Module Manual

Master of Science
Naval Architecture and Ocean Engineering

Cohort: Winter Term 2017
Updated: 8th July 2017
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program description</td>
<td>2</td>
</tr>
<tr>
<td>Core qualification</td>
<td>3</td>
</tr>
<tr>
<td>Module M0523: Business & Management</td>
<td>4</td>
</tr>
<tr>
<td>Module M0524: Nontechnical Elective Complementary Courses for Master</td>
<td>5</td>
</tr>
<tr>
<td>Module M1233: Numerical Methods in Ship Design</td>
<td>7</td>
</tr>
<tr>
<td>Module M0601: Structural Analysis of Ships and Offshore Structures</td>
<td>8</td>
</tr>
<tr>
<td>Module M1146: Ship Vibration</td>
<td>10</td>
</tr>
<tr>
<td>Module M1165: Ship Safety</td>
<td>12</td>
</tr>
<tr>
<td>Module M1176: Seakeeping of Ships and Laboratory on Naval Architecture</td>
<td>14</td>
</tr>
<tr>
<td>Module M1177: Maritime Technology and Maritime Systems</td>
<td>16</td>
</tr>
<tr>
<td>Module M1234: Ship propellers and cavitation</td>
<td>18</td>
</tr>
<tr>
<td>Module M0604: High-Order FEM</td>
<td>20</td>
</tr>
<tr>
<td>Module M0605: Computational Structural Dynamics</td>
<td>22</td>
</tr>
<tr>
<td>Module M0606: Numerical Algorithms in Structural Mechanics</td>
<td>23</td>
</tr>
<tr>
<td>Module M0657: Computational Fluid Dynamics II</td>
<td>24</td>
</tr>
<tr>
<td>Module M1021: Marine Diesel Engine Plants</td>
<td>25</td>
</tr>
<tr>
<td>Module M1133: Port Logistics</td>
<td>27</td>
</tr>
<tr>
<td>Module M1148: Selected topics in Naval Architecture and Ocean Engineering</td>
<td>29</td>
</tr>
<tr>
<td>Module M1168: Special topics of ship structural design</td>
<td>33</td>
</tr>
<tr>
<td>Module M1175: Special Topics of Ship Propulsionand Hydrodynamics of High Speed Water Vehicles</td>
<td>34</td>
</tr>
<tr>
<td>Module M0653: High-Performance Computing</td>
<td>36</td>
</tr>
<tr>
<td>Module M1148: Selected topics in Naval Architecture and Ocean Engineering</td>
<td>37</td>
</tr>
<tr>
<td>Module M0603: Nonlinear Structural Analysis</td>
<td>41</td>
</tr>
<tr>
<td>Module M0658: Innovative CFD Approaches</td>
<td>43</td>
</tr>
<tr>
<td>Module M0751: Vibration Theory</td>
<td>44</td>
</tr>
<tr>
<td>Module M1147: Research Project Naval Architecture and Ocean Engineering</td>
<td>45</td>
</tr>
<tr>
<td>Module M1157: Marine Auxiliaries</td>
<td>46</td>
</tr>
<tr>
<td>Module M1166: Advanced Ship Design</td>
<td>48</td>
</tr>
<tr>
<td>Module M1178: Manoeuvrability and Shallow Water Ship Hydrodynamics</td>
<td>49</td>
</tr>
<tr>
<td>Module M1232: Arctic Technology</td>
<td>51</td>
</tr>
<tr>
<td>Module M1240: Fatigue Strength of Ships and Offshore Structures</td>
<td>53</td>
</tr>
<tr>
<td>Module M1268: Linear and Nonlinear Waves</td>
<td>54</td>
</tr>
<tr>
<td>Thesis</td>
<td>55</td>
</tr>
<tr>
<td>Module M-002: Master Thesis</td>
<td>55</td>
</tr>
</tbody>
</table>
Program description

Content

The Master Course "Naval Architecture and Ocean Engineering" prepares the graduates by solidifying their engineering, mathematical and natural science skills for scientific tasks in naval architecture, ocean engineering and related mechanical engineering disciplines. The graduates possess a critical awareness against new knowledge in their discipline, on which basis they are enabled to act responsible in their professional and societal environment. As a result of the elective modules it is possible to specialize in the following six disciplines: ship design, ship structural design and strength, fluid dynamics, ship machinery, ocean engineering as well as planning and production. Thus, the occupational orientation can either related to the design of ships or offshore systems, or to more dedicated areas, such as hydrodynamics or strength of structures.

Career prospects

The Master course strengthens the engineering, mathematical and natural science knowledge gained during the Bachelor education and conveys competences to solve problems in a systematic, scientific and independent fashion relevant for industry and research activities. The contents concern analysis, design and implementation methods for Ships and Offshore systems. The individual selection of the elective modules allows for a certain specialization while the mandatory courses secure a solid understanding of the general basics and in the related fields. Thereby the students are able to adjust their study contents individually according to their personal preferences. Further, the solid knowledge of the general basics and knowledge in the field related to the chosen specialisation allow for a broad professional expertise and thus a wide professional applicability. The graduates can take on scientific tasks at universities or research institutes with the aim of a doctoral dissertation or find their way directly into the industry. As for the latter, they may specialize in dedicated areas and with further experience and qualification they can take over leading roles.

Learning target

The graduates can analyse problems scientifically and solve them, even though they are not typical or only partially defined with conflicting objectives; complex tasks can be solved by abstracting from on-going research and development activities in their discipline; innovative and new methods can be used to find fundamental solutions; knowledge gaps can be identified and solutions can be proposed to overcome these gaps; theoretical and experimental investigations can be planned and executed; results can be analysed critically and conclusions can be drawn; emerging technologies can be analysed and reviewed. By doing so, they can classify knowledge from different disciplines systematically and thereby cope with complex problems. Further, they are able to reflect on the non-technical aspects of their engineering tasks responsibly. They can expand on the knowledge gained and develop further competences, also with the aim to succeed with a doctoral thesis. Consequently, the key skills from the preceding Bachelor education relevant for practical engineering tasks will be expanded in this Master course.

Program structure

This master course is modularized and follows the university-wide standard course structure with course modules of six credit points. The Master course combines the disciplines relevant for Naval Architecture and Ocean Engineering on the basis of the preceding Bachelor studies. Essential modules are mandatory for all students to allow for an even skill level among graduates. Further, students are able to personalize their studies due to the wide range of module options. The following modules comprise the mandatory core qualification with six credit points each:
- Structural Analysis of Ships and Offshore Structures
- Ship Vibration
 - Ship Safety
- Seakeeping of Ships and Laboratory on Naval Architecture
- Maritime Technology and Maritime Systems

The students further specialize by individually selecting six modules from the following options:
- Numerical Methods in Ship Design
- Port Logistics
- High-Order FEM
- Numerical Algorithms in Structural Mechanics
- Computational Fluid Dynamics II
- Computational Structural Dynamics
- Marine Diesel Engine Plants
- Ship propellers and cavitation
- Special topics of ship structural design
- Special Topics of Ship Propulsion and Hydrodynamics of High Speed Water Vehicles
- Selected topics in Naval Architecture and Ocean Engineering (Open module with further topic selection)
- Fatigue Strength of Ships and Offshore Structures
- Arctic Technology
- Innovative CFD Approaches
- Maneuuvability and Shallow Water Ship Hydrodynamics
- Nonlinear Structural Analysis
- Advanced Ship Design
- Vibration Theory
- Marine Auxiliaries

Additionally, the open module "Business & Management" and "Nontechnical Elective Complementary Courses for Master" with six credit points each is mandatory. Finally, in addition to the master thesis, the students must complete a research project:
- Research Project (12 credits)
- Master Thesis (30 credits)
<table>
<thead>
<tr>
<th>Core qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module M0523: Business & Management</td>
</tr>
<tr>
<td>Module Responsible</td>
</tr>
<tr>
<td>Admission Requirements</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
</tr>
<tr>
<td>Educational Objectives</td>
</tr>
</tbody>
</table>

Professional Competence

Knowledge
- Students are able to find their way around selected special areas of management within the scope of business management.
- Students are able to explain basic theories, categories, and models in selected special areas of business management.
- Students are able to interrelate technical and management knowledge.

Skills
- Students are able to apply basic methods in selected areas of business management.
- Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.

Personal Competence

Social Competence
- Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.

Autonomy

Workload in Hours
Depends on choice of courses

Credit points
6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.
Module M0524: Nontechnical Elective Complementary Courses for Master

Module Responsible: Dagmar Richter

Admission Requirements: None

Recommended Previous Knowledge: None

Educational Objectives: After taking part successfully, students have reached the following learning results

Professional Competence Knowledge

- The Nontechnical Academic Program (NTA) imparts skills that, in view of the TUHH's training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor's or Master's level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

- consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programs follow the specific profiling of TUHH degree courses.

- The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of "profiles".

- The subjects that can be studied in parallel throughout the student's entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

- provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

- are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor's courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

- The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

- of the courses offered in this area is different as regards the basic training objective in the Bachelor's and Master's fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor's and Master's graduates in their future working life.

Specialized Competence (Knowledge)

- Students can explain specialized areas in context of the relevant non-technical disciplines,
- outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
- different specialist disciplines relate to their own discipline and differentiate it as well as make connections,
- sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity.
- Can communicate in a foreign language in a manner appropriate to the subject.

Skills

- Professional Competence (Skills)

- In selected sub-areas students can apply basic and specific methods of the said scientific disciplines,
- acquisition a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
- to handle simple and advanced questions in aforementioned scientific disciplines in a successful manner,
- justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.

- Personal Competence (Social Skills)

- Students will be able to learn to collaborate in different manner,
- to present and analyze problems in the above-mentioned fields in a partner or group situation in a manner appropriate to the addressees,
to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen),
- to explain nontechnical items to auditorium with technical background knowledge.

Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

- to reflect on their own profession and professionalism in the context of real-life fields of application
- to organize themselves and their own learning processes
- to reflect and decide questions in front of a broad education background
- to communicate a nontechnical item in a competent way in written form or verbally
- to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Depends on choice of courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>6</td>
</tr>
</tbody>
</table>

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.
Module M1233: Numerical Methods in Ship Design

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Methods in Ship Design (L1271)</td>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Methods in Ship Design (L1709)</td>
<td>Problem-based Learning</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Stefan Krüger

Admission Requirements
None

Recommended Previous Knowledge

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

Skills

Personal Competence

Social Competence

Autonomy

Workload in Hours
Independent Study Time 124, Study Time in Lecture 56

Credit points
6

Examination
Oral exam

Examination duration and scale
45 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1271: Numerical Methods in Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 92, Study Time in Lecture 28

Lecturer
Prof. Stefan Krüger

Language
DE

Cycle
SoSe

Content
The lecture starts with the definition of the early design phase and the importance of first principle approaches. The reasons for process reengineering when such kinds of methods are introduced is demonstrated. Several numerical modelling techniques are introduced and discussed for the following design relevant topics:
- Hullform representation, fairing and interpolation
- Hullform design by modifying parent hulls
- Modelling of subdivision
- Volumetric and stability calculations
- Mass distributions and longitudinal strength
- Hullform Design by CFD techniques
- Propulsor and Rudder Design by CFD Techniques

Literature
Skript zur Vorlesung.

