Module Manual

Master of Science (M.Sc.)

Theoretical Mechanical Engineering

Table of Contents

Table of Contents 2
Program description 5
Core Qualification 6
Module M0523: Business \& Management 6
Module M0524: Non-technical Courses for Master 7
Module M1259: Technical Complementary Course Core Studies for TMBMS (according to Subject Specific Regulations) 9
Module M0808: Finite Elements Methods 10
Module M0846: Control Systems Theory and Design 12
Module M1204: Modelling and Optimization in Dynamics 14
Module M1306: Control Lab C 16
Module M1150: Continuum Mechanics 18
Module M0751: Vibration Theory 21
Module M0714: Numerical Treatment of Ordinary Differential Equations 22
Module M1203: Applied Dynamics: Numerical and experimental methods 24
Module M0752: Nonlinear Dynamics 26
Module M0838: Linear and Nonlinear System Identifikation 27
Module M0657: Computational Fluid Dynamics II 28
Module M0840: Optimal and Robust Control 29
Module M1339: Design optimization and probabilistic approaches in structural analysis 31
Module M0604: High-Order FEM 33
Module M0711: Numerical Mathematics II 35
Module M0727: Stochastics 37
Module M1398: Selected Topics in Multibody Dynamics and Robotics 39
Module M1614: Optics for Engineers 40
Module M1181: Research Project Theoretical Mechanical Engineering 42
Specialization Bio- and Medical Technology 43
Module M1173: Applied Statistics 43
Module M1334: BIO II: Biomaterials 45
Module M0548: Bioelectromagnetics: Principles and Applications 47
Module M0921: Electronic Circuits for Medical Applications 49
Module M1302: Applied Humanoid Robotics 52
Module M0811: Medical Imaging Systems 53
Module M1335: BIO II: Artificial Joint Replacement 54
Module M0630: Robotics and Navigation in Medicine 55
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 57
Module M1249: Medical Imaging 58
Module M0746: Microsystem Engineering 60
Module M0623: Intelligent Systems in Medicine 62
Specialization Energy Systems 64
Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems 64
Module M0742: Thermal Energy Systems 67
Module M1037: Steam Turbines in Energy, Environmental and Power Train Engineering 69
Module M0512: Use of Solar Energy 71
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 75
Module M0721: Air Conditioning 76
Module M0906: Numerical Simulation and Lagrangian Transport 78
Module M0511: Electrical Energy from Solar Radiation and Wind Power 81
Module M0508: Fluid Mechanics and Ocean Energy 84
Module M0515: Energy Information Systems and Electromobility 86
Module M1149: Marine Power Engineering 88
Module M1161: Turbomachinery 90
Module M0641: Steam Generators 92
Module M1287: Risk Management, Hydrogen and Fuel Cell Technology 94
Module M0513: System Aspects of Renewable Energies 96
Specialization Aircraft Systems Engineering 99
Module M0763: Aircraft Energy Systems 99
Module M0812: Aircraft Design I (Civil Aircraft Design) 101
Module M0771: Flight Physics 103
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 105
Module M1156: Systems Engineering 106
Module M0764: Flight Control Systems 108
Module M1690: Aircraft Design II (Special Air Vehicle Design) 110
Module M1155: Aircraft Cabin Systems 112
Module M1213: Avionics for safety-critical Systems 114
Module M1738: Selected Topics of Aeronautical Systems Engineering (Alternative B: 12 LP) 116
Module M1193: Cabin Systems Engineering 129
Module M1744: Selected Topics of Aeronautical Systems Engineering (Alternative A: 6 LP) 132
Module M1616: Flight Control Law Design and Application 145
Specialization Maritime Technology 147
Module M1157: Marine Auxiliaries 147
Module M1177: Maritime Technology and Maritime Systems 149
Module M1240: Fatigue Strength of Ships and Offshore Structures 152
Module M0663: Marine Geotechnics 154
Module M1132: Maritime Transport 156
Module M1133: Port Logistics 158
Module M1021: Marine Diesel Engine Plants 160
Module M1175: Special Topics of Ship Propulsionand Hydrodynamics of High Speed Water Vehicles 162
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 164
Module M1233: Numerical Methods in Ship Design 165
Module M1146: Ship Vibration 166
Module M1268: Linear and Nonlinear Waves 168
Module M1148: Selected topics in Naval Architecture and Ocean Engineering 169
Module M1232: Arctic Technology 176
Module M1178: Manoeuvrability and Shallow Water Ship Hydrodynamics 178
Module M1165: Ship Safety 180
Specialization Materials Science 182
Module M1342: Polymers 182
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 184
Module M1343: Structure and properties of fibre-polymer-composites 185
Module M1226: Mechanical Properties 187
Module M1239: Experimental Micro- and Nanomechanics 189
Module M1237: Methods in Theoretical Materials Science 191
Module M1238: Quantum Mechanics of Solids 193
Module M1199: Advanced Functional Materials 195
Module M1198: Materials Physics and Atomistic Materials Modeling 196
Module M1151: Materials Modeling 198
Module M1170: Phenomena and Methods in Materials Science 200
Specialization Product Development and Production 202
Module M0815: Product Planning 202
Module M0867: Production Planning \& Control and Digital Enterprise 204
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 206
Module M1024: Methods of Integrated Product Development 207
Module M1143: Applied Design Methodology in Mechatronics 209
Module M1281: Advanced Topics in Vibration 211
Module M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) 212
Module M1174: Automation Technology and Systems 213
Module M1183: Laser Systems and Methods of Manufacturing Design and Analysis 215
Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods) 217
Module M0563: Robotics 219
Module M0739: Factory Planning \& Production Logistics 221
Module M1025: Fluidics 223
Module M1596: Engineering Haptic Systems 226
Module M1665: Design with fibre-polymer-composites 228
Specialization Robotics and Computer Science 230
Module M0563: Robotics 230
Module M1552: Mathematics of Neural Networks 232
Module M0550: Digital Image Analysis 234
Module M1248: Compilers for Embedded Systems 236
Module M1702: Process Imaging 238
Module M0627: Machine Learning and Data Mining 240
Module M0692: Approximation and Stability 242
Module M0835: Humanoid Robotics 244
Module M0939: Control Lab A 245
Module M0633: Industrial Process Automation 247
Module M1302: Applied Humanoid Robotics 249
Module M0677: Digital Signal Processing and Digital Filters 250
Module M0832: Advanced Topics in Contro 252
Module M0629: Intelligent Autonomous Agents and Cognitive Robotics 254
Module M0881: Mathematical Image Processing 256
Module M1598: Image Processing 258
Module M1592: Statistics 260
Module M0836: Communication Networks 262
Module M1224: Selected Topics of Mechatronics (Alternative B: 6 LP) 264
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 272
Module M1702: Process Imaging 273
Specialization Simulation Technology 275
Module M0603: Nonlinear Structural Analysis 275
Module M1151: Materials Modeling 277
Module M0906: Numerical Simulation and Lagrangian Transport 279
Module M0605: Computational Structural Dynamics 282
Module M0653: High-Performance Computing 283
Module M0606: Numerical Algorithms in Structural Mechanics 284
Module M0807: Boundary Element Methods 285
Module M0716: Hierarchical Algorithms 287
Module M1020: Numerical Methods for Partial Differential Equations 289
Module M0720: Matrix Algorithms 290
Module M0658: Innovative CFD Approaches 292
Module M1327: Modeling of Granular Materials 293
Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods) 296
Module M1268: Linear and Nonlinear Waves 298
Module M1846: Finite element modeling of structures 299
Module M1844: Modern discretization methods in structural mechanics 301
Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations) 303
Module M0837: Simulation of Communication Networks 304
Module M1281: Advanced Topics in Vibration 305
Thesis 306
Module M-002: Master Thesis 306

Program description

Content

The 4-semester research-oriented master's degree (MSc) "Theoretical Mechanical Engineering" builds on research-oriented Mechanical Engineeringoriented undergraduate degree programs (BSC). Required are in-depth knowledge in mathematics and science and engineering fundamentals. The graduates acquire basic research and methodological oriented content, including interdisciplinary orientation, mechanical engineering knowledge and associated mechanical engineering expertise to develop mathematical descriptions, analysis and synthesis of complex technical systems methods, products or processes. In this course, the program combines the two most important theoretical and methodological areas, namely the simulation technology and systems theory. For this purpose, mathematical foundations and in-depth knowledge in areas such as the Technical dynamics, control engineering, numerical and structural mechanics are learned.

Career prospects

The master's degree program in Theoretical Mechanical Engineering prepares its graduates for professional and managerial positions in research and development. Through the course's focus on theory-method-oriented content and principles as well as intensive scientific thinking training, graduates are qualified for a wide field of work, especially in the area of mechanical and automotive engineering, biotechnology and medical technology, power engineering, aerospace engineering, shipbuilding, automation, materials science and related fields.

Learning target

The graduates can:

- analyze and solve scientific problems, even if they are defined uncommon or incomplete and competing specifications
- formulate abstract and complex problems from a new or evolving the field of their discipline
- apply innovative methods in basic research oriented problem solving and develop new scientific methods
- identify information needs and find information
- plan and perform theoretical and experimental investigations
- Evaluate data critically and draw conclusions
- analyze and evaluate the use of new and emerging technologies.

Graduates are able to:

- develop concepts and solutions to basic research, partly unusual problems, possibly involving other disciplines,
- create and develop new products, processes and methods
- apply their scientific engineering judgment to work with complex, possibly incomplete information, to identify contradictions and deal with them
- classify knowledge from different fields methodically and systematically, to combine and handle complexity;
- familiarize themselves systematically, and in a short time frame, with new tasks
- To reflect systematically the non-technical implications of engineering activity and to act responsibly
- to develop solutions and further methodological skills.

Program structure

The course is divided into basic research core courses and an application-specific specialization. In addition to the core subjects and mathematics, students develop in-depth knowledge in areas such as technical dynamics, control engineering, numerical and structural mechanics. To deepen the foundations of application specific specializations, modules are selected. Other technical and non-technical elective courses may be selected from the range of subjects TUHH and the University of Hamburg. During the last semester the Master thesis is carried out.

The curricular content is thus divided into six groups:

- Key skills, required courses (24 ECTS)
- Key skills, electives (24 ECTS)
- Project Work (12 ECTS)
- A specialization (18 ECTS)
- General non-technical content (12 ECTS)
- Master's thesis (30 ECTS).

The areas of specialization are:

- Biological and Medical Engineering
- Energy Technology
- Aircraft Systems
- Maritime Technology
- Numerical and computer science
- Product development and production
- Materials Engineering

The choice of specialization is required, its contents are closely related to the research topics of the Institute. The key skills already acquired in undergraduate study for mechanical engineering are developed within the Master's program.

Core Qualification

Important
Module M0523: Business \& Management

Module Responsible	Prof. Matthias Meyer
Admission Requirements	None
Recommended Previous Knowledge	None
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	- Students are able to find their way around selected special areas of management within the scope of business management. - Students are able to explain basic theories, categories, and models in selected special areas of business management. - Students are able to interrelate technical and management knowledge. - Students are able to apply basic methods in selected areas of business management. - Students are able to explain and give reasons for decision proposals on practical issues in areas of business management. - Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems - Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Non-technical Courses for Master

Module Responsible	Dagmar Richter
Admission Requirements	None
Recommended Previous Knowledge	None
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	The Nontechnical Academic Programms (NTA) imparts skills that, in view of the TUHH's training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor's or Master's level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of "profiles". The subjects that can be studied in parallel throughout the student's entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor's courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goaloriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor's and Master's fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor's and Master's graduates in their future working life.

Specialized Competence (Knowledge)

Students can

- explain specialized areas in context of the relevant non-technical disciplines,
- outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
- different specialist disciplines relate to their own discipline and differentiate it as well as make connections,
- sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
- Can communicate in a foreign language in a manner appropriate to the subject.

In selected sub-areas students can

- apply basic and specific methods of the said scientific disciplines,
- aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
- to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner,
- justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

[^0]Module Manual M.Sc. "Theoretical Mechanical Engineering"

Courses			
Title	Typ	Hrs/wk	CP
Module Responsible	Prof. Robert Seifried		
Admission Requirements	None		
Recommended Previous Knowledge	see FSPO		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	see FSPO see FSPO see FSPO see FSPO		
Workload in Hours	Depends on choice of courses		
Credit points	6		
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory		

Module M0808: Finite Elements Methods

Courses					
Title			Typ	Hrs/wk	CP
Finite Element Methods (LO291)			Lecture	2	3
Finite Element Methods (L0804)			Recitation Section (large)	2	3
Module Responsible	Prof. Otto von Estorff				
Admission Requirements	None				
Recommended Previous Knowledge	Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations)				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Skills Personal Competence Social Competence	The students po overview of the t The students are system matrices, Students can wor The students ar Problems can be	an in-dep etical and m able to han solving the small group e to indep tified and th	erivation of the finite e rmulating suitable finite at joint solutions. mputational problems a d.	method a ts, assem lop own	able to give an he corresponding element routines
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	No 20% Midterm				
Examination	Written exam				
Examination duration and scale	120 min				
Assignment for the Following Curricula	Civil Engineering: Core Qualification: Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Core Qualification: Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Product Development, Materials and Production: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	Wise
Content	- General overview on modern engineering - Displacement method - Hybrid formulation - Isoparametric elements - Numerical integration - Solving systems of equations (statics, dynamics) - Eigenvalue problems - Non-linear systems - Applications - Programming of elements (Matlab, hands-on sessions) - Applications
Literature	Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Course L0804: Finite Element Methods

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0846: Control Systems Theory and Design

Courses				
Title Control Systems Theory and Design (L0656) Control Systems Theory and Design (L0657)		Typ	Hrs/wk	CP
		Lecture	2	4
		Recitation Section (small)	2	2
Module Responsible	Prof. Herbert Werner			
Admission Requirements	None			
Recommended Previous Knowledge	Introduction to Control Systems			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Personal Competence	- Students can explain how linear dynamic systems are represented as state space models; they can interpret the system response to initial states or external excitation as trajectories in state space - They can explain the system properties controllability and observability, and their relationship to state feedback and state estimation, respectively - They can explain the significance of a minimal realisation - They can explain observer-based state feedback and how it can be used to achieve tracking and disturbance rejection - They can extend all of the above to multi-input multi-output systems - They can explain the z-transform and its relationship with the Laplace Transform - They can explain state space models and transfer function models of discrete-time systems - They can explain the experimental identification of ARX models of dynamic systems, and how the identification problem can be solved by solving a normal equation - They can explain how a state space model can be constructed from a discrete-time impulse response - Students can transform transfer function models into state space models and vice versa - They can assess controllability and observability and construct minimal realisations - They can design LQG controllers for multivariable plants - They can carry out a controller design both in continuous-time and discrete-time domain, and decide which is appropriate for a given sampling rate - They can identify transfer function models and state space models of dynamic systems from experimental data - They can carry out all these tasks using standard software tools (Matlab Control Toolbox, System Identification Toolbox, Simulink) Students can work in small groups on specific problems to arrive at joint solutions. Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress.			
Workload in Hours	Independ			
Credit points	6			
Course achievement	None			
Examination	Written ex			
Examination duration and scale	120 min			
Assignment for the Following Curricula	Electrical Energy Sy Aircraft Sy Computat Internatio Internatio Mechanic Mechatro Biomedic Biomedic Biomedic Biomedic Product D Theoretic	Isory ering Science: Elective ctrical Engineering: Elect chatronics: Elective Com ronics: Elective Compuls nerative Medicine: Elect eses: Elective Compulsor Control Theory: Compuls s Administration: Electiv Elective Compulsory ory	ry pulsory pulsory ulsory	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0656: Control Systems Theory and Design

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Herbert Werner
Language	EN
Cycle	WiSe
Content	State space methods (single-input single-output) - State space models and transfer functions, state feedback - Coordinate basis, similarity transformations - Solutions of state equations, matrix exponentials, Caley-Hamilton Theorem - Controllability and pole placement - State estimation, observability, Kalman decomposition - Observer-based state feedback control, reference tracking - Transmission zeros - Optimal pole placement, symmetric root locus Multi-input multi-output systems - Transfer function matrices, state space models of multivariable systems, Gilbert realization - Poles and zeros of multivariable systems, minimal realization - Closed-loop stability - Pole placement for multivariable systems, LQR design, Kalman filter Digital Control - Discrete-time systems: difference equations and z-transform - Discrete-time state space models, sampled data systems, poles and zeros - Frequency response of sampled data systems, choice of sampling rate System identification and model order reduction - Least squares estimation, ARX models, persistent excitation - Identification of state space models, subspace identification - Balanced realization and model order reduction Case study - Modelling and multivariable control of a process evaporator using Matlab and Simulink Software tools - Matlab/Simulink
Literature	- Werner, H., Lecture Notes „Control Systems Theory and Design" - T. Kailath "Linear Systems", Prentice Hall, 1980 - K.J. Astrom, B. Wittenmark "Computer Controlled Systems" Prentice Hall, 1997 - L. Ljung "System Identification - Theory for the User", Prentice Hall, 1999

Course L0657: Control Systems Theory and Design	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Herbert Werner
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1204: Modelling and Optimization in Dynamics

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1633: Optimization of dynamical systems

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Robert Seifried, Dr. Alexander Held
Language	DE
Cycle	WiSe
Content	1. Formulation and classification of optimization problems 2. Scalar Optimization 3. Sensitivity Analysis 4. Unconstrained Parameter Optimization 5. Constrained Parameter Optimization 6. Stochastic optimization 7. Multicriteria Optimization 8. Topology Optimization
Literature	Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright, S.J. : Numerical Optimization. New York: Springer, 2006.

Course L1836: Control Lab IX	
Typ	Practical Course
$\mathbf{\text { CP }}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Course L1834: Control Lab VII	
Typ	Practical Course
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1835: Control Lab VIII	
Typ	Practical Course
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1150: Continuum Mechanics

Courses			
Title	Typ	Hrs/wk	CP
Continuum Mechanics (L1533)	Lecture	2	
Continuum Mechanics Exercise (L1534)	Recitation Section (small)		

Module Responsible	Prof. Christian Cyron
Admission Requirements	None
Recommended Previous Knowledge	Basics of linear continuum mechanics as taught, e.g., in the module Mechanics II (forces and moments, stress, linear strain, freebody principle, linear-elastic constitutive laws, strain energy).
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students can explain the fundamental concepts to calculate the mechanical behavior of materials. The students can set up balance laws and apply basics of deformation theory to specific aspects, both in applied contexts as in research contexts. The students are able to develop solutions, to present them to specialists in written form and to develop ideas further. The students are able to assess their own strengths and weaknesses. They can independently and on their own identify and solve problems in the area of continuum mechanics and acquire the knowledge required to this end.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	60 min
Assignment for the Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Christian Cyron
Language	DE
Cycle	WiSe
Content	- Fundamentals of tensor calculus - Transformation invariance - Tensor algebra - Tensor analysis - Kinematics - Motion of continuum - Deformation of infinitesimal line, area and volume elements - Material and spatial description - Polar decomposition - Spectral decomposition - Objectivity - Strain measures - Time derivatives - Partial / material time derivatives - Objective time rates - Strain and deformation rates - Transport theorems - Balance equations (global and local form) - Balance of mass - The stress state - Surface traction vectors - Cauchy's fundamental theorem - Stress tensors (Cauchy, 1. and 2. Piola-Kirchhoff, Kirchhoff stress tensor) - Balance of linear momentum - Balance of angular momentum - Balance of energy - Balance of entropy - Clausius-Duhem inequality - Constitutive laws - Constitutive assumptions - Fluids - Elastic solids - Hyperelasticity - Material symmetry - Elasto-plastic solids - Analysis - Initial-boundary value problems and their numerical solution
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer weitere siehe in der Literaturliste des Scripts

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1534: Continuum Mechanics Exercise

Course L1534: Continuum Mechanics Exercise	
Typ	Recitation Section (small)
$\mathbf{H r s / w k}$	2
$\mathbf{C P}$	3

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M0751: Vibration Theory

| Courses | | | |
| :--- | :--- | :--- | :--- | :--- |
| Title | Typ | Hrs/wk | CP |
| Vibration Theory (L0701) | Integrated Lecture | 4 | 6 |

Module Responsible	Prof. Norbert Hoffmann
Admission Requirements	None
Recommended Previous	- Calculus
Knowledge	- Linear Algebra
	- Engineering Mechanics

Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to denote terms and concepts of Vibration Theory and develop them further. Students are able to denote methods of Vibration Theory and develop them further. Students can reach working results also in groups. Students are able to approach individually research tasks in Vibration Theory.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	2 Hours
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Course L0701: Vibration Theory	
Typ	Integrated Lecture
Hrs/wk	4
$\mathbf{C P}$	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann
Language	DE/EN
Cycle	WiSe
Content	Linear and Nonlinear Single and Multiple Degree of Freedom Oscillations and Waves.
Literature	K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen.
	Springer Verlag, 2013.

Module M0714: Numerical Treatment of Ordinary Differential Equations

Courses			
Title		Hrs/wk	CP
Numerical Treatment of Ordinary Differential Equations (L0576)		2	3
Numerical Treatment of Ordinary Differential Equations (L0582)		2	3
Module Responsible	Prof. Daniel Ruprecht		
Admission Requirements	None		
Recommended Previous Knowledge	- Mathematik I, II, III für Ingenieurstudierende (deutsch oder englisch) oder Analysis \& Lineare Algebra I + II sowie Analysis III für Technomathematiker - Basic MATLAB knowledge		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Personal Competence Social Competence	Students are able to - list numerical methods for the solution of ordinary differential equations and explain - repeat convergence statements for the treated numerical methods (including problem), - explain aspects regarding the practical execution of a method. - select the appropriate numerical method for concrete problems, implement the interpret the numerical results Students are able to - implement (MATLAB), apply and compare numerical methods for the solution of ord - to justify the convergence behaviour of numerical methods with respect to the pose - for a given problem, develop a suitable solution approach, if necessary by the comp this approach and to critically evaluate the results. Students are able to - work together in heterogeneously composed teams (i.e., teams from different stud explain theoretical foundations and support each other with practical aspects regar Students are capable - to assess whether the supporting theoretical and practical excercises are better sol - to assess their individual progress and, if necessary, to ask questions and seek help	ore ideas equisites erical alg fferential em and s of severa ams and impleme ividually	o the underlying s efficiently and ons, algorithm, ithms, to execute ound knowledge), of algorithms. eam,
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	90 min		
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Computer Science: Specialisation III. Mathematics: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Interdisciplinary Mathematics: Specialisation II. Numerical - Modelling Training: Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Daniel Ruprecht
Language	DE/EN
Cycle	SoSe
Content	Numerical methods for Initial Value Problems - single step methods - multistep methods - stiff problems - differential algebraic equations (DAE) of index 1 Numerical methods for Boundary Value Problems - multiple shooting method - difference methods - variational methods
Literature	- E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems - E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems

Course L0582: Numerical Treatment of Ordinary Differential Equations

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Daniel Ruprecht
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1203: Applied Dynamics: Numerical and experimental methods

Courses			
Title	Typ	Hrs/wk	CP
Lab Applied Dynamics (L1631)	Practical Course	3	3
Applied Dynamics (L1630)	Lecture	3	
		3	

Module Responsible	Prof. Robert Seifried

Admission Requirements	None			
Recommended Previous				
Knowledge	Mathematics I, II, III, Mechanics I, II, III, IV			
Numerical Treatment of Ordinary Differential Equations		\quad	Educational Objectives	After taking part successfully, students have reached the following learning results
---:	:---			
Snofessional Competence	Students can represent the most important methods of dynamics after successful completion of the module Technical dynamics and have a good understanding of the main concepts in the technical dynamics. Students are able			
+ to think holistically				

+ to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems
+ to describe dynamics problems mathematically
+ to investigate dynamics problems both experimentally and numerically

Personal Competence Social Competence Autonomy	Students are able to + solve problems in heterogeneous groups and to document the corresponding results. Students are able to + assess their knowledge by means of exercises and experiments. + acquaint themselves with the necessary knowledge to solve research oriented tasks.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes None Subject theoretical practical work andVersuche Fachlabor
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Core Qualification: Compulsory

Course L1631: Lab Applied Dynamics	
Typ	Practical Course
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Dr. Marc-André Pick
Language	DE
Cycle	SoSe
Content	Practical exercises are performed in groups. The examples are taken from different areas of applied dynamics, such as numerical simulation, experimental validation and experimental vibration analysis.
Literature	Schiehlen, W.; Eberhard, P.: Technische Dynamik, 4. Auflage, Vieweg+Teubner: Wiesbaden, 2014.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Robert Seifried
Language	DE
Cycle	SoSe
Content	1. Modelling of Multibody Systems 2. Basics from kinematics and kinetics 3. Constraints 4. Multibody systems in minimal coordinates 5. State space, linearization and modal analysis 6. Multibody systems with kinematic constraints 7. Multibody systems as DAE 8. Non-holonomic multibody systems 9. Experimental Methods in Dynamics
Literature	Schiehlen, W.; Eberhard, P.: Technische Dynamik, 4. Auflage, Vieweg+Teubner: Wiesbaden, 2014. Woernle, C.: Mehrkörpersysteme, Springer: Heidelberg, 2011. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M0752: Nonlinear Dynamics

Courses			
Title	Typ	Hrs/wk	CP
Nonlinear Dynamics (L0702)	Integrated Lecture	4	6

Module Responsible	Prof. Norbert Hoffmann
Admission Requirements	None
Recommended Previous	Calculus
Knowledge	• Linear Algebra
	•Engineering Mechanics

Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	Students are able to reflect existing terms and concepts in Nonlinear Dynamics and to develop and research new terms and

Students are able to apply existing methods and procesures of Nonlinear Dynamics and to develop novel methods and procedures
Personal Comp
Social Competence Students can reach working results also in groups.
Autonomy Students are able to approach given research tasks individually and to identify and follow up novel research tasks by themselves.

Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Examination	Written exam
scale	2 Hours
Assignment for the	Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Following Curricula	International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
	Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Course L0702: Nonlinear Dynamics	
Typ	Integrated Lecture
Hrs/wk	4
$\mathbf{C P}$	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann
Language	DE/EN
Cycle	SoSe
Content	Fundamentals of Nonlinear Dynamics.
Literature	S. Strogatz: Nonlinear Dynamics and Chaos. Perseus, 2013.

Module M0838: Linear and Nonlinear System Identifikation

Course L0660: Linear and Nonlinear System Identification	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Herbert Werner
Language	EN
Cycle	SoSe
Content	- Prediction error method - Linear and nonlinear model structures - Nonlinear model structure based on multilayer perceptron network - Approximate predictive control based on multilayer perceptron network model - Subspace identification
Literature	- Lennart Ljung, System Identification - Theory for the User, Prentice Hall 1999 - M. Norgaard, O. Ravn, N.K. Poulsen and L.K. Hansen, Neural Networks for Modeling and Control of Dynamic Systems, Springer Verlag, London 2003 - T. Kailath, A.H. Sayed and B. Hassibi, Linear Estimation, Prentice Hall 2000

Module M0657: Computational Fluid Dynamics II

Courses			
Title	Typ	Hrs/wk	CP
Computational Fluid Dynamics II (L0237)	Lecture	2	3
Computational Fluid Dynamics II (LO421)	Recitation Section (large)	2	

Module Responsible	Prof. Thomas Rung
Admission Requirements	None
Recommended Previous Knowledge	Basics of computational and general thermo/fluid dynamics
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Establish a thorough understanding of Finite-Volume approaches. Familiarise with details of the theoretical background of complex CFD algorithms. Ability to manage of interface problems and build-up of coding skills. Ability to evaluate, assess and benchmark different solution options. Practice of team working during team exercises. Indenpendent analysis of specific solution approaches.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	0.5h-0.75h
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Course L0237: Computational Fluid Dynamics II	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe
Literature	Computational Modelling of complex single- and multiphase flows using higher-order approximations for unstructured grids and mehsless particle-based methods.
	Vorlesungsmanuskript und Übungsunterlagen
	J.

Course L0421: Computational Fluid Dynamics II	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0840: Optimal and Robust Control

Courses			
Title Optimal and Robust Control (L0658) Optimal and Robust Control (L0659)	Typ	Hrs/wk	CP
) Lecture	2	3
) Recitation Section (small)	2	3
Module Responsible	Prof. Herbert Werner		
Admission Requirements	None		
Recommended Previous Knowledge	- Classical control (frequency response, root locus) - State space methods - Linear algebra, singular value decomposition		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	- Students can explain the significance of the matrix Riccati equation for the solution of LQ problems. - They can explain the duality between optimal state feedback and optimal state estimation. - They can explain how the H 2 and H -infinity norms are used to represent stability and performance constraints. - They can explain how an LQG design problem can be formulated as special case of an H 2 design problem. - They can explain how model uncertainty can be represented in a way that lends itself to robust controller design - They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant. - They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities. - Students are capable of designing and tuning LQG controllers for multivariable plant models. - They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it. - They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design. - They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller. - They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them. - They can carry out all of the above using standard software tools (Matlab robust control toolbox). Students can work in small groups on specific problems to arrive at joint solutions. Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Oral exam		
Examination duration and scale	30 min		
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective C Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elect Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsor Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Biomedical Engineering: Specialisation Management and Business Administration: Electiv Product Development, Materials and Production: Specialisation Product Development: El Product Development, Materials and Production: Specialisation Production: Elective Comp Product Development, Materials and Production: Specialisation Materials: Elective Compu Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory	y pulsory ory ulsory mpulsory	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

| Course L0658: Optimal and Robust Control | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 2 |
| $\mathbf{C P}$ | 3 |

Course L0659: Optimal and Robust Control	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Herbert Werner
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1339: Design optimization and probabilistic approaches in structural analysis

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Benedikt Kriegesmann
Language	DE
Cycle	SoSe
Content	In the course the theoretic basics for design optimization and reliability analysis are taught, where the focus is on the application of such methods. The lectures will consist of presentations as well as computer exercises. In the computer exercises, the methods learned will be implemented in Matlab for understanding the practical realization. The following contents will be considered: - Design optimization - Gradient based methods - Genetic algorithms - Optimization with constraints - Topology optimization - Reliability analysis - Stochastic basics - Monte Carlo methods - Semi-analytic approaches - robust design optimization - Robustness measures - Coupling of design optimization and reliability analysis
Literature	[1] Arora, Jasbir. Introduction to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley \& Sons New York/Chichester, UK, 2000.

