Program description
Content
Core Qualification
Module M0850: Mathematics I |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz |
Admission Requirements | None |
Recommended Previous Knowledge |
School mathematics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 |
Credit points | 8 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Analysis I) + 60 min (Linear Algebra I) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computational Science and Engineering: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L1010: Analysis I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Foundations of differential and integrational calculus of one variable
|
Literature |
|
Course L1012: Analysis I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1013: Analysis I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH, Dr. Simon Campese |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0912: Linear Algebra I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Dennis Clemens |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0913: Linear Algebra I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Dennis Clemens |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0914: Linear Algebra I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Christian Seifert, Dr. Dennis Clemens |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0886: Fundamentals of Process Engineering and Material Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Michael Schlüter | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | none | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After passing this module the students have the ability to:
|
||||||||
Skills |
After passing this module the students should have the ability to:
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to
|
||||||||
Autonomy |
The students are able to estimate their progress of learning by themselves and to deliberate their lack of knowledge in Process Engineering and Bioprocess Engineering. |
||||||||
Workload in Hours | Independent Study Time 34, Study Time in Lecture 56 | ||||||||
Credit points | 3 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0829: Introduction into Process Engineering/Bioprocess Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dozenten des SD V |
Language | DE |
Cycle | WiSe |
Content |
Introduction into the different research fields of the subject Process Engineering and Bioprocess Engineering. |
Literature | s. StudIP |
Course L0830: Fundamentals of material engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Marko Hoffmann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M0883: General and Inorganic Chemistry |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Gerrit A. Luinstra | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
High school Chemistry |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Sstudents are able to handle molecular orbital theory including the octahedral ligand field, qualitatively describe the resulting electron density distribution and structures of molecules (VSEPR); they have developed an idea of molecular interactions in the gas, liquid and solid phases. They are able to describe chemical reactions in the sense of retention of mass and energy, enthalpy and entropy as well as the chemical equilibrium. They can explain the concept of activation energy in conjucture with particle kinetic energy. They have increased knowledge of acid-base concepts, acid-base reactions in water, can perform pH calculations, understand titration as a quantitative analysis. They can recognize redox processes, correlate redox potentials to Gibbs energy, handle Nernst theory in describing the concentration dependence of redox potentials, known the concept of overpotential and understand corrosion as a redox reaction (local element). |
||||||||
Skills |
Students are able to use general and inorganic chemistry for the design of technical processes. Especially they are able to formulate mass and energy balances and by this to optimise technical processes. They are able to perform simple calculations of pH values in regard to an application of acids and bases, and evaluate the course of redox processes (calculation of redoxpotentials). They are able to transform a verbal formulated message into an abstract formal procedure. Students are able to present and discuss their scientific results in plenum. The students are able to document the results of their experiments scientifically. They are able to use scientific citation methods in their reports. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss given tasks in small groups and to develop an approach. Students are able to carry out experiments in small groups in lab scale and to distribute tasks in the group independently. |
||||||||
Autonomy |
Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. Students are able to apply their knowledge to plan, prepare and conduct experiments. Students are able to independently judge their own knowledge and to acquire missing knowledge that is required to fulfill their tasks. |
||||||||
Workload in Hours | Independent Study Time 82, Study Time in Lecture 98 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0824: General and Inorganic Chemistry |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Gerrit A. Luinstra |
Language | DE |
Cycle | WiSe |
Content |
This elementary course in chemistry comprises the following four topics, i) molecular orbital theory applied to compounds with bonds between s-, p- and d-block elements (octahedral field only), Description of molecular interactions in the gas, liquid and solid phase, (semi) conductivity on account of the formation of band structures, ii) describing chemical reactions in the sense of retention of mass and energy, enthalpy and entropy, chemical equilibrium, concepts of activation energy in conjucture with particle kinetic energy iii) acid-base concepts, acid-base reactions in water, pH calculation, quantitative analysis (titration) iv), redox processes in water, redox potential, Nernst theory describing the concentration dependence of redox potentials, overpotential, corrosion (local elments). |
Literature |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) http://www.chemgapedia.de |
Course L0996: Fundamentals in Inorganic Chemistry |
Typ | Practical Course |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Gerrit A. Luinstra |
Language | DE |
Cycle | WiSe |
Content |
This laboratory course comprises the following four topics, i) atomic structure and application of spectroscopic methods, introduction of analytic methods ii) chemical reactions (qualitative analysis), bonding types, reaction types, reaction equations iii) acid-base concepts, acid-base reactions in water, buffer solution, quantitative analysis (titration) iv), redox processes in water, redox potential, Nernst theory describing the concentration dependence of redox potentials, galvanic elements and electrolysis. Prior to every experiement, a seminar takes place in small groups (12-15 students). The students participate orally. Team work and cooperation are forwarded because the experiments in the lab and the writing of the reports is conducted in groups of three or four students. Additionally, acedemic writing conveyed (documentation of experiment results in lab journals, literature citations in reports). |
Literature |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) Analytische und anorganische Chemie, Jander/Blasius Maßanalyse, Jander/Jahr |
Course L1941: Fundamentals in Inorganic Chemistry |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerrit A. Luinstra |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Module M1497: Measurement Technology for VT/ BVT |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Penn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Technical interest, logical skills, integral- and differential calculus, basic physical concepts such as temperature, mass, velocity, etc.. |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
Literature research, categorisation of thematical topics, analysis of an experimental test stand, preparation of test protocol, first programming with Matlab, use of relevant laboratory measurement technology, preparation of a test protocol, execution of calculations. |
||||||||
Personal Competence | |||||||||
Social Competence |
Arrangement and division of work in practical training and learning groups, assessment of own level of knowledge, work on the experimental stand in groups, consultation with persons responsible for teaching, presentation of the preparation of the experiment, tolerance of frustration |
||||||||
Autonomy |
Time management of the workload, independent development of the thematic basics, personal responsibility for the provision of protective equipment and work clothing, practice of presentation in front of a group, active participation in the lectures, formulation of enquiries/detailed questions by using clicker. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory Bioprocess Engineering: Core Qualification: Compulsory General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L2270: Practical Course Measurement Technology |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn |
Language | DE |
Cycle | WiSe |
Content |