Course L1709: Numerical Methods in Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem-based Learning</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 32, Study Time in Lecture 28

Lecturer
Prof. Stefan Krüger

Language
DE

Cycle
WiSe

Content
See interlocking course

Literature
See interlocking course
Module M0601: Structural Analysis of Ships and Offshore Structures

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structural Analysis of Ships and Offshore Structures (L0272)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Structural Analysis of Ships and Offshore Structures (L0273)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Alexander Düster

Admission Requirements: None

Recommended Previous Knowledge:
- Differential Equations 2 (Partial Differential Equations)

Educational Objectives: After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge: Students are able to
- give an overview of the basics of structural mechanics for the analysis of ships and offshore structures.
- explain structural models for thin-walled structures.
- specify problems of linear structural analysis, to identify them in a given situation and to explain their mathematical and mechanical background.
- classify finite elements with respect to their suitability for the structural analysis of ships and offshore structures.

Skills: Students are able to
- model linear structural problems of ships and offshore structures.
- select a suitable finite element formulation for a given linear problem of structural mechanics.
- apply finite element procedures to the linear structural analysis of ships and offshore structures.
- verify and critically judge the results of linear finite element computations.
- transfer their knowledge of linear structural analysis with finite elements to new problems.

Personal Competence

Social Competence: Students are able to
- solve problems in heterogeneous groups and to document the corresponding results.
- share new knowledge with group members.

Autonomy: Students are able to
- assess their knowledge by means of exercises and E-Learning.

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points: 6

Examination: Written exam
- Examination duration and scale: 2h

Assignment for the Following Curricula
- Naval Architecture and Ocean Engineering: Core qualification: Compulsory
- Ship and Offshore Technology: Core qualification: Compulsory

Course L0272: Structural Analysis of Ships and Offshore Structures

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Lecturer: Prof. Alexander Düster

Language: DE/EN

Cycle: WiSe

Content
1. Introduction
2. Basic equations of elastostatics
3. Approximation procedures
4. The finite element method
5. Mechanical models and finite elements for thin-walled structures
6. Application to ships and offshore structures

Literature
<table>
<thead>
<tr>
<th>Course</th>
<th>L0273: Structural Analysis of Ships and Offshore Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Recitation Section (small)</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Alexander Düster</td>
</tr>
<tr>
<td>Language</td>
<td>DE/EN</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>1. Introduction</td>
</tr>
<tr>
<td></td>
<td>2. Basic equations of elastostatics</td>
</tr>
<tr>
<td></td>
<td>3. Approximation procedures</td>
</tr>
<tr>
<td></td>
<td>4. The finite element method</td>
</tr>
<tr>
<td></td>
<td>5. Mechanical models and finite elements for thin-walled structures</td>
</tr>
<tr>
<td></td>
<td>6. Application to ships and offshore structures</td>
</tr>
</tbody>
</table>
Module M1146: Ship Vibration

<table>
<thead>
<tr>
<th>Course</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1528</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>L1529</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible

Dr. Rüdiger Ulrich Franz von Bock und Polach

Admission Requirements

None

Recommended Previous Knowledge

- Mechanics I - III
- Structural Analysis of Ships I
- Fundamentals of Ship Structural Design

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

- Students can reproduce the acceptance criteria for vibrations on ships; they can explain the methods for the calculation of natural frequencies and forced vibrations of structural components and the entire hull girder; they understand the effect of exciting forces of the propeller and main engine and methods for their determination

Skills

- Students are capable to apply methods for the calculation of natural frequencies and exciting forces and resulting vibrations of ship structures including their assessment; they can model structures for the vibration analysis

Personal Competence

Social Competence

- The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy

- Students are able to detect vibration-prone components on ships, to model the structure, to select suitable calculation methods and to assess the results

Workload in Hours

- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points

- 6

Examination

- Written exam
- Duration: 3 hours

Assignment for the Following Curricula

- Energy Systems: Specialisation Marine Engineering: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Compulsory
- Ship and Offshore Technology: Core qualification: Compulsory
- Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L1528: Ship Vibration

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours

- Independent Study Time: 62
- Study Time in Lecture: 28

Lecturer

Dr. Rüdiger Ulrich Franz von Bock und Polach

Language

EN

Cycle

WiSe

Content

1. Introduction; assessment of vibrations
2. Basic equations
3. Beams with discrete / distributed masses
4. Complex beam systems
5. Vibration of plates and Grillages
6. Deformation method / practical hints / measurements
7. Hydrodynamic masses
8. Spectral method
9. Hydrodynamic masses acc. to Lewis
10. Damping
11. Shaft systems
12. Propeller excitation
13. Engines

Literature

Siehe Vorlesungsskript
<table>
<thead>
<tr>
<th>Course L1529: Ship Vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 62, Study Time in Lecture 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Dr. Rüdiger Ulrich Franz von Bock und Polach</td>
</tr>
<tr>
<td>Language</td>
<td>EN</td>
</tr>
</tbody>
</table>

| **Cycle** | WiSe |

<table>
<thead>
<tr>
<th>Content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction; assessment of vibrations</td>
<td></td>
</tr>
<tr>
<td>2. Basic equations</td>
<td></td>
</tr>
<tr>
<td>3. Beams with discrete / distributed masses</td>
<td></td>
</tr>
<tr>
<td>4. Complex beam systems</td>
<td></td>
</tr>
<tr>
<td>5. Vibration of plates and Grillages</td>
<td></td>
</tr>
<tr>
<td>6. Deformation method / practical hints / measurements</td>
<td></td>
</tr>
<tr>
<td>7. Hydrodynamic masses</td>
<td></td>
</tr>
<tr>
<td>8. Spectral method</td>
<td></td>
</tr>
<tr>
<td>9. Hydrodynamic masses acc. to Lewis</td>
<td></td>
</tr>
<tr>
<td>10. Damping</td>
<td></td>
</tr>
<tr>
<td>11. Shaft systems</td>
<td></td>
</tr>
<tr>
<td>12. Propeller excitation</td>
<td></td>
</tr>
<tr>
<td>13. Engines</td>
<td></td>
</tr>
</tbody>
</table>

| **Literature** | Siehe Vorlesungsaklupt |

Module Manual M. Sc. "Naval Architecture and Ocean Engineering"
Module M1165: Ship Safety

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Safety (L.1267)</td>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ship Safety (L.1268)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Stefan Krüger

Admission Requirements
None

Recommended Previous Knowledge
Ship Design, Hydrostatics, Statistical Processes

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- The student shall lean to integrate safety aspects into the ship design process. This includes the understanding and application of existing rules as well as the understanding of the safety concept and level which is targeted by a rule.
- Further, methods of demonstrating equivalent safety levels are introduced.

Skills
- The lectures start with an overview about general safety concepts for technical systems. The maritime safety organizations are introduced, their responses and duties. Then, the general difference between prescriptive and performance-based rules is tackled. For different examples in ship design, the influence of the rules on the design is illustrated. Further, limitations of safety rules with respect to the physical background are shown. Concepts of demonstrating equivalent levels of safety by direct calculations are discussed. The following fields will be treated:
 - Freeboard, watertight subdivisions, openings
 - All aspects of intact stability, including special problems such as grain code
 - Damage stability for passenger vessels including Stockholm agreement
 - Damage stability for cargo vessels
 - On-board stability, inclining experiment and stability booklet
 - Relevant manoeuvring information

Personal Competence

Social Competence
- The student learns to take responsibility for the safety of his design.

Autonomy
- Responsible certification of technical designs.

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points
6

Examination
- Written exam
- Examination duration and scale: 180 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Compulsory

Course L1267: Ship Safety

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 92
- Study Time in Lecture: 28

Lecturer
Prof. Stefan Krüger

Language
DE

Cycle
WiSe

Content
The lectures start with an overview about general safety concepts for technical systems. The maritime safety organizations are introduced, their responses and duties. Then, the general difference between prescriptive and performance-based rules is tackled. For different examples in ship design, the influence of the rules on the design is illustrated. Further, limitations of safety rules with respect to the physical background are shown. Concepts of demonstrating equivalent levels of safety by direct calculations are discussed. The following fields will be treated:

- Freeboard, watertight subdivisions, openings
- All aspects of intact stability, including special problems such as grain code
- Damage stability for passenger vessels including Stockholm agreement
- Damage stability for cargo vessels
- On-board stability, inclining experiment and stability booklet
- Relevant manoeuvring information

Literature
SOLAS, LOAD LINES, CODE ON INTACT STABILITY. All IMO, London.
<table>
<thead>
<tr>
<th>Course L1268: Ship Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>
Module M1176: Seakeeping of Ships and Laboratory on Naval Architecture

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory on Naval Architecture (L0241)</td>
<td>Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Seakeeping of Ships (L1594)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Seakeeping of Ships (L1619)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Moustafa Abdel-Maksoud

Admission Requirements: None

Recommended Previous Knowledge: Basic knowledge of ship dynamics as well as stochastic and statistics

Educational Objectives:

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

- Understand present research questions in the field of ship motion in waves
- Explain the present state of the art for the topics considered
- Apply given methodology to approach given problems of seakeeping behavior
- Evaluate the limits of the present methods
- Identify possibilities to extend present methods
- Evaluate the feasibility of further developments

Skills

Students are able to

- select and apply suitable computing and simulation methods to determine the dynamic loads on ships and floating bodies
- model the behavior of ships and floating bodies under different sea conditions by using simplified methods
- evaluate critically the investigation results of experimental or numerical studies

Personal Competence

Students are able to

- solve problems in heterogeneous groups and to document the corresponding results
- share new knowledge with group members

Social Competence

Students are able to

- think system-oriented
- decompose complex systems

Autonomy

Students are able to

- assess their knowledge by means of exercises

Workload in Hours

Independent Study Time: 96, Study Time in Lecture: 84

Credit points: 6

Examination:
Written exam

Examination duration and scale: 180 min

Assignment for the Following Curricula:

Naval Architecture and Ocean Engineering: Core qualification: Compulsory
Ship and Offshore Technology: Core qualification: Elective