Course L1874: Design Optimization and Probabilistic Approaches in Structural Analysis

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Benedikt Kriegesmann
Language	DE
Cycle	SoSe
Content	Matlab exercises complementing the lecture
Literature	siehe Vorlesung

Module M0604: High-Order FEM

Courses					
Title High-Order FEM (L0280) High-Order FEM (L0281)			Typ	Hrs/wk	CP
			Lecture	3	4
			Recitation Section (large)	1	2
Module Responsible	Prof. Alexander Düster				
Admission Requirements	None				
Recommended Previous Knowledge	Knowledge of partial differential equations is recommended.				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to + give an overview of the different (h, p,hp) finite element procedures. + explain high-order finite element procedures. + specify problems of finite element procedures, to identify them in a given situation and to explain their mathe mechanical background. Students are able to + apply high-order finite elements to problems of structural mechanics. + select for a given problem of structural mechanics a suitable finite element procedure. + critically judge results of high-order finite elements. + transfer their knowledge of high-order finite elements to new problems. Students are able to + solve problems in heterogeneous groups and to document the corresponding results. Students are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Form Description No 10% Presentation Forschendes Lernen				
Examination	Written exam				
Examination duration and scale	120 min				
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0280: High-Order FE	
Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	EN
Cycle	SoSe
Content	1. Introduction 2. Motivation 3. Hierarchic shape functions 4. Mapping functions 5. Computation of element matrices, assembly, constraint enforcement and solution 6. Convergence characteristics 7. Mechanical models and finite elements for thin-walled structures 8. Computation of thin-walled structures 9. Error estimation and hp-adaptivity 10. High-order fictitious domain methods
Literature	[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 [2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis - Formulation, Verification and Validation, John Wiley \& Sons, 2011

Course L0281: High-Order FEM	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Alexander Düster
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0711: Numerical Mathematics II

Courses			
Title	Typ	Hrs/wk	CP
Numerical Mathematics II (L0568)	Lecture		
Numerical Mathematics II (L0569)	Recitation Section (small)	2	

Module Responsible	Prof. Sabine Le Borne
Admission Requirements	None
Recommended Previous Knowledge	- Numerical Mathematics I - Python knowledge
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	Students are able to - name advanced numerical methods for interpolation, approximation, integration, eigenvalue problems, eigenvalue problems, nonlinear root finding problems and explain their core ideas, - repeat convergence statements for the numerical methods, sketch convergence proofs, - explain practical aspects of numerical methods concerning runtime and storage needs - explain aspects regarding the practical implementation of numerical methods with respect to computational and storage complexity.

kills Students are able to

- implement, apply and compare advanced numerical methods in Python,
- justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm and to transfer it to related problems,
- for a given problem, develop a suitable solution approach, if necessary through composition of several algorithms, to execute this approach and to critically evaluate the results

Personal Competence Social Competence Autonomy	Students are able to - work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms. Students are capable - to assess whether the supporting theoretical and practical excercises are better solved individually or in a team, - to assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	25 min
Assignment for the Following Curricula	Computer Science: Specialisation III. Mathematics: Elective Compulsory Computational Science and Engineering: Specialisation III. Mathematics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Course L0568: Numerical Mathematics II	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language	DE/EN
Cycle	SoSe
Content	1. Error and stability: Notions and estimates 2. Rational interpolation and approximation 3. Multidimensional interpolation (RBF) and approximation (neural nets) 4. Quadrature: Gaussian quadrature, orthogonal polynomials 5. Linear systems: Perturbation theory of decompositions, structured matrices 6. Eigenvalue problems: LR-, QD-, QR-Algorithmus 7. Nonlinear systems of equations: Newton and Quasi-Newton methods, line search (optional) 8. Krylov space methods: Arnoldi-, Lanczos methods (optional)
Literature	- Skript - Stoer/Bulirsch: Numerische Mathematik 1, Springer - Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0569: Numerical Mathematics II

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0727: Stochastics

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0777: Stochastics	
Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Matthias Schulte
Language	DE/EN
Cycle	SoSe
Content	- Definitions of probability, conditional probability - Random variables, dependencies, independence assumptions, - Marginal and joint probabilities - Distributions and density functions - Characteristics: expected values, variance, standard deviation, moments - Multivariate distributions - Law of large numbers and central limit theorem - Basic notions of stochastic processes - Basic concepts of statistics (point estimators, confidence intervals, hypothesis testing)
Literature	1. Methoden der statistischen Inferenz, Likelihood und Bayes, Held, L., Spektrum 2008 2. Stochastik für Informatiker, Dümbgen, L., Springer 2003 3. Statistik: Der Weg zur Datenanalyse, Fahrmeir, L., Künstler R., Pigeot, I, Tutz, G., Springer 2010 4. Stochastik, Georgii, H.-O., deGruyter, 2009 5. Probability and Random Processes, Grimmett, G., Stirzaker, D., Oxford University Press, 2001 6. Programmieren mit R, Ligges, U., Springer 2008

Course L0778: Stochastics	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Matthias Schulte
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1398: Selected Topics in Multibody Dynamics and Robotics

Courses			
Title	Typ	Hrs/wk	CP
Formulas and Vehicles - Dynamics and Control of Autonomous Vehicles (L2869)	Integrated Lecture	1	Project-/problem-based Learning
Formulas and Vehicles - Introduction into Mobile Underwater Robotics (L1981)	4		

Module Responsible	Prof. Robert Seifried
Admission Requirements	None
Recommended Previous Knowledge	Mechanics IV, Applied Dynamics or Robotics Numerical Treatment of Ordinary Differential Equations Control Systems Theory and Design
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	After successful completion of the module students demonstrate deeper knowledge and understanding in selected application areas of multibody dynamics and robotics Students are able + to think holistically + to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems + to describe dynamics problems mathematically + to implement dynamical problems on hardware Students are able to + solve problems in heterogeneous groups and to document the corresponding results and present them Students are able to + assess their knowledge by means of exercises and projects. + acquaint themselves with the necessary knowledge to solve research oriented tasks.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Presentation
Examination duration and scale	TBA
Assignment for the Following Curricula	Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Course L2869: Formulas and Vehicles - Dynamics and Control of Autonomous Vehicles	
Typ	Integrated Lecture
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Robert Seifried, Daniel-André Dücker
Language	DE
Cycle	WiSe
Content	
Literature	

Course L1981: Formulas and Vehicles - Introduction into Mobile Underwater Robotics	
Typ	Project-/problem-based Learning
Hrs/wk	4
$\mathbf{C P}$	5
Workload in Hours	Independent Study Time 94, Study Time in Lecture 56
Lecturer	Prof. Robert Seifried, Daniel-André Dücker
Language	DE
Cycle	WiSe
Content	
Literature	Seifried, R.: Dynamics of underactuated multibody systems, Springer, 2014
	Popp, K.; Schiehlen, W.: Ground vehicle dynamics, Springer, 2010

Module M1614: Optics for Engineers

Courses			
Title	Typ	Hrs/wk	CP
Optics for Engineers (L2437)	Lecture	3	3
Optics for Engineers (L2438)		Project-/problem-based Learning	3

Module Responsible	Prof. Thorsten Kern
Admission Requirements	None
Recommended Previous Knowledge	- Basics of physics
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Teaching subject ist the design of simple optical systems for illumination and imaging optics - Basic values for optical systems and lighting technology - Spectrum, black-bodies, color-perception - Light-Sources und their characterization - Photometrics - Ray-Optics - Matrix-Optics - Stops, Pupils and Windows - Light-field Technology - Introduction to Wave-Optics - Introduction to Holography Understandings of optics as part of light and electromagnetic spectrum. Design rules, approach to designing optics
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes None Subject theoretical practical work andTeilnahme an Laborübungen und Simulation
Examination	Oral exam
Examination duration and scale	30 min
Assignment for the Following Curricula	Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory

Course L2437: Optics for Engineers	
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Thorsten Kern
Language	EN
Cycle	WiSe
Content	- Basic values for optical systems and lighting technology - Spectrum, black-bodies, color-perception - Light-Sources und their characterization - Photometrics - Ray-Optics - Matrix-Optics - Stops, Pupils and Windows - Light-field Technology - Introduction to Wave-Optics - Introduction to Holography
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2438: Optics for Engineers

Typ	Project-/problem-based Learning
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Thorsten Kern
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1181: Research Project Theoretical Mechanical Engineering

Courses	
Title	Typ Hrs/wk CP
Module Responsible	Dozenten des SD M
Admission Requirements	None
Recommended Previous Knowledge	- Finite-element-methods - Control systems theory and design - Applied dynamics - Numerics of ordinary differential equations
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	The students are able to demonstrate their detailed knowledge in the field of theoretical mechanical engineering. They can exemplify the state of technology and application and discuss critically in the context of actual problems and general conditions of science and society. The students can develop solving strategies and approaches for fundamental and practical problems in theoretical mechanical engineering. They may apply theory based procedures and integrate safety-related, ecological, ethical, and economic view points of science and society. Scientific work techniques that are used can be described and critically reviewed. The students are able to independently select methods for the project work and to justify this choice. They can explain how these methods relate to the field of work and how the context of application has to be adjusted. General findings and further developments may essentially be outlined. The students are able to condense the relevance and the structure of the project work, the work steps and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their colleagues. The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.
Workload in Hours	Independent Study Time 360, Study Time in Lecture 0
Credit points	12
Course achievement	None
Examination	Study work
Examination duration and scale	according to FSPO
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Core Qualification: Compulsory

Specialization Bio- and Medical Technology

The specialization „biotechnology and medical technology" consists of modules for Intelligent Systems, Robotics and Navigation in medicine, supplemented by Endoprostheses and Materials and Regenerative Medicine, and completed by the modules Imaging Systems in medicine and Industrial Image Transformations in electives. Thus, the acquisition of knowledge and skills in engineering specific aspects of biotechnology and medical technology is at the heart of this specialization. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.

Module M1173: Applied Statistics

Courses			
Title	Typ	Hrs/wk	CP
Applied Statistics (L1584)	Lecture		
Applied Statistics (L1586)	Project-/problem-based Learning	2	
Applied Statistics (L1585)	Recitation Section (small)	1	2

Module Responsible	Prof. Michael Morlock
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge of statistical methods
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students can explain the statistical methods and the conditions of their use. Students are able to use the statistics program to solve statistics problems and to interpret and depict the results Team Work, joined presentation of results To understand and interpret the question and solve
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes None Written elaboration
Examination	Written exam
Examination duration and scale	90 minutes, 28 questions
Assignment for the Following Curricula	Mechanical Engineering and Management: Specialisation Management: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Core Qualification: Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory

Course L1584: Applied Statistics	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Michael Morlock
Language	DE/EN
Cycle	WiSe
Content	The goal is to introduce students to the basic statistical methods and their application to simple problems. The topics include: Chi square test Simple regression and correlation Multiple regression and correlation One way analysis of variance Two way analysis of variance Discriminant analysis Analysis of categorial data Chossing the appropriate statistical method Determining critical sample sizes
Literature	Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University, Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, CB © 1998, ISBN/ISSN: 0-534-20910-6

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1586: Applied Statistics

Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Lecturer	Prof. Michael Morlock
Language	DE/EN
Cycle	WiSe
Content	The students receive a problem task, which they have to solve in small groups ($n=5$). They do have to collect their own data and work with them. The results have to be presented in an executive summary at the end of the course.
Literature	Selbst zu finden

Course L1585: Applied Statistics

Typ	Recitation Section (small)
Hrs/wk	l
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Michael Morlock
Language	DE/EN
Cycle	WiSe
Content	The different statistical tests are applied for the solution of realistic problems using actual data sets and the most common used
commercial statistical software package (SPSS).	
Literature	Student Solutions Manual for Kleinbaum/Kupper/Muller/Nizam's Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, Paperbound © 1998, ISBN/ISSN: 0-534- 20913-0

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1334: BIO II: Biomaterials

Courses	
Title	Typ Hrs/wk CP
Biomaterials (L0593)	Lecture 2
Module Responsible	Prof. Michael Morlock
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge of orthopedic and surgical techniques is recommended.
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students can describe the materials of the human body and the materials being used in medical engineering, and their fields of use. The students can explain the advantages and disadvantages of different kinds of biomaterials. The students are able to discuss issues related to materials being present or being used for replacements with student mates and the teachers. The students are able to acquire information on their own. They can also judge the information with respect to its credibility.
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Credit points	3
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0593: Biomaterials	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Michael Morlock
Language	EN
Cycle	WiSe
Content	Topics to be covered include: 1. Introduction (Importance, nomenclature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.
Literature	Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987. Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998. Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988. Park J. Biomaterials: an introduction. New York: Plenum Press, 1980. Wintermantel, E. und Ha, S.-W : Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.

Module M0548: Bioelectromagnetics: Principles and Applications

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0371: Bioelectromagnetics: Principles and Applications

Typ	Lecture
Hrs/wk	3
CP	5
Workload in Hours	Independent Study Time 108, Study Time in Lecture 42
Lecturer	Prof. Christian Schuster
Language	DE/EN
Cycle	WiSe
Content	- Fundamental properties of electromagnetic fields (phenomena) - Mathematical description of electromagnetic fields (Maxwell's Equations) - Electromagnetic properties of biological tissue - Principles of energy absorption in biological tissue, dosimetry - Numerical methods for the computation of electromagnetic fields (especially FDTD) - Measurement techniques for characterization of electromagnetic fields - Behavior of electromagnetic fields of low frequency in biological tissue - Behavior of electromagnetic fields of medium frequency in biological tissue - Behavior of electromagnetic fields of high frequency in biological tissue - Behavior of electromagnetic fields of very high frequency in biological tissue - Diagnostic applications of electromagnetic fields in medical technology - Therapeutic applications of electromagnetic fields in medical technology - The human body as a generator of electromagnetic fields
Literature	- C. Furse, D. Christensen, C. Durney, "Basic Introduction to Bioelectromagnetics", CRC (2009) - A. Vorst, A. Rosen, Y. Kotsuka, "RF/Microwave Interaction with Biological Tissues", Wiley (2006) - S. Grimnes, O. Martinsen, "Bioelectricity and Bioimpedance Basics", Academic Press (2008) - F. Barnes, B. Greenebaum, "Bioengineering and Biophysical Aspects of Electromagnetic Fields", CRC (2006)

Course L0373: Bioelectromagnetics: Principles and Applications

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 2, Study Time in Lecture 28
Lecturer	Prof. Christian Schuster
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0921: Electronic Circuits for Medical Applications

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0696: Electronic Circuits for Medical Applications

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Matthias Kuhl
Language	EN
Cycle	WiSe
Content	- Market for medical instruments - Membrane potential, action potential, sodium-potassium pump - Information transfer by the central nervous system - Interface tissue - electrode - Amplifiers for medical applications, analog-digital converters - Examples for electronic implants - Artificial eye, cochlea implant
Literature	Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks Ganong's Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010 Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p., 4. editions, Springer, 2009 Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor) Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only Russell K. Hobbie, Bradley J. Roth, Intermediate Physics for Medicine and Biology, Springer, 4th ed., 616 p., 2007 Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/

Course L1056: Electronic Circuits for Medical Applications

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Matthias Kuhl
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1408: Electronic Circuits for Medical Applications

Typ	Practical Course
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Matthias Kuhl
Language	EN
Cycle	WiSe
Content	- Market for medical instruments - Membrane potential, action potential, sodium-potassium pump - Information transfer by the central nervous system - Interface tissue - electrode - Amplifiers for medical applications, analog-digital converters - Examples for electronic implants - Artificial eye, cochlea implant
Literature	Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks Ganong's Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010 Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p., 4. editions, Springer, 2009 Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor) Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only Russell K. Hobbie, Bradley J. Roth, Intermediate Physics for Medicine and Biology, Springer, 4th ed., 616 p., 2007 Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/

Module M1302: Applied Humanoid Robotics

Course L1794: Applied Humanoid Robotics	
Typ	Project-/problem-based Learning
Hrs/wk	6
CP	6
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Lecturer	Patrick Göttsch
Language	DE/EN
Cycle	WiSe/SoSe
Content	- Fundamentals of kinematics - Static and dynamic stability of humanoid robotic systems - Combination of different software environments (Matlab, C++, etc.) - Introduction to the necessary software frameworks - Team project - Presentation and Demonstration of intermediate and final results
Literature	- B. Siciliano, O. Khatib. "Handbook of Robotics. Part A: Robotics Foundations", Springer (2008)

Module M0811: Medical Imaging Systems

Courses	
Title	Typ Hrs/wk CP
Medical Imaging Systems (L0819)	Lecture
Module Responsible	Dr. Michael Grass
Admission Requirements	None
Recommended Previous Knowledge	none
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Personal Competence Social Competence Autonomy	Students can: - Describe the system configuration and components of the main clinical imaging systems; - Explain how the system components and the overall system of the imaging systems function; - Explain and apply the physical processes that make imaging possible and use with the fundamental physical equations; - Name and describe the physical effects required to generate image contrasts; - Explain how spatial and temporal resolution can be influenced and how to characterize the images generated; - Explain which image reconstruction methods are used to generate images; Describe and explain the main clinical uses of the different systems. Students are able to: - Explain the physical processes of images and assign to the systems the basic mathematical or physical equations required; - Calculate the parameters of imaging systems using the mathematical or physical equations; - Determine the influence of different system components on the spatial and temporal resolution of imaging systems; - Explain the importance of different imaging systems for a number of clinical applications; Select a suitable imaging system for an application. none Students can: - Understand which physical effects are used in medical imaging; - Decide independently for which clinical issue a measuring system can be used.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Biomedical Engineering: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory

Course L0819: Medical Imaging Systems	
Typ	Lecture
Hrs/wk	4
CP	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Dr. Michael Grass, Dr. Frank Michael Weber, Dr. Sven Prevrhal, Dr. Tim Nielsen
Language	DE
Cycle	SoSe
Content	
Literature	Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000.

Module M1335: BIO II: Artificial Joint Replacement

Course L1306: Artificial Joint	Replacement
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Michael Morlock
Language	DE
Cycle	SoSe
Content	Inhalt (deutsch) 1. EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes) 2. FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität) 3. DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate) 4. DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten) 5. DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren) 6. DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz) 7. DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz) 8. DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz) 9. TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß)
Literature	Literatur: Kapandji, I..: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984. Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley\&Sons, New York 1994 Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea\&Febiger, Philadelphia, 1989. Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003. Sobotta und Netter für Anatomie der Gelenke

Module M0630: Robotics and Navigation in Medicine

Courses		
Title	Typ	Hrs/wk
Robotics and Navigation in Medicine (LO335)	Lecture	
Robotics and Navigation in Medicine (LO338)	Project Seminar	3
Robotics and Navigation in Medicine (LO336)	Recitation Section (small)	2

Module Responsible	Prof. Alexander Schlaefer
Admission Requirements	None

Recommended Previous Knowledge	- principles of math (algebra, analysis/calculus) - principles of programming, e.g., in Java or C++ - solid R or Matlab skills
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. The students are able to design and evaluate navigation systems and robotic systems for medical applications.

Personal Competence

Social Competence Autonomy	The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes 10% Written elaboration Yes 10% Presentation
Examination	Written exam
Examination duration and scale	90 minutes
Assignment for the Following Curricula	Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory

Course L0335: Robotics and N	Navigation in Medicine
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	SoSe
Content	- kinematics - calibration - tracking systems - navigation and image guidance - motion compensation The seminar extends and complements the contents of the lecture with respect to recent research results.
Literature	Spong et al.: Robot Modeling and Control, 2005 Troccaz: Medical Robotics, 2012 Further literature will be given in the lecture.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0338: Robotics and Navigation in Medicine

Typ	Project Seminar
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Course L0336: Robotics and Navigation in Medicine

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses	
Title	Module Responsible

Module M1249: Medical Imaging

Courses			
Title			
Medical Imaging (L1694)	Typ	Hrs/wk	CP
Medical Imaging (L1695)	Lecture	3	
		Recitation Section (small)	2

Module Responsible	Prof. Tobias Knopp
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge in linear algebra, numerics, and signal processing
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	After successful completion of the module, students are able to describe reconstruction methods for different tomographic imaging modalities such as computed tomography and magnetic resonance imaging. They know the necessary basics from the fields of signal processing and inverse problems and are familiar with both analytical and iterative image reconstruction methods. The students have a deepened knowledge of the imaging operators of computed tomography and magnetic resonance imaging. The students are able to implement reconstruction methods and test them using tomographic measurement data. They can visualize the reconstructed images and evaluate the quality of their data and results. In addition, students can estimate the temporal complexity of imaging algorithms. Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. Students are able to independently investigate a complex problem and assess which competencies are required to solve it.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Computer Science in Engineering: Specialisation I. Computer Science: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory

Course L1694: Medical Imag	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Tobias Knopp
Language	DE/EN
Cycle	WiSe
Content	- Overview about different imaging methods - Signal processing - Inverse problems - Computed tomography - Magnetic resonance imaging - Compressed Sensing - Magnetic particle imaging
Literature	Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000 Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995 Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008 Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006 Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1695: Medical Imaging

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Tobias Knopp
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M0746: Microsystem Engineering

Courses					
Title			Typ		CP
Microsystem Engineering (L0680)			Lecture	2	4
Microsystem Engineering (L0682)			Project-/problem-based Learning	2	2
Module Responsible	Dr. rer. nat. Thomas Kusserow				
Admission Requirements	None				
Recommended Previous Knowledge	Basic courses in physics, mathematics and electric engineering				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students know actuators. Students are abl microsystems. Students are able Students are able other fields.	bout the most analyze and olve specific p acquire particu	materials of MEMS as well haviour of MEMS components and to present the results acco zed literature and to integrate	their app and to ingly. nd associ	the s kn
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus No 10%	Form Presentation			
Examination	Written exam				
Examination duration and scale	2h				
Assignment for the Following Curricula	Electrical Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0680: Microsystem Engineering	
Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Dr. rer. nat. Thomas Kusserow
Language	EN
Cycle	Wise
Content	Object and goal of MEMS Scaling Rules Lithography Film deposition Structuring and etching Energy conversion and force generation Electromagnetic Actuators Reluctance motors Piezoelectric actuators, bi-metal-actuator Transducer principles Signal detection and signal processing Mechanical and physical sensors Acceleration sensor, pressure sensor Sensor arrays System integration Yield, test and reliability
Literature	M. Kasper: Mikrosystementwurf, Springer (2000) M. Madou: Fundamentals of Microfabrication, CRC Press (1997)

Course L0682: Microsystem Engineering

Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Lecturer	Dr. rer. nat. Thomas Kusserow
Language	EN
Cycle	WiSe
Content	Examples of MEMS components
	Layout consideration
	Electric, thermal and mechanical behaviour
Literature	Wird in der Veranstaltung bekannt gegeben

Module M0623: Intelligent Systems in Medicine

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0331: Intelligent Systems in Medicine	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lenguage	EN Alexander Schlaefer
Cycle	WiSe
Content	- methods for search, optimization, planning, classification, regression and prediction in a clinical context - representation of medical knowledge - understanding challenges due to clinical and patient related data and data acquisition The students will work in groups to apply the methods introduced during the lecture using problem based learning.
Literature	Russel \& Norvig: Artificial Intelligence: a Modern Approach, 2012 Berner: Clinical Decision Support Systems: Theory and Practice, 2007 Greenes: Clinical Decision Support: The Road Ahead, 2007 Further literature will be given in the lecture

Course L0334: Intelligent Systems in Medicine	
Typ	Project Seminar
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L0333: Intelligent Systems in Medicine	
Typ	Recitation Section (small)
Hrs/wk	l
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Specialization Energy Systems

The focus of the specialization „energy technology" lies on the acquisition of knowledge and skills on an economically and ecologically sensible provision of electricity, heating and coooling on the basis of conventional and renewable energy systems. This is made possible by modules in the areas of fluid mechanics and ocean energy, solar energy, electric energy, heating technology, air conditioners, power plants, steam and Cogeneration and combustion technology electives. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.

Module M1235: Electrical Power Systems I: Introduction to Electrical Power Systems

Courses				
Title Electrical Power Systems I: Introduction to Electrical Power Systems (L1670)		Typ	Hrs/wk	CP
		Lecture	3	4
		Recitation Section (small)	2	2
Module Responsible	Prof. Christian Becker			
Admission Requirements	None			
Recommended Previous Knowledge	Fundamentals of Electrical Engineering			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to give an overview of conventional and modern electric power systems. They can explain in detail and critically evaluate technologies of electric power generation, transmission, storage, and distribution as well as integration of equipment into electric power systems. With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of electric power systems and to assess the results. The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. Students can independently tap knowledge of the emphasis of the lectures.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	90-150 minutes			
Assignment for the Following Curricula	General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory Data Science: Core Qualification: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Energy and Environmental Engineering: Specialisation Energy Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Computational Science and Engineering: Specialisation II. Mathematics \& Engineering Science: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Christian Becker
Language	DE
Cycle	WiSe
Content	- fundamentals and current development trends in electric power engineering - tasks and history of electric power systems - symmetric three-phase systems - fundamentals and modelling of eletric power systems - lines - transformers - synchronous machines - induction machines - loads and compensation - grid structures and substations - fundamentals of energy conversion - electro-mechanical energy conversion - thermodynamics - power station technology - renewable energy conversion systems - steady-state network calculation - network modelling - load flow calculation - (n-1)-criterion - symmetric failure calculations, short-circuit power - control in networks and power stations - grid protection - grid planning - power economy fundamentals
Literature	K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Recitation Section (small)
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Christian Becker
Language	DE
Cycle	Wise
Content	- fundamentals and current development trends in electric power engineering - tasks and history of electric power systems - symmetric three-phase systems - fundamentals and modelling of eletric power systems - lines - transformers - synchronous machines - induction machines - loads and compensation - grid structures and substations - fundamentals of energy conversion - electro-mechanical energy conversion - thermodynamics - power station technology - renewable energy conversion systems - steady-state network calculation - network modelling - load flow calculation - (n-1)-criterion - symmetric failure calculations, short-circuit power - control in networks and power stations - grid protection - grid planning - power economy fundamentals
Literature	K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013 A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Module M0742: Thermal Energy Systems

Courses			
Title	Typ	Hrs/wk	CP
Thermal Engergy Systems (L0023)	Lecture	3	
Thermal Engergy Systems (L0024)	Recitation Section (large)		

Module Responsible	Prof. Arne Speerforck
Admission Requirements	None
Recommended Previous	Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
	Knowledge Students know the different energy conversion stages and the difference between efficiency and annual efficiency. They have increased knowledge in heat and mass transfer, especially in regard to buildings and mobile applications. They are familiar with German energy saving code and other technical relevant rules. They know to differ different heating systems in the domestic and industrial area and how to control such heating systems. They are able to model a furnace and to calculate the transient temperatures in a furnace. They have the basic knowledge of emission formations in the flames of small burners and how to conduct the flue gases into the atmosphere. They are able to model thermodynamic systems with object oriented languages.

Skills Students are able to calculate the heating demand for different heating systems and to choose the suitable components. They are able to calculate a pipeline network and have the ability to perform simple planning tasks, regarding solar energy. They can write Modelica programs and can transfer research knowledge into practice. They are able to perform scientific work in the field of thermal engineering.

Personal Competence
Social Competence

Autonomy Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.

Independent Study Time 124, Study Time in Lecture 56
Credit points 6

Course achievement	None
Examination	Written exam
scale	60 min
Assignment for the	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Following Curricula	Energy Systems: Specialisation Energy Systems: Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0024: Thermal Engergy Systems	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Arne Speerforck, Prof. Gerhard Schmitz
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1037: Steam Turbines in Energy, Environmental and Power Train Engineering

Courses				
Title Steam turbines in energy, environmental and Power Train Engineering (L1286) Steam turbines in energy, environmental and Power Train Engineering (L1287)		Typ	Hrs/wk	CP
		Lecture	3	5
		Recitation Section (small)	1	1
Module Responsible	Dr. Christian Scharfetter			
Admission Requirements	None			
Recommended Previous Knowledge	- "Gas and Steam Power Plants" - "Technical Thermodynamics I \& II" - "Fluid Mechanics"			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Personal Competence Social Competence	After successful completion of the module the students must be in a position to: - name and identify the various parts and constructive groups of steam turbines - describe and explain the key operating conditions for the application of steam turbines - classify different construction types and differentiate among steam turbines according to size and operating ranges - describe the thermodynamic processes and the constructive and operational repercussions resulting from the latter - calculate thermodynamically a turbine stage and a stage assembly - calculate or estimate and further evaluate sections of the turbine - outline diagrams describing the operating range and the constructive characteristics - investigate the constructive aspects and develop from the thermodynamic requirements the required construction characteristics - discuss and argue on the operation characteristics of different turbine types - evaluate thermodynamically the integration of different turbine designs in heat cycles. In the module the students learn the fundamental approaches and methods for the design and operational evaluation of complex plant, and gain in particular confidence in seeking optimisations. They specifically: - obtain the ability to analyse the potential of various energy sources that can be utilised thermodynamically, from the energetic-economic and technical viewpoints - can evaluate the performance and technical limitations in using various energy sources, for supplying base load and balancing reserve power to the electricity grid - on the basis of the impact of power plant operation on the integrity of components, can describe the precautionary principles for damage prevention - can describe the key requirements for the Management and Design of Thermal Power Plants, based on the overriding demands imposed by various legislative frameworks. In the module the students learn: - to work together with others whilst seeking a solution - to assist each other in problem solving - to conduct discussions - to present work results - to work respectfully within the team. In the module the students learn the independent working of a complex theme whilst considering various aspects. They also learn how to combine independent functions in a system. The students become the ability to gain independently knowledge and transfer it also to new problem solving.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	180 min			
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory			

Course L1286: Steam turbines in energy, environmental and Power Train Engineering

Typ	Lecture
Hrs/wk	3
$\mathbf{C P}$	5
Workload in Hours	Independent Study Time 108, Study Time in Lecture 42
Lecturer	Dr. Christian Scharfetter
Language	DE
Cycle	WiSe
Content	

- Introduction
- Construction Aspects of a Steam Turbine
- Energy Conversion in a Steam Turbine
- Construction Types of Steam Turbines
- Behaviour of Steam Turbines
- Sealing Systems for Steam Turbines
- Axial Thrust
- Regulation of Steam Turbines
- Stiffness Calculation of the Blades
- Blade and Rotor Oscillations
- Fundamentals of a Safe Steam Turbine Operation
- Application in Conventional and Renewable Power Stations
- Connection to thermal and electrical energy networks, interfaces
- Conventional and regenerative power plant concepts, drive technology
- Analysis of the global energy supply market
- Applications in conventional and regenerative power plants
- Different power plant concepts and their influence on the steam turbine (engine and gas turbine power plants with waste heat utilization, geothermal energy, solar thermal energy, biomass, biogas, waste incineration).
- Classic combined heat and power generation as a combined product of the manufacturing industry
- Impact of change in the energy market, operating profiles
- Applications in drive technology
- Operating and maintenance concepts

The lecture will be deepened by means of examples, tasks and two excursions

Literature	- Traupel, W.: Thermische Turbomaschinen. Berlin u. a., Springer (TUB HH: Signatur MSI-105) - Menny, K.: Strömungsmaschinen: hydraulische und thermische Kraft- und Arbeitsmaschinen. Ausgabe: 5. Wiesbaden, - Bohl, W.: Aufbau und Wirkungsweise. Ausgabe 6. Würzburg, Vogel, 1994 (TUB HH: Signatur MSI-109) - Bohl, W.: Berechnung und Konstruktion. Ausgabe 6. Aufl. Würzburg, Vogel, 1999 (TUB HH: Signatur MSI-110)

Course L1287: Steam turbines in energy, environmental and Power Train Engineering

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Christian Scharfetter
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0512: Use of Solar Energy

Courses		
Title	Typ	
Energy Meteorology (L0016)	Lecture	
Energy Meteorology (L0017)	Recitation Section (small)	1
Collector Technology (L0018)	Lecture	1
Solar Power Generation (L0015)	Lecture	1
		2

Module Responsible	Prof. Martin Kaltschmitt
Admission Requirements	None
Recommended Previous Knowledge	none
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	With the completion of this module, students will be able to deal with technical foundations and current issues and problems in the field of solar energy and explain and evaulate these critically in consideration of the prior curriculum and current subject specific issues. In particular they can professionally describe the processes within a solar cell and explain the specific features of application of solar modules. Furthermore, they can provide an overview of the collector technology in solar thermal systems. Students can apply the acquired theoretical foundations of exemplary energy systems using solar radiation. In this context, for example they can assess and evaluate potential and constraints of solar energy systems with respect to different geographical assumptions. They are able to dimension solar energy systems in consideration of technical aspects and given assumptions. Using module-comprehensive knowledge students can evalute the economic and ecologic conditions of these systems. They can select calculation methods within the radiation theory for these topics. Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. Students can independently exploit sources and acquire the particular knowledge about the subject area with respect to emphasis fo the lectures. Furthermore, with the assistance of lecturers, they can discrete use calculation methods for analysing and dimensioning solar energy systems. Based on this procedure they can concrete assess their specific learning level and can consequently define the further workflow.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	3 hours written exam
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Volker Matthias, Dr. Beate Geyer
Language	DE
Cycle	SoSe
Content	- Introduction: radiation source Sun, Astronomical Foundations, Fundamentals of radiation - Structure of the atmosphere - Properties and laws of radiation - Polarization - Radiation quantities - Planck's radiation law - Wien's displacement law - Stefan-Boltzmann law - Kirchhoff's law - Brightness temperature - Absorption, reflection, transmission - Radiation balance, global radiation, energy balance - Atmospheric extinction - Mie and Rayleigh scattering - Radiative transfer - Optical effects in the atmosphere - Calculation of the sun and calculate radiation on inclined surfaces
Literature	- Helmut Kraus: Die Atmosphäre der Erde - Hans Häckel: Meteorologie - Grant W. Petty: A First Course in Atmosheric Radiation - Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy - Alexander Löw, Volker Matthias: Skript Optik Strahlung Fernerkundung

Course L0017: Energy Meteorology

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Beate Geyer
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses		
Title	Typ Hrs/wk	CP
Module Responsible	Prof. Robert Seifried	
Admission Requirements	None	
Recommended Previous Knowledge	see FSPO	
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	see FSPO see FSPO see FSPO see FSPO	
Workload in Hours	Depends on choice of courses	
Credit points	6	
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Module M0721: Air Conditioning

Courses	
Title	Typ Hrs/wk CP
Air Conditioning (L0594)	Lecture 3
Air Conditioning (L0595)	Recitation Section (large) 11
Module Responsible	Prof. Arne Speerforck
Admission Requirements	None
Recommended Previous Knowledge	Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	Students know the different kinds of air conditioning systems for buildings and mobile applications and how these systems are controlled. They are familiar with the change of state of humid air and are able to draw the state changes in a h1+x, x-diagram. They are able to calculate the minimum airflow needed for hygienic conditions in rooms and can choose suitable filters. They know the basic flow pattern in rooms and are able to calculate the air velocity in rooms with the help of simple methods. They know the principles to calculate an air duct network. They know the different possibilities to produce cold and are able to draw these processes into suitable thermodynamic diagrams. They know the criteria for the assessment of refrigerants. Students are able to configure air condition systems for buildings and mobile applications. They are able to calculate an air duct network and have the ability to perform simple planning tasks, regarding natural heat sources and heat sinks. They can transfer research knowledge into practice. They are able to perform scientific work in the field of air conditioning. The students are able to discuss in small groups and develop an approach. Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	60 min
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	5
Workload in Hours	Independent Study Time 108, Study Time in Lecture 42
Lecturer	Prof. Arne Speerforck, Prof. Gerhard Schmitz
Language	DE
Cycle	SoSe
Content	1. Overview 1.1 Kinds of air conditioning systems 1.2 Ventilating 1.3 Function of an air condition system 2. Thermodynamic processes 2.1 Psychrometric chart 2.2 Mixer preheater, heater 2.3 Cooler 2.4 Humidifier 2.5 Air conditioning process in a Psychrometric chart 2.6 Desiccant assisted air conditioning 3. Calculation of heating and cooling loads 3.1 Heating loads 3.2 Cooling loads 3.3 Calculation of inner cooling load 3.4 Calculation of outer cooling load 4. Ventilating systems 4.1 Fresh air demand 4.2 Air flow in rooms 4.3 Calculation of duct systems 4.4 Fans 4.5 Filters 5. Refrigeration systems 5.1. compression chillers 5.2Absorption chillers
Literature	- Schmitz, G.: Klimaanlagen, Skript zur Vorlesung - VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013 - Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009 - Recknagel, H.; Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013

Course L0595: Air Conditioning	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Arne Speerforck, Prof. Gerhard Schmitz
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0906: Numerical Simulation and Lagrangian Transport

Courses			
Title	Typ	Hrs/wk	CP
Lagrangian transport in turbulent flows (L2301)	Lecture	2	Recitation Section (small)
Computational Fluid Dynamics - Exercises in OpenFoam (L1375)	1	Lecture	1
Computational Fluid Dynamics in Process Engineering (L1052)	2	2	

Module Responsible	Prof. Michael Schlüter
Admission Requirements	None

Recommended Previous Knowledge	- Mathematics I-IV - Basic knowledge in Fluid Mechanics - Basic knowledge in chemical thermodynamics
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	After successful completion of the module the students are able to - explain the the basic principles of statistical thermodynamics (ensembles, simple systems) - describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles - discuss examples of computer programs in detail, - evaluate the application of numerical simulations, - list the possible start and boundary conditions for a numerical simulation. The students are able to: - set up computer programs for solving simple problems by Monte Carlo or molecular dynamics, - solve problems by molecular modeling, - set up a numerical grid, - perform a simple numerical simulation with OpenFoam, - evaluate the result of a numerical simulation.

Personal Competence

 Social CompetenceThe students are able to

- develop joint solutions in mixed teams and present them in front of the other students,
- to collaborate in a team and to reflect their own contribution toward it.

Autonomy	The students are able to: - evaluate their learning progress and to define the following steps of learning on that basis, - evaluate possible consequences for their profession.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	30 min
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Course L2301: Lagrangian transport in turbulent flows	
Typ	Lecture
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Yan Jin
Language	EN
Cycle	SoSe
Content	Contents
	- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)
	- An overview of Lagrange analysis methods and experiments in fluid mechanics
	- Critical examination of the concept of turbulence and turbulent structures.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam	
Typ	Recitation Section (small)
Hrs/wk	1

Course L1052: Computational Fluid Dynamics in Process Engineering		
Typ	Lecture	
CP	2	2

Module M0511: Electrical Energy from Solar Radiation and Wind Power

Courses		
Title	Typ	Hrs/wk
Sustainability Management (L0007)	Lecture	
Hydro Power Use (L0013)	Lecture	2
Wind Turbine Plants (L0011)	Lecture	1
Wind Energy Use - Focus Offshore (L0012)	Lecture	1
		2

Module Responsible	Dr. Isabel Höfer		
Admission Requirements	None		
Recommended Previous	Module: Technical Thermodynamics I,		
Enowledge	Module: Technical Thermodynamics II,		
	Module: Fundamentals of Fluid Mechanics		
Professional Competence	Knowledge		By ending this module students can explain in detail knowledge of wind turbines with a particular focus of wind energy use in
:---			
offshore conditions and can critical comment these aspects in consideration of current developments. Furthermore, they are able			
to describe fundamentally the use of water power to generate electricity. The students reproduce and explain the basic procedure			
in the implementation of renewable energy projects in countries outside Europe.			

