Studiengangsbeschreibung
Inhalt
Für die deutsche Schiffbauindustrie bestehen große Potenziale in Zukunftsmärkten:
- im Spezialschiffbau (ausrüstungsintensive Hightech-Schiffe für besondere Transportaufgaben und An-forderungen);
- in der Optimierung und Nachrüstung von Schiffen auf hohe Umwelt- und Klimaschutzanforderungen;
- im Export (Exportquote im dt. Handelsschiffneubau 98 %, Schiffbauzulieferindustrie 75 %);
- im Bereich Offshore-Windenergie (Spezialfahrzeuge, Fundamente und Topsides).
Die maritimen Studiengänge an der TUHH (Bachelor und Master) sind bestrebt, die Ausbildung der Studieren-den auf einen Berufseinstieg in die vielfältige, stets im Wandel begriffene und wachsende maritime Branche auszurichten.
Vorrangiges Ziel des Bachelor-Studiengangs Schiffbau ist es, die Befähigung für das Studium eines konsekutiven Master-Studiums an der TUHH zu vermitteln. Eine Absolventin oder ein Absolvent ist aber ebenso gut auch für andere schiffs- und/oder meerestechnisch ausgerichtete Master-Studiengänge im In- und Ausland befähigt und in der Lage, in schiffbaulich geprägten Tätigkeitsfeldern zu arbeiten.
Die Absolventen sollen in der Lage sein, fachbezogene Ingenieuraufgaben zu lösen, die beispielsweise mit dem Entwurf von Schiffen, mit konstruktiven und fertigungstechnischen Fragen oder mit hydrodynamischen Problemstellungen zusammenhängen.
Die Absolventen können eine Ingenieurtätigkeit in verschiedenen schiffbaulich geprägten Tätigkeitsfeldern verantwortungsvoll und kompetent ausüben und sind berechtigt, die Berufsbezeichnung „Ingenieur“ im Sinne der Ingenieurgesetze (IngG) der Länder zu führen.
Ergänzend zu dem fachlichen Grundlagenkanon wird eine Ausbildung in nicht-technischen Bereichen wie Be-triebswirtschaftslehre, Patentwesen, Management, Geisteswissenschaften, sowie Recht und Philosophie angestrebt, die den modernen Berufsanforderungen an einen Ingenieur gerecht wird.
Berufliche Perspektiven
Lernziele
- Die Studierenden können die mathematisch‐naturwissenschaftlichen Grundlagen und Methoden der Ingenieurwissenschaften benennen und beschreiben.
- Die Studierenden können Grundlagen und Methoden des Maschinen‐ und Schiffbaus erläutern und einen Überblick über ihr Fach geben.
- Die Studierenden können Grundlagen, Methoden und Anwendungsgebiete der Teildisziplinen des Schiffbaus im Detail erklären.
- Die Studierenden können Grundlagen und Methoden des Schiffbaus wiedergeben und einen Überblick über die relevanten sozialen, ethischen, ökologischen und ökonomischen Randbedingungen ihres Faches geben.
Fertigkeiten
- Die Studierenden können ihr Wissen über mathematisch‐naturwissenschaftliche Grundlagen und Methoden der Ingenieurwissenschaften auf einfache theoretische und praktische Probleme anwenden und Lösungen erarbeiten.
- Die Studierenden können typische detaillierte theoretische und praktische Problemstellungen aus dem Schiffbau auf ihr Grundlagenwissen abbilden, methodisch-grundlagenorientiert analysieren und geeignete Lösungsmethoden finden und umsetzen. Sie können den eingeschlagenen Lösungsweg geeignet schriftlich dokumentieren.
- Die Studierenden können praktische eher allgemeine Problemstellungen aus dem Schiffbau (z.B. Entwurf und Konstruktion von Hauptspanten) bearbeiten, methodisch-grundlagenorientiert analysieren und geeignete Methoden zur Problemlösung finden und diese umsetzen. Sie können Ihre Lösung einer Zuhörerschaft klar strukturiert präsentieren.
- Die Studierenden können ingenieurpraktische Fragestellungen aus der Forschung unter Verwendung geeigneter Methoden eigenverantwortlich bearbeiten, ihren eingeschlagenen Lösungsweg dokumentieren und vor einem fachkundigen Publikum präsentieren.
Sozialkompetenz
- Die Studierenden sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen.
- Die Studierenden können über Inhalte und Probleme des Schiffbaus mit Fachleuten und Laien kommunizieren. Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet reagieren.
- Die Studierenden sind in der Lage, in Gruppen zu arbeiten. Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren.
Selbstständigkeit
- Die Studierenden sind in der Lage, notwendige fachliche Informationen zu beschaffen und in den Kontext ihres Wissens zu setzen.
- Die Studierenden können ihre vorhandenen Kompetenzen realistisch einschätzen und Defizite selbstständig aufarbeiten.
- Die Studierenden können selbstorganisiert und ‐motiviert Themenkomplexe erlernen und Problemstellungen bearbeiten (lebenslanges Lernen in der Ingenieurpraxis).