Course L0241: Laboratory on Naval Architecture

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours:
Independent Study Time: 32, Study Time in Lecture: 28

Lecturer: Prof. Thomas Rung

Language: DE/EN

Cycle: SoSe

Content:
The lab is structured into 5 team-based experiments

1. Resistance test
 - Towing test to investigate a model hull resistance
2. Propulsion test
 - Propulsion test for a self-propelled hull. Determination of thrust deduction, wake fraction and propulsion efficiency.
3. Seakeeping test
 - Investigation of the seakeeping behaviour
4. Open water and cavitation test
 - Compilation of an open water diagram and cavitation experiments
5. Application of strain measurement techniques

Theoretical instructions will also involve foundations of similarity analysis

Literature:

- Vorlesungsmanuskript
- Lecture Notes
Course L1594: Seakeeping of Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Lecturer
- Prof. Moustafa Abdel-Maksoud

Language
- DE/EN

Cycle
- WiSe

Content
1. Numerical methods for the determination of section forces
2. Steep waves (Stokes-Theory)
3. 3d potential flow methods
4. Time domain simulation of ship motions
5. Capsizing
6. Slamming

Literature
- Söding, H., Schiffe im Seegang I, Vorlesungsmanuskript, Institut für Fluiddynamik und Schiffstheorie, TUHH, Hamburg, 1992
- Jensen, G., Söding, H. S., Schiffe im Seegang II, Vorlesungsmanuskript, Institut für Fluiddynamik und Schiffstheorie, TUHH, Hamburg, 2005
- Lloyd, A., Ship Behaviour in Rough Weather, Gosport, Chichester, Sussex, United Kingdom, 1998

Course L1619: Seakeeping of Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 2
- Study Time in Lecture: 28

Lecturer
- Prof. Moustafa Abdel-Maksoud

Language
- DE/EN

Cycle
- WiSe

Content
- See interlocking course

Literature
- See interlocking course
Module M1177: Maritime Technology and Maritime Systems

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Maritime Systems (L0068)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Analysis of Maritime Systems (L0069)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Maritime Technology (L0070)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Maritime Technology (L1614)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Moustafa Abdel-Maksoud

Admission Requirements: None

Recommended Previous Knowledge: Solid knowledge and competences in mechanics, fluid dynamics and analysis (series, periodic functions, continuity, differentiability, integration, multiple variables, ordinary and partial differential equations, boundary value problems, initial conditions and eigenvalue problems).

Educational Objectives: After taking part successfully, students have reached the following learning results.

Professional Competence

Knowledge: After successful completion of this class, students should have an overview about phenomena and methods in ocean engineering and the ability to apply and extend the methods presented.

- describe the different aspects and topics in Maritime Technology,
- apply existing methods to problems in Maritime Technology,
- discuss limitations in present day approaches and perspectives in the future,
- Techniques for the analysis of offshore systems,
- Modeling and evaluation of dynamic systems,
- System-oriented thinking, decomposition of complex systems.

Skills: The students learn the ability of apply and transfer existing methods and techniques on novel questions in maritime technologies. Furthermore, limits of the existing knowledge and future developments will be discussed.

Personal Competence

Social Competence: The processing of an exercise in a group of up to four students shall strengthen the communication and team-working skills and thus promote an important working technique of subsequent working days. The collaboration has to be illustrated in a community presentation of the results.

Autonomy: The course contents are absorbed in an exercise work in a group and individually checked in a final exam in which a self-reflection of the learned is expected without tools.

Workload in Hours

- Independent Study Time: 32 hours
- Study Time in Lecture: 28 hours

Credit points: 6

Examination duration and scale: 180 min

Assignment for the Following Curricula:

- Naval Architecture and Ocean Engineering: Core qualification: Compulsory
- Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L0068: Analysis of Maritime Systems

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours: Independent Study Time 32, Study Time in Lecture 28

Lecturer: Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff

Language: DE

Cycle: SoSe

Content:

1. Hydrostatic analysis
 - Buoyancy,
 - Stability,
2. Hydrodynamic analysis
 - Froude-Krylov force
 - Morison’s equation,
 - Radiation and diffraction
 - transparent/compact structures
3. Evaluation of offshore structures: Reliability techniques (security, reliability, disposability)
 - Short-term statistics
 - Long-term statistics and extreme events

Literature:

- E. V. Lewis (Editor), Principles of Naval Architecture, SNAME, 1988
- Journal of Offshore Mechanics and Arctic Engineering
- Proceedings of International Conference on Offshore Mechanics and Arctic Engineering
- S. Chakrabart (Ed.), Handbook of Offshore Engineering, Volumes 1-2, Elsevier, 2005
Course L0069: Analysis of Maritime Systems

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Moustafa Abdel-Maksoud, Dr. Alexander Mitzlaff</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>BiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L0070: Introduction to Maritime Technology

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Sven Hoog</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| Content | 1. Introduction
- Ocean Engineering and Marine Research
- The potentials of the seas
- Industries and occupational structures
2. Coastal and offshore Environmental Conditions
- Physical and chemical properties of sea water and sea ice
- Flows, waves, wind, ice
- Biosphere
3. Response behavior of Technical Structures
4. Maritime Systems and Technologies
- General Design and Installation of Offshore-Structures
- Geophysical and Geotechnical Aspects
- Fixed and Floating Platforms
- Mooring Systems, Risers, Pipelines
- Energy conversion: Wind, Waves, Tides |
| Literature |
- Wagner, P., Meerestechnik, Ernst&Sohn 1990.

Course L1614: Introduction to Maritime Technology

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Sven Hoog</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M1234: Ship propellers and cavitation

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavitation (L1596)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Marine Propellers (L1270)</td>
<td>Problem-based Learning</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marine Propellers (L1269)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Stefan Krüger

Admission Requirements
None

Recommended Previous Knowledge

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence
- Knowledge
- Skills

Personal Competence
- Social Competence
- Autonomy

Workload in Hours
Independent Study Time 96, Study Time in Lecture 84

Credit points
6

Examination
Oral exam

Examination duration and scale
45 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1596: Cavitation

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 62, Study Time in Lecture 28

Lecturer
Prof. Moustafa Abdel-Maksoud

Language
DE

Cycle
SoSe

Content
- Phenomenon and type of cavitation
- Test facilities and instrumentations
- Dynamics of bubbles
- Bubbles cavitation
- Supercavitation
- Ventilated supercavities
- Vortex cavitation
- Sheet cavitation
- Cavitation in rotary machines
- Numerical cavitation models I
- Numerical cavitation models II
- Pressure fluctuation
- Erosion and noise

Literature
Course L1270: Marine Propellers

<table>
<thead>
<tr>
<th>Typ</th>
<th>Problem-based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 2
- Study Time in Lecture 28

Lecturer
- Prof. Stefan Krüger

Language
- DE

Cycle
- SoSe

Content
- The lectures start with the description of the propeller blade outline parameters. The design fundamentals for the blade parameters are introduced. The momentum theory for screw propellers is treated. The design optimization of the propeller by means of systematic propeller series is considered. The lecture then treats the profile theory of the airfoil with infinite span (singularity methods) for the most common technical profiles. Lifting line theory is introduced as calculation tool for radial circulation distribution. The lecture continues with the interaction propeller and main propulsion plant. Strategies to control a CPP are discussed. The lecture closes with the most important cavitation phenomena which are relevant for the determination of pressure fluctuations.

Literature
- W.H. Isay, Propellertheorie, Springer Verlag.

Course L1269: Marine Propellers

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 32
- Study Time in Lecture 28

Lecturer
- Prof. Stefan Krüger

Language
- DE

Cycle
- SoSe

Content
- The lectures start with the description of the propeller blade outline parameters. The design fundamentals for the blade parameters are introduced. The momentum theory for screw propellers is treated. The design optimization of the propeller by means of systematic propeller series is considered. The lecture then treats the profile theory of the airfoil with infinite span (singularity methods) for the most common technical profiles. Lifting line theory is introduced as calculation tool for radial circulation distribution. The lecture continues with the interaction propeller and main propulsion plant. Strategies to control a CPP are discussed. The lecture closes with the most important cavitation phenomena which are relevant for the determination of pressure fluctuations.

Literature
- W.H. Isay, Propellertheorie, Springer Verlag.
Module M0604: High-Order FEM

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Order FEM (L0280)</td>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>High-Order FEM (L0281)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Alexander Düster

Admission Requirements
None

Recommended Previous Knowledge
- Differential Equations 2 (Partial Differential Equations)

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

Students are able to

- give an overview of the different (h, p, hp) finite element procedures.
- explain high-order finite element procedures.
- specify problems of finite element procedures, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills

Students are able to

- apply high-order finite elements to problems of structural mechanics.
- select for a given problem of structural mechanics a suitable finite element procedure.
- critically judge results of high-order finite elements.
- transfer their knowledge of high-order finite elements to new problems.

Personal Competence

Social Competence

Students are able to

- solve problems in heterogeneous groups and to document the corresponding results.

Autonomy

Students are able to

- assess their knowledge by means of exercises and E-Learning.
- acquaint themselves with the necessary knowledge to solve research oriented tasks.

Workload in Hours

- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points

- 6

Examination

- Written exam
- Examination duration and scale: 120 min

Assignment for the Following Curricula

- Energy Systems: Core qualification: Elective Compulsory
- International Management and Engineering: Specialisation II, Product Development and Production: Elective Compulsory
- Materials Science: Specialisation Modeling: Elective Compulsory
- Mechanical Engineering and Management: Specialisation Product Development and Production: Elective Compulsory
- Mechatronics: Technical Complementary Course: Elective Compulsory
- Product Development, Materials and Production: Core qualification: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
- Theoretical Mechanical Engineering: Core qualification: Elective Compulsory

Course L0280: High-Order FEM

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours

- Independent Study Time: 78
- Study Time in Lecture: 42

Lecturer
Prof. Alexander Düster

Language
EN

Cycle
StSe

Content
1. Introduction
2. Motivation
3. Hierarchic shape functions
4. Mapping functions
5. Computation of element matrices, assembly, constraint enforcement and solution
6. Convergence characteristics
7. Mechanical models and finite elements for thin-walled structures
8. Computation of thin-walled structures
9. Error estimation and hp-adaptivity
10. High-order fictitious domain methods

Literature

2. [Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis – Formulation, Verification and Validation, John Wiley & Sons, 2011](#)
<table>
<thead>
<tr>
<th>Course L0281: High-Order FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ Recitation Section (large)</td>
</tr>
<tr>
<td>Hrs/wk 1</td>
</tr>
<tr>
<td>CP 2</td>
</tr>
<tr>
<td>Workload in Hours Independent Study Time 46, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer Prof. Alexander Düster</td>
</tr>
<tr>
<td>Language EN</td>
</tr>
<tr>
<td>Cycle SoSe</td>
</tr>
<tr>
<td>Content See interlocking course</td>
</tr>
<tr>
<td>Literature See interlocking course</td>
</tr>
</tbody>
</table>
Module M0605: Computational Structural Dynamics

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Typ</td>
<td>Hrs/wk</td>
<td>CP</td>
</tr>
<tr>
<td>Computational Structural Dynamics (L0282)</td>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Computational Structural Dynamics (L0283)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
- Prof. Alexander Düster

Admission Requirements
- None

Recommended Previous Knowledge
- Differential Equations II (Partial Differential Equations)

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Students are able to:
 - give an overview of the computational procedures for problems of structural dynamics.
 - explain the application of finite element programs to solve problems of structural dynamics.
 - specify problems of computational structural dynamics, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills
- Students are able to:
 - model problems of structural dynamics.
 - select a suitable solution procedure for a given problem of structural dynamics.
 - apply computational procedures to solve problems of structural dynamics.
 - verify and critically judge results of computational structural dynamics.