Through active discussions of various topics within the seminar of the module, students improve their understanding and the application of the theoretical background and are thus able to transfer what they have learned in practice

Skills Students are able to apply the acquired theoretical foundations on exemplary water or wind power systems and evaluate and assess technically the resulting relationships in the context of dimensioning and operation of these energy systems. They can in compare critically the special procedure for the implementation of renewable energy projects in countries outside Europe with the in principle applied approach in Europe and can apply this procedure on exemplary theoretical projects.

Personal Competence Social Competence Autonomy	Students can discuss scientific tasks subjet-specificly and multidisciplinary within a seminar. Students can independently exploit sources in the context of the emphasis of the lecture material to clear the contents of the lecture and to acquire the particular knowledge about the subject area.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	2.5 hours written exam + written elaboration (incl. presentation) in sustainability management
Assignment for the Following Curricula	Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory

| Course L0013: Hydro Power Use | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 1 |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0011: Wind Turbine Plants	
Typ	Lecture
Hrs/wk	2
CP	3

Module M0508: Fluid Mechanics and Ocean Energy

Courses			
Title	Typ	Hrs/wk	CP
Energy from the Ocean (LOOO2)	Lecture	2	Lecture
Fluid Mechanics II (L0001)			

Module Responsible	Prof. Michael Schlüter
Admission Requirements	None
Recommended Previous Knowledge	Technische Thermodynamik I-II Wärme- und Stoffübertragung
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students are able to describe different applications of fluid mechanics for the field of Renewable Energies. They are able to use the fundamentals of fluid mechanics for calculations of certain engineering problems in the field of ocean energy. The students are able to estimate if a problem can be solved with an analytical solution and what kind of alternative possibilities are available (e.g. self-similarity, empirical solutions, numerical methods). Students are able to use the governing equations of Fluid Dynamics for the design of technical processes. Especially they are able to formulate momentum and mass balances to optimize the hydrodynamics of technical processes. They are able to transform a verbal formulated message into an abstract formal procedure. The students are able to discuss a given problem in small groups and to develop an approach. They are able to solve a problem within a team, to prepare a poster with the results and to present the poster. Students are able to define independently tasks for problems related to fluid mechanics. They are able to work out the knowledge that is necessary to solve the problem by themselves on the basis of the existing knowledge from the lecture.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	Compulsory Bonus Form Description No 10% Group discussion
Examination	Written exam
Examination duration and scale	3 h
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Michael Schlüter
Language	DE
Cycle	WiSe
Content	- Differential equations for momentum-, heat and mass transfer - Examples for simplifications of the Navier-Stokes Equations - Unsteady momentum transfer - Free shear layer, turbulence and free jets - Flow around particles - Solids Process Engineering - Coupling of momentum and heat transfer - Thermal Process Engineering - Rheology - Bioprocess Engineering - Coupling of momentum- and mass transfer - Reactive mixing, Chemical Process Engineering - Flow threw porous structures - heterogeneous catalysis - Pumps and turbines - Energy- and Environmental Process Engineering - Wind- and Wave-Turbines - Renewable Energy - Introduction into Computational Fluid Dynamics
Literature	1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971. 2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972. 3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009. 4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006. 5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley \& Sons, 1994. 6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006. 7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008. 8. Kuhlmann, H.C.: Strömungsmechanik. München, Pearson Studium, 2007 9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009. 10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007. 11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. SpringerVerlag, Berlin, Heidelberg, 2008. 12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006. 13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.

Module M0515: Energy Information Systems and Electromobility

Courses				
Title Electrical Power Systems II: Operation and Information Systems of Electrical Power Grids (L1696) Electro mobility (L1833)		Typ	Hrs/wk	CP
		Lecture	3	4
		Lecture	2	2
Module Responsible	Prof. Martin Kaltschmitt			
Admission Requirements	None			
Recommended Previous Knowledge	Fundamentals of Electrical Engineering			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to give an overview of the electric power engineering in the field of renewable energies. They can explain in detail the possibilities for the integration of renewable energy systems into the existing grid, the electrical storage possibilities and the electric power transmission and distribution, and can take critically a stand on it. With completion of this module the students are able to apply the acquired skills in applications of the design, integration, development of renewable energy systems and to assess the results. The students can participate in specialized and interdisciplinary discussions, advance ideas and represent their own work results in front of others. Students can independently tap knowledge of the emphasis of the lectures.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	40 min			
Assignment for the Following Curricula	Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1149: Marine Power Engineering

Courses		
Title	Typ	
Electrical Installation on Ships (L1531)	Lecture	
Electrical Installation on Ships (L1532)	Recitation Section (large)	
Marine Engineering (L1569)	Lecture	1
Marine Engineering (L1570)	Recitation Section (large)	2

Module Responsible	Prof. Christopher Friedrich Wirz
Admission Requirements	None
Recommended Previous Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	The students are able to describe the state-of-the-art regarding the wide range of propulsion components on ships and apply their knowledge. They further know how to analyze and optimize the interaction of the components of the propulsion system and how to describe complex correlations with the specific technical terms in German and English. The students are able to name the operating behaviour of consumers, describe special requirements on the design of supply networks and to the electrical equipment in isolated networks, as e.g. onboard ships, offshore units, factories and emergency power supply systems, explain power generation and distribution in isolated grids, wave generator systems on ships, and name requirements for network protection, selectivity and operational monitoring. The students are skilled to employ basic and detail knowledge regarding reciprocating machinery, their selection and operation on board ships. They are further able to assess, analyse and solve technical and operational problems with propulsion and auxiliary plants and to design propulsion systems. The students have the skills to describe complex correlations and bring them into context with related disciplines. Students are able to calculate short-circuit currents, switchgear, and design electrical propulsion systems for ships. The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 minutes plus 20 minutes oral exam
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory

Course L1531: Electrical Installation on Ships	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Günter Ackermann
Language	DE
Cycle	WiSe
Content	- performance in service of electrical consumers. - special requirements for power supply systems and for electrical equipment in isolated systems/networks e. g. aboard ships, offshore installations, factory systems and emergency power supply systems. - power generation and distribution in isolated networks, shaft generators for ships - calculation of short circuits and behaviour of switching devices - protective devices, selectivity monitoring - electrical Propulsion plants for ships
Literature	H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1532: Electrical Installation on Ships

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Günter Ackermann
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1569: Marine Engineering	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Christopher Friedrich Wirz
Language	DE
Cycle	WiSe
Content	
Literature	Wird in der Veranstaltung bekannt gegeben

Course L1570: Marine Engineering

Typ	Recitation Section (large)
Hrs/wk	l
$\mathbf{C P}$	l
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Christopher Friedrich Wirz
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1161: Turbomachinery

Courses			
Title	Typ	Hrs/wk	CP
Turbomachines (L1562)	Lecture	3	4
Turbomachines (L1563)	Recitation Section (large)	1	2

Module Responsible	Prof. Markus Schatz
Admission Requirements	None
Recommended Previous Knowledge	Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	The students can - distinguish the physical phenomena of conversion of energy, - understand the different mathematic modelling of turbomachinery, - calculate and evaluate turbomachinery. The students are able to - understand the physics of Turbomachinery, - solve excersises self-consistent. The students are able to - discuss in small groups and develop an approach. The students are able to - develop a complex problem self-consistent, - analyse the results in a critical way, - have an qualified exchange with other students.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory

Course L1562: Turbomachines	
Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Markus Schatz
Language	DE
Cycle	SoSe
Content	Topics to be covered will include: - Application cases of turbomachinery - Fundamentals of thermodynamics and fluid mechanics - Design fundamentals of turbomachinery - Introduction to the theory of turbine stage - Design and operation of the turbocompressor - Design and operation of the steam turbine - Design and operation of the gas turbine - Physical limits of the turbomachines
Literature	- Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York - Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York - Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York - Menny: Strömungsmaschinen, Teubner., Stuttgart

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1563: Turbomachines	
Typ	Recitation Section (large)
Hrs/wk	l
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Markus Schatz
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0641: Steam Generators

Courses					
Title Steam Generators (L0213) Steam Generators (L0214)			Typ	Hrs/wk	CP
			Lecture	3	5
			Recitation Section (large)	1	1
Module Responsible	Dr. Kristin Abel-Günther				
Admission Requirements	None				
Recommended Previous Knowledge	- "Technical Thermodynamics I and II" - "Heat Transfer" - "Fluid Mechanics" - "Steam Power Plants"				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Personal Competence Social Competence	The students know the thermodynamic base principles for steam generators and their types. They are able to describe the basic principles of steam generators and sketch the combustion and fuel supply aspects of fossil-fuelled power plants. They can perform thermal design calculations and conceive the water-steam side, as well as they are able to define the constructive details of the steam generator. The students can describe and evaluate the operational behaviour of steam generators and explain these in the context of related disciplines. The students will be able, using detailed knowledge on the calculation, design, and construction of steam generators, linked with a wide theoretical and methodical foundation, to understand the main design and construction aspects of steam generators. Through problem definition and formalisation, modelling of processes, and training in the solution methodology for partial problems a good overview of this key component of the power plant will be obtained. Within the framework of the exercise the students obtain the ability to draw the balances, and design the steam generator and its components. For this purpose small but close to lifelike tasks are solved, to highlight aspects of the design of steam generators. Especially during the exercises the focus is placed on communication with the tutor. This animates the students to reflect on their existing knowledge and ask specific questions to further improve their understanding. The students will be able to perform basic calculations covering aspects of the steam generator, with only the help of smaller clues, on their own. This way the theoretical and practical knowledge from the lecture is consolidated and the potential effects from different process schemata and boundary conditions are highlighted.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Form Description No 5% Excercises Den Studierenden wird eine kleine Aufgabe (in ca. 5 min lösbar) zur Vorlesung der Vorwoche gestellt. Die Antworten müssen üblicherweise als Freitext gegeben werden, aber auch Zeichnungen, Stichpunkte oder, in seltenen Fällen, Multiple Choice sind möglich. 				
Examination	Written exam				
Examination duration and scale	120 min				
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

| Course L0213: Steam Generators | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 3 |

Course L0214: Steam Generators	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Kristin Abel-Günther
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1287: Risk Management, Hydrogen and Fuel Cell Technology

Courses		
Title	Typ	Hrs/wk
Applied Fuel Cell Technology (L1831)	CP	
Risk Management in the Energy Industry (L1748)	Lecture	2
Hydrogen Technology (L0060)	Lecture	2
	Lecture	2

Module Responsible	Prof. Martin Kaltschmitt
Admission Requirements	None

| Recommended Previous |
| ---: | :--- |
| Knowledge | None \quad.

Professional Competence | | |
| ---: | :--- |
| Knowledge | With completion of this module students can explain basics of risk management involving thematical adjacent contexts and can |

Furthermore, students can reproduce solid theoretical knowledge about the potentials and applications of new information
technologies in logistics and explain technical aspects of the use, production and processing of hydrogen.

Skills With completion of this module students are able to evaluate risks of energy systems with respect to energy economic conditions in an efficient way. This includes that the students can assess the risks in operational planning of power plants from a technical, economic and ecological perspective.

In this context, students can evaluate the potentials of logistics and information technology in particular on energy issues.
In addition, students are able to describe the energy transfer medium hydrogen according to its applications, the given security and its existing service capacities and limits as well as to evaluate these aspects from a technical, environmental and economic perspective.

Personal Competence Social Competence	Students are able to discuss issues in the thematic fields in the renewable energy sector addressed within the module. Autonomy
Students can independently exploit sources on the emphasis of the lectures and acquire the contained knowledge. In this way, they can recognize their lacks of knowledge and can consequently define the further workflow.	
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Examination	Written exam
Examination duration and	3 hours written exam
Assignment for the	Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Following Curricula	Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory

Course L1831: Applied Fuel Cell Technology	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Klaus Bonhoff
Language	DE
Cycle	SoSe
Content	The lecture provide an insight into the various possibilities of fuel cells in the energy system (electricity, heat and transport).
	These are presented and discussed for individual fuel types and application-oriented requirements; also compared with alternative
technologies in the system. These different possibilities will be presented regardind the state-of-the-art development of the	
technologies and exemplary applications from Germany and worldwide. Also the emerging trends and lines of development will be	
discussed. Besides to the technical aspects, which are the focus of the event, also energy, environmental and industrial policy	
	aspects are discussed - also in the context of changing circumstances in the German and international energy system.
Literature	Vorlesungsunterlagen

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1748: Risk Management in the Energy Industry

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Christian Wulf
Language	DE
Cycle	SoSe
Content	- Basics of risk management - Definition of terms - Risk types - Risk management process - Enterprise risk management - Markets and instruments in energy trading - Basics of futures and spot trading - Notation in energy markets - Options - Kennzahlendefinition - Assessing of market risks - Assessing of credit risks - Assessing of operational risks - Assessing of liquidy risks - Risk monitoring and reporting - Risk treatment
Literature	- Roggi, O. (2012): Risk Taking: A Corporate Governance Perspective, International Finance Corporation, New York - Hull, J. C. (2012): Options, Futures, and other Derivatives, 8. Auflage, Pearson Verlag, New York - Albrecht, P.; Maurer, R. (2008): Investment- und Risikomanagement, 3. Auflage, Schäffer-Poeschel Verlag, Stuttgart - Rittenberg, L.; Martens, F. (2012): Understanding and Communicating Risk Appetite, Treadway Commission, Durham

Course L0060: Hydrogen Technology

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Jun.-Prof. Julian Jepsen
Language	DE
Cycle	SoSe
Content	1. Energy economy 2. Hydrogen economy 3. Occurrence and properties of hydrogen 4. Production of hydrogen (from hydrocarbons and by electrolysis) 5. Separation and purification Storage and transport of hydrogen 6. Security 7. Fuel cells 8. Projects
Literature	- Skriptum zur Vorlesung - Winter, Nitsch: Wasserstoff als Energieträger - Ullmann's Encyclopedia of Industrial Chemistry - Kirk, Othmer: Encyclopedia of Chemical Technology - Larminie, Dicks: Fuel cell systems explained

Module M0513: System Aspects of Renewable Energies

Courses				
Title		Typ	Hrs/wk	CP
Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage (L0021)		Lecture	2	2
Energy Trading (L0019)		Lecture	1	1
Energy Trading (L0020)		Recitation Section (small)	1	1
Deep Geothermal Energy (L0025)		Lecture	2	2
Module Responsible	Prof. Martin Kaltschmitt			
Admission Requirements	None			
Recommended Previous Knowledge	Module: Technical Thermodynamics I Module: Technical Thermodynamics II			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to describe the processes in energy tr relation to current subject specific problems. Furth electrochemical energy conversion in fuel cells and can their respective structure. Students can compare this te an overview of the procedure and the energetic involve Students can apply the learned knowledge of storage sy approaches to ensure a secure energy supply. In particur heating equipment using energy storage systems in an systems. In this context, students can assess the pot mode. Furthermore, the students are able to explain the proce other modules on renewable energy projects. In this co markets and energy trades. Students are able to discuss issues in the thematic field Students can independently exploit sources, acquire questions.	d the design of energy m they are able to exp sh and explain the relati with other energy stora deep geothermal energy. r excessive energy to ex hey can plan and calcul -efficient way and can a d limits of geothermal d strategies for marketin ey can unassistedly carry enewable energy sector cular knowledge about the	nd can cr basics differen ns. In ad various estic, com em in rel ants and rgy and alysis and within ect area	evaluate them in rmodynamics of of fuel cells and students can give systems different al and industrial complex power their operating in the context of ations of energie dule. nsform it to new
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	3 hours written exam			
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Renewable Energy: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Renewable Energies: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0021: Fuel Cells, Batteries, and Gas Storage: New Materials for Energy Production and Storage

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Michael Fröba
Language	DE
Cycle	SoSe
Content	1. Introduction to electrochemical energy conversion 2. Function and structure of electrolyte 3. Low-temperature fuel cell - Types - Thermodynamics of the PEM fuel cell - Cooling and humidification strategy 4. High-temperature fuel cell - The MCFC - The SOFC - Integration Strategies and partial reforming 5. Fuels - Supply of fuel - Reforming of natural gas and biogas - Reforming of liquid hydrocarbons 6. Energetic Integration and control of fuel cell systems
Literature	- Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003

Course L0019: Energy Trading

$\left.\begin{array}{|r|l|}\hline \text { Typ } & \text { Lecture } \\ \hline \text { Hrs/wk } & 1\end{array}\right]$

Course L0020: Energy Trading	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Michael Sagorje, Dr. Sven Orlowski
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Ben Norden
Language	DE
Cycle	SoSe
Content	1. Introduction to the deep geothermal use 2. Geological Basics I 3. Geological Basics II 4. Geology and thermal aspects 5. Rock Physical Aspects 6. Geochemical aspects 7. Exploration of deep geothermal reservoirs 8. Drilling technologies, piping and expansion 9. Borehole Geophysics 10. Underground system characterization and reservoir engineering 11. Microbiology and Upper-day system components 12. Adapted investment concepts, cost and environmental aspect
Literature	- Dipippo, R.: Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Butterworth Heinemann; 3rd revised edition. (29. Mai 2012) - www.geo-energy.org - Edenhofer et al. (eds): Renewable Energy Sources and Climate Change Mitigation; Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2012. - Kaltschmitt et al. (eds): Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, 5. Aufl. 2013. - Kaltschmitt et al. (eds): Energie aus Erdwärme. Spektrum Akademischer Verlag; Auflage: 1999 (3. September 2001) - Huenges, E. (ed.): Geothermal Energy Systems: Exploration, Development, and Utilization. Wiley-VCH Verlag GmbH \& Co. KGaA; Auflage: 1. Auflage (19. April 2010)

Specialization Aircraft Systems Engineering

Central to the specialization Aircraft Systems is learning the ability to systems engineering and cross-divisional thinking and problem solving in aeronautical engineering. This is made possible by modules in the field of physics of flight, aircraft systems and cabin systems, Aircraft Design, as well as airport planning and operation in the elective area. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.

Module M0763: Aircraft Energy Systems

Courses				
Title		Typ	Hrs/wk	CP
Aircraft Energy Systems (L0735)		Lecture	3	4
Aircraft Energy Systems (L0739)		Recitation Section (large)	2	2
Module Responsible	Prof. Frank Thielecke			
Admission Requirements	None			
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Electrical Engineering - Hydraulics - Control Systems			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Personal Competence Social Competence	Students are able to: - Describe essential com - Give an overview of th - Explain the need for hi - Assess the challenge Students are able to: - Design hydraulic and - Design high-lift system - Analyze the thermody Students are able to: - Perform system design Students are able to: - Reflect the contents of	aulic, electrical and high-lift stems lity and effects of an aircraft systems results		
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	165 Minutes			
Assignment for the Following Curricula	Energy Systems: Specialisation Energy Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

| Course L0735: Aircraft Energy Systems | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 3 |

Course L0739: Aircraft Energy Systems

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Frank Thielecke
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0812: Aircraft Design I (Civil Aircraft Design)

Courses			
Title	Typ	Hrs/wk	CP
Aircraft Design I (Design of Transport Aircraft) (L0820)	Lecture	3	Recitation Section (large)
Aircraft Design I (Design of Transport Aircraft) (L0834)			

Module Responsible	Prof. Volker Gollnick
Admission Requirements	None
Recommended Previous Knowledge	- Bachelor Mech. Eng. - Bachelor Traffic Systems - Vordiplom Mech. Eng. - Module Air Transport Systems
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	1. Principle understanding of integrated and civil aircraft design 2. Understanding of the interactions and contributions of the various disciplines 3. Impact of the relevant design parameter on the civil aircraft design 4. Introduction of the principle design methods Understanding and application of design and calculation methods Understanding of interdisciplinary and integrative interdependencies Working in interdisciplinary teams Communication Organization of workflows and -strategies
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	Compulsory Bonus Form Description No 10% Attestation Durchführung einer Konzeptauslegung für ein Verkehrsflugzeug
Examination	Written exam
Examination duration and scale	180 min
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory

Course L0820: Aircraft Desig	n I (Design of Transport Aircraft)
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Volker Gollnick, Jens Thöben
Language	DE
Cycle	WiSe
Content	Introduction into the aircraft design process 1. Introduction/process of aircraft design/various aircraft configurations 2. Requirements and design objectives, main design parameter (u.a. payload-range-diagramme) 3. Statistical methods in overall aircraft design/data base methods 4. Cabin design (fuselage sizing, cabin interior, loading systems) 5. Principles of aerodynamic aircraft design (polar, geometry, 2D/3D aerodynamics) 6. Wing Design 7. Tail wings and landing gear 8. Principles of engine design and integration 9. Flight performance in cruise 10. Take off and landing field length 11. Loads and V-n-diagramme 12. Operating cost calculation
Literature	J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Introduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0834: Aircraft Design I (Design of Transport Aircraft)

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Volker Gollnick, Jens Thöben
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0771: Flight Physics

Courses		
Title	Typ	
Aerodynamics and Flight Mechanics I (L0727)	Lecture	Hrs/wk
Flight Mechanics II (L0730)	Lecture	3
Flight Mechanics II (LO731)	Recitation Section (large)	3
		1

Module Responsible	Prof. Frank Thielecke
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Aviation
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	120 Minutes (WS) + 90 Minutes (SS)
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory

727: Aerodynamics	and Flight Mechanics I
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Frank Thielecke, Dr. Ralf Heinrich, Mike Montel
Language	DE
Cycle	WiSe
Content	- Aerodynamics (fundamental equations of aerodynamics; compressible and incompressible flows; airfoils and wings; viscous flows) - Flight Mechanics (Equations of motion; flight performance; control surfaces; derivatives; lateral stability and control; trim conditions; flight maneuvers)
Literature	- Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II - Etkin, B.: Dynamics of Atmospheric Flight - Sachs/Hafer: Flugmechanik - Brockhaus: Flugregelung - J.D. Anderson: Introduction to flight

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0730: Flight Mechanics II

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Frank Thielecke
Language	DE
Cycle	SoSe
Content	- stationary asymmetric flight - dynamics of lateral movement - methods of flight simulation - eyperimental methods of flight mechanics - model validation using system identification - wind tunnel techniques
Literature	- Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II - Etkin, B.: Dynamics of Atmospheric Flight - Sachs/Hafer: Flugmechanik - Brockhaus: Flugregelung - J.D. Anderson: Introduction to flight

Course L0731: Flight Mechanics II

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Frank Thielecke
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses		
Title	Typ Hrs/wk	CP
Module Responsible	Prof. Robert Seifried	
Admission Requirements	None	
Recommended Previous Knowledge	see FSPO	
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	see FSPO see FSPO see FSPO see FSPO	
Workload in Hours	Depends on choice of courses	
Credit points	6	
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Module M1156: Systems Engineering

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Ralf God
Language	DE
Cycle	SoSe
Content	The objective of the lecture with the corresponding exercise is to accomplish the prerequisites for the development and integration of complex systems using the example of commercial aircraft and cabin systems. Competences in the systems engineering process, tools and methods is to be achieved. Regulations, guidelines and certification issues will be known. Key aspects of the course are processes for innovation and technology management, system design, system integration and certification as well as tools and methods for systems engineering: - Innovation processes - IP-protection - Technology management - Systems engineering - Aircraft program - Certification issues - Systems development - Safety objectives and fault tolerance - Environmental and operating conditions - Tools for systems engineering - Requirements-based engineering (RBE) - Model-based requirements engineering (MBRE)
Literature	- Skript zur Vorlesung - diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE) - Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010 - NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007 - Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010 - De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010 - Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008

Course L1548: Systems Engineering

Course L1548: Systems Engineering	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Ralf God
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0764: Flight Control Systems

Courses			
Title	Typ	Hrs/wk	CP
Flight Control Systems (L0736)	Lecture	3	4
Flight Control Systems (L0740)	Recitation Section (large)	2	2

Module Responsible	Prof. Frank Thielecke
Admission Requirements	None
Recommended Previous Knowledge	basic knowledge of: - mathematics - mechanics - thermo dynamics - electronics - fluid technology - control technology
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	Students are able to...

- describe the structure of primary flight control systems as well as actuation-, avionic-, high lift systems in general along with corresponding properties and applications.
- explain different configurations and designs and their origins

Skills Students are able to..

- size primary flight control actuation systems
- perform a controller design process for the flight control actuators
- design high-lift kinematics

Personal Competence
Social Competence
Students are able to:

- Develop joint solutions in mixed teams

Autonomy Students are able to:

- derive requirements and perform appropriate yet simplified design processes for aircraft systems from complex issues and circumstances in a self-reliant manner

Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	165 Minutes
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0736: Flight Control Systems		
Typ	Lecture	
Hrs/wk	3	
CP	4	

Course L0740: Flight Control Systems	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Frank Thielecke
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1690: Aircraft Design II (Special Air Vehicle Design)

Courses			
Title	Typ	Hrs/wk	CP
Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV) (L0844)	Lecture	3	Recitation Section (large)
Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV) (L0847)			

Module Responsible	Prof. Volker Gollnick
Admission Requirements	None

Recommended Previous Knowledge	Aircraft Design I (Design of Transport Aircraft) Air Transportation Systems
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	Knowledge
Understanding of various flight systems and its special characteristics (supersonic aircraft, rotorcraft, high performance aircraft, unmanned air systems)	

Understanding of pro's and con's and physical characteristics of different air systems
Understanding of special mission requirements and its impact on systems definition and conceptual design
Intensified knowledge of performance design on various air systems

Understanding and application of design and calculation methods
Understanding of interdisciplinary and integrative interdependencies
mission oriented technical definition of air systems
special conceptual calculation methods for special equipment characteristics
assessment of different design solutions
Personal Competence
Social Competence
Working in teams for focused solutions
communication, assertiveness, technical persuasion
Organisation of worksflows and strategies for solutions
structured task analysis and definition of solutions

Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Examination	Written exam
scale	180 min
Assignment for the	Aircraft Systems Engineering: Core Qualification: Elective Compulsory
Following Curricula	International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory	

Course L0844: Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV)		
Typ	Lecture	
CP	3	3

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0847: Aircraft Design II (Conceptual Design of Rotorcraft, special operations aircraft, UAV)	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1155: Aircraft Cabin Systems

Courses			
Title	Typ	Hrs/wk	CP
Aircraft Cabin Systems (L1545)	Lecture	3	4
Aircraft Cabin Systems (L1546)	Recitation Section (large)	1	2
Module Responsible	Prof. Ralf God		
Admission Requirements	None		
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Electrical Engineering - Control Systems		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to: - describe cabin operations, equipment in the cabin and cabin Systems - explain the functional and non-functional requirements for cabin Systems - elucidate the necessity of cabin operating systems and emergency Systems - assess the challenges human factors integration in a cabin environment Students are able to: - design a cabin layout for a given business model of an Airline - design cabin systems for safe operations - design emergency systems for safe man-machine interaction - solve comfort needs and entertainment requirements in the cabin Students are able to: - comprehend existing system solutions and explain them on the basis of existing require - discuss with experts in technical language - explain system functions - classify the criticality of functions - describe systems as is Students are able to: - independently reflect on lecture content and expert presentations - independently develop more in-depth content - recognize further areas of knowledge		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	120 Minutes		
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge about aircraft cabin systems and cabin operations. A basic understanding of technological and systems engineering effort to maintain an artificial but comfortable and safe travel and working environment at cruising altitude is to be achieved. The course provides a comprehensive overview of current technology and cabin systems in modern passenger aircraft. The Fulfillment of requirements for the cabin as the central system of work are covered on the basis of the topics comfort, ergonomics, human factors, operational processes, maintenance and energy supply: - Materials used in the cabin - Ergonomics and human factors - Cabin interior and non-electrical systems - Cabin electrical systems and lights - Cabin electronics, communication-, information- and IFE-systems - Cabin and passenger process chains - RFID Aircraft Parts Marking - Energy sources and energy conversion
Literature	- Skript zur Vorlesung - Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999 - Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014 - Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008 - Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003 - Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006 - Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Course L1546: Aircraft Cabin Systems

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1213: Avionics for safety-critical Systems

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Martin Halle
Language	DE
Cycle	WiSe
Content	Avionics are all kinds off flight electronics. Today there is no aircraft system function without avionics, and avionics are one main source of innovation in aerospace industry. Since many system functions are highly safety critical, the development of avionics hardware and software underlies mandatory constraints, technics, and processes. It is inevitable for system developers and computer engineers in aerospace industry to understand and master these. This lecture teaches the risks and techniques of developing safety critical hardware and software; major avionics components; integration; and test with a practical orientation. A focus is on Integrated Modular Avionics (IMA). The lecture is accompanied by a mandatory and laboratory exercises. Content: 1. Introduction and Fundamentals 2. History and Flight Control 3. Concepts and Redundancy 4. Digital Computers 5. Interfaces and Signals 6. Busses 7. Networks 8. Aircraft Cockpit 9. Software Development 10. Model-based Development 11. Integrated Modular Avionics I 12. Integrated Modular Avionics II
Literature	- Moir, I.; Seabridge, A. \& Jukes, M., Civil Avionics Systems Civil Avionics Systems, John Wiley \& Sons, Ltd, 2013 - Spitzer, C. R. Spitzer, Digital Avionics Handbook, CRC Press, 2007 - FAA, Advanced Avionics Handbook U.S. Department of Transportation Federal Aviation Administration, 2009 - Moir, I. \& Seabridge, A. Aircraft Systems, Wiley, 2008, 3

Course L1641: Avionics of Safty Critical Systems	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Martin Halle
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1652: Avionics of Safty Critical Systems	
Typ	Practical Course
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Dr. Martin Halle
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1738: Selected Topics of Aeronautical Systems Engineering (Alternative B: 12 LP)

Courses			
Title	Typ	Hrs/wk	CP
Advanced Training Course SE-ZERT (L2739)	Project-/problem-based Learning	2	3
Airline Operations (L1310)	Lecture	3	3
Fatigue \& Damage Tolerance (L0310)	Lecture	2	3
Flight Guidance I (Introduction) (L0848)	Lecture	2	2
Flight Guidance I (Introduction) (L0854)	Recitation Section (large)	1	1
Flight Guidance II (Flight Control) (L2374)	Lecture	2	2
Flight Guidance II (Flight Control) (L2375)	Recitation Section (small)	1	1
Airport Operations (L1276)	Lecture	3	3
Airport Planning (L1275)	Lecture	2	2
Airport Planning (L1469)	Recitation Section (small)	1	1
Lightweight Design Practical Course (L1258)	Project-/problem-based Learning	3	3
Aviation Security (L1549)	Lecture	2	2
Aviation Security (L1550)	Recitation Section (small)	1	1
Aviation and Environment (L2376)	Lecture	3	3
Machine Learning in Safety-Critical Cyber-Physical Systems (L2934)	Lecture	2	2
Machine Learning in Safety-Critical Cyber-Physical Systems (L2935)	Recitation Section (small)	1	1
Mechanisms, Systems and Processes of Materials Testing (L0950)	Lecture	2	2
Turbo Jet Engines (L0908)	Lecture	2	3
Structural Mechanics of Fibre Reinforced Composites (L1514)	Lecture	2	3
Structural Mechanics of Fibre Reinforced Composites (L1515)	Recitation Section (large)	1	1
System Simulation (L1820)	Lecture	2	2
System Simulation (L1821)	Recitation Section (large)	1	2
Materials Testing (L0949)	Lecture	2	2
Reliability in Engineering Dynamics (L2994)	Lecture	2	2
Reliability in Engineering Dynamics (L2995)	Recitation Section (small)	1	2
Reliability of Aircraft Systems (L0749)	Lecture	2	3

Module Responsible	Prof. Frank Thielecke
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Electrical Engineering - Hydraulics - Control Systems
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	- Students are able to find their way through selected special areas within systems engineering, air transportation system and material science - Students are able to explain basic models and procedures in selected special areas. - Students are able to interrelate scientific and technical knowledge. Students are able to apply basic methods in selected areas of engineering. Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses.
Workload in Hours	Depends on choice of courses
Credit points	12
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory

Course L2739: Advanced Training Course SE-ZERT	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Lecturer	Prof. Ralf God
Language	DE
Contente	SoSe
Literature	INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der
deutschen Übersetzung), ISBN 978-3-9818805-0-2.	
	ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System
	Life Cycle Processes).

Module Manual M.Sc. "Theoretical Mechanical Engineering"

ourse L1310: Airline Operat	ions
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Volker Gollnick, Felix Presto
Language	DE
Cycle	SoSe
Content	1. Introdution and overview 2. Airline business models 3. Interdependencies in flight planning (network management, slot management, netzwork structures, aircraft circulation) 4. Operative flight preparation (weight \& balance, payload/range, etc.) 5. fleet policy 6. Aircraft assessment and fleet planning 7. Airline organisation 8. Aircraft maintenance, repair and overhaul
Literature	Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: "Buying the Big Jets", Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008

Course L0310: Fatigue \& Damage Tolerance	
Tyrs/wk	Lecture
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	45 min
scale	
Lecturer	Dr. Martin Flamm
Conguage	EN
Litent	WiSe
	Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve
fatigue strength, environmental influences	
	Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit
Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

urse L0848: Flight Guida	I (Introduction)
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	WiSe
Content	Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Cockpit systems and Avionics (cockpit design, cockpit equipment, displays, computers and bus systems) Principles of flight measurement techniques (Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Principles of Navigation Radio navigation Satellite navigation Airspace surveillance (radar systems) Commuication systems Integrated Navigation and Guidance Systems
Literature	Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics", Springer Berlin Heidelberg New York 2003

Course L0854: Flight Guidance I (Introduction)	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and	60 min
scale	
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	WiSe
Content	See interlocking course

Course L2374: Flight Guidance II (Flight Control)	
Typ	Lecture
$\mathbf{H r s} / \mathbf{w k}$	2
CP	2
Examination Form	Klausur
Examination duration and	60 min
scale	
Lecturer	Prof. Volker Gollnick
Cycle	SoSe
Content	
Literature	Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011
	R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2375: Flight Guidance II (Flight Control)	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Course L1276: Airport Operations	
Typ	Lecture
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and	90 min
scale	
Language	DE
Cycle	WiSe
Content	FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground
handling Terminal operations	
Literature	Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003

Course L1275: Airport Planning

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Prof. Volker Gollnick, Dr. Ulrich Häp
Language	DE
Cycle	WiSe
Content	1. Introduction, definitions, overviewg 2. Runway systems 3. Air space strucutres around airports 4. Airfield lightings, marking and information 5. Airfield and terminal configuration
Literature	N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley \& Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003

Course L1469: Airport Planning	
Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Lecturer	Prof. Volker Gollnick, Dr. Ulrich Häp
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1258: Lightweight Design Practical Course

Typ	Project-/problem-based Learning
Hrs/wk	3

Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Mündliche Prüfung
scale	
Lecturer	Prof. Dieter Krause
Language	DE/EN
Cycle	SoSe
Contention duration and	30 min
	Deven

Content \begin{tabular}{l}
Development of a sandwich structure made of fibre reinforced plastics

- getting familiar with fibre reinforced plastics as well as lightweight design
- Design of a sandwich structure made of fibre reinforced plastics using finite element analysis (FEA)
- Determination of material properties based on sample tests
- manufacturing of the structure in the composite lab
- Testing of the developed structure
- Concept presentation
- Self-organised teamwork

\end{tabular}

Literature

- Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden"", Springer, Berlin, 2005.
- Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten", Hanser, München, Wien, 1996.
- R\&G, „Handbuch Faserverbundwerkstoffe", Waldenbuch, 2009.
- VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund"
- Ehrenstein, G. W., „Faserverbundkunststoffe", Hanser, München, 2006.
- Klein, B., , ,Leichtbau-Konstruktion", Vieweg \& Sohn, Braunschweig, 1989.
- Wiedemann, J., „Leichtbau Band 1: Elemente", Springer, Berlin, Heidelberg, 1986.
- Wiedemann, J., „Leichtbau Band 2: Konstruktion", Springer, Berlin, Heidelberg, 1986.
- Backmann, B.F., "Composite Structures, Design, Safety and Innovation", Oxford (UK), Elsevier, 2005.
- Krause, D., „Leichtbau", In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
- Schulte, K., Fiedler, B., "Structure and Properties of Composite Materials", Hamburg, TUHH - TuTech Innovation GmbH, 2005.

