Program description
Content
The 4-semester research-oriented master's degree (MSc) "Theoretical Mechanical Engineering" builds on research-oriented Mechanical Engineering-oriented undergraduate degree programs (BSc). Required are in-depth knowledge in mathematics and science and engineering fundamentals. The graduates acquire basic research and methodological oriented content, including interdisciplinary orientation, mechanical engineering knowledge and associated mechanical engineering expertise to develop mathematical descriptions, analysis and synthesis of complex technical systems methods, products or processes. In this course, the program combines the two most important theoretical and methodological areas, namely the simulation technology and systems theory. For this purpose, mathematical foundations and in-depth knowledge in areas such as the Technical dynamics, control engineering, numerical and structural mechanics are learned.
Career prospects
The master's degree program in Theoretical Mechanical Engineering prepares its graduates for professional and managerial positions in research and development. Through the course’s focus on theory-method-oriented content and principles as well as intensive scientific thinking training, graduates are qualified for a wide field of work, especially in the area of mechanical and automotive engineering, biotechnology and medical technology, power engineering, aerospace engineering, shipbuilding, automation , materials science and related fields.
Learning target
The graduates can:
• analyze and solve scientific problems, even if they are defined uncommon or incomplete and competing specifications
• formulate abstract and complex problems from a new or evolving the field of their discipline
• apply innovative methods in basic research oriented problem solving and develop new scientific methods
• identify information needs and find information
- plan and perform theoretical and experimental investigations
• Evaluate data critically and draw conclusions
• analyze and evaluate the use of new and emerging technologies.
Graduates are able to:
• develop concepts and solutions to basic research, partly unusual problems, possibly involving other disciplines,
- create and develop new products, processes and methods
• apply their scientific engineering judgment to work with complex, possibly incomplete information, to identify contradictions and deal with them
• classify knowledge from different fields methodically and systematically, to combine and handle complexity;
• familiarize themselves systematically, and in a short time frame, with new tasks
- To reflect systematically the non-technical implications of engineering activity and to act responsibly
• to develop solutions and further methodological skills.
Program structure
The course is divided into basic research core courses and an application-specific specialization. In addition to the core subjects and mathematics, students develop in-depth knowledge in areas such as technical dynamics, control engineering, numerical and structural mechanics. To deepen the foundations of application specific specializations, modules are selected. Other technical and non-technical elective courses may be selected from the range of subjects TUHH and the University of Hamburg. During the last semester the Master thesis is carried out.
The curricular content is thus divided into six groups:
• Key skills, required courses (24 ECTS)
• Key skills, electives (24 ECTS)
• Project Work (12 ECTS)
• A specialization (18 ECTS)
• General non-technical content (12 ECTS)
• Master's thesis (30 ECTS).
The areas of specialization are:
• Biological and Medical Engineering
• Energy Technology
• Aircraft Systems
• Maritime Technology
• Numerical and computer science
• Product development and production
• Materials Engineering
The choice of specialization is required, its contents are closely related to the research topics of the Institute. The key skills already acquired in undergraduate study for mechanical engineering are developed within the Master's program.
Core Qualification
Module M0523: Business & Management |
Module Responsible | Prof. Matthias Meyer |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0524: Non-technical Courses for Master |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Nontechnical Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”. The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M1259: Technical Complementary Course Core Studies for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Module M0808: Finite Elements Methods |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
||||||||
Skills |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
||||||||
Autonomy |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Core Qualification: Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Core Qualification: Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Product Development, Materials and Production: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory |
Course L0291: Finite Element Methods |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content |
- General overview on modern engineering |
Literature |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Course L0804: Finite Element Methods |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0846: Control Systems Theory and Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge | Introduction to Control Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Electrical Engineering: Core Qualification: Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Computer Science in Engineering: Specialisation II. Engineering Science: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory |
Course L0656: Control Systems Theory and Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literature |
|
Course L0657: Control Systems Theory and Design |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1204: Modelling and Optimization in Dynamics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Robert Seifried | |
Admission Requirements | None | |
Recommended Previous Knowledge |
|
|
Educational Objectives | After taking part successfully, students have reached the following learning results | |
Professional Competence | ||
Knowledge |
Students demonstrate basic knowledge and understanding of modeling, simulation and analysis of complex rigid and flexible multibody systems and methods for optimizing dynamic systems after successful completion of the module. |
|
Skills |
Students are able + to think holistically + to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems + to describe dynamics problems mathematically + to optimize dynamics problems |
|
Personal Competence | ||
Social Competence |
Students are able to + solve problems in heterogeneous groups and to document the corresponding results. |
|
Autonomy |
|
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | |
Credit points | 6 | |
Course achievement | None | |
Examination | Oral exam | |
Examination duration and scale | 30 min | |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L1632: Flexible Multibody Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried, Dr. Alexander Held |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Course L1633: Optimization of dynamical systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried, Dr. Svenja Drücker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Module M1306: Control Lab C |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Credit points | 3 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 1 |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L1836: Control Lab IX |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content |
One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Course L1834: Control Lab VII |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content |
One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Course L1835: Control Lab VIII |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content |
One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Module M1150: Continuum Mechanics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Cyron |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of mechanics as taught, e.g., in the modules Engineering Mechanics I and Engineering Mechanics II at TUHH (forces and moments, stress, linear strain, free-body principle, linear-elastic constitutive laws, strain energy); basics of mathematics as taught, e.g., in the modules Mathematics I and Mathematics II at TUHH |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
In this module, students learn the fundamental concepts of nonlinear continuum mechanics. This theory enables students to describe arbitrary deformations of continuous bodies (solid, liquid or gaseous) under arbitrary loads. The module is a continuation of the basic module Engineering Mechanics II (elastostatics), the limiting assumptions (isotropic, linear-elastic material behavior, small deformations, simple geometries) of which are successively eliminated. First, the students learn the necessary fundamentals of tensor calculus. Based on this, the description of the deformations / strains of arbitrarily deformable bodies is dealt with. The students learn the mathematical formalism for characterizing the stress state of a body and for formulating the balance equations for mass, momentum, energy and entropy in various forms. Furthermore, the students know which constitutive assumptions have to be made for modeling the material behavior of a mechanical body.
|
Skills |
The students can set up balance laws and apply basics of deformation theory to specific aspects, both in applied contexts as in research contexts. |
Personal Competence | |
Social Competence |
The students are able to develop solutions also for complex problems of solid mechanics, to present them to specialists in written form and to develop ideas further. |
Autonomy |
The students are able to assess their own strengths and weaknesses. They can independently and on their own identify and solve problems in the area of continuum mechanics and acquire the knowledge required to this end. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L1533: Continuum Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | WiSe |
Content |
Continuum mechanics is a general theory to describe the effect of
mechanical forces on continuous mechanical (both solid and fluid)
bodies. An important part of continuum mechanics is the mathematical
description of strains and stresses as well as the stress-strain
response of continuous mechanical bodies. The lecture continuum
mechanics builds on the foundations tought in the lecture Engineering
Mechanics II (Elastostatics) but extends them significantly. While in
the lecture Engineering Mechanics II (Elastostatics) the focus was by
and large limited to small deformations of simple bodies under simple
loading, the lecture continuum mechanics introduces a general
mathematical framework to deal with arbitrarily shaped bodies under
arbitrary loading undergoing very general kinds of deformations. This
lecture focuses primarily on theoretical aspects of continuum mechanics
but its content is key to numerous applications in modern engineering, for example, in production, automotive, and biomedical engineering. The lecture covers:
|
Literature |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Course L1534: Continuum Mechanics Exercise |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | WiSe |
Content |
The exercise on Continuum Mechanics explains the theoretical content of the lecture on Continuum Mechanics by way of a series of specific example problems. |
Literature |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Module M0751: Vibration Theory |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0701: Vibration Theory |
Typ | Integrated Lecture |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | WiSe |
Content |
Linear and Nonlinear Single and Multiple Degree of Freedom Vibrations
|
Literature |
German - K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen. English - K. Magnus: Vibrations. |
Module M0714: Numerical Methods for Ordinary Differential Equations |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Daniel Ruprecht |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are capable
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Computer Science: Specialisation III. Mathematics: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Interdisciplinary Mathematics: Specialisation II. Numerical - Modelling Training: Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0576: Numerical Treatment of Ordinary Differential Equations |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Daniel Ruprecht |
Language | DE/EN |
Cycle | SoSe |
Content |
Numerical methods for Initial Value Problems
Numerical methods for Boundary Value Problems
|
Literature |
|
Course L0582: Numerical Treatment of Ordinary Differential Equations |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Daniel Ruprecht |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1203: Applied Dynamics: Numerical and experimental methods |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Robert Seifried | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Mathematics I, II, III, Mechanics I, II, III, IV Numerical Treatment of Ordinary Differential Equations |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can represent the most important methods of dynamics after successful completion of the module Technical dynamics and have a good understanding of the main concepts in the technical dynamics. |
||||||||
Skills |
Students are able + to think holistically + to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems + to describe dynamics problems mathematically + to investigate dynamics problems both experimentally and numerically |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to + solve problems in heterogeneous groups and to document the corresponding results. |
||||||||
Autonomy |
Students are able to + assess their knowledge by means of exercises and experiments. + acquaint themselves with the necessary knowledge to solve research oriented tasks. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory |
Course L1631: Lab Applied Dynamics |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Marc-André Pick |
Language | DE |
Cycle | SoSe |
Content |
Practical exercises are performed in groups. The examples are taken from different areas of applied dynamics, such as numerical simulation, experimental validation and experimental vibration analysis. |
Literature |
Schiehlen, W.; Eberhard, P.: Technische Dynamik, 4. Auflage, Vieweg+Teubner: Wiesbaden, 2014. |
Course L1630: Applied Dynamics |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Robert Seifried, Dr. Marc-André Pick |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Schiehlen, W.; Eberhard, P.: Technische Dynamik, 4. Auflage, Vieweg+Teubner: Wiesbaden, 2014. Woernle, C.: Mehrkörpersysteme, Springer: Heidelberg, 2011. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. |
Module M0752: Nonlinear Dynamics |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0702: Nonlinear Dynamics |
Typ | Integrated Lecture |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | SoSe |
Content |
Fundamentals of Nonlinear Dynamics
|
Literature | Steven Strogatz: Nonlinear Dynamics and Chaos. |
Module M0838: Linear and Nonlinear System Identifikation |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
Students can work in mixed groups on specific problems to arrive at joint solutions. |
Autonomy |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Credit points | 3 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0660: Linear and Nonlinear System Identification |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0657: Computational Fluid Dynamics II |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thomas Rung |
Admission Requirements | None |
Recommended Previous Knowledge |
Students should have sound knowledge of engineering mathematics (series expansions, internal & vector calculus), and be familiar with the foundations of partial/ordinary differential equations. They should also be familiar with engineering fluid mechanics and thermodynamics. Basic knowledge of numerical analysis or computational fluid dynamics is of advantage but not necessary. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students will acquire a deeper knowledge of computational fluid dynamics (CFD) and can translate general principles of thermo-/fluid engineering into discrete algorithms on the basis of finite volume methods. They are familiar with the similarities and differences between different discretisation and approximation concepts for investigating coupled systems of non-linear, convective partial differential equations (PDE) on structured and unstructured grids. Students have the required background knowledge to develop, code and apply modelling concepts to numerically describe turbulent and multiphase flow. They establish a thorough understanding of details of the theoretical background of complex CFD algorithms and the parameters used to control and adjust the execution of CFD procedures. |
Skills |
The students are able choose and apply appropriate finite volume (FV) approximation concepts and flow physics models that integrate the governing thermofluid dynamic PDEs in space and time. They can apply/optimise FV concepts to/for fluid dynamic applications. They acquire the ability to code computational algorithms dedicated to unstructured grid arrangements, apply these codes for parameter investigations and supplement interfaces to extract simulation data for an engineering analysis. They are able to judge different solution strategies. |
Personal Competence | |
Social Competence |
The students are able to discuss problems, present the results of their own analysis, and jointly develop, implement and report on solution strategies that address given technical reference problems in a team. |
Autonomy |
The students can independently analyse numerical methods to solving fluid engineering problems. They are able to critically analyse own results as well as external data with regards to the plausibility and reliability. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 0.5h-0.75h |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0237: Computational Fluid Dynamics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Thomas Rung |
Language | DE/EN |
Cycle | SoSe |
Content | Computational Modelling of complex single- and multiphase flows using higher-order approximations for unstructured grids and mehsless particle-based methods. |
Literature |
1)
|
Course L0421: Computational Fluid Dynamics II |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Thomas Rung |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0840: Optimal and Robust Control |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0658: Optimal and Robust Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0659: Optimal and Robust Control |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1339: Design optimization and probabilistic approaches in structural analysis |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Benedikt Kriegesmann |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 10 pages |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L1873: Design Optimization and Probabilistic Approaches in Structural Analysis |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | SoSe |
Content |
In the course the theoretic basics for design optimization and reliability analysis are taught, where the focus is on the application of such methods. The lectures will consist of presentations as well as computer exercises. In the computer exercises, the methods learned will be implemented in Matlab for understanding the practical realization. The following contents will be considered:
|
Literature |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. |
Course L1874: Design Optimization and Probabilistic Approaches in Structural Analysis |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | SoSe |
Content |
Matlab exercises complementing the lecture |
Literature | siehe Vorlesung |
Module M0604: High-Order FEM |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Düster | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Knowledge of partial differential equations is recommended. |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to |
||||||||
Skills |
Students are able to |
||||||||
Personal Competence | |||||||||
Social Competence |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
||||||||
Autonomy |
Students
are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks. + to transform the acquired knowledge to similar problems. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0280: High-Order FEM |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Düster |
Language | EN |
Cycle | SoSe |
Content |
1. Introduction |
Literature |
[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 |
Course L0281: High-Order FEM |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Düster |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0711: Numerical Mathematics II |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sabine Le Borne |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are capable
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 25 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L0568: Numerical Mathematics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0569: Numerical Mathematics II |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0727: Stochastics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Schulte |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Elective Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Engineering Science: Specialisation Advanced Materials: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory |
Course L0777: Stochastics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Schulte |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0778: Stochastics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Schulte |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1614: Optics for Engineers |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | - Basics of physics | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Teaching subject ist the design of simple optical systems for illumination and imaging optics
|
||||||||
Skills |
Understandings of optics as part of light and electromagnetic spectrum. Design rules, approach to designing optics |
||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L2437: Optics for Engineers |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Course L2438: Optics for Engineers |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1181: Research Project Theoretical Mechanical Engineering |
||||
Courses | ||||
|
Module Responsible | Dozenten des SD M |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to demonstrate their detailed knowledge in the field of theoretical mechanical engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society. The students can develop solving strategies and approaches for fundamental and practical problems in theoretical mechanical engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society. Scientific work techniques that are used can be described and critically reviewed. |
Skills |
The students are able to independently select methods for the project work and to justify this choice. They can explain how these methods relate to the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined. |
Personal Competence | |
Social Competence |
The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues. |
Autonomy |
The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology. |
Workload in Hours | Independent Study Time 360, Study Time in Lecture 0 |
Credit points | 12 |
Course achievement | None |
Examination | Study work |
Examination duration and scale | according to FSPO |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Core Qualification: Compulsory |
Module M1398: Selected Topics in Multibody Dynamics and Robotics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge |
Mechanics IV, Applied
Dynamics or Robotics Numerical Treatment of Ordinary Differential Equations Control Systems Theory and Design |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module students demonstrate deeper knowledge and understanding in selected application areas of multibody dynamics and robotics |
Skills |
Students are able + to think holistically + to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems + to describe dynamics problems mathematically + to implement dynamical problems on hardware |
Personal Competence | |
Social Competence |
Students are able to + solve problems in heterogeneous groups and to document the corresponding results and present them |
Autonomy |
Students are able to + assess their knowledge by means of exercises and projects. + acquaint themselves with the necessary knowledge to solve research oriented tasks. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | TBA |
Assignment for the Following Curricula |
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory |
Course L2869: Formulas and Vehicles - Dynamics and Control of Autonomous Vehicles |
Typ | Integrated Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Robert Seifried, Daniel-André Dücker |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Course L1981: Formulas and Vehicles - Introduction into Mobile Underwater Robotics |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 5 |
Workload in Hours | Independent Study Time 94, Study Time in Lecture 56 |
Lecturer | Prof. Robert Seifried, Daniel-André Dücker |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Seifried, R.: Dynamics of underactuated multibody systems, Springer, 2014 Popp, K.; Schiehlen, W.: Ground vehicle dynamics, Springer, 2010 |
Specialization Bio- and Medical Technology
The specialization „biotechnology and medical technology“ consists of modules for Intelligent Systems, Robotics and Navigation in medicine, supplemented by Endoprostheses and Materials and Regenerative Medicine, and completed by the modules Imaging Systems in medicine and Industrial Image Transformations in electives. Thus, the acquisition of knowledge and skills in engineering specific aspects of biotechnology and medical technology is at the heart of this specialization. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.
Module M1173: Applied Statistics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Michael Morlock |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of statistical methods |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students can explain the statistical methods and the conditions of their use. |
Skills | Students are able to use the statistics program to solve statistics problems and to interpret and depict the results |
Personal Competence | |
Social Competence |
Team Work, joined presentation of results |
Autonomy |
To understand and interpret the question and solve |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes, 28 questions |
Assignment for the Following Curricula |
Mechanical Engineering and Management: Specialisation Management: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Core Qualification: Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L1584: Applied Statistics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Michael Morlock |
Language | DE/EN |
Cycle | WiSe |
Content |
The goal is to introduce students to the basic statistical methods and their application to simple problems. The topics include: • Chi square test • Simple regression and correlation • Multiple regression and correlation • One way analysis of variance • Two way analysis of variance • Discriminant analysis • Analysis of categorial data • Chossing the appropriate statistical method • Determining critical sample sizes |
Literature |
Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University, Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, CB © 1998, ISBN/ISSN: 0-534-20910-6 |
Course L1586: Applied Statistics |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Morlock |
Language | DE/EN |
Cycle | WiSe |
Content |
The students receive a problem task, which they have to solve in small groups (n=5). They do have to collect their own data and work with them. The results have to be presented in an executive summary at the end of the course. |
Literature |
Selbst zu finden |
Course L1585: Applied Statistics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Michael Morlock |
Language | DE/EN |
Cycle | WiSe |
Content |
The different statistical tests are applied for the solution of realistic problems using actual data sets and the most common used commercial statistical software package (SPSS). |
Literature |
Student Solutions Manual for Kleinbaum/Kupper/Muller/Nizam's Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, Paperbound © 1998, ISBN/ISSN: 0-534-20913-0 |
Module M1334: BIO II: Biomaterials |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Michael Morlock |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of orthopedic and surgical techniques is recommended. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can describe the materials of the human body and the materials being used in medical engineering, and their fields of use. |
Skills |
The students can explain the advantages and disadvantages of different kinds of biomaterials. |
Personal Competence | |
Social Competence |
The students are able to discuss issues related to materials being present or being used for replacements with student mates and the teachers. |
Autonomy |
The students are able to acquire information on their own. They can also judge the information with respect to its credibility. |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Credit points | 3 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0593: Biomaterials |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Michael Morlock |
Language | EN |
Cycle | WiSe |
Content |
Topics to be covered include: 1. Introduction (Importance, nomenclature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. |
Literature |
Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987. Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998. Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988. Park J. Biomaterials: an introduction. New York: Plenum Press, 1980. Wintermantel, E. und Ha, S.-W : Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996. |
Module M0548: Bioelectromagnetics: Principles and Applications |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Schuster | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basic principles of physics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can explain the basic principles, relationships, and methods of bioelectromagnetics, i.e. the quantification and application of electromagnetic fields in biological tissue. They can define and exemplify the most important physical phenomena and order them corresponding to wavelength and frequency of the fields. They can give an overview over measurement and numerical techniques for characterization of electromagnetic fields in practical applications . They can give examples for therapeutic and diagnostic utilization of electromagnetic fields in medical technology. |
||||||||
Skills |
Students know how to apply various methods to characterize the behavior of electromagnetic fields in biological tissue. In order to do this they can relate to and make use of the elementary solutions of Maxwell’s Equations. They are able to assess the most important effects that these models predict for biological tissue, they can order the effects corresponding to wavelength and frequency, respectively, and they can analyze them in a quantitative way. They are able to develop validation strategies for their predictions. They are able to evaluate the effects of electromagnetic fields for therapeutic and diagnostic applications and make an appropriate choice. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during small group exercises). |
||||||||
Autonomy |
Students are capable to gather information from subject related, professional publications and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, fundamentals of electrical engineering / physics). They can communicate problems and effects in the field of bioelectromagnetics in English. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 45 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0371: Bioelectromagnetics: Principles and Applications |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
- Fundamental properties of electromagnetic fields (phenomena) - Mathematical description of electromagnetic fields (Maxwell’s Equations) - Electromagnetic properties of biological tissue - Principles of energy absorption in biological tissue, dosimetry - Numerical methods for the computation of electromagnetic fields (especially FDTD) - Measurement techniques for characterization of electromagnetic fields - Behavior of electromagnetic fields of low frequency in biological tissue - Behavior of electromagnetic fields of medium frequency in biological tissue - Behavior of electromagnetic fields of high frequency in biological tissue - Behavior of electromagnetic fields of very high frequency in biological tissue - Diagnostic applications of electromagnetic fields in medical technology - Therapeutic applications of electromagnetic fields in medical technology - The human body as a generator of electromagnetic fields |
Literature |
- C. Furse, D. Christensen, C. Durney, "Basic Introduction to Bioelectromagnetics", CRC (2009) - A. Vorst, A. Rosen, Y. Kotsuka, "RF/Microwave Interaction with Biological Tissues", Wiley (2006) - S. Grimnes, O. Martinsen, "Bioelectricity and Bioimpedance Basics", Academic Press (2008) - F. Barnes, B. Greenebaum, "Bioengineering and Biophysical Aspects of Electromagnetic Fields", CRC (2006) |
Course L0373: Bioelectromagnetics: Principles and Applications |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1302: Applied Humanoid Robotics |
||||||||
Courses | ||||||||
|
Module Responsible | Patrick Göttsch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 5-10 pages |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1794: Applied Humanoid Robotics |
Typ | Project-/problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Patrick Göttsch |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
|
Literature |
|
Module M0811: Medical Imaging Systems |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Michael Grass |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can:
Describe and explain the main clinical uses of the different systems. |
Skills |
Students are able to:
Select a suitable imaging system for an application. |
Personal Competence | |
Social Competence | none |
Autonomy |
Students can:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Biomedical Engineering: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0819: Medical Imaging Systems |
Typ | Lecture |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Dr. Michael Grass, Dr. Michael Helle, Dr. Sven Prevrhal, Frank Michael Weber |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Module M1335: BIO II: Artificial Joint Replacement |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Michael Morlock |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of orthopedic and surgical techniques is recommended. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can name the different kinds of artificial limbs. |
Skills |
The students can explain the advantages and disadvantages of different kinds of endoprotheses. |
Personal Competence | |
Social Competence |
The students are able to discuss issues related to endoprothese with student mates and the teachers. |
Autonomy |
The students are able to acquire information on their own. They can also judge the information with respect to its credibility. |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Credit points | 3 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L1306: Artificial Joint Replacement |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Michael Morlock |
Language | DE |
Cycle | SoSe |
Content |
Inhalt (deutsch) 1. EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes) 2. FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität) 3. DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate) 4. DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten) 5. DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren) 6. DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz) 7. DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz) 8. DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz) 9. TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß) |
Literature |
Literatur: Kapandji, I..: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984. Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley&Sons, New York 1994 Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea&Febiger, Philadelphia, 1989. Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003. Sobotta und Netter für Anatomie der Gelenke |
Module M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||||||
Admission Requirements | None | ||||||||||||
Recommended Previous Knowledge |
|
||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||
Professional Competence | |||||||||||||
Knowledge |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
||||||||||||
Skills |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
||||||||||||
Personal Competence | |||||||||||||
Social Competence |
The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively. |
||||||||||||
Autonomy |
The students can assess their level of knowledge and independently control their learning processes on this basis as well as document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups. |
||||||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||||||
Credit points | 6 | ||||||||||||
Course achievement |
|
||||||||||||
Examination | Written exam | ||||||||||||
Examination duration and scale | 90 minutes | ||||||||||||
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0335: Robotics and Navigation in Medicine |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | SoSe |
Content |
- kinematics |
Literature |
Spong et al.: Robot Modeling and Control, 2005 |
Course L0338: Robotics and Navigation in Medicine |
Typ | Project Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0336: Robotics and Navigation in Medicine |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1249: Medical Imaging |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Tobias Knopp |
Admission Requirements | None |
Recommended Previous Knowledge | Basic knowledge in linear algebra, numerics, and signal processing |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module, students are able to describe reconstruction methods for different tomographic imaging modalities such as computed tomography and magnetic resonance imaging. They know the necessary basics from the fields of signal processing and inverse problems and are familiar with both analytical and iterative image reconstruction methods. The students have a deepened knowledge of the imaging operators of computed tomography and magnetic resonance imaging. |
Skills |
The students are able to implement reconstruction methods and test them using tomographic measurement data. They can visualize the reconstructed images and evaluate the quality of their data and results. In addition, students can estimate the temporal complexity of imaging algorithms. |
Personal Competence | |
Social Competence |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Autonomy |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Data Science: Specialisation III. Applications: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Computer Science in Engineering: Specialisation I. Computer Science: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Technomathematics: Specialisation II. Informatics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L1694: Medical Imaging |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000 Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995 Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008 Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006 Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999 |
Course L1695: Medical Imaging |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0746: Microsystem Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Timo Lipka | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Basic courses in physics, mathematics and electric engineering | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators. |
||||||||
Skills |
Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve specific problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 2h | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0680: Microsystem Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Dr. Timo Lipka |
Language | EN |
Cycle | WiSe |
Content |
Object and goal of MEMS Scaling Rules Lithography Film deposition Structuring and etching Energy conversion and force generation Electromagnetic Actuators Reluctance motors Piezoelectric actuators, bi-metal-actuator Transducer principles Signal detection and signal processing Mechanical and physical sensors Acceleration sensor, pressure sensor Sensor arrays System integration Yield, test and reliability |
Literature |
M. Kasper: Mikrosystementwurf, Springer (2000) M. Madou: Fundamentals of Microfabrication, CRC Press (1997) |
Course L0682: Microsystem Engineering |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Timo Lipka |
Language | EN |
Cycle | WiSe |
Content |
Examples of MEMS components Layout consideration Electric, thermal and mechanical behaviour Design aspects |
Literature |
Wird in der Veranstaltung bekannt gegeben |
Module M0623: Intelligent Systems in Medicine |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||||||
Admission Requirements | None | ||||||||||||
Recommended Previous Knowledge |
|
||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||
Professional Competence | |||||||||||||
Knowledge |
The students are able to analyze and solve clinical treatment planning and decision support problems using methods for search, optimization, and planning. They are able to explain methods for classification and their respective advantages and disadvantages in clinical contexts. The students can compare different methods for representing medical knowledge. They can evaluate methods in the context of clinical data and explain challenges due to the clinical nature of the data and its acquisition and due to privacy and safety requirements. |
||||||||||||
Skills |
The students can give reasons for selecting and adapting methods for classification, regression, and prediction. They can assess the methods based on actual patient data and evaluate the implemented methods. |
||||||||||||
Personal Competence | |||||||||||||
Social Competence |
The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively. |
||||||||||||
Autonomy |
The students can assess their level of knowledge and document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups. |
||||||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||||||
Credit points | 6 | ||||||||||||
Course achievement |
|
||||||||||||
Examination | Written exam | ||||||||||||
Examination duration and scale | 90 minutes | ||||||||||||
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Data Science: Specialisation III. Applications: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0331: Intelligent Systems in Medicine |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | WiSe |
Content |
- methods for search, optimization, planning, classification, regression and prediction in a clinical context |
Literature |
Russel & Norvig: Artificial Intelligence: a Modern Approach, 2012 |
Course L0334: Intelligent Systems in Medicine |
Typ | Project Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0333: Intelligent Systems in Medicine |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Specialization Energy Systems
The focus of the specialization „energy technology“ lies on the acquisition of knowledge and skills on an economically and ecologically sensible provision of electricity, heating and coooling on the basis of conventional and renewable energy systems. This is made possible by modules in the areas of fluid mechanics and ocean energy, solar energy, electric energy, heating technology, air conditioners, power plants, steam and Cogeneration and combustion technology electives. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.
Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of conventional and modern electric power systems. They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 - 150 minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory Data Science: Core Qualification: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Integrated Building Technology: Core Qualification: Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1670: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Course L1671: Electrical Power Systems I: Introduction to Electrical Power Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008 |
Module M0742: Thermal Energy Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge | Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students know the different energy conversion stages and the difference between efficiency and annual efficiency. They have increased knowledge in heat and mass transfer, especially in regard to buildings and mobile applications. They are familiar with German energy saving code and other technical relevant rules. They know to differ different heating systems in the domestic and industrial area and how to control such heating systems. They are able to model a furnace and to calculate the transient temperatures in a furnace. They have the basic knowledge of emission formations in the flames of small burners and how to conduct the flue gases into the atmosphere. They are able to model thermodynamic systems with object oriented languages. |
Skills |
Students are able to calculate the heating demand for different heating systems and to choose the suitable components. They are able to calculate a pipeline network and have the ability to perform simple planning tasks, regarding solar energy. They can write Modelica programs and can transfer research knowledge into practice. They are able to perform scientific work in the field of thermal engineering. |
Personal Competence | |
Social Competence |
In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions. |
Autonomy |
Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0023: Thermal Engergy Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Arne Speerforck, Prof. Gerhard Schmitz |
Language | DE |
Cycle | WiSe |
Content |
1. Introduction 2. Fundamentals of Thermal Engineering 2.1 Heat Conduction 2.2 Convection 2.3 Radiation 2.4 Heat transition 2.5 Combustion parameters 2.6 Electrical heating 2.7 Water vapor transport 3. Heating Systems 3.1 Warm water heating systems 3.2 Warm water supply 3.3 piping calculation 3.4 boilers, heat pumps, solar collectors 3.5 Air heating systems 3.6 radiative heating systems 4. Thermal traetment systems 4.1 Industrial furnaces 4.2 Melting furnaces 4.3 Drying plants 4.4 Emission control 4.5 Chimney calculation 4.6 Energy measuring 5. Laws and standards 5.1 Buildings 5.2 Industrial plants |
Literature |
|
Course L0024: Thermal Engergy Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0512: Use of Solar Energy |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | none | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
With the completion of this module, students will be able to deal with technical foundations and current issues and problems in the field of solar energy and explain and evaulate these critically in consideration of the prior curriculum and current subject specific issues. In particular they can professionally describe the processes within a solar cell and explain the specific features of application of solar modules. Furthermore, they can provide an overview of the collector technology in solar thermal systems. |
||||||||
Skills |
Students can apply the acquired theoretical foundations of exemplary energy systems using solar radiation. In this context, for example they can assess and evaluate potential and constraints of solar energy systems with respect to different geographical assumptions. They are able to dimension solar energy systems in consideration of technical aspects and given assumptions. Using module-comprehensive knowledge students can evalute the economic and ecologic conditions of these systems. They can select calculation methods within the radiation theory for these topics. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
||||||||
Autonomy |
Students can independently exploit sources and acquire the particular knowledge about the subject area with respect to emphasis fo the lectures. Furthermore, with the assistance of lecturers, they can discrete use calculation methods for analysing and dimensioning solar energy systems. Based on this procedure they can concrete assess their specific learning level and can consequently define the further workflow. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 3 hours written exam | ||||||||
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L0016: Energy Meteorology |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Volker Matthias, Dr. Beate Geyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0017: Energy Meteorology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Beate Geyer |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0018: Collector Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Agis Papadopoulos |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0015: Solar Power Generation |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Martin Schlecht, Prof. Alf Mews, Roman Fritsches-Baguhl |
Language | DE |
Cycle | SoSe |
Content |
Photovoltaics:
Concentrating solar power plants:
|
Literature |
|
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1161: Turbomachinery |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Markus Schatz |
Admission Requirements | None |
Recommended Previous Knowledge |
Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can
|
Skills |
The students are able to - understand the physics of Turbomachinery, - solve excersises self-consistent. |
Personal Competence | |
Social Competence |
The students are able to
|
Autonomy |
The students are able to
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1562: Turbomachines |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Markus Schatz |
Language | DE |
Cycle | SoSe |
Content |
Topics to be covered will include:
|
Literature |
|
Course L1563: Turbomachines |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Markus Schatz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0721: Air Conditioning |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge | Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students know the different kinds of air conditioning systems for buildings and mobile applications and how these systems are controlled. They are familiar with the change of state of humid air and are able to draw the state changes in a h1+x,x-diagram. They are able to calculate the minimum airflow needed for hygienic conditions in rooms and can choose suitable filters. They know the basic flow pattern in rooms and are able to calculate the air velocity in rooms with the help of simple methods. They know the principles to calculate an air duct network. They know the different possibilities to produce cold and are able to draw these processes into suitable thermodynamic diagrams. They know the criteria for the assessment of refrigerants. |
Skills |
Students are able to configure air condition systems for buildings and mobile applications. They are able to calculate an air duct network and have the ability to perform simple planning tasks, regarding natural heat sources and heat sinks. They can transfer research knowledge into practice. They are able to perform scientific work in the field of air conditioning. |
Personal Competence | |
Social Competence |
In lectures and exercises, the students can use many examples and experiments to discuss in small groups in a goal-oriented manner, develop a solution and present it. Within the exercises, the students can independently develop further questions and work out targeted solutions.
|
Autonomy |
Students are able to define tasks independently, to develop the necessary knowledge themselves based on the knowledge they have received, and to use suitable means for implementation. In the exercises, the students discuss the methods taught in the lectures using complex tasks and critically analyze the results. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0594: Air Conditioning |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Arne Speerforck, Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content |
1. Overview 1.1 Kinds of air conditioning systems 1.2 Ventilating 1.3 Function of an air condition system 2. Thermodynamic processes 2.1 Psychrometric chart 2.2 Mixer preheater, heater 2.3 Cooler 2.4 Humidifier 2.5 Air conditioning process in a Psychrometric chart 2.6 Desiccant assisted air conditioning 3. Calculation of heating and cooling loads 3.1 Heating loads 3.2 Cooling loads 3.3 Calculation of inner cooling load 3.4 Calculation of outer cooling load 4. Ventilating systems 4.1 Fresh air demand 4.2 Air flow in rooms 4.3 Calculation of duct systems 4.4 Fans 4.5 Filters 5. Refrigeration systems 5.1. compression chillers 5.2Absorption chillers |
Literature |
|
Course L0595: Air Conditioning |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck, Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0906: Numerical Simulation and Lagrangian Transport |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Michael Schlüter |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module the students are able to
|
Skills |
The students are able to:
|
Personal Competence | |
Social Competence |
The students are able to
|
Autonomy |
The students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L2301: Lagrangian transport in turbulent flows |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Yan Jin |
Language | EN |
Cycle | SoSe |
Content |
Contents - Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.) - An overview of Lagrange analysis methods and experiments in fluid mechanics - Critical examination of the concept of turbulence and turbulent structures. -Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.) - Implementation of a Runge-Kutta 4th-order in Matlab - Introduction to particle integration using ODE solver from Matlab - Problems from turbulence research - Application analytical methods with Matlab. Structure: - 14 units a 2x45 min. - 10 units lecture - 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague Learning goals: Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence Required knowledge: Fluid mechanics 1 and 2 advantageous Programming knowledge advantageous |
Literature |
Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag. Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726. Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press. Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1. Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322. Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211. Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502. Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033. Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley. LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002. Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO. Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002. Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109. Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press. Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503. Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press. |
Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | SoSe |
Content |
|
Literature | OpenFoam Tutorials (StudIP) |
Course L1052: Computational Fluid Dynamics in Process Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2. Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868. Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6
|
Module M0641: Steam Generators |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Kristin Abel-Günther | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students know the thermodynamic base principles for steam generators and their types. They are able to describe the basic principles of steam generators and sketch the combustion and fuel supply aspects of fossil-fuelled power plants. They can perform thermal design calculations and conceive the water-steam side, as well as they are able to define the constructive details of the steam generator. The students can describe and evaluate the operational behaviour of steam generators and explain these in the context of related disciplines. |
||||||||
Skills |
The students will be able, using detailed knowledge on the calculation, design, and construction of steam generators, linked with a wide theoretical and methodical foundation, to understand the main design and construction aspects of steam generators. Through problem definition and formalisation, modelling of processes, and training in the solution methodology for partial problems a good overview of this key component of the power plant will be obtained. Within the framework of the exercise the students obtain the ability to draw the balances, and design the steam generator and its components. For this purpose small but close to lifelike tasks are solved, to highlight aspects of the design of steam generators. |
||||||||
Personal Competence | |||||||||
Social Competence |
Especially during the exercises the focus is placed on communication with the tutor. This animates the students to reflect on their existing knowledge and ask specific questions to further improve their understanding. |
||||||||
Autonomy |
The students will be able to perform basic calculations covering aspects of the steam generator, with only the help of smaller clues, on their own. This way the theoretical and practical knowledge from the lecture is consolidated and the potential effects from different process schemata and boundary conditions are highlighted. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L0213: Steam Generators |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Dr. Kristin Abel-Günther |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0214: Steam Generators |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Kristin Abel-Günther |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1287: Risk Management, Hydrogen and Fuel Cell Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
With completion of this module students can explain basics of risk management involving thematical adjacent contexts and can describe an optimal management of energy systems. Furthermore, students can reproduce solid theoretical knowledge about the potentials and applications of new information technologies in logistics and explain technical aspects of the use, production and processing of hydrogen. |
Skills |
With completion of this module students are able to evaluate risks of energy systems with respect to energy economic conditions in an efficient way. This includes that the students can assess the risks in operational planning of power plants from a technical, economic and ecological perspective. In this context, students can evaluate the potentials of logistics and information technology in particular on energy issues. In addition, students are able to describe the energy transfer medium hydrogen according to its applications, the given security and its existing service capacities and limits as well as to evaluate these aspects from a technical, environmental and economic perspective. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources on the emphasis of the lectures and acquire the contained knowledge. In this way, they can recognize their lacks of knowledge and can consequently define the further workflow. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory |
Course L1831: Applied Fuel Cell Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | SoSe |
Content |
The lecture provide an insight into the various possibilities of fuel cells in the energy system (electricity, heat and transport). These are presented and discussed for individual fuel types and application-oriented requirements; also compared with alternative technologies in the system. These different possibilities will be presented regardind the state-of-the-art development of the technologies and exemplary applications from Germany and worldwide. Also the emerging trends and lines of development will be discussed. Besides to the technical aspects, which are the focus of the event, also energy, environmental and industrial policy aspects are discussed - also in the context of changing circumstances in the German and international energy system. |
Literature |
Vorlesungsunterlagen |
Course L1748: Risk Management in the Energy Industry |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Christian Wulf |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0060: Hydrogen Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Jun.-Prof. Julian Jepsen |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0513: System Aspects of Renewable Energies |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Module: Technical Thermodynamics I Module: Technical Thermodynamics II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the processes in energy trading and the design of energy markets and can critically evaluate them in relation to current subject specific problems. Furthermore, they are able to explain the basics of thermodynamics of electrochemical energy conversion in fuel cells and can establish and explain the relationship to different types of fuel cells and their respective structure. Students can compare this technology with other energy storage options. In addition, students can give an overview of the procedure and the energetic involvement of deep geothermal energy. |
Skills |
Students can apply the learned knowledge of storage systems for excessive energy to explain for various energy systems different approaches to ensure a secure energy supply. In particular, they can plan and calculate domestic, commercial and industrial heating equipment using energy storage systems in an energy-efficient way and can assess them in relation to complex power systems. In this context, students can assess the potential and limits of geothermal power plants and explain their operating mode. Furthermore, the students are able to explain the procedures and strategies for marketing of energy and apply it in the context of other modules on renewable energy projects. In this context they can unassistedly carry out analysis and evaluations of energie markets and energy trades. |
Personal Competence | |
Social Competence |
Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. |
Autonomy |
Students can independently exploit sources , acquire the particular knowledge about the subject area and transform it to new questions. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours written exam |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory |
Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Fröba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0019: Energy Trading |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content |
Within the exercise the various tasks are actively discussed and applied to various cases of application. |
Literature |
Course L0020: Energy Trading |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Michael Sagorje, Dr. Sven Orlowski |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0025: Deep Geothermal Energy |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Ben Norden |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1878: Sustainable energy from wind and water |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Dr. Marvin Scherzinger | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Module: Technical Thermodynamics I, Module: Technical Thermodynamics II, Module: Fundamentals of Fluid Mechanics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure in the implementation of renewable energy projects in countries outside Europe. Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice. |
||||||||
Skills |
Students are able to apply the acquired theoretical foundations on
exemplary water or wind power systems and evaluate and assess
technically the resulting relationships in the context of dimensioning
and operation of these energy systems. They can in compare critically
the special procedure for the implementation of renewable energy
projects in countries outside Europe with the in principle applied
approach in Europe and can apply this procedure on exemplary theoretical
projects. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar. |
||||||||
Autonomy |
Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 150 min | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L0007: Sustainability Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dr. Anne Rödl |
Language | DE |
Cycle | SoSe |
Content |
The lecture "Sustainability Management" gives an insight into the different aspects and dimensions of sustainability. First, essential terms and definitions, significant developments of the last years, and legal framework conditions are explained. The various aspects of sustainability are then presented and discussed in detail. The lecture mainly focuses on concepts for the implementation of the topic sustainability in companies:
Furthermore, the lecture is intended to provide insights into the concrete implementation of sustainability aspects into business practice. External lecturers from companies will be invited to report on how sustainability is integrated into their daily processes. In the course of an independently carried out group work, the students will analyze and discuss the implementation of sustainability aspects based on short case studies. By studying and comparing best practice examples, the students will learn about corporate decisions' effects and implications. It should become clear which risks or opportunities are associated if sustainability aspects are taken into account in management decisions. |
Literature |
Die folgenden Bücher bieten einen Überblick: Engelfried, J. (2011) Nachhaltiges Umweltmanagement. München: Oldenbourg Verlag. 2. Auflage Corsten H., Roth S. (Hrsg.) (2011) Nachhaltigkeit - Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden: Gabler Verlag. |
Course L0013: Hydro Power Use |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Stefan Achleitner |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0011: Wind Turbine Plants |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rudolf Zellermann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Course L0012: Wind Energy Use - Focus Offshore |
Typ | Lecture |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Martin Skiba |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1909: System Simulation |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge |
Mathematics I-III, Computer Sciense, Engineering Thermodynamics I, II, Fluid Dynamics, Heat Transfer, Control Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L3150: System Simulation Modul |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content |
Lecture about
equation-based, physical modelling using the modelling language Modelica
and the free simulation tool OpenModelica 1.17.0.