Personal Competence

Social Competence
- Students are able to:
 - solve problems in heterogeneous groups and to document the corresponding results.

Autonomy
- Students are able to:
 - assess their knowledge by means of exercises and E-Learning.

Workload in Hours
- **Independent Study Time**: 124, 78
- **Study Time in Lecture**: 56, 42

Credit points
- 6

Examination
- **Written exam**: 2h

Assignment for the Following Curricula
- International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
- Materials Science: Specialisation Modeling: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
- Theoretical Mechanical Engineering: Core qualification: Elective Compulsory

Course L0282: Computational Structural Dynamics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours
- **Independent Study Time**: 78, 46
- **Study Time in Lecture**: 42

Lecturer
- Prof. Alexander Düster

Language
- DE

Cycle
- SoSe

Content
- 1. Motivation
- 2. Basics of dynamics
- 3. Time integration methods
- 4. Modal analysis
- 5. Fourier transform
- 6. Applications

Literature

Course L0283: Computational Structural Dynamics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
- **Independent Study Time**: 46, 26
- **Study Time in Lecture**: 14

Lecturer
- Prof. Alexander Düster

Language
- DE

Cycle
- SoSe

Content
- See interlocking course

Literature
- See interlocking course
Module Manual M. Sc. "Naval Architecture and Ocean Engineering"

Module M0606: Numerical Algorithms in Structural Mechanics

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Algorithms in Structural Mechanics (L0284)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Numerical Algorithms in Structural Mechanics (L0285)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Alexander Düster

Admission Requirements

None

Recommended Previous Knowledge

- Differential Equations 2 (Partial Differential Equations)

Educational Objectives

Professional Competence

Knowledge

Students are able to:
- give an overview of the standard algorithms that are used in finite element programs.
- explain the structure and algorithm of finite element programs.
- specify problems of numerical algorithms, to identify them in a given situation and to explain their mathematical and computer science background.

Skills

Students are able to:
- construct algorithms for given numerical methods.
- select for a given problem of structural mechanics a suitable algorithm.
- apply numerical algorithms to solve problems of structural mechanics.
- implement algorithms in a high-level programming language (here C++).
- critically judge and verify numerical algorithms.

Personal Competence

Social Competence

Students are able to:
- solve problems in heterogeneous groups and to document the corresponding results.

Autonomy

Students are able to:
- assess their knowledge by means of exercises and E-Learning.

Workload in Hours

- Independent Study Time 124, Study Time in Lecture 56
- Credit points 6

Examination

Written exam 2h

Assignment for the Following Curricula

- Materials Science: Specialisation Modeling: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Technomathematics: Specialisation III, Engineering Science: Elective Compulsory
- Technomathematics: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Specialisation Numerics and Computer Science: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L0284: Numerical Algorithms in Structural Mechanics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours

- Independent Study Time 62, Study Time in Lecture 28

Lecturer

Prof. Alexander Düster

Language

DE

Content

1. Motivation
2. Basics of C++
3. Numerical integration
4. Solution of nonlinear problems
5. Solution of linear equation systems
6. Verification of numerical algorithms
7. Selected algorithms and data structures of a finite element code

Literature

Course L0285: Numerical Algorithms in Structural Mechanics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours

- Independent Study Time 62, Study Time in Lecture 28

Lecturer

Prof. Alexander Düster

Language

DE

Content

See interlocking course

Literature

See interlocking course
Module M0657: Computational Fluid Dynamics II

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Fluid Dynamics II (L0237)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Computational Fluid Dynamics II (L0421)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Prof. Thomas Rung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td>Basics of computational and general thermo/fluid dynamics</td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
</tbody>
</table>

Professional Competence

Knowledge: Establish a thorough understanding of Finite-Volume approaches. Familiarise with details of the theoretical background of complex CFD algorithms.

Skills: Ability to manage of interface problems and build-up of coding skills. Ability to evaluate, assess and benchmark different solution options.

Personal Competence

Social Competence: Practice of team working during team exercises.

Autonomy: Independent analysis of specific solution approaches.

Workload in Hours

- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points

- 6

Examination duration and scale

- 0.5h-0.75h

Assignment for the Following Curricula

- Energy Systems: Core qualification: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
- Theoretical Mechanical Engineering: Core qualification: Elective Compulsory

Course L0237: Computational Fluid Dynamics II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours	Independent Study Time: 62, Study Time in Lecture: 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe

Content: Computational Modelling of complex single- and multiphase flows using higher-order approximations for unstructured grids and meshless particle-based methods.

Literature: See interlocking course

Course L0421: Computational Fluid Dynamics II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours	Independent Study Time: 62, Study Time in Lecture: 28
Lecturer	Prof. Thomas Rung
Language	DE/EN
Cycle	SoSe

Content: See Interlocking course

Literature: See Interlocking course
Module M1021: Marine Diesel Engine Plants

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Diesel Engine Plants (L0637)</td>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Marine Diesel Engine Plants (L0638)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Christopher Friedrich Wirz

Admission Requirements
None

Recommended Previous Knowledge

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Students can explain different types four / two-stroke engines and assign types to given engines,
- They name definitions and characteristics, as well as
- They elaborate on special features of the heavy oil operation, lubrication and cooling.

Skills
- Students can evaluate the interaction of ship, engine and propeller,
- Use relationships between gas exchange, flushing, air demand, charge injection and combustion for the design of systems,
- Design waste heat recovery, starting systems, controls, automation, foundation and design machinery spaces, and
- Apply evaluation methods for excited motor noise and vibration.

Personal Competence

Social Competence
- The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy
- The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points
- 6

Examination
- Oral exam
- Examination duration and scale: 20 min

Assignment for the Following Curricula
- Energy Systems: Specialisation Marine Engineering: Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
<table>
<thead>
<tr>
<th>Course L0637: Marine Diesel Engine Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L0638: Marine Diesel Engine Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>
Module M1133: Port Logistics

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Logistics (L0686)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Port Logistics (L1473)</td>
<td>Recitation Section</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Carlos Jahn

Admission Requirements
None

Recommended Previous Knowledge
none

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

- The students are able to...
 - describe the historical port development (regarding port functions, port terminals and the corresponding operating models) and consider these facts in the historical contest;
 - explain different types of seaport terminals and their typical characteristics (type of cargo, handling and transportation equipment, functional areas);
 - name typical planning and scheduling tasks (e.g. berth planning, stowage planning, yard planning) as well as corresponding approaches (methods and tools) for port tasks in seaport terminals;
 - name and discuss trends regarding planning and scheduling in innovative seaport terminals.

Skills

- The students are able to...
 - recognise functional areas within seaports and within seaport terminals;
 - define and assess possible operation systems for a container terminal;
 - conduct static calculations of container terminals regarding capacity requirements based on given conditions;
 - reliably estimate how certain conditions effect typical logistics metrics in the context of the static planning process of selected seaport terminals.

Personal Competence

- The students are able to...
 - discuss and organise extensive work packages in groups;
 - document and present the elaborated results.

Social Competence

- The students are able to...

Autonomy

- The students are able to...
 - research and select technical literature as well as norms and guidelines
 - to hand in on time and to present an own share of a considerable written scientific work which was compiled in a small team together with other students

Workload in Hours

<table>
<thead>
<tr>
<th>Independent Study Time</th>
<th>124</th>
<th>Study Time in Lecture</th>
<th>56</th>
</tr>
</thead>
</table>

Credit points
6

Examination Duration and scale
120 minutes

Assignment for the Following Curricula
- International Management and Engineering: Specialisation II. Logistics: Elective Compulsory
- Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory
- Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Lecture Hours/wk</th>
<th>CP</th>
<th>Workload in Hours</th>
<th>Lecturer</th>
<th>Language</th>
<th>Cycle</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0686: Port Logistics</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td>Prof. Carlos Jahn</td>
<td>DE</td>
<td>SoSe</td>
<td>The outstanding role of maritime transport for international trade requires efficient ports. These must meet numerous requirements in terms of profitability, speed, safety and environment. Recognising this, port logistics contains the planning, management, operation and control of material flows and the corresponding information flows in the system and its interfaces to several actors within and outside the port area. The course “Port Logistics” aims to provide skills to comprehend structures and processes in ports. It focuses on different terminal types, their characteristic layouts, the technical equipment which is used and the interaction between the actors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Recitation Section (small) Hours/wk</th>
<th>CP</th>
<th>Workload in Hours</th>
<th>Lecturer</th>
<th>Language</th>
<th>Cycle</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1473: Port Logistics</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td>Prof. Carlos Jahn</td>
<td>DE</td>
<td>SoSe</td>
<td>The exercise lesson focuses on analytical tasks in the field of terminal planning. During the exercise lesson, the students work in small groups on designing terminal layouts under consideration of given conditions. The calculated logistics metrics, respectively the corresponding terminal layouts must be illustrated in 2D and 3D using special planning software.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>
Module M1148: Selected topics in Naval Architecture and Ocean Engineering

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outfitting and Operation of Special Purpose Offshore Ships (L1896)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Design of Underwater Vessels (L0670)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Offshore Wind Parks (L0072)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ship Acoustics (L1605)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Selected Topics of Experimental and Theoretical Fluidodynamics (L0240)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elements and Fluid Mechanics of Sailing Ships (L0673)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technology of Naval Surface Vessels (L0765)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Sören Ehlers

Admission Requirements: None

Recommended Previous Knowledge: None

Educational Objectives:

Professional Competence

Knowledge
- Students are able to find their way through selected special areas within naval architecture and ocean engineering.
- Students are able to explain basic models and procedures in selected special areas.
- Students are able to interrelate scientific and technical knowledge.