Course L1549: Aviation Security	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course teaches the basics of aviation security. Aviation security is a necessary prerequisite for an economically successful air transport system. Risk management for the entire system can only be successful in an integrated approach, considering man, technology and organization: - Historical development - The special role of air transport - Motive and attack vectors - The human factor - Threats and risk - Regulations and law - Organization and implementation of aviation security tasks - Passenger and baggage checks - Cargo screening and secure supply chain - Safety technologies
Literature	- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course teaches the basics of aviation security. Aviation security is a necessary prerequisite for an economically successful air transport system. Risk management for the entire system can only be successful in an integrated approach, considering man, technology and organization: - Historical development - The special role of air transport - Motive and attack vectors - The human factor - Threats and risk - Regulations and law - Organization and implementation of aviation security tasks - Passenger and baggage checks - Cargo screening and secure supply chain - Safety technologies
Literature	- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008

| Course L2376: Aviation and Environment | | |
| ---: | :--- | :--- | :--- |
| Typ | Lecture | |
| Hrs/wk | 3 | |
| CP | 3 | |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2934: Machine Learning in Safety-Critical Cyber-Physical Systems

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Schriftliche Ausarbeitung
scale	
Lecturer	Prof. Ralf God
Language	DE
Contente	WiSe
	The use of machine learning enables many highly complex applications, for example in autonomous systems. However, the
	application in safety-critical systems offers special challenges and makes special demands on the development.
	The course teaches the necessary basics and methods in the context of systems engineering for the use of data science, machine
	learning and Al in safety-critical systems. In addition, current areas of application and the current state of research are discussed.
	The following topics will be dealt with in detail:

- Introduction and motivation
- Safety-critical cyber-physical systems and systems of systems
- Methods of modelling in systems engineering
- Challenges in the use of machine learning in safety-critical systems
- Systems engineering and safety-critical systems
- Safety and machine learning
- Machine learning lifecycle
- Methods
- Data set optimization
- Robust learning
- Quantification of uncertainty
- Adversarial attacks
- Interpretability
- Securing the overall system
- The latest from research

| Literature | - J. Holt, S. A. Perry, M. Brownsword. Model-Based Requirements Engineering. Institution Engineering \& Tech, 2011. |
| :--- | :--- | :--- |
| | - S. Houben et al. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety. arXiv, 2021. |
| | - A. Schwaiger. Machine Learning in sicherheitskritischen Systemen. Embedded Software Engineering Kongress, 2020. |
| | - A. Pereira, C. Thomas. Challenges of Machine Learning Applied to Safety-Critical Cyber-Physical Systems. Mach. Learn. Knowl. |
| | Extr., 2,579-602, 2020. |

Course L2935: Machine Learning in Safety-Critical Cyber-Physical Systems	
Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Schriftliche Ausarbeitung
Examination duration and	90 min
scale	
Lecturer	Prof. Ralf God
Canguage	DE
Content	WiSe
Literature	See interlocking course interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Dr. Jan Oke Peters
Language	DE
Cycle	SoSe
Content	Application, analysis and discussion of basic and advanced testing methods to ensure correct selection of applicable testing procedure for investigation of part/materials deficiencies - Stress-strain relationships - Strain gauge application - Visko elastic behavior - Tensile test (strain hardening, necking, strain rate) - Compression test, bending test, torsion test - Crack growth upon static loading (J-Integral) - Crack growth upon cyclic loading (micro- und macro cracks) - Effect of notches - Creep testing (physical creep test, influence of stress and temperature, Larson Miller parameter) - Wear testing - Non destructive testing application for overhaul of jet engines
Literature	- E. Macherauch: Praktikum in Werkstoffkunde, Vieweg - G. E. Dieter: Mechanical Metallurgy, McGraw-Hill - R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg - R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg

Course L0908: Turbo Jet Engines	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	45 min
Lecturer	Dr. Burkhard Andrich
Language	DE
Cycle	WiSe
Content	- Cycle of the gas turbine - Thermodynamics of gas turbine components - Wing-, grid- and stage-sizing - Operating characteristics of gas turbine components - Sizing criteria's for jet engines - Development trends of gas turbines and jet engines - Maintenance of jet engines
Literature	- Bräunling: Flugzeugtriebwerke - Engmann: Technologie des Fliegens - Kerrebrock: Aircraft Engines and Gas Turbines

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1514: Structural Mechanics of Fibre Reinforced Composites

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Prof. Benedikt Kriegesmann
Language	EN
Cycle	WiSe
Content	Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis
Literature	- Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden", Springer, Berlin, aktuelle Auflage. - Wiedemann, J., „Leichtbau Band 1: Elemente", Springer, Berlin, Heidelberg, , aktuelle Auflage. - Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells", CRC Publishing, Boca Raton et al., current edition. - Jones, R.M., „Mechanics of Composite Materials", Scripta Book Co., Washington, current edition. - Timoshenko, S.P., Gere, J.M., „Theory of elastic stability", McGraw-Hill Book Company, Inc., New York, current edition. - Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates", Chapman and Hall, London, current edition. - Herakovich, C.T., „Mechanics of fibrous composites", John Wiley and Sons, Inc., New York, current edition. - Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate", aktuelle Auflage.

Course L1515: Structural Mechanics of Fibre Reinforced Composites	
Typ	Recitation Section (large)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Mündliche Prüfung
Lecturer	Prof. Benedikt Kriegesmann
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1820: System Simulation

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Dr. Stefan Wischhusen, Dr. Johannes Brunnemann
Cycle	WiSe
Content	Lecture about equation-based, physical modelling using the modelling language Modelica and the free simulation tool
	OpenModelica 1.17.0.

- Instruction and modelling of physical processes
- Modelling and limits of mode
- Time constant, stiffness, stability, step size
- Terms of object orientated programming
- Differential equations of simple systems
- Introduction into Modelica
- Introduction into simulation tool
- Example:Hydraulic systems and heat transfer
- Example: System with different subsystems

Literature [1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021.
[2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021.
[3] M. Tiller: "Modelica by Example", https://book.xogeny.com, 2014.
[4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1-17, Oldenbourg Verlag, 1999-2000.
[5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015.
[6] P. Fritzson: "Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica", Wiley, New York, 2011.

Course L1821: System Simulation	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Dr. Stefan Wischhusen, Dr. Johannes Brunnemann
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Dr. Jan Oke Peters
Language	DE
Cycle	WiSe
Content	Application and analysis of basic mechanical as well as non-destructive testing of materials - Determination elastic constants - Tensile test - Fatigue test (testing with constant stress, strain, or plastiv strain amplitude, low and high cycle fatigue, mean stress effect) - Crack growth upon static loading (stress intensity factor, fracture toughness) - Creep test - Hardness test - Charpy impact test - Non destructive testing
Literature	E. Macherauch: Praktikum in Werkstoffkunde, Vieweg G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Course L2994: Reliability in Engineering Dynamics

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Benedikt Kriegesmann, Dr. Eric Groß
Language	EN
Cycle	SoSe
Content	Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution
Literature	Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Benedikt Kriegesmann, Dr. Eric Groß
Language	EN
Cycle	SoSe
Content	Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution
Literature	Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Course L0749: Reliability of	Aircraft Systems
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Language	DE
Cycle	WiSe
Content	- Functions of reliability and safety (regulations, certification requirements) - Basics methods of reliability analysis (FMEA, fault tree, functional hazard assessment) - Reliability analysis of electrical and mechanical systems
Literature	- CS 25.1309 - SAE ARP 4754 - SAE ARP 4761

Module M1193: Cabin Systems Engineering

Courses				
Title		Typ	Hrs/wk	CP
Computer and communication technology in cabin electronics and avionics (L1557)		Lecture	2	2
Computer and communication technology in cabin electronics and avionics (L1558)		Recitation Section (small)	1	1
Model-Based Systems Engineering (MBSE) with SysML/UML (L1551)		Project-/problem-based Learning	3	3
Module Responsible	Prof. Ralf God			
Admission Requirements	None			
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Electrical Engineering - Control Systems Previous knowledge in: - Systems Engineering			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to: - describe the structure and operation of con - explain the structure and operation of digit - explain architectures of cabin electronics, - understand the approach of Model-Based systems Students are able to: - understand, operate and maintain a Minico - build up a network communication and con - connect a minicomputer with a cabin mana - model system functions by means of forma - execute software code on a minicomputer Students are able to: - form teams of two or small groups for the prap - work out partial results themselves and co - represent and contribute their own solution - take over the guidance of the team - contribute in the team Students are able to: - organize and plan their practical tasks - further develop their own skills - take their own initiative - explore their own new ways of solving prob	etworks avionics (IMA) and Aircraft Data ing (MBSE) in the design of h r network participants 80 CIDS) and communicate ove JML and generate software cod hers to form an overall solution	ommunic dware an a AFDX® ${ }^{\text {® }}$ from the	etwork (ADCN) are-based cabin
Workload in Hours	Independent Study Time 96, Study Time in L			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	120 minutes			
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualificat International Management and Engineering: Product Development, Materials and Product Product Development, Materials and Product Product Development, Materials and Product Theoretical Mechanical Engineering: Speciali	ulsory ation Systems: Elective Compul roduct Development: Elective roduction: Elective Compulsory Materials: Elective Compulsory ms Engineering: Elective Comp	ory mpulsory sory	

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course teaches the basics of design and functionality of computers and data networks. Subsequently it focuses on current principles and applications in integrated modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: - History of computer and network technology - Layer model in computer technology - Computer architectures (PC, IPC, Embedded Systems) - BIOS, UEFI and operating system (OS) - Programming languages (machine code and high-level languages) - Applications and Application Programming Interfaces - External interfaces (serial, USB, Ethernet) - Layer model in network technology - Network topologies - Network components - Bus access procedures - Integrated Modular Avionics (IMA) and Aircraft Data Communication Networks (ADCN) - Cabin electronics and cabin networks
Literature	- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 - Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006

Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course teaches the basics of design and functionality of computers and data networks. Subsequently it focuses on current principles and applications in integrated modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: - History of computer and network technology - Layer model in computer technology - Computer architectures (PC, IPC, Embedded Systems) - BIOS, UEFI and operating system (OS) - Programming languages (machine code and high-level languages) - Applications and Application Programming Interfaces - External interfaces (serial, USB, Ethernet) - Layer model in network technology - Network topologies - Network components - Bus access procedures - Integrated Modular Avionics (IMA) and Aircraft Data Communication Networks (ADCN) - Cabin electronics and cabin networks
Literature	- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 - Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML

Typ	Project-/problem-based Learning
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Ralf God
Language	DE
Cycle	SoSe
Content	Objectives of the problem-oriented course are the acquisition of knowledge on system design using the formal languages SysML/UML, learning about tools for modeling and finally the implementation of a project with methods and tools of Model-Based Systems Engineering (MBSE) on a realistic hardware platform (e.g. Arduino $®$, Raspberry $\mathrm{Pi} ®$): - What is a model? - What is Systems Engineering? - Survey of MBSE methodologies - The modelling languages SysML /UML - Tools for MBSE - Best practices for MBSE - Requirements specification, functional architecture, specification of a solution - From model to software code - Validation and verification: XiL methods - Accompanying MBSE project
Literature	- Skript zur Vorlesung - Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008 - Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering \& Tech, 2011

Module M1744: Selected Topics of Aeronautical Systems Engineering (Alternative A: 6 LP)

Courses			
Title		Hrs/wk	CP
Advanced Training Course SE-ZERT (L2739)		2	3
Airline Operations (L1310)		3	3
Fatigue \& Damage Tolerance (L0310)		2	3
Flight Guidance I (Introduction) (L0848)		2	2
Flight Guidance I (Introduction) (L0854)		1	1
Flight Guidance II (Flight Control) (L2374)		2	2
Flight Guidance II (Flight Control) (L2375)		1	1
Airport Operations (L1276)		3	3
Airport Planning (L1275)		2	2
Airport Planning (L1469)		1	1
Lightweight Design Practical Course (L1258)		3	3
Aviation Security (L1549)		2	2
Aviation Security (L1550)		1	1
Aviation and Environment (L2376)		3	3
Machine Learning in Safety-Critical Cyber-Physical Systems (L2934)		2	2
Machine Learning in Safety-Critical Cyber-Physical Systems (L2935)		1	1
Mechanisms, Systems and Processes of Materials Testing (L0950)		2	2
Multi Disciplinary Optimization in Aircraft Design (L2809)		3	3
Turbo Jet Engines (L0908)		2	3
Structural Mechanics of Fibre Reinforced Composites (L1514)		2	3
Structural Mechanics of Fibre Reinforced Composites (L1515)		1	1
System Simulation (L1820)		2	2
System Simulation (L1821)		1	2
Materials Testing (L0949)		2	2
Reliability in Engineering Dynamics (L2994)		2	2
Reliability in Engineering Dynamics (L2995)		1	2
Reliability of Aircraft Systems (L0749)		2	3
Module Responsible	Prof. Frank Thielecke		
Admission Requirements	None		
Recommended Previous Knowledge	Basic knowledge in: - Mathematics - Mechanics - Thermodynamics - Electrical Engineering - Hydraulics - Control Systems		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	- Students are able to fin material science - Students are able to exp - Students are able to in Students are able to apply ba Students can chose independ	ng, air tran through	ation system and ction of courses.
Workload in Hours	Depends on choice of courses		
Credit points	6		
Assignment for the Following Curricula	Aircraft Systems Engineering: Theoretical Mechanical Engine		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2739: Advanced Training Course SE-ZERT	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Lecturer	Prof. Ralf God
Language	DE
Cycle	SoSe
Literature	INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der
	deutschen Übersetzung), ISBN 978-3-9818805-0-2.
	ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System
	Life Cycle Processes).

Course L1310: Airline Operations	
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Volker Gollnick, Felix Presto
Language	DE
Cycle	SoSe
Content	1. Introdution and overview 2. Airline business models 3. Interdependencies in flight planning (network management, slot management, netzwork structures, aircraft circulation) 4. Operative flight preparation (weight \& balance, payload/range, etc.) 5. fleet policy 6. Aircraft assessment and fleet planning 7. Airline organisation 8. Aircraft maintenance, repair and overhaul
Literature	Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: "Buying the Big Jets", Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008

Course L0310: Fatigue \& Damage Tolerance	
Hrs/wk	Lecture
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	45 min
scale	
Lecturer	Dr. Martin Flamm
Cycle	WiSe
Literature	Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit
	Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve
Vatigue strength, environmental influences	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

urse L0848: Flight Guida	I (Introduction)
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	WiSe
Content	Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Cockpit systems and Avionics (cockpit design, cockpit equipment, displays, computers and bus systems) Principles of flight measurement techniques (Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Principles of Navigation Radio navigation Satellite navigation Airspace surveillance (radar systems) Commuication systems Integrated Navigation and Guidance Systems
Literature	Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics", Springer Berlin Heidelberg New York 2003

Course L0854: Flight Guidance I (Introduction)	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and	60 min
scale	
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	WiSe
Content	See interlocking course

Course L2374: Flight Guidance II (Flight Control)	
Typ	Lecture
$\mathbf{H r s} / \mathbf{w k}$	2
CP	2
Examination Form	Klausur
Examination duration and	60 min
scale	
Lecturer	Prof. Volker Gollnick
Cycle	SoSe
Content	
Literature	Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011
	R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2375: Flight Guidance II (Flight Control)	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Lecturer	Prof. Volker Gollnick
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Course L1276: Airport Operations	
Typ	Lecture
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and	90 min
scale	
Language	DE
Cycle	WiSe
Content	FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground
handling Terminal operations	
Literature	Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003

Course L1275: Airport Planning

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Prof. Volker Gollnick, Dr. Ulrich Häp
Language	DE
Cycle	WiSe
Content	1. Introduction, definitions, overviewg 2. Runway systems 3. Air space strucutres around airports 4. Airfield lightings, marking and information 5. Airfield and terminal configuration
Literature	N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley \& Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003

Course L1469: Airport Planning	
Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Lecturer	Prof. Volker Gollnick, Dr. Ulrich Häp
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1258: Lightweight Design Practical Course

Typ	Project-/problem-based Learning
Hrs/wk	3

Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Mündliche Prüfung
scale	
Lecturer	Prof. Dieter Krause
Language	DE/EN
Cycle	SoSe
Contention duration and	30 min
	Deven

Content \begin{tabular}{l}
Development of a sandwich structure made of fibre reinforced plastics

- getting familiar with fibre reinforced plastics as well as lightweight design
- Design of a sandwich structure made of fibre reinforced plastics using finite element analysis (FEA)
- Determination of material properties based on sample tests
- manufacturing of the structure in the composite lab
- Testing of the developed structure
- Concept presentation
- Self-organised teamwork

\end{tabular}

Literature

- Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden"", Springer, Berlin, 2005.
- Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten", Hanser, München, Wien, 1996.
- R\&G, „Handbuch Faserverbundwerkstoffe", Waldenbuch, 2009.
- VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund"
- Ehrenstein, G. W., „Faserverbundkunststoffe", Hanser, München, 2006.
- Klein, B., , ,Leichtbau-Konstruktion", Vieweg \& Sohn, Braunschweig, 1989.
- Wiedemann, J., „Leichtbau Band 1: Elemente", Springer, Berlin, Heidelberg, 1986.
- Wiedemann, J., „Leichtbau Band 2: Konstruktion", Springer, Berlin, Heidelberg, 1986.
- Backmann, B.F., "Composite Structures, Design, Safety and Innovation", Oxford (UK), Elsevier, 2005.
- Krause, D., „Leichtbau", In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
- Schulte, K., Fiedler, B., "Structure and Properties of Composite Materials", Hamburg, TUHH - TuTech Innovation GmbH, 2005.

Course L1549: Aviation Security	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course teaches the basics of aviation security. Aviation security is a necessary prerequisite for an economically successful air transport system. Risk management for the entire system can only be successful in an integrated approach, considering man, technology and organization: - Historical development - The special role of air transport - Motive and attack vectors - The human factor - Threats and risk - Regulations and law - Organization and implementation of aviation security tasks - Passenger and baggage checks - Cargo screening and secure supply chain - Safety technologies
Literature	- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Ralf God
Language	DE
Cycle	WiSe
Content	The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course teaches the basics of aviation security. Aviation security is a necessary prerequisite for an economically successful air transport system. Risk management for the entire system can only be successful in an integrated approach, considering man, technology and organization: - Historical development - The special role of air transport - Motive and attack vectors - The human factor - Threats and risk - Regulations and law - Organization and implementation of aviation security tasks - Passenger and baggage checks - Cargo screening and secure supply chain - Safety technologies
Literature	- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008

| Course L2376: Aviation and Environment | | |
| ---: | :--- | :--- | :--- |
| Typ | Lecture | |
| Hrs/wk | 3 | |
| CP | 3 | |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2934: Machine Learning in Safety-Critical Cyber-Physical Systems

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Schriftliche Ausarbeitung
scale	
Lecturer	Prof. Ralf God
Language	DE
Contente	WiSe
	The use of machine learning enables many highly complex applications, for example in autonomous systems. However, the
	application in safety-critical systems offers special challenges and makes special demands on the development.
	The course teaches the necessary basics and methods in the context of systems engineering for the use of data science, machine
	learning and Al in safety-critical systems. In addition, current areas of application and the current state of research are discussed.
	The following topics will be dealt with in detail:

- Introduction and motivation
- Safety-critical cyber-physical systems and systems of systems
- Methods of modelling in systems engineering
- Challenges in the use of machine learning in safety-critical systems
- Systems engineering and safety-critical systems
- Safety and machine learning
- Machine learning lifecycle
- Methods
- Data set optimization
- Robust learning
- Quantification of uncertainty
- Adversarial attacks
- Interpretability
- Securing the overall system
- The latest from research

Literature	- J. Holt, S. A. Perry, M. Brownsword. Model-Based Requirements Engineering. Institution Engineering \& Tech, 2011.
	- S. Houben et al. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety. arXiv, 2021.
	- A. Schwaiger. Machine Learning in sicherheitskritischen Systemen. Embedded Software Engineering Kongress, 2020.
	- A. Pereira, C. Thomas. Challenges of Machine Learning Applied to Safety-Critical Cyber-Physical Systems. Mach. Learn. Knowl.
	Extr., 2,579-602, 2020.

Course L2935: Machine Learning in Safety-Critical Cyber-Physical Systems	
Typ	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Schriftliche Ausarbeitung
Examination duration and	90 min
scale	
Lecturer	Prof. Ralf God
Canguage	DE
Content	WiSe
Literature	See interlocking course interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Dr. Jan Oke Peters
Language	DE
Cycle	SoSe
Content	Application, analysis and discussion of basic and advanced testing methods to ensure correct selection of applicable testing procedure for investigation of part/materials deficiencies - Stress-strain relationships - Strain gauge application - Visko elastic behavior - Tensile test (strain hardening, necking, strain rate) - Compression test, bending test, torsion test - Crack growth upon static loading (J-Integral) - Crack growth upon cyclic loading (micro- und macro cracks) - Effect of notches - Creep testing (physical creep test, influence of stress and temperature, Larson Miller parameter) - Wear testing - Non destructive testing application for overhaul of jet engines
Literature	- E. Macherauch: Praktikum in Werkstoffkunde, Vieweg - G. E. Dieter: Mechanical Metallurgy, McGraw-Hill - R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg - R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg

Course L2809: Multi Disciplinary Optimization in Aircraft Design	
Typ	Lecture
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and	90 min
scale	
Lecturer	Prof. Volker Gollnick
Language	DE/EN
Cycle	WiSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0908: Turbo Jet Engines	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	45 min
Lecturer	Dr. Burkhard Andrich
Language	DE
Cycle	WiSe
Content	- Cycle of the gas turbine - Thermodynamics of gas turbine components - Wing-, grid- and stage-sizing - Operating characteristics of gas turbine components - Sizing criteria's for jet engines - Development trends of gas turbines and jet engines - Maintenance of jet engines
Literature	- Bräunling: Flugzeugtriebwerke - Engmann: Technologie des Fliegens - Kerrebrock: Aircraft Engines and Gas Turbines

Course L1514: Structural Mechanics of Fibre Reinforced Composites	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Prof. Benedikt Kriegesmann
Language	EN
Cycle	WiSe
Content	Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis
Literature	- Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden", Springer, Berlin, aktuelle Auflage. - Wiedemann, J., „Leichtbau Band 1: Elemente", Springer, Berlin, Heidelberg, , aktuelle Auflage. - Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells", CRC Publishing, Boca Raton et al., current edition. - Jones, R.M., „Mechanics of Composite Materials", Scripta Book Co., Washington, current edition. - Timoshenko, S.P., Gere, J.M., „Theory of elastic stability", McGraw-Hill Book Company, Inc., New York, current edition. - Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates", Chapman and Hall, London, current edition. - Herakovich, C.T., „Mechanics of fibrous composites", John Wiley and Sons, Inc., New York, current edition. - Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate", aktuelle Auflage.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1515: Structural Mechanics of Fibre Reinforced Composites	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Prof. Benedikt Kriegesmann
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1820: System Simulation	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Dr. Stefan Wischhusen, Dr. Johannes Brunnemann
Language	DE
Cycle	WiSe
Content	Lecture about equation-based, physical modelling using the modelling language Modelica and the free simulation tool OpenModelica 1.17.0. - Instruction and modelling of physical processes - Modelling and limits of model - Time constant, stiffness, stability, step size - Terms of object orientated programming - Differential equations of simple systems - Introduction into Modelica - Introduction into simulation tool - Example:Hydraulic systems and heat transfer - Example: System with different subsystems
Literature	[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: "Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1-17, Oldenbourg Verlag, 1999-2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: "Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica", Wiley, New York, 2011.

Course L1821: System Simulation	
Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Dr. Stefan Wischhusen, Dr. Johannes Brunnemann
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Dr. Jan Oke Peters
Language	DE
Cycle	WiSe
Content	Application and analysis of basic mechanical as well as non-destructive testing of materials - Determination elastic constants - Tensile test - Fatigue test (testing with constant stress, strain, or plastiv strain amplitude, low and high cycle fatigue, mean stress effect) - Crack growth upon static loading (stress intensity factor, fracture toughness) - Creep test - Hardness test - Charpy impact test - Non destructive testing
Literature	E. Macherauch: Praktikum in Werkstoffkunde, Vieweg G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Course L2994: Reliability in Engineering Dynamics

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Benedikt Kriegesmann, Dr. Eric Groß
Language	EN
Cycle	SoSe
Content	Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution
Literature	Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Examination Form	Klausur
Examination duration and scale	90 min
Lecturer	Prof. Benedikt Kriegesmann, Dr. Eric Groß
Language	EN
Cycle	SoSe
Content	Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution
Literature	Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Course L0749: Reliability of	Aircraft Systems
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	90 Minuten
Lecturer	Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Language	DE
Cycle	WiSe
Content	- Functions of reliability and safety (regulations, certification requirements) - Basics methods of reliability analysis (FMEA, fault tree, functional hazard assessment) - Reliability analysis of electrical and mechanical systems
Literature	- CS 25.1309 - SAE ARP 4754 - SAE ARP 4761

Module M1616: Flight Control Law Design and Application

Courses					
Title Flight Control Law Design and Application (L2448) Flight Control Law Design and Application (L2449)			Typ	Hrs/wk	CP
			Lecture	2	4
			Project-/problem-based Learning	2	2
Module Responsible	Prof. Frank Thielecke				
Admission Requirements	None				
Recommended Previous Knowledge	Basic knowledge in: * mathematics (linear algebra and ordinary differential equations) * control systems (transfer functions and state space representation) * mechanics (rigid-body kinetics) * flight mechanics				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to: * describe and understand flight dynamics models for control tasks * assess handling qualities and understand the need for augmentation through control systems * identify fundamental performance limitations of control laws Students are able to: * design model-based control laws for stability augmentation * design model-based flight control laws * assess robustness and performance of control laws Students are able to: * design control laws in groups as well as discuss the requirements and results Students are able to: * reflect on the contents of lectures and extend their knowledge through literature research * solve control design tasks with software tools				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Form Description Yes None Attestation Die in der Vorlesung vermittelten Kenntnisse werden in einem semesterbegleitenden Projekt direkt auf das Modell eines Passagierflugzeugs angewendet.				
Examination	Written exam				
Examination duration and scale	60 min				
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2448: Flight Control Law Design and Application

Typ	Lecture
Hrs/wk	2
CP	4
Lecturer	Prof. Frank Thielecke, Dr. Julian Theis
Language	EN
Concle	SoSe
	entent
	e flight dynamics (equations of motion, trim and linearization, linear models of longitudinal and lateral-directional motion,
	* stability augmentation (modal dynamics, damper design with root-loci, pole placement and eigenstructure assignment)
	* primary flight control laws and autopilots
	* verification of flight control laws in simulation flight control laws (loopshaping design, robustness criteria and analysis, cascaded control loops, gain-scheduling)
	J. Theis: Lecture Notes Flight Control Law Design
	D. Schmidt: Modern Flight Dynamics

Course L2449: Flight Control Law Design and Application	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Frank Thielecke, Dr. Julian Theis
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Specialization Maritime Technology

At the center of the specialization Maritime Techniques lies the acquisition of knowledge and skills to develop, calculate and evaluate shipboard and offshore structures and their components. This is done in modules on the topics of marine engine systems, marine auxiliary systems, ship vibrations, maritime technology and maritime systems, port construction and port planning, port logistics, maritime transport and marine geotechnics and numerics in electives. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.

Module M1157: Marine Auxiliaries

Courses				
Title		Typ	Hrs/wk	CP
Electrical Installation on Ships (L1531)		Lecture	2	2
Electrical Installation on Ships (L1532)		Recitation Section (large)	1	1
Auxiliary Systems on Board of Ships (L1249)		Lecture	2	2
Auxiliary Systems on Board of Ships (L1250)		Recitation Section (large)	1	1
Module Responsible	Prof. Christopher Friedrich Wirz			
Admission Requirements	None			
Recommended Previous Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills	The stud Students - calcula - design - design - to apply The stud industry. The wide confiden	works and to the electric wer supply systems, , wave generator system operational monitoring, apply to product develop s of standard and spec systems. fessional environment s to handle situations in	ment in is ps, well as hips and pbuilding ure profe	networks, as e.g. requirements for mponent supply dependently and
Workload in Hours	Independ			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	20 min			
Assignment for the Following Curricula	Naval Ar Theoreti	ective Compulsory nnology: Elective Compu		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Günter Ackermann
Language	DE
Cycle	WiSe
Content	- performance in service of electrical consumers. - special requirements for power supply systems and for electrical equipment in isolated systems/networks e. g. aboard ships, offshore installations, factory systems and emergency power supply systems. - power generation and distribution in isolated networks, shaft generators for ships - calculation of short circuits and behaviour of switching devices - protective devices, selectivity monitoring - electrical Propulsion plants for ships
Literature	H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin

Course L1532: Electrical Installation on Ships

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Günter Ackermann
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1249: Auxiliary Systems on Board of Ships	
Typ	Lecture
Hrs/wk	2

Course L1250: Auxiliary Systems on Board of Ships

Typ	Recitation Section (large)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Christopher Friedrich Wirz
Language	DE
Cycle	SoSe
Content	
Literature	Siehe korrespondierende Vorlesung

Module M1177: Maritime Technology and Maritime Systems

Courses				
Title		Typ	Hrs/wk	CP
Analysis of Maritime Systems (L0068)		Lecture	2	2
Analysis of Maritime Systems (L0069)		Recitation Section (small)	1	1
Introduction to Maritime Technology (L0070)		Lecture	2	2
Introduction to Maritime Technology (L1614)		Recitation Section (small)	1	1
Module Responsible	Prof. Moustafa Abdel-Maksoud			
Admission Requirements	None			
Recommended Previous Knowledge	Solid knowledge and competences in mechanics, fluid dynamics and analysis (series, periodic functions, continuity differentiability, integration, multiple variables, ordinaray and partial differential equations, boundary value problems, initial conditions and eigenvalue problems).			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	After successful completion of this class, students should have an overview about phenomena and methods in ocean engineering and the ability to apply and extend the methods presented. In detail, the students should be able to - describe the different aspects and topics in Maritime Technology, - apply existing methods to problems in Maritime Technology, - discuss limitations in present day approaches and perspectives in the future, - Techniques for the analysis of offshore systems, - Modeling and evaluation of dynamic systems, - System-oriented thinking, decomposition of complex systems. The students learn the ability of apply and transfer existing methods and techniques on novel questions in maritime technologies. Furthermore, limits of the existing knowledge and future developments will be discussed. The processing of an exercise in a group of up to four students shall strengthen the communication and team-working skills and thus promote an important working technicque of subsequent working days. The collaboration has to be illustrated in a community presentation of the results. The course contents are absorbed in an exercise work in a group and individually checked in a final exam in which a self-reflection of the learned is expected without tools.			
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	180 min			
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff
Language	DE
Cycle	SoSe
Content	1. Hydrostatic analysis - Buoyancy, - Stability, 2. Hydrodynamic analysis - Froude-Krylov force - Morison's equation, - Radiation and diffraction - transparent/compact structures 3. Evaluation of offshore structures: Reliability techniques (security, reliability, disposability) - Short-term statistics - Long-term statistics and extreme events
Literature	- G. Clauss, E. Lehmann, C. Östergaard. Offshore Structures Volume I: Conceptual Design and Hydrodynamics. Springer Verlag Berlin, 1992 - E. V. Lewis (Editor), Principles of Naval Architecture ,SNAME, 1988 - Journal of Offshore Mechanics and Arctic Engineering - Proceedings of International Conference on Offshore Mechanics and Arctic Engineering - S. Chakrabarti (Ed.), Handbook of Offshore Engineering, Volumes 1-2, Elsevier, 2005 - S. K. Chakrabarti, Hydrodynamics of Offshore Structures, WIT Press, 2001

Course L0069: Analysis of Maritime Systems

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0070: Introduction to Maritime Technology

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Walter Kuehnlein, Dr. Sven Hoog
Language	DE
Cycle	WiSe
Content	1. Introduction - Ocean Engineering and Marine Research - The potentials of the seas - Industries and occupational structures 2. Coastal and offshore Environmental Conditions

- Physical and chemical properties of sea water and sea ice
- Flows, waves, wind, ice
- Biosphere

3. Response behavior of Technical Structures
4. Maritime Systems and Technologies

- General Design and Installation of Offshore-Structures
- Geophysical and Geotechnical Aspects
- Fixed and Floating Platforms
- Mooring Systems, Risers, Pipelines
- Energy conversion: Wind, Waves, Tides
Literature
- Chakrabarti, S., Handbook of Offshore Engineering, vol. I/II, Elsevier 2005.
- Gerwick, B.C., Construction of Marine and Offshore Structures, CRC-Press 1999
- Wagner, P., Meerestechnik, Ernst\&Sohn 1990.
- Clauss, G., Meerestechnische Konstruktionen, Springer 1988.
- Knauss, J.A., Introduction to Physical Oceanography, Waveland 2005.
- Wright, J. et al., Waves, Tides and Shallow-Water Processes, Butterworth 2006.
- Faltinsen, O.M., Sea Loads on Ships and Offshore Structures, Cambridge 1999.