Studiengangsstruktur
Fachmodule der Kernqualifikation
Modul M0608: Grundlagen der Elektrotechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Kern |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können Stromlaufpläne für elektrische und elektronische Schaltungen bestehend aus einer geringen Anzahl von Komponenten skizzieren und erläutern. Sie können die Funktion der grundlegenden elektrischen und elektronischen Bauelemente beschreiben und zugehörige Gleichungen darstellen. Sie können die üblichen Berechnungsmethoden demonstrieren. |
Fertigkeiten |
Studierende sind fähig, elektrische und elektronische Schaltungen bestehend aus eine geringen Anzahl von Komponenten für Gleich- und Wechselstrom zu analysieren und ausgewählte Größen daraus zu berechnen. Sie wenden dabei die üblichen Methoden der Elektrotechnik an. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit |
Studierende sind fähig, eigenständig elektrische und elektronische Schaltungen für Gleich- und Wechselstrom zu analysieren und ausgewählte Größen daraus zu berechnen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 Minuten |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0290: Grundlagen der Elektrotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
ourse achievement | keine |
Dozenten | Prof. Thorsten Kern |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Netze bei Gleichstrom: Strom, Spannung, Widerstand, Leistung, Kirchhoff ́sche Regeln, Ersatzquellen, Netzwerkberechnung Wechselstrom: Kenngrößen, Effektivwert, Komplexe Rechnung, Zeigerbilder, Leistung Elektronik: Wirkungsweise, Betriebsverhalten und Anwendung elektronischer Bauelemente wie Diode, Zener-Diode, Thyristor, Transistor, Operationsverstärker |
Literatur |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 Ralf Kories, Heinz Schmitt - Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - andere Autoren |
Lehrveranstaltung L0292: Grundlagen der Elektrotechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
ourse achievement | keine |
Dozenten | Prof. Thorsten Kern, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bearbeiten von Übungsaufgaben, die die Analyse von Schaltungen und die Berechnung von elektrischen Größen beinhalten zu den Themen: Netze bei Gleichstrom: Strom, Spannung, Widerstand, Leistung, Kirchhoff ́sche Regeln, Ersatzquellen, Wechselstrom: Kenngrößen, Effektivwert, Komplexe Rechnung, Zeigerbilder, Leistung |
Literatur |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 |
Modul M0782: Informatik für Maschinenbau-Ingenieure |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Elementare Kenntnisse im Programmieren, wie sie der Brückenkurs "Einführung in das Programmieren" oder die Schule vermittelt. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen grundlegende Konzepte
und können sie erklären. |
Fertigkeiten |
Studierende sind in der Lage,
eigene Rechnerlösungen zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in kleinen fachlich gemischten Projektteams Informatik-Lösungen entwickeln und kommunizieren. |
Selbstständigkeit |
keine |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0149: Informatik für Maschinenbau-Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Studierende kennen die grundlegenden Konzepte und Techniken der Informatik, die inzwischen zum Kanon des Ingenieurstudiums gehören:
und können sie praktisch anwenden. Studierende arbeiten an einer Folge von Gruppenübungen. |
Literatur |
Helmut Erlenkötter: C++ : Objektorientiertes Programmieren von Anfang an. Reinbek bei Hamburg: Rowohlt Taschenbuch-Verlag (15. Aufl., 2012). Bjarne Stroustrup: Die C++-Programmiersprache. München: Addison Wesley (4., aktualisierte und erw. Aufl., 2011). |
Lehrveranstaltung L0772: Informatik für Maschinenbau-Ingenieure |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
ourse achievement | Bis zu 10% der maximalen Klausurpunktzahl der Klausur durch Besuch der Gruppenübungen erwerbbar. Jede aktive Teilnahme an einer Gruppenübung zählt, wenn der Studierende in der besuchten Übungsgruppe eingetragen ist. Der Studierende muss an mindestens der Hälfte der Termine teilnehmen. Der Studierende erhält entsprechend dem gerundeten Anteil an der Gesamtzahl der Termine bis zu 10% der maximalen Klausurpunktzahl. Der Bonus gilt nur im aktuellen und im folgenden Semester. |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0773: Informatik für Maschinenbau-Ingenieure |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0850: Mathematik I |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulmathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis I) + 60 min (Lineare Algebra I) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1010: Analysis I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung einer Variablen:
|
Literatur |
|
Lehrveranstaltung L1012: Analysis I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1013: Analysis I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0912: Lineare Algebra I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik I" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. |
Literatur |
|
Lehrveranstaltung L0913: Lineare Algebra I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik I" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. Zusätzlich zu den Präsenzübungen werden Online-Tests eingesetzt, die sowohl den Studierenden als auch den Lehrenden Feedback zum Lernstand geben. |
Literatur |
|
Lehrveranstaltung L0914: Lineare Algebra I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Christian Seifert |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0889: Mechanik I (Stereostatik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gefestigte und tiefgehende Schulkentnisse in Mathematik und Physik. Als gute Auffrischung der Mathematikkenntnisse ist der Mathematikvorkurs empfehlenswert. Parallel zum Modul Mechanik I sollte das Modul Mathematik I besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L1001: Mechanik I (Stereostatik) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
ourse achievement | Freiwilliges Midterm: 45 min. Verbesserung der Modulnote: Ist die Midterm-Note besser als die Modulprüfungsnote wird das Midterm mit 20% auf die Modulnote angerechnet. |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Innere Kräfte und Momente am Balken In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1002: Mechanik I (Stereostatik) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken
In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1003: Mechanik I (Stereostatik) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kräftesysteme und Gleichgewicht Lagerung von Körpern Fachwerke Gewichtskraft und Schwerpunkt Reibung Innere Kräfte und Momente am Balken In der Mechanik I wird eine e-Learning Plattform mit interaktiven Videos von Experimenten entwickelt. Hierdurch wird eine Verbindung von Theorie und Anwendung erzeugt. Außerdem wurde eine enge Verzahnung mit der Mathematik I vorgenommen und die Inhalte der beiden Lehrveranstaltungen aufeinander abgestimmt. |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Modul M0933: Grundlagen der Werkstoffwissenschaften |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jörg Weißmüller |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Physik, Chemie und Mathematik der gymnasialen Oberstufe. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten verfügen über grundlegende Kenntnisse zu Metallen, Keramiken und Polymeren und können diese verständlich wiedergeben. Grundlegende Kenntnisse betreffen dabei insbesondere die Fragen nach atomarem Aufbau, Gefüge, Phasendiagrammen, Phasenumwandlungen, Korrosion und mechanischen Eigenschaften. Die Studenten kennen die wichtigsten Aspekte der Methodik bei der Untersuchung von Werkstoffen und können methodische Zugänge zu gegebene Eigenschaften benennen. |
Fertigkeiten |
Die Studenten sind in der Lage, Materialphänomene auf die zu Grunde liegenden physikalisch-chemischen Naturgesetze zurückführen. Mit Materialphänomenen sind hier mechanische Eigenschaften wie Festigkeit, Duktilität und Steifigkeit gemeint, sowie chemische Eigenschaften wie Korrosionsbeständigkeit und Phasenumwandlungen wie Erstarrung, Ausscheidung, oder Schmelzen. Die Studenten können die Beziehung zwischen den Verarbeitungsbedingungen und dem Gefüge erklären und sie können die Auswirkungen des Gefüges auf das Materialverhalten darstellen. |
Personale Kompetenzen | |
Sozialkompetenz |
- |
Selbstständigkeit |
- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1085: Grundlagen der Werkstoffwissenschaft I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlegende Kenntnisse zu Metallen: Atomarer Aufbau, Gefüge, Phasen diagramme, Phasenumwandlungen, Mechanische Prüfung, Mechanische Eigenschaften, Konstruktionswerkstoffe In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt, um die Studierenden aktiv an der Vorlesung teilhaben zu lassen. Außerdem können die Studierenden mit Hilfe von Anschauungsmaterial (Bauteile, Formen usw.) die theoretischen Vorlesungsinhalte unmittelbar nachvollziehen. |
Literatur |
Vorlesungsskript W.D. Callister: Materials Science and Engineering - An Introduction. 5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 |
Lehrveranstaltung L0506: Grundlagen der Werkstoffwissenschaft II (Keramische Hochleistungswerkstoffe, Kunststoffe und Verbundwerkstoffe) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Prof. Gerold Schneider |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlegende Kenntnisse zu Keramiken, Kunststoffen und Verbundwerkstoffen: Herstellung, Verarbeitung, Struktur und Eigenschaften Vermittlung von grundlegenden Kenntnissen und Methoden; Grundkenntnisse zum Aufbau und Eigenschaften von Keramiken, Kunststoffen und Verbundwerkstoffen; Vermittlung von Methodik bei der Untersuchung von Werkstoffen. |
Literatur |
Vorlesungsskript W.D. Callister: Materials Science and Engineering -An Introduction-5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 |
Lehrveranstaltung L1095: Physikalische und Chemische Grundlagen der Werkstoffwissenschaften |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Müller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Für den Elektromagnetismus:
Für die Atomphysik:
Für die Materialphysik und Elastizität:
|
Modul M0577: Nichttechnische Ergänzungskurse im Bachelor |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermitteln die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im Nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0671: Technische Thermodynamik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Mathematik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit den Hauptsätzen der Thermodynamik vertraut. Sie wissen über die gegenseitige Verknüpfung der einzelnen Energieformen untereinander entsprechend dem 1. Hauptsatz der Thermodynamik und kennen die Grenzen einer Wandlung der verschiedenen Energieformen bei natürlichen und technischen Vorgängen entsprechend dem 2. Hauptsatz der Thermodynamik. Sie sind in der Lage, Zustandsgrößen von Prozessgrößen zu unterscheiden und kennen die Bedeutung der einzelnen Zustandsgrößen wie z. B. Temperatur, Enthalpie oder Entropie sowie der damit verbundenen Begriffe Exergie und Anergie. Sie können den Carnotprozess in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie können den Unterschied zwischen einem idealen und einem realem Gas physikalisch beschreiben und kennen die entsprechenden thermischen Zustandsgleichungen. Sie wissen, was eine Fundamentalgleichung ist und sind mit grundlegenden Zusammenhängen der Zweiphasenthermodynamik vertraut. |
Fertigkeiten |
Studierende sind in der Lage, die Inneren Energie, die Enthalpie, die Kinetische und Potenzielle Energie sowie Arbeit und Wärme für einfache Zustandsänderungen zu berechnen und diese Berechnungsmöglichkeiten auch auf den Carnotprozess anzuwenden. Darüber hinaus können sie Zustandsgrößen für ideale und reale Gase aus messbaren thermischen Zustandsgrößen berechnen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0437: Technische Thermodynamik I |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
ourse achievement | keine |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes. |
Literatur |
|
Lehrveranstaltung L0439: Technische Thermodynamik I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
ourse achievement | keine |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0441: Technische Thermodynamik I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
ourse achievement | keine |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0696: Mechanik II: Elastostatik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Statik (Mechanik I) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Begriffe und Gesetze der Elastostatik, wie z.B. Spannungen, Verzerrungen, lineares Hookesches Materialgesetz benennen. |
Fertigkeiten |
Nach dem erfolgreichen Absolvieren dieses Kurses sind die Studierenden in der Lage, • die wesentlichen Elemente der mathematisch / mechanischen Analyse und Modellbildung im Kontext eigener Fragestellungen umzusetzen. sich hieran anschließend weiterführende Ansätze zu erarbeiten. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0493: Mechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Mechanik II wurde eine inhaltliche Vernetzung mit der Mathematik II ausgearbeitet. Die Themenreihenfolge und Inhalte der beiden Lehrveranstaltungen wurden aufeinander abgestimmt und in einen fachübergreifenden Zusammenhang gestellt. |
Literatur |
K. Magnus, H.H. Müller -Slany, Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2005) D. Gross, W. Hauger, W. Schnell, J. Schröder, Technische Mechanik 1&2. 8. Auflage, Springer |
Lehrveranstaltung L0494: Mechanik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1691: Mechanik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0851: Mathematik II |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis II) + 60 min (Lineare Algebra II) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1025: Analysis II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1026: Analysis II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1027: Analysis II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0915: Lineare Algebra II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik II" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. |
Literatur |
|
Lehrveranstaltung L0916: Lineare Algebra II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik II" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. Zusätzlich zu den Präsenzübungen werden Online-Tests eingesetzt, die sowohl den Studierenden als auch den Lehrenden Feedback zum Lernstand geben. |
Literatur |
|
Lehrveranstaltung L0917: Lineare Algebra II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0594: Grundlagen der Konstruktionslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0258: Grundlagen der Konstruktionslehre |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
ourse achievement | keine |
Dozenten | Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesung
In Grundlagen der Konstruktionslehre werden in bestimmten Vorlesungseinheiten Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen. Des Weiteren steht den Studierenden eine e-Learning-Plattform mit Tutorial-Videos und Videos zu Konstruktionselementen und Praxisbeispielen zur Verfügung. Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0259: Grundlagen der Konstruktionslehre |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
ourse achievement | keine |
Dozenten | Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0597: Vertiefte Konstruktionslehre |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0264: Vertiefte Konstruktionslehre II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte Vertiefte Konstruktionslehre I & II
Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0265: Vertiefte Konstruktionslehre II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0262: Vertiefte Konstruktionslehre I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vertiefte Konstruktionslehre I & II
Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0263: Vertiefte Konstruktionslehre I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0598: Konstruktionslehre Gestalten |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage
|
Selbstständigkeit |
Studierende sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 40, Präsenzstudium 140 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0268: Gestalten von Bauteilen und 3D-CAD |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
ourse achievement | CAD-Einführungspraktikum |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0695: Konstruktionsprojekt I |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
ourse achievement | Konstruktionsprojekt I |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0592: Konstruktionsprojekt II |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
ourse achievement | Testat (verpflichtend): (1) Konstruktion und Dokumentation einer Bewegungseinheit, (2) Erstellen einer normgerechten Gesamtzeichnung, bestehend aus mehreren Ansichten und Schnitten, (3) Zumindest überschlägige Auslegung aller im Kraft-/ Momentenfluss liegenden Maschinenelemente, (4) Erstellung einer technischen Dokumentation. Studienleistung wird mit einem Nachweis bewertet, der Voraussetzung für die Modulklausur ist. |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag. Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag. Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag. Einführung in die DIN-Normen, Klein, M., Teubner-Verlag. Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag. |
Lehrveranstaltung L0267: Teamprojekt Konstruktionsmethodik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
ourse achievement | Teamprojekt Konstruktionsmethodik |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0959: Mechanik III (Hydrostatik, Kinematik, Kinetik I) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module Mathematik I, II, Mechanik I (Stereostatik). Parallel zum Modul Mechanik III sollte das Modul Mathematik III besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1134: Mechanik III (Hydrostatik, Kinematik, Kinetik I) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Hydrostatik Kinematik
Kinetik
|