Skills
- Students are able to apply basic methods in selected areas of ship and ocean engineering.

Personal Competence

Social Competence
- The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy
- Students can choose independently, in which fields they want to deepen their knowledge and skills through the election of courses.

Workload in Hours
- Depends on choice of courses

Credit points: 6

Assignment for the Following Curricula: Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1896: Outfitting and Operation of Special Purpose Offshore Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 62, Study Time in Lecture 28

Examination Form: Mündliche Prüfung

Examination duration and scale: 30 min

Lecturer: Prof. Sören Ehlers, Dr. Hendrik Vorhölter

Language: DE

Cycle: SoSe

Content:
The lecture is separated into two parts. In the first part some basic skills necessary for the design of offshore vessels and their equipment will be repeated and where necessary deepened. In particular, the specialties which are common for the majority of offshore vessels will be addressed: rules and regulations, determination of operational limits as well as mooring and dynamic positioning.

In the second part of the lecture single types of special offshore vessels and their equipment and outfitting will be addressed. For each type the specific requirements on design and operation will be discussed. Furthermore, the students shall be engaged with the preparation of short presentation about the specific ship types as incentive for the respective unit. In particular, it is planned to discuss the following ship types in the lecture:
- Anchor handling and plattform supply vessels
- Cable -and pile lay vessels
- Jack-up vessels
- Heavy lift and offshore construction vessels
- Dredgers and rock dumping vessels
- Diving support vessels

Literature
Course L0670: Design of Underwater Vessels

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>30 min</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Peter Hauschildt</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
The lectures will give an overview about the design of underwater vessels. The Topics are:

1. Special requirements on the design of modern, conventional submarines
2. Design history
3. General description of submarines
4. Civil submarines
5. Diving, trim, stability
6. Rudders and propulsion systems
7. Air independent propulsion
8. Signatures
9. Hydrodynamics and CFD
10. Weapon and combat management systems
11. Safety and rescue
12. Fatigue and shock
13. Ships technical systems
14. Electrical systems and automation
15. Logistics
16. Accommodation

Some of the lectures will be held in form of an excursion to ThyssenKrupp Marine Systems in Kiel

Literature
- Gabler, U-Bootsbau

Course L0072: Offshore Wind Parks

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>45 min</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Alexander Mitzlaff</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Nonlinear Waves: Stability, pattern formation, solitary states
- Bottom Boundary layers: wave boundary layers, scour, stability of marine slopes
- Ice-structure interaction
- Wave and tidal current energy conversion

Literature
- Research Articles.
<table>
<thead>
<tr>
<th>Course L1605: Ship Acoustics</th>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td></td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Dietrich Wittekind</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
<td></td>
</tr>
</tbody>
</table>

Content

Will be announced at the beginning of the lecture. Exemplary topics are:

1. methods and procedures from experimental fluid mechanics
2. rational Approaches towards flow physics modelling
3. selected topics of theoretical computation fluid dynamics
4. turbulent flows

Literature

Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.

<table>
<thead>
<tr>
<th>Course L0240: Selected Topics of Experimental and Theoretical Fluidodynamics</th>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td></td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Thomas Rung</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
<td></td>
</tr>
</tbody>
</table>

Content

Will be announced at the beginning of the lecture. Exemplary topics are:

1. methods and procedures from experimental fluid mechanics
2. rational Approaches towards flow physics modelling
3. selected topics of theoretical computation fluid dynamics
4. turbulent flows

Literature

Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.
Course L0873: Technical Elements and Fluid Mechanics of Sailing Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time: 62, Study Time in Lecture: 28

Examination Form
Mündliche Prüfung

Examination duration and scale
30 min

Lecturer
Prof. Thomas Rung, Peter Schenzle

Language
DE/EN

Cycle
WiSe

Content
- Principles of Sailing Mechanics:
 - Sailing: Propulsion from relative motion
 - Lifting foils: Sails, wings, rudders, fins, keels
 - Wind climate: global, seasonal, meteorological, local
 - Aerodynamics of sails and sailing rigs
 - Hydrodynamics of Hulls and fins

- Technical Elements of Sailing:
 - Traditional and modern sail types
 - Modern and unconventional wind propulsors
 - Hull forms and keel-rudder-configurations
 - Sailing performance prediction (VPP)
 - Auxiliary wind propulsion (motor-sailing)

- Configuration of Sailing Ships:
 - Balancing hull and sailing rig
 - Sailing-boats and -yachts
 - Traditional Tall Sailing Ships
 - Modern Wind-Ships

Literature
- Vorlesungs-Manuskript mit Literatur-Liste: Verteilt zur Vorlesung
- B. Wagner: Sailing Ship Research at the Hamburg University, IfS-Script 2249, 1976
- A.R. Claughton et al.: Sailing Yacht Design 1&2, University of Southampton, 1998
- K. Hochkirch: Entwicklung einer Messyacht, Diss. TU Berlin, 2000

Course L0765: Technology of Naval Surface Vessels

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time: 62, Study Time in Lecture: 28

Examination Form
Mündliche Prüfung

Examination duration and scale
30 min

Lecturer
Dr. Wolfgang Sichermann

Language
DE

Cycle
WiSe

Content
- Operational scenarios, tasks, capabilities, requirements
- Product and process models, rules and regulations
- Survivability: threats, signatures, counter measures
- Design characteristics
- Energy and propulsion systems
- Command and combat systems
- Vulnerability: residual strength, residual functionality

Literature
- 16th International Ship and Offshore Structures Congress: Committee V.5 - Naval Ship Design (2006)
Module M1168: Special topics of ship structural design

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special topics of ship structural design (L1571)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Special topics of ship structural design (L1573)</td>
<td>Problem-based Learning</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Sören Ehlers

Admission Requirements
None

Recommended Previous Knowledge
Schiffskonstruktion I - II

Educational Objectives
After taking part successfully, students have reached the following learning results:

Professional Competence
Knowledge
- Design of special ship and offshore structures can be explained by means of their properties including the usage of lightweight materials and structures.
- Further, possible extreme loads can be explained.

Skills
- Methods to design special ship and offshore structures can be used and the usage of lightweight and sandwich structures can be evaluated. Further, methods to assess the structural response under extreme loads can be used.

Personal Competence
Social Competence
- Students are capable to present their structural design and discuss their decisions constructively in a group.

Autonomy
- Independent and individual assignment tasks can be carried out and presented whereby the capabilities to both, present and defend, the skills and findings will be achieved.

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points
6

Examination
- Oral exam
- Examination duration and scale: 30 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1571: Special topics of ship structural design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Lecturer
Prof. Sören Ehlers

Language
DE/EN

Cycle
SoSe

Content
- The characteristics of specialised ship types and offshore structures will be explained as well as their structural design considering service and extreme loads. Possible ship types are: RoRo's, Passenger ships, multi-purpose bulker, gas tanker, FPSO's and fast vessels. Further, the use of alternative materials to steel, such as aluminium, fibre reinforced plastics and sandwich constructions, will be explained. The extreme loads will cover: ship collisions, grounding, ice, low temperature, explosions and fire.

Literature
Script und ausgewählte Literature. Script and assorted literature.

Course L1573: Special topics of ship structural design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem-based Learning</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Lecturer
Prof. Sören Ehlers

Language
DE/EN

Cycle
SoSe

Content
- A sub-structure of a specialised ship or offshore structure will be designed also considering extreme loads.

Literature
Script und ausgewählte Literature. Script and assorted literature.
Module M1175: Special Topics of Ship Propulsion and Hydrodynamics of High Speed Water Vehicles

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamics of High Speed Water Vehicles (L1593)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Special Topics of Ship Propulsion (L1589)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Moustafa Abdel-Maksoud

Admission Requirements
None

Recommended Previous Knowledge
Basic knowledge on ship resistance, ship propulsion and propeller theory

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Understand present research questions in the field of ship propulsion
- Explain the present state of the art for the topics considered
- Apply given methodology to approach given problems
- Evaluate the limits of the present ship propulsion systems
- Identify possibilities to extend present methods and technologies
- Evaluate the feasibility of further developments

Skills
Students are able to
- select and apply suitable computing and simulation methods to determine the hydrodynamic characteristics of ship propulsion systems
- model the behavior of ship propulsion systems under different operation conditions by using simplified methods
- evaluate critically the investigation results of experimental or numerical investigations

Personal Competence

Social Competence
Students are able to
- solve problems in heterogeneous groups and to document the corresponding results
- share new knowledge with group members

Autonomy
Students are able to assess their knowledge by means of exercises and case studies

Workload in Hours

Independent Study Time 96, Study Time in Lecture 84

Credit points 6

Examination
Written exam

Examination duration and scale 180 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1593: Hydrodynamics of High Speed Water Vehicles

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 48, Study Time in Lecture 42

Lecturer
Prof. Moustafa Abdel-Maksoud

Language
DE/EN

Cycle
SoSe

Content
1. Resistance components of different high speed water vehicles
2. Propulsion units of high speed vehicles
3. Waves resistance in shallow and deep water
4. Surface effect ships (SES)
5. Hydrofoil supported vehicles
6. Semi-displacement vehicles
7. Planning vehicles
8. Slamming
9. Manoeuvrability

Literature
<table>
<thead>
<tr>
<th>Course L1589: Special Topics of Ship Propulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
</tr>
<tr>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td>* N. N., International Conference Waterjet 4, RINA London, 2004</td>
</tr>
<tr>
<td>* N. N., 1st International Conference on Technological Advances in Podded Propulsion, Newcastle, 2004</td>
</tr>
</tbody>
</table>
Module M0653: High-Performance Computing

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of High-Performance Computing (L0242)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of High-Performance Computing (L1416)</td>
<td>Problem-based Learning</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Thomas Rung

Admission Requirements
None

Recommended Previous Knowledge
- Basic knowledge in usage of modern IT environment
- Programming skills

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
Students are able to outline the fundamentals of numerical algorithms for high-performance computers by reference to modern hardware examples.
Students can explain the relation between hard- and software aspects for the design of algorithms.

Skills
Student can perform a critical assessment of the computational efficiency of simulation approaches.

Personal Competence

Social Competence
Students are able to develop and code algorithms in a team.

