<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>Program description</td>
<td>2</td>
</tr>
<tr>
<td>Core qualification</td>
<td>3</td>
</tr>
<tr>
<td>Module M0608: Basics of Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Module M0782: Computer Science for Mechanical Engineers</td>
<td>6</td>
</tr>
<tr>
<td>Module M0577: Nontechnical Complementary Courses for Bachelors</td>
<td>8</td>
</tr>
<tr>
<td>Module M0850: Mathematics I</td>
<td>11</td>
</tr>
<tr>
<td>Module M0889: Mechanics I (Statics)</td>
<td>15</td>
</tr>
<tr>
<td>Module M0933: Fundamentals of Materials Science</td>
<td>18</td>
</tr>
<tr>
<td>Module M0671: Technical Thermodynamics I</td>
<td>21</td>
</tr>
<tr>
<td>Module M0696: Mechanics II: Mechanics of Materials</td>
<td>24</td>
</tr>
<tr>
<td>Module M0594: Fundamentals of Mechanical Engineering Design</td>
<td>26</td>
</tr>
<tr>
<td>Module M0851: Mathematics II</td>
<td>29</td>
</tr>
<tr>
<td>Module M0597: Advanced Mechanical Engineering Design</td>
<td>33</td>
</tr>
<tr>
<td>Module M0598: Mechanical Engineering: Design</td>
<td>39</td>
</tr>
<tr>
<td>Module M0829: Foundations of Management</td>
<td>44</td>
</tr>
<tr>
<td>Module M0959: Mechanics III (Hydrostatics, Kinematics, Kinetics I)</td>
<td>48</td>
</tr>
<tr>
<td>Module M0853: Mathematics III</td>
<td>50</td>
</tr>
<tr>
<td>Module M1118: Hydrostatics and Body Plan</td>
<td>54</td>
</tr>
<tr>
<td>Module M0960: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)</td>
<td>58</td>
</tr>
<tr>
<td>Module M0854: Mathematics IV</td>
<td>61</td>
</tr>
<tr>
<td>Module M0680: Fluid Dynamics</td>
<td>65</td>
</tr>
<tr>
<td>Module M0640: Stochastics and Ship Dynamics</td>
<td>67</td>
</tr>
<tr>
<td>Module M0655: Computational Fluid Dynamics I</td>
<td>71</td>
</tr>
<tr>
<td>Module M0659: Fundamentals of Ship Structural Design and Analysis</td>
<td>73</td>
</tr>
<tr>
<td>Module M0664: Structural Design and Construction of Ships</td>
<td>77</td>
</tr>
<tr>
<td>Module M1023: Marine Propulsion</td>
<td>80</td>
</tr>
<tr>
<td>Module M1109: Resistance and Propulsion</td>
<td>83</td>
</tr>
<tr>
<td>Module M1110: Ship Design</td>
<td>85</td>
</tr>
<tr>
<td>Thesis</td>
<td>87</td>
</tr>
<tr>
<td>Module M-001: Bachelor Thesis</td>
<td></td>
</tr>
</tbody>
</table>
Program description

Content
Core qualification

Module M0608: Basics of Electrical Engineering

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Basics of Electrical Engineering (L0290)</td>
</tr>
<tr>
<td>Basics of Electrical Engineering (L0292)</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Thorsten Kern

Admission Requirements
None

Recommended Previous Knowledge
Basics of mathematics

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
Students can to draw and explain circuit diagrams for electric and electronic circuits with a small number of components. They can describe the basic function of electric and electronic components and can present the corresponding equations. They can demonstrate the use of the standard methods for calculations.

Skills
Students are able to analyse electric and electronic circuits with few components and to calculate selected quantities in the circuits. They apply the usual methods of the electrical engineering for this.

Personal Competence

Social Competence
none

Autonomy
Students are able independently to analyse electric and electronic circuits and to calculate selected quantities in the circuits.

Workload in Hours
Independent Study Time 110, Study Time in Lecture 70

Credit points
6

Course achievement
None

Examination
Written exam

Examination duration and scale
135 minutes

Assignment for the Following Curricula
- Bioprocess Engineering: Core qualification: Compulsory
- Energy and Environmental Engineering: Core qualification: Compulsory
- Logistics and Mobility: Core qualification: Compulsory
- Mechanical Engineering: Core qualification: Compulsory
- Orientierungsstudium: Core qualification: Elective Compulsory
- Naval Architecture: Core qualification: Compulsory
- Process Engineering: Core qualification: Compulsory
Course L0290: Basics of Electrical Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>4</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 78, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Thorsten Kern</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- DC networks: Current, voltage, power, Kirchhoff's laws, equivalent sources, network analysis
- AC: Characteristics, RMS, complex representation, phasor diagrams, power
- Three phase AC: Characteristics, star-delta-connection, power, transformer
- Elektronics: Principle, operating behaviour and application of electronic devices as diode, Zener-diode, thyristor, transistor operational amplifier

Literature
- Ralf Kories, Heinz Schmitt - Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122
- "Grundlagen der Elektrotechnik" - andere Autoren

Course L0292: Basics of Electrical Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Thorsten Kern, Weitere Mitarbeiter</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Exercises to the analysis of circuits and the calculation of electrical quantities th the topics:
 - DC networks: Current, voltage, power, Kirchhoff's laws, equivalent sources, network analysis
 - AC: Characteristics, RMS, complexe representation, phasor diagrams, power
 - Three phase AC: Characteristics, star-delta-connection, power, transformer
 - Elektronics: Principle, operating behaviour and application of electronic devises as diode, Zener-diode, thyristor, transistor operational amplifier

Literature
- Ralf Kories, Heinz Schmitt - Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122
- "Grundlagen der Elektrotechnik" - andere Autoren
Module M0782: Computer Science for Mechanical Engineers

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science for Mechanical Engineers (L0149)</td>
<td></td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science for Mechanical Engineers (L0772)</td>
<td></td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Prof. Görschwin Fey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td></td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
<tr>
<td>Professional Competence</td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td></td>
</tr>
<tr>
<td>Personal Competence</td>
<td></td>
</tr>
<tr>
<td>Social Competence</td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td></td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 110, Study Time in Lecture 70</td>
</tr>
<tr>
<td>Credit points</td>
<td>6</td>
</tr>
<tr>
<td>Course achievement</td>
<td>Compulsory Bonus</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>90 minutes</td>
</tr>
<tr>
<td>Assignment for the Following Curricula</td>
<td>Mechanical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td></td>
<td>Orientierungsstudium: Core qualification: Elective Compulsory</td>
</tr>
<tr>
<td></td>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
</tbody>
</table>
Course L0149: Computer Science for Mechanical Engineers

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 48, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Görschwin Fey</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content

You are a student of mechanical engineering and want a solid introduction to computer science particularly tailored to suit your needs? Well, here it is. All you have to do is to start learning German right now because this is an introductory course being taught in German.

Literature

Course L0772: Computer Science for Mechanical Engineers

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Görschwin Fey</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0577: Nontechnical Complementary Courses for Bachelors

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Dagmar Richter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td>None</td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
</tbody>
</table>
| Professional Competence | The Non-technical Academic Programms (NTA)
imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. |
| Knowledge | The Learning Architecture
consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.
The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”
The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. |
| Teaching and Learning Arrangements | provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. |
| Fields of Teaching | are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, migration studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.
The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. |
| The Competence Level | |
of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

- locate selected specialized areas with the relevant non-technical mother discipline,
- outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
- different specialist disciplines relate to their own discipline and differentiate it as well as make connections,
- sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
- Can communicate in a foreign language in a manner appropriate to the subject.

Professional Competence (Skills)

In selected sub-areas students can

- apply basic methods of the said scientific disciplines,
- question a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
- to handle simple questions in aforementioned scientific disciplines in a successful manner,
- justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.

Personal Competences (Social Skills)

Students will be able

- to learn to collaborate in different manner,
- to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
- to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen),
- to explain non-technical items to auditorium with technical background knowledge.

Personal Competences (Self-reliance)

Students are able in selected areas

- to reflect on their own profession and professionalism in the context of real-life fields of application
- to organize themselves and their own learning processes
- to reflect and decide questions in front of a broad education background
- to communicate a nontechnical item in a competent way in written form or verbally
- to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)

Workload in Hours Depends on choice of courses
| Credit points | 6 |

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.
Module M0850: Mathematics I

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis I (L1010)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Analysis I (L1012)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analysis I (L1013)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linear Algebra I (L0912)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Linear Algebra I (L0913)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linear Algebra I (L0914)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Anusch Taraz

Admission Requirements
None

Recommended Previous Knowledge
School mathematics

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Students can name the basic concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
- Students can discuss logical connections between these concepts. They are capable of illustrating these connections with the help of examples.
- They know proof strategies and can reproduce them.

Skills
- Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
- Students are able to discover and verify further logical connections between the concepts studied in the course.
- For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.

Personal Competence

Social Competence
- Students are able to work together in teams. They are capable to use mathematics as a common language.
- In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.

Autonomy
- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Course L1010: Analysis I

- **Typ:** Lecture
- **Hrs/wk:** 2
- **CP:** 2
- **Workload in Hours:** Independent Study Time 32, Study Time in Lecture 28
- **Lecturer:** Dozenten des Fachbereiches Mathematik der UHH
- **Language:** DE
- **Cycle:** WiSe

Content
- Foundations of differential and integrational calculus of one variable
 - statements, sets and functions
 - natural and real numbers
 - convergence of sequences and series
 - continuous and differentiable functions
 - mean value theorems
 - Taylor series
 - calculus
 - error analysis
 - fixpoint iteration

Literature
- http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html
Course L1012: Analysis I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1013: Analysis I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L0912: Linear Algebra I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Anusch Taraz, Prof. Marko Lindner</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| **Content** | - vectors: intuition, rules, inner and cross product, lines and planes
- systems of linear equations: Gauß elimination, matrix product, inverse matrices, transformations, block matrices, determinants
- orthogonal projection in R^n, Gram-Schmidt-Orthonormalization |
| **Literature** | - T. Arens u.a.: Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
- W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
- G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013 |
Course L0913: Linear Algebra I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Anusch Taraz, Prof. Marko Lindner</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| Content | - vectors: intuition, rules, inner and cross product, lines and planes
 - general vector spaces: subspaces, Euclidean vector spaces
 - systems of linear equations: Gauß-elimination, matrix product, inverse matrices, transformations, LR-decomposition, block matrices, determinants |
| Literature | T. Arens u.a.: Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
 W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Course L0914: Linear Algebra I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Christian Seifert</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0889: Mechanics I (Statics)

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics I (Statics) (L1001)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mechanics I (Statics) (L1002)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics I (Statics) (L1003)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible
- Prof. Robert Seifried

Admission
- None

Recommended Previous Knowledge
- Solid school knowledge in mathematics and physics.