In the Practical Course in Measurement Technology the theory from the lectures "Physical Fundamentals of Measurement Technology" and "Measurement Technology" will be applied in practice. In small groups students learn how to handle different measurement techniques from industry and research. During the practical course, a wide range of different measurement methods will be taught, including the use of HLPC columns for qualitative mass analysis, the determination of mass transfer coefficients using optical oxygen sensors or the evaluation of image data to obtain process parameters. The practical course also teaches how measurement data are statistically evaluated and experiments are correctly documented. |
Literature |
Hug, H.: Instrumentelle Analytik. Theorie und Praxis. Verlag Europa-Lehrmittel, Haan-Gruiten, 2015. Kamke, W.: Der Umgang mit experimentellen Daten, insbesondere Fehleranalyse, im physikalischen Anfänger-Praktikum. Eine elementare Einführung. W. Kamke, Kirchzarten [Keltenring 197], 2010. Strohrmann, G.: Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. Oldenbourg, München, 2004. |
Course L2268: Measurement Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Penn |
Language | DE |
Cycle | WiSe |
Content |
Basic introduction to measurement technology for process engineers. Includes error calculation, measurement units, calibration, measurement data analysis, measurement techniques and sensors. Particular attention is paid to the measurement of temperature, pressure, flow and level. The lecture provides insights into the latest developments in sensor technology in measurement technology and process engineering. |
Literature |
Fraden, Jacob (2016): Handbook of Modern Sensors. Physics, Designs, and Applications. 5th ed. 2016. Cham, New York: Springer. Online verfügbar unter http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1081958. Hering, Ekbert; Schönfelder, Gert (2018): Sensoren in Wissenschaft und Technik. Funktionsweise und Einsatzgebiete. 2. Aufl. 2018. Online verfügbar unter http://dx.doi.org/10.1007/978-3-658-12562-2. Strohrmann, Günther (2004): Messtechnik im Chemiebetrieb. Einführung in das Messen verfahrenstechnischer Größen. 10., durchges. Aufl. München: Oldenbourg. Tränkler, Hans-Rolf; Reindl, Leonhard M. (2014): Sensortechnik. Handbuch für Praxis und Wissenschaft. 2., völlig neu bearb. Aufl. Berlin: Springer Vieweg (VDI-Buch). Online verfügbar unter http://dx.doi.org/10.1007/978-3-642-29942-1. Webster, John G.; Eren, Halit B. (2014): Measurement, Instrumentation, and Sensors Handbook, Second Edition. Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement. 2nd ed. Hoboken: Taylor and Francis. Online verfügbar unter http://gbv.eblib.com/patron/FullRecord.aspx?p=1407945. |
Course L2269: Physical Fundamentals of Measurement Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schroer |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Module M0889: Mechanics I (Statics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge |
Solid school knowledge in mathematics and physics. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can
|
Skills |
The students can
|
Personal Competence | |
Social Competence |
The students can work in groups and support each other to overcome difficulties. |
Autonomy |
Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation Mechanics: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L1001: Mechanics I (Statics) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1002: Mechanics I (Statics) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1003: Mechanics I (Statics) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Module M0577: Non-technical Courses for Bachelors |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Non-technical
Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles” The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, migration studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0671: Technical Thermodynamics I |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Dr. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge | Elementary knowledge in Mathematics and Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are familiar with the laws of Thermodynamics. They know the relation of the kinds of energy according to 1st law of Thermodynamics and are aware about the limits of energy conversions according to 2nd law of Thermodynamics. They are able to distinguish between state variables and process variables and know the meaning of different state variables like temperature, enthalpy, entropy and also the meaning of exergy and anergy. They are able to draw the Carnot cycle in a Thermodynamics related diagram. They know the physical difference between an ideal and a real gas and are able to use the related equations of state. They know the meaning of a fundamental state of equation and know the basics of two phase Thermodynamics. |
Skills |
Students are able to calculate the internal energy, the enthalpy, the kinetic and the potential energy as well as work and heat for simple change of states and to use this calculations for the Carnot cycle. They are able to calculate state variables for an ideal and for a real gas from measured thermal state variables. |
Personal Competence | |
Social Competence | The students are able to discuss in small groups and develop an approach. |
Autonomy |
Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory |
Course L0437: Technical Thermodynamics I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0439: Technical Thermodynamics I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0441: Technical Thermodynamics I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0757: Biochemistry and Microbiology |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Johannes Gescher |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
At the end of this module the students can: - explain the methods of biological and biochemical research to determine the properties of biomolecules - name the basic components of a living organism - explain the principles of metabolism - describe the structure of living cells - |
Skills | |
Personal Competence | |
Social Competence |
The students are able, - to gather knowledge in groups of about 10 students - to introduce their own knowledge and to argue their view in discussions in teams - to divide a complex task into subtasks, solve these and to present the combined results |
Autonomy |
The students are able to present the results of their subtasks in a written report |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0351: Biochemistry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Paul Bubenheim |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Biochemie, H. Robert Horton, Laurence A. Moran, K. Gray Scrimeour, Marc D. Perry, J. David Rawn, Pearson Studium, München Prinzipien der Biochemie, A. L. Lehninger, de Gruyter Verlag Berlin |
Course L0728: Biochemistry |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Paul Bubenheim |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Biochemie, H. Robert Horton, Laurence A. Moran, K. Gray Scrimeour, Marc D. Perry, J. David Rawn, Pearson Studium, München Prinzipien der Biochemie, A. L. Lehninger, de Gruyter Verlag Berlin |
Course L0881: Microbiology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Johannes Gescher |
Language | DE |
Cycle | SoSe |
Content |
1. The procaryotic cell
2. Metabolism
3. Microorganisms in relation to the environment
|
Literature |
• Allgemeine Mikrobiologie, 8. Aufl., 2007, Fuchs, G. (Hrsg.), Thieme Verlag (54,95 €) • Mikrobiologie, 13 Aufl., 2013, Madigan, M., Martinko, J. M., Stahl, D. A., Clark, D. P. (Hrsg.), ehemals „Brock“, Pearson Verlag (89,95 €) • Taschenlehrbuch Biologie Mikrobiologie, 2008, Munk, K. (Hrsg.), Thieme Verlag • Grundlagen der Mikrobiologie, 4. Aufl., 2010, Cypionka, H., Springer Verlag (29,95 €), http://www.grundlagen-der-mikrobiologie.icbm.de/ |
Course L0888: Microbiology |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Johannes Gescher |
Language | DE |
Cycle | SoSe |
Content |
1. The procaryotic cell
2. Metabolism
3. Microorganisms in relation to the environment
|
Literature |
• Allgemeine Mikrobiologie, 8. Aufl., 2007, Fuchs, G. (Hrsg.), Thieme Verlag (54,95 €) • Mikrobiologie, 13 Aufl., 2013, Madigan, M., Martinko, J. M., Stahl, D. A., Clark, D. P. (Hrsg.), ehemals „Brock“, Pearson Verlag (89,95 €) • Taschenlehrbuch Biologie Mikrobiologie, 2008, Munk, K. (Hrsg.), Thieme Verlag • Grundlagen der Mikrobiologie, 4. Aufl., 2010, Cypionka, H., Springer Verlag (29,95 €), http://www.grundlagen-der-mikrobiologie.icbm.de/ |
Module M0851: Mathematics II |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 |
Credit points | 8 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Analysis II) + 60 min (Linear Algebra II) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computational Science and Engineering: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L1025: Analysis II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1026: Analysis II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH, Dr. Sebastian Götschel |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1027: Analysis II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0915: Linear Algebra II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Dennis Clemens |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0916: Linear Algebra II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Dennis Clemens |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0917: Linear Algebra II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert, Dr. Dennis Clemens |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0888: Organic Chemistry |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralph Holl | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | High School Chemistry and/or lecture "general and inorganic chemistry" | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are familiar with basic concepts of organic chemistry. They are able to classify organic molecules and to identify functional groups and to describe the respective synthesis routes. Fundamental reaction mechanisms like nucleophilic substitution, eliminations, additions and aromatic substitution can be described. Students are capable to describe in general modern reaction mechanisms. |
||||||||
Skills |
Students are able to use basics of organic chemistry for the design of technical processes. Especially they are able to formulate basic routes to synthesize small organic molecules and by this to optimise technical processes in Process Engineering. They are able to transform a verbally formulated message into an abstract formal procedure. The students are able to document and interpret their working process and results scientifically. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss in small groups and develop an approach for given tasks. |
||||||||
Autonomy |
Students are able to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. |
||||||||
Workload in Hours | Independent Study Time 82, Study Time in Lecture 98 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0831: Organic Chemistry |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Nina Schützenmeister, Prof. Pierre Stallforth |
Language | DE |
Cycle | SoSe |
Content | The lecture covers basic concepts of organic chemistry. This includes simple carbon compounds, alkanes, alkenes, aromatic compounds, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and amino acids. Further, fundamentals of reaction mechanisms will be described. This includes nucleophilic substitution, eliminations, additions and aromatic substitution. Also modern reaction mechanisms will be described. |
Literature | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Course L0832: Organic Chemistry |
Typ | Practical Course |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Nina Schützenmeister, Prof. Pierre Stallforth |
Language | DE |
Cycle | SoSe |
Content |
The lecture covers basic concepts of organic chemistry. This includes simple carbon compounds, alkanes, alkenes, aromatic compounds, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides and amino acids. Further, fundamentals of reaction mechanisms will be described. This includes nucleophilic substitution, eliminations, additions and aromatic substitution. Also modern reaction mechanisms will be described. Prior to each experiment, an oral colloquium takes place in small groups. In the colloquium are security aspects of the experiments are discussed, as well as the topics of the experiments. Solutions to previously provided questions are answered. In the colloquia the students acquire the skill to express scientific matters orally in a scientifically correct language and to describe theoretical basics. The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course. |
Literature | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Module M0696: Mechanics II: Mechanics of Materials |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Christian Cyron |
Admission Requirements | None |
Recommended Previous Knowledge | Mechanics I |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures. |
Skills |
Having accomplished this module, the students are able to |
Personal Competence | |
Social Competence | - |
Autonomy | - |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation Mechanics: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0493: Mechanics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content |
stresses and strains |
Literature |
|
Course L0494: Mechanics II |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1691: Mechanics II |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron, Dr. Konrad Schneider |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0608: Basics of Electrical Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern |
Admission Requirements | None |
Recommended Previous Knowledge | Basics of mathematics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can to draw and explain circuit diagrams for electric and electronic circuits with a small number of components. They can describe the basic function of electric and electronic componentes and can present the corresponding equations. They can demonstrate the use of the standard methods for calculations. |
Skills |
Students are able to analyse electric and electronic circuits with few components and to calculate selected quantities in the circuits. They apply the ususal methods of the electrical engineering for this. |
Personal Competence | |
Social Competence |
Students are enabled to collaborate in interdisciplinary teams with electrical engineering as a common language With this, they are learning communication in a target-oriented communication style, are able to understand interfaces to neighboring engineering disciplines and learn about commonalities but also limits in the different directions of engineering. |
Autonomy |
Students are able independently to analyse electric and electronic circuits and to calculate selected quantities in the circuits. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 135 minutes |
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory |
Course L0290: Basics of Electrical Engineering |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern |
Language | DE |
Cycle | WiSe |
Content |
DC networks: Current, voltage, power, Kirchhoff's laws, equivalent sources, network analysis AC: Characteristics, RMS, complexe representation, phasor diagrams, power |
Literature |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 Ralf Kories, Heinz Schmitt - Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - andere Autoren |
Course L0292: Basics of Electrical Engineering |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern, Weitere Mitarbeiter |
Language | DE |
Cycle | WiSe |
Content |
Excercises to the analysis of circuits and the calculation of electrical quantities th the topics: DC networks: Current, voltage, power, Kirchhoff's laws, equivalent sources, AC: Characteristics, RMS, complexe representation, phasor diagrams, power |
Literature |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 |
Module M0688: Technical Thermodynamics II |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Dr. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge |
Elementary knowledge in Mathematics, Mechanics and Technical Thermodynamics I |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are familiar with different cycle processes like Joule, Otto, Diesel, Stirling, Seiliger and Clausius-Rankine. They are able to derive energetic and exergetic efficiencies and know the influence different factors. They know the difference between anti clockwise and clockwise cycles (heat-power cycle, cooling cycle). They have increased knowledge of steam cycles and are able to draw the different cycles in Thermodynamics related diagrams. They know the laws of gas mixtures, especially of humid air processes and are able to perform simple combustion calculations. They are provided with basic knowledge in gas dynamics and know the definition of the speed of sound and know about a Laval nozzle. |
Skills |
Students are able to use thermodynamic laws for the design of technical processes. Especially they are able to formulate energy, exergy- and entropy balances and by this to optimise technical processes. They are able to perform simple safety calculations in regard to an outflowing gas from a tank. They are able to transform a verbal formulated message into an abstract formal procedure. |
Personal Competence | |
Social Competence |
The students are able to discuss in small groups and develop an approach. You can answer comprehension questions about the content that are
provided in the lecture with the ClickerOnline tool "TurningPoint" after
discussions with other students. |
Autonomy |
Students can physically understand and explain the complex problems (cycle processes, air conditioning processes, combustion processes) set in tasks. They are able to select the methods taught in the lecture and exercise to solve complex problems and apply them independently to different types of tasks. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Energy Systems: Technical Complementary Course Core Studies: Elective Compulsory Engineering Science: Specialisation Mechanical Engineering: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0449: Technical Thermodynamics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content |
8. Cycle processes 7. Gas - vapor - mixtures 10. Open sytems with constant flow rates 11. Combustion processes 12. Special fields of Thermodynamics |
Literature |
|
Course L0450: Technical Thermodynamics II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0451: Technical Thermodynamics II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Dr. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0892: Chemical Reaction Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Raimund Horn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Contents of the previous modules mathematics I-III, physical chemistry, technical thermodynamics I+II as well as computational methods for engineers. | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | The students are able to explain basic concepts of chemical reaction engineering. They are able to point out differences between thermodynamical and kinetical processes. The students have a strong ability to outline parts of isothermal and non-isothermal ideal reactors and to describe their properties. | ||||||||