Autonomy

Workload in Hours
Independent Study Time 124, Study Time in Lecture 56

Credit points
6

Examination
Written exam

Examination duration and scale
1.5h

Assignment for the Following Curricula
- Electrical Engineering: Specialisation Modeling and Simulation: Elective Compulsory
- Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Specialisation Numerics and Computer Science: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L0242: Fundamentals of High-Performance Computing

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
<th>Workload in Hours</th>
<th>Lecturer</th>
<th>Language</th>
<th>Cycle</th>
<th>Content</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td>Prof. Thomas Rung</td>
<td>DE/EN</td>
<td>SoSe</td>
<td>Fundamentals of modern hardware architecture, critical hard- & software aspects for efficient processing of exemplary algorithms, concepts for shared- and distributed-memory systems, implementations for accelerator hardware (GPGPUs)</td>
<td></td>
</tr>
</tbody>
</table>

Course L1416: Fundamentals of High-Performance Computing

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
<th>Workload in Hours</th>
<th>Lecturer</th>
<th>Language</th>
<th>Cycle</th>
<th>Content</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem-based Learning</td>
<td>2</td>
<td>3</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
<td>Prof. Thomas Rung</td>
<td>DE/EN</td>
<td>SoSe</td>
<td>See interlocking course</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M1148: Selected topics in Naval Architecture and Ocean Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outfitting and Operation of Special Purpose Offshore Ships (L1896)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Design of Underwater Vessels (L0870)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Offshore Wind Parks (L0072)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ship Acoustics (L1605)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Selected Topics of Experimental and Theoretical Fluidynamics (L0240)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elements and Fluid Mechanics of Sailing Ships (L0873)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Technology of Naval Surface Vessels (L1065)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Sören Ehlers
Admission Requirements: None
Recommended Previous Knowledge: None

Educational Objectives:

Professional Competence

Knowledge
- Students are able to find their way through selected special areas within naval architecture and ocean engineering
- Students are able to explain basic models and procedures in selected special areas.
- Students are able to interrelate scientific and technical knowledge.

Skills
- Students are able to apply basic methods in selected areas of ship and ocean engineering.

Personal Competence

Social Competence
- The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy
- Students can choose independently, in which fields they want to deepen their knowledge and skills through the election of courses.

Workload in Hours
- Depends on choice of courses

Credit points
- 6

Assignment for the Following Curricula:
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory

Course L1896: Outfitting and Operation of Special Purpose Offshore Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 62, Study Time in Lecture 28

Examination Form
- Mündliche Prüfung

Examination duration and scale
- 30 min

Lecturer
- Prof. Sören Ehlers, Dr. Hendrik Vorhölter

Language
- DE

Cycle
- SoSe

Content
- The lecture is separated into two parts. In the first part some basic skills necessary for the design of offshore vessels and their equipment will be repeated and where necessary deepened. In particular, the specialties which are common for the majority of offshore vessels will be addressed: rules and regulations, determination of operational limits as well as mooring and dynamic positioning.

In the second part of the lecture single types of special offshore vessels and their equipment and outfitting will be addressed. For each type the specific requirements on design and operation will be discussed. Furthermore, the students shall be engaged with the preparation of short presentation about the specific ship types as incentive for the respective unit. In particular, it is planned to discuss the following ship types in the lecture:
- Anchor handling and platfform supply vessels
- Cable - and pile lay vessels
- Jack-up vessels
- Heavy lift and offshore construction vessels
- Dredgers and rock dumping vessels
- Diving support vessels

Literature
Course L0670: Design of Underwater Vessels

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours: Independent Study Time 62, Study Time in Lecture 28

Examination Form: Mündliche Prüfung

Examination duration and scale: 30 min

Lecturer: Peter Hauschildt

Language: DE

Cycle: SS18

Content

The lectures will give an overview about the design of underwater vessels. The Topics are:

1. Special requirements on the design of modern, conventional submarines
2. Design history
3. General description of submarines
4. Civil submarines
5. Diving, trim, stability
6. Rudders and Propulsion systems
7. Air Independent propulsion
8. Signatures
9. Hydrodynamics and CFD
10. Weapon- and combat management systems
11. Safety and rescue
12. Fatigue and shock
13. Ships technical systems
14. Electrical Systems and automation
15. Logistics
16. Accommodation

Some of the lectures will be held in form of an excursion to ThyssenKrupp Marine Systems in Kiel

Literature

- Gabler, Ubootbau

Course L0072: Offshore Wind Parks

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours: Independent Study Time 62, Study Time in Lecture 28

Examination Form: Mündliche Prüfung

Examination duration and scale: 45 min

Lecturer: Dr. Alexander Mitzlaff

Language: DE

Cycle: WiSe

Content

- Nonlinear Waves: Stability, pattern formation, solitary states
- Bottom Boundary layers: wave boundary layers, scour, stability of marine slopes
- Ice-structure interaction
- Wave and tidal current energy conversion

Literature

- Research Articles.
Course L1605: Ship Acoustics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Examination Form
- Mündliche Prüfung

Examination duration and scale
- 30 min

Lecturer
- Dr. Dietrich Wittekind

Language
- DE

Cycle
- SoSe

Content

Literature

Course L0240: Selected Topics of Experimental and Theoretical Fluidodynamics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Examination Form
- Mündliche Prüfung

Examination duration and scale
- 30 min

Lecturer
- Prof. Thomas Rung

Language
- DE

Cycle
- WiSe

Content

- Will be announced at the beginning of the lecture. Exemplary topics are
 1. methods and procedures from experimental fluid mechanics
 2. rational Approaches towards flow physics modelling
 3. selected topics of theoretical computation fluid dynamics
 4. turbulent flows

Literature

Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.
Course L0873: Technical Elements and Fluid Mechanics of Sailing Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>30 min</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Thomas Rung, Peter Schenzle</td>
</tr>
<tr>
<td>Language</td>
<td>DE/EN</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Principles of Sailing Mechanics:
 - Sailing: Propulsion from relative motion
 - Lifting foils: Sails, wings, rudders, fins, keels
 - Wind climate: global, seasonal, meteorological, local
 - Aerodynamics of sails and sailing rigs
 - Hydrodynamics of Hulls and fins
- Technical Elements of Sailing:
 - Traditional and modern sail types
 - Modern and unconventional wind propulsors
 - Hull forms and keel-rudder-configurations
 - Sailing performance Prediction (VPP)
 - Auxiliary wind propulsion (motor-sailing)
- Configuration of Sailing Ships:
 - Balancing hull and sailing rig
 - Sailing-boats and -yachts
 - Traditional Tall Sailing Ships
 - Modern Wind-Ships

Literature
- Vorlesungs-Manuskript mit Literatur-Liste: Verteilt zur Vorlesung
- B. Wagner: Sailing Ship Research at the Hamburg University, IfS-Script 2249, 1976
- A.R. Claughton et al.: Sailing Yacht Design 1 & 2, University of Southampton, 1998
- K. Hochkirch: Entwicklung einer Messyacht, Diss. TU Berlin, 2000

Course L0765: Technology of Naval Surface Vessels

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Examination Form</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>30 min</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Wolfgang Sichermann</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Operational scenarios, tasks, capabilities, requirements
- Product and process models, rules and regulations
- Survivability: threats, signatures, counter measures
- Design characteristics
- Energy and propulsion systems
- Command and combat systems
- Vulnerability: residual strength, residual functionality

Literature
- 16th International Ship and Offshore Structures Congress: Committee V.5 - Naval Ship Design (2006)
Module M0603: Nonlinear Structural Analysis

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear Structural Analysis (L0277)</td>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Nonlinear Structural Analysis (L0279)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Alexander Düster

Admission Requirements
None

Recommended Previous Knowledge
- Differential Equations 2 (Partial Differential Equations)

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Students are able to
 - give an overview of the different nonlinear phenomena in structural mechanics.
 - explain the mechanical background of nonlinear phenomena in structural mechanics.
 - to specify problems of nonlinear structural analysis, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills
- Students are able to
 - model nonlinear structural problems.
 - select for a given nonlinear structural problem a suitable computational procedure.
 - apply finite element procedures for nonlinear structural analysis.
 - critically verify and judge results of nonlinear finite elements.
 - to transfer their knowledge of nonlinear solution procedures to new problems.

Personal Competence

Social Competence
- Students are able to
 - solve problems in heterogeneous groups and to document the corresponding results.
 - share new knowledge with group members.

Autonomy
- Students are able to
 - assess their knowledge by means of exercises and E-Learning.

Workload in Hours

| Independent Study Time | 124 |
| Study Time in Lecture | 56 |

Credit points
6

Examination

- Written exam
- Examination duration and scale: 120 min

Assignment for the Following Curricula
- Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
- International Management and Engineering: Specialisation II: Civil Engineering: Elective Compulsory
- Materials Science: Specialisation Modeling: Elective Compulsory
- Mechatronics: Specialisation System Design: Elective Compulsory
- Product Development, Materials and Production: Core qualification: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Ship and Offshore Technology: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L0277: Nonlinear Structural Analysis

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours

- Independent Study Time 78, Study Time in Lecture 42

Lecturer
Prof. Alexander Düster

Language
DE/EN

Cycle
Wille

Content
1. Introduction
2. Nonlinear phenomena
3. Mathematical preliminaries
4. Basic equations of continuum mechanics
5. Spatial discretization with finite elements
6. Solution of nonlinear systems of equations
7. Solution of elastoplastic problems
8. Stability problems
9. Contact problems

Literature
<table>
<thead>
<tr>
<th>Course L0279: Nonlinear Structural Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>
Module M0658: Innovative CFD Approaches

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Innovative CFD Methods in Research and Development (L0239)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Application of Innovative CFD Methods in Research and Development (L1685)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Thomas Rung

Admission Requirements
None

Recommended Previous Knowledge
- Attendance of a computational fluid dynamics course (CFD1/CFD2)
- Competent knowledge of numerical analysis in addition to general and computational thermo/fluid dynamics

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

- Knowledge: Student can explain the theoretical background of different CFD strategies (e.g. Lattice-Boltzmann, Smoothed Particle-Hydrodynamics, Finite-Volume methods) and describe the fundamentals of simulation-based optimisation.

- Skills: Student is able to identify an appropriate CFD-based solution strategy on a justified basis.

Personal Competence

- Social Competence: Student should practice her/his team-working abilities, learn to lead team sessions and present solutions to experts.

- Autonomy: Student should be able to structure and perform a simulation-based project independently.

Workload in Hours
- Independent Study Time: 124, Study Time in Lecture: 56

Credit points
6

Examination
Project

Examination duration and scale
- Project thesis (lecture accompanying, approx. 25 pages) with thesis defence (approx. 45 minutes)

Assignment for the Following Curricula
- Energy Systems: Core qualification: Elective Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Ship and Offshore Technology: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
- Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory

Course L0239: Application of Innovative CFD Methods in Research and Development

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62, Study Time in Lecture: 28

Lecturer
Prof. Thomas Rung

Language
DE/EN

Cycle
WiSe

Content
- Computational Optimisation
- Parallel Computing
- Efficient CFD Procedures for GPU Architectures
- Alternative Approximations (Lattice-Boltzmann Methods, Particle Methods)
- Fluid/Structure-Interaction
- Modelling of Hybrid Continua

Literature
Vorlesungsmaterialien /lecture notes

Course L1685: Application of Innovative CFD Methods in Research and Development

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62, Study Time in Lecture: 28

Lecturer
Prof. Thomas Rung

Language
DE/EN

Cycle
WiSe

Content
See interlocking course

Literature
See interlocking course
Module M0751: Vibration Theory

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration Theory (L0701)</td>
<td>Lecture</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Module Responsible
- Prof. Norbert Hoffmann

Admission Requirements
- None

Recommended Previous Knowledge
- Calculus
- Linear Algebra
- Engineering Mechanics

Educational Objectives
- After taking part successfully, students have reached the following learning results
 - **Professional Competence**
 - **Knowledge**
 - Students are able to denote terms and concepts of Vibration Theory and develop them further.
 - **Skills**
 - Students are able to denote methods of Vibration Theory and develop them further.
 - **Personal Competence**
 - **Social Competence**
 - Students can reach working results also in groups.
 - **Autonomy**
 - Students are able to approach individually research tasks in Vibration Theory.

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points
- 6

Examination
- Written exam
 - Examination duration and scale: 2 Hours

Assignment for the Following Curricula
- Energy Systems: Core qualification: Elective Compulsory
- Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
- International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
- Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
- Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
- Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
- Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
- Product Development, Materials and Production: Core qualification: Compulsory
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
- Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L0701: Vibration Theory

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>4</td>
</tr>
<tr>
<td>CP</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Lecturer
- Prof. Norbert Hoffmann

Language
- DE/EN

Cycle
- WiSe

Content
- Linear and Nonlinear Single and Multiple Degree of Freedom Oscillations and Waves.

Literature
Module M1147: Research Project Naval Architecture and Ocean Engineering

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Responsible</td>
<td>Dozenten des Studiengangs</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td>Subjects of the Master program and the specialisations.</td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
</tbody>
</table>

Professional Competence
- **Knowledge**
 - Students can explain the project as well as their autonomously gained knowledge and relate it to current issues of their field of study.
 - They can explain the basic scientific methods they have worked with.
- **Skills**
 - The students are able to autonomously solve a limited scientific task under the guidance of an experienced researcher. They can justify and explain their approach for problem solving; they can draw conclusions from their results, and then can find new ways and methods for their work. Students are capable of comparing and assessing alternative approaches with their own with regard to given criteria.

Personal Competence
- **Social Competence**
 - The students are able to condense the relevance and the structure of the project work, the work procedure and the sub-problems for the presentation and discussion in front of a bigger group. They can lead the discussion and give a feedback on the project to their peers and supervisors.
- **Autonomy**
 - The students are capable of independently planning and documenting the work steps and procedures while considering the given deadlines. This includes the ability to accurately procure the newest scientific information. Furthermore, they can obtain feedback from experts with regard to the progress of the work, and to accomplish results on the state of the art in science and technology.

Workload in Hours
- Independent Study Time: 360
- Study Time in Lecture: 0

Credit points 12

Examination
- Project (accord. to Subject Specific Regulations)

Examination duration and scale
- depending on task

Assignment for the Following Curricula
- Naval Architecture and Ocean Engineering: Core qualification: Compulsory
Module M1157: Marine Auxiliaries

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Installation on Ships</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(L1531)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Auxiliary Systems on Board of Ships</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(L1249)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Christopher Friedrich Wirz

Admission Requirements
None

Recommended Previous Knowledge
After taking part successfully, students have reached the following learning results

Professional Competence
Knowledge
The students are able to
- name the operating behaviour of consumers,
- describe special requirements on the design of supply networks and to the electrical equipment in isolated networks, as e.g. onboard ships, offshore units, factories and emergency power supply systems,
- explain power generation and distribution in isolated grids, wave generator systems on ships,
- name requirements for network protection, selectivity and operational monitoring,
- name the requirements regarding marine equipment and apply to product development, as well as
- describe operating procedures of equipment components of standard and specialized ships and derive requirements for product development.

Skills
Students are able to
- calculate short-circuit currents, switchgear,
- design electrical propulsion systems for ships
- design additional machinery components, as well as
- to apply basic principles of hydraulics and to develop hydraulic systems.

Personal Competence
Social Competence
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.

Workload
Independent Study Time: 96
Study Time in Lecture: 84

Credit points: 6

Examination
Oral exam

Examination duration and scale
20 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory

Course L1531: Electrical Installation on Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload
Independent Study Time: 32
Study Time in Lecture: 28

Lecturer
Prof. Günter Ackermann

Language
DE

Cycle
WiSe

Content
- performance in service of electrical consumers,
- special requirements for power supply systems and for electrical equipment in isolated systems/networks e. g. aboard ships, offshore installations, factory systems and emergency power supply systems,
- power generation and distribution in isolated networks, shaft generators for ships
- calculation of short circuits and behaviour of switching devices
- protective devices, selectivity monitoring
- electrical Propulsion plants for ships

Literature
H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag
(engl. Version: "Compendium Marine Engineering")
Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin
Course L1532: Electrical Installation on Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Günter Ackermann</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1249: Auxiliary Systems on Board of Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>
| Content | Vorschriften zur Schiffsausrüstung
| | Ausrüstungsanlagen auf Standard-Schiffen
| | Ausrüstungsanlagen auf Spezial-Schiffen
| | Grundlagen und Systemtechnik der Hydraulik
| | Auslegung und Betrieb von Ausrüstungsanlagen |
| Literature | H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
| | H. Watter: Hydraulik und Pneumatik |

Course L1250: Auxiliary Systems on Board of Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See korrespondierende Vorlesung</td>
</tr>
<tr>
<td>Literature</td>
<td>Siehe korrespondierende Vorlesung</td>
</tr>
</tbody>
</table>
Module M1166: Advanced Ship Design

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Ship Design (L1567)</td>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Ship Design (L1710)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Prof. Stefan Krüger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td>Ship Design, Hydrostatics, Ship Safety, Resistance and Propulsion</td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
</tbody>
</table>

Professional Competence

- **Knowledge**: The most important design problems, constraints and methods related to the a.m. ship types are referenced, based on the list of methods developed in Ship Design I. The a.m. ship types serve as reference vessels where the application shall point out specific design aspects. The lecture closes with a brief introduction of design principles of dry bulk carriers, paper carriers and ouble ended ferries.

- **Skills**: Der Student soll die in Schiffsentwurf I erworbenen Kenntnisse und das zugehörige Methodenwissen konkrete an bestimmten Trockenfrachtern sowie an Passagierschiffen vertiefen. Am Ende der Vorlesung wird erwartet, dass der Student in der Lage ist, elementare Schiffsentwürfe durchzuführen zu können.

Personal Competence

- **Social Competence**: The student learns to make technical decisions and to get acceptance for his decisions.

- **Autonomy**: Autonomous Elaboration of Design Information.

Workload in Hours

| Independent Study Time | 124 |
| Study Time in Lecture | 56 |

Credit points

| 6 |

Examination

| Written exam | 180 min |

Assignment for the Following Curricula

| Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory |

Course L1567: Advanced Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time</th>
<th>Study Time in Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Prof. Stefan Krüger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
<th>WiSe</th>
</tr>
</thead>
</table>

Content

The most important design problems, constraints and methods related to the a.m. ship types are referenced, based on the list of methods developed in Ship Design I. The a.m. ship types serve as reference vessels where the application shall point out specific design aspects. The lecture closes with a brief introduction of design principles of dry bulk carriers, paper carriers and ouble ended ferries.

Literature

Schneekluth, Entwerfen von Schiffen

Course L1710: Advanced Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recitation Section (large)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time</th>
<th>Study Time in Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Prof. Stefan Krüger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
<th>WiSe</th>
</tr>
</thead>
</table>

Content

See interlocking course

Literature

See interlocking course
Module M1178: Manoeuvrability and Shallow Water Ship Hydrodynamics

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manoeuvrability of Ships</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Shallow Water Ship Hydrodynamics</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Moustafa Abdel-Maksoud

Admission Requirements
None

Recommended Previous Knowledge
B.Sc. Schiffbau

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
The students learn the motion equation and how to describe hydrodynamic forces. They will be able to develop methods for analysis of manoeuvring behaviour of ships and explaining the Nomoto equation. The students will know the common model tests as well as their assets and drawbacks. Furthermore, the students learn the basics of assessment and prognosis of ship manoeuvrability. Basics of characteristics of flows around ships in shallow water regarding ship propulsion and manoeuvrability will be acquired.

Skills

Personal Competence

Social Competence

Autonomy

Workload in Hours
- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points
6

Examination
Written exam

Examination duration and scale
180 min

Assignment for the Following Curricula
- Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
- Ship and Offshore Technology: Core qualification: Elective Compulsory

Course L1597: Manoeuvrability of Ships

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 62
- Study Time in Lecture: 28

Lecture
Prof. Moustafa Abdel-Maksoud

Language
DE/EN

Cycle
WiSe

Content
- coordinates & degrees of freedom
- governing equations of motion
- hydrodynamic forces & moments
- rudder forces
- navigation based on linearised eq.of motion (exemplary solutions, yaw stability)
- manoeuvring test (constraint & unconstraint motion)
- slender body approximation

Learning Outcomes
Introduction into basic concepts for the assessment and prognosis ship manoeuvrability.

Literature
- Crane, C. L. H., Eda, A. L., Principles of Naval Architecture, Chapter 9, Controllability, SNAME, New York, 1989
- Söding, H., Manövrieren, Vorlesungsmanuskript, Institut für Fluiddynamik und Schiffstheorie, TUHH, Hamburg, 1995
<table>
<thead>
<tr>
<th>Course</th>
<th>L1598: Shallow Water Ship Hydrodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Lecture</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Moustafa Abdel-Maksoud, Dr. Norbert Stuntz</td>
</tr>
<tr>
<td>Language</td>
<td>DE/EN</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| Content | - Special Aspects of Shallow Water Hydrodynamics, Vertical and Horizontal Constraints, Irregularities in Channel Bed
- Fundamental Equations of Shallow Water Hydrodynamics
- Approximation of Shallow Water Waves, Boussinesq’s Approximation
- Ship Waves in Deep Water and under critical, non-critical and supercritical Velocities
- Solitary Waves, Critical Speed Range, Extinction of Waves
- Aspects of Ship motions in Canals with limited water depth |
- Schneekluth (1988): Hydromechanik zum Schiffsentwurf
Module M1232: Arctic Technology

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ice Engineering (L1607)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ice Engineering (L1615)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ship structural design for arctic conditions (L1575)</td>
<td>Problem-based Learning</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Sören Ehlers

Admission Requirements
None

Recommended Previous Knowledge
none

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
The challenges and requirements due to ice can be explained. Ice loads can be explained and ice strengthening can be understood.