Educational Objectives
- After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- The students can
 - describe the axiomatic procedure used in mechanical contexts;
 - explain important steps in model design;
 - present technical knowledge in stereostatics.

Skills
- The students can
 - explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
 - apply basic statical methods to engineering problems;
 - estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.

Personal Competence

Social Competence
- The students can work in groups and support each other to overcome difficulties.

Autonomy
- Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours
- Independent Study Time 110, Study Time in Lecture 70

Credit points
- 6

Course achievement

<table>
<thead>
<tr>
<th>Compulsory Bonus</th>
<th>Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Midterm</td>
<td>Wird nur im WiSe angeboten</td>
</tr>
</tbody>
</table>

Examination
- Written exam

Examination duration and scale
- 90 min

Assignment for the Following Curricula
- General Engineering Science (German program, 7 semester): Core qualification: Compulsory
- Civil- and Environmental Engineering: Core qualification: Compulsory
- Mechanical Engineering: Core qualification: Compulsory
- Mechatronics: Core qualification: Compulsory
- Orientierungsstudium: Core qualification: Elective
- Naval Architecture: Core qualification: Compulsory
<table>
<thead>
<tr>
<th>Course L1001: Mechanics I (Statics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L1002: Mechanics I (Statics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Course L1003: Mechanics I (Statics)</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Module M0933: Fundamentals of Materials Science

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Materials Science I (L1085)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites) (L0506)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physical and Chemical Basics of Materials Science (L1095)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
- Prof. Jörg Weißmüller

Admission Requirements
- None

Recommended Previous Knowledge
- Highschool-level physics, chemistry und mathematics

Educational Objectives
- After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- The students have acquired a fundamental knowledge on metals, ceramics and polymers and can describe this knowledge comprehensively. Fundamental knowledge here means specifically the issues of atomic structure, microstructure, phase diagrams, phase transformations, corrosion and mechanical properties. The students know about the key aspects of characterization methods for materials and can identify relevant approaches for characterizing specific properties. They are able to trace materials phenomena back to the underlying physical and chemical laws of nature.

Skills
- The students are able to trace materials phenomena back to the underlying physical and chemical laws of nature. Materials phenomena here refers to mechanical properties such as strength, ductility, and stiffness, chemical properties such as corrosion resistance, and to phase transformations such as solidification, precipitation, or melting. The students can explain the relation between processing conditions and the materials microstructure, and they can account for the impact of microstructure on the material’s behavior.

Personal Competence

Social Competence
- Autonomy

Workload in Hours
- Independent Study Time 96, Study Time in Lecture 84

Credit points
- 6

Course achievement
- None

Examination
- Written exam

Examination duration and scale
- 180 min

- General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
- General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
- General Engineering Science (German program, 7 semester): Specialisation Naval
<table>
<thead>
<tr>
<th>Assignment for the Following Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Energy and Environmental Engineering: Compulsory</td>
</tr>
<tr>
<td>Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Energy and Environmental Engineering: Compulsory</td>
</tr>
<tr>
<td>Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory</td>
</tr>
<tr>
<td>Mechanical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Mechatronics: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Technomathematics: Specialisation III. Engineering Science: Elective Compulsory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L1085: Fundamentals of Materials Science I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ Lecture</td>
</tr>
<tr>
<td>Hrs/wk 2</td>
</tr>
<tr>
<td>CP 2</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer Prof. Jörg Weißmüller</td>
</tr>
<tr>
<td>Language DE</td>
</tr>
<tr>
<td>Cycle WiSe</td>
</tr>
<tr>
<td>Content Vorlesungsskript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L0506: Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ Lecture</td>
</tr>
<tr>
<td>Hrs/wk 2</td>
</tr>
<tr>
<td>CP 2</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer Prof. Bodo Fiedler, Prof. Gerold Schneider</td>
</tr>
<tr>
<td>Language DE</td>
</tr>
<tr>
<td>Cycle SoSe</td>
</tr>
<tr>
<td>Content Chemische Bindungen und Aufbau von Festkörpern; Kristallaufbau; Werkstoffprüfung; Schweißbarkeit; Herstellung von Keramiken; Aufbau und Eigenschaften der Keramik; Herstellung, Aufbau und Eigenschaften von Gläsern; Polymerwerkstoffe, Makromolekularer Aufbau; Struktur und Eigenschaften der Polymere; Polymerverarbeitung; Verbundwerkstoffe</td>
</tr>
<tr>
<td>Literature Vorlesungsskript</td>
</tr>
<tr>
<td>Course L1095: Physical and Chemical Basics of Materials Science</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
</tbody>
</table>

Content
- Motivation: „Atoms in Mechanical Engineering?“
- Basics: Force and Energy
- The electromagnetic Interaction
- „Detour“: Mathematics (complex e-funktion etc.)
- The atom: Bohr's model of the atom
- Chemical bounds
- The multi part problem: Solutions and strategies
- Descriptions of using statistical thermodynamics
- Elastic theory of atoms
- Consequences of atomar properties on makroskopic Properties: Discussion of examples (metals, semiconductors, hybrid systems)

Literature

Für den Elektromagnetismus:
- Bergmann-Schäfer: „Lehrbuch der Experimentalphysik“, Band 2: „Elektromagnetismus“, de Gruyter

Für die Atomphysik:
- Haken, Wolf: „Atom- und Quantenphysik“, Springer

Für die Materialphysik und Elastizität:
- Hornbogen, Warlimont: „Metallkunde“, Springer
Module M0671: Technical Thermodynamics I

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Thermodynamics I (L0437)</td>
<td>Lecture</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Technical Thermodynamics I (L0439)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Technical Thermodynamics I (L0441)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Gerhard Schmitz

Admission Requirements

None

Recommended Previous Knowledge

Elementary knowledge in Mathematics and Mechanics

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

Students are familiar with the laws of Thermodynamics. They know the relation of the kinds of energy according to 1st law of Thermodynamics and are aware about the limits of energy conversions according to 2nd law of Thermodynamics. They are able to distinguish between state variables and process variables and know the meaning of different state variables like temperature, enthalpy, entropy and also the meaning of exergy and anergy. They are able to draw the Carnot cycle in a Thermodynamics related diagram. They know the physical difference between an ideal and a real gas and are able to use the related equations of state. They know the meaning of a fundamental state of equation and know the basics of two phase Thermodynamics.

Skills

Students are able to calculate the internal energy, the enthalpy, the kinetic and the potential energy as well as work and heat for simple change of states and to use this calculations for the Carnot cycle. They are able to calculate state variables for an ideal and for a real gas from measured thermal state variables.

Personal Competence

Social Competence

The students are able to discuss in small groups and develop an approach.

Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.

Workload in Hours

- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points

6

Course achievement

None

Examination

Written exam

Examination duration and scale

90 min

Assignment for the Following Curricula

- General Engineering Science (German program, 7 semester): Core qualification: Compulsory
- Bioprocess Engineering: Core qualification: Compulsory
- Energy and Environmental Engineering: Core qualification: Compulsory
- General Engineering Science (English program, 7 semester): Core qualification: Compulsory
- Computational Science and Engineering: Specialisation Engineering Sciences: Elective
- Mechanical Engineering: Core qualification: Compulsory
Course L0437: Technical Thermodynamics I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 92
- Study Time in Lecture: 28

Lecturer
- Prof. Gerhard Schmitz

Language
- DE

Cycle
- SoSe

Content
1. Introduction
2. Fundamental terms
3. Thermal Equilibrium and temperature
 3.1 Thermal equation of state
4. First law
 4.1 Heat and work
 4.2 First law for closed systems
 4.3 First law for open systems
 4.4 Examples
5. Equations of state and changes of state
 5.1 Changes of state
 5.2 Cycle processes
6. Second law
 6.1 Carnot process
 6.2 Entropy
 6.3 Examples
 6.4 Exergy
7. Thermodynamic properties of pure fluids
 7.1 Fundamental equations of Thermodynamics
 7.2 Thermodynamic potentials
 7.3 Calorific state variables for arbitrary fluids
 7.4 state equations (van der Waals u.a.)

Literature
- Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
<table>
<thead>
<tr>
<th>Course L0439: Technical Thermodynamics I</th>
<th>Course L0441: Technical Thermodynamics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Recitation Section (large)</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Gerhard Schmitz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0696: Mechanics II: Mechanics of Materials

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics II (L0493)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics II (L0494)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics II (L1691)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Christian Cyron

Admission Requirements

None

Recommended Previous Knowledge

Mechanics I

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- The students name the fundamental concepts and laws of statics such as stresses, strains, Hooke's linear law.
- The students apply the mathematical/mechanical analysis and modeling.
- The students apply the fundamental methods of elasto statics to simply engineering problems.
- The students estimate the validity and limitations of the introduced methods.

Skills

Personal Competence

Social Competence
-

Autonomy
-

Workload in Hours

Independent Study Time 96, Study Time in Lecture 84

Credit points

6

Course achievement

None

Examination

Written exam

Examination duration and scale

90 min

Assignment for the Following Curricula

General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Orientierungsstudiengang: Core qualification: Elective Compulsory
Naval Architecture: Core qualification: Compulsory
Course L0493: Mechanics II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christian Cyron</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>stresses and strains, Hooke's law, tension and compression, torsion, bending, stability, buckling, energy methods</td>
</tr>
</tbody>
</table>
| Literature | - Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 1, Springer
- Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 2 Elastostatik, Springer |

Course L0494: Mechanics II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christian Cyron</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1691: Mechanics II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christian Cyron</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0594: Fundamentals of Mechanical Engineering Design

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Mechanical Engineering Design (L0258)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Mechanical Engineering Design (L0259)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Dieter Krause

Admission Requirements
None

Recommended Previous Knowledge
- Basic knowledge about mechanics and production engineering
- Internship (Stage I Practical)

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
After passing the module, students are able to:
- explain basic working principles and functions of machine elements,
- explain requirements, selection criteria, application scenarios and practical examples of basic machine elements, indicate the background of dimensioning calculations.

Skills
After passing the module, students are able to:
- accomplish dimensioning calculations of covered machine elements,
- transfer knowledge learned in the module to new requirements and tasks (problem solving skills),
- recognize the content of technical drawings and schematic sketches,
- technically evaluate basic designs.

Personal Competence

Social Competence
Students are able to discuss technical information in the lecture supported by activating methods.

Autonomy
Students are able to independently deepen their acquired knowledge in exercises.
Students are able to acquire additional knowledge and to recapitulate poorly understood content e.g. by using the video recordings of the lectures.

Workload in Hours
| Independent Study Time | 124 |
| Study Time in Lecture | 56 |

Credit points
6

Course achievement
None

Examination
Written exam

Examination duration and scale
120

Assignment for the Following Curricula
- General Engineering Science (German program, 7 semester): Core qualification: Compulsory
- Energy and Environmental Engineering: Core qualification: Compulsory
- Logistics and Mobility: Core qualification: Compulsory
- Mechanical Engineering: Core qualification: Compulsory
- Mechatronics: Core qualification: Compulsory
- Orientierungsstudium: Core qualification: Elective Compulsory
- Naval Architecture: Core qualification: Compulsory
- Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0258: Fundamentals of Mechanical Engineering Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- **Introduction to design**
- **Introduction to the following machine elements**
 - Screws
 - Shaft-hub joints
 - Rolling contact bearings
 - Welding / adhesive / solder joints
 - Springs
 - Axes & shafts
- **Presentation of technical objects (technical drawing)**

Exercise
- **Calculation methods for dimensioning the following machine elements:**
 - Screws
 - Shaft-hub joints
 - Rolling contact bearings
 - Welding / adhesive / solder joints
 - Springs
 - Axis & shafts

Literature
- Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
- Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
- Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
- Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
- Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
- Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
- Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßek, J., Springer Vieweg, aktuelle Auflage.
- Sowie weitere Bücher zu speziellen Themen
<table>
<thead>
<tr>
<th>Course L0259: Fundamentals of Mechanical Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>
Module M0851: Mathematics II

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis II (L1025)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Analysis II (L1026)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analysis II (L1027)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linear Algebra II (L0915)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Linear Algebra II (L0916)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linear Algebra II (L0917)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Anusch Taraz

Admission Requirements
None

Recommended Previous Knowledge
Mathematics I

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge
- Students can name further concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
- Students can discuss logical connections between these concepts. They are capable of illustrating these connections with the help of examples.
- They know proof strategies and can reproduce them.

Skills
- Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
- Students are able to discover and verify further logical connections between the concepts studied in the course.
- For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.

Personal Competence

Social Competence
- Students are able to work together in teams. They are capable to use mathematics as a common language.
- In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.

Autonomy
- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 128, Study Time in Lecture 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>8</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>60 min (Analysis II) + 60 min (Linear Algebra II)</td>
</tr>
</tbody>
</table>

Course L1025: Analysis II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 32, Study Time in Lecture 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- power series and elementary functions
- interpolation
- integration (proper integrals, fundamental theorem, integration rules, improper integrals, parameter dependent integrals
- applications of integration (volume and surface of bodies of revolution, lines and arc length, line integrals
- numerical quadrature
- periodic functions

Literature
- http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html
Course L1026: Analysis II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1027: Analysis II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L0915: Linear Algebra II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Anusch Taraz, Prof. Marko Lindner</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content	• general vector spaces: subspaces, Euclidean vector spaces
	• linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
	• linear regression: normal equations, linear discrete approximation
	• eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices
	• system of linear differential equations
	• matrix factorizations: LR-decomposition, QR-decomposition, Schur decomposition, Jordan normal form, singular value decomposition

Literature	• T. Arens u.a.: Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
	• W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
	• W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
	• G. Strang: Lineare Algebra, Springer-Verlag, 2003
	• G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013
Course L0916: Linear Algebra II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Anusch Taraz, Prof. Marko Lindner</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>
| Content | • linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
• linear regression: QR-decomposition, normal equations, linear discrete approximation
• eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices, Jordan normal form, singular value decomposition
• system of linear differential equations |
| Literature | • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
• W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994 |

Course L0917: Linear Algebra II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0597: Advanced Mechanical Engineering Design

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mechanical Engineering Design II (L0264)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Mechanical Engineering Design II (L0265)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Advanced Mechanical Engineering Design I (L0262)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Mechanical Engineering Design I (L0263)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Dieter Krause

Admission Requirements

None

Recommended Previous Knowledge

- Fundamentals of Mechanical Engineering Design
- Mechanics
- Fundamentals of Materials Science
- Production Engineering

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

After passing the module, students are able to:

- explain complex working principles and functions of machine elements and of basic elements of fluidics,
- explain requirements, selection criteria, application scenarios and practical examples of complex machine elements,
- indicate the background of dimensioning calculations.

Skills

After passing the module, students are able to:

- accomplish dimensioning calculations of covered machine elements,
- transfer knowledge learned in the module to new requirements and tasks (problem solving skills),
- recognize the content of technical drawings and schematic sketches,
- evaluate complex designs, technically.

Personal Competence

Social Competence

- Students are able to discuss technical information in the lecture supported by activating methods.

Autonomy

- Students are able to independently deepen their acquired knowledge in exercises.
- Students are able to acquire additional knowledge and to recapitulate poorly understood content e.g. by using the video recordings of the lectures.

Workload in Hours

Independent Study Time	68
Study Time in Lecture	112
Credit points	6

Course achievement

None

Examination

- **Written exam**

Examination duration and scale

- General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory

[33]
<table>
<thead>
<tr>
<th>Assignment for the Following Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory</td>
</tr>
<tr>
<td>Mechanical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
</tbody>
</table>
Course L0264: Advanced Mechanical Engineering Design II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 32
- Study Time in Lecture: 28

Lecturer
- Prof. Dieter Krause, Prof. Otto von Estorff

Language
- DE

Cycle
- SoSe

Content

Advanced Mechanical Engineering Design I & II

Lecture
- Fundamentals of the following machine elements:
 - Linear rolling bearings
 - Axes & shafts
 - Seals
 - Clutches & brakes
 - Belt & chain drives
 - Gear drives
 - Epicyclic gears
 - Crank drives
 - Sliding bearings
- Elements of fluidics

Exercise
- Calculation methods of the following machine elements:
 - Linear rolling bearings
 - Axes & shafts
 - Clutches & brakes
 - Belt & chain drives
 - Gear drives
 - Epicyclic gears
 - Crank gears
 - Sliding bearings
- Calculations of hydrostatic systems (fluidics)

Literature

- Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
- Maschinenelemente, Band I-II; Niemann, G., Springer-Verlag, aktuelle Auflage.
- Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
- Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
- Konstruktionslehre, Pahl, Q.; Beitz, W., Springer-Verlag, aktuelle Auflage.
- Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
- Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.

Sowie weitere Bücher zu speziellen Themen
Course L0265: Advanced Mechanical Engineering Design II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause, Prof. Otto von Estorff</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Course L0262: Advanced Mechanical Engineering Design I

<table>
<thead>
<tr>
<th>Type</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time: 32, Study Time in Lecture: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause, Prof. Otto von Estorff</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Advanced Mechanical Engineering Design I & II

Lecture
- Fundamentals of the following machine elements:
 - Linear rolling bearings
 - Axes & shafts
 - Seals
 - Clutches & brakes
 - Belt & chain drives
 - Gear drives
 - Epicyclic gears
 - Crank drives
 - Sliding bearings
- Elements of fluidics

Exercise
- Calculation methods of the following machine elements:
 - Linear rolling bearings
 - Axes & shafts
 - Clutches & brakes
 - Belt & chain drives
 - Gear drives
 - Epicyclic gears
 - Crank gears
 - Sliding bearings
- Calculations of hydrostatic systems (fluidics)

Literature
- Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
- Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
- Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
- Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
- Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
- Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
- Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.

Sowie weitere Bücher zu speziellen Themen
Course L0263: Advanced Mechanical Engineering Design I

<table>
<thead>
<tr>
<th>Type</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause, Prof. Otto von Estorff</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0598: Mechanical Engineering: Design

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodiment Design and 3D-CAD (L0268)</td>
<td>Lecture</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Design Project I (L0695)</td>
<td>Project-/problem-based Learning</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Design Project II (L0592)</td>
<td>Project-/problem-based Learning</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Team Project Design Methodology (L0267)</td>
<td>Project-/problem-based Learning</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Dieter Krause

Admission Requirements

None

Recommended Previous Knowledge

- Fundamentals of Mechanical Engineering Design
- Mechanics
- Fundamentals of Materials Science
- Production Engineering

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

After passing the module, students are able to:

Knowledge

- explain design guidelines for machinery parts e.g. considering load situation, materials and manufacturing requirements,
- describe basics of 3D CAD,
- explain basics methods of engineering designing.

Skills

- independently create sketches, technical drawings and documentations e.g. using 3D CAD,
- design components based on design guidelines autonomously,
- dimension (calculate) used components,
- use methods to design and solve engineering design tasks systematically and solution-oriented,
- apply creativity techniques in teams.

Personal Competence

After passing the module, students are able to:

Social Competence

- develop and evaluate solutions in groups including making and documenting decisions,
- moderate the use of scientific methods,
- present and discuss solutions and technical drawings within groups,
- reflect the own results in the work groups of the course.

Autonomy

- to estimate their level of knowledge using activating methods within the lectures (e.g. with clickers),
- To solve engineering design tasks systematically.