Skills |
After successful completion of the module, students are able to: - apply different computational methods to dimension isothermal and non-isothermal ideal reactors, - determine and compute stable operation points for these reactors , - conduct experiments on a lab-scale pilot plants and document these according to scientific guidelines. |
||||||||
Personal Competence | |||||||||
Social Competence | After successful completition of the lab-course the students have a strong ability to organize themselfes in small groups to solve issues in chemical reaction engineering. The students can discuss their subject related knowledge among each other and with their teachers. | ||||||||
Autonomy | The students are able to obtain further information and assess their relevance autonomously. Students can apply their knowldege discretely to plan, prepare and conduct experiments. | ||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0204: Chemical Reaction Engineering (Fundamentals) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Raimund Horn |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of chemical reaction engineering, definitions, calculation of species concentrations (reactor, reaction mixture, reactants, products, inerts and solvents, reaction volume, Reaktor volume, chemical reaction, mass, moles, mole fraction, volume, density, molar concentration, mass-concentration, molality, partial pressure, hydrodynamic residence time, space time, extent of reaction, reactor throughput, reactor load, conversion, selectivity, yield, concentration calculations in stationary and flowing multicomponent-mixtures) Stoichiometry and stoichiometric calculations (simple reactions, complex reactions, key reactions, key species, matrix of stoichiometric coefficients, linear dependent and independent reactions, element-species-matrix, row reduced form of a matrix, rank of a matrix, Gauss Jordan elimination, relation between stoichiometry and kinetics, calculating the extent of reaction from mole number changes in complex reactions) Thermodynamics (What is thermodynamics?, importance of thermodynamics in chemical reaction engineering, zeroth law of thermodynamics, temperature scales, temperature measurements in praxis, first law of thermodynamics, internal energy, enthalpy, calorimeter, heat of reaction, standard heat of formation, Hess law, heat capacity, Kirchhoff law, standard heat of reaction, pressure dependence of the heat of reaction, second law of thermodynamics, reversible and irreversible processes, entropy, Clausius inequality, free energy, Gibbs Energy, chemical potential, chemical equilibrium, activity, van't Hoff law, calculation of chemical equilibrium, principle of Le Chatelier and Braun, equilibrium calculations in multiple reaction systems, Lagrange Multipliers) Chemical kinetics (reversible and irreversible reactions, homogeneous and heterogeneous reactions, elementary step, reaction mechanism, microkinetics, macrokinetics, formal kinetics, reaction rate, rate of change of species mole number, Arrhenius-equation, activation energy and pre-exponential factor for komplex reactions, reactions of 0., 1. and 2. order, analytical integration of rate laws, Damköhler-number, differential and integral method of kinetic analysis, laboratory reactors for kinetic measurements, half life, kinetics of complex reactions, parallel reactions, reversible reactions, sequence of reactions, irreversible reaction with pre-equilibrium, reduction of reaction mechanisms, quasi-stationarity principle of Bodenstein, rate limiting step, Michaelis-Menten kinetics, analytical integration of first order differential equations - integrating factor, numerical integration of complex kinetics) Types of chemical Reaktors (chemical reactors in industry and laboratory, ideal vs. real reaktors, discontinuous, half continuous and continuous reactors, single phase - biphasic- and multiphase reactors, batch-reactor, semi-batch reactor, CSTR, Plug Flow reactor, fixed bed reactor, adiabatic staged reactors, rotating furnaces, fluidized bed reactors, gas-liquid-reactors, multi-phase reactors) Isothermal ideal reactors (mole-balance of a chemical reactor, mole balance of a batch reactor, integration of the batch reactor mole balance for various kinetics, partial fraction decomposition, mole balance of the semi-batch reactor, mole balance of the plug flow reactor, analogy batch reactor - plug flow reactor, design of plug flow reactors for reactions with volume change and complex reactions, mole balance of a fixed bed reactor, design of a membrane reactor, mole balance of a continuously stirred tank reactor, comparison of CSTR and PFR with respect to conversion and selectivity, mole-balance of a cascade of tank reactors, numerical-interative calculation of a cascade of tank reactors, Newton-Raphson method, graphical analysis of a cascade of tank reactors) non-isothermal ideal reactors (energy balance of a reactor, adiabatic reactor, adiabatic temperature rise, staged reactor for adiabatic exothermic reactions limited by chemical equilibrium, design of an adiabatic plug flow reactor, Levenspiel-plots, heat transfer through a reactor wall, heat transfer by convection, heat conduction, heat transfer through a cylindrical wall, design of a plug flow reactor in parallel and counter flow, heat balance of the cooling fluid, CSTR with heat exchange, multiple stationary states, ignition-extinction behavior, stability of a CSTR, complex reactions in non-isothermal reactors, optimum temperature profile of a reactor) |
Literature |
lecture notes Raimund Horn skript Frerich Keil Books: M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH G. Emig, E. Klemm, Technische Chemie, Springer A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009 J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000 M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010 A. Jess, P. Wasserscheid, Chemical Technology An Integrated Textbook, WILEY-VCH |
Course L0244: Chemical Reaction Engineering (Fundamentals) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Raimund Horn, Dr. Oliver Korup |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of chemical reaction engineering, definitions, calculation of species concentrations (reactor, reaction mixture, reactants, products, inerts and solvents, reaction volume, Reaktor volume, chemical reaction, mass, moles, mole fraction, volume, density, molar concentration, mass-concentration, molality, partial pressure, hydrodynamic residence time, space time, extent of reaction, reactor throughput, reactor load, conversion, selectivity, yield, concentration calculations in stationary and flowing multicomponent-mixtures) Stoichiometry and stoichiometric calculations (simple reactions, complex reactions, key reactions, key species, matrix of stoichiometric coefficients, linear dependent and independent reactions, element-species-matrix, row reduced form of a matrix, rank of a matrix, Gauss Jordan elimination, relation between stoichiometry and kinetics, calculating the extent of reaction from mole number changes in complex reactions) Thermodynamics (What is thermodynamics?, importance of thermodynamics in chemical reaction engineering, zeroth law of thermodynamics, temperature scales, temperature measurements in praxis, first law of thermodynamics, internal energy, enthalpy, calorimeter, heat of reaction, standard heat of formation, Hess law, heat capacity, Kirchhoff law, standard heat of reaction, pressure dependence of the heat of reaction, second law of thermodynamics, reversible and irreversible processes, entropy, Clausius inequality, free energy, Gibbs Energy, chemical potential, chemical equilibrium, activity, van't Hoff law, calculation of chemical equilibrium, principle of Le Chatelier and Braun, equilibrium calculations in multiple reaction systems, Lagrange Multipliers) Chemical kinetics (reversible and irreversible reactions, homogeneous and heterogeneous reactions, elementary step, reaction mechanism, microkinetics, macrokinetics, formal kinetics, reaction rate, rate of change of species mole number, Arrhenius-equation, activation energy and pre-exponential factor for komplex reactions, reactions of 0., 1. and 2. order, analytical integration of rate laws, Damköhler-number, differential and integral method of kinetic analysis, laboratory reactors for kinetic measurements, half life, kinetics of complex reactions, parallel reactions, reversible reactions, sequence of reactions, irreversible reaction with pre-equilibrium, reduction of reaction mechanisms, quasi-stationarity principle of Bodenstein, rate limiting step, Michaelis-Menten kinetics, analytical integration of first order differential equations - integrating factor, numerical integration of complex kinetics) Types of chemical Reaktors (chemical reactors in industry and laboratory, ideal vs. real reaktors, discontinuous, half continuous and continuous reactors, single phase - biphasic- and multiphase reactors, batch-reactor, semi-batch reactor, CSTR, Plug Flow reactor, fixed bed reactor, adiabatic staged reactors, rotating furnaces, fluidized bed reactors, gas-liquid-reactors, multi-phase reactors) Isothermal ideal reactors (mole-balance of a chemical reactor, mole balance of a batch reactor, integration of the batch reactor mole balance for various kinetics, partial fraction decomposition, mole balance of the semi-batch reactor, mole balance of the plug flow reactor, analogy batch reactor - plug flow reactor, design of plug flow reactors for reactions with volume change and complex reactions, mole balance of a fixed bed reactor, design of a membrane reactor, mole balance of a continuously stirred tank reactor, comparison of CSTR and PFR with respect to conversion and selectivity, mole-balance of a cascade of tank reactors, numerical-interative calculation of a cascade of tank reactors, Newton-Raphson method, graphical analysis of a cascade of tank reactors) non-isothermal ideal reactors (energy balance of a reactor, adiabatic reactor, adiabatic temperature rise, staged reactor for adiabatic exothermic reactions limited by chemical equilibrium, design of an adiabatic plug flow reactor, Levenspiel-plots, heat transfer through a reactor wall, heat transfer by convection, heat conduction, heat transfer through a cylindrical wall, design of a plug flow reactor in parallel and counter flow, heat balance of the cooling fluid, CSTR with heat exchange, multiple stationary states, ignition-extinction behavior, stability of a CSTR, complex reactions in non-isothermal reactors, optimum temperature profile of a reactor) |
Literature |
lecture notes Raimund Horn skript Frerich Keil Books: M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH G. Emig, E. Klemm, Technische Chemie, Springer A. Behr, D. W. Agar, J. Jörissen, Einführung in die Technische Chemie E. Müller-Erlwein, Chemische Reaktionstechnik 2012, 2. Auflage, Teubner Verlag J. Hagen, Chemiereaktoren: Auslegung und Simulation, 2004, Wiley-VCH H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall B H. S. Fogler, Essentials of Chemical Reaction Engineering, Prentice Hall O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998 L. D. Schmidt, The Engineering of Chemical Reactions, Oxford Univ. Press, 2009 J. B. Butt, Reaction Kinetics and Reactor Design, 2000, Marcel Dekker R. Aris, Elementary Chemical Reactor Analysis, Dover Pubn. Inc., 2000 M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw Hill G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 2010 A. Jess, P. Wasserscheid, Chemical Technology An Integrated Textbook, WILEY-VCH |
Course L0221: Experimental Course Chemical Engineering (Fundamentals) |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Raimund Horn |
Language | DE/EN |
Cycle | SoSe |
Content |
Performing and evaluation of experiments concerning chemical reaction engineering with emphasis on ideal reactors: * Batch reactor - Estimation of kinetic parameters for the saponification of ethylacetate *CSTR - Residence time distribution, reaction *CSTR in Series - Residence time distribution, reaction * Plug Flow Reactor - Residence time distribution, reaction Before the practical conduct of the experiments a colloquium takes place in which the students explain, reflect and discuss the theoretical basics and their translation into practice. The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course. |
Literature |
Levenspiel, O.: Chemical reaction engineering; John Wiley & Sons, New York, 3. Ed., 1999 VTM 309(LB) Praktikumsskript Skript Chemische Verfahrenstechnik 1 (F.Keil) |
Module M0853: Mathematics III |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I + II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 |
Credit points | 8 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Analysis III) + 60 min (Differential Equations 1) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L1028: Analysis III |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of differential and integrational calculus of several variables
|
Literature |
|
Course L1029: Analysis III |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1030: Analysis III |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1031: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of the theory and numerical treatment of ordinary differential equations
|
Literature |
|
Course L1032: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1033: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0877: Fundamentals in Molecular Biology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Johannes Gescher | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Lecture Biochemistry Lecture Microbiology |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After successfully finishing this module students are able
|
||||||||
Skills |
Students are able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to
|
||||||||
Autonomy |
Students are able to
|
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 60 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Compulsory |
Course L0889: Genetics and Molecular Biology |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Johannes Gescher |
Language | DE |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Course L0886: Genetics and Molecular Biology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Johannes Gescher |
Language | DE |
Cycle |
WiSe/ |
Content |
- Organisation, structure and function of procaryotic DNA - DNA replication, transcription, translation - Regulation of gene expression - Mechanisms of gene transfer, recombination, transposition - Mutatuion and DNA repair - DNA cloning - DNA sequencing - Polymerase chain reaction - Genome sequencing, (meta)genomics, transcriptomics, proteomics |
Literature |
Rolf Knippers, Molekulare Genetik, Georg Thieme Verlag Stuttgart Munk, K. (ed.), Genetik, 2010, Thieme Verlag John Ringo, Genetik kompakt, 2006, Elsevier GmbH, München T. A. Brown, Gene und Genome, 2007, 3. Aufl., Spektrum Akademischer Verlag, Jochen Graw, Genetik, Springer Verlag, Berlin Heidelberg |
Course L0890: Lab Course in Microbiology and Biochemistry |
Typ | Practical Course |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Johannes Gescher, Dr. Paul Bubenheim |
Language | DE |
Cycle |
WiSe/ |
Content |
Widespread techniques of microbiological, biochemical and genetic approaches will be taught during this course. Before the practical conduct of the experiments a colloquium takes place in which the students explain, reflect and discuss the theoretical basics and their translation into practice. The students write up a report for every experiment. They receive feedback to their level of scientific writing (citation methods, labeling of graphs, etc.), so that they can improve their competence in this field over the course of the practical course. Topics and Methods of the course include: - Morphology and growth of different bacteria strains - Measuring of microbial growth by turbidity - Preparation of several culture media - Strain identification by gram staining and analytical profile index (API test) - Genetic background identification by 16S rRNA analysis - Microscopy - BLAST analyses - Colony PCR procedure - Enzyme activity measurements and kinetics (Michaelis-Menten equation, Lineweaver-Burk plot) - Enzymes as biocatalysts (exemplarily use of enzymes in detergents) - Measurement of protein concentrations (Bradford protein assay) - Qualitative and quantitative enzyme activity assay |
Literature |
Brock Mikrobiologie / Brock Microbiology (Michael T. Madigan, John M. Martinko) Mikrobiologisches Grundpraktikum (Steve K. Alexander, Dennis Strete) |
Module M0536: Fundamentals of Fluid Mechanics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Michael Schlüter | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to:
|
||||||||
Skills |
The students are able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students
|
||||||||
Autonomy |
The students are able to
|
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 3 hours | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory |
Course L0091: Fundamentals of Fluid Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2933: Fundamentals on Fluid Mechanics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | DE |
Cycle | SoSe |
Content |
In the group exercise, the contents of the lecture are taken up and deepened by means of exercises. The exercise tasks correspond in quality and scope to the tasks of the written exam. Topics: Reynolds transport-theorem, pipe flow, free jet, angular momentum, Navier-Stokes equations, potential theory, mock exam, pipe hydraulics, pump design. |
Literature |
Heinz Herwig: Strömungsmechanik, Eine Einführung in die Physik und die mathematische Modellierung von Strömungen, Springer Verlag, Berlin, 978-3-540-32441-6 (ISBN) Herbert Oertel, Martin Böhle, Thomas Reviol: Strömungsmechanik für Ingenieure und Naturwissenschaftler, Springer Verlag, Berlin, ISBN: 978-3-658-07786-0 Joseph Spurk, Nuri Aksel: Strömungslehre, Einführung in die Theorie der Strömungen, Springer Verlag, Berlin, ISBN: 978-3-642-13143-1. |
Course L0092: Fluid Mechanics for Process Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | DE |
Cycle | SoSe |
Content |
In the exercise-lecture the topics from the main lecture are discussed intensively and transferred into application. For that, the students receive example tasks for download. The students solve these problems based on the lecture material either independently or in small groups. The solution is discussed with the students under scientific supervision and parts of the solutions are presented on the chalk board. At the end of each exercise-lecture, the correct solution is presented on the chalk board. Parallel to the exercise-lecture tutorials are held where the student solve exam questions under a set time-frame in small groups and discuss the solutions afterwards.
|
Literature |
|
Module M0544: Phase Equilibria Thermodynamics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Irina Smirnova |
Admission Requirements | None |
Recommended Previous Knowledge |
Mathematics, Physical Chemistry, Thermodynamics I and II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | The students are able to work in small groups, to solve the corresponding problems and to present them oraly to the tutors and other students |
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 minutes; theoretical questions and calculations |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0114: Phase Equilibria Thermodynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0140: Phase Equilibria Thermodynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | SoSe |
Content |
The students work on tasks in small groups and present their results in front of all students. |
Literature |
|
Course L0142: Phase Equilibria Thermodynamics |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0829: Foundations of Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christoph Ihl |
Admission Requirements | None |
Recommended Previous Knowledge | Basic Knowledge of Mathematics and Business |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to
|
Skills |
Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are able to
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | several written exams during the semester |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Specialisation Civil Engineering: Elective Compulsory Civil- and Environmental Engineering: Specialisation Water and Environment: Elective Compulsory Civil- and Environmental Engineering: Specialisation Traffic and Mobility: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0882: Management Tutorial |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christoph Ihl, Katharina Roedelius |
Language | DE |
Cycle |
WiSe/ |
Content |
In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools. If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor. |
Literature | Relevante Literatur aus der korrespondierenden Vorlesung. |
Course L0880: Introduction to Management |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Module M0938: Bioprocess Engineering - Fundamentals |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Andreas Liese | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | module "organic chemistry", module "fundamentals for process engineering" | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to describe the basic concepts of bioprocess engineering. They are able to classify different types of kinetics for enzymes and microorganisms, as well as to differentiate different types of inhibition. The parameters of stoichiometry and rheology can be named and mass transport processes in bioreactors can be explained. The students are capable to explain fundamental bioprocess management, sterilization technology and downstream processing in detail. |
||||||||
Skills |
After successful completion of this module, students should be able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
After completion of this module participants should be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork in engineering and scientific environments. |
||||||||
Autonomy |
After completion of this module participants will be able to solve a technical problem in a team independently by organizing their workflow and to present their results in a plenum. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0841: Bioprocess Engineering - Fundamentals |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Liese |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
K. Buchholz, V. Kasche, U. Bornscheuer: Biocatalysts and Enzyme Technology, 2. Aufl. Wiley-VCH, 2012 H. Chmiel: Bioprozeßtechnik, Elsevier, 2006 R.H. Balz et al.: Manual of Industrial Microbiology and Biotechnology, 3. edition, ASM Press, 2010 H.W. Blanch, D. Clark: Biochemical Engineering, Taylor & Francis, 1997 P. M. Doran: Bioprocess Engineering Principles, 2. edition, Academic Press, 2013 |
Course L0842: Bioprocess Engineering- Fundamentals |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Liese |
Language | DE |
Cycle | SoSe |
Content |
1. Introduction (Prof. Liese, Prof. Zeng) 2. Enzymatic kinetics (Prof. Liese) 3. Stoichiometry I + II (Prof. Liese) 4. Microbial Kinetics I+II (Prof. Zeng) 5. Rheology (Prof. Liese) 6. Mass transfer in bioprocess (Prof. Zeng) 7. Continuous culture (Chemostat) (Prof. Zeng) 8. Sterilisation (Prof. Zeng) 9. Downstream processing (Prof. Liese) 10. Repetition (Reserve) (Prof. Liese, Prof. Zeng) |
Literature | siehe Vorlesung |
Course L0843: Bioprocess Engineering - Fundamental Practical Course |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Liese |
Language | DE |
Cycle | SoSe |
Content |
In this course fermentation and downstream technologies on the example of the production of an enzyme by means of a recombinant microorganism is learned. Detailed characterization and simulation of enzyme kinetics as well as application of the enzyme in a bioreactor is carried out. The students document their experiments and results in a protocol. |
Literature | Skript |
Module M1693: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sibylle Fröschle | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | |||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechatronics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L2689: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
John V. Guttag: Introduction to Computation and Programming Using Python. |
Course L2690: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0538: Heat and Mass Transfer |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Irina Smirnova |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge: Technical Thermodynamics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 minutes; theoretical questions and calculations |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Green Technologies: Compulsory General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Energy and Environmental Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0101: Heat and Mass Transfer |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0102: Heat and Mass Transfer |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1868: Heat and Mass Transfer |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0546: Thermal Separation Processes |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Irina Smirnova |
Admission Requirements | None |
Recommended Previous Knowledge |
Recommended requirements: Thermodynamics III |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
The students are capable of linking their gained knowledge with the content of other lectures and use it together for the solution of technical problems. Other lectures such as thermodynamics, fluid mechanics and chemical engineering. |
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 minutes; theoretical questions and calculations |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Compulsory General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Energy and Environmental Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0118: Thermal Separation Processes |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0119: Thermal Separation Processes |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content |
The students work on tasks in small groups and present their results in front of all students. |
Literature |
|
Course L0141: Thermal Separation Processes |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1159: Separation Processes |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Irina Smirnova |
Language | DE/EN |
Cycle | WiSe |
Content |
The students work on eight different experiments in this practical course. For every one of the eight experiments, a colloquium takes place in which the students explain and discuss the theoretical background and its translation into practice with staff and fellow students. The students work small groups with a high degree of division of labor. For every experiment, the students write a report. They receive instructions in terms of scientific writing as well as feedback on their own reports and level of scientific writing so they can increase their capabilities in this area. Topics of the practical course:
|
Literature |
|
Module M1275: Environmental Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of inorganic/organic chemistry and biology |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
With the completion of this modul the students obtain profound knowledge of environmental technology. They are able to describe the behaviour of chemicals in the environment. Students can give an overview of scientific disciplines involved. They can explain terms and allocate them to related methods. |
||||||||
Skills |
Students are able to propose appropriate management and mitigation measures for environmental problems. They are able to determine geochemical parameters and to assess the potential of pollutants to migrate and transform. The students are able to work out well founded opinions on how Environmental Technology contributes to sustainable development, and they can present and defend these opinons in front of and against the group. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss the various technical and scientific tasks, both subject-specific and multidisciplinary. They are able to develop different approaches to the task as a group as well as to discuss their theoretical or practical implementation. |
||||||||
Autonomy |
Students can independently exploit sources about of the subject, acquire the particular knowledge and tranfer it to new problems. |
||||||||
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 | ||||||||
Credit points | 3 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 1 hour | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Elective Compulsory Bioprocess Engineering: Core Qualification: Elective Compulsory Energy and Environmental Engineering: Core Qualification: Compulsory Process Engineering: Core Qualification: Elective Compulsory |
Course L1387: Practical Exercise Environmental Technology |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger |
Language | DE |
Cycle | SoSe |
Content |
The practical course Environmental Engineering currently consists of 5 experiments, which deal with the different focal points of environmental engineering in the areas of air, water, soil, energy and noise. The following experiments are carried out for this purpose: biological degradation of artificial materials, fine dust measurement in the air, water analysis, noise emission measurement, photovoltaic energy Within the lab course students discuss the various technical and scientific tasks, both subject-specific and multidisciplinary. They discuss different approaches to the task as well as it's theoretical or practical implementation. |
Literature |
Folien der Einführungsveranstaltung |
Course L0326: Environmental Technologie |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Förster, U.: Umweltschutztechnik; 2012; Springer Berlin (Verlag) 8., Aufl. 2012; 978-3-642-22972-5 (ISBN) |
Module M0833: Introduction to Control Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge |
Representation of signals and systems in time and frequency domain, Laplace transform |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs |
Autonomy |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Data Science: Core Qualification: Elective Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Energy and Environmental Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Elective Compulsory Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory |
Course L0654: Introduction to Control Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | DE |
Cycle | WiSe |
Content |
Signals and systems
Feedback systems
Root locus techniques
Frequency response techniques
Time delay systems
Digital control
Software tools
|
Literature |
|
Course L0655: Introduction to Control Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1498: Practice of Process Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Irina Smirnova |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After passing this module the students have the ability to:
|
Skills |
After successfully completing this module, students are able to
|
Personal Competence | |
Social Competence |
The students are able to
|
Autonomy |
The students are able to estimate their progress of learning by themselves and to deliberate their lack of knowledge in Process Engineering and Bioprocess Engineering. |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Credit points | 3 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 1 DIN A4 page report to be handed out to the person responsible for the module + presentation at the end of the semester |
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L2271: Practice in Process Engineering |
Typ | Project Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des SD V |
Language | DE |
Cycle |
WiSe/ |
Content |
The following activities can be credited to students:
For further information please visit: https://www.tuhh.de/verfahrenstechnik/lehre.html |
Literature |
Course L2272: Lectures for Pratice of Process Engineering |
Typ | Seminar |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des SD V |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
The following events can be credited as lectures:
For further information please visit https://www.tuhh.de/verfahrenstechnik/lehre.html |
Literature |
Module M0945: Bioprocess Engineering - Advanced |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf Pörtner |
Admission Requirements | None |
Recommended Previous Knowledge |
Content of module "Biochemisty and Microbiology" Content of module "Biochemical Engineering I" |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of this module, students should be able - explain the microbial, energetic and engineering principles of fermentation process, - explain different kinetic approaches for cell growth, substrate uptake and product formation and apply them for process development, - identify specific scientific problems and solutions for different types of fermentation processes |
Skills |
After successful completion of this module, students should be able to - to identify scientific questions or possible practical problems for concrete industrial applications (eg cultivation of microorganisms and animal cells) and to formulate solutions ,
|
Personal Competence | |
Social Competence |
After completion of this module participants should be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. |
Autonomy |
After completion of this module participants are able to acquire new sources of knowledge and apply their knowledge to previously unknown issues and to present these. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L1107: Bioprocess Engineering - Advanced |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Pörtner, Prof. Andreas Liese |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
P. F. Stanbury, A. Whitaker, S. J. Hall, Principles of Fermentation Technology, 3rd. Edition, Butterworth-Heinemann, 2016. H. Chmiel: Bioprozeßtechnik, Elsevier, 2006 R.H. Balz et al.: Manual of Industrial Microbiology and Biotechnology, 3. edition, ASM Press, 2010 H.W. Blanch, D. Clark: Biochemical Engineering, Taylor & Francis, 1997 P. M. Doran: Bioprocess Engineering Principles, 2. edition, Academic Press, 2013 Skripte für die Vorlesung |
Course L1108: Bioprocess Engineering - Advanced |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf Pörtner, Prof. Andreas Liese |
Language | EN |
Cycle | WiSe |
Content |
The students present exercises and discuss them with their fellow students and faculty statt. In the PBL part of the class the students discuss scientific questions in teams. They acquire knowledge and apply it to unknown questions, present their results and argue their opinions. |
Literature |
P. F. Stanbury, A. Whitaker, S. J. Hall, Principles of Fermentation Technology, 3rd. Edition, Butterworth-Heinemann, 2016. H. Chmiel: Bioprozeßtechnik, Elsevier, 2006 R.H. Balz et al.: Manual of Industrial Microbiology and Biotechnology, 3. edition, ASM Press, 2010 P. M. Doran: Bioprocess Engineering Principles, 2. edition, Academic Press, 2013 Skripte für die Vorlesung |
Module M1274: Environmental Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of inorganic/organic chemistry and biology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With the
completion of this module the students acquire in-depth knowledge of important
cause-effect chains of potential environmental problems which might occur from
production processes, projects or construction measures. They have knowledge
about the methodological diversity and are competent in dealing with different
methods and instruments to assess environmental impacts. Besides the students
are able to estimate the complexity of these environmental processes as well as
uncertainties and difficulties with their measurement. |
Skills |
The students are able to select a suitable method for the respective case from the variety of assessment methods. Thereby they can develop suitable solutions for managing and mitigating environmental problems in a business context. They are able to carry out Life Cycle Impact Assessments independently and can apply the software programs OpenLCA and the database EcoInvent. After finishing the course the students have the competence to critically judge research results or other publications on environmental impacts. |
Personal Competence | |
Social Competence |
The students are able to discuss the various technical and scientific tasks, both subject-specific and multidisciplinary. They are able to develop jointly different solutions and to discuss their theoretical or practical implementation. Due to the selected lecture topics, the students receive insights into the multi-layered issues of the environment protection and the concept of sustainability. Their sensitivity and consciousness towards these subjects are raised and which helps to raise their awareness of their future social responsibilities in their role as engineers. |
Autonomy |
The students learn to research, process and present a scientific topic independently. They are able to carry out independent scientific work. They can solve an environmental problem in a business context and are able to judge results of other publications.
|
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Credit points | 3 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 1 hour written exam |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Elective Compulsory Bioprocess Engineering: Core Qualification: Elective Compulsory Energy and Environmental Engineering: Core Qualification: Compulsory Process Engineering: Core Qualification: Elective Compulsory |
Course L1054: Case studies project assessment |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Kaltschmitt, Weitere Mitarbeiter |
Language | DE |
Cycle | WiSe |
Content |
Presentation and application of free software programs in order to understand the concepts of environmental assessment methods better. Within the group exercise students discuss the various technical and scientific tasks, both subject-specific and multidisciplinary. They discuss different approaches to the task as well as it's theoretical or practical implementation. |
Literature |
Power point Präsentationen |
Course L0860: Environmental Assessment |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Anne Rödl, Dr. Christoph Hagen Balzer |
Language | DE/EN |
Cycle | WiSe |
Content |
Contaminants: Impact- and Risk Assessment Environmental damage & precautionary principle: Environmental Risk Assessment (ERA) Resource and water consumption: Material flow analysis Energy consumption: Cumulated energy demand (CED), cost analysis Life cycle concept: Life cycle assessment (LCA) Sustainability: Comprehensive product system assessment , SEE-Balance Management: Environmental and Sustainability management (EMAS) Complex systems: MCDA and scenario method |
Literature |
Foliensätze der Vorlesung Studie: Instrumente zur Nachhaltigkeitsbewertung - Eine Synopse (Forschungszentrum Jülich GmbH) |
Module M0539: Process and Plant Engineering I |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Mirko Skiborowski | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
unit operation of thermal an dmechanical separation processes chemical reactor eingineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
students can: classify and formulate blobal balance equations of chemical processes specify linear component equations of complex chemical processes explain linear regression and data reconcilliation problems explain pfd-diagrams |
||||||||
Skills |
students are capable of - formulation of mass and energy balance equations and estimation of product streams - estimation of component streams of chemical plants using linear component balance models - solution of data reconcilliation tasks - conduction of process synthesis - economic evaluation of processes and the estimation of production costs |
||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 Min. lectures notes and books | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Bioresource Technology: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0095: Process and Plant Engineering I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
S.D. Barnicki, J.R. Fair, Ind. End. Chem., 29(1990), S. 421, Ind. End. Chem., 31(1992), S. 1679 H. Becker, S. Godorr, H. Kreis, Chemical Engineering, January 2001, S. 68-74 Behr, W. Ebbers, N. Wiese, Chem. -Ing.-Tech. 72(2000)Nr. 10, S.1157 E. Blass, Entwicklung verfahrenstechnischer Prozesse, Springer-Verlag, 2. Auflage 1997 M. H. Bauer, J. Stichlmair, Chem.-Ing.-Tech., 68(1996), Nr. 8, 911-916 R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Chemische Technik. Prozesse und Produkte, Band 2, Neue Technologien, 5. Auflage, Wiley-VCH GmbH&Co.KGaA, Weinheim, 2004 J.M. Douglas, Conceptual Design of Chemical Processes, Mc Graw-Hill, NY, 1988 G. Fieg, Inz. Chem. Proc., 5(1979), S.15-19 G. Fieg, G. Wozny, L. Jeromin, Chem. Eng. Technol. 17(1994),5, 301-306 G. Fieg, Heat and Mass Transfer 32(1996), S. 205-213 G. Fieg, Chem. Eng. Processing, Vol. 41/2(2001), S. 123-133 U.H. Felcht, Chemie eine reife Industrie oder weiterhin Innovationsmotor, Universitätsbuchhandlung Blazek und Bergamann, Frankfurt, 2000 J.P. van Gigch, Systems Design, Modeling and Metamodeling, Plenum Press, New York, 1991 T.F. Edgar, D.M. Himmelblau, L.S. Lasdon, Optimization of Chemical Processes, McGraw-Hill, 2001 G. Gruhn, Vorlesungsmanuskript „Prozess- und Anlagentechnik, TU Hamburg-Harburg D. Hairston, Chemical Engineering, October 2001, S. 31-37 J.L.A. Koolen, Design of Simple and Robust Process Plants, Wiley-VCH, Weinheim, 2002 J. Krekel, G. Siekmann, Chem. -Ing.-Tech. 57(1985)Nr. 6, S. 511 K. Machej, G. Fieg, J. Wojcik, Inz. Chem. Proc., 2(1981), S.815-824 S. Meier, G. Kaibel, Chem. -Ing.-Tech. 62(1990)Nr. 13, S.169 J. Mittelstraß, Chem. -Ing.-Tech. 66(1994), S. 309 P. Li, M. Flender, K. Löwe, G. Wozny, G. Fieg, Fett/Lipid 100(1998), Nr. 12, S. 528-534 G. Kaibel, Dissertation, TU München, 1987 G. Kaibel, Chem.-Ing.-Tech. 61 (1989), Nr. 2, S. 104-112 G. Kaibel, Chem. Eng. Technol., 10(1987), Nr. 2, S. 92-98 H.J. Lang, Chem. Eng. 54(10),117, 1947 H.J. Lang, Chem. Eng. 55(6), 112, 1948 F. Lestak, C. Collins, Chemical Engineering, July 1997, S. 72-76 |
Course L0096: Process and Plant Engineering I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mirko Skiborowski, Dr. Thomas Waluga |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1214: Process and Plant Engineering I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Mirko Skiborowski, Dr. Thomas Waluga |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0670: Particle Technology and Solids Process Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Stefan Heinrich | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | keine | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After successful completion of the module students are able to
|
||||||||
Skills |
Students are able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss scientific topics orally with other students or scientific personal and to develop solutions for technical-scientific issues in a group. |
||||||||
Autonomy |
Students are able to analyze and solve questions regarding solid particles independently. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Water and Environmental Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Chemical and Bioengineering: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Energy and Environmental Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Water: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0434: Particle Technology I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Heinrich |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Course L0435: Particle Technology I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Heinrich |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0440: Particle Technology I |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Heinrich |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Module M1276: Fundamentals of Technical Drawing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Marko Hoffmann | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 | ||||||||
Credit points | 3 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Core Qualification: Elective Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L1741: Fundamentals of Technical Drawing |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Marko Hoffmann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1742: Fundamentals of Technical Drawing |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Marko Hoffmann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Thesis
Module M-001: Bachelor Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 360, Study Time in Lecture 0 |
Credit points | 12 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
General Engineering Science (German program): Thesis: Compulsory General Engineering Science (German program, 7 semester): Thesis: Compulsory Civil- and Environmental Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Data Science: Thesis: Compulsory Digital Mechanical Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Engineering Science: Thesis: Compulsory General Engineering Science (English program): Thesis: Compulsory General Engineering Science (English program, 7 semester): Thesis: Compulsory Green Technologies: Energy, Water, Climate: Thesis: Compulsory Computer Science in Engineering: Thesis: Compulsory Integrated Building Technology: Thesis: Compulsory Logistics and Mobility: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechatronics: Thesis: Compulsory Naval Architecture: Thesis: Compulsory Technomathematics: Thesis: Compulsory Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Thesis: Compulsory Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory Process Engineering: Thesis: Compulsory Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory |