Course of Study Theoretical Mechanical Engineering (Study Cohort w18)

Sample course plan A Master Theoretical Mechanical Engineering (TMBMS) Specialisation Energy Systems

Nontechnical Elective Complementary Courses for Master (from catalogue) - 6LP

 Core qualification Compulsory
 Specialisation Compulsory
 Focus Compulsory
 Thesis Compulsory

 Core qualification Elective Compulsory
 Specialisation Elective Compulsory
 Focus Elective Compulsory
 Interdisciplinary complement

LP	Semester 1	Form Hrs,	wkSemester 2	Form Hrs/v	vkSemester 3	Form Hrs/v	kSemester 4 Form Hrs/wk
1 2 3 4 5 6	Finite Elements Methods Finite Element Methods Finite Element Methods	VL 2 HÜ 2	Numerical Treatment of Ordinary Dir Equations Numerical Treatment of Ordinary Differential Equations Numerical Treatment of Ordinary Differential Equations	VL 2 UE 2	Research Project Theoretical Mecha Engineering	nical	Master Thesis
7 8 9 10 11 12	Control Systems Theory and Design Control Systems Theory and Design Control Systems Theory and Design	VL 2 UE 2	Applied Dynamics: Numerical and experimental methods Applied Dynamics Lab Applied Dynamics	VL 2 PR 3			
13 14 15 16 17	Modelling and Optimization in Dynai Flexible Multibody Systems Optimization of dynamical systems	wics VL 2 VL 2	Computational Fluid Dynamics II Computational Fluid Dynamics II Computational Fluid Dynamics II	VL 2 HÜ 2	Fluid Mechanics and Ocean Energy Fluid Mechanics II Energy from the Ocean	VL 2 VL 2	
19 20 21	Control Lab C Control Lab VII Control Lab VIII Control Lab IX	PR 1 PR 1 PR 1	Linear and Nonlinear System Identification	ikation VL 2	Innovative CFD Approaches Application of Innovative CFD Methods in Research and Development Application of Innovative CFD Methods in Research and Development		
22 23 24 25 26 27	Thermal Engineering Thermal Engineering Thermal Engineering	VL 3 HÜ 1	Design optimization and probabilistic approaches in structural analysis Design Optimization and Probabilistic Approaches in Structural Analysis Design Optimization and Probabilistic Approaches in Structural Analysis	VL 2 HÜ 2	Research and Development		
28 29 30	Business & Management (from catalogue				_		

The choice of courses from the catalogue is flexible (depends on the semestral work load), provided the necessary number of required credits is reached.