Workload in Hours

Independent Study Time 40, Study Time in Lecture 140
<table>
<thead>
<tr>
<th>Credit points</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course achievement</td>
<td></td>
</tr>
<tr>
<td>Compulsory Bonus</td>
<td>Form</td>
</tr>
<tr>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>180</td>
</tr>
<tr>
<td>Assignment for the Following Curricula</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Energy and Environmental Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>Energy and Environmental Engineering: Core qualification: Compulsory</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Energy and Environmental Engineering: Compulsory</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering: Core qualification: Compulsory</td>
<td></td>
</tr>
<tr>
<td>Mechatronics: Core qualification: Compulsory</td>
<td></td>
</tr>
<tr>
<td>Naval Architecture: Core qualification: Compulsory</td>
<td></td>
</tr>
<tr>
<td>Course L0268: Embodiment Design and 3D-CAD</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Typ</td>
<td>Lecture</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Basics of 3D CAD technology
- Practical course to apply a 3D CAD system
 - Introduction to the system
 - Sketching and creation of components
 - Creation of assemblies
 - Deriving technical drawings

Literature
- CAx für Ingenieure eine praxisbezogene Einführung; Vajna, S., Weber, C., Bley, H., Zeman, K.; Springer-Verlag, aktuelle Auflage.
- Handbuch Konstruktion; Rieg, F., Steinhilper, R.; Hanser; aktuelle Auflage.
- Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
- Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
- Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
- Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
- Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
- Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Course L0695: Mechanical Design Project I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Project-/problem-based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 18, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Thorsten Schüppstuhl</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| **Content** | - Create a technical documentation of an existing mechanical model
| | - Consolidation of the following aspects of technical drawings:
| |
| |
| |
| |
| |
| |
| |
| |
| | - Presentation of technical objects and standardized parts
| | (bearings, seals, shaft-hub joints, detachable connections, springs, axes and shafts)
| | - Sectional views
| | - Dimensioning
| | - Tolerances and surface specifications
| | - Creating a tally sheet |

Course L0592: Mechanical Design Project II

<table>
<thead>
<tr>
<th>Typ</th>
<th>Project-/problem-based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 18, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Wolfgang Hintze</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>
| **Content** | - Generation of sketches for functions and sub-functions
| | - Approximately calculation of shafts
| | - Dimension of bearings, screw connections and weld
| | - Generation of engineering drawings (assembly drawings, manufacturing drawing) |
| **Literature** | Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag.
| | Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag.
| | Einführung in die DIN-Normen, Klein, M., Teubner-Verlag.
Course L0267: Team Project Design Methodology

<table>
<thead>
<tr>
<th>Type</th>
<th>Project/problem-based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dieter Krause</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- Introduction to engineering designing methodology
- Team Project Design Methodology
 - Creating requirement lists
 - Problem formulation
 - Creating functional structures
 - Finding solutions
 - Evaluation of the found concepts
 - Documentation of the taken methodological steps and the concepts using presentation slides

Literature
- Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
- Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
- Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
- Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
- Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
- Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
- Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
- Sowie weitere Bücher zu speziellen Themen
Module M0829: Foundations of Management

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Tutorial (L0882)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Management (L0880)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible: Prof. Christoph Ihl

Admission Requirements: None

Recommended Previous Knowledge: Basic Knowledge of Mathematics and Business

Educational Objectives: After taking part successfully, students have reached the following learning results

Professional Competence: After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to

- explain the differences between Economics and Management and the sub-disciplines in Management and to name important definitions from the field of Management
- explain the most important aspects of and goals in Management and name the most important aspects of entrepreneurial projects
- describe and explain basic business functions as production, procurement and sourcing, supply chain management, organization and human resource management, information management, innovation management and marketing
- explain the relevance of planning and decision making in Business, esp. in situations under multiple objectives and uncertainty, and explain some basic methods from mathematical Finance
- state basics from accounting and costing and selected controlling methods.

Skills: Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to

- analyse Management goals and structure them appropriately
- analyse organisational and staff structures of companies
- apply methods for decision making under multiple objectives, under uncertainty and under risk
- analyse production and procurement systems and Business information systems
- analyse and apply basic methods of marketing
- select and apply basic methods from mathematical finance to predefined problems
- apply basic methods from accounting, costing and controlling to predefined problems

Personal Competence: Students are able to

- work successfully in a team of students
- to apply their knowledge from the lecture to an entrepreneurship project and write a coherent report on the project
- to communicate appropriately and
- to cooperate respectfully with their fellow students.

Social Competence: Students are able to
Autonomy
- work in a team and to organize the team themselves
- to write a report on their project.

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 110, Study Time in Lecture 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>6</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Subject theoretical and practical work</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>several written exams during the semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment for the Following Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Energy and Environmental Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory</td>
</tr>
<tr>
<td>Civil- and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Bioprocess Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Computer Science: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Electrical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Bioprocess Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Computer Science: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Electrical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Bioprocess Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Computer Science: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Electrical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Energy and Environmental Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
</tbody>
</table>

[45]
Environmental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Orientierungsstudium: Core qualification: Elective Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory

Course L0882: Management Tutorial

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christoph Ihl, Katharina Roedelius, Tobias Vlcek</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools.

If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor.

Literature
Relevante Literatur aus der korrespondierenden Vorlesung.
<table>
<thead>
<tr>
<th>Course</th>
<th>L0880: Introduction to Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Lecture</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 48, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe/SoSe</td>
</tr>
</tbody>
</table>

- Introduction to Business and Management, Business versus Economics, relevant areas in Business and Management
- Important definitions from Management,
- Developing Objectives for Business, and their relation to important Business functions
- Business Functions: Functions of the Value Chain, e.g. Production and Procurement, Supply Chain Management, Innovation Management, Marketing and Sales
- Cross-sectional Functions, e.g. Organisation, Human Resource Management, Supply Chain Management, Information Management
- Definitions as information, information systems, aspects of data security and strategic information systems
- Definition and Relevance of innovations, e.g. innovation opportunities, risks etc.
- Relevance of marketing, B2B vs. B2C-Marketing
- different techniques from the field of marketing (e.g. scenario technique), pricing strategies
- important organizational structures
- basics of human resource management
- Introduction to Business Planning and the steps of a planning process
- Decision Analysis: Elements of decision problems and methods for solving decision problems
- Selected Planning Tasks, e.g. Investment and Financial Decisions
- Introduction to Accounting: Accounting, Balance-Sheets, Costing
- Relevance of Controlling and selected Controlling methods
- Important aspects of Entrepreneurship projects

Literature

Module M0959: Mechanics III (Hydrostatics, Kinematics, Kinetics I)

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1134)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1135)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1136)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Robert Seifried

Admission Requirements

None

Recommended Previous Knowledge

Mathematics I, II, Mechanics I (Statics)

Educational Objectives

Professional Competence

Knowledge

The students can
- describe the axiomatic procedure used in mechanical contexts;
- explain important steps in model design;
- present technical knowledge in stereostatics.

Skills

The students can
- explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
- apply basic hydrostatical, kinematic and kinetic methods to engineering problems;
- estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.

Personal Competence

Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours

Independent Study Time: 96, Study Time in Lecture: 84

Credit points

6

Course achievement

<table>
<thead>
<tr>
<th>Compulsory Bonus</th>
<th>Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Midterm</td>
<td>Wird nur im WiSe angeboten</td>
</tr>
</tbody>
</table>

Examination

Written exam

Examination duration and scale

120 min

Assignment for the Following Curricula

- General Engineering Science (German program, 7 semester): Core qualification: Compulsory
- Mechanical Engineering: Core qualification: Compulsory
- Mechatronics: Core qualification: Compulsory
- Naval Architecture: Core qualification: Compulsory
- Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L1134: Mechanics III (Hydrostatics, Kinematics, Kinetics I)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 48, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>Hydrostatics, Kinematics, Dynamics</td>
</tr>
<tr>
<td></td>
<td>- Kinematics of points and relative motion</td>
</tr>
<tr>
<td></td>
<td>- Planar and spatial motion of point systems and rigid bodies</td>
</tr>
<tr>
<td></td>
<td>Terms, Fundamental equations, Motion of the rigid body in 3D-space, Dynamics of gyroscopes, rotors, Relative kinetics, Systems with non-constant mass</td>
</tr>
</tbody>
</table>

Course L1135: Mechanics III (Hydrostatics, Kinematics, Kinetics I)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1136: Mechanics III (Hydrostatics, Kinematics, Kinetics I)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0853: Mathematics III

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis III (L1028)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Analysis III (L1029)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analysis III (L1030)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 1 (Ordinary Differential Equations) (L1031)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Differential Equations 1 (Ordinary Differential Equations) (L1032)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 1 (Ordinary Differential Equations) (L1033)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Anusch Taraz

Admission Requirements

None

Recommended Previous Knowledge

Mathematics I + II

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

- Students can name the basic concepts in the area of analysis and differential equations. They are able to explain them using appropriate examples.
- Students can discuss logical connections between these concepts. They are capable of illustrating these connections with the help of examples.
- They know proof strategies and can reproduce them.

Skills

- Students can model problems in the area of analysis and differential equations with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
- Students are able to discover and verify further logical connections between the concepts studied in the course.
- For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.

Personal Competence

- Students are able to work together in teams. They are capable to use mathematics as a common language.
- In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.

Social Competence

- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 128, Study Time in Lecture 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>8</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>60 min (Analysis III) + 60 min (Differential Equations 1)</td>
</tr>
</tbody>
</table>

Assignment for the Following Curricula
- General Engineering Science (German program, 7 semester): Core qualification: Compulsory
- Civil- and Environmental Engineering: Core qualification: Compulsory
- Bioprocess Engineering: Core qualification: Compulsory
- Computer Science: Core qualification: Compulsory
- Electrical Engineering: Core qualification: Compulsory
- Energy and Environmental Engineering: Core qualification: Compulsory
- General Engineering Science (English program, 7 semester): Core qualification: Compulsory
- Computational Science and Engineering: Core qualification: Compulsory
- Mechanical Engineering: Core qualification: Compulsory
- Mechatronics: Core qualification: Compulsory
- Naval Architecture: Core qualification: Compulsory
- Process Engineering: Core qualification: Compulsory

Course L1028: Analysis III

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 32, Study Time in Lecture 28

Lecturer
- Dozenten des Fachbereiches Mathematik der UHH

Language
- DE

Cycle
- WiSe

Content
- Main features of differential and integrational calculus of several variables
 - Differential calculus for several variables
 - Mean value theorems and Taylor's theorem
 - Maximum and minimum values
 - Implicit functions
 - Minimization under equality constraints
 - Newton's method for multiple variables
 - Double integrals over general regions
 - Line and surface integrals
 - Theorems of Gauß and Stokes

Literature
- http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html
Course L1029: Analysis III

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1030: Analysis III

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1031: Differential Equations 1 (Ordinary Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content

- Main features of the theory and numerical treatment of ordinary differential equations
 - Introduction and elementary methods
 - Existence and uniqueness of initial value problems
 - Linear differential equations
 - Stability and qualitative behaviour of the solution
 - Boundary value problems and basic concepts of calculus of variations
 - Eigenvalue problems
 - Numerical methods for the integration of initial and boundary value problems
 - Classification of partial differential equations

Literature

- http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html
Course L1032: Differential Equations 1 (Ordinary Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1033: Differential Equations 1 (Ordinary Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M1118: Hydrostatics and Body Plan

<table>
<thead>
<tr>
<th>Courses</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatics (L1260)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hydrostatics (L1261)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Body Plan (L1452)</td>
<td>Project Seminar</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Prof. Stefan Krüger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>None</td>
</tr>
<tr>
<td>Recommended Previous Knowledge</td>
<td>Good knowledge in Mathematics I-III and Mechanics I-III.</td>
</tr>
<tr>
<td>It is recommended that the students are familiar with typical design relevant drawings, e.g. Body Plan, GA- Plan, Tank Plan etc.</td>
<td></td>
</tr>
<tr>
<td>Educational Objectives</td>
<td>After taking part successfully, students have reached the following learning results</td>
</tr>
<tr>
<td>Professional Competence</td>
<td>The lecture enables the student to carry out all necessary theoretical calculations for ship design on a scientific level. The lecture is basic requirement for all following lectures in the subjects shipo design and safety of ships.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>The student is able to carry out hydrostatic calculations to ensure that the ship has sufficient stability. He is able to design hull forms that are safe against capsizing or sinking.</td>
</tr>
<tr>
<td>Skills</td>
<td>The student gets access to hydrostatical problems.</td>
</tr>
<tr>
<td>Personal Competence</td>
<td></td>
</tr>
<tr>
<td>Social Competence</td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td></td>
</tr>
</tbody>
</table>

Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Course achievement	None
Examination	Written exam
Examination duration and scale	180 min

Assignment for the Following Curricula	General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
--	General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
	Naval Architecture: Core qualification: Compulsory

Course L1260: Hydrostatics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 62, Study Time in Lecture 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Prof. Stefan Krüger</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>
1. Numerical Integration, Differentiation, Interpolation
 - Trapezoidal Rule, Simpson, Tschebyscheff, graphical Integration Methods
 - Determination of Areas, 1st and 2nd order Moments
 - Numerical Differentiation, Spline Interpolation

2. Buoyancy
 - Principle of Archimedes
 - Equilibrium Floating Condition
 - Equilibrium Computations
 - Hydrostatic Tables and Sounding Tables
 - Trim Tables

3. Stability at large heeling angles
 - Stability Equation
 - Cross Curves of Stability and Righting Levers
 - Numerical and Graphical Determination of Cross Curves
 - Heeling Moments of Free Surfaces, Water on Deck, Water Ingress
 - Heeling Moments of Different Type
 - Balance of Heeling and Righting Moments acc. to BV 1030
 - Intact Stability Code (General Criteria)

4. Linearization of Stability Problems
 - Linearization of Restoring Forces and Moments
 - Correlation between Metacentric Height and Righting Lever at small heeling angles
 - Computation of Path of Metacentric Height for Modern Hull Forms
 - Correlation between Righting Lever and Path of Metacentric Height
 - Hydrostatic Stiffness Matrix
 - Definition of MCT
 - Computation of Equilibrium Floating Conditions from Hydrostatic Tables
 - Effect of Free Surfaces on Initial GM
 - Roll Motions at Small Roll Angles

6. Stability in Waves
 - Roll Motions at Large Amplitudes
 - Pure Loss of Stability on the Wave Crest
 - Principle of Parametric Excitation
 - Principle of Direct Wave Moments
 - Grim’s Equivalent Wave Concept

6. Longitudinal Strength
7. Deadweight Survey and Inclining Experiment
- Displacement Computations from Draft mark Readings
- Weights to go on /come from board
- Inclining Experiment with Heeling Moments from Weights and Heeling Tanks
- Residual Sounding Volumes
- Determination of COG from Metacentric height and from Cross Curves
- Roll Decay Test

8. Launching and Docking
- Launching Plan, Arrangement of Launching Blocks
- Rigid Body Launching: Tilting, Dumping, Equation of Techel
- Computation of Launching Event
- Bottom Pressure and Longitudinal Strength
- Linear- Elastic Effects
- Transversal Stability on Slipway and in Dock

9. Grounding
- Loss of Buoyancy when Grounded
- Pointwise Grounding
- Ship Grounds on Keel

10. Introduction into Damage Stability Problems
- Added Mass Method
- Loss of Buoyant Volume Method
- Simple Equilibrium Computations
- Intermediate Stages of Flooding (Addes Mass Method), Cross- and Downflooding
- Water Ingress Through Openings

11. Special Problems (optional and agreed upon)
- e.g. Heavy Lift Operations
- e.g. Jacking of Jackup Vessels
- e.g. Sinking After Water Ingress

Literature
1. Herner/Rusch: Die Theorie des Schiffes
 Fachbuchverlag Leipzig
2. Henschke
 Schiffstechnisches Handbuch, Band 1
 VEB Technik Verlag Berlin
Course L1261: Hydrostatics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Stefan Krüger</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1452: Body Plan

<table>
<thead>
<tr>
<th>Typ</th>
<th>Project Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Stefan Krüger</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| **Content** | As preparation for the lecture "Hydrostatics", the students must develop a body plan of a modern twin screw vessel (cruise liner, RoPAX- ferry, RoRo) and perform elementary volumetric computations. The body plan is to be developed from a given GA or can be designed freely. All computations shall be based on graphical integration methods. The body plan consists of :
- Grid
- approx. 20 sections, 5 Waterlines, 5 Buttocks
- Computation Volume and centre of buoyancy for several drafts
- Computation of Righting Lever curve for a given displacement based on and graphical integration for several heeling angles. |
| **Literature** | 1. Herner/Rusch: Die Theorie des Schiffes Fachbuchverlag Leipzig |
| | 2. Henschke Schiffsstechnisches Handbuch, Band 1 VEB Technik Verlag Berlin |
| | 3. Das Skript zur Vorlesung, Anwendungsbeispiele und Klausuren sind auf unserer Homepage abrufbar. |
Module M0960: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1137)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1138)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1139)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Robert Seifried

Admission Requirements

None

Recommended Previous Knowledge

Mathematics I-III and Mechanics I-III

Educational Objectives

Professional Competence

Knowledge

- describe the axiomatic procedure used in mechanical contexts;
- explain important steps in model design;
- present technical knowledge.

Skills

- explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
- apply basic methods to engineering problems;
- estimate the reach and boundaries of the methods and extend them to be applicable to wider problem sets.

Personal Competence

Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours

Independent Study Time 96, Study Time in Lecture 84

Credit points

6

Course achievement

<table>
<thead>
<tr>
<th>Compulsory Bonus</th>
<th>Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Midterm</td>
<td>Wird nur im SoSe angeboten</td>
</tr>
</tbody>
</table>

Examination

Written exam

Examination duration and scale

120 min

General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval
Assignment for the Following Curricula

<table>
<thead>
<tr>
<th>Architecture: Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>Mechanical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Mechatronics: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Technomathematics: Specialisation III. Engineering Science: Elective Compulsory</td>
</tr>
<tr>
<td>Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory</td>
</tr>
</tbody>
</table>

Course L1137: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 48, Study Time in Lecture 42</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- Simple impact problems
- Principles of analytical mechanics
- Elements of vibration theory
- Vibration of Multi-degree of freedom systems
- Multibody Systems
- Numerical methods for time integration
- Introduction to Matlab

Literature

Course L1138: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- See interlocking course

Literature
- See interlocking course
Course L1139: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Robert Seifried</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0854: Mathematics IV

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Equations 2 (Partial Differential Equations) (L1043)</td>
<td>Lecture</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 2 (Partial Differential Equations) (L1044)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 2 (Partial Differential Equations) (L1045)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Complex Functions (L1038)</td>
<td>Lecture</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Complex Functions (L1041)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Complex Functions (L1042)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible | Prof. Anusch Taraz

Admission Requirements | None

Recommended Previous Knowledge | Mathematics 1 - III

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

- Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
- Students can discuss logical connections between these concepts. They are capable of illustrating these connections with the help of examples.
- They know proof strategies and can reproduce them.

Skills

- Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
- Students are able to discover and verify further logical connections between the concepts studied in the course.
- For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.

Personal Competence

Social Competence

- Students are able to work together in teams. They are capable to use mathematics as a common language.
- In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.

Autonomy

- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 68, Study Time in Lecture 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>6</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>60 min (Complex Functions) + 60 min (Differential Equations 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment for the Following Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>Computer Science: Specialisation Computational Mathematics: Elective Compulsory</td>
</tr>
<tr>
<td>Electrical Engineering: Core qualification: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering, Focus Mechatronics: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td>Computational Science and Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory</td>
</tr>
<tr>
<td>Computational Science and Engineering: Specialisation Computer Science: Elective Compulsory</td>
</tr>
<tr>
<td>Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory</td>
</tr>
<tr>
<td>Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td>Mechanical Engineering: Specialisation Mechatronics: Compulsory</td>
</tr>
<tr>
<td>Mechatronics: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
<tr>
<td>Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory</td>
</tr>
</tbody>
</table>
Course L1043: Differential Equations 2 (Partial Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- Main features of the theory and numerical treatment of partial differential equations
 - Examples of partial differential equations
 - First order quasilinear differential equations
 - Normal forms of second order differential equations
 - Harmonic functions and maximum principle
 - Maximum principle for the heat equation
 - Wave equation
 - Liouville's formula
 - Special functions
 - Difference methods
 - Finite elements

Literature
- http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

Course L1044: Differential Equations 2 (Partial Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- See interlocking course

Literature
- See interlocking course

Course L1045: Differential Equations 2 (Partial Differential Equations)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Content
- See interlocking course

Literature
- See interlocking course
Course L1038: Complex Functions

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 2, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>Main features of complex analysis</td>
</tr>
<tr>
<td></td>
<td>- Functions of one complex variable</td>
</tr>
<tr>
<td></td>
<td>- Complex differentiation</td>
</tr>
<tr>
<td></td>
<td>- Conformal mappings</td>
</tr>
<tr>
<td></td>
<td>- Complex integration</td>
</tr>
<tr>
<td></td>
<td>- Cauchy's integral theorem</td>
</tr>
<tr>
<td></td>
<td>- Cauchy's integral formula</td>
</tr>
<tr>
<td></td>
<td>- Taylor and Laurent series expansion</td>
</tr>
<tr>
<td></td>
<td>- Singularities and residuals</td>
</tr>
<tr>
<td></td>
<td>- Integral transformations: Fourier and Laplace transformation</td>
</tr>
<tr>
<td>Literature</td>
<td>http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html</td>
</tr>
</tbody>
</table>

Course L1041: Complex Functions

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L1042: Complex Functions

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten des Fachbereiches Mathematik der UHH</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>
Module M0680: Fluid Dynamics

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluid Mechanics (L0454)</td>
<td>Lecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics (L0455)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Responsible</th>
<th>Prof. Thomas Rung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Admission Requirements</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Previous Knowledge</td>
<td>Sound knowledge of engineering mathematics, engineering mechanics and thermodynamics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educational Objectives</th>
<th>After taking part successfully, students have reached the following learning results</th>
</tr>
</thead>
</table>

| Professional Competence | Knowledge | Students will have the required sound knowledge to explain the general principles of fluid engineering and physics of fluids. Students can scientifically outline the rationale of flow physics using mathematical models and are familiar with methods for the performance analysis and the prediction of fluid engineering devices. |
|-------------------------|-----------|
| | Skills | Students are able to apply fluid-engineering principles and flow-physics models for the analysis of technical systems. The lecture enables the student to carry out all necessary theoretical calculations for the fluid dynamic design of engineering devices on a scientific level. |
| | Social Competence | The students are able to discuss problems and jointly develop solution strategies. |
| | Autonomy | The students are able to develop solution strategies for complex problems self-consistent and critically analyse results. |

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 110, Study Time in Lecture 70</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credit hours</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Written exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination duration and scale</td>
<td>180 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment for the Following Curricula</th>
<th>General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td></td>
<td>General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td></td>
<td>General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory</td>
</tr>
<tr>
<td></td>
<td>General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory</td>
</tr>
<tr>
<td></td>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td></td>
<td>Computational Science and Engineering: Specialisation Engineering Sciences: Elective</td>
</tr>
</tbody>
</table>
Course L0454: Fluid Mechanics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 78, Study Time in Lecture: 42

Lecturer
- Prof. Thomas Rung

Language
- DE

Cycle
- SoSe

Content
- Overview
- Physical/mathematical modelling
- Special phenomena
- Basic equations of fluid dynamics
- The turbulence problem
- One dimensional theory for incompressible flows
- One dimensional theory for compressible flows
- Flow over contours without friction
- Flow over contours with friction
- Flow through channels
- Simplified equations for three dimensional flow
- Special aspects of the numerical solution for complex flows

Literature

Course L0455: Fluid Mechanics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time: 32, Study Time in Lecture: 28

Lecturer
- Prof. Thomas Rung

Language
- DE

Cycle
- SoSe

Content
- See interlocking course

Literature
- See interlocking course
Module M0640: Stochastics and Ship Dynamics

<table>
<thead>
<tr>
<th>Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Typ</td>
</tr>
<tr>
<td>Ship Dynamics (L0352)</td>
<td>Lecture</td>
</tr>
<tr>
<td>Ship Dynamics (L1620)</td>
<td>Recitation Section (small)</td>
</tr>
<tr>
<td>Statistics and Stochastic Processes in Naval Architecture and Ocean Engineering (L0364)</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Moustafa Abdel-Maksoud

Admission Requirements
None

Recommended Previous Knowledge
- Technical mechanics
- Linear algebra, analysis, complex numbers
- Fluid mechanics

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence
Knowledge
- The students are able to give an overview over various manoeuvres. They can name application goals and they can describe the procedure of the manoeuvres.
- The students are able to give an overview over various rudder types. They can name criteria in the rudder design.
- The students can name computation methods which are used to determine forces and motions in waves.

Skills
- The students can come up with the equations of motions which are used to describe manoeuvres. The can use and linearise them.
- The students are able to determine hydrodynamic coefficients and they can explain their physical meaning.
- The students can explain how a rudder works and they can explain the physical effects which can occur.
- The students can mathematically describe waves.
- The students can explain the mathematically description of harmoncial motions in waves and they can determine them.

Personal Competence

Social Competence
- The students can discuss in groups and explain their point of view.

Autonomy
- The students can assess their own strengths and weaknesses and the define further work steps on this basis.

Workload in Hours
Independent Study Time 140, Study Time in Lecture 70

Credit points
7

Course achievement
None
<table>
<thead>
<tr>
<th>Examination</th>
<th>Written exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination duration and scale</td>
<td>180 min</td>
</tr>
<tr>
<td>Assignment for the Following Curricula</td>
<td>General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td></td>
<td>General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory</td>
</tr>
<tr>
<td></td>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
<tr>
<td></td>
<td>Theoretical Mechanical Engineering; Technical Complementary Course: Elective Compulsory</td>
</tr>
</tbody>
</table>
Course L0352: Ship Dynamics

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 62
- Study Time in Lecture 28

Lecturer
Prof. Moustafa Abdel-Maksoud

Language
DE

Cycle
SoSe

Content
- Maneuverability of ships
 - Equations of motion
 - Hydrodynamic forces and moments
 - Linear equations and their solutions
 - Full-scale trials for evaluating the maneuvering performance
 - Regulations for maneuverability
 - Rudder
- Seakeeping
 - Representation of harmonic processes
 - Motions of a rigid ship in regular waves
 - Flow forces on ship cross sections
 - Strip method
 - Consequences induced by ship motion in regular waves
 - Behavior of ships in a stationary sea state
 - Long-term distribution of seaway influences

Literature
- Abdel-Maksoud, M., Schiffsdynamik, Vorlesungsskript, Institut für Fluidodynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2014
- Abdel-Maksoud, M., Ship Dynamics, Lecture notes, Institute for Fluid Dynamic and Ship Theory, Hamburg University of Technology, 2014
- Bhattacharyya, R., Dynamics of Marine Vehicles, John Wiley & Sons, Canada, 1978
- Faltinsen, O. M., Sea Loads on Ships and Offshore Structures, Cambridge University Press, United Kingdom, 1990
- Handbuch der Werften, Deutschland, 1986
- Lloyd, A., Ship Behaviour in Rough Weather, Gosport, Chichester, Sussex, United Kingdom, 1998
Course L1620: Ship Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Moustafa Abdel-Maksoud</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td>See interlocking course</td>
</tr>
<tr>
<td>Literature</td>
<td>See interlocking course</td>
</tr>
</tbody>
</table>

Course L0364: Statistics and Stochastic Processes in Naval Architecture and Ocean Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Volker Müller</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| **Content** | - descriptive statistics, parameter, criteria for outliers
- sample, sample space, probability, probability space
- Bayes method, conditional probability, law of total probability
- Discrete and continuous random variables
- Probability distributions
- mixed and joint random variables and their distribution
- Characteristics of random variables (expectation, variance, skewness, kurtosis, …)
- (central) limit theorem
- Stochastic processes
- Statistical description of seaway, harmonic analysis of seaway
- narrow-banded Gaussian process, seaway and its characteristics
- sea- and wind spectra
- transformation of spectra, transfer function |
| **Literature** | V. Müller, Statistik und Stochastik in der Schiffs- und Meerestechnik, Vorlesungsskript, Institut für Fluidodynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2014
W. Blendermann „Grundlagen der Wahrscheinlichkeitsrechnung“, Vorlesungsskript, Arbeitsbereich Fluidodynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2001
Module M0655: Computational Fluid Dynamics I

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Fluid Dynamics I (L0235)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Computational Fluid Dynamics I (L0419)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Thomas Rung

Admission Requirements
None

Recommended Previous Knowledge
- Mathematical Methods for Engineers
- Fundamentals of Differential/integral calculus and series expansions

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence
Knowledge
The students are able to list the basic numerics of partial differential equations.

Skills
The students are able develop appropriate numerical integration in space and time for the governing partial differential equations. They can code computational algorithms in a structured way.

Personal Competence
Social Competence
The students can arrive at work results in groups and document them.

Autonomy
The students can independently analyse approaches to solving specific problems.

Workload in Hours
Independent Study Time 124, Study Time in Lecture 56

Credit points
6

Course achievement
None

Examination
Written exam

Examination duration and scale
2h

Assignment for the Following Curricula
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory
Course L0235: Computational Fluid Dynamics I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 62, Study Time in Lecture 28

Lecturer
- Prof. Thomas Rung

Language
- DE

Cycle
- WiSe

Content
- 1. Partial differential equations
- 2. Foundations of finite numerical approximations
- 3. Computation of potential flows
- 4. Introduction of finite-differences
- 5. Approximation of convective, diffusive and transient transport processes
- 6. Formulation of boundary conditions and initial conditions
- 7. Assembly and solution of algebraic equation systems
- 8. Facets of weighted -residual approaches
- 9. Finite volume methods
- 10. Basics of grid generation

Literature
- Ferziger and Peric: *Computational Methods for Fluid Dynamics*, Springer

Course L0419: Computational Fluid Dynamics I

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
- Independent Study Time 62, Study Time in Lecture 28

Lecturer
- Prof. Thomas Rung

Language
- DE

Cycle
- WiSe

Content
- See interlocking course

Literature
- See interlocking course
Module M0659: Fundamentals of Ship Structural Design and Analysis

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Ship Structural Design (L0411)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Ship Structural Design (L0413)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Ship Structural Analysis (L0410)</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Ship Structural Analysis (L0414)</td>
<td>Recitation Section (small)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Responsible
- Prof. Sören Ehlers

Admission Requirements
- None

Recommended Previous Knowledge
- Mechanics I - III
- Fundamentals of Materials Science I - III
- Welding Technology I
- Fundamentals of Mechanical Design I - III

Educational Objectives
After taking part successfully, students have reached the following learning results:

Professional Competence
- **Knowledge**
 - Students can reproduce the basic contents of the structural behaviour of ship structures; they can explain the theory and methods for the calculation of deformations and stresses in beam-like structures.
 - Furthermore, they can reproduce the basis contents of codes (rules), materials, semi-finished products, joining and principles of structural design of components in the ship structure.
 - Students are capable of applying the methods and tools for the calculation of linear deformations and stresses in the above mentioned structures; they can choose calculation models of typical ship structures.
- **Skills**
 - Furthermore, they are capable to apply the methods of drawing and sizing the ship structure; they can select suitable materials, semi-finished products and joints.