Course L1614: Introduction to Maritime Technology

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Walter Kuehnlein
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1240: Fatigue Strength of Ships and Offshore Structures

Courses			
Title	Typ	Hrs/wk	CP
Fatigue Strength of Ships and Offshore Structures (L1521)	Lecture	3	Recitation Section (small)
Fatigue Strength of Ships and Offshore Structures (L1522)			

Module Responsible	Prof. Sören Ehlers
Admission Requirements	None
Recommended Previous Knowledge	Structural analysis of ships and/or offshore structures and fundamental knowledge in mechanics and mechanics of materials
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to - describe fatigue loads and stresses, as well as - describe structural behaviour under cyclic loads. Students are able to calculate life prediction based on the S-N approach as well as life prediction based on the crack propagation. The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	30 min
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory

Course L1521: Fatigue Strength of Ships and Offshore Structures	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Wolfgang Fricke
Language	EN
Cycle	WiSe
Content	1.) Introduction 2.) Fatigue loads and stresses 3.) Structural behaviour under cyclic loads - Structural behaviour under constant amplitude loading - Influence factors on fatigue strength - Material behaviour under contant amplitude loading - Special aspects of welded joints - Structural behaviour under variable amplitude loading 4.) Life prediction based on the S-N approach - Damage accumulation hypotheses - nominal stress approach - structural stress approach - notch stress approach - notch strain approach - numerical analyses 5.) Life prediction based on the crack propagation - basic relationships in fracture mechanics - description of crack propagation - numerical analysis - safety against unstable fracture
Literature	Siehe Vorlesungsskript

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1522: Fatigue Strength of Ships and Offshore Structures

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Wolfgang Fricke
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0663: Marine Geotechnics

Courses			
Title	Typ	Hrs/wk	CP
Marine Geotechnics (L0548)	Lecture	2	1
Marine Geotechnics (L0549)	Recitation Section (large)	2	2
Steel Structures in Foundation and Hydraulic Engineering (L1146)	Lecture	2	2

Module Responsible	Prof. Jürgen Grabe
Admission Requirements	None
Recommended Previous Knowledge	complete modules: Geotechnics I-III, Mathematics I-III courses: Soil laboratory course
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Civil Engineering: Specialisation Geotechnical Engineering: Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory

Course L0549: Marine Geotechnics	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Jürgen Grabe
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1146: Steel Structures in Foundation and Hydraulic Engineering

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Frank Feindt
Language	DE
Cycle	SoSe
Content	Design of a sheet pile wall, design of a combined sheet pile wall, piles, walings, connections, fatigue
Literature	EAU 2012, EA-Pfähle, EAB

Module M1132: Maritime Transport

Course L0063: Maritime Tran	port
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Carlos Jahn
Language	DE
Cycle	SoSe
Content	The general tasks of maritime logistics include the planning, design, implementation and control of material and information flows in the logistics chain ship - port - hinterland. This includes technology assessment, selection, dimensioning and implementation as well as the operation of technologies. The aim of the course is to provide students with knowledge of maritime transport and the actors involved in the maritime transport chain. Typical problem areas and tasks will be dealt with, taking into account the economic development. Thus, classical problems as well as current developments and trends in the field of maritime logistics are considered. In the lecture, the components of the maritime logistics chain and the actors involved will be examined and risk assessments of human disturbances on the supply chain will be developed. In addition, students learn to estimate the potential of digitisation in maritime shipping, especially with regard to the monitoring of ships. Further content of the lecture is the different modes of transport in the hinterland, which students can evaluate after completion of the course regarding their advantages and disadvantages.
Literature	- Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005. - Schönknecht, Axel. Maritime Containerlogistik: Leistungsvergleich von Containerschiffen in intermodalen Transportketten. Berlin Heidelberg: Springer-Verlag, 2009. - Stopford, Martin. Maritime Economics Routledge, 2009

Course L0064: Maritime Transport

Typ	Recitation Section (small)	
Hrs/wk	2	
CP	3	
Lecturer	Prof. Carlos Jahn	
Language	DE	
Cycle	SoSe	
Content	The exercise lesson bases on the haptic management game MARITIME. MARITIME focuses on providing knowledge about structures and processes in a maritime transport network. Furthermore, the management game systematically provides process management methodology and also promotes personal skills of the participants.	
Literature		

Module M1133: Port Logistics

Courses			
Title		Typ	Hrs/wk
Port Logistics (L0686)	Lecture		
Port Logistics (L1473)		Recitation Section (small)	

Module Responsible	Prof. Carlos Jahn
Admission Requirements	None
Recommended Previous Knowledge	none
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	Th After completing the module, students can... - reflect on the development of seaports (in terms of the functions of the ports and the corresponding terminals, as well as the relevant operator models) and place them in their historical context; - explain and evaluate different types of seaport terminals and their specific characteristics (cargo, transhipment technologies, logistic functional areas); - analyze common planning tasks (e.g. berth planning, stowage planning, yard planning) at seaport terminals and develop suitable approaches (in terms of methods and tools) to solve these planning tasks; - identify future developments and trends regarding the planning and control of innovative seaport terminals and discuss them in a problem-oriented manner.

Skills After completing the module, students will be able to..

- recognize functional areas in ports and seaport terminals;
- define and evaluate suitable operating systems for container terminals;
- perform static calculations with regard to given boundary conditions, e.g. required capacity (parking spaces, equipment requirements, quay wall length, port access) on selected terminal types;
- reliably estimate which boundary conditions influence common logistics indicators in the static planning of selected terminal types and to what extent.

Personal Competence

Social Competence
After completing the module, students can.

- transfer the acquired knowledge to further questions of port logistics;
- discuss and successfully organize extensive task packages in small groups;
- in small groups, document work results in writing in an understandable form and present them to an appropriate extent.

Autonomy After completing the module, the students are able to...

- research and select specialist literature, including standards, guidelines and journal papers, and to develop the contents independently;
- submit own parts in an extensive written elaboration in small groups in due time and to present them jointly within a fixed time frame.

Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	Compulsory Bonus Form Description No 15% Written elaboration
Examination	Written exam
Examination duration and scale	120 minutes
Assignment for the Following Curricula	Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory

Course L0686: Port Logistics	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Carlos Jahn
Language	DE
Cycle	SoSe
Content	Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The extraordinary role of maritime transport in international trade requires very efficient ports. These must meet numerous requirements in terms of economy, speed, safety and the environment. Against this background, the lecture Port Logistics deals with the planning, control, execution and monitoring of material flows and the associated information flows in the port system and its interfaces to numerous actors inside and outside the port area. The aim of the lecture Port Logistics is to convey an understanding of structures and processes in ports. The focus will be on different types of terminals, their characteristical layouts and the technical equipment used as well as the ongoing digitization and interaction of the players involved. In addition, renowned guest speakers from science and practice will be regularly invited to discuss some lecture-relevant topics from alternative perspectives. The following contents will be conveyed in the lectures: - Instruction of structures and processes in the port - Planning, control, implementation and monitoring of material and information flows in the port - Fundamentals of different terminals, characteristical layouts and the technical equipment used - Handling of current issues in port logistics
Literature	- Alderton, Patrick (2013). Port Management and Operations. - Biebig, Peter and Althof, Wolfgang and Wagener, Norbert (2017). Seeverkehrswirtschaft: Kompendium. - Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. Berlin Heidelberg: Springer-Verlag, 2005. - Büter, Clemens (2013). Außenhandel: Grundlagen internationaler Handelsbeziehungen. - Gleissner, Harald and Femerling, J. Christian (2012). Logistik: Grundlagen, Übungen, Fallbeispiele. - Jahn, Carlos; Saxe, Sebastian (Hg.). Digitalization of Seaports - Visions of the Future, Stuttgart: Fraunhofer Verlag, 2017. - Kummer, Sebastian (2019). Einführung in die Verkehrswirtschaft - Lun, Y.H.V. and Lai, K.-H. and Cheng, T.C.E. (2010). Shipping and Logistics Management. - Woitschützke, Claus-Peter (2013). Verkehrsgeografie.

Course L1473: Port Logistics	
Typ	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Carlos Jahn
Language	DE
Cycle	SoSe
Content	The content of the exercise is the independent preparation of a scientific paper plus an accompanying presentation on a current topic of port logistics. The paper deals with current topics of port logistics. For example, the future challenges in sustainability and productivity of ports, the digital transformation of terminals and ports or the introduction of new regulations by the International Maritime Organization regarding the verified gross weight of containers. Due to the international orientation of the event, the paper is to be prepared in English.
Literature	- Alderton, Patrick (2013). Port Management and Operations. - Biebig, Peter and Althof, Wolfgang and Wagener, Norbert (2017). Seeverkehrswirtschaft: Kompendium. - Brinkmann, Birgitt. Seehäfen: Planung und Entwurf. (2005) Berlin Heidelberg: Springer-Verlag. - Büter, Clemens (2013). Außenhandel: Grundlagen internationaler Handelsbeziehungen. - Gleissner, Harald and Femerling, J. Christian (2012). Logistik: Grundlagen, Übungen, Fallbeispiele. - Jahn, Carlos; Saxe, Sebastian (Hg.) (2017) Digitalization of Seaports - Visions of the Future, Stuttgart: Fraunhofer Verlag. - Kummer, Sebastian (2019). Einführung in die Verkehrswirtschaft - Lun, Y.H.V. and Lai, K.-H. and Cheng, T.C.E. (2010). Shipping and Logistics Management. - Woitschützke, Claus-Peter (2013). Verkehrsgeografie.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1021: Marine Diesel Engine Plants

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Christopher Friedrich Wirz
Language	DE
Cycle	SoSe
Content	- Historischer Überblick - Bauarten von Vier- und Zweitaktmotoren als Schiffsmotoren - Vergleichsprozesse, Definitionen, Kenndaten - Zusammenwirken von Schiff, Motor und Propeller - Ausgeführte Schiffsdieselmotoren - Gaswechsel, Spülverfahren, Luftbedarf - Aufladung von Schiffsdieselmotoren - Einspritzung und Verbrennung - Schwerölbetrieb - Schmierung - Kühlung - Wärmebilanz - Abwärmenutzung - Anlassen und Umsteuern - Regelung, Automatisierung, Überwachung - Motorerregte Geräusche und Schwingungen - Fundamentierung - Gestaltung von Maschinenräumen
Literature	- D. Woodyard: Pounder's Marine Diesel Engines - H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik - K. Kuiken: Diesel Engines - Mollenhauer, Tschöke: Handbuch Dieselmotoren - Projektierungsunterlagen der Motorenhersteller

Course L0638: Marine Diesel Engine Plants

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Christopher Friedrich Wirz
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1175: Special Topics of Ship Propulsionand Hydrodynamics of High Speed Water Vehicles

Courses			
Title	Typ	Hrs/wk	CP
Hydrodynamics of High Speed Water Vehicles (L1593)	Lecture	3	3
Special Topics of Ship Propulsion (L1589)	Lecture	3	3

Module Responsible	Prof. Moustafa Abdel-Maksoud
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge on ship resistance, ship propulsion and propeller theory
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	- Understand present research questions in the field of ship propulsion - Explain the present state of the art for the topics considered - Apply given methodology to approach given problems - Evaluate the limits of the present ship propulsion systems - Identify possibilities to extend present methods and technologies - Evaluate the feasibility of further developments Students are able to - select and apply suitable computing and simulation methods to determine the hydrodynamic characteristics of ship propulsion systems - model the behavior of ship propulsion systems under different operation conditions by using simplified methods - evaluate critically the investigation results of experimental or numerical investigations Students are able to - solve problems in heterogeneous groups and to document the corresponding results - share new knowledge with group members Students are able to assess their knowledge by means of exercises and case studies
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 min
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory

Course L1593: Hydrodynam	of High Speed Water Vehicles
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Moustafa Abdel-Maksoud
Language	DE/EN
Cycle	SoSe
Content	1. Resistance components of different high speed water vehicles 2. Propulsion units of high speed vehicles 3. Waves resistance in shallow and deep water 4. Surface effect ships (SES) 5. Hydrofoil supported vehicles 6. Semi-displacement vehicles 7. Planning vehicles 8. Slamming 9. Manoeuvrability
Literature	Faltinsen,O. M., Hydrodynamics of High-Speed Marine Vehicles, Cambridge University Press, UK, 2006

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1589: Special Topi	f Ship Propulsion
Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Moustafa Abdel-Maksoud
Language	DE/EN
Cycle	SoSe
Content	1. Propeller Geometry 2. Cavitation 3. Model Tests, Propeller-Hull Interaction 4. Pressure Fluctuation / Vibration 5. Potential Theory 6. Propeller Design 7. Controllable Pitch Propellers 8. Ducted Propellers 9. Podded Drives 10. Water Jet Propulsion 11. Voith-Schneider-Propulsors
Literature	- Breslin, J., P., Andersen, P., Hydrodynamics of Ship Propellers, Cambridge Ocean Technology, Series 3, Cambridge University Press, 1996. - Lewis, V. E., ed., Principles of Naval Architecture, Volume II Resistance, Propulsion and Vibration, SNAME, 1988. - N. N., International Confrrence Waterjet 4, RINA London, 2004 - N. N., 1st International Conference on Technological Advances in Podded Propulsion, Newcastle, 2004

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses	
Title	Module Responsible

Module M1233: Numerical Methods in Ship Design

Courses				
Title		Typ	Hrs/wk	CP
Numerical Methods in Ship Design	(L1271)	Lecture	2	4
Numerical Methods in Ship Design	(L1709)	Project-/problem-based Learning	2	2
Module Responsible	Prof. Ste			
Admission Requirements	None			
Recommended Previous Knowledge				
Educational Objectives	After tak	g learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy				
Workload in Hours	Independ			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	45 min			
Assignment for the Following Curricula	Naval Ar Theoretic	ective Compulsory nology: Elective Compulsory		

Course L1271: Numerical Methods in Ship Design	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	4
Lecturer	Prof. Stefan Krüger
Language	DE
Cycle	SoSe
Content	The lecture starts with the definition of the early design phase and the importance of first principle approaches. The
	reasons for process reengineering when such kinds of methods are introduced is demonstrated. Several numerical
	modelling techniques are introduced and discussed for the following design relevant topics:
	- Hullform representation, fairing and interpolation
	- Hullform design by modifying parent hulls
	- Modelling of subdivison
	- Volumetric and stability calculations 28
	- Mass distributions and longitudinal strength
	- Hullform Design by CFD- techniques
Literature	Skript zur Vorlesung.

Course L1709: Numerical Methods in Ship Design	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Stefan Krüger
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1146: Ship Vibration

Courses			
Title	Typ	Hrs/wk	CP
Ship Vibration (L1528)	Lecture	2	3
Ship Vibration (L1529)	Recitation Section (small)	2	3
Module Responsible	Dr. Rüdiger Ulrich Franz von Bock und Polach		
Admission Requirements	None		
Recommended Previous Knowledge	Mechanis I - III Structural Analysis of Ships I Fundamentals of Ship Structural Design		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students can reproduce the acceptance criteria for vibrations on ships; they can explain the methods for the calculation of natural frequencies and forced vibrations of sructural components and the entire hull girder; they understand the effect of exciting forces of the propeller and main engine and methods for their determination Students are capable to apply methods for the calculation of natural frequencies and exciting forces and resulting vibrations of ship structures including their assessment; they can model structures for the vibration analysis The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. Students are able to detect vibration-prone components on ships, to model the structure, to select suitable calculation methods and to assess the results		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	3 hours		
Assignment for the Following Curricula	Energy Systems: Specialisation Marine Engineering: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Ship and Offshore Technology: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory		

Course L1528: Ship Vibration	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Rüdiger Ulrich Franz von Bock und Polach
Language	EN
Cycle	WiSe
Content	1. Introduction; assessment of vibrations 2. Basic equations 3. Beams with discrete / distributed masses 4. Complex beam systems 5. Vibration of plates and Grillages 6. Deformation method / practical hints / measurements 7. Hydrodynamic masses 8. Spectral method 9. Hydrodynamic masses acc. to Lewis 10. Damping 11. Shaft systems 12. Propeller excitation 13. Engines
Literature	Siehe Vorlesungsskript

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1529: Ship Vibration	
Typ	Recitation Section (small)
CP	2
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Rüdiger Ulrich Franz von Bock und Polach
Language	EN
Cycle	WiSe
Content	1. Introduction; assessment of vibrations
	2. Basic equations
	3. Beams with discrete / distributed masses
	4. Complex beam systems
	5. Vibration of plates and Grillages
	6. Deformation method / practical hints / measurements
	7. Hydrodynamic masses
	8. Spectral method
	9. Hydrodynamic masses acc. to Lewis
	10. Damping
	11. Shaft systems
	12. Propeller excitation
	13. Engines

Module M1268: Linear and Nonlinear Waves

Courses			
Title	Typ	Hrs/wk	CP
Linear and Nonlinear Waves (L1737)		4	6
Module Responsible	Prof. Norbert Hoffmann		
Admission Requirements	None		
Recommended Previous Knowledge	Calculus, Algebra, Engineering Mechanics, Vibrations.		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Personal Competence Social Competence	- Students are able to reflect existing terms and concepts in Wave Mechanics - Students are able to identify and express the need to develop and research new terms and conc - Students are able to apply existing research methods and procedures of wave mechanics. - Students are able to develop novel research methods and procedures in wave mechanics. - Students can reach working results also in groups. - Students can present and communicate working results also in groups. - Students are able to approach given research tasks individually. - Studetns are able to identify and follow up novel research tasks by themselves.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	2 Hours		
Assignment for the Following Curricula	Mechatronics: Specialisation System Design: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory		

Course L1737: Linear and Nonlinear Waves	
Typ	Project-/problem-based Learning
Hrs/wk	4
CP	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann
Language	DE/EN
Cycle	Wise
Content	Introduction into the Dynamics of Linear and Nonlinear Waves - Linear Waves - Dispersion - Phase and Group Velocity - Envelopes - Discrete Systems - Nonlinear Waves - Model Equations - Solitons, Breathers, Extreme Waves - Water Waves, Ocean Waves - Airy and Stokes - Natural Sea State - Kinetic Modelling - Other topics
Literature	F.K. Kneubühl: Oscillations and Waves. Springer. G.B. Witham, Linear and Nonlinear Waves. Wiley. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific. L.H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge. And others.

Module M1148: Selected topics in Naval Architecture and Ocean Engineering

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Dr. Hendrik Vorhölter
Language	DE
Cycle	SoSe
Content	The lecture is separated into two parts. In the first part some basic skills necessary for the design of offshore vessels and their equipment will be repeated and where necessary deepened. In particular, the specialties which are common for the ma-jority of offshore vessels will be addressed: rules and regulations, determination of operational limits as well as mooring and dynamic positioning. In the second part of the lecture single types of special offshore vessels and their equipment and outfitting will be addressed. For each type the specific requirements on design and operation will be discussed. Furthermore, the students shall be en-gaged with the preparation of short presentation about the specific ship types as incentive for the respective unit. In particular, it is planned to discuss the following ship types in the lecture: - Anchor handling and plattform supply vessels - Cable -and pile lay vessels - Jack-up vessels - Heavy lift and offshore construction vessels - Dredgers and rock dumping vessels - Diving support vessels
Literature	Chakrabarti, S. (2005): Handbook of Offshore Engineering. Elsevier. Amsterdam, London Volker Patzold (2008): Der Nassabbau. Springer. Berlin Milwee, W. (1996): Modern Marine Salvage. Md Cornell Maritime Press. Centreville. DNVGL-ST-N001 „Marine Operations and Marin Warranty" IMCA M 103 "The Design and Operation of Dynamically Positioned Vessels" 2007-12 IMCA M 182 "The Safe Operation of Dynamically Positioned Offshore Supply Vessels" 2006-03 IMCA M 187 "Lifting Operations" 2007-10 IMCA SEL 185 "Transfer of Personnel to and from Offshore Vessels" 2010-03

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Peter Hauschildt
Language	DE
Cycle	SoSe
Content	The lectures will give an overview about the design of underwater vessels. The Topics are: 1.) Special requirements on the design of modern, konventional submarines 2.) Design history 3.) Generals description of submarines 4.) Civil submersibles 5.) Diving, trim, stability 6.) Rudders and Propulsion systems 7.) Air Independent propulsion 8.) Signatures 9.) Hydrodynamics and CFD 10.) Weapon- and combatmangementsystems 11.) Safety and rescue 12.) Fatigue and shock 13.) Ships technical systems 14.) Electricals Systems and automation 15.) Logisics 16.) Accomodation Some of the lectures will be Hheld in form of a excursion to ThyssenKrupp Marine Systems in Kiel

Course L2066: Lattice-Boltzmann methods for the simulation of free surface flows	
Hrs/wk	Lecture
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Lecturer	Dr. Christian Friedrich Janßen
Language	DE/EN
Contente	WiSe
This lecture addresses Lattice Boltzmann Methods for the simulation of free surface flows. After an introduction to the basic	
Literature	Krüger et al., "The Lattice Boltzmann Method - Principles and Practice", Springer
	Parallel to the lecture, selected maritime free-surface flow problems are to be solved numerically.
	Zhou, "Lattice Boltzmann Methods for Shallow Water Flows", Springer
	Janßen, "Kinetic approaches for the simulation of non-linear free surface flow problems in civil and environmental engineering",
PhD thesis, TU Braunschweig, 2010.	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2855: Machine Learning and Dynamics of Maritime Systems I

Typ	Project-/problem-based Learning
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and	90 min
scale	
Language	DE
Cycle	SoSe
Content	
Literature	S. Chakrabarti, Handbook of Offshore Engineering. Elsevier 2005.
	C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific 2004.
	Weitere Literaturempfehlungen während der Veranstaltung

Course L2856: Machine Learning and Dynamics of Maritime Systems II	
Typ	Project-/problem-based Learning
Hrs/wk	3
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Klausur
Examination duration and	90 min
scale	
Language	DE
Cycle	WiSe
Literature	S. Chakrabarti, Handbook of Offshore Engineering. Elsevier 2005.
	C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific 2004.
	Weitere Literaturempfehlungen während der Veranstaltung

Course L2013: Modeling and Simulation of Maritime Systems	
Typ	Project-/problem-based Learning
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Dr. Christian Friedrich Janßen
Language	DE/EN
Cycle	SoSe
Content	In the scope of this lecture, students learn to model and solve selected maritime problems with the help of numerical programs and scripts. First, basic concepts of computational modeling are explained, from the physical modeling and discretization to the implementation and actual numerical solution of the problem. Then, available tools for the implementation and solution process are discussed, including high-level compiled and interpreted programming languages and computer algebra systems (e.g., Python; Matlab, Maple). In the second half of the class, selected maritime problems will be discussed and subsequently solved numerically by the students.
Literature	"Introduction to Computational Modeling Using C and Open-Source Tools" (J.M. Garrido, Chapman and Hall); "Introduction to Computational Models with Python" (J.M. Garrido, Chapman and Hall); "Programming Fundamentals" (MATLAB Handbook, MathWorks);

Module Manual M.Sc. "Theoretical Mechanical Engineering"

curse L0072: Offshore Wind	Parks
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	45 min
Lecturer	Dr. Alexander Mitzlaff
Language	DE
Cycle	WiSe
Content	- Nonlinear Waves: Stability, pattern formation, solitary states - Bottom Boundary layers: wave boundary layers, scour, stability of marine slopes - Ice-structure interaction - Wave and tidal current energy conversion
Literature	- Chakrabarti, S., Handbook of Offshore Engineering, vol. I\&II, Elsevier 2005. - Mc Cormick, M.E., Ocean Wave Energy Conversion, Dover 2007. - Infeld, E., Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge 2000. - Johnson, R.S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge 1997. - Lykousis, V. et al., Submarine Mass Movements and Their Consequences, Springer 2007. - Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, World Scientific 2005. - Research Articles.

Course L1605: Ship Acoustics	
Typ	Lecture
$\mathbf{H r s} / \mathbf{w k}$	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Dr. Dietrich Wittekind
Language	DE
Cycle	SoSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Prof. Moustafa Abdel-Maksoud
Language	DE
Cycle	SoSe
Content	Maneuverability of ships - Equations of motion - Hydrodynamic forces and moments - Linear equations and their solutions - Full-scale trials for evaluating the maneuvering performance - Regulations for maneuverability - Rudder Seakeeping - Representation of harmonic processes - Motions of a rigid ship in regular waves - Flow forces on ship cross sections - Strip method - Consequences induced by ship motion in regular waves - Behavior of ships in a stationary sea state - Long-term distribution of seaway influences
Literature	- Abdel-Maksoud, M., Schiffsdynamik, Vorlesungsskript, Institut für Fluiddynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2014 - Abdel-Maksoud, M., Ship Dynamics, Lecture notes, Institute for Fluid Dynamic and Ship Theory, Hamburg University of Technology, 2014 - Bertram, V., Practical Ship Design Hydrodynamics, Butterworth-Heinemann, Linacre House - Jordan Hill, Oxford, United Kingdom, 2000 - Bhattacharyya, R., Dynamics of Marine Vehicles, John Wiley \& Sons, Canada,1978 - Brix, J. (ed.), Manoeuvring Technical Manual, Seehafen-Verlag, Hamburg, 1993 - Claus, G., Lehmann, E., Östergaard, C). Offshore Structures, I+II, Springer-Verlag. Berlin Heidelberg, Deutschland, 1992 - Faltinsen, O. M., Sea Loads on Ships and Offshore Structures, Cambridge University Press, United Kingdom, 1990 - Handbuch der Werften, Deutschland, 1986 - Jensen, J. J., Load and Global Response of Ships, Elsevier Science, Oxford, United Kingdom, 2001 - Lewis, Edward V. (ed.), Principles of Naval Architecture - Motion in Waves and Controllability, Society of Naval Architects and Marine Engineers, Jersey City, NJ, 1989 - Lewandowski, E. M., The Dynamics of Marine Craft: Maneuvering and Seakeeping, World Scientific, USA, 2004 - Lloyd, A., Ship Behaviour in Rough Weather, Gosport, Chichester, Sussex, United Kingdom, 1998

Course L0240: Selected Topics of Experimental and Theoretical Fluiddynamics	
Typ	Lecture
$\mathbf{H r s} / \mathbf{w k}$	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	30 min
scale	
Lecturer	Prof. Thomas Rung
Cycle	Wise
Content	Will be announced at the beginning of the lecture. Exemplary topics are
	1. methods and procedures from experimental fluid mechanics 2. rational Approaches towards flow physics modelling 3. selected topics of theoretical computation fluid dynamics 4. turbulent flows
Literature	Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0873: Technical Elements and Fluid Mechanics of Sailing Ships

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Prof. Thomas Rung, Peter Schenzle
Language	DE/EN
Cycle	WiSe
Content	Principles of Sailing Mechanics: - Sailing: Propulsion from relative motion - Lifting foils: Sails, wings, rudders, fins, keels - Wind climate: global, seasonal, meteorological, local - Aerodynamics of sails and sailing rigs - Hydrodynamics of Hulls and fins Technical Elements of Sailing: - Traditional and modern sail types - Modern and unconventional wind propulsors - Hull forms and keel-rudder-configurations - Sailing performance Prediction (VPP) - Auxiliary wind propulsion (motor-sailing) Configuration of Sailing Ships: - Balancing hull and sailing rig - Sailing-boats and -yachts - Traditional Tall Sailing Ships - Modern Wind-Ships
Literature	- Vorlesungs-Manuskript mit Literatur-Liste: Verteilt zur Vorlesung - B. Wagner: Fahrtgeschwindigkeitsberechnung für Segelschiffe, IfS-Rep. 132, 1967 - B. Wagner: Sailing Ship Research at the Hamburg University, IfS-Script 2249, 1976 - A.R. Claughton et al.: Sailing Yacht Design 1\&2, University of Southampton, 1998 - L. Larsson, R.E. Eliasson: Principles of Yacht Design, Adlard Coles Nautical, London, 2000 - K. Hochkirch: Entwicklung einer Messyacht, Diss. TU Berlin, 2000

Course L0765: Technology of Naval Surface Vessels	
Typ	Lecture
Hrs/wk	2

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1232: Arctic Technology

Courses				
Title		Typ	Hrs/wk	CP
Ice Engineering (L1607)		Lecture	2	2
Ice Engineering (L1615)		Recitation Section (small)	1	2
Ship structural design for arctic conditions (L1575)		Project-/problem-based Learning	2	2
Module Responsible	Prof. Sören Ehlers			
Admission Requirements	None			
Recommended Previous Knowledge	none			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The challenges and requirements due to ice can be explained. Ice loads can be explained and ice strengthening can be understood. The challenges and requirements due to ice can be assessed and the accuracy of these assessment can be evaluated. Calculation models to assess ice loads can be used and a structure can be designed accordingly. Students are capable to present their structural design and discuss their decisions constructively in a group. Independent and individual assignment tasks can be carried out and presented whereby the capabilities to both, present and defend, the skills and findings will be achieved.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1607: Ice Engineerin	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Walter Kuehnlein
Language	DE/EN
Cycle	WiSe
Content	1. Ice, Ice Properties, Ice Failure Modes and Challenges and Requirements due to Ice - Introduction, what is/means ice engineering - Description of different kinds of ice, main ice properties and different ice failure modes - Why is ice so different compared to open water - Presentation of design challenges and requirements for structures and systems in ice covered waters 2. Ice Load Determination and Ice Model Testing - Overview of different empirical equations for simple determination of ice loads - Discussion and interpretation of the different equations and results - Introduction to ice model tests - What are the requirements for ice model tests, what parameters have to be scaled - What can be simulated and how to use the results of such ice model tests 3. Computational Modelling of Ice-Structure Interaction Processes - Dynamic fracture and continuum mechanics for modelling ice-structure interaction processes - Alternative numerical crack propagation modelling methods. Examples of cohesive element models for real life structures. - Discussion of contribution of ice properties, hydrodynamics and rubble. 4. Ice Design Philosophies and Perspectives - What has to be considered when designing structures or systems for ice covered waters - What are the main differences compared to open water design - Ice Management - What are the main ice design philosophies and why is an integrated concept so important for ice Learning Objectives The course will provide an introduction into ice engineering. Different kinds of ice and their different failure modes including numerical methods for ice load simulations are presented. Main design issues including design philosophies for structures and systems for ice covered waters are introduced. The course shall enable the attendees to understand the fundamental challenges due to ice covered waters and help them to understand ice engineering reports and presentations.
Literature	- Proceedings OMAE - Proceedings POAC - Proceedings ATC

Course L1615: Ice Engineering	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Dr. Walter Kuehnlein
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1575: Ship structural design for arctic conditions	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Rüdiger Ulrich Franz von Bock und Polach, Dr. Rüdiger Ulrich Franz von Bock und Polach
Language	DE/EN
Cycle	WiSe
Content	The structural design under ice loads will be carried out for an individual case
Literature	FSICR, IACS PC and assorted publications

Module M1178: Manoeuvrability and Shallow Water Ship Hydrodynamics

Courses		
Title	Typ	Hrs/wk
Manoeuvrability of Ships (L1597)	CP	2
Shallow Water Ship Hydrodynamics (L1598)	Lecture	Lecture
		3

Module Responsible	Prof. Moustafa Abdel-Maksoud
Admission Requirements	None
Recommended Previous Knowledge	B.Sc. Schiffbau
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students lern the motion equation and how to describe hydrodynamic forces. They'll will be able to develop methods for analysis of manoeuvring behaviour of ships and explaining the Nomoto equation. The students will know the common model tests as well as their assets and drawbacks. Furthermore, the students lern the basics of assessment and prognosis of ship manoeuvrabilit. Basics of characteristics of flows around ships in shallow water regarding ship propulsion and manoeuvrability will be aquired.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 min
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory

| Course L1597: Manoeuvrability of Ships | |
| ---: | :--- | :--- |
| Trs/wk | Lecture |
| CP | 3 |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1165: Ship Safety

Courses				
Title		Typ	Hrs/wk	CP
Ship Safety (L1267)		Lecture	2	4
Ship Safety (L1268)		Recitation Section (large)		

Module Responsible	Prof. Stefan Krüger
Admission Requirements	None
Recommended Previous Knowledge	Ship Design, Hydrostatics, Statistical Processes
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The student shall lean to integrate safety aspects into the ship design process. This includes the undertsnding and application of existing rules as well as the understanding of the sfatey concept and level which is targeted by a rule. Further, methods of demonstrating equivalent safety levels are introduced. he lectures starts with an overview about general safety concepts for technical systems. The maritime safety organizations are introduced, their responses and duties. Then, the gerenal difference between prescriptive and performance based rules is tackled. Foer different examples in ship design, the influence of the rules on the deign is illustrated. Further, limitations of saftey rules with respect to the physical background are shown. Concepts of demonstrating equivalent levels of safety by direct calculations are discussed. The following fields will be treated. - Freeboard, water- and weathertight subdivisions, openings - all aspects of intact stability, including special problems such as grain code - damage stability for passenger vessels including Stockholm agreement - damage stbility fopr cargo vessels - on board stability, inclining experiment and stability booklet - Relevant manoevering information The student learns to take responsibilty for the safety of his designn. Responsible certification of technical designs.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 min
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory

Course L1267: Ship Safety	
Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Stefan Krüger
Language	DE
Cycle	WiSe
Content	The lectures starts with an overview about general safety concepts for technical systems. The maritime safety organizations are introduced, their responses and duties. Then, the gerenal difference between prescriptive and performance based rules is tackled. Foer different examples in ship design, the influence of the rules on the deign is illustrated. Further, limitations of saftey rules with respect to the physical background are shown. Concepts of demonstrating equivalent levels of safety by direct calculations are discussed. The following fields will be treated. - Freeboard, water- and weathertight subdivisions, openings - all aspects of intact stability, including special problems such as grain code - damage stability for passenger vessels including Stockholm agreement - damage stbility fopr cargo vessels - on board stability, inclining experiment and stability booklet - Relevant manoevering information
Literature	SOLAS, LOAD LINES, CODE ON INTACT STABILITY. Alle IMO, London.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1268: Ship Safety

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Stefan Krüger
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Specialization Materials Science

The focus of the specialization „materials technology" is the acquisition of in-depth knowledge and skills in materials technology. One main focus is on the creation of modern material models. Modules in the electives are the material modeling and Multi-scale modeling phenomena and methods in materials science, polymer processing, as well as plastics and composites. In addition, subjects in the Technical Supplement Course for TMBMS (according FSPO) are freely selectable.

Module M1342: Polymers

Courses				
Title Structure and Properties of Polymers (L0389) Processing and design with polymers (L1892)		Typ	Hrs/wk	CP
		Lecture	2	3
		Lecture	2	3
Module Responsible	Dr. Hans Wittich			
Admission Requirements	None			
Recommended Previous Knowledge	Basics: chemistry / physics / material science			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Personal Competence Social Competence	evaluate - selectin Students - arrive a - provide Students - assess - assess - assess	sary tes elationsh to expla to mec ms and nent the n perform e further	e.g. susta ulus, stre corrosion	y, environmental to calculate and ance.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	180 min			
Assignment for the Following Curricula	Materials Science: Specialisation Engineering Materials: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Hans Wittich
Language	DE
Cycle	WiSe
Content	- Structure and properties of polymers - Structure of macromolecules Constitution, Configuration, Conformation, Bonds, Synthesis, Molecular weihght distribution - Morphology amorph, crystalline, blends - Properties Elasticity, plasticity, viscoelacity - Thermal properties - Electrical properties - Theoretical modelling - Applications
Literature	Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag

Course L1892: Processing and design with polymers	
Hrs/wk	Lecture
CP	2
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler, Dr. Hans Wittich
Language	DE/EN
Cycle	WiSe
Content	Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining
Literature	Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
	Crawford: Plastics engineering, Pergamon Press
	Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
	Konstruieren mit Kunststoffen, Gunter Erhard, Hanser Verlag

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses	
Title	Module Responsible

Module M1343: Structure and properties of fibre-polymer-composites

Courses				
Title Structure and properties of fibre-polymer-composites (L1894) Structure and properties of fibre-polymer-composites (L2614) Structure and properties of fibre-polymer-composites (L2613)		Typ	Hrs/wk	CP
		Lecture	2	3
		Project-/problem-based Learning	2	2
		Recitation Section (large)	1	1
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	None			
Recommended Previous Knowledge	Basics: chemistry / physics / materials science			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection). Students are capable of - using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials. - approximate sizing using the network theory of the structural elements implement and evaluate. - selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Renewable Energies: Specialisation Bioenergy Systems: Elective Compulsory Renewable Energies: Specialisation Wind Energy Systems: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	SoSe
Content	- Microstructure and properties of the matrix and reinforcing materials and their interaction - Development of composite materials - Mechanical and physical properties - Mechanics of Composite Materials - Laminate theory - Test methods - Non destructive testing - Failure mechanisms - Theoretical models for the prediction of properties - Application
Literature	Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York

Course L2614: Structure and properties of fibre-polymer-composites

Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	SoSe
Content	
Literature	

Course L2613: Structure and properties of fibre-polymer-composites

Course L2613: Structure and properties of fibre-polymer-composites	
Typ	Recitation Section (large)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	SoSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1226: Mechanical Properties

Courses				
Title Mechanical Behaviour of Brittle Materials (L1661) Dislocation Theory of Plasticity (L1662)		Typ	Hrs/wk	CP
		Lecture	2	3
		Lecture	2	3
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous Knowledge	Basics in Materials Science I/II			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students ca minimization Students are Students can Students are - assess their - assess their - work indep	(free tensor ca on their e further ems, and	s) and th integrals, uctively. guided b cations wh	ynam tran hers. eded
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following Curricula	Materials Science: Core Qualification: Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	SoSe
Content	Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components
Literature	D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Module M1239: Experimental Micro- and Nanomechanics

Courses				
Title Experimental Micro- and Nanomechanics (L1673) Experimental Micro- and Nanomechanics (L1674)		Typ	Hrs/wk	CP
		Lecture	2	4
		Recitation Section (small)	1	2
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous Knowledge	Basics in Materials Science I/II, Mechanical Properties, Phenomena and Methods in Materials Science			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to describe the principles of mechanical behavior (e.g., stress, strain, modulus, strength, hardening, failure, fracture). Students can explain the principles of characterization methods used for investigating microstructure (e.g., scanning electron microscopy, x-ray diffraction) They can describe the fundamental relations between microstructure and mechanical properties. Students are capable of using standardized calculation methods to calculate and evaluate mechanical properties (modulus, strength) of different materials under varying loading states (e.g., uniaxial stress or plane strain). Students can provide appropriate feedback and handle feedback on their own performance constructively. Students are able to - assess their own strengths and weaknesses - assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers. - to be able to work independently based on lectures and notes to solve problems, and to ask for help or clarifications when needed			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	60 min			
Assignment for the Following Curricula	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1673: Experimental Micro- and Nanomechanics

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of mechanical testing at the micron and nanometer scales. A focus will be made on metallic materials, though issues related to ceramics and polymeric materials will also be discussed. Modern methods will be explored, along with the scientific questions investigated by such methods.

- Principles of micromechanics
- Motivations for small-scale testing
- Sample preparation methods for small-scale testing
- General experimental artifacts and quantification of measurement resolution
- Complementary structural analysis methods
- Electron back scattered diffraction
- Transmission electron microscopy
- Micro-Laue diffraction
- Nanoindentation-based testing
- Principles of contact mechanics
- Berkovich indentation
- Loading geometry
- Governing equations for analysis of stress \& strain
- Case study:
- Indentation size effects
- Microcompression
- Loading geometry
- Governing equations for analysis of stress \& strain
- Case study
- Size effects in yield strength and hardening
- Microbeam-bending
- Loading geometry

Governing equations for analysis of stress \& strain

- Case study:
- Fracture strength \& toughness
-

Vorlesungsskript
Aktuelle Publikationen

Course L1674: Experimental Micro- and Nanomechanics

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1237: Methods in Theoretical Materials Science

Courses				
Title Methods in Theoretical Materials Science (L1677) Methods in Theoretical Materials Science (L1678)		Typ	Hrs/wk	CP
		Lecture	2	4
		Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Fritz Müller			
Admission Requirements	None			
Recommended Previous Knowledge	Knowledge of advanced mathematics like analysis, linear algebra, differential equations and complex functions, e.g., Mathematics I-IV Knowledge of physics, particularly solid state physics, e.g., Materials Physics			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	The master students will be able to... ...explain how different modeling methods work. ...assess the field of application of individual methodological approaches. ...evaluate the strengths and weaknesses of different methods. The students are thereby able to assess which method is best suited to solve a scientific problem and what accuracy can be expected from the simulation results. After completing the module, the students are able to... ...select the most suitable modeling method as a function of various parameters such as length scale, time scale, temperature, material type, etc.. The students are able to discuss competently and adapted to the target group with experts from various fields including physics and materials science, for example at conferences or exhibitions. Further, this promotes their abilities to work in interdisciplinary groups. The students are able toassess their own strengths and weaknesses. ...acquire the knowledge they need on their own.			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	1. Introduction 1.1 Classification of Modelling Approaches and the Solid State 2. Quantum Mechanical Approaches 2.1 Electronic states: Atoms, Molecules, Solids 2.2 Density Functional Theory 2.3 Spin-Dynamics 3. Thermodynamic Approaches 3.1 Thermodynamic Potentials 3.2 Alloys 3.3 Cluster Expansion 3.4 Monte-Carlo-Methods
Literature	Solid State Physics, Ashcroft/Mermin, Saunders College Computational Physics, Thijsen, Cambridge Computational Materials Science, Ohno et al.. Springer Materials Science and Engineering: An Introduction, Callister/Rethwisch, Edition 9, Wiley

Course L1678: Methods in Theoretical Materials Science	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1238: Quantum Mechanics of Solids

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1675: Quantum Mechanics of Solids

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	1. Introduction 1.1 Relevance of Quantum Mechanics 1.2 Classification of Solids 2. Foundations of Quantum Mechanics 2.1 Reminder : Elements of Classical Mechanics 2.2 Motivation for Quantum Mechanics 2.3 Particle-Wave Duality 2.4 Formalism 3. Elementary QM Problems 3.1 Onedimensional Problems of a Particle in a Potential 3.2 Two-Level System 3.3 Harmonic Oscillator 3.4 Electrons in a Magnetic Field 3.5 Hydrogen Atom 4. Quantum Effects in Condensed Matter 4.1 Preliminary 4.2 Electronic Levels 4.3 Magnetism 4.4 Superconductivity 4.5 Quantum Hall Effect
Literature	Physik für Ingenieure, Hering/Martin/Stohrer, Springer Atom- und Quantenphysik, Haken/Wolf, Springer Grundkurs Theoretische Physik 5\|1, Nolting, Springer Electronic Structure of Materials, Sutton, Oxford Materials Science and Engineering: An Introduction, Callister/Rethwisch, Edition 9, Wiley

Course L1676: Quantum Mechanics of Solids

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1199: Advanced Functional Materials

Courses			
Title Advanced Functional Materials (L1625)	Typ	Hrs/wk	CP
	625) Seminar	2	6
Module Responsible	Prof. Patrick Huber		
Admission Requirements	None		
Recommended Previous Knowledge	Basic knowledge in Materials Science, e.g. Materials Science I/II		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Personal Competence Social Competence Autonomy	The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials. The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications.		
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28		
Credit points	6		
Course achievement	None		
Examination	Presentation		
Examination duration and scale	30 min		
Assignment for the Following Curricula	Materials Science: Core Qualification: Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory		

Course L1625: Advanced Functional Materials	
Typ	Seminar
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller, Prof. Kaline Pagnan Furlan, Prof. Robert
Language	DE
Cycle	WiSe
Content	1. Porous Solids - Preparation, Characterization and Functionalities 2. Fluidics with nanoporous membranes 3. Thermoplastic elastomers
	4. Optimization of polymer properties by nanoparticles
	5. Fiber composites in automotive
	6. Modeling of materials based on quantum mechanics
	7. Biomaterials
Literature	Aktuelle Publikationen aus der Fachliteratur werden während der Veranstaltung bekanntgegeben.

Module M1198: Materials Physics and Atomistic Materials Modeling

Courses			
Title	Typ	Hrs/wk	CP
Materials Physics (L1624)	Lecture	2	Lecture
Quantum Mechanics and Atomistic Materials Modeling (L1672)	Recitation Section (small)	2	2
Exercises in Materials Physics and Modeling (L2002)	2	2	2

Module Responsible	Prof. Patrick Huber
Admission Requirements	None
Recommended Previous	Advanced mathematics, physics and chemistry for students in engineering or natural sciences
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
	Knowledge
	The students are able to
	- explain the fundamentals of condensed matter physics
	- to understand concept and realization of advanced methods in atomistic modeling as well as to estimate their potential and

kills After attending this lecture the students

- can perform calculations regarding the thermodynamics, mechanics, electrical and optical properties of condensed matter systems
- are able to transfer their knowledge to related technological and scientific fields, e.g. materials design problems.
- can select appropriate model descriptions for specific materials science problems and are able to further develop simple models.

Personal Competence	
Social Competence	The students are able to present solutions to specialists and to develop ideas further.
Autonomy	Students are able to assess their knowldege continuously on their own by exemplified practice.
	The students are able to assess their own strengths and weaknesses and define tasks independently.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Examination	Written exam
Examination duration and	90 min
scale	
Assignment for the	Materials Science: Core Qualification: Compulsory
Following Curricula	Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory

Course L1624: Materials Physics	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE
Cycle	WiSe
Content	
Literature	Für den Elektromagnetismus: - Bergmann-Schäfer: „Lehrbuch der Experimentalphysik", Band 2: „Elektromagnetismus", de Gruyter Für die Atomphysik: - Haken, Wolf: „Atom- und Quantenphysik", Springer Für die Materialphysik und Elastizität: - Hornbogen, Warlimont: „Metallkunde", Springer

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1672: Quantum Mechanics and Atomistic Materials Modeling

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Robert Meißner
Language	DE
Cycle	WiSe
Content	- Why atomistic materials modeling - Newton's equations of motion and numerical approaches - Ergodicity - Atomic models - Basics of quantum mechanics - Atomic \& molecular many-electron systems - Hartree-Fock and Density-Functional Theory - Monte-Carlo Methods - Molecular Dynamics Simulations - Phase Field Simulations
Literature	Begleitliteratur zur Vorlesung (sortiert nach Relevanz): 1. Daan Frenkel \& Berend Smit „Understanding Molecular Simulations" 2. Mark E. Tuckerman „Statistical Mechanics: Theory and Molecular Simulations" 3. Andrew R. Leach „Molecular Modelling: Principles and Applications" Zur Vorbereitung auf den quantenmechanischen Teil der Klausur empfiehlt sich folgende Literatur 1. Regine Freudenstein \& Wilhelm Kulisch "Wiley Schnellkurs Quantenmechanik"

Course L2002: Exercises in Materials Physics and Modeling

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Robert Meißner, Prof. Patrick Huber
Language	DE
Cycle	WiSe
Content	
Literature	- Daan Frenkel \& Berend Smit: Understanding Molecular Simulation from Algorithms to Applications
	- Rudolf Gross und Achim Marx: Festkörperphysik
	-Neil Ashcroft and David Mermin: Solid State Physics

Module M1151: Materials Modeling

Courses	
Title	Typ Hrs/wk CP
Material Modeling (L1535)	Lecture 2
Material Modeling (L1536)	Recitation Section (small) 2
Module Responsible	Prof. Christian Cyron
Admission Requirements	None
Recommended Previous Knowledge	Basics of mechanics as taught, e.g., in the modules Engineering Mechanics I and Engineering Mechanics II at TUHH (forces and moments, stress, linear strain, free-body principle, linear-elastic constitutive laws, strain energy); basics of mathematics as taught, e.g., in the modules Mathematics I and Mathematics II at TUHH
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Personal Competence Social Competence	The students understand the theoretical foundations of anisotropic elasticity, viscoelasticity and elasto-plasticity in the realm of three-dimensional (linear) continuum mechanics. In the area of anisotropic elasticity, they know the concept of material symmetry and its application in orthotropic, transversely isotropic and isotropic materials. They understand the concept of stiffness and compliance and how both can be characterized by appropriate parameters. Moreover, the students understand viscoelasticity both in the time and frequency domain using the concepts of relaxation modulus, creep modulus, storage modulus and loss modulus. In the area of elasto-plasticity, the students know the concept of yield stress or (in higher dimensions) yield surface and of plastic potential. Additionally, the know the concepts of ideal plasticity, hardening and weakening. Moreover, they know von-Mises plasticity as a specific model of elasto-plasticity. The students can independently identify and solve problems in the area of materials modeling and acquire the knowledge to do so. This holds in particular for the area fo anisotropically elastic, viscoelastic and elasto-plastic material behavior. In these areas, the students can independently develop models for complex material behavior. To this end, they have the ability to read and understand relevant literature and identify the relevant results reported there. Moreover, they can implement models which they developed or found in the literature in computational software (e.g., based on the finite element method) and use it for practical calculations. The students are able to develop constitutive models for materials and present them to specialists. Moreover, they have the ability to discuss challening problems of materials modeling with experts using the proper terminoloy, to identify and ask critical questions in such discussions and to identify and discuss potential caveats in models presented to them. The students have the ability to independently develop abstract models that allow them to classify observed phenomena within an more general abstract framework and to predict their further evolution. Moreover, the students understand the advantages but also limitations of mathematical models and can thus independently decide when and to which extent they make sense as a basis for decisions.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	60 min
Assignment for the Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1536: Material Modeling

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Christian Cyron
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1170: Phenomena and Methods in Materials Science

Courses				
Title		Typ	Hrs/wk	CP
Experimental Methods for the Characterization of Materials (L1580)		Lecture	2	2
Phase equilibria and transformations (L1579)		Lecture	2	2
Übung zu Phänomene und Methoden der Materialwissenschaft (L2991)		Recitation Section (large)	2	2
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous Knowledge	Basic knowledge in Materials Science, e.g. Werkstoffwissenschaft I/II			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Personal Competence Social Competence	The students will be able to exp metallic, ceramic, polymeric, sem The students will be able to se materials considering architectu modern materials science, wh applications. The students are able to present The students are able to ... - assess their own strength - gather new necessary exp	materials along with thei materials (biomaterials) cording to the technical to the macroscale. The optimum materials com evelop ideas further.	ations in omaterial and, if ne s will als ns depe	ogy, to an on th
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory			

| Course L1580: Experimental Methods for the Characterization of Materials | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 2 |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1579: Phase equilibria and transformations	
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Jörg Weißmüller
Language	DE
Cycle	WiSe
Content	Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and freeenergy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.
Literature	D.A. Porter, K.E. Easterling, "Phase transformations in metals and alloys", New York, CRC Press, Taylor \& Francis, 2009, 3. Auflage Peter Haasen, „Physikalische Metallkunde", Springer 1994 Herbert B. Callen, "Thermodynamics and an introduction to thermostatistics", New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, "Physics of Surfaces and Interfaces" 2006, Berlin: Springer.

Course L2991: Übung zu Phänomene und Methoden der Materialwissenschaft	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Shan Shi
Language	DE
Cycle	WiSe
Content	
Literature	

Specialization Product Development and Production

At the center of the specialization „product development and production" is the acquisition of knowledge and skills for developing, designing and manufacturing of mechanical engineering products. This includes product planning, systematic and methodical development of solution concepts, the design and construction of products with special emphasis on component stress and cost considerations, to the derivation and creation of manufacturing documentation and the implementation in production.

Module M0815: Product Planning

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0853: Product Planning Seminar	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Cornelius Herstatt
Language	EN
Cycle	WiSe
Content	Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly.
Literature	See lecture information "Product Planning".

Module M0867: Production Planning \& Control and Digital Enterprise

Courses		
Title	Typ	Hrs/wk
The Digital Enterprise (L0932)	CP	
Production Planning and Control (L0929)	Lecture	2
Production Planning and Control (L0930)	Lecture	Recitation Section (small)
Exercise: The Digital Enterprise (L0933)	Recitation Section (small)	1

Module Responsible	Prof. Hermann Lödding
Admission Requirements	None
Recommended Previous Knowledge	Fundamentals of Production and Quality Management
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students can explain the contents of the module in detail and take a critical position to them. Students are capable of choosing and applying models and methods from the module to industrial problems. Students can develop joint solutions in mixed teams and present them to others.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 Minuten
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Hermann Lödding
Language	DE
Cycle	WiSe
Content	- Models of Production and Inventory Management - Production Programme Planning and Lot Sizing - Order and Capacity Scheduling - Selected Strategies of PPC - Manufacturing Control - Production Controlling - Supply Chain Management
Literature	- Vorlesungsskript - Lödding, H: Verfahren der Fertigungssteuerung, Springer 2008 - Nyhuis, P.; Wiendahl, H.-P.: Logistische Kennlinien, Springer 2002

Course L0930: Production Planning and Control	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Hermann Lödding
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L0933: Exercise: The Digital Enterprise	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Axel Friedewald
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	Siehe korrespondierende Vorlesung
	See interlocking course

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses		
Title	Typ Hrs/wk	CP
Module Responsible	Prof. Robert Seifried	
Admission Requirements	None	
Recommended Previous Knowledge	see FSPO	
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	$\begin{aligned} & \text { see FSPO } \\ & \text { see FSPO } \\ & \text { see FSPO } \\ & \text { see FSPO } \end{aligned}$	
Workload in Hours	Depends on choice of courses	
Credit points	6	
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Module M1024: Methods of Integrated Product Development

Courses			
Title	Typ	Hrs/wk	CP
Integrated Product Development II (L1254)	Lecture	3	3
Integrated Product Development II (L1255)	Project-/problem-based Learning	2	

Module Responsible	Prof. Dieter Krause
Admission Requirements	None
Recommended Previous Knowledge	Basic knowledge of Integrated product development and applying CAE systems
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	After passing the module students are able to: - explain technical terms of design methodology, - describe essential elements of construction management, - describe current problems and the current state of research of integrated product development. After passing the module students are able to: - select and apply proper construction methods for non-standardized solutions of problems as well as adapt new boundary conditions, - solve product development problems with the assistance of a workshop based approach, - choose and execute appropriate moderation techniques. After passing the module students are able to: - prepare and lead team meetings and moderation processes, - work in teams on complex tasks, - represent problems and solutions and advance ideas. After passing the module students are able to: - give a structured feedback and accept a critical feedback, - implement the accepted feedback autonomous.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	30 Minuten
Assignment for the Following Curricula	Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Dieter Krause
Language	DE
Cycle	WiSe
Content	Lecture The lecture extends and enhances the learned content of the module "Integrated Product Development and lightweight design" and is based on the knowledge and skills acquired there. Topics of the course include in particular: - Methods of product development, - Presentation techniques, - Industrial Design, - Design for variety - Modularization methods, - Design catalogs, - Adapted QFD matrix, - Systematic material selection, - Assembly oriented design, Construction management - CE mark, declaration of conformity including risk assessment, - Patents, patent rights, patent monitoring - Project management (cost, time, quality) and escalation principles, - Development management for mechatronics, - Technical Supply Chain Management. Exercise (PBL) In the exercise the content presented in the lecture "Integrated Product Development II" and methods of product development and design management will be enhanced. Students learn an independently moderated and workshop based approach through industry related practice examples to solve complex and currently existing issues in product development. They will learn the ability to apply important methods of product development and design management autonomous and acquire further expertise in the field of integrated product development. Besides personal skills, such as teamwork, guiding discussions and representing work results will be acquired through the workshop based structure of the event under its own planning and management.
Literature	- Andreasen, M.M., Design for Assembly, Berlin, Springer 1985. - Ashby, M. F.: Materials Selection in Mechanical Design, München, Spektrum 2007. - Beckmann, H.: Supply Chain Management, Berlin, Springer 2004. - Hartmann, M., Rieger, M., Funk, R., Rath, U.: Zielgerichtet moderieren. Ein Handbuch für Führungskräfte, Berater und Trainer, Weinheim, Beltz 2007. - Pahl, G., Beitz, W.: Konstruktionslehre, Berlin, Springer 2006. - Roth, K.H.: Konstruieren mit Konstruktionskatalogen, Band 1-3, Berlin, Springer 2000. - Simpson, T.W., Siddique, Z., Jiao, R.J.: Product Platform and Product Family Design. Methods and Applications, New York, Springer 2013.

Course L1255: Integrated Product Development II	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Dieter Krause
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1143: Applied Design Methodology in Mechatronics

Courses				
Title Applied Design Methodology in Mechatronics (L1523) Applied Design Methodology in Mechatronics (L1524)		Typ	Hrs/wk	CP
		Lecture	2	2
		Project-/problem-based Learning	3	4
Module Responsible	Prof. Thorsten Kern			
Admission Requirements	None			
Recommended Previous Knowledge	Basics of mechanical design, electrical design or computer-sciences			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Science-based working on interdisciplinary product design considering targeted application of specific product design techniques Creative handling of processes used for scientific preparation and formulation of complex product design problems / Application of various product design techniques following theoretical aspects. Students will solve and execute technical-scientific tasks from an industrial context in small design-teams with application of common, creative methodologies. Students are enabled to optimize the design and development process according to the target and topic of the design			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Subject theoretical and practical work			
Examination duration and scale	30 min Presentation for a group design-work			
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory			

| Course L1523: Applied Design Methodology in Mechatronics | |
| ---: | :--- | :--- | :--- |
| Tyrs/wk | Lecture |
| CP | 2 |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1524: Applied Design Methodology in Mechatronics

Typ	Project-/problem-based Learning
Hrs/wk	3
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Thorsten Kern
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M1281: Advanced Topics in Vibration

Courses				
Title Advanced Topics in Vibration (L1743)		Typ	Hrs/wk	CP
		Project-/problem-based Learning	4	6
Module Responsible	Prof. Norbert Hoffmann			
Admission Requirements	None			
Recommended Previous Knowledge	Vibration Theory			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge skills Personal Competence Social Competence Autonomy	Students are able to reflect existing terms and concepts of Advanced Vibrations and to develop and research new terms and concepts. Students are able to apply existing methods and procesures of Advanced Vibrations and to develop novel methods and procedures. Students can reach working results also in groups. Students are able to approach given research tasks individually and to identify and follow up novel research tasks by themselves.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	2 Hours			
Assignment for the Following Curricula	Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory			

Course L1743: Advanced Topics in Vibration	
Typ	Project-/problem-based Learning
Hrs/wk	4
$\mathbf{C P}$	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann, Merten Tiedemann, Sebastian Kruse
Language	DE/EN
Cycle	SoSe
Content	Research Topics in Vibrations.
Literature	Aktuelle Veröffentlichungen

Module M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics)

Courses			
Title	Typ	Hrs/wk	CP
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) (L0516)	Lecture	3	Recitation Section (large)
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) (L0518)	2	3	

Module Responsible	Prof. Otto von Estorff

| Recommended Previous |
| ---: | :--- |
| Knowledge | | Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
| :--- | :--- |
| Mathematics I, II, III (in particular differential equations) | methodologies and measurement procedures treated within the module.

Personal Competence Social Competence	Students can work in small groups on specific problems to arrive at joint solutions. Autonomy students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Examination	Written exam
Examination duration and	90 min
Assignment for the	Energy Systems: Core Qualification: Elective Compulsory
Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	SoSe
Content	- Introduction and Motivation - Acoustic quantities - Acoustic waves - Sound sources, sound radiation - Sound engergy and intensity - Sound propagation - Signal processing - Psycho acoustics - Noise - Measurements in acoustics
Literature	Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg

Course L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics)	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1174: Automation Technology and Systems

Courses			
Title	Typ	Hrs/wk	CP
Automation Technology and Systems (L2329)	Lecture	4	4
Automation Technology and Systems (L2331)	Project-/problem-based Learning	1	Recitation Section (small)
Automation Technology and Systems (L2330)	1	1	1

Module Responsible	Prof. Thorsten Schüppstuhl
Admission Requirements	None
Recommended Previous Knowledge	without major course assessment
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	Students - know the characteristic components of an automation systems and have good understanding of their interaction - know methods for a systematical analysis of automation tasks and are able to use them - have special competences in industrial robot based automation systems

Skills Students are able to..

- analyze complex Automation tasks
- develop application based concepts and solutions
- design subsystems and integrate into one system
- investigate and evaluate safety of machinery
- create simple programs for robots and programmable logic controllers
- design of circuit for pneumatic applications

Personal Competence Social Competence Autonomy	Students are able to ... - find solutions for automation and handling tasks in groups - develop solutions in a production environment with qualified personnel at technical level and represent decisions. Students are able to ... - analyze automation tasks independently - generate programs for robots and programmable logic devices autonomously - develop solutions for practice oriented tasks of automation independently - design safety concepts for automation applications - assess consequences of their professional actions and responsibilities
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	120 min
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Course L2329: Automation Technology and Systems

Typ	Lecture
Hrs/wk	4
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 64, Study Time in Lecture 56
Lecturer	Prof. Thorsten Schüppstuhl
Language	DE
Cycle	SoSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2331: Automation Technology and Systems

Typ	Project-/problem-based Learning
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Thorsten Schüppstuhl
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Course L2330: Automation Technology and Systems

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Thorsten Schüppstuhl
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1183: Laser Systems and Methods of Manufacturing Design and Analysis

Courses			
Title	Typ	Hrs/wk	CP
Laser Systems and Process Technologies (L1612)	Lecture	2	3
Methods for Analysing Production Processes (L0876)	Lecture	2	3

Module Responsible	Prof. Wolfgang Hintze
Admission Requirements	None
Recommended Previous Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 min
Assignment for the Following Curricula	Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Course L1612: Laser Systems and Process Technologies	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Claus Emmelmann
Language	EN
Cycle	WiSe
Content	- Fundamentals of laser technology - Laser beam sources: CO2-, Nd:YAG-, Fiber- and Diodelasers - Laser system technology: beam forming, beam guidance systems, beam motion and beam control - Laser-based manufacturing technologies: generation, marking, cutting, joining, surface treatment - Quality assurance and economical aspects of laser material processing - Markets and Applications of laser technology - Student group exercises
Literature	- Hügel, H. , T. Graf: Laser in der Fertigung : Strahlquellen, Systeme, Fertigungsverfahren, 3. Aufl., Vieweg + Teubner Wiesbaden 2014. - Eichler, J., Eichler. H. J.: Laser: Bauformen, Strahlführung, Anwendungen, 7. Aufl., Springer-Verlag Berlin Heidelberg 2010. - Steen W. M.; Mazumder J.: Laser material processing, 4th Edition, Springer-Verlag London 2010. - J.C. Ion: Laser processing of engineering materials: principles, procedure and industrial applications, Elsevier ButterworthHeinemann 2005. - Gebhardt, A.: Understanding additive manufacturing, München [u.a.] Hanser 2011

Module Manual M.Sc. "Theoretical Mechanical Engineering"

| Course L0876: Methods for Analysing Production Processes | |
| ---: | :--- | :--- |
| Typ | Lecture |
| Hrs/wk | 2 |

Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods)

Courses			
Title	Typ	Hrs/wk	CP
Technical Acoustics II (Room Acoustics, Computational Methods) (L0519)	Lecture	2	Recitation Section (large)
Technical Acoustics II (Room Acoustics, Computational Methods) (L0521)			

Module Responsible	Prof. Benedikt Kriegesmann
Admission Requirements	None
Recommended Previous Knowledge	Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations)
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. Students can work in small groups on specific problems to arrive at joint solutions. The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	20-30 Minuten
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L0519: Technical Acoustics II (Room Acoustics, Computational Methods)	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr.-Ing. Sören Keuchel
Language	EN
Cycle	WiSe
Content	- Room acoustics - Sound absorber - Standard computations - Statistical Energy Approaches - Finite Element Methods - Boundary Element Methods - Geometrical acoustics - Special formulations - Practical applications - Hands-on Sessions: Programming of elements (Matlab)
Literature	Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0521: Technical Acoustics II (Room Acoustics, Computational Methods)

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr.-Ing. Sören Keuchel
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0563: Robotics

Courses		
Title	Typ	Hrs/wk
Robotics: Modelling and Control (L0168)	CP	
Robotics: Modelling and Control (L1305)	Integrated Lecture	4

Module Responsible	Dr. Martin Gomse
Admission Requirements	None
Recommended Previous Knowledge	Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. Students are able to work goal-oriented in small mixed groups. Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes None Subject theoretical practical work and Teilnahme an PBL-Einheiten sowie Erreichen jeweiligen Session-Ziele
Examination	Written exam
Examination duration and scale	120 min
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Course L0168: Robotics: Modelling and Control	
Typ	Integrated Lecture
Hrs/wk	4
CP	4
Lecturer	Dr. Martin Gomse
Language	EN
Cycle	WiSe
Content	Fundamental kinematics of rigid body systems
	Newton-Euler equations for manipulators
	Trajectory generation
	Linear and nonlinear control of robots
Literature	Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3
	Spong, Mark W.; Hutchinson, Seth; Vidyasagar, M. : Robot Modeling and Control. WILEY. ISBN 0-471-64990-2

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1305: Robotics: Modelling and Control	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Martin Gomse
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0739: Factory Planning \& Production Logistics

Typ	Lecture
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Jochen Kreutzfeldt, Philipp Maximilian_doppelt Braun_doppelt
Language	DE
Cycle	WiSe
Content	The lecture gives an introduction into the planning of factories and material flows. The students will learn process models and methods to plan new factories and improve existing material flow systems. The course includes three basic topics: (1) Analysis of factory and material flow systems (2) Development and re-planning of factory and material flow systems (3) Implementation and realization of factory planning The students are introduced into several different methods and models per topic. Practical examples and planning exercises deepen the methods and explain the application of factory planning. The special requirements of factory planning in an international context are discussed. Specific requirements of Current trends and issues in the factory planning round off the lecture.
Literature	Bracht, Uwe; Wenzel, Sigrid; Geckler, Dieter (2018): Digitale Fabrik: Methoden und Praxisbeispiele. 2. Aufl.: Springer, Berlin. Helbing, Kurt W. (2010): Handbuch Fabrikprojektierung. Berlin, Heidelberg: Springer Berlin Heidelberg. Lotter, Bruno; Wiendahl, Hans-Peter (2012): Montage in der industriellen Produktion: Optimierte Abläufe, rationelle Automatisierung. 2. Aufl.: Springer, Berlin. Müller, Egon; Engelmann, Jörg; Löffler, Thomas; Jörg, Strauch (2009): Energieeffiziente Fabriken planen und betreiben. Berlin, Heidelberg: Springer Berlin Heidelberg. Schenk, Michael; Müller, Egon; Wirth, Siegfried (2014): Fabrikplanung und Fabrikbetrieb. Methoden für die wandlungsfähige, vernetzte und ressourceneffiziente Fabrik. 2. Aufl. Berlin [u.a.]: Springer Vieweg. Wiendahl, Hans-Peter; Reichardt, Jürgen; Nyhuis, Peter (2014): Handbuch Fabrikplanung: Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. 2. Aufl. Carl Hanser Verlag.

Course L1446: Production Lo	gistics
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dipl.-Ing. Arnd Schirrmann
Language	DE
Cycle	WiSe
Content	- Introduction: situation, significance and main innovation focuses of logistics in a production company, aspects of procurement, production, distribution and disposal logistics, production and transport networks - Logistics as a production strategy: logistics-oriented method of working in a factory, throughput time, corporate strategy, structured networking, reducing complexity, integrated organization, integrated product and production logistics (IPPL) - Logistics-compatible production and process structuring; logistics-compatible product, material flow, information and organizational structures - Logistics-oriented production control: situation and development tendencies, logistics and cybernetics, market-oriented production planning, control, monitoring, PPS systems and production control, cybernetic production organization and control, production logistics control systems. - Production logistics planning: key performance indicators, developing a production logistics concept, computerized aids to planning production logistics, IPPL functions, economic efficiency of logistics projects - Production logistics controlling: production logistics and controlling, material flow-oriented cost transparency, cost controlling (process cost accounting, costs model in IPPL), process controlling (integrated production system, methods and tools, MEPOT.net method portal)
Literature	Pawellek, G.: Produktionslogistik: Planung - Steuerung - Controlling. Carl Hanser Verlag 2007

Module M1025: Fluidics

Courses					
Title			Typ	Hrs/wk	CP
Fluidics (L1256)			Lecture	2	3
Fluidics (L1371)			Project-/problem-based Learning	1	2
Fluidics (L1257)			Recitation Section (large)	1	1
Module Responsible	Prof. Dieter Krause				
Admission Requirements	None				
Recommended Previous Knowledge	Good knowledge of mechanics (stereo statics, elastostatics, hydrostatics, kinematics and kinetics), fluid mechanics, and engineering design				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Personal Competence Social Competence	After passing the module students are able to - explain structures and functionalities of hydrostatic, pneumatic, and hydrodynamic components, - explain the interaction of hydraulic components in hydraulic systems, - explain open and closed loop control of hydraulic systems, - describe functioning and applications of hydrodynamic torque converters, brakes and clutches as well as centrifugal pumps and aggregates in plant technology After passing the module students are able to - analyse and assess hydraulic and pneumatic components and systems, - design and dimension hydraulic systems for mechanical applications, - perform numerical simulations of hydraulic systems based on abstract problem definitions, - select and adapt pump characteristic curves for hydraulic systems - dimension hydrodynamic torque converters and brakes for mechanical aggregates. After passing the module students are able to - discuss and present functional context in groups, - organise teamwork autonomously. After passing the module students are able to - obtain necessary knowledge for the simulation.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Form Description Yes None Attestation Simulation hydrostatischer Systeme				
Examination	Written exam				
Examination duration and scale	90				
Assignment for the Following Curricula	International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1371: Fluidics

Typ	Project-/problem-based Learning
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Dieter Krause
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1257: Fluidics

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Dieter Krause
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1596: Engineering Haptic Systems

Courses					
Title Haptic Technology for Human-Machine-Interfaces (HMI) (L2439) Haptic Technology for Human-Machine-Interfaces (HMI) (L2859)			Typ	Hrs/wk	C
			Lecture	4	3
			Project-/problem-based Learning	2	3
Module Responsible	Prof. Thorsten Kern				
Admission Requirements	None				
Recommended Previous Knowledge	We recommend knowledge in the areas of general engineering sciences, mechatronics and/or control-engineering. However also neighbouring technical areas like mechanical-engineering or even process-engineers can join the course and will be introduced into the content properly.				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Personal Competence Social Competence	This course is an introduction to the design methods and design-requirements to consider when creating haptic systems from scratch. It covers a physiological part, an actuator development part, and goes up to fundamentals of higher system integration with consideration on control theory for more complex projects. Beside design-related topics, it gives a valuable overview on existing haptic applications and research in that field with many examples. This is supported by on-site experiments in the laboratories of M-4. - Motivation and application of haptic systems - Haptic perception - The role of the user in direct system interaction - Development of haptic systems - Identification of requirements - System-structure and control - Kinematic fundamentals - Actuation \& Sensors technology for haptic applications - Control and system-design aspects - Fundamental considerations in simulating haptics Executing the course the competency will be developed to apply the general engineering capabilities of the individual course towards the design and application of active haptic systems. The resulting competencies will open an entry into specialized position in avionic-industries, automotive-industry and consumer-device-development. As a side-effect this module teaches basics of a general design for human-machine-interfaces, independent from the specific application of "haptics". It teaches methods to execute user-studies, judge on user-feedback and how to deal with soft designrequirements which are common when dealing with subjective perception. Independent design-capability of haptic systems, general competency in engineering from a design-perspective				
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84				
Credit points	6				
Course achievement	Compulsory Yes 20% Borms Subject practical work Description andDurchführung von Laborversuchen				
Examination	Subject theoretical and practical work				
Examination duration and scale	30 min				
Assignment for the Following Curricula	Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2439: Haptic Technology for Human-Machine-Interfaces (HMI)

Typ	Lecture
Hrs/wk	4
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 34, Study Time in Lecture 56
Lecturer	Prof. Thorsten Kern
Language	EN
Cycle	WiSe
Content	This course is an introduction to the design methods and design-requirements to consider when creating haptic systems from scratch. It covers a physiological part, an actuator development part, and goes up to fundamentals of higher system integration with consideration on control theory for more complex projects. Beside design-related topics, it gives a valuable overview on existing haptic applications and research in that field with many examples.

- Motivation and application of haptic systems
- Haptic perception
- The role of the user in direct system interaction
- Development of haptic systems
- Identification of requirements
- System-structure and control
- Kinematic fundamentals
- Actuation \& Sensors technology for haptic applications
- Control and system-design aspects
- Fundamental considerations in simulating haptics

Literature

Course L2859: Haptic Technology for Human-Machine-Interfaces (HMI)

Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thorsten Kern
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1665: Design with fibre-polymer-composites

Courses			
Title	Typ	Hrs/wk	CP
Design with fibre-polymer-composites (L1893)	Lecture	3	
Design with fibre-polymer-composites (L2616)	Project-/problem-based Learning	2	Recitation Section (large)
Design with fibre-polymer-composites (L2615)	1	2	1

Module Responsible	Prof. Bodo Fiedler
Admission Requirements	None
Recommended Previous	Basics: chemistry / physics / materials science
Educational Objectives	After taking part successfully, students have reached the following learning results
Knowessional Competence	
	Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis. They can explain the complex relationships structure-property relationship and Skills
Students are capable of	
neighboring contexts (e.g. sustainability, environmental protection).	

- approximate sizing using the network theory of the structural elements implement and evaluate
- selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance.

Personal Competence Social Competence Autonomy	Students can - arrive at funded work results in heterogenius groups and document them. - provide appropriate feedback and handle feedback on their own performance constructively. Students are able to - assess their own strengths and weaknesses. - assess their own state of learning in specific terms and to define further work steps on this basis. - assess possible consequences of their professional activity.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Materials Science: Specialisation Engineering Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory

Course L1893: Design with fibre-polymer-composites	
Typ	Lecture
Crs/wk	2
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	WiSe
Content	Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining
Techniques; Compression Loading; Examples	
Literature	Konstruieren mit Kunststoffen, Gunter Erhard, Hanser Verlag

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2616: Design with fibre-polymer-composites

Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	WiSe
Content	
Literature	

Course L2615: Design with fibre-polymer-composites

Typ	Recitation Section (large)
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	WiSe
Content	
Literature	

Specialization Robotics and Computer Science

Module M0563: Robotics				
Courses				
Title Robotics: Modelling and Control (L0 Robotics: Modelling and Control (L1	168)	Typ Integrated Lecture Project-/problem-based Learning	Hrs/wk 4 2	$\begin{aligned} & \mathbf{C P} \\ & 4 \\ & 2 \end{aligned}$
Module Responsible	Dr. Martin Gomse			
Admission Requirements	None			
Recommended Previous Knowledge	Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. Students are able to work goal-oriented in small mixed groups. Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.			
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechanical Engineering and Management: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory			

Course L0168: Robotics: Modelling and Control	
Tyrs/wk	Integrated Lecture
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 64, Study Time in Lecture 56
Lecturer	Dr. Martin Gomse
Language	EN
Cycle	WiSe
Content	Fundamental kinematics of rigid body systems
	Newton-Euler equations for manipulators
	Trajectory generation
	Linear and nonlinear control of robots
	Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1305: Robotics: Modelling and Control	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Martin Gomse
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1552: Mathematics of Neural Networks

Courses			
Title	Typ	Hrs/wk	CP
Mathematics of Neural Networks (L2322)	Lecture		
Mathematics of Neural Networks (L2323)	Recitation Section (small)	2	

| Module Responsible | Dr. Jens-Peter Zemke |
| ---: | :--- | :--- |
| Admission Requirements | None |
| Recommended Previous | 1. Mathematics I-III
 Knowledge |
| 2. Numerical Mathematics 1/ Numerics | |
| 3. Programming skills, preferably in Python | |

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2323: Mathematics of Neural Networks

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Jens-Peter Zemke
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0550: Digital Image Analysis

Courses	
Title	Typ Hrs/wk CP
Digital Image Analysis (L0126)	Lecture
Module Responsible	Prof. Rolf-Rainer Grigat
Admission Requirements	None
Recommended Previous Knowledge	System theory of one-dimensional signals (convolution and correlation, sampling theory, interpolation and decimation, Fourier transform, linear time-invariant systems), linear algebra (Eigenvalue decomposition, SVD), basic stochastics and statistics (expectation values, influence of sample size, correlation and covariance, normal distribution and its parameters), basics of Matlab, basics in optics
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Personal Competence Social Competence	Students can - Describe imaging processes - Depict the physics of sensorics - Explain linear and non-linear filtering of signals - Establish interdisciplinary connections in the subject area and arrange them in their context - Interpret effects of the most important classes of imaging sensors and displays using mathematical methods and physical models. Students are able to - Use highly sophisticated methods and procedures of the subject area - Identify problems and develop and implement creative solutions. Students can solve simple arithmetical problems relating to the specification and design of image processing and image analysis systems. Students are able to assess different solution approaches in multidimensional decision-making areas. Students can undertake a prototypical analysis of processes in Matlab. k.A. Students can solve image analysis tasks independently using the relevant literature.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	60 Minutes, Content of Lecture and materials in StudIP
Assignment for the Following Curricula	Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0126: Digital Image	Analysis
Typ	Lecture
Hrs/wk	4
CP	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Rolf-Rainer Grigat
Language	EN
Cycle	WiSe
Content	- Image representation, definition of images and volume data sets, illumination, radiometry, multispectral imaging, reflectivities, shape from shading - Perception of luminance and color, color spaces and transforms, color matching functions, human visual system, color appearance models - imaging sensors (CMOS, CCD, HDR, X-ray, IR), sensor characterization(EMVA1288), lenses and optics - spatio-temporal sampling (interpolation, decimation, aliasing, leakage, moiré, flicker, apertures) - features (filters, edge detection, morphology, invariance, statistical features, texture) - optical flow (variational methods, quadratic optimization, Euler-Lagrange equations) - segmentation (distance, region growing, cluster analysis, active contours, level sets, energy minimization and graph cuts) - registration (distance and similarity, variational calculus, iterative closest points)
Literature	Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 Wedel/Cremers, Stereo Scene Flow for 3D Motion Analysis, Springer 2011 Handels, Medizinische Bildverarbeitung, Vieweg, 2000 Pratt, Digital Image Processing, Wiley, 2001 Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989

Module M1248: Compilers for Embedded Systems

Courses				
Title Compilers for Embedded Systems (L1692) Compilers for Embedded Systems (L1693)		Typ	Hrs/wk	CP
		Lecture	3	4
		Project-/problem-based Learning	1	2
Module Responsible	Prof. Heiko Falk			
Admission Requirements	None			
Recommended Previous Knowledge	Module "Embedded Systems" C/C++ Programming skills			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Personal Competence Social Competence	The relevance of embedded systems increases from year to year. Within such systems, the amount of software to be executed on embedded processors grows continuously due to its lower costs and higher flexibility. Because of the particular application areas of embedded systems, highly optimized and application-specific processors are deployed. Such highly specialized processors impose high demands on compilers which have to generate code of highest quality. After the successful attendance of this course, the students are able - to illustrate the structure and organization of such compilers, - to distinguish and explain intermediate representations of various abstraction levels, and - to assess optimizations and their underlying problems in all compiler phases. The high demands on compilers for embedded systems make effective code optimizations mandatory. The students learn in particular, - which kinds of optimizations are applicable at the source code level, - how the translation from source code to assembly code is performed, - which kinds of optimizations are applicable at the assembly code level, - how register allocation is performed, and - how memory hierarchies can be exploited effectively. Since compilers for embedded systems often have to optimize for multiple objectives (e.g., average- or worst-case execution time, energy dissipation, code size), the students learn to evaluate the influence of optimizations on these different criteria. After successful completion of the course, students shall be able to translate high-level program code into machine code. They will be enabled to assess which kind of code optimization should be applied most effectively at which abstraction level (e.g., source or assembly code) within a compiler. While attending the labs, the students will learn to implement a fully functional compiler including optimizations. Students are able to solve similar problems alone or in a group and to present the results accordingly. Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following Curricula	Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1692: Compilers for Embedded Systems

Typ	Lecture
Hrs/wk	3
CP	4

Course L1693: Compilers for Embedded Systems	
Typ	Project-/problem-based Learning
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Heiko Falk
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1702: Process Imaging

Courses			
Title		Typ	Hrs/wk
Process Imaging (L2723)	CP		
Process Imaging (L2724)		Lecture	3

Module Responsible	Prof. Alexander Penn
Admission Requirements	None
Recommended Previous	
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	
Skills	
Social Competence	
Autonomy	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Examination duration and	120 min
scale	

Assignment for the Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory
Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory

Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory
Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory

Course L2723: Process Imaging	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Penn
Language	EN
Cycle	SoSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2724: Process Imaging	
Typ	Project-/problem-based Learning
$\mathbf{H r s} / \mathbf{w k}$	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Penn, Dr. Stefan Benders
Language	EN
Cycle	SoSe
Content	
Literature	

Module M0627: Machine Learning and Data Mining

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Rainer Marrone
Language	EN
Cycle	SoSe
Content	- Decision trees - First-order inductive learning - Incremental learning: Version spaces - Uncertainty - Bayesian networks - Learning parameters of Bayesian networks BME, MAP, ML, EM algorithm - Learning structures of Bayesian networks - Gaussian Mixture Models - kNN classifier, neural network classifier, support vector machine (SVM) classifier - Clustering Distance measures, k-means clustering, nearest neighbor clustering - Kernel Density Estimation - Ensemble Learning - Reinforcement Learning - Computational Learning Theory
Literature	1. Artificial Intelligence: A Modern Approach (Third Edition), Stuart Russel, Peter Norvig, Prentice Hall, 2010, Chapters 13, 14, 18-21 2. Machine Learning: A Probabilistic Perspective, Kevin Murphy, MIT Press 2012

Course L0510: Machine Learning and Data Mining	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Rainer Marrone
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0692: Approximation and Stability

Courses					
Title Approximation and Stability (L0487) Approximation and Stability (L0488)			Typ	Hrs/wk	CP
			Lecture	3	4
			Recitation Section (small)	1	2
Module Responsible	Prof. Marko Lindner				
Admission Requirements	None				
Recommended Previous Knowledge	- Linear Algebra: systems of linear equations, least squares problems, eigenvalues, singular values - Analysis: sequences, series, differentiation, integration				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are abl - sketch and - name and - name and - discuss sp Students are abl - apply bas - apply app - apply stab - compute - apply regu Students are abl - Students precisely - Students problems.	rrelate basic co rstand concret in basic stability quantities, con ults from functi ation methods, heorems, al quantities, tion methods. olve specific pr pable of check now where to g developed suffic	(Hilbert space, operator ds of regularisation sent their results approp complex concepts on the le to work for longer per	e.g. as a They can a goal-or	presentation). y open questions manner on hard
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Yes None	Form Presentation			
Examination	Oral exam				
Examination duration and scale	20 min				
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Marko Lindner
Language	DE/EN
Cycle	SoSe
Content	This course is about solving the following basic problems of Linear Algebra, - systems of linear equations, - least squares problems, - eigenvalue problems but now in function spaces (i.e. vector spaces of infinite dimension) by a stable approximation of the problem in a space of finite dimension. Contents: - crash course on Hilbert spaces: metric, norm, scalar product, completeness - crash course on operators: boundedness, norm, compactness, projections - uniform vs. strong convergence, approximation methods - applicability and stability of approximation methods, Polski's theorem - Galerkin methods, collocation, spline interpolation, truncation - convolution and Toeplitz operators - crash course on C*-algebras - convergence of condition numbers - convergence of spectral quantities: spectrum, eigen values, singular values, pseudospectra - regularisation methods (truncated SVD, Tichonov)
Literature	- R. Hagen, S. Roch, B. Silbermann: C*-Algebras in Numerical Analysis - H. W. Alt: Lineare Funktionalanalysis - M. Lindner: Infinite matrices and their finite sections

Course L0488: Approximation and Stability

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Marko Lindner
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0835: Humanoid Robotics

| Courses | | | |
| :--- | :--- | :--- | :--- | :--- |
| Title | Typ | Hrs/wk | CP |
| Humanoid Robotics (L0663) | Seminar | 2 | 2 |

Module Responsible	Patrick Göttsch
Admission Requirements	None
Recommended Previous	
Knowledge	• Introduction to control systems • Control theory and design

Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	- Students can explain humanoid robots. - Students learn to apply basic control concepts for different tasks in humanoid robotics.

- Students acquire knowledge about selected aspects of humanoid robotics, based on specified literature
- Students generalize developed results and present them to the participants
- Students practice to prepare and give a presentation

Personal Competence

Social Competence

- Students are capable of developing solutions in interdisciplinary teams and present them
- They are able to provide appropriate feedback and handle constructive criticism of their own results
- Students evaluate advantages and drawbacks of different forms of presentation for specific tasks and select the best solution
- Students familiarize themselves with a scientific field, are able of introduce it and follow presentations of other students, such that a scientific discussion develops

Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Credit points	2
Examination	Presentation
scale	30 min
Assignment for the	Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Following Curricula	Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory

Course L0663: Humanoid Robotics	
Typ	Seminar
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Patrick Göttsch
Language	DE
Cycle	SoSe
Content	• Grundlagen der Regelungstechnik
Literature	Control systems theory and design
	Springer (2008). Siciliano, O. Khatib. "Handbook of Robotics. Part A: Robotics Foundations",

Module M0939: Control Lab A

Courses		
Title	Typ	
Control Lab I (L1093)	Practical Course	Hrs/wk
Control Lab II (L1291)	Practical Course	1
Control Lab III (L1665)	Practical Course	1
Control Lab IV (L1666)	Practical Course	1

Module Responsible	Prof. Herbert Werner
Admission Requirements	None
Recommended Previous Knowledge	- State space methods - LQG control - H 2 and H -infinity optimal control - uncertain plant models and robust control - LPV control
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	- Students can explain the difference between validation of a control lop in simulation and experimental validation - Students are capable of applying basic system identification tools (Matlab System Identification Toolbox) to identify a

- They are capable of using standard software tools (Matlab Control Toolbox) for the design and implementation of LQG controllers
- They are capable of using standard software tools (Matlab Robust Control Toolbox) for the mixed-sensitivity design and the implementation of H -infinity optimal controllers
- They are capable of representing model uncertainty, and of designing and implementing a robust controller
- They are capable of using standard software tools (Matlab Robust Control Toolbox) for the design and the implementation of LPV gain-scheduled controllers

Personal Competence Social Competence Autonomy	- Students can work in teams to conduct experiments and document the results - Students can independently carry out simulation studies to design and validate control loops
Workload in Hours	Independent Study Time 64, Study Time in Lecture 56
Credit points	4
Course achievement	None
Examination	Written elaboration
Examination duration and scale	1
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory

Course L1093: Control Lab I	
Typ	Practical Course
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1291: Control Lab II	
Typ	Practical Course
Hrs/wk	l
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Course L1665: Control Lab III	
Typ	Practical Course
Hrs/wk	1
$\mathbf{C P}$	l
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Course L1666: Control Lab IV	
Typ	Practical Course
Hrs/wk	1
$\mathbf{C P}$	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Herbert Werner, Adwait Datar, Patrick Göttsch
Language	EN
Cycle	WiSe/SoSe
Content	One of the offered experiments in control theory.
Literature	Experiment Guides

Module M0633: Industrial Process Automation

Courses					
Title Industrial Process Automation (L0344) Industrial Process Automation (L0345			Typ	Hrs/wk	CP
			Lecture	2	3
			Recitation Section (small)	2	3
Module Responsible	Prof. Alexander Schlaefer				
Admission Requirements	None				
Recommended Previous Knowledge	mathematics and optimization methods principles of automata principles of algorithms and data structures programming skills				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Professional Competence Knowledge Personal Competence Social Competence	The students can process analysis They can discus disadvantages sensor systems The students are scheduling, unde The students can collaboratively. The students are	luate and assess discret students can compare heduling methods in th erent programming me Il as to recent topics lik to develop and model ding algorithmic compl pendently define work to assess their level of	They can evaluate propert s modelling and select an problems and give a ts can relate process au stems' and 'industry 4.0'. luate them accordingly. T ntation using PLCs. eir groups, distribute task document their work resul	processes riate meth explanat n to met olves taki the grou uately.	plain methods for actual problems. advantages and from robotics and account optimal develop solutions
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	Compulsory Bonus Form Description				
Examination	Written exam				
Examination duration and scale	90 minutes				
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory				

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0344: Industrial Process Automation	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	Wise
Content	- foundations of problem solving and system modeling, discrete event systems - properties of processes, modeling using automata and Petri-nets Lecture 28 - design considerations for processes (mutex, deadlock avoidance, liveness) - optimal scheduling for processes
- optimal decisions when planning manufacturing systems, decisions under uncertainty	
- software design and software architectures for automation, PLCs	

Course L0345: Industrial Process Automation	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Schlaefer
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1302: Applied Humanoid Robotics

Course L1794: Applied Humanoid Robotics	
Typ	Project-/problem-based Learning
Hrs/wk	6
CP	6
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Lecturer	Patrick Göttsch
Language	DE/EN
Cycle	WiSe/SoSe
Content	- Fundamentals of kinematics - Static and dynamic stability of humanoid robotic systems - Combination of different software environments (Matlab, C++, etc.) - Introduction to the necessary software frameworks - Team project - Presentation and Demonstration of intermediate and final results
Literature	- B. Siciliano, O. Khatib. "Handbook of Robotics. Part A: Robotics Foundations", Springer (2008)

Module M0677: Digital Signal Processing and Digital Filters

Courses			
Title Digital Signal Processing and Digital Filters (L0446) Digital Signal Processing and Digital Filters (L0447)		Hrs/wk	CP
		3	4
		2	2
Module Responsible	Prof. Gerhard Bauch		
Admission Requirements	None		
Recommended Previous Knowledge	- Mathematics 1-3 - Signals and Systems - Fundamentals of signal and system theory as well as random processes. - Fundamentals of spectral transforms (Fourier series, Fourier transform, Laplace transform)		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm. Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account. The students can jointly solve specific problems. The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.		
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	90 min		
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Computer Science in Engineering: Specialisation II. Engineering Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0446: Digital Signal Processing and Digital Filters

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Gerhard Bauch
Language	EN
Cycle	WiSe
Content	- Transforms of discrete-time signals: - Discrete-time Fourier Transform (DTFT) - Discrete Fourier-Transform (DFT), Fast Fourier Transform (FFT) - Z-Transform

- Correspondence of continuous-time and discrete-time signals, sampling, sampling theorem
- Fast convolution, Overlap-Add-Method, Overlap-Save-Method
- Fundamental structures and basic types of digital filters
- Characterization of digital filters using pole-zero plots, important properties of digital filters
- Quantization effect
- Design of linear-phase filters
- Fundamentals of stochastic signal processing and adaptive filters
- MMSE criterion
- Wiener Filter
- LMS- and RLS-algorithm
- Traditional and parametric methods of spectrum estimation

Literature
K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner.
V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V.
W. Hess: Digitale Filter. Teubner.

Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall.
S. Haykin: Adaptive flter theory.
L. B. Jackson: Digital filters and signal processing. Kluwer.
T.W. Parks, C.S. Burrus: Digital filter design. Wiley.

Course L0447: Digital Signal Processing and Digital Filters	
Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Gerhard Bauch
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0832: Advanced Topics in Control

Courses			
Title	Typ	Hrs/wk	CP
Advanced Topics in Control (L0661)	Lecture	2	3
Advanced Topics in Control (L0662)	Recitation Section (small)	2	3
Module Responsible	Prof. Herbert Werner		
Admission Requirements	None		
Recommended Previous Knowledge	H-infinity optimal control, mixed-sensitivity design, linear matrix inequalities		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Personal Competence	- Students can explain the advantages and shortcomings of the classical gain scheduling approach - They can explain the representation of nonlinear systems in the form of quasi-LPV systems - They can explain how stability and performance conditions for LPV systems can be formulated as LMI conditions - They can explain how gridding techniques can be used to solve analysis and synthesis problems for LPV systems - They are familiar with polytopic and LFT representations of LPV systems and some of the basic synthesis techniques associated with each of these model structures - Students can explain how graph theoretic concepts are used to represent the communication topology of multiagent systems - They can explain the convergence properties of first order consensus protocols - They can explain analysis and synthesis conditions for formation control loops involving either LTI or LPV agent models - Students can explain concepts behind linear and qLPV Model Predictive Control (MPC) - Students can construct LPV models of nonlinear plants and carry out a mixed-sensitivity design of gain-scheduled controllers; they can do this using polytopic, LFT or general LPV models - They can use standard software tools (Matlab robust control toolbox) for these tasks - Students can design distributed formation controllers for groups of agents with either LTI or LPV dynamics, using Matlab tools provided - Students can design MPC controllers for linear and non-linear systems using Matlab tools Students can work in small groups and arrive at joint results. Students can find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Oral exam		
Examination duration and scale	30 min		
Assignment for the Following Curricula	Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory		

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0662: Advanced Topics in Control	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Herbert Werner
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0629: Intelligent Autonomous Agents and Cognitive Robotics

Course L0341: Intelligent Autonomous Agents and Cognitive Robotics

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Rainer Marrone
Language	EN
Cycle	WiSe
Content	• Definition of agents, rational behavior, goals, utilities, environment types
	• Adversarial agent cooperation:

Agents with complete access to the state(s) of the environment, games, Minimax algorithm, alpha-beta pruning, elements of chance

- Uncertainty:

Motivation: agents with no direct access to the state(s) of the environment, probabilities, conditional probabilities, product rule, Bayes rule, full joint probability distribution, marginalization, summing out, answering queries, complexity, independence assumptions, naive Bayes, conditional independence assumptions

- Bayesian networks:

Syntax and semantics of Bayesian networks, answering queries revised (inference by enumeration), typical-case complexity, pragmatics: reasoning from effect (that can be perceived by an agent) to cause (that cannot be directly perceived).

- Probabilistic reasoning over time:

Environmental state may change even without the agent performing actions, dynamic Bayesian networks, Markov assumption, transition model, sensor model, inference problems: filtering, prediction, smoothing, most-likely explanation, special cases: hidden Markov models, Kalman filters, Exact inferences and approximations

- Decision making under uncertainty:

Simple decisions: utility theory, multivariate utility functions, dominance, decision networks, value of informatio
Complex decisions: sequential decision problems, value iteration, policy iteration, MDPs
Decision-theoretic agents: POMDPs, reduction to multidimensional continuous MDPs, dynamic decision networks

- Simultaneous Localization and Mapping
- Planning
- Game theory (Golden Balls: Split or Share)

Decisions with multiple agents, Nash equilibrium, Bayes-Nash equilibrium

- Social Choice

Voting protocols, preferences, paradoxes, Arrow's Theorem,

- Mechanism Design

Fundamentals, dominant strategy implementation, Revelation Principle, Gibbard-Satterthwaite Impossibility Theorem, Direct mechanisms, incentive compatibility, strategy-proofness, Vickrey-Groves-Clarke mechanisms, expected externality mechanisms, participation constraints, individual rationality, budget balancedness, bilateral trade, Myerson-Satterthwaite Theorem

Literature

1. Artificial Intelligence: A Modern Approach (Third Edition), Stuart Russell, Peter Norvig, Prentice Hall, 2010, Chapters 2-5, 1011, 13-17
2. Probabilistic Robotics, Thrun, S., Burgard, W., Fox, D. MIT Press 2005
3. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Yoav Shoham, Kevin Leyton-Brown, Cambridge University Press, 2009

Course L0512: Intelligent Autonomous Agents and Cognitive Robotics	
$\mathbf{T y p}$	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Rainer Marrone
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0881: Mathematical Image Processing

Courses			
Title	Typ	Hrs/wk	CP
Mathematical Image Processing (L0991)	Lecture	3	
Mathematical Image Processing (L0992)	Recitation Section (small)		

Module Responsible	Prof. Marko Lindner

Admission Requirements	None
Recommended Previous Knowledge	- Analysis: partial derivatives, gradient, directional derivative - Linear Algebra: eigenvalues, least squares solution of a linear system
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge	Students are able to - characterize and compare diffusion equations - explain elementary methods of image processing - explain methods of image segmentation and registration - sketch and interrelate basic concepts of functional analysis

Skills Students are able to

- implement and apply elementary methods of image processing
- explain and apply modern methods of image processing

Personal Competence Social Competence Autonomy	Students are able to work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge) and to explain theoretical foundations. - Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them. - Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	20 min
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Computer Science: Specialisation III. Mathematics: Elective Compulsory Computer Science in Engineering: Specialisation III. Mathematics: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0992: Mathematical Image Processing

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Marko Lindner
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1598: Image Processing

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2443: Image Proces	sing
Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Tobias Knopp
Language	DE/EN
Cycle	Wise
Content	- Visual perception - Multidimensional signal processing - Sampling and sampling theorem - Filtering - Image enhancement - Edge detection - Multi-resolution procedures: Gauss and Laplace pyramid, wavelets - Image Compression - Segmentation - Morphological image processing
Literature	Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 Pratt, Digital Image Processing, Wiley, 2001 Bernd Jähne: Digitale Bildverarbeitung - Springer, Berlin 2005

Course L2444: Image Processing	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Tobias Knopp
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1592: Statistics

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2431: Statistics	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Matthias Schulte
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0836: Communication Networks

Courses		
Title	Typ	
Selected Topics of Communication Networks (L0899)	Project-/problem-based Learning	
Communication Networks (L0897)	Lecture	
Communication Networks Excercise (L0898)	Project-/problem-based Learning	1

Module Responsible	Prof. Andreas Timm-Giel

Admission Requirements	None
Recommended Previous Knowledge	- Fundamental stochastics - Basic understanding of computer networks and/or communication technologies is beneficial
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks.

Personal Competence Social Competence Autonomy	Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Presentation
Examination duration and scale	1.5 hours colloquium with three students, therefore about 30 min per student. Topics of the colloquium are the posters from the previous poster session and the topics of the module.
Assignment for the Following Curricula	Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Computer Science in Engineering: Specialisation I. Computer Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory

Course L0899: Selected Topics of Communication Networks	
Hrs/wk	Project-/problem-based Learning
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Andreas Timm-Giel
Language	EN
Cycle	WiSe
Content	Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term.
Literature	• see lecture

Module Manual M.Sc. "Theoretical Mechanical Engineering"

	Networks
Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Andreas Timm-Giel, Dr.-Ing. Koojana Kuladinithi
Language	EN
Cycle	WiSe
Content	
Literature	- Skript des Instituts für Kommunikationsnetze - Tannenbaum, Computernetzwerke, Pearson-Studium Further literature is announced at the beginning of the lecture.

Course L0898: Communication Networks Excercise	
Typ	Project-/problem-based Learning
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Andreas Timm-Giel
Language	EN
Cycle	WiSe
Content	Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise.
Literature	• announced during lecture

Module M1224: Selected Topics of Mechatronics (Alternative B: 6 LP)

Courses				
Title		Typ	Hrs/wk	CP
Applied Automation (L1592)		Project-/problem-based Learning	3	3
Advanced Training Course SE-ZERT (L2739)		Project-/problem-based Learning	2	3
Development Management for Mechatronics (L1512)		Lecture	2	3
Fatigue \& Damage Tolerance (L0310)		Lecture	2	3
Industry 4.0 for engineers (L2012)		Lecture	2	3
Microcontroller Circuits: Implementation in Hardware and Software (L0087)		Seminar	2	2
Microsystems Technology (L0724)		Lecture	2	4
Model-Based Systems Engineering (MBSE) with SysML/UML (L1551)		Project-/problem-based Learning	3	3
Sustainable Industrial Production (L2863)		Lecture	2	4
Process Measurement Engineering (L1077)		Lecture	2	3
Process Measurement Engineering (L1083)		Recitation Section (large)	1	1
Feedback Control in Medical Technology (L0664)		Lecture	2	3
Module Responsible	NN			
Admission Requirements	None			
Recommended Previous Knowledge	None			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills	- Students are able to express areas of mechatronics - Students are qualified to conn - Students can apply specialize - Students are able to transfer None - Students are able to develop	and discuss the connection of ith each other w scientific methods in selected known problems and can devel autonomous election of cours	erent spe reas own solu	Ids or application proaches
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the Following Curricula	Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1592: Applied Automation	
Typ	Project-/problem-based Learning
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Mündliche Prüfung
Examination duration and scale	30 Minuten
Lecturer	Prof. Thorsten Schüppstuhl
Language	DE
Cycle	Wise
Content	-Project Based Learning -Robot Operating System -Robot structure and description -Motion description -Calibration -Accuracy
Literature	John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 \%CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£\% John Wüey \& Sons, Inc., 1992

Course L2739: Advanced Training Course SE-ZERT	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Lecturer	Prof. Ralf God
Language	DE
Content	SoSe
Literature	INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der
	deutschen Übersetzung), ISBN 978-3-9818805-0-2.
	ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System
	Life Cycle Processes).

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 Minuten
Lecturer	NN, Dr. Johannes Nicolas Gebhardt
Language	DE
Cycle	SoSe
Content	- Processes and methods of product development - from idea to market launch - identification of market and technology potentials - development of a common product architecture - Synchronized product development across all engineering disciplines - product validation incl. customer view - Steering and optimization of product development - Design of processes for product development - IT systems for product development - Establishment of management standards - Typical types of organization
Literature	- Bender: Embedded Systems - qualitätsorientierte Entwicklung - Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit - Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen - Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung - Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden - Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung - VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Course L0310: Fatigue \& Damage Tolerance	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and	45 min
Lecturer	Dr. Martin Flamm
Language	EN
Content	WiSe
Diterature	Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit fatigue strength, environmental influences Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989

Course L2012: Industry 4.0 for engineers	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Klausur
Lecturer	Prof. Thorsten Schüppstuhl
Language	DE
Cycle	SoSe
Content	
Literature	

Course L0087: Microcontroller Circuits: Implementation in Hardware and Software	
Typ	Seminar
Hrs/wk	2
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Examination Form	Schriftliche Ausarbeitung
Examination duration and	10 min. Vortrag + anschließende Diskussion
scale	
Lecturer	Prof. Siegfried Rump
Language	DE
Cycle	WiSe/SoSe
Content	
Literature	ATmega16A 8-bit Microcontroller with 16K Bytes In-System Programmable Flash - DATASHEET, Atmel Corporation 2014
	Atmel AVR 8-bit Instruction Set Instruction Set Manual, Atmel Corporation 2016

curse L0724: Microsystems	Technology
Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	30 min
Lecturer	Prof. Hoc Khiem Trieu
Language	EN
Cycle	Wise
Content	- Introduction (historical view, scientific and economic relevance, scaling laws) - Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting) - Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing) - Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with $\mathrm{KOH} / \mathrm{TMAH}$: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching) - Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping) - Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer) - Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity, pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process) - Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer) - Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip) - Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-achip, microanalytics) - MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration) - Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship) - System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)
Literature	M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML

Typ	Project-/problem-based Learning
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Examination Form	Schriftliche Ausarbeitung
Examination duration and scale	ca. 10 Seiten
Lecturer	Prof. Ralf God
Language	DE
Cycle	SoSe
Content	Objectives of the problem-oriented course are the acquisition of knowledge on system design using the formal languages SysML/UML, learning about tools for modeling and finally the implementation of a project with methods and tools of Model-Based Systems Engineering (MBSE) on a realistic hardware platform (e.g. Arduino ${ }^{\circledR}$, Raspberry $\mathrm{Pi} ®$): -What is a model? -What is Systems Engineering? - Survey of MBSE methodologies - The modelling languages SysML /UML - Tools for MBSE - Best practices for MBSE - Requirements specification, functional architecture, specification of a solution - From model to software code - Validation and verification: XiL methods - Accompanying MBSE project
Literature	- Skript zur Vorlesung - Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008 - Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering \& Tech, 2011

Typ	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Examination Form	Klausur
Examination duration and scale	60 min
Lecturer	Dr. Simon Markus Kothe
Language	DE
Cycle	SoSe
Content	Industrial production deals with the manufacture of physical products to satisfy human needs using various manufacturing processes that change the form and physical properties of raw materials. Manufacturing is a central driver of economic development and has a major impact on the well-being of humanity. However, the scale of current manufacturing activities results in enormous global energy and material demands that are harmful to both the environment and people. Historically, industrial activities were mostly oriented towards economic constraints, while social and environmental consequences were only hardly considered. As a result, today's global consumption rates of many resources and associated emissions often exceed the natural regeneration rate of our planet. In this respect, current industrial production can mostly be described as unsustainable. This is emphasized each year by the Earth Overshoot Day, which marks the day when humanity's ecological footprint exceeds the Earth's annual regenerative capacity. This lecture aims to provide the motivation, analytical methods as well as approaches for sustainable industrial production and to clarify the influence of the production phase in relation to the raw material, use and recycling phases in the entire life cycle of products. For this, the following topics will be highlighted: - Motivation for sustainable production, the 17 Sustainable Development Goals (SDGs) of the UN and their relevance for tomorrow's manufacturing; - raw material vs. production phase vs. use phase vs. recycling/end-of-life phase: importance of the production phase for the environmental impact of manufactured products; - Typical energy- and resource-intensive processes in industrial production and innovative approaches to increase energy and resource efficiency; - Methodology for optimizing the energy and resource efficiency of industrial manufacturing chains with the three steps of modeling (1), evaluating (2) and improving (3); - Resource efficiency of industrial manufacturing value chains and its assessment using life cycle analysis (LCA); - Exercise: LCA analysis of a manufacturing process (thermoplastic joining of an aircraft fuselage segment) as part of a product life cycle assessment.
Literature	Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1077: Process Measurement Engineering

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	45 Minuten
Lecturer	Prof. Roland Harig
Language	DE/EN
Cycle	SoSe
Content	- Process measurement engineering in the context of process control engineering - Challenges of process measurement engineering - Instrumentation of processes - Classification of pickups

- Systems theory in process measurement engineering
- Generic linear description of pickups
- Mathematical description of two-port systems
- Fourier and Laplace transformation
- Correlational measurement
- Wide band signals
- Auto- and cross-correlation function and their applications
- Fault-free operation of correlational methods
- Transmission of analog and digital measurement signals
- Modulation process (amplitude and frequency modulation)
- Multiplexing
- Analog to digital converter
- Färber: „Prozeßrechentechnik", Springer-Verlag 1994

Kiencke, Kronmüller: „Meßtechnik", Springer Verlag Berlin Heidelberg, 1995
A. Ambardar: „Analog and Digital Signal Processing" (1), PWS Publishing Company, 1995, NTC 339
A. Papoulis: „Signal Analysis" (1), McGraw-Hill, 1987, NTC 312 (LB)
M. Schwartz: „Information Transmission, Modulation and Noise" (3,4), McGraw-Hill, 1980, 2402095
S. Haykin: „Communication Systems" (1,3), Wiley\&Sons, 1983, 2419072
H. Sheingold: „Analog-Digital Conversion Handbook" (5), Prentice-Hall, 1986, 2440072
J. Fraden: „AIP Handbook of Modern Sensors" (5,6), American Institute of Physics, 1993, MTB 346

Course L1083: Process Measurement Engineering	
Typ	Recitation Section (large)
Hrs/wk	1
CP	1
Examination Form	Mündliche Prüfung
Examination duration and	
scale	
Lecturer	Prof. Roland Harig
Language	DE/EN
Cycle	SoSe
Citentent	See interlocking course
	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Mündliche Prüfung
Examination duration and scale	20 min
Lecturer	Johannes Kreuzer, Christian Neuhaus
Language	DE
Cycle	SoSe
Content	Always viewed from the engineer's point of view, the lecture is structured as follows: - Introduction to the topic - Fundamentals of physiological modelling - Introduction to Breathing and Ventilation - Physiology and Pathology in Cardiology - Introduction to the Regulation of Blood Glucose - kidney function and renal replacement therapy - Representation of the control technology on the concrete ventilator - Excursion to a medical technology company Techniques of modeling, simulation and controller development are discussed. In the models, simple equivalent block diagrams for physiological processes are derived and explained how sensors, controllers and actuators are operated. MATLAB and SIMULINK are used as development tools.
Literature	- Leonhardt, S., \& Walter, M. (2016). Medizintechnische Systeme. Berlin, Heidelberg: Springer Vieweg. - Werner, J. (2005). Kooperative und autonome Systeme der Medizintechnik. München: Oldenbourg. - Oczenski, W. (2017). Atmen : Atemhilfen ; Atemphysiologie und Beatmungstechnik: Georg Thieme Verlag KG.

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses		
Title	Typ Hrs/wk	CP
Module Responsible	Prof. Robert Seifried	
Admission Requirements	None	
Recommended Previous Knowledge	see FSPO	
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	see FSPO see FSPO see FSPO see FSPO	
Workload in Hours	Depends on choice of courses	
Credit points	6	
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Module M1702: Process Imaging

Courses			
Title		Typ	Hrs/wk
Process Imaging (L2723)	CP		
Process Imaging (L2724)		Lecture	3

Module Responsible	Prof. Alexander Penn
Admission Requirements	None
Recommended Previous	No special prerequisites needed
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:

1. what these imaging techniques can measure (such as sample density or concentration, material transport, chemical composition, temperature),
2. how the measurements work (physical measurement principles, hardware requirements, image reconstruction), and
3. how to determine the most suited imaging methods for a given problem.

Learning goals: After the successful completion of the course, the students shall:

1. understand the physical principles and practical aspects of the most common imaging methods,
2. be able to assess the pros and cons of these methods with regard to cost, complexity, expected contrasts, spatial and temporal resolution, and based on this assessment
3. be able to identify the most suited imaging modality for any specific engineering challenge in the field of chemical and bioprocess engineering.

Personal Competence
Social Competence
the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills.
Autonomy Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills.

Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	120 min
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation C - Bioeconomic Process Engineering, Focus Energy and Bioprocess Technology: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Environmental Process Engineering: Elective Compulsory Water and Environmental Engineering: Specialisation Environment: Elective Compulsory Water and Environmental Engineering: Specialisation Water: Elective Compulsory

Course L2723: Process Imaging	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Penn
Language	EN
Cycle	SoSe
Content	
Literature	

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L2724: Process Imaging	
Typ	Project-/problem-based Learning
$\mathbf{H r s} / \mathbf{w k}$	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Penn, Dr. Stefan Benders
Language	EN
Cycle	SoSe
Content	
Literature	

Specialization Simulation Technology

Module M0603: Nonlinear Structural Analysis

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0277: Nonlinear Structural Analysis

Typ	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	DE/EN
Cycle	WiSe
Content	1. Introduction 2. Nonlinear phenomena 3. Mathematical preliminaries 4. Basic equations of continuum mechanics 5. Spatial discretization with finite elements 6. Solution of nonlinear systems of equations 7. Solution of elastoplastic problems 8. Stability problems 9. Contact problems
Literature	[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. [2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008. [3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001. [4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.

Course L0279: Nonlinear Structural Analysis

Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Alexander Düster
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1151: Materials Modeling

Courses				
Title		Typ	Hrs/wk	CP
Material Modeling (L1535)		Lecture		
Material Modeling (L1536)		Recitation Section (small)		

Module Responsible	Prof. Christian Cyron
Admission Requirements	None
Recommended Previous Knowledge	Basics of linear and nonlinear continuum mechanics as taught, e.g., in the modules Mechanics II and Continuum Mechanics (forces and moments, stress, linear and nonlinear strain, free-body principle, linear and nonlinear constitutive laws, strain energy)
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students can explain the fundamentals of multidimensional consitutive material laws The students can implement their own material laws in finite element codes. In particular, the students can apply their knowledge to various problems of material science and evaluate the corresponding material models. The students are able to develop solutions, to present them to specialists and to develop ideas further. The students are able to assess their own strengths and weaknesses. They can independently and on their own identify and solve problems in the area of materials modeling and acquire the knowledge required to this end.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	60 min
Assignment for the Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsory Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1536: Material Modeling

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Christian Cyron
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M0906: Numerical Simulation and Lagrangian Transport

Courses			
Title	Typ	Hrs/wk	CP
Lagrangian transport in turbulent flows (L2301)	Lecture	2	Recitation Section (small)
Computational Fluid Dynamics - Exercises in OpenFoam (L1375)	1	Lecture	1
Computational Fluid Dynamics in Process Engineering (L1052)	2	2	

Module Responsible	Prof. Michael Schlüter
Admission Requirements	None

Recommended Previous Knowledge	- Mathematics I-IV - Basic knowledge in Fluid Mechanics - Basic knowledge in chemical thermodynamics
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	After successful completion of the module the students are able to - explain the the basic principles of statistical thermodynamics (ensembles, simple systems) - describe the main approaches in classical Molecular Modeling (Monte Carlo, Molecular Dynamics) in various ensembles - discuss examples of computer programs in detail, - evaluate the application of numerical simulations, - list the possible start and boundary conditions for a numerical simulation. The students are able to: - set up computer programs for solving simple problems by Monte Carlo or molecular dynamics, - solve problems by molecular modeling, - set up a numerical grid, - perform a simple numerical simulation with OpenFoam, - evaluate the result of a numerical simulation.

Personal Competence

 Social CompetenceThe students are able to

- develop joint solutions in mixed teams and present them in front of the other students,
- to collaborate in a team and to reflect their own contribution toward it.

Autonomy	The students are able to: - evaluate their learning progress and to define the following steps of learning on that basis, - evaluate possible consequences for their profession.
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	30 min
Assignment for the Following Curricula	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Course L2301: Lagrangian transport in turbulent flows	
Typ	Lecture
$\mathbf{C P}$	we
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Yan Jin
Language	EN
Cycle	SoSe
Content	Contents
	- Common variables and terms for characterizing turbulence (energy spectra, energy cascade, etc.)
	- An overview of Lagrange analysis methods and experiments in fluid mechanics
	- Critical examination of the concept of turbulence and turbulent structures.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Rivera, M. K.; Ecke, R. E. (2005): Pair dispersion and doubling time statistics in two-dimensional turbulence. In: Physical review letters 95 (19), S. 194503. DOI: 10.1103/PhysRevLett.95.194503.

Vallis, Geoffrey K. (2010): Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation. 5. printing. Cambridge: Cambridge Univ. Press.

Course L1375: Computational Fluid Dynamics - Exercises in OpenFoam	
Typ	Recitation Section (small)
Hrs/wk	1

Course L1052: Computational Fluid Dynamics in Process Engineering		
Typ	Lecture	
CP	2	2

Module M0605: Computational Structural Dynamics

Courses			
Title	Typ	Hrs/wk	CP
Computational Structural Dynamics (L0282)	Lecture	3	4
Computational Structural Dynamics (L0283)	Recitation Section (small)		

Module Responsible	Prof. Alexander Düster
Admission Requirements	None

| Recommended Previous |
| ---: | :--- |
| Knowledge | Knowledge of partial differential equations is recommended. \quad.

Professional Competence
Knowledge Students are able to

+ give an overview of the computational procedures for problems of structural dynamics.
+ explain the application of finite element programs to solve problems of structural dynamics.
+ specify problems of computational structural dynamics, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills Students are able to

+ model problems of structural dynamics.
+ select a suitable solution procedure for a given problem of structural dynamics.
+ apply computational procedures to solve problems of structural dynamics.
+ verify and critically judge results of computational structural dynamics.
Personal Competence
Social Competence
Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.
Autonomy
+ acquire independently knowledge to solve complex problems.

Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Examination	Written exam
scale	
Assignment for the	International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L0282: Computational Structural Dynamics	
Typ	Lecture
Hrs/wk	3
$\mathbf{C P}$	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Canguage	DE
Content	SoSe
	1. Motivation 2. Basics of dynamics 3. Time integration methods 4. Modal analysis 5. Fourier transform 6. Applications Literature
[1] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002.	
[2] J.L. Humar, Dynamics of Structures, Taylor \& Francis, 2012.	

Course L0283: Computational Structural Dynamics	
Typ	Recitation Section (small)
Hrs/wk	1
$\mathbf{C P}$	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Alexander Düster
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0653: High-Performance Computing

Courses		
Title	Typ	Hrs/wk
Fundamentals of High-Performance Computing (L0242)	CP	3
Fundamentals of High-Performance Computing (L1416)	Project-/problem-based Learning	2

Module Responsible	Prof. Thomas Rung
Admission Requirements	None
Recommended Previous Knowledge	- Basic knowledge in usage of modern IT environment - Programming skills
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	Students are able to outline the fundamentals of numerical algorithms for high-performance computers by reference to modern hardware examples. Students can explain the relation between hard- and software aspects for the design of algorithms. Student can perform a critical assesment of the computational efficiency of simulation approaches. Students are able to develop and code algorithms in a team.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	1.5h
Assignment for the Following Curricula	Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L0242: Fundamentals of High-Performance Computing	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe
Content	Fundamentals of modern hardware architectur, critical hard- \& software aspects for efficient processing of exemplary algorithms, concepts for shared- and distributed-memory systems, implementations for accelerator hardware (GPGPUs)
Literature	1 In Vortragsmaterialien und Problemanleitungen
	Independent Study Time 62, Study Time in Lecture 28 G. Hager G. Wellein: Introduction to High Performance Computing for Scientists and Engineers CRC Computational Science Series, 2010

Course L1416: Fundamentals of High-Performance Computing	
Typ	Project-/problem-based Learning
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0606: Numerical Algorithms in Structural Mechanics

Courses			
Title	Typ	Hrs/wk	CP
Numerical Algorithms in Structural Mechanics (L0284)	Lecture	3	Recitation Section (small)
Numerical Algorithms in Structural Mechanics (L0285)			

Module Responsible	Prof. Alexander Düster

Recommended Previous Knowledge of partial differential equations is recommended

Knowledge

Educational Objectives	After taking part successfully, students have reached the following learning results

Professional Competence
Knowledge Students are able to

+ give an overview of the standard algorithms that are used in finite element programs.
+ explain the structure and algorithm of finite element programs.
+ specify problems of numerical algorithms, to identify them in a given situation and to explain their mathematical and computer science background.

Students are able to

+ construct algorithms for given numerical methods.
+ select for a given problem of structural mechanics a suitable algorithm.
+ apply numerical algorithms to solve problems of structural mechanics.
+ implement algorithms in a high-level programming languate (here $\mathrm{C}++$).
+ critically judge and verfiy numerical algorithms.

Personal Competence Social Competence	Students are able to + solve problems in heterogeneous groups and to document the corresponding results. Autonomy
Students are able to	
+ acquire independently knowledge to solve complex problems.	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Examination	Written exam
Scale	2h
Assignment for the	Materials Science: Specialisation Modeling: Elective Compulsory Following Curricula
Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Course LO284: Numerical Algorithms in Structural Mechanics

Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Lecturer	Prof. Alexander Düster
Language	DE
Cycle	SoSe
Content	1. Motivation
	2. Basics of C++
	3. Numerical integration
	4. Solution of nonlinear problems
	5. Solution of linear equation systems
	6. Verification of numerical algorithms
	7. Selected algorithms and data structures of a finite element code
Literature	[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001.
	[2] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002.

Course L0285: Numerical Algorithms in Structural Mechanics	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Düster
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0807: Boundary Element Methods

Courses			
Title	Typ	Hrs/wk	CP
Boundary Element Methods (L0523)	Lecture		
Boundary Element Methods (L0524)	Recitation Section (large)		

Module Responsible	Prof. Otto von Estorff
Admission Requirements	None
Recommended Previous Knowledge	Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations)
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills	The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the

corresponding system matrices, and solving the resulting system of equations.

Personal Competence Social Competence Autonomy	Students can work in small groups on specific problems to arrive at joint solutions. The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	Compulsory Bonus Form Description No 20% Midterm
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Energy Systems: Core Qualification: Elective Compulsory Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L0523: Boundary Elem	ment Methods
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	SoSe
Content	- Boundary value problems - Integral equations - Fundamental Solutions - Element formulations - Numerical integration - Solving systems of equations (statics, dynamics) - Special BEM formulations - Coupling of FEM and BEM - Hands-on Sessions (programming of BE routines) - Applications
Literature	Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0524: Boundary Element Methods

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Otto von Estorff
Language	EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0716: Hierarchical Algorithms

Courses			
Title		Typ	Hrs/wk
Hierarchical Algorithms (L0585)	CP		
Hierarchical Algorithms (L0586)		Lecture	
		Recitation Section (small)	

Module Responsible	Prof. Sabine Le Borne		
Admission Requirements	None		
Recommended Previous			
Knowledge			• Mathematics I, II, III for Engineering students (german or english) or Analysis \& Linear Algebra I + II as well as Analysis III for
:---:			
Technomathematicians			
• Programming experience in C			

Course L0585: Hierarchical Algorithms	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Sabine Le Borne
Language	DE/EN
Cycle	WiSe
Content	- Low rank matrices - Separable expansions - Hierarchical matrix partitions - Hierarchical matrices - Formatted matrix operations - Applications - Additional topics (e.g. H2 matrices, matrix functions, tensor products)
Literature	W. Hackbusch: Hierarchische Matrizen: Algorithmen und Analysis

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0586: Hierarchical Algorithms	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Sabine Le Borne
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1020: Numerical Methods for Partial Differential Equations

Courses			
Title	Typ	Hrs/wk	CP
Numerics of Partial Differential Equations (L1247)	Lecture	3	Recitation Section (small)
Numerics of Partial Differential Equations (L1248)		2	

Module Responsible	Prof. Daniel Ruprecht		
Admission Requirements	None		
Recommended Previous			
Knowledge			• Mathematik I - IV (for Engineering Students) or Analysis \& Linear Algebra I + II for Technomathematicians
---:			
• Numerical mathematics 1			
• Numerical treatment of ordinary differential equations			

Course L1247: Numerics of Partial Differential Equations	
Typ	Lecture
Hrs/wk	2

Course L1248: Numerics of Partial Differential Equations	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Daniel Ruprecht
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Module M0720: Matrix Algorithms

Courses			
Title		Typ	Hrs/wk
Matrix Algorithms (L0984)	CP		
Matrix Algorithms (L0985)		Lecture	3
		Recitation Section (small)	

Module Responsible	Dr. Jens-Peter Zemke
Admission Requirements	None
Recommended Previous Knowledge	- Mathematics I-III - Numerical Mathematics 1/ Numerics - Basic knowledge of the programming languages Matlab and C
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to 1. name, state and classify state-of-the-art Krylov subspace methods for the solution of the core problems of the engineering sciences, namely, eigenvalue problems, solution of linear systems, and model reduction; 2. state approaches for the solution of matrix equations (Sylvester, Lyapunov, Riccati). Students are capable to 1. implement and assess basic Krylov subspace methods for the solution of eigenvalue problems, linear systems, and model reduction; 2. assess methods used in modern software with respect to computing time, stability, and domain of applicability; 3. adapt the approaches learned to new, unknown types of problem. Students can - develop and document joint solutions in small teams; - form groups to further develop the ideas and transfer them to other areas of applicability; - form a team to develop, build, and advance a software library. Students are able to - correctly assess the time and effort of self-defined work; - assess whether the supporting theoretical and practical excercises are better solved individually or in a team; - define test problems for testing and expanding the methods; - assess their individual progess and, if necessary, to ask questions and seek help.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	25 min
Assignment for the Following Curricula	Technomathematics: Specialisation I. Mathematics: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0984: Matrix Algorith	hms
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Jens-Peter Zemke
Language	DE/EN
Cycle	WiSe
Content	- Part A: Krylov Subspace Methods: - Basics (derivation, basis, Ritz, OR, MR) - Arnoldi-based methods (Arnoldi, GMRes) - Lanczos-based methods (Lanczos, CG, BiCG, QMR, SymmLQ, PvL) - Sonneveld-based methods (IDR, BiCGStab, TFQMR, IDR(s)) - Part B: Matrix Equations: - Sylvester Equation - Lyapunov Equation - Algebraic Riccati Equation
Literature	Skript (224 Seiten) Ergänzend können die folgenden Lehrbücher herangezogen werden: 1. Saad, Yousef. Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied Mathematics, 2011. 2. Saad, Yousef. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, 2003. 3. Van der Vorst, Henk A. Iterative Krylov methods for large linear systems. No. 13. Cambridge University Press, 2003. 4. Liesen, Jörg, and Zdenek Strakos. Krylov subspace methods: principles and analysis. Oxford University Press, 2013.

Course L0985: Matrix Algorithms

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Jens-Peter Zemke
Language	DE/EN
Cycle	WiSe
Content	
Literature	Siehe korrespondierende Vorlesung

Module M0658: Innovative CFD Approaches

Courses			
Title	Typ	Hrs/wk	CP
Application of Innovative CFD Methods in Research and Development (LO239)	Lecture	2	Recitation Section (small)
Application of Innovative CFD Methods in Research and Development (L1685)			

Module Responsible	Prof. Thomas Rung
Admission Requirements	None
Recommended Previous	Students should have sound knowledge of engineering mathematics (series expansions, internal \& vector calculus), and be familiar
with the foundations of partial/ordinary differential equations. They are expected to be familiar with engineering fluid mechanics.	
Basic knowledge of numerical analysis or computational fluid dynamics, e.g. acquired in previous CFD courses, is of advantage but	
not necessary.	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	Students will acquire a deeper knowledge of recent trends in computational fluid dynamics (CFD), i.e. finite volume, smoothed particle hydrodynamics and lattice Boltzmann approaches, and can relate recent innovations with present challenges in computational fluid mechanics. They are familiar with the similarities and differences between different Eulerian and Lagrangian discretisation and approximation concepts for investigating on the basis of continuum and kinetic theories. Students have the required knowledge to develop, explain, code and apply numerical models concepts to approximate multiphase and multifield problems with grid and particle based methods, respectively. Students know the fundamentals of simulation based PDE constraint optimisation. Skills
The students are able choose and apply appropriate discretisation concepts and flow physics models. They acquire the ability to code computational algorithms dedicated to finite volumes on unstructured grids \& particle-based discretisations \& structured lattice Boltzmann arrangements, apply these codes for parameter investigations and supplement interfaces to extract simulation data for an engineering analysis. They are able to sophisticatedly judge different solution strategies.	

Personal Competence Social Competence Autonomy	The students are able to discuss problems, present the results of their own analysis, and jointly develop, implement and report on solution strategies that address given technical reference problems in a team. They to lead team sessions and present solutions to experts. The students can independently analyse innovative methods to solving fluid engineering problems. They are able to critically analyse own results as well as external data with regards to the plausibility and reliability. Students are able to structure and perform a simulation-based investigation.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes 20% Written elaboration
Examination	Oral exam
Examination duration and scale	30 min
Assignment for the Following Curricula	Energy Systems: Core Qualification: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Ship and Offshore Technology: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Process Engineering: Specialisation Process Engineering: Elective Compulsory

Course L0239: Application of Innovative CFD Methods in Research and Development	
Typ	Lecture
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	WiSe
Content	Computational Optimisation, Parallel Computing, Efficient CFD-Procedures for GPU Archtiectures, Alternative Approximations
(Lattice-Boltzmann Methods, Particle Methods), Fluid/Structure-Interaction, Modelling of Hybrid Continua	
Literature	Vorlesungsmaterialien /lecture notes

Course L1685: Application of Innovative CFD Methods in Research and Development	
Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1327: Modeling of Granular Materials

Courses				
Title		Typ	Hrs/wk	CP
Multiscale simulation of granular materials (L1858)		Lecture	2	2
Multiscale simulation of granular materials (L1860)		Recitation Section (small)	2	2
Thermodynamic and kinetic modeling of the solid state (L1859)		Lecture	2	2
Module Responsible	Prof. Pavel Gurikov			
Admission Requirements	None			
Recommended Previous Knowledge	Fundamentals in Mathematocs, Physics and Mechanics			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	After successful completion - describe modern m - analyze and evalu single particle prop - list modern simulat - explain fundament - list experimental m - explain fundament - explain theoretical After successful completio - perform flowsheet - simulate behavior - optimize processes - apply multiscale sim - evaluate results of - select and apply ap - select and apply ap After completion of this take position to their own After completion of this the results. They are abl existing knowledge from	to: led for simulation of gran ulations on different tim ulation on macro scale eir application re used for modeling of p als for the processes with so rete models for the proce to, yze steady-state or dyna with Discrete Element M ixing, separation, crushin aterials models for processes with esses with solids. bate technical questions r teamwork. ve a technical problem in ecessary to solve the prob	erials ength sca materia h solids ess behavio DEM) th DEM teams to dently incl y themsel	m description of nce the ability to a presentation of the basis of the
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following Curricula	Chemical and Bioprocess Engineering: Specialisation Chemical Process Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation General Process Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory			

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L1858: Multiscale simulation of granular materials

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Pavel Gurikov
Language	EN
Cycle	Wise
Content	- Steady-state flowsheet simulation of solids processes - Dynamic flowsheet simulation of solids processes - Introduction to Discrete Element Method (DEM) - Contact and breakage mechanics of granular materials - Extension of DEM - Modeling of Gas/Solid streams with coupled DEM and CFD methods - Population balance modelling of solids processes - Multiscale simulation of particulate materials
Literature	B.V. Babu (2004). Process plant simulation, Oxford Univ. Press, New York. S.J. Antony, W. Hoyle, Y. Ding (Eds.) (2004). Granular materials: Fundamentals and Applications, RSC, Cambridge. T. Pöschel (2010). Computational Granular Dynamics: Models and Algorithms, Springer Verl. Berlin. Other lecture materials to be distributed

Course L1860: Multiscale simulation of granular materials

Typ	Recitation Section (small)
Hrs/wk	2

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Typ	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Pavel Gurikov
Language	EN
Cycle	WiSe
Content	- Thermodynamics of pure solids: melting/crystallization; glassy and amorphous state. - Thermodynamics of solid-gas equilibria: adsorption and sublimation. - Thermodynamics of solid-liquid equilibria: solubility in aqueous and non-aqueous systems; solid solutions; supercritical fluids as solvents. - Kinetics of dissolution/precipitation processes: chemical vapor deposition; drug release; hydrothermal processes. - Characterization of solids: contact angle, adsorption techniques, IR spectroscopy, electron microscopy. - Discrete models of dissolution/precipitation processes: diffusion limited aggregation; random-like and ballistic-like deposition models - Advanced discrete models: surface wettability; adsorption and precipitation of (bio)polymers.
Literature	Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G. de (1998). Molecular Thermodynamics of Fluid-Phase Equilibria, Pearson Education. Elliott, S., and Elliott, S.R. (1998). The Physics and Chemistry of Solids, Wiley. Chopard, B., and Droz, M. (2005). Cellular Automata Modeling of Physical Systems, Cambridge University Press.

Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods)

Courses			
Title	Typ	Hrs/wk	CP
Technical Acoustics II (Room Acoustics, Computational Methods) (L0519)	Lecture	2	Recitation Section (large)
Technical Acoustics II (Room Acoustics, Computational Methods) (L0521)			

Module Responsible	Prof. Benedikt Kriegesmann
Admission Requirements	None
Recommended Previous Knowledge	Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations)
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. Students can work in small groups on specific problems to arrive at joint solutions. The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Oral exam
Examination duration and scale	20-30 Minuten
Assignment for the Following Curricula	Aircraft Systems Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L0519: Technical Acoustics II (Room Acoustics, Computational Methods)	
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr.-Ing. Sören Keuchel
Language	EN
Cycle	WiSe
Content	- Room acoustics - Sound absorber - Standard computations - Statistical Energy Approaches - Finite Element Methods - Boundary Element Methods - Geometrical acoustics - Special formulations - Practical applications - Hands-on Sessions: Programming of elements (Matlab)
Literature	Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L0521: Technical Acoustics II (Room Acoustics, Computational Methods)

Typ	Recitation Section (large)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr.-Ing. Sören Keuchel
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1268: Linear and Nonlinear Waves

Courses			
Title	Typ	Hrs/wk	CP
Linear and Nonlinear Waves (L1737)		4	6
Module Responsible	Prof. Norbert Hoffmann		
Admission Requirements	None		
Recommended Previous Knowledge	Calculus, Algebra, Engineering Mechanics, Vibrations.		
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence Knowledge Personal Competence Social Competence	- Students are able to reflect existing terms and concepts in Wave Mechanics - Students are able to identify and express the need to develop and research new terms and conc - Students are able to apply existing research methods and procedures of wave mechanics. - Students are able to develop novel research methods and procedures in wave mechanics. - Students can reach working results also in groups. - Students can present and communicate working results also in groups. - Students are able to approach given research tasks individually. - Studetns are able to identify and follow up novel research tasks by themselves.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56		
Credit points	6		
Course achievement	None		
Examination	Written exam		
Examination duration and scale	2 Hours		
Assignment for the Following Curricula	Mechatronics: Specialisation System Design: Elective Compulsory Naval Architecture and Ocean Engineering: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory		

Course L1737: Linear and Nonlinear Waves	
Typ	Project-/problem-based Learning
Hrs/wk	4
CP	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann
Language	DE/EN
Cycle	Wise
Content	Introduction into the Dynamics of Linear and Nonlinear Waves - Linear Waves - Dispersion - Phase and Group Velocity - Envelopes - Discrete Systems - Nonlinear Waves - Model Equations - Solitons, Breathers, Extreme Waves - Water Waves, Ocean Waves - Airy and Stokes - Natural Sea State - Kinetic Modelling - Other topics
Literature	F.K. Kneubühl: Oscillations and Waves. Springer. G.B. Witham, Linear and Nonlinear Waves. Wiley. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific. L.H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge. And others.

Module M1846: Finite element modeling of structures

Courses			
Title	Typ	Hrs/wk	CP
Finite element modeling of structures (L3046)	Lecture	3	
Finite element modeling of structures (L3047)	Recitation Section (small)		

Module Responsible	Prof. Bastian Oesterle
Admission Requirements	None
Recommended Previous Knowledge	- Finite Element Methods - Thin-walled structures
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	After successful completion of this module, students can express the basic aspects of modelling of structures with finite elements. After successful completion of this module, the students will be able to model structures with finite elements and to analyse structures using appropriate computational methods. Students can - participate in subject-specific and interdisciplinary discussions, - defend their own work results in front of others - promote the scientific development of colleagues - Furthermore, they can give and accept professional constructive criticism Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of finite element modelling of structures.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	Compulsory Bonus Form Description Yes 20% Subject theoretical andBearbeitung einer Finite-Elemente-Modellierungsaufgabe eines (Teil-)Tragwerks practical work mit einer FE-Software inklusive Dokumentation und Interpretation der
Examination	Written exam
Examination duration and scale	60 min
Assignment for the Following Curricula	Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

Course L3046: Finite eleme	modeling of structures
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bastian Oesterle
Language	EN
Cycle	WiSe
Content	Basic phenomena and aspects of the finite element modelling of structures are discussed. Besides theoretical decription of the phenomena and methods, a strong focus is on the practical use a commercial finite element software within computer-based exercises. The covered topics are: - finite element modeling of trusses/beams/frames, plates subject to in-plane/out-of-plane loading and shells - convergence properties of displacements and stresses - singularities - locking effects - critical assessment, interpretation and check of results - mixed-dimensional coupling of finite elements - geometrically linear and non-linear, and material linear and non-linear analyses - stability: bifurcation and snap-through problems - dynamic problems, modal analyses
Literature	Vorlesungsmanuskript, Vorlesungsfolien

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L3047: Finite element modeling of structures	
Typ	Recitation Section (small)
$\mathbf{H r s} / \mathbf{w k}$	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bastian Oesterle
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1844: Modern discretization methods in structural mechanics

Courses		
Title	Typ	Hrs/wk
Modern discretization methods in structural mechanics (L3043)	CP	
Modern discretization methods in structural mechanics (L3044)	Lecture	Recitation Section (small)

Module Responsible	Prof. Bastian Oesterle
Admission Requirements	None
Recommended Previous Knowledge	- Finite Element Methods - Flächentragwerke
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	After successful completion of this module, students can express the basic aspects of modern discretization methods in structural mechanics. After successful completion of this module, the students will be able to use and further improve modern discretization methods for problems in structural mechanics. Students can - participate in subject-specific and interdisciplinary discussions, - defend their own work results in front of others - promote the scientific development of colleagues - Furthermore, they can give and accept professional constructive criticism Students are able to gain knowledge of the subject area from given and other sources and apply it to new problems. Furthermore, they are able to structure the solution process for problems in the area of modern discretization methods.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	90 min
Assignment for the Following Curricula	Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory Civil Engineering: Specialisation Structural Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory

043: Modern discr	tization methods in structural mechanics
Typ	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bastian Oesterle
Language	EN
Cycle	WiSe
Content	The course covers variational formulations, various locking phenomena and alternative formulations for finite elements and modern discretization schemes in the context of structural mechanics, like isogeometric analysis. - variational formulation of finite elements, mixed variational principles - geometrical and material locking effects in structural and solid mechanics - hybrid-mixed and enhanced assumed strain finite element formulations, reduced integration and stabilization, DSG method, u-p formulations - patch test, stability, convergence - linear and non-linear analyses - introduction to isogeometric analysis - isogeometric beam, plate and shell formulations - locking effects and their avoidance in modern, smooth discretization schemes, like isogeometric analysis
Literature	- lecture notes and selected scientific papers - O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu: Finite Element Method: Its Basis and Fundamentals. Elsevier, 2013. - J. Austin Cottrell, Thomas J. R Hughes, Yuri Bazilevs: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, 2009.

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Course L3044: Modern discretization methods in structural mechanics

Typ	Recitation Section (small)
Hrs/wk	2
$\mathbf{C P}$	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bastian Oesterle
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1182: Technical Elective Course for TMBMS (according to Subject Specific Regulations)

Courses		
Title	Typ Hrs/wk	CP
Module Responsible	Prof. Robert Seifried	
Admission Requirements	None	
Recommended Previous Knowledge	see FSPO	
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence Knowledge Skills Personal Competence Social Competence Autonomy	see FSPO see FSPO see FSPO see FSPO	
Workload in Hours	Depends on choice of courses	
Credit points	6	
Assignment for the Following Curricula	Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory	

Module M0837: Simulation of Communication Networks

Courses				
Title		Typ		CP
Simulation of Communication Networks (L0887)		Project-/problem-based Learning	5	6
Module Responsible	Prof. Andreas Timm-Giel			
Admission Requirements	None			
Recommended Previous Knowledge	- Knowledge of computer and communication networks - Basic programming skills			
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence Knowledge Skills Personal Competence Social Competence	Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following Curricula	Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Aircraft Systems Engineering: Core Qualification: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Simulation Technology: Elective Compulsory			

Course L0887: Simulation of Communication Networks	
Typ	Project-/problem-based Learning
Hrs/wk	5
CP	6
Lecturer	Prof. Andreas Timm-Giel
Language	EN
Cycle	SoSe
Content	In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. Literature
• Skript des Instituts für Kommunikationsnetze	

Module M1281: Advanced Topics in Vibration

Course L1743: Advanced Topics in Vibration	
Typ	Project-/problem-based Learning
Hrs/wk	4
$\mathbf{C P}$	6
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56
Lecturer	Prof. Norbert Hoffmann, Merten Tiedemann, Sebastian Kruse
Language	DE/EN
Cycle	SoSe
Content	Research Topics in Vibrations.
Literature	Aktuelle Veröffentlichungen

Thesis

Master Thesis

Module Manual M.Sc. "Theoretical Mechanical Engineering"

Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Ship and Offshore Technology: Thesis: Compulsory
Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory
Certification in Engineering \& Advisory In Aviation: Thests: Compulsory

[^0]: Courses
 Information regarding lectures and courses can be found in the corresponding module handbook published separately.