Skills
The challenges and requirements due to ice can be assessed and the accuracy of these assessment can be evaluated. Calculation models to assess ice loads can be used and a structure can be designed accordingly.

Personal Competence

Social Competence
Students are capable to present their structural design and discuss their decisions constructively in a group.

Autonomy
Independent and individual assignment tasks can be carried out and presented whereby the capabilities to both, present and defend, the skills and findings will be achieved.

Workload in Hours
Independent Study Time: 110, Study Time in Lecture: 70

Credit points
6

Examination
don't need

Examination duration and scale
30 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Ship and Offshore Technology: Core qualification: Elective Compulsory

Course L1607: Ice Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time: 32, Study Time in Lecture: 28

Lecturer
Dr. Walter Kuehnlein

Language
DE/EN

Cycle
WiSe

Content
1. Ice, Ice Properties, Ice Failure Modes and Challenges and Requirements due to Ice
 - Introduction, what is/means ice engineering
 - Description of different kinds of ice, main ice properties and different ice failure modes
 - Why is ice so different compared to open water
 - Presentation of design challenges and requirements for structures and systems in ice covered waters
2. Ice Load Determination and Ice Model Testing
 - Overview of different empirical equations for simple determination of ice loads
 - Discussion and interpretation of the different equations and results
 - Introduction to ice model tests
 - What are the requirements for ice model tests, what parameters have to be scaled
 - What can be simulated and how to use the results of such ice model tests
3. Computational Modelling of Ice-Structure Interaction Processes
 - Dynamic fracture and continuum mechanics for modelling ice-structure interaction processes
 - Discussion of contribution of ice properties, hydrodynamics and rubble.
4. Ice Design Philosophies and Perspectives
 - What has to be considered when designing structures or systems for ice covered waters
 - What are the main differences compared to open water design
 - Ice Management
 - What are the main ice design philosophies and why is an integrated concept so important for ice

Learning Objectives
The course will provide an introduction into ice engineering. Different kinds of ice and their different failure modes including numerical methods for ice load simulations are presented. Main design issues including design philosophies for structures and systems for ice covered waters are introduced. The course shall enable the attendees to understand the fundamental challenges due to ice covered waters and help them to understand ice engineering reports and presentations.

Literature
- Proceedings OMAE
- Proceedings POAC
- Proceedings ATC
Course L1615: Ice Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 46, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Walter Kuehnlein</td>
</tr>
<tr>
<td>Language</td>
<td>DE/EN</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1575: Ship structural design for arctic conditions

<table>
<thead>
<tr>
<th>Typ</th>
<th>Problem-based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE/EN</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>The structural design under ice loads will be carried out for an individual case</td>
</tr>
<tr>
<td>Literature</td>
<td>FSICR, IACS PC and assorted publications</td>
</tr>
</tbody>
</table>
Module M1240: Fatigue Strength of Ships and Offshore Structures

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Fatigue Strength of Ships and Offshore Structures (L1521)</td>
<td>Fatigue Strength of Ships and Offshore Structures (L1522)</td>
</tr>
<tr>
<td>Typ</td>
<td>Lecture</td>
<td>Recitation Section (small)</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Sören Ehlers

Admission Requirements
None

Recommended Previous Knowledge
Structural analysis of ships and/or offshore structures and fundamental knowledge in mechanics and mechanics of materials

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence
- Knowledge
 - Students are able to describe fatigue loads and stresses, as well as
 - describe structural behaviour under cyclic loads.

- Skills
 - Students are able to calculate life prediction based on the S-N approach as well as life prediction based on the crack propagation.

Personal Competence
- Social Competence
 - The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

- Autonomy
 - The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.

Workload in Hours
Independent Study Time 124, Study Time in Lecture 56

Credit points
6

Examination
Oral exam

Examination duration and scale
30 min

Assignment for the Following Curricula
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Ship and Offshore Technology: Core qualification: Elective Compulsory

Course L1521: Fatigue Strength of Ships and Offshore Structures

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 62, Study Time in Lecture 28

Lecturer
Prof. Wolfgang Fricke

Language
EN

Cycle
WiSe

Content
1.) Introduction
2.) Fatigue loads and stresses
3.) Structural behaviour under cyclic loads
 - Structural behaviour under constant amplitude loading
 - Influence factors on fatigue strength
 - Material behaviour under constant amplitude loading
 - Special aspects of welded joints
 - Structural behaviour under variable amplitude loading
4.) Life prediction based on the S-N approach
 - Damage accumulation hypotheses
 - Nominal stress approach
 - Structural stress approach
 - Notch stress approach
 - Notch strain approach
 - Numerical analyses
5.) Life prediction based on the crack propagation
 - Basic relationships in fracture mechanics
 - Description of crack propagation
 - Numerical analysis
 - Safety against unstable fracture

Literature
Siehe Vorlesungsskript

Course L1522: Fatigue Strength of Ships and Offshore Structures

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 62, Study Time in Lecture 28

Lecturer
Prof. Wolfgang Fricke

Language
EN

Cycle
WiSe

Content
See interlocking course

Literature
See interlocking course
Module Manual M. Sc. "Naval Architecture and Ocean Engineering"

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear and Nonlinear Waves (L1737)</td>
<td>Module Responsible</td>
<td>Prof. Norbert Hoffmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admission Requirements</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended Previous Knowledge</td>
<td>Good Knowledge in Mathematics, Mechanics and Dynamics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Competence</td>
<td>Knowledge: Students are able to reflect existing terms and concepts in Wave Mechanics and to develop and research new terms and concepts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skills: Students are able to apply existing methods and procedures in Wave Mechanics and to develop novel methods and procedures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Competence</td>
<td>Students can reach working results also in groups.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autonomy</td>
<td>Students are able to approach given research tasks individually and to identify and follow up novel research tasks by themselves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workload in Hours</td>
<td>Independent Study Time 124, Study Time in Lecture 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit points</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>Written exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination duration and scale</td>
<td>2 Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment for the Following Curricula</td>
<td>Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechatronics: Specialisation System Design: Elective Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theoretical Mechanical Engineering: Specialisation Maritime Technology: Elective Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L1737: Linear and Nonlinear Waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
</tbody>
</table>
Master thesis

Educational Aim

The aim of the individual master thesis is to develop the student’s project development skills and to combine many of the aspects learned during other modules within a specific topic and a coherent body of work. This will be achieved through students carrying out work into a particular topic relating to their theme and preparing a master thesis.

Learning Outcomes

On completion of the thesis, the student is expected to be able to

LO1 Plan and execute an individual project in an appropriate field of study.

LO2 Carry out an in-depth investigation of a leading edge topic.

LO3 Prepare, analyse and document project findings.

Syllabus

The individual master thesis is a major exercise undertaken throughout the period of study.

The student will investigate a relevant and agreed topic, adhering to a defined schedule, with the findings being documented in a master thesis.

The thesis may be undertaken in any institute with approval, or wholly in industry.

Based on the work of a project, a student will submit an individual master thesis which forms the main basis for assessment.

Assessment of Learning Outcomes

Criteria

LO1 Plan and execute an individual project in an appropriate field of study.

C1 Coverage, justification and analysis of field of study/topic and objectives.

C2 Rationale; Logical arguments (overall and within text); Flow; Completeness; Structure; Consistency; Correctness of assumptions, deductions; Methodology used etc.

LO2 Carry out an in-depth investigation of a leading edge topic.

C1 Critical analysis (problems and solutions); Objectivity.

C2 Evaluation; Demonstration of concepts; Case Study.

C3 Clarity, completeness and quality of findings and presentation.

LO3 Prepare, analyse and document project findings.

C1 Description of topic (depth and breadth), references to other work, logical development in the field.

C2 Clarity of writing; English; Grammar; Proper use of words; Presentation; Figures; Style; Quality.

C3 Description of outcomes, conclusions and recommendations.

C4 Evidence of contribution.

Module M-002: Master Thesis

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
</tbody>
</table>

Module Responsible: Professoren der TUHH

Admission Requirements

According to General Regulations §24 (1):

At least 78 credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence Knowledge

- The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues.
- The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing current developments and taking up a critical position on them.
- The students can place a research task in their subject area in its context and describe and critically assess the state of research.

[55]
Skills

The students are able:

- To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
- To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incompletely defined problems in a solution-oriented way.
- To develop new scientific findings in their subject area and subject them to a critical assessment.

Personal Competence

Social Competence

Students can:

- Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
- Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly.

Autonomy

Students are able:

- To structure a project of their own in work packages and to work them off accordingly.
- To work their way in depth into a largely unknown subject and to access the information required for them to do so.
- To apply the techniques of scientific work comprehensively in research of their own.

Workload in Hours

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 900, Study Time in Lecture 0</th>
</tr>
</thead>
</table>

Credit points

30

Examination

According to Subject Specific Regulations

Examination duration and scale

See FSPO

Assignment for the Following Curricula

- Civil Engineering: Thesis: Compulsory
- Biotechnology and Bioprocess Engineering: Thesis: Compulsory
- Computer Science: Thesis: Compulsory
- Electrical Engineering: Thesis: Compulsory
- Energy and Environmental Engineering: Thesis: Compulsory
- Environmental Engineering: Thesis: Compulsory
- Aircraft Systems Engineering: Thesis: Compulsory
- Global Innovation Management: Thesis: Compulsory
- Computational Science and Engineering: Thesis: Compulsory
- Information and Communication Systems: Thesis: Compulsory
- International Production Management: Thesis: Compulsory
- International Management and Engineering: Thesis: Compulsory
- Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
- Logistics, Infrastructure and Mobility: Thesis: Compulsory
- Materials Science: Thesis: Compulsory
- Mechanical Engineering and Management: Thesis: Compulsory
- Mechatronics: Thesis: Compulsory
- Biomedical Engineering: Thesis: Compulsory
- Microelectronics and Microsystems: Thesis: Compulsory
- Product Development, Materials and Production: Thesis: Compulsory
- Renewable Energies: Thesis: Compulsory
- Naval Architecture and Ocean Engineering: Thesis: Compulsory
- Ship and Offshore Technology: Thesis: Compulsory
- Theoretical Mechanical Engineering: Thesis: Compulsory
- Process Engineering: Thesis: Compulsory
- Water and Environmental Engineering: Thesis: Compulsory