|
Literature |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Course L3151: System Simulation Modul |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0515: Energy Information Systems and Electromobility |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Martin Kaltschmitt |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give an overview of the electric power engineering in the field of renewable energies. They can explain in detail the possibilities for the integration of renewable energy systems into the existing grid, the electrical storage possibilities and the electric power transmission and distribution, and can take critically a stand on it. |
Skills |
With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of renewable energy systems and to assess the results. |
Personal Competence | |
Social Competence |
The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. |
Autonomy |
Students can independently tap knowledge of the emphasis of the lectures. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 40 min |
Assignment for the Following Curricula |
Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1696: Electrical Power Systems II: Operation and Information Systems of Electrical Power Grids |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag |
Course L1833: Electro mobility |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus Bonhoff |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Vorlesungsunterlagen/ lecture material |
Module M0508: Fluid Mechanics and Ocean Energy |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Michael Schlüter | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Technische Thermodynamik I-II |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to describe different applications of fluid mechanics for the field of Renewable Energies. They are able to use the fundamentals of fluid mechanics for calculations of certain engineering problems in the field of ocean energy. The students are able to estimate if a problem can be solved with an analytical solution and what kind of alternative possibilities are available (e.g. self-similarity, empirical solutions, numerical methods). |
||||||||
Skills |
Students are able to use the governing equations of Fluid Dynamics for the design of technical processes. Especially they are able to formulate momentum and mass balances to optimize the hydrodynamics of technical processes. They are able to transform a verbal formulated message into an abstract formal procedure. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss a given problem in small groups and to develop an approach. They are able to solve a problem within a team, to prepare a poster with the results and to present the poster. |
||||||||
Autonomy |
Students are able to define independently tasks for problems related to fluid mechanics. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 3h | ||||||||
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L0002: Energy from the Ocean |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0001: Fluid Mechanics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1149: Marine Power Engineering |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Christopher Friedrich Wirz |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe the state-of-the-art regarding the wide range of propulsion components on ships and apply their knowledge. They further know how to analyze and optimize the interaction of the components of the propulsion system and how to describe complex correlations with the specific technical terms in German and English. The students are able to name the operating behaviour of consumers, describe special requirements on the design of supply networks and to the electrical equipment in isolated networks, as e.g. onboard ships, offshore units, factories and emergency power supply systems, explain power generation and distribution in isolated grids, wave generator systems on ships, and name requirements for network protection, selectivity and operational monitoring. |
Skills |
The students are skilled to employ basic and detail knowledge regarding reciprocating machinery, their selection and operation on board ships. They are further able to assess, analyse and solve technical and operational problems with propulsion and auxiliary plants and to design propulsion systems. The students have the skills to describe complex correlations and bring them into context with related disciplines. Students are able to calculate short-circuit currents, switchgear, and design electrical propulsion systems for ships. |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.
|
Autonomy |
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes plus 20 minutes oral exam |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L1531: Electrical Installation on Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin |
Course L1532: Electrical Installation on Ships |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1569: Marine Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Wird in der Veranstaltung bekannt gegeben |
Course L1570: Marine Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1709: Applied optimization in energy and process engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Mirko Skiborowski |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals in the field of mathematical modeling and numerical mathematics, as well as a basic understanding of process engineering processes.
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The module provides a general introduction to the basics of applied mathematical optimization and deals with application areas on different scales from the identification of kinetic models, to the optimal design of unit operations and the optimization of entire (sub)processes, as well as production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed and tested during the exercises. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. • Introduction to Applied Optimization • Formulation of optimization problems •
Linear Optimization • Nonlinear Optimization • Mixed-integer (non)linear optimization • Multi-objective optimization • Global optimization |
Skills |
After successful participation in the module "Applied Optimization in Energy and Process Engineering", students are able to formulate the different types of optimization problems and to select appropriate solution methods in suitable software such as Matlab and GAMS and to develop improved solution strategies. Furthermore, students will be able to interpret and critically examine the results accordingly. |
Personal Competence | |
Social Competence |
Students are capable of: •develop solutions in heterogeneous small groups |
Autonomy |
Students are capable of: •taping new knowledge on a special subject by literature research |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 35 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L2693: Applied optimization in energy and process engineering |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content |
The lecture offers a general introduction to the basics and possibilities of applied mathematical optimization and deals with application areas on different scales from kinetics identification, optimal design of unit operations to the optimization of entire (sub)processes, and production planning. In addition to the basic classification and formulation of optimization problems, different solution approaches are discussed. Besides deterministic gradient-based methods, metaheuristics such as evolutionary and genetic algorithms and their application are discussed as well. - Introduction to Applied Optimization - Formulation of optimization problems - Linear Optimization - Nonlinear Optimization - Mixed-integer (non)linear optimization - Multi-objective optimization - Global optimization |
Literature |
Weicker, K., Evolutionäre Algortihmen, Springer, 2015 Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001 Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010 Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002 |
Course L2695: Applied optimization in energy and process engineering |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Mirko Skiborowski |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Specialization Aircraft Systems Engineering
Central to the specialization Aircraft Systems is learning the ability to systems engineering and cross-divisional thinking and problem solving in aeronautical engineering. This is made possible by modules in the field of physics of flight, aircraft systems and cabin systems, Aircraft Design, as well as airport planning and operation in the elective area. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.
Module M0812: Aircraft Design I (Civil Aircraft Design) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Volker Gollnick | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
Understanding and application of design and calculation methods Understanding of interdisciplinary and integrative interdependencies |
||||||||
Personal Competence | |||||||||
Social Competence |
Working in interdisciplinary teams Communication |
||||||||
Autonomy | Organization of workflows and -strategies | ||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 180 min | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0820: Aircraft Design I (Design of Transport Aircraft) |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Jens Thöben |
Language | DE |
Cycle | WiSe |
Content |
Introduction into the aircraft design process
|
Literature |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Introduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Course L0834: Aircraft Design I (Design of Transport Aircraft) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick, Jens Thöben |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0763: Aircraft Energy Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Frank Thielecke | |
Admission Requirements | None | |
Recommended Previous Knowledge |
Basic knowledge in:
|
|
Educational Objectives | After taking part successfully, students have reached the following learning results | |
Professional Competence | ||
Knowledge |
Students are able to:
|
|
Skills |
Students are able to:
|
|
Personal Competence | ||
Social Competence |
Students are able to:
|
|
Autonomy |
|
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | |
Credit points | 6 | |
Course achievement | None | |
Examination | Written exam | |
Examination duration and scale | 165 Minutes | |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0735: Aircraft Energy Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0739: Aircraft Energy Systems |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0771: Flight Physics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to…
|
Skills |
Students are able to…
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 Minutes (WS) + 90 Minutes (SS) |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0727: Aerodynamics and Flight Mechanics I |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Frank Thielecke, Dr. Ralf Heinrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0730: Flight Mechanics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0731: Flight Mechanics II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1156: Systems Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in: Previous knowledge in: |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: |
Skills |
Students are able to: |
Personal Competence | |
Social Competence |
Students are able to: |
Autonomy |
Students are able to: |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 Minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1547: Systems Engineering |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with the corresponding exercise is to accomplish the prerequisites for the development and integration of complex systems using the example of commercial aircraft and cabin systems. Competences in the systems engineering process, tools and methods is to be achieved. Regulations, guidelines and certification issues will be known. Key aspects of the course are
processes for innovation and technology management, system design, system
integration and certification as well as tools and methods for systems
engineering: |
Literature |
- Skript zur Vorlesung |
Course L1548: Systems Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1690: Aircraft Design II (Special Air Vehicle Design) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge |
Aircraft Design I (Design of Transport Aircraft) Air Transportation Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Understanding of various flight systems and its special characteristics (supersonic aircraft, rotorcraft, high performance aircraft, unmanned air systems) Understanding of pro´s and con´s and physical characteristics of different air systems Understanding of special mission requirements and its impact on systems definition and conceptual design Intensified knowledge of performance design on various air systems
|
Skills |
Understanding and application of design and calculation methods Understanding of interdisciplinary and integrative interdependencies mission oriented technical definition of air systems special conceptual calculation methods for special equipment characteristics assessment of different design solutions |
Personal Competence | |
Social Competence |
Working in teams for focused solutions communication, assertiveness, technical persuasion |
Autonomy |
Organisation of worksflows and strategies for solutions structured task analysis and definition of solutions |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0844: Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV) |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Jens Thöben |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Gareth Padfield: Helicopter Flight Dynamics, butterworth ltd. Raymond Prouty: Helicopter Performance Stability and Control, Krieger Publ. Klaus Hünecke: Das Kampfflugzeug von Heute, Motorbuch Verlag Jay Gundelach: Designing Unmanned Aircraft Systems - Configurative Approach, AIAA |
Course L0847: Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1616: Flight Control Law Design and Application |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Frank Thielecke | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basic knowledge in: * mathematics (linear algebra and ordinary differential equations) * control systems (transfer functions and state space representation) * mechanics (rigid-body kinetics) * flight mechanics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to: * describe and understand flight dynamics models for control tasks * assess handling qualities and understand the need for augmentation through control systems * identify fundamental performance limitations of control laws |
||||||||
Skills |
Students are able to: * design model-based control laws for stability augmentation * design model-based flight control laws * assess robustness and performance of control laws |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to: * design control laws in groups as well as discuss the requirements and results |
||||||||
Autonomy |
Students are able to: * reflect on the contents of lectures and extend their knowledge through literature research * solve control design tasks with software tools |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 60 min | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L2448: Flight Control Law Design and Application |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Frank Thielecke, Dr. Julian Theis |
Language | EN |
Cycle | SoSe |
Content |
* flight dynamics (equations of motion, trim and linearization, linear models of longitudinal and lateral-directional motion, eigenforms) * stability augmentation (modal dynamics, damper design with root-loci, pole placement and eigenstructure assignment) * primary flight control laws and autopilots * design of flight control laws (loopshaping design, robustness criteria and analysis, cascaded control loops, gain-scheduling) * verification of flight control laws in simulation |
Literature |
J. Theis: Lecture Notes Flight Control Law Design D. Schmidt: Modern Flight Dynamics B. Stevens, F. Lewis: Aircraft Control and Simulation D. McGruer, D. Graham, I. Ashkenas: Aircraft Dynamics and Automatic Control SAE Aerospace Standard 94900 - Flight Control Systems The MathWorks: Control Systems Design Toolbox User Guide |
Course L2449: Flight Control Law Design and Application |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Thielecke, Dr. Julian Theis |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0764: Flight Control Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
basic knowledge of:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to…
|
Skills |
Students are able to…
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 165 Minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0736: Flight Control Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0740: Flight Control Systems |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1738: Selected Topics of Aeronautical Systems Engineering (Alternative B: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of engineering. |
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 12 |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L2739: Advanced Training Course SE-ZERT |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Course L1310: Airline Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick, Dr. Karl Echtermeyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: “Buying the Big Jets”, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L0848: Flight Guidance I (Introduction) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Cockpit systems and Avionics (cockpit design, cockpit equipment, displays, computers and bus systems) Principles of flight measurement techniques (Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Principles of Navigation Radio navigation Satellite navigation Airspace surveillance (radar systems) Commuication systems Integrated Navigation and Guidance Systems |
Literature |
Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics”, Springer Berlin Heidelberg New York 2003 |
Course L0854: Flight Guidance I (Introduction) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2374: Flight Guidance II (Flight Control) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011 R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011 |
Course L2375: Flight Guidance II (Flight Control) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1276: Airport Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick, Dr. Peter Willems |
Language | DE |
Cycle | WiSe |
Content | FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground handling Terminal operations |
Literature | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Course L1275: Airport Planning |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick, Dr. Ulrich Häp |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003
|
Course L1469: Airport Planning |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick, Dr. Ulrich Häp |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1258: Lightweight Design Practical Course |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE/EN |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L1549: Aviation Security |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung |
Course L1550: Aviation Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L2376: Aviation and Environment |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content |
The lecture provides the necessary basics and methods for understanding the interactions between air traffic and the environment, both in terms of the effects of weather / climate on flying and with regard to the effects of air traffic on pollutant emissions, noise and climate. The following topics are covered:
|
Literature |
|
Course L2934: Machine Learning in Safety-Critical Cyber-Physical Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 90 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The use of machine learning enables many highly complex applications, for example in autonomous systems. However, the application in safety-critical systems offers special challenges and makes special demands on the development. The course teaches the necessary basics and methods in the context of systems engineering for the use of data science, machine learning and AI in safety-critical systems. In addition, current areas of application and the current state of research are discussed. The following topics will be dealt with in detail:
|
Literature |
- J. Holt, S. A. Perry, M.
Brownsword. Model-Based Requirements Engineering. Institution Engineering
& Tech, 2011. |
Course L2935: Machine Learning in Safety-Critical Cyber-Physical Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 90 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0950: Mechanisms and Systems of Materials Testing - from the viewpoint of product development and Failure Analysis |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | SoSe |
Content |
Application, analysis and discussion of basic and advanced testing methods to ensure correct selection of applicable testing procedure for investigation of part/materials deficiencies
|
Literature |
|
Course L2863: Sustainable Industrial Production |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Simon Markus Kothe |
Language | DE |
Cycle | SoSe |
Content |
Industrial production deals with the manufacture of physical products to satisfy human needs using various manufacturing processes that change the form and physical properties of raw materials. Manufacturing is a central driver of economic development and has a major impact on the well-being of humanity. However, the scale of current manufacturing activities results in enormous global energy and material demands that are harmful to both the environment and people. Historically, industrial activities were mostly oriented towards economic constraints, while social and environmental consequences were only hardly considered. As a result, today's global consumption rates of many resources and associated emissions often exceed the natural regeneration rate of our planet. In this respect, current industrial production can mostly be described as unsustainable. This is emphasized each year by the Earth Overshoot Day, which marks the day when humanity's ecological footprint exceeds the Earth's annual regenerative capacity. This lecture aims to provide the motivation, analytical methods as well as approaches for sustainable industrial production and to clarify the influence of the production phase in relation to the raw material, use and recycling phases in the entire life cycle of products. For this, the following topics will be highlighted: - Motivation for sustainable production, the 17 Sustainable Development Goals (SDGs) of the UN and their relevance for tomorrow's manufacturing; - raw material vs. production phase vs. use phase vs. recycling/end-of-life phase: importance of the production phase for the environmental impact of manufactured products; - Typical energy- and resource-intensive processes in industrial production and innovative approaches to increase energy and resource efficiency; - Methodology for optimizing the energy and resource efficiency of industrial manufacturing chains with the three steps of modeling (1), evaluating (2) and improving (3); - Resource efficiency of industrial manufacturing value chains and its assessment using life cycle analysis (LCA); - Exercise: LCA analysis of a manufacturing process (thermoplastic joining of an aircraft fuselage segment) as part of a product life cycle assessment. |
Literature |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Course L0908: Turbo Jet Engines |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Burkhard Andrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | WiSe |
Content |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literature |
|
Course L1515: Structural Mechanics of Fibre Reinforced Composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0949: Materials Testing - from the viewpoint of industrial application |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | WiSe |
Content |
Application and analysis of basic mechanical as well as non-destructive testing of materials
|
Literature |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Course L2994: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L2995: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1193: Cabin Systems Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in: Previous knowledge in: |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: |
Skills |
Students are able to: |
Personal Competence | |
Social Competence |
Students are able to: |
Autonomy |
Students are able to: |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1557: Computer and communication technology in cabin electronics and avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung |
Course L1558: Computer and communication technology in cabin electronics and avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung |
Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
Objectives of the problem-oriented
course are the acquisition of knowledge on system design using the formal
languages SysML/UML, learning about tools for modeling and finally the
implementation of a project with methods and tools of Model-Based Systems
Engineering (MBSE) on a realistic hardware platform (e.g. Arduino®, Raspberry
Pi®): |
Literature |
- Skript zur Vorlesung |
Module M1744: Selected Topics of Aeronautical Systems Engineering (Alternative A: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of engineering. |
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L2739: Advanced Training Course SE-ZERT |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Course L1310: Airline Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick, Dr. Karl Echtermeyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: “Buying the Big Jets”, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L0848: Flight Guidance I (Introduction) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Cockpit systems and Avionics (cockpit design, cockpit equipment, displays, computers and bus systems) Principles of flight measurement techniques (Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Principles of Navigation Radio navigation Satellite navigation Airspace surveillance (radar systems) Commuication systems Integrated Navigation and Guidance Systems |
Literature |
Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics”, Springer Berlin Heidelberg New York 2003 |
Course L0854: Flight Guidance I (Introduction) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2374: Flight Guidance II (Flight Control) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011 R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011 |
Course L2375: Flight Guidance II (Flight Control) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1276: Airport Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick, Dr. Peter Willems |
Language | DE |
Cycle | WiSe |
Content | FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground handling Terminal operations |
Literature | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Course L1275: Airport Planning |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick, Dr. Ulrich Häp |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003
|
Course L1469: Airport Planning |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Volker Gollnick, Dr. Ulrich Häp |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1258: Lightweight Design Practical Course |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE/EN |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L1549: Aviation Security |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung |
Course L1550: Aviation Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L2376: Aviation and Environment |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | SoSe |
Content |
The lecture provides the necessary basics and methods for understanding the interactions between air traffic and the environment, both in terms of the effects of weather / climate on flying and with regard to the effects of air traffic on pollutant emissions, noise and climate. The following topics are covered:
|
Literature |
|
Course L2934: Machine Learning in Safety-Critical Cyber-Physical Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 90 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The use of machine learning enables many highly complex applications, for example in autonomous systems. However, the application in safety-critical systems offers special challenges and makes special demands on the development. The course teaches the necessary basics and methods in the context of systems engineering for the use of data science, machine learning and AI in safety-critical systems. In addition, current areas of application and the current state of research are discussed. The following topics will be dealt with in detail:
|
Literature |
- J. Holt, S. A. Perry, M.
Brownsword. Model-Based Requirements Engineering. Institution Engineering
& Tech, 2011. |
Course L2935: Machine Learning in Safety-Critical Cyber-Physical Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 90 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0950: Mechanisms and Systems of Materials Testing - from the viewpoint of product development and Failure Analysis |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | SoSe |
Content |
Application, analysis and discussion of basic and advanced testing methods to ensure correct selection of applicable testing procedure for investigation of part/materials deficiencies
|
Literature |
|
Course L2809: Multi Disciplinary Optimization in Aircraft Design |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Volker Gollnick |
Language | DE/EN |
Cycle | WiSe |
Content | |
Literature |
Course L2863: Sustainable Industrial Production |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Simon Markus Kothe |
Language | DE |
Cycle | SoSe |
Content |
Industrial production deals with the manufacture of physical products to satisfy human needs using various manufacturing processes that change the form and physical properties of raw materials. Manufacturing is a central driver of economic development and has a major impact on the well-being of humanity. However, the scale of current manufacturing activities results in enormous global energy and material demands that are harmful to both the environment and people. Historically, industrial activities were mostly oriented towards economic constraints, while social and environmental consequences were only hardly considered. As a result, today's global consumption rates of many resources and associated emissions often exceed the natural regeneration rate of our planet. In this respect, current industrial production can mostly be described as unsustainable. This is emphasized each year by the Earth Overshoot Day, which marks the day when humanity's ecological footprint exceeds the Earth's annual regenerative capacity. This lecture aims to provide the motivation, analytical methods as well as approaches for sustainable industrial production and to clarify the influence of the production phase in relation to the raw material, use and recycling phases in the entire life cycle of products. For this, the following topics will be highlighted: - Motivation for sustainable production, the 17 Sustainable Development Goals (SDGs) of the UN and their relevance for tomorrow's manufacturing; - raw material vs. production phase vs. use phase vs. recycling/end-of-life phase: importance of the production phase for the environmental impact of manufactured products; - Typical energy- and resource-intensive processes in industrial production and innovative approaches to increase energy and resource efficiency; - Methodology for optimizing the energy and resource efficiency of industrial manufacturing chains with the three steps of modeling (1), evaluating (2) and improving (3); - Resource efficiency of industrial manufacturing value chains and its assessment using life cycle analysis (LCA); - Exercise: LCA analysis of a manufacturing process (thermoplastic joining of an aircraft fuselage segment) as part of a product life cycle assessment. |
Literature |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Course L0908: Turbo Jet Engines |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Burkhard Andrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | WiSe |
Content |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literature |
|
Course L1515: Structural Mechanics of Fibre Reinforced Composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0949: Materials Testing - from the viewpoint of industrial application |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | WiSe |
Content |
Application and analysis of basic mechanical as well as non-destructive testing of materials
|
Literature |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Course L2994: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L2995: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1213: Avionics for safety-critical Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Dr. Martin Halle | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basic knowledge in:
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can:
|
||||||||
Skills |
Students can …
|
||||||||
Personal Competence | |||||||||
Social Competence |
Students can:
|
||||||||
Autonomy |
Students can:
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1640: Avionics of Safty Critical Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Martin Halle |
Language | DE |
Cycle | WiSe |
Content |
Avionics are all kinds off flight electronics. Today there is no aircraft system function without avionics, and avionics are one main source of innovation in aerospace industry. Since many system functions are highly safety critical, the development of avionics hardware and software underlies mandatory constraints, technics, and processes. It is inevitable for system developers and computer engineers in aerospace industry to understand and master these. This lecture teaches the risks and techniques of developing safety critical hardware and software; major avionics components; integration; and test with a practical orientation. A focus is on Integrated Modular Avionics (IMA). The lecture is accompanied by a mandatory and laboratory exercises. Content:
|
Literature |
|
Course L1641: Avionics of Safty Critical Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Martin Halle |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1652: Avionics of Safty Critical Systems |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Martin Halle |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1155: Aircraft Cabin Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in: |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: |
Skills |
Students are able to: |
Personal Competence | |
Social Competence |
Students are able to: |
Autonomy |
Students are able to: |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 Minutes |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Aeronautics: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1545: Aircraft Cabin Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about aircraft cabin systems and cabin operations. A basic understanding of technological and systems engineering effort to maintain an artificial but comfortable and safe travel and working environment at cruising altitude is to be achieved. The course provides a comprehensive
overview of current technology and cabin systems in modern passenger aircraft. The
Fulfillment of requirements for the cabin as the central system of work are covered
on the basis of the topics comfort, ergonomics, human factors, operational
processes, maintenance and energy supply: |
Literature |
- Skript zur Vorlesung |
Course L1546: Aircraft Cabin Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1919: Sustainable operation of technical assets |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerko Wende |
Admission Requirements | None |
Recommended Previous Knowledge |
We recommend knowledge in the areas of general engineering sciences, aeronautics and aircraft systems engineering. Technical fields like mechanical engineering, mechatronics and production engineering will be introduced into the relevant aeronautical content. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe fundamental correlations for the sustainable operation of technical assets and to identify solution approaches for complex optimization problems. |
Skills |
The students are enabled to apply the general engineering capabilities of the individual course towards the optimization of the sustainability in operation of technical assets. The resulting competencies will open an entry into positions in the development, production and technical operation of sustainable products in the mobility and engineering industries. |
Personal Competence | |
Social Competence |
The students are able to work in mixed groups with a clear focus on the approached solutions by respecting the complex environment of multiple stakeholders. |
Autonomy |
The students are enabled to find solutions for optimization problems and to take required decision for the assessment of determining factors independently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L3160: Fundamentals of Maintenance, Repair and Overhaul (MRO) |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerko Wende |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals for the sustainable operation of technical assets by means of maintenance, repair and overhaul (MRO):
|
Literature | - |
Course L3161: Fundamentals of Maintenance, Repair and Overhaul (MRO) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Gerko Wende |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Specialization Maritime Technology
At the center of the specialization Maritime Techniques lies the acquisition of knowledge and skills to develop, calculate and evaluate shipboard and offshore structures and their components. This is done in modules on the topics of marine engine systems, marine auxiliary systems, ship vibrations, maritime technology and maritime systems, port construction and port planning, port logistics, maritime transport and marine geotechnics and numerics in electives. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.
Module M1157: Marine Auxiliaries |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Christopher Friedrich Wirz |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to
|
Skills |
Students are able to • calculate short-circuit currents, switchgear, • design electrical propulsion systems for ships • design additional machinery components, as well as • to apply basic principles of hydraulics and to develop hydraulic systems. |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Autonomy |
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1531: Electrical Installation on Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin |
Course L1532: Electrical Installation on Ships |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1249: Auxiliary Systems on Board of Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1250: Auxiliary Systems on Board of Ships |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Siehe korrespondierende Vorlesung |
Module M1240: Fatigue Strength of Ships and Offshore Structures |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sören Ehlers |
Admission Requirements | None |
Recommended Previous Knowledge |
Structural analysis of ships and/or offshore structures and fundamental knowledge in mechanics and mechanics of materials |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to calculate life prediction based on the S-N approach as well as life prediction based on the crack propagation. |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Autonomy |
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1521: Fatigue Strength of Ships and Offshore Structures |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Wolfgang Fricke |
Language | EN |
Cycle | WiSe |
Content |
1.) Introduction |
Literature | Siehe Vorlesungsskript |
Course L1522: Fatigue Strength of Ships and Offshore Structures |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Wolfgang Fricke |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1177: Maritime Technology and Maritime Systems |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Moustafa Abdel-Maksoud |
Admission Requirements | None |
Recommended Previous Knowledge |
Solid knowledge and competences in mechanics, fluid dynamics and analysis (series, periodic functions, continuity, differentiability, integration, multiple variables, ordinaray and partial differential equations, boundary value problems, initial conditions and eigenvalue problems). |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of this class, students should have an overview about phenomena and methods in ocean engineering and the ability to apply and extend the methods presented. In detail, the students should be able to
|
Skills |
The students learn the ability of apply and transfer existing methods and techniques on novel questions in maritime technologies. Furthermore, limits of the existing knowledge and future developments will be discussed. |
Personal Competence | |
Social Competence |
The processing of an exercise in a group of up to four students shall strengthen the communication and team-working skills and thus promote an important working technicque of subsequent working days. The collaboration has to be illustrated in a community presentation of the results. |
Autonomy |
The course contents are absorbed in an exercise work in a group and individually checked in a final exam in which a self-reflection of the learned is expected without tools. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0068: Analysis of Maritime Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0069: Analysis of Maritime Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0070: Introduction to Maritime Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Walter Kuehnlein, Dr. Sven Hoog |
Language | DE |
Cycle | WiSe |
Content |
1. Introduction
2. Coastal and offshore Environmental Conditions
3. Response behavior of Technical Structures 4. Maritime Systems and Technologies
|
Literature |
|
Course L1614: Introduction to Maritime Technology |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Walter Kuehnlein |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0663: Marine Geotechnics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jürgen Grabe |
Admission Requirements | None |
Recommended Previous Knowledge |
Complete modules: Geotechnics I-III, Mathematics I-III Courses: Soil laboratory course |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students get a deeper knowledge of steel and ground engineering as well as constructions knowledge concerning quay walls. Furthermore, the students get all the necessary knowledge to design singular construction elements for sheet pile walls and they know how to choose the right construction elements depending on the influencing conditions. |
Skills |
Furthermore, the students are able to dimension sheet pile wall construction regarding all construction elements, to choose the suitable construction elements with respect to the influencing conditions, to design all kinds of sheet pile walls (wave sheet pile walls and combined sheet pile walls) and to dimension all construction elements and connections. |
Personal Competence | |
Social Competence | |
Autonomy |
Students are able to assess their own strengths and weaknesses and organize their time and learning management based on this. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L0548: Marine Geotechnics |
Typ | Lecture |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0549: Marine Geotechnics |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jürgen Grabe |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1146: Steel Structures in Foundation and Hydraulic Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Frank Feindt |
Language | DE |
Cycle | SoSe |
Content | Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue |
Literature | EAU 2012, EA-Pfähle, EAB |
Module M1132: Maritime Transport |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Carlos Jahn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students are able to…
|
||||||||
Skills |
The students are able to...
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to...
|
||||||||
Autonomy |
The students are capable to...
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0063: Maritime Transport |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The general tasks of maritime logistics include the planning, design, implementation and control of material and information flows in the logistics chain ship - port - hinterland. The aim of the course is to provide students with knowledge of maritime transport and the actors involved in the maritime transport chain. Typical problem areas and tasks will be dealt with, taking into account the economic development. Thus, classical problems as well as current developments and trends in the field of maritime logistics are considered. In the lecture, the components of the maritime logistics chain and the actors involved will be examined and risk assessments of human disturbances on the supply chain will be developed. In addition, students learn to estimate the potential of digitisation in maritime shipping, especially with regard to the monitoring of ships. In addition, students are able to design operational planning for fleets of container or tramp vessels. Further content of the lecture is the different modes of transport in the hinterland, which students can evaluate after completion of the course regarding their advantages and disadvantages. |
Literature |
|
Course L0064: Maritime Transport |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The exercise lesson bases on the haptic management game MARITIME. MARITIME focuses on providing knowledge about structures and processes in a maritime transport network. Furthermore, the management game systematically provides process management methodology and also promotes personal skills of the participants. |
Literature |
|
Module M1021: Marine Diesel Engine Plants |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christopher Friedrich Wirz |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can • explain different types four / two-stroke engines and assign types to given engines, • name definitions and characteristics, as well as • elaborate on special features of the heavy oil operation, lubrication and cooling. |
Skills |
Students can • evaluate the interaction of ship, engine and propeller, • use relationships between gas exchange, flushing, air demand, charge injection and combustion for the design of systems, • design waste heat recovery, starting systems, controls, automation, foundation and design machinery spaces , and • apply evaluation methods for excited motor noise and vibration. |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Autonomy |
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0637: Marine Diesel Engine Plants |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0638: Marine Diesel Engine Plants |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Christopher Friedrich Wirz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1133: Port Logistics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Carlos Jahn | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | none | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Th After completing the module, students can...
|
||||||||
Skills |
After completing the module, students will be able to...
|
||||||||
Personal Competence | |||||||||
Social Competence |
After completing the module, students can...
|
||||||||
Autonomy |
After completing the module, the students are able to...
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 minutes | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L0686: Port Logistics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The extraordinary role of maritime transport in international trade requires very efficient ports. These must meet numerous requirements in terms of economy, speed, safety and the environment. Against this background, the lecture Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The aim of the lecture Port Logistics is to convey an understanding of structures and processes in ports. The focus will be on different types of terminals, their characteristical layouts and the technical equipment used as well as the ongoing digitization and interaction of the players involved. In addition, renowned guest speakers from science and practice will be regularly invited to discuss some lecture-relevant topics from alternative perspectives. The following contents will be conveyed in the lectures:
|
Literature |
|
Course L1473: Port Logistics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Carlos Jahn |
Language | DE |
Cycle | SoSe |
Content |
The content of the exercise is the independent preparation of a
scientific paper plus an accompanying presentation on a current topic of port
logistics. The paper deals with current topics of port logistics. For example,
the future challenges in sustainability and productivity of ports, the digital
transformation of terminals and ports or the introduction of new regulations by
the International Maritime Organization regarding the verified gross weight of
containers. Due to the international orientation of the event, the paper is to
be prepared in English.
|
Literature |
|
Module M1175: Special Topics of Ship Propulsionand Hydrodynamics of High Speed Water Vehicles |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Moustafa Abdel-Maksoud |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge on ship resistance, ship propulsion and propeller theory |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to |
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are able to assess their knowledge by means of exercises and case studies |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1593: Hydrodynamics of High Speed Water Vehicles |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
Faltinsen,O. M., Hydrodynamics of High-Speed Marine Vehicles, Cambridge University Press, UK, 2006 |
Course L1589: Special Topics of Ship Propulsion |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1233: Numerical Methods in Ship Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Stefan Krüger |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 45 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1271: Numerical Methods in Ship Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Krüger |
Language | DE |
Cycle | SoSe |
Content |
The lecture starts with the definition of the early design phase and the importance of first principle approaches. The |
Literature | Skript zur Vorlesung. |
Course L1709: Numerical Methods in Ship Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Krüger |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1146: Ship Vibration |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Rüdiger Ulrich Franz von Bock und Polach |
Admission Requirements | None |
Recommended Previous Knowledge |
Mechanis I - III |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can reproduce the acceptance criteria for vibrations on ships; they can explain the methods for the calculation of natural frequencies and forced vibrations of sructural components and the entire hull girder; they understand the effect of exciting forces of the propeller and main engine and methods for their determination |
Skills |
Students are capable to apply methods for the calculation of natural frequencies and exciting forces and resulting vibrations of ship structures including their assessment; they can model structures for the vibration analysis |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Autonomy |
Students are able to detect vibration-prone components on ships, to model the structure, to select suitable calculation methods and to assess the results |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 3 hours |
Assignment for the Following Curricula |
Energy Systems: Specialisation Marine Engineering: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Ship and Offshore Technology: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1528: Ship Vibration |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rüdiger Ulrich Franz von Bock und Polach |
Language | EN |
Cycle | WiSe |
Content |
1. Introduction; assessment of vibrations |
Literature | Siehe Vorlesungsskript |
Course L1529: Ship Vibration |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Rüdiger Ulrich Franz von Bock und Polach |
Language | EN |
Cycle | WiSe |
Content |
1. Introduction; assessment of vibrations |
Literature | Siehe Vorlesungsskript |
Module M1268: Linear and Nonlinear Waves |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Calculus, Algebra, Engineering Mechanics, Vibrations. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1737: Linear and Nonlinear Waves |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | WiSe |
Content |
Introduction into the Dynamics of Linear and Nonlinear Waves
|
Literature |
F.K. Kneubühl: Oscillations and Waves. Springer. G.B. Witham, Linear and Nonlinear Waves. Wiley. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific. L.H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge. And others. |
Module M1148: Selected topics in Naval Architecture and Ocean Engineering |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Sören Ehlers |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of ship and ocean engineering. |
Personal Competence | |
Social Competence |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1896: Outfitting and Operation of Special Purpose Offshore Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Hendrik Vorhölter |
Language | DE |
Cycle | SoSe |
Content |
The lecture is separated into two parts. In the first part some
basic skills necessary for the design of offshore vessels and
their equipment will be repeated and where necessary deepened. In
particular, the specialties which are common for the ma-jority of
offshore vessels will be addressed: rules and regulations,
determination of operational limits as well as mooring and dynamic
positioning. |
Literature |
Chakrabarti, S. (2005): Handbook of Offshore Engineering. Elsevier. Amsterdam, London Volker Patzold (2008): Der Nassabbau. Springer. Berlin Milwee, W. (1996): Modern Marine Salvage. Md Cornell Maritime Press. Centreville. DNVGL-ST-N001 „Marine Operations and Marin Warranty“ IMCA M 103 “The Design and Operation of Dynamically Positioned Vessels” 2007-12 IMCA M 182 “The Safe Operation of Dynamically Positioned Offshore Supply Vessels” 2006-03 IMCA M 187 “Lifting Operations” 2007-10 IMCA SEL 185 “Transfer of Personnel to and from Offshore Vessels” 2010-03 |
Course L0670: Design of Underwater Vessels |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Peter Hauschildt |
Language | DE |
Cycle | SoSe |
Content |
The lectures will give an overview about the design of underwater vessels. The Topics are: 1.) Special requirements on the design of modern, konventional submarines 2.) Design history 3.) Generals description of submarines 4.) Civil submersibles 5.) Diving, trim, stability 6.) Rudders and Propulsion systems 7.) Air Independent propulsion 8.) Signatures 9.) Hydrodynamics and CFD 10.) Weapon- and combatmangementsystems 11.) Safety and rescue 12.) Fatigue and shock 13.) Ships technical systems 14.) Electricals Systems and automation 15.) Logisics 16.) Accomodation Some of the lectures will be Hheld in form of a excursion to ThyssenKrupp Marine Systems in Kiel |
Literature | Gabler, Ubootsbau |
Course L2066: Lattice-Boltzmann methods for the simulation of free surface flows |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Christian Friedrich Janßen |
Language | DE/EN |
Cycle | WiSe |
Content |
This lecture addresses Lattice Boltzmann Methods for the simulation of free surface flows. After an introduction to the basic concepts of kinetic methods (LGCAs, LBM, ….), recent LBM extensions for the simulation of free-surface flows are discussed. Parallel to the lecture, selected maritime free-surface flow problems are to be solved numerically. |
Literature |
Krüger et al., “The Lattice Boltzmann Method - Principles and Practice”, Springer Zhou, “Lattice Boltzmann Methods for Shallow Water Flows”, Springer Janßen, “Kinetic approaches for the simulation of non-linear free surface flow problems in civil and environmental engineering”, PhD thesis, TU Braunschweig, 2010. |
Course L2855: Machine Learning and Dynamics of Maritime Systems I |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Dr. Marco Klein |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
S. Chakrabarti, Handbook of Offshore Engineering. Elsevier 2005. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific 2004. Weitere Literaturempfehlungen während der Veranstaltung |
Course L2856: Machine Learning and Dynamics of Maritime Systems II |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Dr. Marco Klein |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
S. Chakrabarti, Handbook of Offshore Engineering. Elsevier 2005. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific 2004. Weitere Literaturempfehlungen während der Veranstaltung |
Course L2013: Modeling and Simulation of Maritime Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Christian Friedrich Janßen |
Language | DE/EN |
Cycle | SoSe |
Content |
In the scope of this lecture, students learn to model and solve selected maritime problems with the help of numerical programs and scripts. |
Literature |
“Introduction to Computational Modeling Using C and Open-Source Tools” (J.M. Garrido, Chapman and Hall); “Introduction to Computational Models with Python” (J.M. Garrido, Chapman and Hall); “Programming Fundamentals” (MATLAB Handbook, MathWorks); |
Course L0072: Offshore Wind Parks |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Alexander Mitzlaff |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1605: Ship Acoustics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Dietrich Wittekind |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0352: Ship Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE |
Cycle | SoSe |
Content |
Maneuverability of ships
|
Literature |
|
Course L0240: Selected Topics of Experimental and Theoretical Fluiddynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Thomas Rung |
Language | DE |
Cycle | WiSe |
Content |
Will be announced at the beginning of the lecture. Exemplary topics are
|
Literature |
Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture. |
Course L0873: Technical Elements and Fluid Mechanics of Sailing Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Thomas Rung, Peter Schenzle |
Language | DE/EN |
Cycle | WiSe |
Content |
Principles of Sailing Mechanics: - Sailing: Propulsion from relative motion - Lifting foils: Sails, wings, rudders, fins, keels - Wind climate: global, seasonal, meteorological, local - Aerodynamics of sails and sailing rigs - Hydrodynamics of Hulls and fins Technical Elements of Sailing: - Traditional and modern sail types - Modern and unconventional wind propulsors - Hull forms and keel-rudder-configurations - Sailing performance Prediction (VPP) - Auxiliary wind propulsion (motor-sailing) Configuration of Sailing Ships: - Balancing hull and sailing rig - Sailing-boats and -yachts - Traditional Tall Sailing Ships - Modern Wind-Ships |
Literature |
- Vorlesungs-Manuskript mit Literatur-Liste: Verteilt zur Vorlesung |
Course L0765: Technology of Naval Surface Vessels |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Martin Schöttelndreyer |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Th. Christensen, H.-D. Ehrenberg, H. Götte, J. Wessel: Entwurf von Fregatten und Korvetten, in: H. Keil (Hrsg.), Handbuch der Werften, Bd. XXV, Schiffahrts-Verlag "Hansa" C. Schroedter & Co., Hamburg (2000) 16th International Ship and Offshore Structures Congress: Committee V.5 - Naval Ship Design (2006) P. G. Gates: Surface Warships - An Introduction to Design Principles, Brassey’s Defence Publishers, London (1987) |
Module M1165: Ship Safety |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Stefan Krüger |
Admission Requirements | None |
Recommended Previous Knowledge | Ship Design, Hydrostatics, Statistical Processes |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The student shall lean to integrate safety aspects into the ship design process. This includes the undertsnding and |
Skills |
he lectures starts with an overview about general safety concepts for technical systems. The maritime safety - Freeboard, water- and weathertight subdivisions, openings - all aspects of intact stability, including special problems such as grain code - damage stability for passenger vessels including Stockholm agreement - damage stbility fopr cargo vessels - on board stability, inclining experiment and stability booklet - Relevant manoevering information |
Personal Competence | |
Social Competence | The student learns to take responsibilty for the safety of his designn. |
Autonomy | Responsible certification of technical designs. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1267: Ship Safety |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Krüger |
Language | DE |
Cycle | WiSe |
Content |
The lectures starts with an overview about general safety concepts for technical systems. The maritime safety - Freeboard, water- and weathertight subdivisions, openings - all aspects of intact stability, including special problems such as grain code - damage stability for passenger vessels including Stockholm agreement - damage stbility fopr cargo vessels - on board stability, inclining experiment and stability booklet - Relevant manoevering information |
Literature | SOLAS, LOAD LINES, CODE ON INTACT STABILITY. Alle IMO, London. |
Course L1268: Ship Safety |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Stefan Krüger |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1178: Manoeuvrability and Shallow Water Ship Hydrodynamics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Moustafa Abdel-Maksoud |
Admission Requirements | None |
Recommended Previous Knowledge |
B.Sc. Schiffbau |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students lern the motion equation and how to describe hydrodynamic forces. They'll will be able to develop methods for analysis of manoeuvring behaviour of ships and explaining the Nomoto equation. The students will know the common model tests as well as their assets and drawbacks. Furthermore, the students lern the basics of assessment and prognosis of ship manoeuvrabilit. Basics of characteristics of flows around ships in shallow water regarding ship propulsion and manoeuvrability will be aquired. |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1597: Manoeuvrability of Ships |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud |
Language | DE/EN |
Cycle | WiSe |
Content |
Learning Outcomes Introduction into basic concepts for the assessment and prognosis ship manoeuvrabilit. Ability to develop methods for analysis of manoeuvring behaviour of ships. |
Literature |
|
Course L1598: Shallow Water Ship Hydrodynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Moustafa Abdel-Maksoud, Dr. Norbert Stuntz |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1232: Arctic Technology |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Sören Ehlers |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The challenges and requirements due to ice can be explained. Ice loads can be explained and ice strengthening can be understood. |
Skills |
The challenges and requirements due to ice can be assessed and the accuracy of these assessment can be evaluated. Calculation models to assess ice loads can be used and a structure can be designed accordingly. |
Personal Competence | |
Social Competence |
Students are capable to present their structural design and discuss their decisions constructively in a group. |
Autonomy |
Independent and individual assignment tasks can be carried out and presented whereby the capabilities to both, present and defend, the skills and findings will be achieved. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory |
Course L1607: Ice Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Walter Kuehnlein |
Language | DE/EN |
Cycle | WiSe |
Content |
Learning Objectives The course will provide an introduction into ice engineering. Different kinds of ice and their different failure modes including numerical methods for ice load simulations are presented. Main design issues including design philosophies for structures and systems for ice covered waters are introduced. The course shall enable the attendees to understand the fundamental challenges due to ice covered waters and help them to understand ice engineering reports and presentations. |
Literature |
|
Course L1615: Ice Engineering |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Walter Kuehnlein |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1575: Ship structural design for arctic conditions |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Rüdiger Ulrich Franz von Bock und Polach, Dr. Rüdiger Ulrich Franz von Bock und Polach |
Language | DE/EN |
Cycle | WiSe |
Content | The structural design under ice loads will be carried out for an individual case |
Literature | FSICR, IACS PC and assorted publications |
Specialization Materials Science
The focus of the specialization „materials technology“ is the acquisition of in-depth knowledge and skills in materials technology. One main focus is on the creation of modern material models. Modules in the electives are the material modeling and Multi-scale modeling phenomena and methods in materials science, polymer processing, as well as plastics and composites. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.
Module M1345: Metallic and Hybrid Light-weight Materials |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Marcus Rutner |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 45 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Marcus Rutner |
Language | EN |
Cycle | WiSe |
Content |
Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures. Theoretical Lectures:
Laboratory Exercises:
Course Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literature |
|
Course L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Marcus Rutner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1660: Metallic Light-weight Materials |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Domonkos Tolnai |
Language | EN |
Cycle | WiSe |
Content |
Lightweight construction - Structural lightweight construction - Material lightweight construction - Choice criteria for metallic lightweight construction materials Steel as lightweight construction materials - Introduction to the fundamentals of steels - Modern steels for the lightweight construction - Fine grain steels - High-strength low-alloyed steels - Multi-phase steels (dual phase, TRIP) - Weldability - Applications Aluminium alloys: Introduction to the fundamentals of aluminium materials Alloy systems Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications
Magnesium alloys Introduction to the fundamental of magnesium materials Alloy systems Magnesium casting alloys, processing, microstructure and qualities Magnesium wrought alloys, processing, microstructure and qualities Examples of applications Titanium alloys Introduction to the fundamental of the titanium materials Alloy systems Processing, microstructure and properties Examples of applications
Exercises and excursions |
Literature |
George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S. Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2 C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095 Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S. Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S. Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2 Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9 Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5 G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya “Fundamentals of Magnesium Alloy Metallurgy”, Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887 |
Module M1342: Polymers |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Hans Wittich |
Admission Requirements | None |
Recommended Previous Knowledge | Basics: chemistry / physics / material science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of plastics and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of - using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials. - selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance. |
Personal Competence | |
Social Competence |
Students can - arrive at funded work results in heterogenius groups and document them. - provide appropriate feedback and handle feedback on their own performance constructively. |
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Materials Science: Specialisation Engineering Materials: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L0389: Structure and Properties of Polymers |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Hans Wittich |
Language | DE |
Cycle | WiSe |
Content |
- Structure and properties of polymers - Structure of macromolecules Constitution, Configuration, Conformation, Bonds, Synthesis, Molecular weihght distribution - Morphology amorph, crystalline, blends - Properties Elasticity, plasticity, viscoelacity - Thermal properties - Electrical properties - Theoretical modelling - Applications |
Literature | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Course L1892: Processing and design with polymers |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler, Dr. Hans Wittich |
Language | DE/EN |
Cycle | WiSe |
Content |
Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literature |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1343: Structure and properties of fibre-polymer-composites |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge | Basics: chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1894: Structure and properties of fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literature |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Course L2614: Structure and properties of fibre-polymer-composites |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content | |
Literature |
Course L2613: Structure and properties of fibre-polymer-composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M1226: Mechanical Properties |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Shan Shi |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics in Materials Science I/II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain basic principles of crystallography, statics (free body diagrams, tractions) and thermodynamics (energy minimization, energy barriers, entropy) |
Skills |
Students are capable of using standardized calculation methods: tensor calculations, derivatives, integrals, tensor transformations |
Personal Competence | |
Social Competence |
Students can provide appropriate feedback and handle feedback on their own performance constructively. |
Autonomy |
Students are able to - assess their own strengths and weaknesses - assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers. - work independently based on lectures and notes to solve problems, and to ask for help or clarifications when needed |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Materials Science: Core Qualification: Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1661: Mechanical Behaviour of Brittle Materials |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Gerold Schneider |
Language | DE/EN |
Cycle | SoSe |
Content |
Theoretical
Strength Real
strength of brittle materials Scattering
of strength of brittle materials Heterogeneous materials I Heterogeneous materials II Heterogeneous materials III Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical
crack growth) Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components |
Literature |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Course L1662: Dislocation Theory of Plasticity |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Shan Shi |
Language | DE/EN |
Cycle | SoSe |
Content |
This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects. We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes. |
Literature |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Module M1238: Quantum Mechanics of Solids |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Gregor Vonbun-Feldbauer |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of advanced mathematics like analysis,
linear algebra, differential equations and complex functions, e.g., Mathematics
I-IV |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The master students will be able to explain… …the basics of quantum mechanics. … the importance of quantum physics for the description of materials properties. … correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials. The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in order to understand these connections. |
Skills |
After attending this lecture the students can … …perform materials design on a quantum mechanical basis. |
Personal Competence | |
Social Competence |
The students are able to discuss competently quantum-mechanics-based subjects with experts from fields such as physics and materials science. |
Autonomy |
The students are able to independently develop solutions to quantum mechanical problems. They can also acquire the knowledge they need to deal with more complex questions with a quantum mechanical background from the literature. |
Workload in Hours | Independent Study Time 138, Study Time in Lecture 42 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | |
Assignment for the Following Curricula |
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Materials Science: Specialisation Modeling: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1675: Quantum Mechanics of Solids |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Gregor Vonbun-Feldbauer |
Language | DE/EN |
Cycle | SoSe |
Content |
1.
Introduction
2.
Foundations of Quantum Mechanics
3.
Elementary QM Problems
4.
Quantum Effects in Condensed Matter
|
Literature |
Physik für Ingenieure, Hering/Martin/Stohrer, Springer
|
Course L1676: Quantum Mechanics of Solids |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Gregor Vonbun-Feldbauer |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1344: Processing of fibre-polymer-composites |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge in the basics of chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to give a summary of the technical details of the manufacturing processes composites and illustrate respective relationships. They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the typical process of solving practical problems and present related results. |
Skills |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents (fiber / matrix) and define the necessary testing and analysis. They can explain the complex structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Personal Competence | |
Social Competence | Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of civil engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the ability to develop alternative approaches to an engineering problem independently or in groups and discuss advantages as well as drawbacks. |
Autonomy | Students are capable of independently solving mechanical engineering problems using provided literature. They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1895: Processing of fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content | Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding |
Literature | Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Course L1516: From Molecule to Composites Part |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | SoSe |
Content |
Students get the task in the form of a customer request for the development and production of a MTB handlebar made of fiber composites. In the task technical and normative requirements (standards) are given, all other required information come from the lectures and tutorials, and the respective documents (electronically and in conversation). |
Literature |
Customer Request ("Handout") |
Module M1199: Advanced Functional Materials |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Patrick Huber |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in Materials Science, e.g. Materials Science I/II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials. |
Skills |
The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications. |
Personal Competence | |
Social Competence |
The students are able to present solutions to specialists and to develop ideas further. |
Autonomy |
The students are able to ...
|
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Materials Science: Core Qualification: Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1625: Advanced Functional Materials |
Typ | Seminar |
Hrs/wk | 2 |
CP | 6 |
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Lecturer | Prof. Patrick Huber, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller, Prof. Kaline Pagnan Furlan, Prof. Robert Meißner |
Language | DE |
Cycle | WiSe |
Content |
1. Porous Solids - Preparation, Characterization and Functionalities |
Literature |
Aktuelle Publikationen aus der Fachliteratur werden während der Veranstaltung bekanntgegeben. |
Module M1170: Phenomena and Methods in Materials Science |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jörg Weißmüller |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in Materials Science, e.g. Werkstoffwissenschaft I/II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials. |
Skills |
The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications. |
Personal Competence | |
Social Competence |
The students are able to present solutions to specialists and to develop ideas further. |
Autonomy |
The students are able to ...
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1580: Experimental Methods for the Characterization of Materials |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Shan Shi |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Course L1579: Phase equilibria and transformations |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jörg Weißmüller |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free-energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems. |
Literature |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter
Haasen, „Physikalische Metallkunde“ ,
Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. |
Course L2991: Übung zu Phänomene und Methoden der Materialwissenschaft |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Shan Shi |
Language | DE |
Cycle | WiSe |
Content |
Practice problems to practice and deepen the skills and content taught in the module. Exercises explore mathematical details in greater depth with the aim of familiarizing students with equations/concepts and how to apply them in practice (e.g. defining thermodynamic potentials and relationships, calculating enthalpy and entropy of a solid solution, constructing phase diagrams, ...). |
Literature |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter Haasen, „Physikalische Metallkunde“ , Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Module M1198: Materials Physics and Atomistic Materials Modeling |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Patrick Huber |
Admission Requirements | None |
Recommended Previous Knowledge | Advanced mathematics, physics and chemistry for students in engineering or natural sciences |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to - explain the fundamentals of condensed matter physics - describe the fundamentals of the microscopic structure and mechanics, thermodynamics and optics of materials systems. - to understand concept and realization of advanced methods in atomistic modeling as well as to estimate their potential and limitations. |
Skills |
After attending this lecture the students
|
Personal Competence | |
Social Competence |
The students are able to present solutions to specialists and to develop ideas further. |
Autonomy |
Students are able to assess their knowldege continuously on their own by exemplified practice. The students are able to assess their own strengths and weaknesses and define tasks independently. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Materials Science: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory |
Course L1624: Materials Physics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Patrick Huber |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Für den Elektromagnetismus:
Für die Atomphysik:
Für die Materialphysik und Elastizität:
|
Course L1672: Quantum Mechanics and Atomistic Materials Modeling |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Meißner |
Language | DE |
Cycle | WiSe |
Content |
- Why atomistic materials modeling
|
Literature |
Begleitliteratur zur Vorlesung (sortiert nach Relevanz):
Zur Vorbereitung auf den quantenmechanischen Teil der Klausur empfiehlt sich folgende Literatur
|
Course L2002: Exercises in Materials Physics and Modeling |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Meißner, Prof. Patrick Huber |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
- Daan Frenkel & Berend Smit: Understanding Molecular Simulation from Algorithms to Applications - Rudolf Gross und Achim Marx: Festkörperphysik - Neil Ashcroft and David Mermin: Solid State Physics |
Specialization Product Development and Production
At the center of the specialization „product development and production“ is the acquisition of knowledge and skills for developing, designing and manufacturing of mechanical engineering products. This includes product planning, systematic and methodical development of solution concepts, the design and construction of products with special emphasis on component stress and cost considerations, to the derivation and creation of manufacturing documentation and the implementation in production.
Module M0815: Product Planning |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Cornelius Herstatt | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Good basic-knowledge of Business Administration |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students will gain insights into:
|
||||||||
Skills |
Students will gain deep insights into:
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Thesis | ||||||||
Examination duration and scale | 90 minutes | ||||||||
Assignment for the Following Curricula |
Global Innovation Management: Core Qualification: Compulsory International Management and Engineering: Specialisation I. Electives Management: Elective Compulsory Mechanical Engineering and Management: Specialisation Management: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L0851: Product Planning |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Cornelius Herstatt |
Language | EN |
Cycle | WiSe |
Content |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: Voluntary presentations in the third hour (articles / case studies) - Guest lectures by researchers - Lecture on Sustainability with frequent reference to current research - Permanent reference to current research Examination: In addition to the written exam at the end of the module, students have to attend the PBL-exercises and prepare presentations in groups in order to pass the module. Additionally, students have the opportunity to present research papers on a voluntary base. With these presentations it is possible to gain a bonus of max. 20% for the exam. However, the bonus is only valid if the exam is passed without the bonus. |
Literature | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Course L0853: Product Planning Seminar |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Cornelius Herstatt |
Language | EN |
Cycle | WiSe |
Content | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly. |
Literature | See lecture information "Product Planning". |
Module M0867: Production Planning & Control and Digital Enterprise |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Hermann Lödding |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of Production and Quality Management |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students can explain the contents of the module in detail and take a critical position to them. |
Skills | Students are capable of choosing and applying models and methods from the module to industrial problems. |
Personal Competence | |
Social Competence |
Students can develop joint solutions in mixed teams and present them to others. |
Autonomy | - |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 Minuten |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L0932: The Digital Enterprise |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Robert Rost |
Language | DE |
Cycle | WiSe |
Content |
Due to the developments of Industry 4.0, digitalization and interconnectivity become a strategic advantage for companies in the international competition. This lecture focuses on the relevant modules and enables the participants to evaluate current developments in this context. In particular, knowledge management, simulation, process modelling and virtual technologies are covered. Content:
|
Literature |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Course L0929: Production Planning and Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Hermann Lödding |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0930: Production Planning and Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Hermann Lödding |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0933: Exercise: The Digital Enterprise |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Robert Rost |
Language | DE |
Cycle | WiSe |
Content |
See interlocking course |
Literature |
Siehe korrespondierende Vorlesung See interlocking course |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1024: Methods of Integrated Product Development |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Dieter Krause |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of Integrated product development and applying CAE systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After passing the module students are able to:
|
Skills |
After passing the module students are able to:
|
Personal Competence | |
Social Competence |
After passing the module students are able to:
|
Autonomy |
After passing the module students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 Minuten |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1254: Integrated Product Development II |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content |
Lecture The lecture extends and enhances the learned content of the module “Integrated Product Development and lightweight design” and is based on the knowledge and skills acquired there.
Construction management
Exercise (PBL) In the exercise the content presented in the lecture “Integrated Product Development II” and methods of product development and design management will be enhanced. |
Literature |
|
Course L1255: Integrated Product Development II |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1209: Selected Topics of Product Development, Materials Science and Production (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Dieter Krause |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | - |
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1592: Applied Automation |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 Minuten |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | WiSe |
Content |
-Project Based Learning -Robot Operating System -Robot structure and description -Motion description -Calibration -Accuracy |
Literature |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Course L2739: Advanced Training Course SE-ZERT |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Course L0927: Elements of Integrated Production Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Hermann Lödding |
Language | DE |
Cycle | SoSe |
Content | not available |
Literature |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Course L1512: Development Management for Mechatronics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 Minuten |
Lecturer | NN, Dr. Johannes Nicolas Gebhardt |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L2012: Industry 4.0 for engineers |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L2168: Innovation and Product Management |
Typ | Seminar |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Christoph Fuchs |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L1258: Lightweight Design Practical Course |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE/EN |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L0950: Mechanisms, Systems and Processes of Materials Testing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | SoSe |
Content |
Application, analysis and discussion of basic and advanced testing methods to ensure correct selection of applicable testing procedure for investigation of part/materials deficiencies
|
Literature |
|
Course L0724: Microsystems Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Hoc Khiem Trieu |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Course L2863: Sustainable Industrial Production |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Simon Markus Kothe |
Language | DE |
Cycle | SoSe |
Content |
Industrial production deals with the manufacture of physical products to satisfy human needs using various manufacturing processes that change the form and physical properties of raw materials. Manufacturing is a central driver of economic development and has a major impact on the well-being of humanity. However, the scale of current manufacturing activities results in enormous global energy and material demands that are harmful to both the environment and people. Historically, industrial activities were mostly oriented towards economic constraints, while social and environmental consequences were only hardly considered. As a result, today's global consumption rates of many resources and associated emissions often exceed the natural regeneration rate of our planet. In this respect, current industrial production can mostly be described as unsustainable. This is emphasized each year by the Earth Overshoot Day, which marks the day when humanity's ecological footprint exceeds the Earth's annual regenerative capacity. This lecture aims to provide the motivation, analytical methods as well as approaches for sustainable industrial production and to clarify the influence of the production phase in relation to the raw material, use and recycling phases in the entire life cycle of products. For this, the following topics will be highlighted: - Motivation for sustainable production, the 17 Sustainable Development Goals (SDGs) of the UN and their relevance for tomorrow's manufacturing; - raw material vs. production phase vs. use phase vs. recycling/end-of-life phase: importance of the production phase for the environmental impact of manufactured products; - Typical energy- and resource-intensive processes in industrial production and innovative approaches to increase energy and resource efficiency; - Methodology for optimizing the energy and resource efficiency of industrial manufacturing chains with the three steps of modeling (1), evaluating (2) and improving (3); - Resource efficiency of industrial manufacturing value chains and its assessment using life cycle analysis (LCA); - Exercise: LCA analysis of a manufacturing process (thermoplastic joining of an aircraft fuselage segment) as part of a product life cycle assessment. |
Literature |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Course L0928: Productivity Management |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Hermann Lödding, Christopher Mundt |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Course L0931: Productivity Management |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Hermann Lödding, Tim Jansen |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0664: Feedback Control in Medical Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 20 min |
Lecturer | Johannes Kreuzer, Christian Neuhaus |
Language | DE |
Cycle | SoSe |
Content |
Always viewed from the engineer's point of view, the lecture is structured as follows:
Techniques of modeling, simulation and controller development are discussed. In the models, simple equivalent block diagrams for physiological processes are derived and explained how sensors, controllers and actuators are operated. MATLAB and SIMULINK are used as development tools. |
Literature |
|
Course L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Benedikt Kriegesmann |
Language | EN |
Cycle | WiSe |
Content |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literature |
|
Course L1820: System Simulation |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Stefan Wischhusen, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content |
Lecture about equation-based, physical modelling using the modelling language Modelica and the free simulation tool OpenModelica 1.17.0.
|
Literature |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. |
Course L1821: System Simulation |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Dr. Stefan Wischhusen, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1513: Technical Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Lecturer | Prof. Werner Granzeier, Prof. Dieter Krause |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Course L0949: Materials Testing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Dr. Jan Oke Peters |
Language | DE |
Cycle | WiSe |
Content |
Application and analysis of basic mechanical as well as non-destructive testing of materials
|
Literature |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Course L2994: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L2995: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1281: Advanced Topics in Vibration |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge | Vibration Theory |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1743: Advanced Topics in Vibration |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | SoSe |
Content |
Advanced and Research Topics in Vibrations
|
Literature |
Aktuelle Veröffentlichungen / Recent research publications Bücher/Books: Gasch, Nordmann, Pfützner: Rotordynamik Gasch, Knothe, Liebich: Strukturdynamik |
Module M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements | None |
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann, Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | SoSe |
Content |
- Introduction and Motivation |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann, Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1174: Automation Technology and Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Thorsten Schüppstuhl |
Admission Requirements | None |
Recommended Previous Knowledge |
without major course assessment |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students
|
Skills |
Students are able to...
|
Personal Competence | |
Social Competence |
Students are able to ... - find solutions for automation and handling tasks in groups - develop solutions in a production environment with qualified personnel at technical level and represent decisions. |
Autonomy |
Students are able to ...
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L2329: Automation Technology and Systems |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L2331: Automation Technology and Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2330: Automation Technology and Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1143: Applied Design Methodology in Mechatronics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern |
Admission Requirements | None |
Recommended Previous Knowledge | Basics of mechanical design, electrical design or computer-sciences |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Science-based working on interdisciplinary product design considering targeted application of specific product design techniques |
Skills |
Creative handling of processes used for scientific preparation and formulation of complex product design problems / Application of various product design techniques following theoretical aspects. |
Personal Competence | |
Social Competence | Students will solve and execute technical-scientific tasks from an industrial context in small design-teams with application of common, creative methodologies. |
Autonomy |
Students are enabled to optimize the design and development process according to the target and topic of the design Students are educated to operate in a development team Students learn about the right application of creative methods in engineering. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 30 min Presentation for a group design-work |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1523: Applied Design Methodology in Mechatronics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1524: Applied Design Methodology in Mechatronics |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1183: Laser Systems and Methods of Manufacturing Design and Analysis |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Jan Hendrik Dege |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1612: Laser Systems and Process Technologies |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Claus Emmelmann |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0876: Methods for Analysing Production Processes |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Jan Hendrik Dege |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Benedikt Kriegesmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | WiSe |
Content |
- Room acoustics - Standard computations - Practical applications |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1025: Fluidics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Dieter Krause | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Good knowledge of mechanics (stereo statics, elastostatics, hydrostatics, kinematics and kinetics), fluid mechanics, and engineering design |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After passing the module students are able to
|
||||||||
Skills |
After passing the module students are able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
After passing the module students are able to
|
||||||||
Autonomy |
After passing the module students are able to
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 | ||||||||
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1256: Fluidics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content |
Lecture Hydrostatics
Pneumatics
Hydrodynamics
Exercise Hydrostatics
Hydrodynamics
Field trip
Exercise Numerical simulation of hydrostatic systems
|
Literature |
Bücher
|
Course L1371: Fluidics |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1257: Fluidics |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0563: Robotics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Martin Gomse | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Skills |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personal Competence | |||||||||
Social Competence | Students are able to work goal-oriented in small mixed groups. | ||||||||
Autonomy |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0168: Robotics: Modelling and Control |
Typ | Integrated Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Dr. Martin Gomse |
Language | EN |
Cycle | WiSe |
Content |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literature |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Course L1305: Robotics: Modelling and Control |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Martin Gomse |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1596: Engineering Haptic Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | We recommend knowledge in the areas of general engineering sciences, mechatronics and/or control-engineering. However also neighbouring technical areas like mechanical-engineering or even process-engineers can join the course and will be introduced into the content properly. | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
This course is an introduction to the design methods and design-requirements to consider when creating haptic systems from scratch. It covers a physiological part, an actuator development part, and goes up to fundamentals of higher system integration with consideration on control theory for more complex projects. Beside design-related topics, it gives a valuable overview on existing haptic applications and research in that field with many examples. This is supported by on-site experiments in the laboratories of M-4.
|
||||||||
Skills | Executing the course the competency will be developed to apply the general engineering capabilities of the individual course towards the design and application of active haptic systems. The resulting competencies will open an entry into specialized position in avionic-industries, automotive-industry and consumer-device-development. | ||||||||
Personal Competence | |||||||||
Social Competence | As a side-effect this module teaches basics of a general design for human-machine-interfaces, independent from the specific application of "haptics". It teaches methods to execute user-studies, judge on user-feedback and how to deal with soft design-requirements which are common when dealing with subjective perception. | ||||||||
Autonomy | Independent design-capability of haptic systems, general competency in engineering from a design-perspective | ||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Subject theoretical and practical work | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L2439: Haptic Technology for Human-Machine-Interfaces (HMI) |
Typ | Lecture |
Hrs/wk | 4 |
CP | 3 |
Workload in Hours | Independent Study Time 34, Study Time in Lecture 56 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | WiSe |
Content |
This course is an introduction to the design methods and design-requirements to consider when creating haptic systems from scratch. It covers a physiological part, an actuator development part, and goes up to fundamentals of higher system integration with consideration on control theory for more complex projects. Beside design-related topics, it gives a valuable overview on existing haptic applications and research in that field with many examples.
|
Literature |
Course L2859: Haptic Technology for Human-Machine-Interfaces (HMI) |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1665: Design and dimensioning of fibre-reinforced plastic composites (FRP) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics: chemistry / physics / materials science |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). |
Skills |
Students are capable of
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Materials Science and Engineering: Specialisation Engineering Materials: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1893: Design with fibre-polymer-composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | WiSe |
Content | Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literature | Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Course L2616: Design with fibre-polymer-composites |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE/EN |
Cycle | WiSe |
Content |
The students receive the assignment in the form of a material design for test bodies made of fibre composites. Technical and normative requirements are listed in the assignment, all other required information comes from the lectures and exercises or the respective documents (electronically and in conversation). The procedure is specified in a milestone plan and enables the students to plan subtasks and thus work continuously. At the end of the project, different test specimens were tested in tensile or bending tests. In the individual project meetings, the conception (discussion of requirements and risks) is scrutinised. The calculations are analysed, the production methods are evaluated and determined. Materials are selected and the test specimens are manufactured according to standards. The quality and mechanical properties are checked and classified. At the end, a final report is prepared and the results are presented to all participants in the form of a presentation and discussed. |
Literature |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Course L2615: Design with fibre-polymer-composites |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Bodo Fiedler |
Language | EN |
Cycle | WiSe |
Content |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literature |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Module M0739: Factory Planning & Production Logistics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Jochen Kreutzfeldt |
Admission Requirements | None |
Recommended Previous Knowledge |
Bachelor degree in logistics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will
acquire the following knowledge:
1. The students know the latest trends and developments in the planning of factories. 2. The students can explain basic procedures of factory planning and are able to deploy these procedures while considering different conditions. 3. The students know different methods of factory planning and are able to deal critically with these methods. |
Skills |
The students will
acquire the following skills:
1. The students are able to analyze factories and other material flow systems with regard to new development and the need for change of these logistical systems. 2. The students are able to plan and redesign factories and other material handling systems. 3. The students are able to develop procedures for the implementation of new and revised material flow systems. |
Personal Competence | |
Social Competence |
The students will
acquire the following social skills:
1. The students are able to develop plans for the development of new and improvement of existing material flow systems within a group. 2. The developed planning proposal from the group work can be documented and presented together. 3. The students are able to derive suggestions for improvement from the feedback on the planning proposals and can even provide constructive criticism themselves. |
Autonomy |
The students will
acquire the following independent competencies:
1. The students can plan and re-design material flow systems using existing planning procedures. 2. The students can evaluate independently the strengths and weaknesses of several techniques for factory planning and choose appropriate methods in a given context. 3. The students are able to carry out autonomously new plans and transformations of material flow systems. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L1445: Factory Planning |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Jochen Kreutzfeldt, Philipp Maximilian Braun |
Language | DE |
Cycle | WiSe |
Content |
The lecture gives an
introduction into the planning of factories and material flows. The students
will learn process models and methods to plan new factories and improve
existing material flow systems. The course includes three basic topics:
(1) Analysis of factory and material flow systems (2) Development and re-planning of factory and material flow systems (3) Implementation and realization of factory planning The students are introduced into several different methods and models per topic. Practical examples and planning exercises deepen the methods and explain the application of factory planning. The special requirements of factory planning in an international context are discussed. Specific requirements of Current trends and issues in the factory planning round off the lecture. |
Literature |
Bracht, Uwe; Wenzel, Sigrid; Geckler, Dieter (2018): Digitale Fabrik: Methoden und Praxisbeispiele. 2. Aufl.: Springer, Berlin. Helbing, Kurt W. (2010): Handbuch Fabrikprojektierung. Berlin, Heidelberg: Springer Berlin Heidelberg. Lotter, Bruno; Wiendahl, Hans-Peter (2012): Montage in der industriellen Produktion: Optimierte Abläufe, rationelle Automatisierung. 2. Aufl.: Springer, Berlin. Müller, Egon; Engelmann, Jörg; Löffler, Thomas; Jörg, Strauch (2009): Energieeffiziente Fabriken planen und betreiben. Berlin, Heidelberg: Springer Berlin Heidelberg. Schenk, Michael; Müller, Egon; Wirth, Siegfried (2014): Fabrikplanung und Fabrikbetrieb. Methoden für die wandlungsfähige, vernetzte und ressourceneffiziente Fabrik. 2. Aufl. Berlin [u.a.]: Springer Vieweg. Wiendahl, Hans-Peter; Reichardt, Jürgen; Nyhuis, Peter (2014): Handbuch Fabrikplanung: Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. 2. Aufl. Carl Hanser Verlag. |
Course L1446: Production Logistics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dipl.-Ing. Arnd Schirrmann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Pawellek, G.: Produktionslogistik: Planung - Steuerung - Controlling. Carl Hanser Verlag 2007 |
Module M1919: Sustainable operation of technical assets |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerko Wende |
Admission Requirements | None |
Recommended Previous Knowledge |
We recommend knowledge in the areas of general engineering sciences, aeronautics and aircraft systems engineering. Technical fields like mechanical engineering, mechatronics and production engineering will be introduced into the relevant aeronautical content. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to describe fundamental correlations for the sustainable operation of technical assets and to identify solution approaches for complex optimization problems. |
Skills |
The students are enabled to apply the general engineering capabilities of the individual course towards the optimization of the sustainability in operation of technical assets. The resulting competencies will open an entry into positions in the development, production and technical operation of sustainable products in the mobility and engineering industries. |
Personal Competence | |
Social Competence |
The students are able to work in mixed groups with a clear focus on the approached solutions by respecting the complex environment of multiple stakeholders. |
Autonomy |
The students are enabled to find solutions for optimization problems and to take required decision for the assessment of determining factors independently. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L3160: Fundamentals of Maintenance, Repair and Overhaul (MRO) |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerko Wende |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals for the sustainable operation of technical assets by means of maintenance, repair and overhaul (MRO):
|
Literature | - |
Course L3161: Fundamentals of Maintenance, Repair and Overhaul (MRO) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Gerko Wende |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Specialization Robotics and Computer Science
Module M0563: Robotics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Martin Gomse | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Skills |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personal Competence | |||||||||
Social Competence | Students are able to work goal-oriented in small mixed groups. | ||||||||
Autonomy |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L0168: Robotics: Modelling and Control |
Typ | Integrated Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Dr. Martin Gomse |
Language | EN |
Cycle | WiSe |
Content |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literature |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Course L1305: Robotics: Modelling and Control |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Martin Gomse |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1552: Advanced Machine Learning |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Jens-Peter Zemke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students are able to name, state and classify state-of-the-art neural networks and their corresponding mathematical basics. They can assess the difficulties of different neural networks. |
Skills | Students are able to implement, understand, and, tailored to the field of application, apply neural networks. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 25 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L2322: Advanced Machine Learning |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2323: Advanced Machine Learning |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1248: Compilers for Embedded Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Heiko Falk |
Admission Requirements | None |
Recommended Previous Knowledge |
Module "Embedded Systems" C/C++ Programming skills |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The relevance of embedded systems increases from year to year. Within such systems, the amount of software to be executed on embedded processors grows continuously due to its lower costs and higher flexibility. Because of the particular application areas of embedded systems, highly optimized and application-specific processors are deployed. Such highly specialized processors impose high demands on compilers which have to generate code of highest quality. After the successful attendance of this course, the students are able
The high demands on compilers for embedded systems make effective code optimizations mandatory. The students learn in particular,
Since compilers for embedded systems often have to optimize for multiple objectives (e.g., average- or worst-case execution time, energy dissipation, code size), the students learn to evaluate the influence of optimizations on these different criteria. |
Skills |
After successful completion of the course, students shall be able to translate high-level program code into machine code. They will be enabled to assess which kind of code optimization should be applied most effectively at which abstraction level (e.g., source or assembly code) within a compiler. While attending the labs, the students will learn to implement a fully functional compiler including optimizations. |
Personal Competence | |
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
Autonomy |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1692: Compilers for Embedded Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1693: Compilers for Embedded Systems |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0627: Machine Learning and Data Mining |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | NN |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the difference between instance-based and model-based learning approaches, and they can enumerate basic machine learning technique for each of the two basic approaches, either on the basis of static data, or on the basis of incrementally incoming data . For dealing with uncertainty, students can describe suitable representation formalisms, and they explain how axioms, features, parameters, or structures used in these formalisms can be learned automatically with different algorithms. Students are also able to sketch different clustering techniques. They depict how the performance of learned classifiers can be improved by ensemble learning, and they can summarize how this influences computational learning theory. Algorithms for reinforcement learning can also be explained by students. |
Skills |
Student derive decision trees and, in turn, propositional rule sets from simple and static data tables and are able to name and explain basic optimization techniques. They present and apply the basic idea of first-order inductive leaning. Students apply the BME, MAP, ML, and EM algorithms for learning parameters of Bayesian networks and compare the different algorithms. They also know how to carry out Gaussian mixture learning. They can contrast kNN classifiers, neural networks, and support vector machines, and name their basic application areas and algorithmic properties. Students can describe basic clustering techniques and explain the basic components of those techniques. Students compare related machine learning techniques, e.g., k-means clustering and nearest neighbor classification. They can distinguish various ensemble learning techniques and compare the different goals of those techniques. |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0340: Machine Learning and Data Mining |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Rainer Marrone |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0510: Machine Learning and Data Mining |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Rainer Marrone |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0692: Approximation and Stability |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Marko Lindner | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to
|
||||||||
Skills |
Students are able to
|
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve specific problems in groups and to present their results appropriately (e.g. as a seminar presentation). |
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 20 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0487: Approximation and Stability |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Marko Lindner |
Language | DE/EN |
Cycle | SoSe |
Content |
This course is about solving the following basic problems of Linear Algebra,
but now in function spaces (i.e. vector spaces of infinite dimension) by a stable approximation of the problem in a space of finite dimension. Contents:
|
Literature |
|
Course L0488: Approximation and Stability |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Marko Lindner |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0835: Humanoid Robotics |
||||||||
Courses | ||||||||
|
Module Responsible | Patrick Göttsch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Credit points | 2 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0663: Humanoid Robotics |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Patrick Göttsch |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
- B. Siciliano, O. Khatib. "Handbook of Robotics. Part A: Robotics Foundations", Springer (2008). |
Module M0939: Control Lab A |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Credit points | 4 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 1 |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1093: Control Lab I |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content | One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Course L1291: Control Lab II |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content | One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Course L1665: Control Lab III |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content | One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Course L1666: Control Lab IV |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Herbert Werner, Adwait Datar, Patrick Göttsch |
Language | EN |
Cycle |
WiSe/ |
Content | One of the offered experiments in control theory. |
Literature |
Experiment Guides |
Module M1702: Process Imaging |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Penn |
Admission Requirements | None |
Recommended Previous Knowledge |
No special prerequisites needed |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:
Learning goals: After the successful completion of the course, the students shall:
|
Skills | |
Personal Competence | |
Social Competence | In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills. |
Autonomy | Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2723: Process Imaging |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Penn |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395 |
Course L2724: Process Imaging |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Penn, Dr. Stefan Benders |
Language | EN |
Cycle | SoSe |
Content |
Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:
Learning goals: After the successful completion of the course, the students shall:
|
Literature |
Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395 |
Module M0633: Industrial Process Automation |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
mathematics and optimization methods |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'. |
||||||||
Skills |
The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students can independently define work processes within their groups, distribute tasks within the group and develop solutions collaboratively. |
||||||||
Autonomy |
The students are able to assess their level of knowledge and to document their work results adequately. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes | ||||||||
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0344: Industrial Process Automation |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | WiSe |
Content |
- foundations of problem solving and system modeling, discrete event systems |
Literature |
J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012 |
Course L0345: Industrial Process Automation |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Schlaefer |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1302: Applied Humanoid Robotics |
||||||||
Courses | ||||||||
|
Module Responsible | Patrick Göttsch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 5-10 pages |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Data Science: Specialisation III. Applications: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1794: Applied Humanoid Robotics |
Typ | Project-/problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Patrick Göttsch |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
|
Literature |
|
Module M0677: Digital Signal Processing and Digital Filters |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Bauch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Skills | The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm. Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account. |
Personal Competence | |
Social Competence |
The students can jointly solve specific problems. |
Autonomy |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Computer Science in Engineering: Specialisation II. Engineering Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0446: Digital Signal Processing and Digital Filters |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Bauch |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner. V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V. W. Hess: Digitale Filter. Teubner. Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall. S. Haykin: Adaptive flter theory. L. B. Jackson: Digital filters and signal processing. Kluwer. T.W. Parks, C.S. Burrus: Digital filter design. Wiley. |
Course L0447: Digital Signal Processing and Digital Filters |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1598: Image Processing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Tobias Knopp |
Admission Requirements | None |
Recommended Previous Knowledge | Signal and Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students know about
|
Skills |
The students can
|
Personal Competence | |
Social Competence |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Autonomy |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Data Science: Core Qualification: Elective Compulsory Data Science: Specialisation I. Mathematics/Computer Science: Elective Compulsory Data Science: Specialisation II. Computer Science: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L2443: Image Processing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Course L2444: Image Processing |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0629: Intelligent Autonomous Agents and Cognitive Robotics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Rainer Marrone |
Admission Requirements | None |
Recommended Previous Knowledge | Vectors, matrices, Calculus |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the agent abstraction, define intelligence in terms of rational behavior, and give details about agent design (goals, utilities, environments). They can describe the main features of environments. The notion of adversarial agent cooperation can be discussed in terms of decision problems and algorithms for solving these problems. For dealing with uncertainty in real-world scenarios, students can summarize how Bayesian networks can be employed as a knowledge representation and reasoning formalism in static and dynamic settings. In addition, students can define decision making procedures in simple and sequential settings, with and with complete access to the state of the environment. In this context, students can describe techniques for solving (partially observable) Markov decision problems, and they can recall techniques for measuring the value of information. Students can identify techniques for simultaneous localization and mapping, and can explain planning techniques for achieving desired states. Students can explain coordination problems and decision making in a multi-agent setting in term of different types of equilibria, social choice functions, voting protocol, and mechanism design techniques. |
Skills |
Students can select an appropriate agent architecture for concrete agent application scenarios. For simplified agent application students can derive decision trees and apply basic optimization techniques. For those applications they can also create Bayesian networks/dynamic Bayesian networks and apply bayesian reasoning for simple queries. Students can also name and apply different sampling techniques for simplified agent scenarios. For simple and complex decision making students can compute the best action or policies for concrete settings. In multi-agent situations students will apply techniques for finding different equilibria states,e.g., Nash equilibria. For multi-agent decision making students will apply different voting protocols and compare and explain the results. |
Personal Competence | |
Social Competence |
Students are able to discuss their solutions to problems with others. They communicate in English |
Autonomy |
Students are able of checking their understanding of complex concepts by solving varaints of concrete problems |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0341: Intelligent Autonomous Agents and Cognitive Robotics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Rainer Marrone |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0512: Intelligent Autonomous Agents and Cognitive Robotics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Rainer Marrone |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0836: Communication Networks |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Andreas Timm-Giel |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Skills |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personal Competence | |
Social Competence |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Autonomy |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 1.5 hours colloquium with three students, therefore about 30 min per student. Topics of the colloquium are the posters from the previous poster session and the topics of the module. |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Computer Science in Engineering: Specialisation I. Computer Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0899: Selected Topics of Communication Networks |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Koojana Kuladinithi |
Language | EN |
Cycle | WiSe |
Content | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literature |
|
Course L0897: Communication Networks |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Koojana Kuladinithi |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Further literature is announced at the beginning of the lecture. |
Course L0898: Communication Networks Excercise |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr.-Ing. Koojana Kuladinithi |
Language | EN |
Cycle | WiSe |
Content | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literature |
|
Module M1224: Selected Topics of Mechatronics (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Dr. Martin Gomse |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | None |
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1592: Applied Automation |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 Minuten |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | WiSe |
Content |
-Project Based Learning -Robot Operating System -Robot structure and description -Motion description -Calibration -Accuracy |
Literature |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Course L2739: Advanced Training Course SE-ZERT |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Course L1512: Development Management for Mechatronics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 Minuten |
Lecturer | NN, Dr. Johannes Nicolas Gebhardt |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L2012: Industry 4.0 for Engineers |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 120 min |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0087: Microcontroller Circuits: Implementation in Hardware and Software |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 10 min. Vortrag + anschließende Diskussion |
Lecturer | Prof. Siegfried Rump |
Language | DE |
Cycle |
WiSe/ |
Content | |
Literature |
ATmega16A 8-bit Microcontroller with 16K Bytes In-System Programmable Flash - DATASHEET, Atmel Corporation 2014 Atmel AVR 8-bit Instruction Set Instruction Set Manual, Atmel Corporation 2016 |
Course L0724: Microsystems Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Hoc Khiem Trieu |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | ca. 10 Seiten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
Objectives of the problem-oriented
course are the acquisition of knowledge on system design using the formal
languages SysML/UML, learning about tools for modeling and finally the
implementation of a project with methods and tools of Model-Based Systems
Engineering (MBSE) on a realistic hardware platform (e.g. Arduino®, Raspberry
Pi®): |
Literature |
- Skript zur Vorlesung |
Course L2863: Sustainable Industrial Production |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Simon Markus Kothe |
Language | DE |
Cycle | SoSe |
Content |
Industrial production deals with the manufacture of physical products to satisfy human needs using various manufacturing processes that change the form and physical properties of raw materials. Manufacturing is a central driver of economic development and has a major impact on the well-being of humanity. However, the scale of current manufacturing activities results in enormous global energy and material demands that are harmful to both the environment and people. Historically, industrial activities were mostly oriented towards economic constraints, while social and environmental consequences were only hardly considered. As a result, today's global consumption rates of many resources and associated emissions often exceed the natural regeneration rate of our planet. In this respect, current industrial production can mostly be described as unsustainable. This is emphasized each year by the Earth Overshoot Day, which marks the day when humanity's ecological footprint exceeds the Earth's annual regenerative capacity. This lecture aims to provide the motivation, analytical methods as well as approaches for sustainable industrial production and to clarify the influence of the production phase in relation to the raw material, use and recycling phases in the entire life cycle of products. For this, the following topics will be highlighted: - Motivation for sustainable production, the 17 Sustainable Development Goals (SDGs) of the UN and their relevance for tomorrow's manufacturing; - raw material vs. production phase vs. use phase vs. recycling/end-of-life phase: importance of the production phase for the environmental impact of manufactured products; - Typical energy- and resource-intensive processes in industrial production and innovative approaches to increase energy and resource efficiency; - Methodology for optimizing the energy and resource efficiency of industrial manufacturing chains with the three steps of modeling (1), evaluating (2) and improving (3); - Resource efficiency of industrial manufacturing value chains and its assessment using life cycle analysis (LCA); - Exercise: LCA analysis of a manufacturing process (thermoplastic joining of an aircraft fuselage segment) as part of a product life cycle assessment. |
Literature |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Course L1077: Process Measurement Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 Minuten |
Lecturer | Prof. Roland Harig |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
- Färber: „Prozeßrechentechnik“, Springer-Verlag 1994 - Kiencke, Kronmüller: „Meßtechnik“, Springer Verlag Berlin Heidelberg, 1995 - A. Ambardar: „Analog and Digital Signal Processing“ (1), PWS Publishing Company, 1995, NTC 339 - A. Papoulis: „Signal Analysis“ (1), McGraw-Hill, 1987, NTC 312 (LB) - M. Schwartz: „Information Transmission, Modulation and Noise“ (3,4), McGraw-Hill, 1980, 2402095 - S. Haykin: „Communication Systems“ (1,3), Wiley&Sons, 1983, 2419072 - H. Sheingold: „Analog-Digital Conversion Handbook“ (5), Prentice-Hall, 1986, 2440072 - J. Fraden: „AIP Handbook of Modern Sensors“ (5,6), American Institute of Physics, 1993, MTB 346 |
Course L1083: Process Measurement Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Roland Harig |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0664: Feedback Control in Medical Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 20 min |
Lecturer | Johannes Kreuzer, Christian Neuhaus |
Language | DE |
Cycle | SoSe |
Content |
Always viewed from the engineer's point of view, the lecture is structured as follows:
Techniques of modeling, simulation and controller development are discussed. In the models, simple equivalent block diagrams for physiological processes are derived and explained how sensors, controllers and actuators are operated. MATLAB and SIMULINK are used as development tools. |
Literature |
|
Module M0832: Advanced Topics in Control |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | NN |
Admission Requirements | None |
Recommended Previous Knowledge | H-infinity optimal control, mixed-sensitivity design, linear matrix inequalities |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | Students can work in small groups and arrive at joint results. |
Autonomy |
Students can find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0661: Advanced Topics in Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | NN |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0662: Advanced Topics in Control |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | NN |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0881: Mathematical Image Processing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Marko Lindner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence |
Students are able to work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge) and to explain theoretical foundations. |
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Computer Science: Specialisation III. Mathematics: Elective Compulsory Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0991: Mathematical Image Processing |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Marko Lindner |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature | Bredies/Lorenz: Mathematische Bildverarbeitung |
Course L0992: Mathematical Image Processing |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Marko Lindner |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1592: Statistics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Schulte |
Admission Requirements | None |
Recommended Previous Knowledge |
Stochastics (or a comparable class) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Data Science: Compulsory Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory Data Science: Core Qualification: Compulsory Engineering Science: Specialisation Advanced Materials: Elective Compulsory Engineering Science: Specialisation Data Science: Compulsory Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Elective Compulsory |
Course L2430: Statistics |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Schulte |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2431: Statistics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Matthias Schulte |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1748: Construction Robotics |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Kay Smarsly |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of project-oriented programming |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Basics of robotics Applications in civil engineering Kinematics |
Skills |
Use of specific hardware Development of software routines Python programming language Image processing Basics of localization (LIDAR, SLAM) |
Personal Competence | |
Social Competence |
Teamwork Communication skills |
Autonomy |
Independent work Independent decisions |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | ca. 10 Seiten |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Computational Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L2867: Construction Robotics |
Typ | Project-/problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Prof. Kay Smarsly, Jan Stührenberg, Mathias Worm |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Bock/Linner:
Construction Robotics |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Module M1666: Intelligent Systems Lab |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Alexander Schlaefer | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Very good programming skills Good knowledge in mathematics Prior knowledge in machine learning is very helpful Prior knowledge in image processing / computer vision is helpful Prior knowledge in robotics is very helpful Prior knowledge in microprocessor programming is helpful |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students will be able to explain aspects of intelligent systems (e.g. autonomy, sensing the environment, interacting with the environment) and provide links to ai / robotics / machine learning / computer vision. |
||||||||
Skills |
Students can analyze a complex application scenario and use artificial intelligence methods (particularly from robotics, machine learning, computer vision) to implement an intelligent system. Furthermore, students will be able to define criteria to assess the function of the system and evaluate the system. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students can define project aims and scope and organize the project as team work. They can present their results in an appropriate manner. |
||||||||
Autonomy |
The students take responsibility for their tasks and coordinate their individual work with other group members. They deliver their work on time. They independently acquire additional knowledge by doing a specific literature research. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written elaboration | ||||||||
Examination duration and scale | approx. 8 pages, time frame: over the course of the semester | ||||||||
Assignment for the Following Curricula |
Computer Science in Engineering: Specialisation II. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L2709: Intelligent Systems Lab |
Typ | Project-/problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Prof. Alexander Schlaefer |
Language | DE/EN |
Cycle | SoSe |
Content |
The actual project topic will be defined as part of the project. |
Literature |
Wird in der Veranstaltung bekannt gegeben. |
Module M1400: Design of Dependable Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Görschwin Fey | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Basic knowledge about data structures and algorithms | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
In the following "dependable" summarizes the concepts Reliability, Availability, Maintainability, Safety and Security. Knowledge about approaches for designing dependable systems, e.g.,
Knowledge about methods for the analysis of dependable systems |
||||||||
Skills |
Ability to implement dependable systems using the above approaches. Ability to analyzs the dependability of systems using the above methods for analysis. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students
|
||||||||
Autonomy | Using accompanying material students independently learn in-depth relations between concepts explained in the lecture and additional solution strategies. | ||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Computer Science in Engineering: Specialisation I. Computer Science: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L2000: Designing Dependable Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | SoSe |
Content |
Description The term dependability comprises various aspects of a system. These are typically:
Contents The module introduces the basic concepts for the design and the analysis of dependable systems. Design examples for getting practical hands-on-experience in dependable design techniques. The module focuses towards embedded systems. The following topics are covered:
|
Literature |
Course L2001: Designing Dependable Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1870: Statistical Models |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Schulte |
Admission Requirements | None |
Recommended Previous Knowledge | Preknowledge in probability and statistics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Data Science: Core Qualification: Compulsory Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L3116: Statistical Models |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Schulte, Prof. Nihat Ay |
Language | EN |
Cycle | SoSe |
Content |
Linear models and regression: - Linear regression - Nonlinear regression - Logistic and Poisson regression - Generalised linear models Graphical Models and Causality: - Conditional independence statements - Hammersley-Clifford theorem - Gibbs sampling - Bayesian networks - Causal inference - Markov random fields - Graphical and hierarchical models - Applications |
Literature |
D. Barber: Bayesian Reasoning and Machine Learning. Cambridge University Press (2012). P. Dunn and G. Smyth: Generalized linear models with examples in R. Springer (2018). L. Fahrmeir, T. Kneib, S. Lang and B. Marx: Regression - models, methods and applications. Second edition, Springer (2021). S. Lauritzen: Graphical Models. Oxford University Press (1996, reprinted 2004). J. Pearl: Causality: Models, Reasoning and Inference. Second edition, Cambridge University Press (2009). |
Course L3118: Statistical Models |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Matthias Schulte, Prof. Nihat Ay |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0924: Software for Embedded Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bernd-Christian Renner | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
Students are able
|
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Data Science: Specialisation II. Computer Science: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Software: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L1069: Software for Embdedded Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bernd-Christian Renner |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1070: Software for Embdedded Systems |
Typ | Recitation Section (small) |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Bernd-Christian Renner |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1724: Smart Monitoring |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Kay Smarsly |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge or interest in object-oriented modeling, programming, and sensor technologies are helpful. Interest in modern research and teaching areas, such as Internet of Things, Industry 4.0 and cyber-physical systems, as well as the will to deepen skills of scientific working, are required. Basic knowledge in scientific writing and good English skills. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students will become familiar with the principles and practices of smart monitoring. The students will be able to design decentralized smart systems to be applied for continuous (remote) monitoring of systems in the built and in the natural environment. In addition, the students will learn to design and to implement intelligent sensor systems using state-of-the-art data analysis techniques, modern software design concepts, and embedded computing methodologies. Besides lectures, project work is also part of this module, which will be conducted throughout the semester and will contribute to the grade. In small groups, the students will design smart monitoring systems that integrate a number of “intelligent” sensors to be implemented by the students. Specific focus will be put on the application of machine learning techniques. The smart monitoring systems will be mounted on real-world (built or natural) systems, such as bridges or slopes, or on scaled lab structures for validation purposes. The outcome of every group will be documented in a paper. All students of this module will “automatically” participate with their smart monitoring system in the annual "Smart Monitoring" competition. The written papers and oral examinations form the final grades. The module will be taught in English. Limited enrollment. |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | 10 pages of work with 15-minute oral presentation |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Water and Traffic: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Environmental Engineering: Specialisation Water Quality and Water Engineering: Elective Compulsory Environmental Engineering: Specialisation Energy and Resources: Elective Compulsory Environmental Engineering: Specialisation Environment and Climate: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory |
Course L2762: Smart Monitoring |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle | SoSe |
Content |
In this course, principles of smart monitoring will be taught, focusing on modern concepts of data acquisition, data storage, and data analysis. Also, fundamentals of intelligent sensors and embedded computing will be illuminated. Autonomous software and decentralized data processing are further crucial parts of the course, including concepts of the Internet of Things, Industry 4.0 and cyber-physical systems. Furthermore, measuring principles, data acquisition systems, data management and data analysis algorithms will be discussed. Besides the theoretical background, numerous practical examples will be shown to demonstrate how smart monitoring may advantageously be used for assessing the condition of systems in the built or natural environment. |
Literature |
Course L2763: Smart Monitoring |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Kay Smarsly |
Language | EN |
Cycle | SoSe |
Content | The contents of the exercises are based on the lecture contents. In addition to the exercises, project work will be conducted throughout the semester, which will consume the majority of the workload. As part of the project work, students will design smart monitoring systems that will be tested in the laboratory or in the field. As mentioned in the module description, the students will participate in the “Smart Monitoring” competition, hosted annually by the Institute of Digital and Autonomous Construction. Students are encouraged to contribute their own ideas. The tools required to implement the smart monitoring systems will be taught in the group exercises as well as through external sources, such as video tutorials and literature. |
Literature |
Specialization Simulation Technology
Module M0603: Nonlinear Structural Analysis |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Düster |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of partial differential equations is recommended. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to |
Skills |
Students are able to |
Personal Competence | |
Social Competence |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Autonomy |
Students
are able to |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory Materials Science: Specialisation Modeling: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0277: Nonlinear Structural Analysis |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Düster |
Language | DE/EN |
Cycle | WiSe |
Content |
1. Introduction |
Literature |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Course L0279: Nonlinear Structural Analysis |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Düster |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1151: Materials Modeling |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Cyron |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of mechanics as taught, e.g., in the modules Engineering Mechanics I and Engineering Mechanics II at TUHH (forces and moments, stress, linear strain, free-body principle, linear-elastic constitutive laws, strain energy); basics of mathematics as taught, e.g., in the modules Mathematics I and Mathematics II at TUHH |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students understand the theoretical foundations of anisotropic elasticity, viscoelasticity and elasto-plasticity in the realm of three-dimensional (linear) continuum mechanics. In the area of anisotropic elasticity, they know the concept of material symmetry and its application in orthotropic, transversely isotropic and isotropic materials. They understand the concept of stiffness and compliance and how both can be characterized by appropriate parameters. Moreover, the students understand viscoelasticity both in the time and frequency domain using the concepts of relaxation modulus, creep modulus, storage modulus and loss modulus. In the area of elasto-plasticity, the students know the concept of yield stress or (in higher dimensions) yield surface and of plastic potential. Additionally, the know the concepts of ideal plasticity, hardening and weakening. Moreover, they know von-Mises plasticity as a specific model of elasto-plasticity. |
Skills | The students can independently identify and solve problems in the area of materials modeling and acquire the knowledge to do so. This holds in particular for the area fo anisotropically elastic, viscoelastic and elasto-plastic material behavior. In these areas, the students can independently develop models for complex material behavior. To this end, they have the ability to read and understand relevant literature and identify the relevant results reported there. Moreover, they can implement models which they developed or found in the literature in computational software (e.g., based on the finite element method) and use it for practical calculations. |
Personal Competence | |
Social Competence |
The students are able to develop constitutive models for materials and present
them to specialists. Moreover, they have the ability to discuss challening problems of materials modeling with experts using the proper terminoloy, to identify and ask critical questions in such discussions and to identify and discuss potential caveats in models presented to them. |
Autonomy |
The students have the ability to independently develop abstract models that allow them to classify observed phenomena within an more general abstract framework and to predict their further evolution. Moreover, the students understand the advantages but also limitations of mathematical models and can thus independently decide when and to which extent they make sense as a basis for decisions. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1535: Material Modeling |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | WiSe |
Content |
One of the most important questions when modeling mechanical
systems in practice is how to model the behavior of the materials
of their different components. In addition to simple isotropic
elasticity in particular the following phenomena play key roles
|
Literature |
Course L1536: Material Modeling |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0906: Numerical Simulation and Lagrangian Transport |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Michael Schlüter |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module the students are able to
|
Skills |
The students are able to:
|
Personal Competence | |
Social Competence |
The students are able to
|
Autonomy |
The students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L2301: Lagrangian transport in turbulent flows |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Yan Jin |
Language | EN |
Cycle | SoSe |
Content |
Contents - Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.) - An overview of Lagrange analysis methods and experiments in fluid mechanics - Critical examination of the concept of turbulence and turbulent structures. -Calculation of the transport of ideal fluid elements and associated analysis methods (absolute and relative diffusion, Lagrangian Coherent Structures, etc.) - Implementation of a Runge-Kutta 4th-order in Matlab - Introduction to particle integration using ODE solver from Matlab - Problems from turbulence research - Application analytical methods with Matlab. Structure: - 14 units a 2x45 min. - 10 units lecture - 4 Units Matlab Exercise- Go through the exercises Matlab, Peer2Peer? Explain solutions to your colleague Learning goals: Students receive very specific, in-depth knowledge from modern turbulence research and transport analysis. → Knowledge The students learn to classify the acquired knowledge, they study approaches to further develop the knowledge themselves and to relate different data sources to each other. → Knowledge, skills The students are trained in the personal competence to independently delve into and research a scientific topic. → Independence Matlab exercises in small groups during the lecture and guided Peer2Peer discussion rounds train communication skills in complex situations. The mixture of precise language and intuitive understanding is learnt. → Knowledge, social competence Required knowledge: Fluid mechanics 1 and 2 advantageous Programming knowledge advantageous |
Literature |
Bakunin, Oleg G. (2008): Turbulence and Diffusion. Scaling Versus Equations. Berlin [u. a.]: Springer Verlag. Bourgoin, Mickaël; Ouellette, Nicholas T.; Xu, Haitao; Berg, Jacob; Bodenschatz, Eberhard (2006): The role of pair dispersion in turbulent flow. In: Science (New York, N.Y.) 311 (5762), S. 835-838. DOI: 10.1126/science.1121726. Davidson, P. A. (2015): Turbulence. An introduction for scientists and engineers. Second edition. Oxford: Oxford Univ. Press. Graff, L. S.; Guttu, S.; LaCasce, J. H. (2015): Relative Dispersion in the Atmosphere from Reanalysis Winds. In: J. Atmos. Sci. 72 (7), S. 2769-2785. DOI: 10.1175/JAS-D-14-0225.1. Grigoriev, Roman (2011): Transport and Mixing in Laminar Flows. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Haller, George (2015): Lagrangian Coherent Structures. In: Annu. Rev. Fluid Mech. 47 (1), S. 137-162. DOI: 10.1146/annurev-fluid-010313-141322. Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2010): Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. In: Physical review. E, Statistical, nonlinear, and soft matter physics 81 (6 Pt 2), S. 66211. DOI: 10.1103/PhysRevE.81.066211. Kameke, A. von; Huhn, F.; Fernández-García, G.; Muñuzuri, A. P.; Pérez-Muñuzuri, V. (2011): Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves. In: Physical review letters 107 (7), S. 74502. DOI: 10.1103/PhysRevLett.107.074502. Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M. (2019): How coherent structures dominate the residence time in a bubble wake: An experimental example. In: Chemical Engineering Science 207, S. 317-326. DOI: 10.1016/j.ces.2019.06.033. Klages, Rainer; Radons, Günter; Sokolov, Igor M. (2008): Anomalous Transport: Wiley. LaCasce, J. H. (2008): Statistics from Lagrangian observations. In: Progress in Oceanography 77 (1), S. 1-29. DOI: 10.1016/j.pocean.2008.02.002. Neufeld, Zoltán; Hernández-García, Emilio (2009): Chemical and Biological Processes in Fluid Flows: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO. Onu, K.; Huhn, F.; Haller, G. (2015): LCS Tool: A computational platform for Lagrangian coherent structures. In: Journal of Computational Science 7, S. 26-36. DOI: 10.1016/j.jocs.2014.12.002. Ouellette, Nicholas T.; Xu, Haitao; Bourgoin, Mickaël; Bodenschatz, Eberhard (2006): An experimental study of turbulent relative dispersion models. In: New J. Phys. 8 (6), S. 109. DOI: 10.1088/1367-2630/8/6/109. Pope, Stephen B. (2000): Turbulent Flows. Cambridge: Cambridge University Press. Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503. Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press. |
Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | SoSe |
Content |
|
Literature | OpenFoam Tutorials (StudIP) |
Course L1052: Computational Fluid Dynamics in Process Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Michael Schlüter |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2. Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868. Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6
|
Module M0605: Computational Structural Dynamics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Düster |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of partial differential equations is recommended. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to |
Skills |
Students are able to |
Personal Competence | |
Social Competence |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Autonomy |
Students
are able to |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2h |
Assignment for the Following Curricula |
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Materials Science: Specialisation Modeling: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0282: Computational Structural Dynamics |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Düster |
Language | DE |
Cycle | SoSe |
Content |
1. Motivation |
Literature |
[1] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002. |
Course L0283: Computational Structural Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Alexander Düster |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0606: Numerical Algorithms in Structural Mechanics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Düster |
Admission Requirements | None |
Recommended Previous Knowledge |
Knowledge of partial differential equations is recommended. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to |
Skills |
Students are able to |
Personal Competence | |
Social Competence |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
Autonomy |
Students
are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks. + to transform the acquired knowledge to similar problems. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2h |
Assignment for the Following Curricula |
Materials Science: Specialisation Modeling: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0284: Numerical Algorithms in Structural Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Düster |
Language | DE |
Cycle | SoSe |
Content |
1. Motivation |
Literature |
[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001. |
Course L0285: Numerical Algorithms in Structural Mechanics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Düster |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0807: Boundary Element Methods |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
||||||||
Skills |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
||||||||
Autonomy |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Energy Systems: Core Qualification: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0523: Boundary Element Methods |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | SoSe |
Content |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literature |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Course L0524: Boundary Element Methods |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0837: Simulation of Communication Networks |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Andreas Timm-Giel |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. |
Skills |
Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. |
Personal Competence | |
Social Competence |
Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. |
Autonomy |
Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0887: Simulation of Communication Networks |
Typ | Project-/problem-based Learning |
Hrs/wk | 5 |
CP | 6 |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Lecturer | Prof. Andreas Timm-Giel |
Language | EN |
Cycle | SoSe |
Content |
In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. |
Literature |
Further literature is announced at the beginning of the lecture. |
Module M1281: Advanced Topics in Vibration |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge | Vibration Theory |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1743: Advanced Topics in Vibration |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | SoSe |
Content |
Advanced and Research Topics in Vibrations
|
Literature |
Aktuelle Veröffentlichungen / Recent research publications Bücher/Books: Gasch, Nordmann, Pfützner: Rotordynamik Gasch, Knothe, Liebich: Strukturdynamik |
Module M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements | None |
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann, Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | SoSe |
Content |
- Introduction and Motivation |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Benedikt Kriegesmann, Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1845: Thin-walled structures |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bastian Oesterle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of this module, the students can express the basic aspects of the load-carrying behaviour of thin-walled structures. |
Skills |
After successful completion of this module, the students will be able to predict load-carrying behaviour of thin-walled structures using appropriate analytical and coputational methods. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modelling and analysis of thin-walled structures. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1199: Thin-walled structures |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | DE |
Cycle | SoSe |
Content |
Plates loaded in-plane
Plates in bending
Shells
Stability problems (overview)
|
Literature |
|
Course L3045: Thin-walled structures |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1909: System Simulation |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge |
Mathematics I-III, Computer Sciense, Engineering Thermodynamics I, II, Fluid Dynamics, Heat Transfer, Control Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory |
Course L3150: System Simulation Modul |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content |
Lecture about
equation-based, physical modelling using the modelling language Modelica
and the free simulation tool OpenModelica 1.17.0.
|
Literature |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Course L3151: System Simulation Modul |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0716: Hierarchical Algorithms |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sabine Le Borne |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are capable
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Data Science: Specialisation I. Mathematics: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0585: Hierarchical Algorithms |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature | W. Hackbusch: Hierarchische Matrizen: Algorithmen und Analysis |
Course L0586: Hierarchical Algorithms |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sabine Le Borne |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1020: Numerical Methods for Partial Differential Equations |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Daniel Ruprecht |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills | Students are capable of formulating solution strategies for given partial differential equations, can comment on theoretical properties regarding convergence and are able to implement and test these methods. |
Personal Competence | |
Social Competence |
Students are able of working together in heterogeneous teams (i.e., teams from different study programs and background knowledge) and to explain theoretical foundations. |
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1247: Numerics of Partial Differential Equations |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Daniel Ruprecht |
Language | DE/EN |
Cycle | WiSe |
Content |
Elementary Theory and Numerics of PDEs
|
Literature |
Dale R. Durran: Numerical Methods for Fluid Dynamics. Randall J. LeVeque: Numerical Methods for Conservation Laws. |
Course L1248: Numerics of Partial Differential Equations |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Daniel Ruprecht |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Benedikt Kriegesmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 20 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aeronautics: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | WiSe |
Content |
- Room acoustics - Standard computations - Practical applications |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr.-Ing. Sören Keuchel |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0720: Matrix Algorithms |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Jens-Peter Zemke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to
|
Skills |
Students are capable to
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 25 min |
Assignment for the Following Curricula |
Computer Science: Specialisation III. Mathematics: Elective Compulsory Data Science: Specialisation IV. Special Focus Area: Elective Compulsory Data Science: Specialisation I. Mathematics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L0984: Matrix Algorithms |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Skript (224 Seiten) Ergänzend können die folgenden Lehrbücher herangezogen werden:
|
Course L0985: Matrix Algorithms |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Jens-Peter Zemke |
Language | DE/EN |
Cycle | WiSe |
Content | |
Literature | Siehe korrespondierende Vorlesung |
Module M1846: Finite element modeling of structures |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bastian Oesterle | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
After successful completion of this module, students can express the
basic aspects of modelling of structures with finite elements. |
||||||||
Skills |
After successful completion of this module, the students will be
able to model structures with finite elements and to analyse structures using appropriate computational methods. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can
|
||||||||
Autonomy |
Students are able to gain knowledge of the subject area from
given and other sources and apply it to new problems.
Furthermore, they are able to structure the solution process
for problems in the area of finite element modelling of structures. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 60 min | ||||||||
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Computational Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L3046: Finite element modeling of structures |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | EN |
Cycle | WiSe |
Content |
Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are:
|
Literature | Vorlesungsmanuskript, Vorlesungsfolien |
Course L3047: Finite element modeling of structures |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0658: Innovative CFD Approaches |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thomas Rung | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Students should have sound knowledge of engineering mathematics (series expansions, internal & vector calculus), and be familiar with the foundations of partial/ordinary differential equations. They are expected to be familiar with engineering fluid mechanics. Basic knowledge of numerical analysis or computational fluid dynamics, e.g. acquired in previous CFD courses, is of advantage but not necessary. |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students will acquire a deeper knowledge of recent trends in computational fluid dynamics (CFD), i.e. finite volume, smoothed particle hydrodynamics and lattice Boltzmann approaches, and can relate recent innovations with present challenges in computational fluid mechanics. They are familiar with the similarities and differences between different Eulerian and Lagrangian discretisation and approximation concepts for investigating on the basis of continuum and kinetic theories. Students have the required knowledge to develop, explain, code and apply numerical models concepts to approximate multiphase and multifield problems with grid and particle based methods, respectively. Students know the fundamentals of simulation based PDE constraint optimisation. |
||||||||
Skills |
The students are able choose and apply appropriate discretisation concepts and flow physics models. They acquire the ability to code computational algorithms dedicated to finite volumes on unstructured grids & particle-based discretisations & structured lattice Boltzmann arrangements, apply these codes for parameter investigations and supplement interfaces to extract simulation data for an engineering analysis. They are able to sophisticatedly judge different solution strategies. |
||||||||
Personal Competence | |||||||||
Social Competence |
The students are able to discuss problems, present the results of their own analysis, and jointly develop, implement and report on solution strategies that address given technical reference problems in a team. They to lead team sessions and present solutions to experts. |
||||||||
Autonomy |
The students can independently analyse innovative methods to solving fluid engineering problems. They are able to critically analyse own results as well as external data with regards to the plausibility and reliability. Students are able to structure and perform a simulation-based investigation. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Energy Systems: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory |
Course L0239: Application of Innovative CFD Methods in Research and Development |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Thomas Rung |
Language | DE/EN |
Cycle | WiSe |
Content |
Computational Optimisation, Parallel Computing, Efficient CFD-Procedures for GPU Archtiectures, Alternative Approximations (Lattice-Boltzmann Methods, Particle Methods), Fluid/Structure-Interaction, Modelling of Hybrid Continua |
Literature | Vorlesungsmaterialien /lecture notes |
Course L1685: Application of Innovative CFD Methods in Research and Development |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Thomas Rung |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1327: Modeling of Granular Materials |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Pavel Gurikov |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals in Mathematocs, Physics and Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module the students are able to:
|
Skills |
After successful completion of the module the students are able to,
|
Personal Competence | |
Social Competence |
After completion of this module, participants will be able to debate technical questions in small teams to enhance the ability to take position to their own opinions and increase their capacity for teamwork. |
Autonomy |
After completion of this module, participants will be able to solve a technical problem independently including a presentation of the results. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture. |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1858: Multiscale simulation of granular materials |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Pavel Gurikov |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
B.V. Babu (2004). Process
plant simulation, Oxford Univ. Press, New York.
S.J. Antony, W. Hoyle, Y. Ding (Eds.) (2004). Granular materials: Fundamentals and Applications, RSC, Cambridge. T. Pöschel (2010). Computational Granular Dynamics: Models and Algorithms, Springer Verl. Berlin. Other lecture materials to be distributed |
Course L1860: Multiscale simulation of granular materials |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Pavel Gurikov |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
M. Dosta: Lecture notes. S. Attaway (2013). Matlab: A Practical Introduction to Programming and Problem Solving, Third Ed. Other lecture materials to be distributed |
Course L1859: Thermodynamic and kinetic modeling of the solid state |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Pavel Gurikov |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G. de (1998). Molecular Thermodynamics of Fluid-Phase Equilibria, Pearson Education. Elliott, S., and Elliott, S.R. (1998). The Physics and Chemistry of Solids, Wiley. Chopard, B., and Droz, M. (2005). Cellular Automata Modeling of Physical Systems, Cambridge University Press. |
Module M1844: Modern discretization methods in structural mechanics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bastian Oesterle |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of this module, students can express the
basic aspects of modern discretization methods in structural mechanics. |
Skills |
After successful completion of this module, the students will be
able to use and further improve modern discretization methods for problems in structural mechanics. |
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Computational Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L3043: Modern discretization methods in structural mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | EN |
Cycle | WiSe |
Content |
The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis.
|
Literature |
|
Course L3044: Modern discretization methods in structural mechanics |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bastian Oesterle |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1268: Linear and Nonlinear Waves |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Calculus, Algebra, Engineering Mechanics, Vibrations. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Course L1737: Linear and Nonlinear Waves |
Typ | Project-/problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Norbert Hoffmann |
Language | DE/EN |
Cycle | WiSe |
Content |
Introduction into the Dynamics of Linear and Nonlinear Waves
|
Literature |
F.K. Kneubühl: Oscillations and Waves. Springer. G.B. Witham, Linear and Nonlinear Waves. Wiley. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific. L.H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge. And others. |
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | see FSPO |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | see FSPO |
Skills | see FSPO |
Personal Competence | |
Social Competence | see FSPO |
Autonomy | see FSPO |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory |
Thesis
Module M-002: Master Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
The students are able:
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able:
|
Workload in Hours | Independent Study Time 900, Study Time in Lecture 0 |
Credit points | 30 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Data Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computer Science in Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Interdisciplinary Mathematics: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Aeronautics: Thesis: Compulsory Materials Science and Engineering: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory Naval Architecture and Ocean Engineering: Thesis: Compulsory Ship and Offshore Technology: Thesis: Compulsory Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory Theoretical Mechanical Engineering: Thesis: Compulsory Process Engineering: Thesis: Compulsory Water and Environmental Engineering: Thesis: Compulsory Certification in Engineering & Advisory in Aviation: Thesis: Compulsory |