Personal Competence
- **Social Competence**
 - The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.
 - The students are capable to independently idealize real ship structures and to select suitable methods for analysis of beam-like structures; they are capable to assess the results of structural analyses.
- **Autonomy**
 - Furthermore, they are capable to assess drawings of complex ship structures and to design ship structures for various requirements and boundary conditions.

Workload in Hours
- Independent Study Time 156, Study Time in Lecture 84

Credit points
- 8

Course achievement
- None
Examination
Written exam

Examination duration and scale
3 hours

Assignment for the Following Curricula
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
Naval Architecture: Core qualification: Compulsory

Course L0411: Fundamentals of Ship Structural Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
<th>Hours/week</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 32, Study Time in Lecture 28

Lecturer
Prof. Sören Ehlers

Language
DE

Cycle
WiSe

Content
Chapters:
1. Introduction
2. Class societies and their tasks
3. Materials for steel shipbuilding
4. Welding and Cutting
5. Semi-finished products in steel shipbuilding
6. Determining the scantlings for local loads
7. Longitudinal strength of the hull girder
8. Determining the scantlings of longitudinal structural members
9. Determining the scantlings of bottom and side structures
10. Decks and Hatch Openings
11. Effective breadth
12. Iterative determination of scantlings (POSEIDON)

Literature
Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht
Course L0413: Fundamentals of Ship Structural Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 46, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>Chapters:</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
</tr>
<tr>
<td></td>
<td>3. Class societies and their tasks</td>
</tr>
<tr>
<td></td>
<td>4. Materials for steel shipbuilding</td>
</tr>
<tr>
<td></td>
<td>5. Welding and Cutting</td>
</tr>
<tr>
<td></td>
<td>6. Semi-finished products in steel shipbuilding</td>
</tr>
<tr>
<td></td>
<td>7. Determining the scantlings for local loads</td>
</tr>
<tr>
<td></td>
<td>8. Longitudinal strength of the hull girder</td>
</tr>
<tr>
<td></td>
<td>9. Determining the scantlings of longitudinal structural members</td>
</tr>
<tr>
<td></td>
<td>10. Determining the scantlings of bottom and side structures</td>
</tr>
<tr>
<td></td>
<td>11. Decks and Hatch Openings</td>
</tr>
<tr>
<td></td>
<td>12. Effective breadth</td>
</tr>
<tr>
<td></td>
<td>13. Iterative determination of scantlings (POSEIDON)</td>
</tr>
<tr>
<td>Literature</td>
<td>Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht</td>
</tr>
</tbody>
</table>

Course L0410: Fundamentals of Ship Structural Analysis

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 32, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
<tr>
<td>Content</td>
<td>Contents:</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
</tr>
<tr>
<td></td>
<td>2. Finite element method (f.e. method) by the example of trussworks</td>
</tr>
<tr>
<td></td>
<td>3. Force methods for frameworks</td>
</tr>
<tr>
<td></td>
<td>4. F.e. method for frameworks</td>
</tr>
<tr>
<td></td>
<td>5. Shear and torsion in thin-walled beams</td>
</tr>
<tr>
<td></td>
<td>6. Beams subjected to longitudinal forces</td>
</tr>
<tr>
<td>Literature</td>
<td>Vorlesungsskript mit weiteren Literaturangaben; div. Bücher über die Methode der finiten Elemente</td>
</tr>
<tr>
<td>Course L0414: Fundamentals of Ship Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Typ</td>
<td>Recitation Section (small)</td>
</tr>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>2</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 46, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>
| **Content** | Contents:
1. Introduction
2. Finite element method (f.e. method) by the example of trussworks
3. Force methods for frameworks
4. F.e. method for frameworks
5. Shear and torsion in thin-walled beams
6. Beams subjected to longitudinal forces |
| **Literature** | Vorlesungsskript mit weiteren Literaturangaben; div. Bücher über die Methode der finiten Elemente |
Module M0664: Structural Design and Construction of Ships

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Structural Design (L0412)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ship Structural Design (L0415)</td>
<td>Recitation Section (small)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Welding Technology (L1123)</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Sören Ehlers

Admission Requirements

None

Recommended Previous Knowledge

- Mechanics I - III
- Fundamentals of Materials Science I - III
- Welding Technology I
- Fundamentals of Mechanical Design I - III

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

Students can reproduce design and sizing as well as fabrication of the different areas of ship structures and of different ship types (incl. detail design); they can describe calculation models for complex structures.

Skills

Students are capable to specify the requirements for different ship types and areas of the hull, to define design criteria for the components, to select suitable calculation models and to assess the chosen structure

Personal Competence

Social Competence

Students are capable to present their structural design and discuss their decisions constructively in a group.

Autonomy

Students are capable to design independently different structural areas of the ship hull and different ship types and to define appropriate fabrication methods.

Workload in Hours

- Independent Study Time: 172
- Study Time in Lecture: 98

Credit points

9

Course achievement

None

Examination

- Examination: Written exam
- Examination duration and scale: 3 hours

Assignment for the

General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory

General Engineering Science (English program, 7 semester): Specialisation Naval Architecture
| **Following Curricula** | Architecture: Compulsory
Naval Architecture: Core qualification: Compulsory |
|------------------------|--|

Course L0412: Ship Structural Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

| **Content** | Chapters:
1. Bulkheads and tanks
2. Structural design of forebodies
3. Structures in engine rooms
4. Aft bodies and rudders
5. Detail structural design
6. Outfitting
7. Bulk carriers
8. Tankers
9. Container ships
10. Production-kind steel structural design
11. Buckling and ultimate strength
12. Safety factors and reliability of structures |

| **Literature** | Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |

Course L0415: Ship Structural Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Sören Ehlers</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

| **Content** | Chapters:
1. Bulkheads and tanks
2. Structural design of forebodies
3. Structures in engine rooms
4. Aft bodies and rudders
5. Detail structural design
6. Outfitting
7. Bulk carriers
8. Tankers
9. Container ships
10. Production-kind steel structural design
11. Buckling and ultimate strength
12. Safety factors and reliability of structures |

| **Literature** | Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |
Course L1123: Welding Technology

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>3</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in Hours
Independent Study Time 48, Study Time in Lecture 42

Lecturer
Prof. Claus Emmelmann, Prof. Karl-Ulrich Kainer

Language
DE

Cycle
WiSe

Content
- phase transitions, phase diagrams and thermal activated processes
- fundamentals of steels, heat treatment applications for steels and time temperature transformation diagrams
- properties of weldable carbon and fine grained steels
- properties of weldable low- and high-alloy steels, corrosion resistant steels and high-strength steels
- structure and properties of non-ferrite metals (aluminum, titanium)
- NDT/DT Methods for materials and welds
- gas fusion welding, fundamentals of electric arc welding technologies
- structure and influence parameters for the welded joint
- submerged arc welding/tungsten inert gas welding/inert gas metal arc welding (MIG)/active gas metal arc welding (MAG)/Plasma Welding
- resistance welding/ polymer welding/ hybrid-welding
- deposition welding
- electron beam welding/laser beam welding
- weld joint designs and declarations
- computation methods for weld joint dimensioning

Literature

Module M1023: Marine Propulsion

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Reciprocating Engines and Turbomachinery - Part</td>
<td>Lecture</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reciprocating Engines (L0633)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Reciprocating Engines and Turbomachinery - Part</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reciprocating Engines (L0634)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Marine Engineering (L0635)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Marine Engineering (L0636)</td>
<td>Recitation Section (large)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Responsible
Prof. Christopher Friedrich Wirz

Admission Requirements
None

Recommended Previous Knowledge
Thermodynamics, Mechanics, Machine Elements, Basics in Naval Architecture

Educational Objectives
After taking part successfully, students have reached the following learning results

Professional Competence
As a result of the part module „Fundamentals of Reciprocating Machinery”, the students are able to reflect fundamentals regarding power and working machinery and describe the qualitative and quantitative correlations of operating methods and efficiencies of multiple types of engines, compressors and pumps. They are able to utilize technical terms and parameters as well as aspects regarding the development of power density and efficiency, furthermore to give an overview of charging systems, fuels and emissions. The students are able to select specific types of machinery and assess design related and operational problems.

Knowledge
As a result of the part module “Fundamentals of Marine Engineering”, the students are able to describe the state-of-the-art regarding the wide range of propulsion components on ships and apply their knowledge. They further know how to analyze and optimize the interaction of the components of the propulsion system and how to describe complex correlations with the specific technical terms in German and English.

Skills
The students are skilled to employ basic and detail knowledge regarding reciprocating machinery, their selection and operation on board ships. They are further able to assess, analyse and solve technical and operational problems with propulsion and auxiliary plants and to design propulsion systems. The students have the skills to describe complex correlations and bring them into context with related disciplines.

Personal Competence

Social Competence
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry.

Autonomy
The widespread scope of gained knowledge enables the students to handle situations in their future profession independently and confidently.

Workload in Hours
Independent Study Time 110, Study Time in Lecture 70

Credit points
6

Course achievement
None

Examination
Written exam
<table>
<thead>
<tr>
<th>Examination duration and scale</th>
<th>150 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment for the Following Curricula</td>
<td>Naval Architecture: Core qualification: Compulsory</td>
</tr>
</tbody>
</table>

Course L0633: Fundamentals of Reciprocating Engines and Turbomachinery - Part Reciprocating Engines

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Verbrennungsmotoren
 - Historischer Rückblick
 - Einteilung der Verbrennungsmotoren
 - Arbeitsverfahren
 - Vergleichsprozesse
 - Arbeit, Mitteldrücke, Leistungen
 - Arbeitsprozess des wirklichen Motors
 - Wirkungsgrade
 - Gemischbildung und Verbrennung
 - Motorkennfeld und Betriebskennlinien
 - Abgasentgiftung
 - Gaswechsel
 - Aufladung
 - Kühl- und Schmiersystem
 - Kräfte im Triebwerk
- Kolbenverdichter
 - Thermodynamik des Kolbenverdichters
 - Einteilung und Verwendung
- Kolbenpumpen
 - Prinzip der Kolbenpumpen
 - Einteilung und Verwendung

Literature
- A. Urlaub: Verbrennungsmotoren
- W. Kalide: Kraft- und Arbeitsmaschinen

Course L0634: Fundamentals of Reciprocating Engines and Turbomachinery - Part Reciprocating Engines

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
See interlocking course

Literature
See interlocking course
Course L0635: Fundamentals of Marine Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- Geschichtliche Entwicklung der Schiffsantriebe
- Derzeitiger Stand der Schiffsantriebe
- Anordnung der Maschinenanlage im Schiff
- Zusammenwirken von Schiff, Propeller und Motor
- Wellenleitung
- Schiffsgetriebe
- Kupplungen
- Maschinenraumbelüftung
- Abgasanlage und Emissionen
- Besondere Anforderungen im Schiffsbetrieb

Literature
- D. Woodyard: Pounder’s Marine Diesel Engines
- H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
- K. Kuiken: Diesel Engines
- Mollenhauer, Tschöke: Handbuch Dieselmotoren
- Projektierungsunterlagen der Motorenhersteller
- Skript zur Vorlesung

Course L0636: Fundamentals of Marine Engineering

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 16, Study Time in Lecture 14</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Christopher Friedrich Wirz</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Content
- See interlocking course

Literature
- See interlocking course
Module M1109: Resistance and Propulsion

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance and Propulsion (L1265)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Resistance and Propulsion (L1266)</td>
<td>Recitation Section</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Stefan Krüger

Admission Requirements

None

Recommended Previous Knowledge

- Mechanics
- Fluid Dynamics for Naval Architects
- Hydrostratics

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

Knowledge

- Stillwater/added resistance
- Wave resistance
- Minimization of wave resistance
- Numerical prediction methods
- Friction laws
- Laminar/turbulent flow separation
- Hull form design for reduced flow separation
- Appendage Design and resistance
- Froude’s resistance law
- Form factor method
- Thrust deduction
- Wake
- Model scaling laws
- Resistance tests
- Free running propeller tests
- Propeller basics
- Propulsion tests
- Full scale speed power predictions
- Additional resistances (wind, steering, current, sea state)
- EEDI
- Speed trials
- Contractual matters concerning speed/power, bunker claims

Skills

The student shall learn to design competitive hull forms with respect to fuel consumption by applying numerical techniques and to evaluate these hulls by several prognosis methods. Furthermore, the course will enable the student to clearly determine and minimize the required power including environmental influences.

Personal Competence

Social Competence

The student learns to prepare technical matters in such a way that he can compete with his building supervision team.

Autonomy

The student learns to prepare technical matters in such a way that he can compete with his building supervision team.

Workload in Hours

- Independent Study Time: 124
- Study Time in Lecture: 56

Credit points

6

Course achievement

None

Examination

Written exam

Examination duration and scale

180 min

Assignment for the

General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
<table>
<thead>
<tr>
<th>Course L1265: Resistance and Propulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course L1266: Resistance and Propulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Hrs/wk</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Workload in Hours</td>
</tr>
<tr>
<td>Lecturer</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Cycle</td>
</tr>
<tr>
<td>Content</td>
</tr>
<tr>
<td>Literature</td>
</tr>
</tbody>
</table>
Module M1110: Ship Design

Courses

<table>
<thead>
<tr>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Design (L1262)</td>
<td>Lecture</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ship Design (L1264)</td>
<td>Recitation Section (large)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Module Responsible

Prof. Stefan Krüger

Admission Requirements

None

Recommended Previous Knowledge

• Fluid Dynamics for Naval Architects, Resistance and Propulsion
• Resistance and Propulsion, Hydrostatics

Educational Objectives

After taking part successfully, students have reached the following learning results

Professional Competence

The lecture starts with an overview about the importance and requirements of the early design phase. Competitive Elements of Ship Designs are thoroughly discussed. Typical building contracts and the related technical risk are introduced. The most important main parameters of a ship are introduced and their influence on the competitiveness of a design. The lecture focuses on the influence of alternated main parameters on the total performance of a ship design and the consecutive process elements. In this lecture, the design changes are dealt with by simple models or formulae. The student shall further learn to model complex systems properly so that the relevant technical conclusions can be drawn.

The lecture continues with an introduction into the different phases of design project, from the initial design phase to a building contract. Further, methods are introduced to generate building specification relevant information at different levels of granularity during the different design stages. In detail, the following topics are addressed:

- Structure of a building specification
- Determination of Light Ship Weight and Deadweight Components
- Design of main section and hull form
- Design of aftbody lines and maneuvering devices
- Design of main propulsion plant
- Design of subdivision
- Determination of limiting GMrequ- Curves
- Scantlings of most important structural members
- Longitudinal strength
- Outfitting Components
- Relevant rules and regulations

Skills

The student is made familiar with the basic design principles of seagoing merchant ships. The goal of the lecture is that the student shall be able to carry out a concept design based on a vessel of comparison fulfilling typical contract requirements within the Marine Environment.

The lecture deals with the basic design methods to determine the fundamental technical characteristics of a ship design with respect to fulfillment procedures of the contract values. Based on the lecture "Principles of Ship Design" the relevant methods to determine and judge upon the performance of a ship design are treated.

Personal Competence

The students learns to prepare technical matters in such a way he can persuade his potential customer against his competitors.

Social Competence

The students learns to prepare technical matters in such a way he can persuade his
Autonomy potential customer against his competitors.

<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time 124, Study Time in Lecture 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>6</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Written exam</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>180 min</td>
</tr>
<tr>
<td>Assignment for the Following Curricula</td>
<td>General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory Naval Architecture: Core qualification: Compulsory</td>
</tr>
</tbody>
</table>

Course L1262: Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Stefan Krüger</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
</tr>
</tbody>
</table>

Course L1264: Ship Design

<table>
<thead>
<tr>
<th>Typ</th>
<th>Recitation Section (large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/wk</td>
<td>2</td>
</tr>
<tr>
<td>CP</td>
<td>3</td>
</tr>
<tr>
<td>Workload in Hours</td>
<td>Independent Study Time 62, Study Time in Lecture 28</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Stefan Krüger</td>
</tr>
<tr>
<td>Language</td>
<td>DE</td>
</tr>
<tr>
<td>Cycle</td>
<td>SoSe</td>
</tr>
<tr>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
</tr>
</tbody>
</table>
Thesis

Module M-001: Bachelor Thesis

<table>
<thead>
<tr>
<th>Courses</th>
<th>Title</th>
<th>Typ</th>
<th>Hrs/wk</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Responsible</td>
<td>Professoren der TUHH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Admission Requirements
- According to General Regulations §21 (1):
 - At least 126 ECTS credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge

Educational Objectives
- After taking part successfully, students have reached the following learning results

Professional Competence
- **Knowledge**
 - The students can select, outline and, if need be, critically discuss the most important scientific fundamentals of their course of study (facts, theories, and methods).
 - On the basis of their fundamental knowledge of their subject the students are capable in relation to a specific issue of opening up and establishing links with extended specialized expertise.
 - The students are able to outline the state of research on a selected issue in their subject area.

- **Skills**
 - The students can make targeted use of the basic knowledge of their subject that they have acquired in their studies to solve subject-related problems.
 - With the aid of the methods they have learnt during their studies the students can analyze problems, make decisions on technical issues, and develop solutions.
 - The students can take up a critical position on the findings of their own research work from a specialized perspective.

Personal Competence
- **Social Competence**
 - Both in writing and orally the students can outline a scientific issue for an expert audience accurately, understandably and in a structured way.
 - The students can deal with issues in an expert discussion and answer them in a manner that is appropriate to the addressees. In doing so they can uphold their own assessments and viewpoints convincingly.

- **Autonomy**
 - The students are capable of structuring an extensive work process in terms of time and of dealing with an issue within a specified time frame.
 - The students are able to identify, open up, and connect knowledge and material necessary for working on a scientific problem.
 - The students can apply the essential techniques of scientific work to research of their own.
<table>
<thead>
<tr>
<th>Workload in Hours</th>
<th>Independent Study Time: 360, Study Time in Lecture: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>12</td>
</tr>
<tr>
<td>Course achievement</td>
<td>None</td>
</tr>
<tr>
<td>Examination</td>
<td>Thesis</td>
</tr>
<tr>
<td>Examination duration and scale</td>
<td>According to General Regulations</td>
</tr>
</tbody>
</table>

Assignment for the Following Curricula

- General Engineering Science (German program, 7 semester): Thesis: Compulsory
- Civil- and Environmental Engineering: Thesis: Compulsory
- Bioprocess Engineering: Thesis: Compulsory
- Computer Science: Thesis: Compulsory
- Electrical Engineering: Thesis: Compulsory
- Energy and Environmental Engineering: Thesis: Compulsory
- General Engineering Science (English program, 7 semester): Thesis: Compulsory
- Computational Science and Engineering: Thesis: Compulsory
- Logistics and Mobility: Thesis: Compulsory
- Mechanical Engineering: Thesis: Compulsory
- Mechatronics: Thesis: Compulsory
- Naval Architecture: Thesis: Compulsory
- Technomathematics: Thesis: Compulsory
- Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Thesis: Compulsory
- Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
- Process Engineering: Thesis: Compulsory

Module Manual B.Sc. “Naval Architecture”