Infrastructure and Mobility: Thesis: Compulsory
Aeronautics: Thesis: Compulsory
Materials Science and Engineering: Thesis: Compulsory
Materials Science: Thesis: Compulsory
Mechanical Engineering and Management: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Biomedical Engineering: Thesis: Compulsory
Microelectronics and Microsystems: Thesis: Compulsory
Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Ship and Offshore Technology: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory
Certification in Engineering & Advisory in Aviation: Thesis: Compulsory