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 3 und 4. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1135: Mechanik III (Hydrostatik, Kinematik, Kinetik I) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1136: Mechanik III (Hydrostatik, Kinematik, Kinetik I) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christoph Ihl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | mehrere schriftliche Leistungen über das Semester verteilt |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Informatik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Informatik-Ingenieurwesen (Weiterentwicklung): Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christoph Ihl, Katharina Roedelius, Tobias Vlcek |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft. Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Informatik-Ingenieurwesen (Weiterentwicklung): Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1118: Hydrostatik und Linienriss |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Stefan Krüger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mathematik I-III und Technischer Mechanik I-III. Es wird empfohlen, dass die Studenten die entwurfsrelevanten Zeichungen wie Linienriss, Generalplan, Tank- und Zellenplan etc. sicher lesen können. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Vorlesung befaehigt den Studenten, die schiffstheoretischen Berechnungen auf wissenschaftlichem Niveau für alle schiffbaulichen Entwurfs- und Konstruktionsaufgaben durchzuführen. Sie bildet neben Widerstand und Propulsion die Grundlage fürr alle Aufbauvorlesungen im Bereich Entwurf/Schiffssicherheit. |
Fertigkeiten |
Der Student kann selbstständig hydrostatische Berechnungen durchführen und die Stabilität eines Schiffes bewerten. Er ist in der Lage, Schiffsformen zu entwickeln, die sicher sind gegen Kentern und Sinken. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Student lernt, sich in der Praxis im Bereich der Hydrostatik zurechtzufinden. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L1260: Hydrostatik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
1. Numerische Integration, Diffrentiation, Interpolation - Trapezregel, Simpson, Tchebyscheff- Integration, graphische Integration mit Integrator und Planimeter - Berechnung von Flächen sowie Momenten 1. und 2. Ordung - Numerische Diffrentiation, Spline- Interpolation 2. Auftrieb - Archimedisches Prinzip - Begriff der Gleichgewichtslage - Finden von Gleichgewichtslagen - Formkurven und Peiltabellen - Trimmblatt 3. Stabilität bei großen Neigungen - Stabilitätsbedingung - Aufrichthebel und Pantokareren - Numerische und Grafische Ermittlung von Pantokarenen - Freie Flüssigkeitsverschiebemomente, Wasser auf Fahrzeugdecks, Leckwasser - Krängende Momente aller Art - Stabilitätsbilanz nach BV 1030 - Intaktstabilitätsregeln 4. Sonderfall der Stabilität bei kleinen Änderungen der Schwimmlage - Linearisierung der Rückstellkräfte und Momente - Herleitung des Metazentrums aus der Formulierung des Aufrichthebels - Konstruktion der metazentrischen Evolvente für moderne Schiffsformen - Zusammenhang zwischen metazentrischer Evolvente und Aufrichthebel - Herleitung der hydrostatischen Steifigkeitsmatrix - Einheitstrimmmoment - Näherungsweise Ermittlung der Schwimmlage aus Formkurven - Änderung des Anfangsmetazentrums durch freie Flüssigkeitsoberflächen - Formzusatzstabilität - Rollschwingungen bei kleinen Neigungsänderungen 5. Stabilität im Seegang - Rollschwingungen bei großen Amplituden - Stabilitätsverlust auf Wellenberg - Prinzip des parametrischen Rollens - Das Prinzip Direkter Seegangsmomente - Das Prinzip der äquivalenten Welle nach Grim 6. Längsfestigkeit - Massenverteilung, Querkräfte, Biegemomente - Längsfestigkeitsnachweis im Stabilitätsbuch 7. Krängungsversuch und Tragfähigkeitsnachweis - Masseberechnung für Tiefgangsablesung - Mehr/Mindergewichtsnachweis - KV- Durchführung mit festen und flüssigen Momenten - Restpeilmengen - Auswertung nach Pantokarenen und Metazentrum - Rollschwingversuch 8. Stapellauf und Docken - Aufkklotzplanung - Stapellauf als Starrkörper: Kippbedingung, Dumpen, Techelgleichung - Berechnen des Ablaufschaubildes - Kantenpressung und Längsfestigkeit - Linear- elastische Effekte - Querstabilität auf dem Helgen und beim Docken 9. Grundberührung - Auftriebsverlust bei Aufsitzen - Punktweises Aufsitzen - Schiff sitzt mit Kiel auf 10. Einführung in die Leckrechnung - Hinzukommendes Gewicht - Fortfallender Auftrieb - Einfache Gleichgewichtslagenrechnung - Zwischenflutungszustände nach hinzukommendem Gewicht, Cross- und Downflooding - Wassereinbruch durch Öffnungen 11. Sonderprobleme (optional nach individueller Festlegung) - z. B. Schwergutumschlag - z. B. Aufjacken von Hubinseln - z. B. Sinken nach Wassereinbruch |
Literatur |
1. Herner/Rusch: Die Theorie des Schiffes 3. Das Skript zur Vorlesung, Anwendungsbeispiele und Klausuren sind auf unserer Homepage abrufbar.
|
Lehrveranstaltung L1261: Hydrostatik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1452: Linienriss |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In Vorbereitung zur Vorlesung Hydrostatik müssen die Studierenden einen Linienriss eines modernen Zweischraubers (Kreuzfahrer, RoPax, RoRo) anfertigen und einfache Volumen- und Schwerpunktsberechnungen durchführen. Der Linienriss kann aus einem vorgegebenen Generalplanentwickelt oder frei entworfen werden. Die Berechnungen sollen mit Hilfe eines Planimeters oder Integrators durchgeführt werden. Der Linienriss muss enthalten: - Netz - ca. 20 Spanten, 5 Wasserlinien, 5 Schnitte - Berechnung von Volumen und Formschwerpunkt für mehrere Tiefgänge - Berechnung der Aufrichthebel bei einer gegebenen Schiffsmasse und Schwerpunkt für mehrere Winkel. |
Literatur |
1. Herner/Rusch: Die Theorie des Schiffes 3. Das Skript zur Vorlesung, Anwendungsbeispiele und Klausuren sind auf unserer Homepage abrufbar. |
Modul M0960: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module Mathematik I-III, Mechanik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1137: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). W. Schiehlen, P. Eberhard: Technische Dynamik, Springer (2012). |
Lehrveranstaltung L1138: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1139: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0854: Mathematik IV |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Komplexe Funktionen) + 60 min (Differentialgleichungen 2) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Mathematik & Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1043: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Theorie und Numerik partieller Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1044: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1045: Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1038: Komplexe Funktionen |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundzüge der Funktionentheorie
|
Literatur |
|
Lehrveranstaltung L1041: Komplexe Funktionen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1042: Komplexe Funktionen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0680: Strömungsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse der höheren Mathematik (Differential-, Integral-, Vektorrechnung), technischen Mechanik und technischen Thermodynamik. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können aufgrund ihrer fundierten Kenntnisse allgemeine strömungstechnische und strömungsphysikalische Prinzipien erklären. Sie sind in der Lage die physikalischen Grundlagen unter Verwendung von mathematischen Modellen wissenschaftlich zu erläutern und kennen Analyse- und Berechnungsverfahren zur Prognose der Funktionstüchtigkeit strömungstechnischer Apparate. |
Fertigkeiten |
Die Vorlesung befähigt den Studenten, strömungsmechanische Prinzipien bzw. strömungsphysikalische Modelle zur Analyse technischer Systeme anzuwenden oder diese zu erklären, sowie theoretische Berechnungen auf wissenschaftlichem Niveau für strömungsmechanische Entwurfs- und Konstruktionsaufgaben durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Probleme diskutieren und gemeinsam einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Die Studierenden können eine komplexe Aufgabenstellung selbstständig bearbeiten sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0454: Strömungsmechanik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0455: Strömungsmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0640: Stochastik und Schiffsdynamik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Moustafa Abdel-Maksoud |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
- Die Studierenden können einen Überblick über verschiedene Manöver benennen. Sie können Anwendungsziele benennen und die Durchführung beschreiben. - Die Studierenden können einen Überblick über Ruderbauarten geben. Sie können die Gesichtspunkte nach denen Ruder ausgelegt werden benennen. - Die Studierenden können Berechnungsmethoden zur Bestimmung von Kräften und Bewegungen in Seegängen benennen. |
Fertigkeiten |
- Die Studierenden können die beim Manövrieren verwendeten Bewegungsgleichungen herleiten, anwenden und die linearisierte Form der Gleichung ableiten. - Die Studierenden können hydrodynamische Koeffizienten bestimmen und können ihre Bedeutung erklären. - Die Studierenden können die Wirkung eines Ruders erläutern und die dabei auftretenden physikalischen Effekte erklären. - Die Studierenden können die mathematische Beschreibung von Seegängen erklären und anwenden. - Die Studierenden können die Beschreibung von harmonischen Bewegungen in Wellen erläutern, können diese auch berechnen. |
Personale Kompetenzen | |
Sozialkompetenz |
- Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren. - Die Studierenden können in Gruppen diskutieren und ihren Standpunkt verständlich darlegen. |
Selbstständigkeit | - Die Studierenden können ihre eigenen Stärken und Schwächen einschätzen und können auf der Basis ihre nächsten Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 140, Präsenzstudium 70 |
Leistungspunkte | 7 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0352: Schiffsdynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Manövrierfähigkeit von Schiffen
Schiffe im Seegang
|
Literatur |
|
Lehrveranstaltung L1620: Schiffsdynamik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0364: Statistik und Stochastik in der Schiffs- und Meerestechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Volker Müller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
V. Müller, Statistik und Stochastik in der Schiffs- und Meerestechnik, Vorlesungsskript, Institut für Fluiddynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2014 W. Blendermann „Grundlagen der Wahrscheinlichkeitsrechnung“, Vorlesungsskript, Arbeitsbereich Fluiddynamik und Schiffstheorie, Technische Universität Hamburg-Harburg, 2001 H. W. Coleman, W. G. Steele, Experimentation and Uncertainty Analysis for Engineers, 3rd Edition, John Wiley & Sons, Inc., New York, NY, 2009 ITTC Recommended Procedures and Guidelines, In: Quality Systems Manual, International Towing Tank Conference (ITTC), 2011 F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, A Modern Introduction To Probability and Statistics, Springer, 2005 Springer Handbook of Engineering Statistics, H. Pham (Hrsg.), Springer, 2006 A. Klenke, Wahrscheinlichkeitstheorie, Springer, 2013 |
Modul M0655: Numerische Methoden der Thermofluiddynamik I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen der Numerik partieller Differentialgleichungen wiedergeben. |
Fertigkeiten |
Die Studierenden sind in der Lage, geeignete numerische Verfahren zur Integration thermofluiddynamischer Bilanzgleichungen in Raum und Zeit auszuwählen und anzuwenden. Die Studierenden können die Numerik partieller Differentialgleichungen methodisch in der Thermofluiddynamik umsetzen. Sie können numerische Lösungsalgorithmen strukturiert programmieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren. |
Selbstständigkeit |
Die Studierenden sind fähig, selbstständig problemspezifische Lösungsansätze zu analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2h |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0235: Numerische Methoden der Thermofluiddynamik I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Modellierung und Approximation thermofluiddynamischer Bilanzen mit numerischen Methoden. Entwicklung numerischer Algorithmen.
|
Literatur |
Ferziger and Peric: Computational Methods for Fluid Dynamics, Springer |
Lehrveranstaltung L0419: Numerische Methoden der Thermofluiddynamik I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
ourse achievement | Im Rahmen der Übung werden regelmäßig LV-begleitende Übungsblätter besprochen. Die Übungsblätter bestehen aus Theorie- und Programmieraufgaben. Sie können in Gruppenarbeit bearbeitet und abgegeben werden. Das erzielte Übungsergebnis wird bei termingerechter Bearbeitung in Klausurpunkte umgerechnet und auf das Klausurergebnisse angerechnet, sofern die Klausur (ohne hinzurechnen der Übungsleistung) bestanden wird. Dabei können maximal 15% der maximalen Punktzahl durch die Übungsleistungen zusätzli |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0659: Grundlagen der Konstruktion und Strukturanalyse von Schiffen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Sören Ehlers |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die Basisinhalte zum Strukturverhalten von schiffbaulichen Konstruktionen erläutern; sie können die Theorien und Methoden zur Berechnung der Verformungen und Beanspruchungen in balkenartigen Strukturen erklären. Außerdem können sie die Basisinhalte zu den Vorschriften, den Werkstoffen, Halbzeugen, den Verbindungstechnologien und den Prinzipien zur Bemessung der Bauteile von Schiffskonstruktionen erklären. |
Fertigkeiten |
Studierende sind in der Lage, die Methoden und Werkzeuge zur Berechnung der Verformungen und Beanspruchungen in den oben genannten Strukturen anzuwenden; sie können geeignete Rechenmodelle typischer schiffbaulicher Konstruktionen auswählen. Sie sind außerdem in der Lage, Methoden zur Darstellung und zur Auslegung der Schiffskonstruktion anzuwenden; sie können geeignete Werkstoffe und Halbzeuge sowie Verbindungen auswählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Die Studierenden sind fähig, reale schiffbauliche Konstruktionen zu idealisieren und geeignete Methoden zur Analyse balkenartiger Strukturen auszuwählen; sie sind fähig, die Ergebnisse von Strukturanalysen zu beurteilen. Außerdem sind sie fähig, die Darstellung komplexer Schiffskonstruktionen zu durchschauen sowie Konstruktionen für verschiedene Anforderungen und Randbedingungen auszulegen. |
Arbeitsaufwand in Stunden | Eigenstudium 156, Präsenzstudium 84 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0411: Grundlagen der Konstruktion von Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kapitel: |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |
Lehrveranstaltung L0413: Grundlagen der Konstruktion von Schiffen |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
ourse achievement | (Freiwillige) Schriftliche Ausarbeitung. Bei erfolgreicher Abgabe können bis zu 10% entsprechend Klausurpunkte auf die Klausur angerechnet werden. |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kapitel: |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |
Lehrveranstaltung L0410: Grundlagen der Strukturanalyse von Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
ourse achievement | keine |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Gliederung: |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben; div. Bücher über die Methode der finiten Elemente |
Lehrveranstaltung L0414: Grundlagen der Strukturanalyse von Schiffen |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
ourse achievement | keine |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Gliederung: |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben; div. Bücher über die Methode der finiten Elemente |
Modul M0664: Konstruktion und Fertigung von Schiffen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Sören Ehlers |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die Gestaltung, Bemessung und Fertigung verschiedener Strukturbereiche des Schiffskörpers sowie unterschiedlicher Schiffstypen (einschl. Detailkonstruktion) erläutern; sie können Berechnungsmodelle zu komplexen Strukturen beschreiben. |
Fertigkeiten |
Studierende sind in der Lage, für unterschiedliche Schiffstypen und Bereiche des Schiffskörpers die Anforderungen festzulegen, die Bemessungskriterien für die Bauteile zu definieren, geeignete Berechnungsmodelle auszuwählen und die gewählte Konstruktion zu bewerten. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können ihre Schiffskonstruktion vortragen und ihre Entscheidungen konstruktiv in der Gruppe diskutieren.
|
Selbstständigkeit |
Studierende sind fähig, mit Hilfe von Bauvorschriften und weiteren Informationen eigenständig verschiedene Strukturbereiche des Schiffskörpers sowie unterschiedliche Schiffstypen zu konstruieren und zu bemessen sowie die Fertigungsmethoden festzulegen. |
Arbeitsaufwand in Stunden | Eigenstudium 172, Präsenzstudium 98 |
Leistungspunkte | 9 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0412: Konstruktion von Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Kapitel: 1. Schotte und Tanks |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |
Lehrveranstaltung L0415: Konstruktion von Schiffen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
ourse achievement | (Freiwillige) Schriftliche Ausarbeitung. Bei erfolgreicher Abgabe können bis zu 10% entsprechend Klausurpunkte auf die Klausur angerechnet werden. |
Dozenten | Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Kapitel: 1. Schotte und Tanks |
Literatur |
Vorlesungsskript mit weiteren Literaturangaben wird über das Internet verfügbar gemacht |
Lehrveranstaltung L1123: Schweißtechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Claus Emmelmann, Prof. Karl-Ulrich Kainer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
werkstoffkundliche Grundlagen und die Eigenschaften von Stahlwerkstoffen und Stahllegierungen zu beschreiben und zu differenzieren, Auswahl eines Schweißverfahrens, der geeigneten Anlagentechnik und eines Prozessparameterfeldes für Schweißaufgaben und deren Einflüsse auf Werkstoffe und Konstruktion die unterschiedlichen schweißtechnischen Verfahren einzuordnen und deren Anwendungsgebiete zu nennen, Schweißnähte mittels grundlegender Verfahren zu berechnen und auszulegen. |
Literatur |
Schulze, G.: Die Metallurgie des Schweißens, 4. Aufl., Berlin 2010 Strassburg, F.W. und Wehner H.: Schweißen nichtrostender Stähle, 4. Aufl. Düsseldorf, 2009 Dilthey, U.: Schweißtechnische Fertigungsverfahren, Bd. 1: Schweiß- und Schneidtechnologien, 3. Aufl., Berlin 2006. Dilthey, U.: Schweißtechnische Fertigungsverfahren, Bd. 2: Verhalten der Werkstoffe beim Schweißen, 3. Aufl., Berlin 2005. Dilthey, U.: Schweißtechnische Fertigungsverfahren, Bd. 3: Gestaltung und Festigkeit von Schweißkonstruktionen, 2. Aufl., Berlin 2002. |
Modul M1023: Schiffs-Antriebstechnik |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik, Technische Mechanik, Maschinenelemente, Grundlagen des Schiffbaus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Als Ergebnis des Modulteils „Grundlagen der Kolbenmaschinen“ können die Studierenden grundlegende Zusammenhänge über Kraft- und Arbeitsmaschinen wiedergeben und insbesondere die qualitativen und quantitativen Zusammenhänge von Arbeitsverfahren und Wirkungsgraden verschiedener Motor-, Verdichter- und Pumpenarten darstellen. Sie können sicher mit motorischen Fachbegriffen und Kenngrößen umgehen, Ansätze zur Weiterentwicklung von Leistungsdichte und Wirkungsgrad erläutern und außerdem einen Überblick über Aufladesysteme, Kraftstoffe und Abgasemissionen geben. Die Studierenden können zudem Anlagen anwendungsbezogen auswählen und konstruktive sowie betriebliche Probleme bewerten. Als Ergebnis des Modulteils „Grundlagen des Schiffsmaschinenbaus“ können die Studierenden den Stand der Technik bezüglich der vielfältigen antriebstechnischen Komponenten an Bord von Schiffen wiedergeben und die Kenntnisse anwenden. Sie sind ferner in der Lage, das Zusammenwirken der einzelnen Komponenten im Gesamtsystem zu analysieren und zu optimieren. Sie kennen darüberhinaus die schiffsmaschinenbaulichen Fachbegriffe in deutscher und englischer Sprache. |
Fertigkeiten |
Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz in Schiffsantrieben und Hilfssystemen. Des Weiteren können sie komplexe technische Zusammenhänge von Schiffs-Antriebsanlagen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Antriebskomponenten erforderlich sind und können das gelernte Wissen in einen Kontext zu den weiteren schiffbaulichen Disziplinen bringen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 150 min |
Zuordnung zu folgenden Curricula |
Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0633: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0634: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0635: Grundlagen des Schiffsmaschinenbaus |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0636: Grundlagen des Schiffsmaschinenbaus |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1109: Widerstand und Propulsion |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Krüger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Es werden die stroemungsmechanischen Grundlagen gebracht, die zur Bestimmmung des Schiffswiderstandes und der Antriebsleistung noetig sind. Die verschiedenen Widerstandsanteile werden diskutiert und auf moderne Schiffe angewendet. Es werden empirische und numerische Prognoseverfahren fuer den Wellen-und Reibungswiderdstand sowie fuer die umweltbedingten Zusatzwiderstaende gebracht. - Aufteilung des Widerstandes, Wellenwiderstand, Möglichkeiten zur Verringerung des Wellenwiderstandes, Vorhersage mit numerischen Verfaren, Reibungsgesetze, laminare/turbulente Ablösungen, Rumpfformenturf zu Vermeidung von Ablösungen, Winderstand von Anhängen, Widerstandsprognose nach Froude´scher Hypothese, Formfaktormenthode, Sog, Nachstrom, Modellgesetze, Widerstandsversuch, Freifahrtversuch und Grundlagen Propeller, Propulsionsversuch, Propulsions- und Leistungsprognose für glattes Wasser, Zusatzwiderstände (Wind, Steuern, Strom, Seegang), EEDI, Geschwindigkeitsnachweis auf der Werftprobefahrt, Bauvertragsnachweis Geschwindigkeit, Bunker Claims |
Fertigkeiten |
Der Student lernt, wettbewerbsfaehige Rumpfformen unter Anwendung gelernter Techniken zu erstellen und diese mit den verschiedenen Verfahren zu bewerten. Ausserdem lernt er, fuer Schiffe die Prognose der Antriebsleistung fuer verschiedene Zustaende mit den unterschiedlichsten Verfahren ingenieursmaessig durchzufuehren. |
Personale Kompetenzen | |
Sozialkompetenz | Der Student lernt, tehnische Sachverhalten so aufzubereiten, dass er sie gegen seine Bauaufsicht durchsetzen kann. |
Selbstständigkeit |
Der Student lernt, tehnische Sachverhalten so aufzubereiten, dass er sie gegen seine Bauaufsicht durchsetzen kann. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L1265: Widerstand und Propulsion |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1266: Widerstand und Propulsion |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1110: Entwerfen von Schiffen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Krüger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Zunächst werden der schiffbauliche Entwurfsprozess und dessen Besonderheiten erläutert.Elemente der Wettbwerbsfähigkeit eines Schiffsentwurfes werden angezogen.Grundsätzliche Vertragsbestandteile eines Bauvertrages sowie deren technische Bewertung werden erläutert. Dann werden die wesentlichen Hauptabmessungen eines Schiffes diskutiert sowie deren Einfluss auf die Wettbewerbsfähigkeit eines Schiffsentwurfes. Weiter geht es mit einer Einführung in die verschiedenen Stadien der Produktentwicklung bis zum Bauvertrag. Es werden dann Methoden diskutiert, auf unterschiedlicher Granularität die jeweils benötigte Entwurfsinformtion zu berechnen. Im einzelnen werden behandelt: |
Fertigkeiten |
Der Student soll mit den Entwurfsgrundlagen für seegehende Handelsschiffe vertraut gemacht werden. Vorlesungziel ist es,dass der Student in der Lage ist, ein Schiff grob aufgrund einer Transportaufgabe anhand eines Vergleichschiffes zu projektieren und die relevanten Vertragszahlen zu beherrschen. Die Vorlesung vermittelt die grundlegenden Entwurfsmethoden zur technischen Bewertung und Absicherung der Vertragseigenschaften. Aufbauend auf diesen Grundlagen, welche die Methodik des Entwerfens ans sich vermittelt haben, werden in dieser Vorlesung die grundlegenden Strategien behandelt, um die technischen Fragestellungen der wettbewerbsfähigen Produktentwicklung geschlossen zu behandeln. |
Personale Kompetenzen | |
Sozialkompetenz | Der Student lernt, technische Sachverhalte so aufzubereiten, dass er sie gegen seine Wettbwerber beim potentiellen Kunden durchsetzen kann. |
Selbstständigkeit |
Der Student lernt, technische Sachverhalte so aufzubereiten, dass er sie gegen seine Wettbwerber beim potentiellen Kunden durchsetzen kann. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L1262: Entwerfen von Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1264: Entwerfen von Schiffen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Thesis
Modul M-001: Bachelorarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht General Engineering Science (7 Semester): Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Logistik und Mobilität: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht |