Studiengangsbeschreibung
Inhalt
Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Das Studium vertieft die ingenieurwissenschaftliche, mathematische und naturwissenschaftliche Bachelor-Ausbildung und vermittelt Kompetenzen zum systematischen, wissenschaftlichen und eigenständigen Lösen von verantwortungsvollen Aufgaben in Industrie und Forschung. Inhaltlich abgedeckt wird der Produktentstehungsprozess von der strategischen Produktplanung, über die systematische und methodische Entwicklung von Produkten inklusive Konzeptentwicklung, Konstruktion, Werkstoffauswahl, Simulation und Test bis hin zur Produktion, deren Planung und Steuerung sowie dem Einsatz von modernen Fertigungsverfahren und Hochleistungswerkstoffen. Die Studierenden vertiefen sich in einer der drei Fachrichtungen und erwerben die Fähigkeit an den Schnittstellen der verbundenen Teildisziplinen zu arbeiten. Je nach individuellen Schwerpunkten können die Studierenden ihr Studium aufgrund des umfangreichen Angebots an Wahlpflichtfächern sehr flexibel anpassen und persönlich ausrichten.
Berufliche Perspektiven
Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Die Absolventen können aufgrund ihrer Spezialisierung auf eines der Themenfelder Produktentwicklung, Werkstoffe oder Produktion direkt in diesem arbeiten. Außerdem besitzen sie vielfältiges Methoden- und Schnittstellenwissen, das sie zur disziplinübergreifenden Arbeit befähigt. Die Absolventen können wissenschaftliche Tätigkeiten in Universitäten und Forschungsinstituten insbesondere mit dem Ziel der Promotion aufnehmen oder sich für den direkten Einstieg in die Industrie entscheiden. Hier können Sie zum Beispiel Fachlaufbahnen (z.B. Konstrukteur, Berechnungsingenieur, Produktionsplaner) einschlagen oder sich mit wachsender Berufserfahrung für anspruchsvolle Führungsaufgaben im technischen Bereich qualifizieren (z.B. Projekt-, Gruppen- oder Teamleiter, Entwicklungs- bzw. Produktionsleiter oder Technischer Leiter). Der Studiengang ist universell gestaltet und erlaubt es den Absolventen, in unterschiedlichen Branchen, insbesondere des Maschinen- und Anlagenbaus, an einer Vielzahl unterschiedlicher Produkte tätig zu werden.
Lernziele
Absolventen des Studiengangs sind in der Lage das individuell erworbene Fachwissen auf neue unbekannte Themenstellungen zu übertragen, komplexe Problemstellungen ihrer Disziplin wissenschaftlich zu erfassen, zu analysieren und zu lösen. Sie können fehlende Informationen selbstständig finden und dazu theoretische sowie experimentelle Untersuchungen planen und durchführen. Ingenieurwissenschaftliche Ergebnisse können sie beurteilen, evaluieren, kritisch hinterfragen sowie auf deren Basis Entscheidungen treffen und eigene weiterführende Schlussfolgerungen ziehen. Sie sind in der Lage methodisch vorzugehen, kleinere Projekte selbstständig zu organisieren und neue Technologien sowie wissenschaftliche Methoden auszuwählen und bei Bedarf weiterzuentwickeln.
Die Absolventen können sowohl selbstständig als auch in Teamarbeit neue Ideen und Lösungen entwickeln, dokumentieren sowie vor Fachpersonen präsentieren und vertreten. Eigene Stärken und Schwächen können sie einschätzen ebenso wie mögliche Konsequenzen ihres Handelns. Vor allem sind Sie befähigt sich selbstständig in komplexe Aufgaben einzuarbeiten, Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie geeignete Mittel systematisch zur Umsetzung einzusetzen.
Produktentwicklung
In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.
Werkstoffe
Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen.
Produktion
Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedener Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.
Studiengangsstruktur
Der Studiengang ist modular gestaltet und orientiert sich an der universitätsweiten standardisierten Studiengangsstruktur mit einheitlichen Modulgrößen (Vielfachen von sechs Leistungspunkten (LP)). Der Studiengang kombiniert die Teildisziplinen Produktentwicklung, Werkstoffe und Produktion des Maschinenbaus und erlaubt die Vertiefung in einer dieser Richtungen. Die Studierenden können dabei aufgrund der weitreichenden Wahlfreiheit ihr Studium individualisieren.
In der gemeinsamen Kernqualifikation belegen die Studierenden folgende Module:
- Finite-Elemente-Methoden und Schwingungslehre (12 LP)
- Wahlpflichtbereich Grundlagenfächer (Katalog) (12 LP)
- Fachlabor ( 6 LP)
- Ergänzungskurse Betrieb und Management (Katalog) (6 LP)
- Ergänzungskurse Nichttechnische Fächer (Katalog) (6 LP)
Die Studierenden spezialisieren sich durch die Wahl einer der folgenden fachlichen Vertiefungsrichtungen im Umfang von 36 Leistungspunkten:
- Produktentwicklung (Methoden der Produktentwicklung, Leichtbau),
- Produktion (Produktionsmanagement, Produktionstechnologie),
- Werkstoffe (Ingenieurwerkstoffe).
Innerhalb jeder Vertiefung sind den Studierenden drei Module mit sechs Leistungspunkten vorgegeben. Weitere 18 Leistungspunkte können aus einem fachlichen Modulkatalog (Modulgröße je sechs Leistungspunkte) gewählt werden. Alternatives können offene Module im maximalen Umfang von zwölf Leistungspunkten belegt werden, in denen spezialisierte kleinere Lehrveranstaltungen individuell kombiniert werden können.
Neben der abschließenden Masterarbeit bearbeiten die Studierenden eine zusätzliche wissenschaftliche Projektarbeit.
- Projektarbeit (12 LP)
- Masterarbeit (30 LP)
Fachmodule der Kernqualifikation
Im Rahmen der Kernqualifikation vertiefen die Studierenden ihr Wissen und ihre Fähigkeiten in weiterführenden ingenieurwissenschaftlichen Fächern (z.B. Schwingungslehre), aber auch im Bereich Betrieb und Management sowie weiteren nichttechnischen Fächern. Durch das Fachlabor und die Erstellung einer wissenschaftlichen Projektarbeit vertiefen die Studierenden Ihre Fähigkeiten im selbstständigen methodischen und wissenschaftlichen Arbeiten im Bereich der Produktentwicklung, der Werkstoffe und der Produktion.
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Angebote im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0603: Nichtlineare Strukturanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vorkenntnisse bzgl. partieller Differentialgleichungen sind empfehlenswert. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können |
Fertigkeiten |
Studierende sind in der Lage |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende
können + in heterogen zusammengesetzten Gruppen gemeinsam Lösungen erarbeiten. + ihre Arbeitsergebnisse vor Kommilitonen vorstellen und diskutieren. + fachlich konstruktives Feedback an Kommilitonen geben und mit Rückmeldungen zur Ihren eigenen Arbeiten umgehen. |
Selbstständigkeit |
Studierende
sind fähig + ihren Kenntnisstand mit Hilfe von Übungsaufgaben und E-Learning einzuschätzen. + sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen. + das erworbene Wissen auf ähnliche Problemstellungen zu transformieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Modellierung und Simulation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0277: Nichtlineare Strukturanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
1. Einleitung |
Literatur |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Lehrveranstaltung L0279: Nichtlineare Strukturanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0742: Thermische Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Thermische Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Thermische Energiesysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Arne Speerforck |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0751: Technische Schwingungslehre |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0701: Technische Schwingungslehre |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen
|
Literatur |
German - K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen. English - K. Magnus: Vibrations. |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
||||||||
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
||||||||
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0846: Control Systems Theory and Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Introduction to Control Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0656: Control Systems Theory and Design |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literatur |
|
Lehrveranstaltung L0657: Control Systems Theory and Design |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1173: Applied Statistics |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Morlock |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse statistischen Vorgehens |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können die Einsatzgebiete der statistischen Verfahren, die in der Veranstaltung besprochen werden und die Voraussetzungen für den Einsatz des entsprechenden Verfahrens erläutern. |
Fertigkeiten |
Die Studenten können das verwendete Statistikprogramm zur Lösung von statistischen Fragestellungen einsetzen und die Ergebnisse fachgerecht darstellen und interpretieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Gruppenarbeit, gemeinsam Ergebnisse präsentieren |
Selbstständigkeit |
Fragestellung verstehen und selbständig lösen |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 minuten, 28 Fragen |
Zuordnung zu folgenden Curricula |
Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L1584: Applied Statistics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Inhalt (deutsch) Lösung statistischer Fragestellungen unter Anwendung eines gebräuchlichen Statistikprogrammes. Die vermittelten statistischen Tests und Vorgehensweisen beinhalten: • Wahl des statistischen Verfahrens • Einfluss der Gruppengröße auf die Ergebnisse • Chi quadrat test • Regression und Korrelation mit einer unabhängigen Variablen • Regression und Korrelation mit mehreren unabhängigen Variablen • Varianzanalyse mit eine unabhängigen Variablen • Varianzanalyse mit mehreren unabhängigen Variablen • Diskriminantenanalyse • Analyse kategorischer Daten • Nichtparametrische Statistik • Überlebensanalysen |
Literatur |
Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University, Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, CB © 1998, ISBN/ISSN: 0-534-20910-6 |
Lehrveranstaltung L1586: Applied Statistics |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studenten bekommen in Kleingruppen (n=5) eine Fragestellung, zu deren Beantwortung sie sowohl die Datenerhebung als auch die Analyse durchführen und die Ergebnisse in Form eines executive summaries in der letzten Vorlesung vorstellen müssen. |
Literatur |
Selbst zu finden |
Lehrveranstaltung L1585: Applied Statistics |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anhand von praktischen Fragestellungen werden die wichtigsten statistischen Verfahren angewendet und gleichzeitig in die Benutzung der kommerziell am häufigsten eingesetzten Software eingeführt und deren Benutzung geübt. |
Literatur |
Student Solutions Manual for Kleinbaum/Kupper/Muller/Nizam's Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, Paperbound © 1998, ISBN/ISSN: 0-534-20913-0 |
Modul M1150: Kontinuumsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Mechanik wie z.B. in den Modulen Technische Mechanik I und Technische Mechanik II an der TUHH unterrichtet (Kräfte und Drehmomente, Spannungen, lineare Verzerrungen, Schnittprinzip, linear-elastische Konstitutivgesetze, Verzerrungsenergie); Grundlagen der Mathematik wie z.B. in den Modulen Mathematik I und Mathematik II an der TUHH unterrichtet |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden lernen in diesem Modul die grundlegenden Konzepte der nichtlinearen Kontinuumsmechanik. Diese Theorie ermöglicht es den Studierenden beliebige Verformungen von kontinuierlichen Körpern (fest, flüssig oder gasförmig) unter beliebigen Lasten zu beschreiben. Das Modul stellt eine Fortsetzung des Grundlagenmoduls Technische Mechanik II (Elastostatik) dar, dessen einschränkende Annahmen (isotropes, linear-elastisches Materialverhalten, kleine Verformungen, einfache Geometrien) sukzessive aufgehoben werden. Zunächst lernen die Studierenden die notwendigen Grundlagen der Tensorrechnung. Darauf aufbauend wird die Beschreibung der Verformungen/Verzerrungen beliebig deformierbarer Körper behandelt. Die Studierenden lernen die mathematischen Formalismen zur Charakterisierung des Spannungszustandes eines Körpers und zur Formulierung der Bilanzgleichungen für Masse, Impuls, Energie und Entropie in verschiedenen Formen. Des Weiteren wissen die Studierenden welche konstitutiven Annahmen für Modellierung des Materialverhaltens eines Körpers zu treffen sind.
|
Fertigkeiten |
Die Studierenden können Bilanzgleichungen aufstellen und Grundlagen der Deformationstheorie elastischer Körper anwenden und auf diesem Gebiet spezifische Aufgabenstellungen sowohl anwendungsorientiert als auch forschungsorientiert bearbeiten |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen auch für komplexe Probleme der Festkörpermechanik entwickeln, gegenüber Spezialisten in Schriftform präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der Kontinuumsmechanik identifizieren und lösen und sich dafür benötigtes Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1533: Kontinuumsmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kontinuumsmechanik ist eine allgemeine Theorie, um das Verhalten
kontinuierlicher Körper - seien sie fest, flüssig oder gasförmig - unter
Einwirkung von Kräften zu beschreiben. Insbesondere behandelt sie die
mathematische Beschreibung von Verzerrungen und Spannungen sowie des
Materialverhaltens in kontinuierlichen Körpern. Das Modul
Kontinuumsmechanik kann als eine Fortsetzung des Moduls Technische
Mechanik II verstanden werden. Während sich das Modul Technische
Mechanik II auf kleine Verformungen linearelastischer Körper mit sehr
einfacher Geometrie beschränkt, erweitert das Modul Kontinuumsmechanik
die Perspektive auf allgemeine Verformungen beliebiger Körper unter
beliebigen Lasten. Der in der Vorlesung unterrichtete Stoff ist primär
theoretisch, jedoch fundamental für eine Vielzahl von
Anwendungsgebieten wie etwa Fertigungs- und Umformtechnik, Automobilbau und Medizintechnik. Konkrete Inhalte sind:
|
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Lehrveranstaltung L1534: Kontinuumsmechanik Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Übung Kontinuumsmechanik vertieft den Stoff der Vorlesung Kontinuumsmechanik anhand konkreter Rechenaufgaben. |
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Modul M1204: Modellierung und Optimierung in der Dynamik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierenden
besitzen nach erfolgreichem Besuch des Moduls grundlegende Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme und Methoden zur Optimierung dynamischer Systeme. |
Fertigkeiten |
Die Studierenden sind in der Lage + ganzheitlich zu Denken +
grundlegende Problemstellungen aus der Dynamik starrer und flexibler Mehrkörpersysteme selbständig, sicher, + dynamische Problem mathematisch zu beschreiben
+ dynamische Probleme zu optimieren |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können + in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren. |
Selbstständigkeit |
Studierende sind fähig + ihren Kenntnisstand mit Hilfe von Übungsaufgaben einzuschätzen. + sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1632: Flexible Mehrkörpersysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried, Dr. Alexander Held |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Lehrveranstaltung L1633: Optimierung dynamischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried, Dr. Svenja Drücker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Modul M1151: Werkstoffmodellierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Mechanik wie z.B. in den Modulen Technische Mechanik I und Technische Mechanik II an der TUHH unterrichtet (Kräfte und Drehmomente, Spannungen, lineare Verzerrungen, Schnittprinzip, linear-elastische Konstitutivgesetze, Verzerrungsenergie); Grundlagen der Mathematik wie z.B. in den Modulen Mathematik I und Mathematik II an der TUHH unterrichtet |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden verstehen die theoretischen Grundlagen von anisotroper Elastizität, Viskoelastizität und Elasto-Plastizität im Bereich der dreidimensionalen (linearen) Kontinuumsmechanik. Im Bereich der anisotropen Elastizität kennen Sie das Konzept der Materialsymmetrie sowie seine konkrete Anwendung bei orthotropen, transversal isotropen und isotropen Materialien und sie verstehen, wie die Steifigkeit und Nachgiebigkeit dieser Materialien durch geeignete Parameter charakterisiert werden kann. Viskoelastizität verstehen die Studierenden sowohl im Zeitbereich anhand des Relaxations- und Kriechmoduls als Funktionen der Zeit wie auch im Frequenz-Bereich, wo sie das Konzept des Speicher- und Verlustmoduls kennen. Im Bereich der Elasto-Plastizität verstehen die Studierenden das Konzept der Fließgrenze bzw. (in höheren Dimensionen) Fließfläche und des plastischen Potentials. Sie kennen die Konzepte der idealen Plastizität, Verfestigung und Entfestigung. Insbesondere kennen sie die Von-Mises-Plastizität als konkretes Plastizitätsmodell. |
Fertigkeiten |
Die Studierenden können selbstständig Probleme im Bereich der Werkstoffmodellierung identifizieren und lösen und sich dafür benötigtes Wissen aneignen. Dies gilt insbesondere für die Bereiche des anisotrop-elastischen, viskoelastischen und elasto-plastischen Materialverhaltens. In diesen Bereichen können die Studierenden eigenständig Modelle auch für komplexes Materialverhalten entwickeln und bewerten. Dazu haben sie die Fähigkeit, sich eigenständig in relevante Literatur einzuarbeiten und zu verstehen, welche dort beschriebenen Kenntnisse für sie relevant sind. Außerdem können sie diese Modelle in Berechnungsprogrammen (etwa basierend auf der Finite-Elemente-Methode) implementieren und so effizient für praktische Berechnungen nutzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die
Studierenden können Materialmodelle entwickeln und gegenüber Spezialisten präsentieren. Außerdem haben sie die Fähigkeit, anspruchsvolle Themen im Bereich der Materialmodellierung mit Fachleuten unter Verwendung des geeigneten Fachvokabulars zu diskutiere, differenziert Rückfragen zu kritischen Punkten zu stellen und Modelle, die ihnen präsentiert werden, im Dialog kritisch zu hinterfragen. |
Selbstständigkeit |
Die Studierenden haben die Fähigkeit, eigenständig abstrakte Denkmodelle zu entwickeln, um beobachtete Phänomene in einen allgemeinen Zusammenhang einordnen und ihren weiteren Verlauf prädizieren zu können. Darüber hinaus verstehen die Studierenden die Vorteile aber auch Einschränkungen mathematischer Modelle und könne somit eigenständig entscheiden, wann diese in welchem Umfang zur Unterstützung von Entscheidungsprozessen verwendet werden können. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L1535: Werkstoffmodellierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Eine der wichtigsten Fragen bei der Modellierung mechanischer
Systeme in der Praxis ist, wie man das Materialverhalten der
einzelnen Bauteile modelliert. Neben einfacher isotroper
Elastizität sind dabei von besonderer Bedeutung:
|
Literatur |
Empfohlene Literatur / Recommended literature: |
Lehrveranstaltung L1536: Werkstoffmodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0604: High-Order FEM |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Knowledge of partial differential equations is recommended. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able to |
||||||||
Fertigkeiten |
Students are able to |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students
are able to + solve problems in heterogeneous groups. + present and discuss their results in front of others. + give and accept professional constructive criticism. |
||||||||
Selbstständigkeit |
Students
are able to + assess their knowledge by means of exercises and E-Learning. + acquaint themselves with the necessary knowledge to solve research oriented tasks. + to transform the acquired knowledge to similar problems. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Modellierung und Simulation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0280: High-Order FEM |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 |
Lehrveranstaltung L0281: High-Order FEM |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr.-Ing. Sören Keuchel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Introduction and Motivation |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr.-Ing. Sören Keuchel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0752: Nichtlineare Dynamik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0702: Nichtlineare Dynamik |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Grundlagen der Nichtlinearen Dynamik
|
Literatur | Steven Strogatz: Nonlinear Dynamics and Chaos. |
Modul M1164: Fachlabor Produktentwicklung, Werkstoffe und Produktion |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Jan Hendrik Dege |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Produktentwicklung:
Werkstoffe:
Produktion:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können …
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können …
|
Selbstständigkeit |
Studierende sind fähig …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht |
Lehrveranstaltung L1566: Fachlabor Produktentwicklung, Werkstoffe und Produktion |
Typ | Laborpraktikum |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Jan Hendrik Dege, Prof. Bodo Fiedler, Prof. Claus Emmelmann, Prof. Dieter Krause, Prof. Gerold Schneider, Prof. Hermann Lödding, Prof. Jörg Weißmüller, Prof. Josef Schlattmann, Prof. Michael Morlock, Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Konstruktion:
Werkstoffe:
Fertigung:
|
Literatur |
Nach Themenstellung / depending on topic |
Modul M1339: Entwurfsoptimierung und probabilistische Verfahren in der Strukturmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1873: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. |
Lehrveranstaltung L1874: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Matlab-Übungen zur Vorlesung |
Literatur | siehe Vorlesung |
Modul M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr.-Ing. Sören Keuchel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Room acoustics - Standard computations - Practical applications |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr.-Ing. Sören Keuchel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1140: Technischer Ergänzungskurs Kernfächer für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht |
Modul M1184: Studienarbeit Produktentwicklung, Werkstoffe und Produktion |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des Studiengangs | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
|
|
Fertigkeiten |
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 | |
Leistungspunkte | 12 | |
Studienleistung | Keine | |
Prüfung | Studienarbeit | |
Prüfungsdauer und -umfang | laut FSPO | |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht |
Fachmodule der Vertiefung Produktentwicklung
In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.
Modul M0763: Flugzeug-Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
Studierende können:
|
|
Fertigkeiten |
Studierende können:
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
Studierende können:
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | |
Leistungspunkte | 6 | |
Studienleistung | Keine | |
Prüfung | Klausur | |
Prüfungsdauer und -umfang | 165 Minuten | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeug-Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeug-Energiesysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1024: Methoden der Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Methoden der Produktentwicklung |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Methoden der Produktentwicklung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0812: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Arbeiten in interdisziplinären Teams Kommunikation |
||||||||
Selbstständigkeit | Organisation von Arbeitsabläufen und -strategien | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 180 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0820: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozess
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Introduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | None | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
||||||||||||
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively. |
||||||||||||
Selbstständigkeit |
The students can assess their level of knowledge and independently control their learning processes on this basis as well as document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Data Science: Vertiefung III. Applications: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0764: Flugsteuerungssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
unterschiedlicher Konfigurationen der jeweiligen Flugzeugsysteme erläutern, |
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0736: Flugsteuerungssysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugsteuerungssysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Michael Helle, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Markus Schatz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Shan Shi |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Dislocation Theory of Plasticity |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects. We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit | Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren |
Literatur | Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Modul M1690: Luftfahrzeugentwurf II (Entwurf von Flugsystemen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) Lufttransportsysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Kenntnis verschiedener Flugsystemkonzepte und deren Besonderheiten (Überschallflugzeuge, Drehflügler, Hochleistungsflugzeuge, Unbemannte Flugsysteme) Verständnis der Vor- und Nachteile sowie physikalischen Wirkprinzipien unterschiedlicher Luftfahrzeugsysteme Kenntnis des Einflusses spezieller Missionsanforderungen auf die Definition und Konzeption von Luftfahrzeugsystemen Vertiefte Kenntnis der Leistungsauslegung und Bewertung verschiedener Luftfahrzeugsysteme |
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen Missionsorientierte technische Definition von Luftfahrzeugsystemen Anwendung geeigneter spezieller konzeptioneller Berechnungsmethoden für besondere Ausrüstungsmerkmale Bewertung verschiedener Entwurfslösungen |
Personale Kompetenzen | |
Sozialkompetenz |
Arbeiten in Gruppen zur konzentrierten Lösungsfindung Kommunikation, Durchsetzungsfähigkeit, fachliche Überzeugungsfähigkeit |
Selbstständigkeit |
Organisation von Arbeitsabläufen und Strategien Strukturierte Aufgabenanalyse und Lösungsfindung |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0844: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gareth Padfield: Helicopter Flight Dynamics, butterworth ltd. Raymond Prouty: Helicopter Performance Stability and Control, Krieger Publ. Klaus Hünecke: Das Kampfflugzeug von Heute, Motorbuch Verlag Jay Gundelach: Designing Unmanned Aircraft Systems - Configurative Approach, AIAA |
Lehrveranstaltung L0847: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch). Das Vorgehen ist in einem Meilensteinplan festgelegt und ermöglicht es den Studierenden, Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Am Ende des Projekts wurden verschiedene Probekörper im Zug- oder Biegeversuch geprüft. In den einzelnen Projektbesprechungen wird die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen werden analysiert, die Produktionsmethoden werden bewertet und festgelegt. Die Werkstoffe werden ausgewählt und die Probekörper normgerecht hergestellt. Die Qualität und die mechanischen Eigenschaften werden geprüft und klassifiziert. Am Ende wird ein Abschlussbericht erstellt und die Ergebnisse werden allen Teilnehmern in Form einer Präsentation vorgestellt und diskutiert. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1894: Automatisierungstechnik und -systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können…
|
||||||||
Fertigkeiten |
Studierende sind in der Lage …
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können, …
|
||||||||
Selbstständigkeit |
Studierende sind fähig, …
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L2329: Automatisierungstechnik und -systeme |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2331: Automatisierungstechnik und -systeme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2330: Automatisierungstechnik und -systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Martin Gomse | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. | ||||||||
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1888: Environmental protection management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Swantje Pietsch-Braune |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Swantje Pietsch-Braune, Christian Eichler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M1909: Systemsimulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I-III, Informatik, Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung, Regelungstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L3150: Systemsimulation Modul |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung zur
gleichungsbasierten, physikalischen Modellierung unter Verwendung der
Modellierungssprache Modelica und der kostenfreien Simulationsplattform
OpenModelica 1.17.0.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Lehrveranstaltung L3151: Systemsimulation Modul |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 160 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke, Dr. Ralf Heinrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students will gain insights into:
|
||||||||
Fertigkeiten |
Students will gain deep insights into:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Abschlussarbeit | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: Voluntary presentations in the third hour (articles / case studies) - Guest lectures by researchers - Lecture on Sustainability with frequent reference to current research - Permanent reference to current research Examination: In addition to the written exam at the end of the module, students have to attend the PBL-exercises and prepare presentations in groups in order to pass the module. Additionally, students have the opportunity to present research papers on a voluntary base. With these presentations it is possible to gain a bonus of max. 20% for the exam. However, the bonus is only valid if the exam is passed without the bonus. |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly. |
Literatur | See lecture information "Product Planning". |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. Inhalte:
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jan Hendrik Dege |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jan Hendrik Dege |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können - in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1170: Phänomene und Methoden der Materialwissenschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jörg Weißmüller |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1580: Experimental Methods for the Characterization of Materials |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter
Haasen, „Physikalische Metallkunde“ ,
Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. |
Lehrveranstaltung L2991: Übung zu Phänomene und Methoden der Materialwissenschaft |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Übungsaufgaben zur Einübung und Vertiefung der im Modul vermittelten Fähigkeiten und Inhalte. In den Übungen werden mathematische Details vertieft mit dem Ziel, die Studierenden mit Gleichungen/Konzepten und deren Anwendung in der Praxis vertraut zu machen (z. B. Definition thermodynamischer Potenziale und Beziehungen, Berechnung von Enthalpie und Entropie eines Mischkristalls, Konstruktion von Phasendiagrammen, ...). |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter Haasen, „Physikalische Metallkunde“ , Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Modul M1919: Nachhaltiger Betrieb technischer Anlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerko Wende |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für dieses Modul wird Hintergrundwissen im Bereich der allgemeinen Ingenieurswissenschaften, Luftfahrttechnik und Flugzeug-Systemtechnik empfohlen. Technische Disziplinen wie allgemeiner Maschinenbau, Mechatronik und Produktionstechnik werden in die relevanten luftfahrtspezifischen Themen eingeführt. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Zusammenhänge für den nachhaltigen Betrieb technischer Anlagen beschreiben und Lösungswege für komplexe Optimierungsaufgaben aufzeigen. |
Fertigkeiten |
Die Studierenden können das allgemeine Ingenieurswissen der jeweiligen Studienrichtung für die Optimierung der Nachhaltigkeit des Betriebs technischer Anlagen anwenden. Die erworbenen Fertigkeiten ermöglichen einen Einstieg in die Entwicklung und Produktion sowie den technischen Betrieb von nachhaltigen Produkten der Mobilitätsindustrien sowie des Maschinen- und Anlagenbaus. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können lösungsorientiert in heterogenen Kleingruppen arbeiten und Arbeitsergebnisse für ein komplexes Umfeld verschiedener Interessensgruppen vertreten. |
Selbstständigkeit |
Die Studierenden können selbstständig Optimierungsaufgaben lösen und eigenständig Entscheidungen für die Bewertung der zugehörigen Rahmenbedingungen treffen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L3160: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen für den nachhaltigen Betrieb technischer Anlagen durch Instandhaltung, Reparatur und Überholung:
|
Literatur | - |
Lehrveranstaltung L3161: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Fachmodule der Vertiefung Produktion
Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedenen Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.
Modul M0763: Flugzeug-Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
Studierende können:
|
|
Fertigkeiten |
Studierende können:
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
Studierende können:
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | |
Leistungspunkte | 6 | |
Studienleistung | Keine | |
Prüfung | Klausur | |
Prüfungsdauer und -umfang | 165 Minuten | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeug-Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeug-Energiesysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. Inhalte:
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jan Hendrik Dege |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jan Hendrik Dege |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0812: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Arbeiten in interdisziplinären Teams Kommunikation |
||||||||
Selbstständigkeit | Organisation von Arbeitsabläufen und -strategien | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 180 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0820: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozess
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Introduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | None | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
||||||||||||
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively. |
||||||||||||
Selbstständigkeit |
The students can assess their level of knowledge and independently control their learning processes on this basis as well as document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Data Science: Vertiefung III. Applications: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0764: Flugsteuerungssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
unterschiedlicher Konfigurationen der jeweiligen Flugzeugsysteme erläutern, |
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0736: Flugsteuerungssysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugsteuerungssysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Michael Helle, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Markus Schatz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Shan Shi |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Dislocation Theory of Plasticity |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects. We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch). Das Vorgehen ist in einem Meilensteinplan festgelegt und ermöglicht es den Studierenden, Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Am Ende des Projekts wurden verschiedene Probekörper im Zug- oder Biegeversuch geprüft. In den einzelnen Projektbesprechungen wird die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen werden analysiert, die Produktionsmethoden werden bewertet und festgelegt. Die Werkstoffe werden ausgewählt und die Probekörper normgerecht hergestellt. Die Qualität und die mechanischen Eigenschaften werden geprüft und klassifiziert. Am Ende wird ein Abschlussbericht erstellt und die Ergebnisse werden allen Teilnehmern in Form einer Präsentation vorgestellt und diskutiert. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit | Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren |
Literatur | Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Modul M1690: Luftfahrzeugentwurf II (Entwurf von Flugsystemen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) Lufttransportsysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Kenntnis verschiedener Flugsystemkonzepte und deren Besonderheiten (Überschallflugzeuge, Drehflügler, Hochleistungsflugzeuge, Unbemannte Flugsysteme) Verständnis der Vor- und Nachteile sowie physikalischen Wirkprinzipien unterschiedlicher Luftfahrzeugsysteme Kenntnis des Einflusses spezieller Missionsanforderungen auf die Definition und Konzeption von Luftfahrzeugsystemen Vertiefte Kenntnis der Leistungsauslegung und Bewertung verschiedener Luftfahrzeugsysteme |
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen Missionsorientierte technische Definition von Luftfahrzeugsystemen Anwendung geeigneter spezieller konzeptioneller Berechnungsmethoden für besondere Ausrüstungsmerkmale Bewertung verschiedener Entwurfslösungen |
Personale Kompetenzen | |
Sozialkompetenz |
Arbeiten in Gruppen zur konzentrierten Lösungsfindung Kommunikation, Durchsetzungsfähigkeit, fachliche Überzeugungsfähigkeit |
Selbstständigkeit |
Organisation von Arbeitsabläufen und Strategien Strukturierte Aufgabenanalyse und Lösungsfindung |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0844: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gareth Padfield: Helicopter Flight Dynamics, butterworth ltd. Raymond Prouty: Helicopter Performance Stability and Control, Krieger Publ. Klaus Hünecke: Das Kampfflugzeug von Heute, Motorbuch Verlag Jay Gundelach: Designing Unmanned Aircraft Systems - Configurative Approach, AIAA |
Lehrveranstaltung L0847: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1894: Automatisierungstechnik und -systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können…
|
||||||||
Fertigkeiten |
Studierende sind in der Lage …
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können, …
|
||||||||
Selbstständigkeit |
Studierende sind fähig, …
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L2329: Automatisierungstechnik und -systeme |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2331: Automatisierungstechnik und -systeme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2330: Automatisierungstechnik und -systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Martin Gomse | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. | ||||||||
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1888: Environmental protection management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Swantje Pietsch-Braune |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Swantje Pietsch-Braune, Christian Eichler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M1909: Systemsimulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I-III, Informatik, Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung, Regelungstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L3150: Systemsimulation Modul |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung zur
gleichungsbasierten, physikalischen Modellierung unter Verwendung der
Modellierungssprache Modelica und der kostenfreien Simulationsplattform
OpenModelica 1.17.0.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Lehrveranstaltung L3151: Systemsimulation Modul |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 160 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke, Dr. Ralf Heinrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students will gain insights into:
|
||||||||
Fertigkeiten |
Students will gain deep insights into:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Abschlussarbeit | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: Voluntary presentations in the third hour (articles / case studies) - Guest lectures by researchers - Lecture on Sustainability with frequent reference to current research - Permanent reference to current research Examination: In addition to the written exam at the end of the module, students have to attend the PBL-exercises and prepare presentations in groups in order to pass the module. Additionally, students have the opportunity to present research papers on a voluntary base. With these presentations it is possible to gain a bonus of max. 20% for the exam. However, the bonus is only valid if the exam is passed without the bonus. |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly. |
Literatur | See lecture information "Product Planning". |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1024: Methoden der Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Methoden der Produktentwicklung |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Methoden der Produktentwicklung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können - in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1170: Phänomene und Methoden der Materialwissenschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jörg Weißmüller |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1580: Experimental Methods for the Characterization of Materials |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter
Haasen, „Physikalische Metallkunde“ ,
Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. |
Lehrveranstaltung L2991: Übung zu Phänomene und Methoden der Materialwissenschaft |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Übungsaufgaben zur Einübung und Vertiefung der im Modul vermittelten Fähigkeiten und Inhalte. In den Übungen werden mathematische Details vertieft mit dem Ziel, die Studierenden mit Gleichungen/Konzepten und deren Anwendung in der Praxis vertraut zu machen (z. B. Definition thermodynamischer Potenziale und Beziehungen, Berechnung von Enthalpie und Entropie eines Mischkristalls, Konstruktion von Phasendiagrammen, ...). |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter Haasen, „Physikalische Metallkunde“ , Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Modul M1919: Nachhaltiger Betrieb technischer Anlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerko Wende |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für dieses Modul wird Hintergrundwissen im Bereich der allgemeinen Ingenieurswissenschaften, Luftfahrttechnik und Flugzeug-Systemtechnik empfohlen. Technische Disziplinen wie allgemeiner Maschinenbau, Mechatronik und Produktionstechnik werden in die relevanten luftfahrtspezifischen Themen eingeführt. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Zusammenhänge für den nachhaltigen Betrieb technischer Anlagen beschreiben und Lösungswege für komplexe Optimierungsaufgaben aufzeigen. |
Fertigkeiten |
Die Studierenden können das allgemeine Ingenieurswissen der jeweiligen Studienrichtung für die Optimierung der Nachhaltigkeit des Betriebs technischer Anlagen anwenden. Die erworbenen Fertigkeiten ermöglichen einen Einstieg in die Entwicklung und Produktion sowie den technischen Betrieb von nachhaltigen Produkten der Mobilitätsindustrien sowie des Maschinen- und Anlagenbaus. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können lösungsorientiert in heterogenen Kleingruppen arbeiten und Arbeitsergebnisse für ein komplexes Umfeld verschiedener Interessensgruppen vertreten. |
Selbstständigkeit |
Die Studierenden können selbstständig Optimierungsaufgaben lösen und eigenständig Entscheidungen für die Bewertung der zugehörigen Rahmenbedingungen treffen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L3160: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen für den nachhaltigen Betrieb technischer Anlagen durch Instandhaltung, Reparatur und Überholung:
|
Literatur | - |
Lehrveranstaltung L3161: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Fachmodule der Vertiefung Werkstoffe
Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen.
Modul M0763: Flugzeug-Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
Studierende können:
|
|
Fertigkeiten |
Studierende können:
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
Studierende können:
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | |
Leistungspunkte | 6 | |
Studienleistung | Keine | |
Prüfung | Klausur | |
Prüfungsdauer und -umfang | 165 Minuten | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeug-Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeug-Energiesysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics - Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 %CITAVIPICKER£9781118033104£Titel anhand dieser ISBN in Citavi-Projekt übernehmen£% John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | NN, Dr. Johannes Nicolas Gebhardt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dr. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2168: Innovation und Produktmanagement |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Christoph Fuchs |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen und Systeme der Werkstoffprüfung - aus Sicht der Produktentwicklung und Schadensanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding, Christopher Mundt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Johannes Kreuzer, Christian Neuhaus |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt:
Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache Ersatzschaltbilder für physiologische Abläufe hergeleitet und erklärt wie damit Sensoren, Regler und Aktoren gesteuert werden. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung) |
Dozenten | Prof. Werner Granzeier, Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0949: Werkstoffprüfung - aus Sicht der industriellen Anwendung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L2994: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Eric Groß, Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L2995: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Benedikt Kriegesmann, Dr. Eric Groß |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems Modeling System identification Simulation Processing of measurement data Damage accumulation Test planning and execution |
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | None | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
||||||||||||
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
The students are able to grasp practical tasks in groups, develop solution strategies independently, define work processes and work on them collaboratively. |
||||||||||||
Selbstständigkeit |
The students can assess their level of knowledge and independently control their learning processes on this basis as well as document their work results. They can critically evaluate the results achieved and present them in an appropriate argumentative manner to the other groups. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Data Science: Vertiefung III. Applications: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0764: Flugsteuerungssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
unterschiedlicher Konfigurationen der jeweiligen Flugzeugsysteme erläutern, |
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0736: Flugsteuerungssysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugsteuerungssysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Michael Helle, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Markus Schatz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Markus Schatz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Shan Shi |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Dislocation Theory of Plasticity |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects. We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch). Das Vorgehen ist in einem Meilensteinplan festgelegt und ermöglicht es den Studierenden, Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Am Ende des Projekts wurden verschiedene Probekörper im Zug- oder Biegeversuch geprüft. In den einzelnen Projektbesprechungen wird die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen werden analysiert, die Produktionsmethoden werden bewertet und festgelegt. Die Werkstoffe werden ausgewählt und die Probekörper normgerecht hergestellt. Die Qualität und die mechanischen Eigenschaften werden geprüft und klassifiziert. Am Ende wird ein Abschlussbericht erstellt und die Ergebnisse werden allen Teilnehmern in Form einer Präsentation vorgestellt und diskutiert. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit | Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren |
Literatur | Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Modul M1878: Nachhaltige elektrische Energie aus Wind und Wasser |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Marvin Scherzinger |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Des Weiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studierenden können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht |
Lehrveranstaltung L0067: Offshore-Geotechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Jan Dührkop |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Achleitner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1894: Automatisierungstechnik und -systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können…
|
||||||||
Fertigkeiten |
Studierende sind in der Lage …
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können, …
|
||||||||
Selbstständigkeit |
Studierende sind fähig, …
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L2329: Automatisierungstechnik und -systeme |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2331: Automatisierungstechnik und -systeme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2330: Automatisierungstechnik und -systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Martin Gomse | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. | ||||||||
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Modul M1888: Environmental protection management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Swantje Pietsch-Braune |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Integrierte Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0203: Air Pollution Abatement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Swantje Pietsch-Braune, Christian Eichler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In the lecture methods for the reduction of emissions from industrial plants are treated. At the beginning a short survey of the different forms of air pollutants is given. In the second part physical principals for the removal of particulate and gaseous pollutants form flue gases are treated. Industrial applications of these principles are demonstrated with examples showing the removal of specific compounds, e.g. sulfur or mercury from flue gases of incinerators. |
Literatur |
Handbook of air pollution prevention and control, Nicholas P. Cheremisinoff. - Amsterdam [u.a.] : Butterworth-Heinemann, 2002 |
Modul M1909: Systemsimulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I-III, Informatik, Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung, Regelungstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L3150: Systemsimulation Modul |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung zur
gleichungsbasierten, physikalischen Modellierung unter Verwendung der
Modellierungssprache Modelica und der kostenfreien Simulationsplattform
OpenModelica 1.17.0.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Lehrveranstaltung L3151: Systemsimulation Modul |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 160 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke, Dr. Ralf Heinrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students will gain insights into:
|
||||||||
Fertigkeiten |
Students will gain deep insights into:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Abschlussarbeit | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: Voluntary presentations in the third hour (articles / case studies) - Guest lectures by researchers - Lecture on Sustainability with frequent reference to current research - Permanent reference to current research Examination: In addition to the written exam at the end of the module, students have to attend the PBL-exercises and prepare presentations in groups in order to pass the module. Additionally, students have the opportunity to present research papers on a voluntary base. With these presentations it is possible to gain a bonus of max. 20% for the exam. However, the bonus is only valid if the exam is passed without the bonus. |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly. |
Literatur | See lecture information "Product Planning". |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. Inhalte:
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Robert Rost |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Management und Controlling: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1024: Methoden der Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Methoden der Produktentwicklung |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Methoden der Produktentwicklung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 | ||||||||
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Jan Hendrik Dege |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jan Hendrik Dege |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können - in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1170: Phänomene und Methoden der Materialwissenschaft |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jörg Weißmüller |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1580: Experimental Methods for the Characterization of Materials |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter
Haasen, „Physikalische Metallkunde“ ,
Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. |
Lehrveranstaltung L2991: Übung zu Phänomene und Methoden der Materialwissenschaft |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Shan Shi |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Übungsaufgaben zur Einübung und Vertiefung der im Modul vermittelten Fähigkeiten und Inhalte. In den Übungen werden mathematische Details vertieft mit dem Ziel, die Studierenden mit Gleichungen/Konzepten und deren Anwendung in der Praxis vertraut zu machen (z. B. Definition thermodynamischer Potenziale und Beziehungen, Berechnung von Enthalpie und Entropie eines Mischkristalls, Konstruktion von Phasendiagrammen, ...). |
Literatur |
D.A. Porter, K.E. Easterling, “Phase transformations in metals and alloys”, New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter Haasen, „Physikalische Metallkunde“ , Springer 1994 Herbert B. Callen, “Thermodynamics and an introduction to thermostatistics”, New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, “Physics of Surfaces and Interfaces” 2006, Berlin: Springer. William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Modul M1919: Nachhaltiger Betrieb technischer Anlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerko Wende |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für dieses Modul wird Hintergrundwissen im Bereich der allgemeinen Ingenieurswissenschaften, Luftfahrttechnik und Flugzeug-Systemtechnik empfohlen. Technische Disziplinen wie allgemeiner Maschinenbau, Mechatronik und Produktionstechnik werden in die relevanten luftfahrtspezifischen Themen eingeführt. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Zusammenhänge für den nachhaltigen Betrieb technischer Anlagen beschreiben und Lösungswege für komplexe Optimierungsaufgaben aufzeigen. |
Fertigkeiten |
Die Studierenden können das allgemeine Ingenieurswissen der jeweiligen Studienrichtung für die Optimierung der Nachhaltigkeit des Betriebs technischer Anlagen anwenden. Die erworbenen Fertigkeiten ermöglichen einen Einstieg in die Entwicklung und Produktion sowie den technischen Betrieb von nachhaltigen Produkten der Mobilitätsindustrien sowie des Maschinen- und Anlagenbaus. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können lösungsorientiert in heterogenen Kleingruppen arbeiten und Arbeitsergebnisse für ein komplexes Umfeld verschiedener Interessensgruppen vertreten. |
Selbstständigkeit |
Die Studierenden können selbstständig Optimierungsaufgaben lösen und eigenständig Entscheidungen für die Bewertung der zugehörigen Rahmenbedingungen treffen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L3160: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen für den nachhaltigen Betrieb technischer Anlagen durch Instandhaltung, Reparatur und Überholung:
|
Literatur | - |
Lehrveranstaltung L3161: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Ergänzungsmodule Kernfächer
Modul M0599: Digitale Produktentwicklung und Leichtbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Konstruktion: Grundlagen der Konstruktionslehre, Konstruktionslehre Gestalten, Vertiefte Konstruktionslehre |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können nach Abschluss des Moduls:
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind fähig:
|
||||||||
Selbstständigkeit |
Die Studierenden können:
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Engineering Science: Vertiefung Maschinenbau: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L0271: CAE-Teamprojekt |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Beschreibung Bestandteil des Moduls ist ein projektbasiertes, teamorientiertes CAE-Praktikum nach der PBL-Methode, im Rahmen dessen die Studierenden den Umgang mit modernen CAD-, PDM- und FEM-Systemen (Creo, Windchill und Hyperworks) vertiefen sollen. Nach einer kurzen Einführung in die verwendeten Softwaresysteme werden die Studierenden semesterbegleitend in Teamarbeit eine Aufgabenstellung bearbeiten. Ziel ist die gemeinsame Entwicklung eines Produktes in einer PDM-Umgebung aus mehreren CAD-Bauteil-Modellen unter Einbeziehung von FEM-Berechnungen ausgewählter Bauteile, inklusive des 3D-Druckens von Teilen. Die entwickelte Produktkonstruktion muss in Form einer Präsentation gemeinsam vorgestellt werden. |
Literatur | - |
Lehrveranstaltung L0269: Digitale Produktentwicklung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0270: Entwicklung von Leichtbau-Produkten |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1901: Materialwissenschaftliches Praktikum |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kaline Pagnan Furlan |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details von werkstoffwissenschaftlichen Experimenten geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus den Werkstoffwissenschaften in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung werkstoffwissenschaftlicher Experimente. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen gemeinsam Experimente aus den Werkstoffwissenschaften durchführen und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. |
Selbstständigkeit |
Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen werkstoffwissenschaftliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Testate zu den jeweiligen Versuchen und online Lernmodule mit Erfolgskontrolle |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht Engineering Science: Vertiefung Advanced Materials: Pflicht Engineering Science: Vertiefung Advanced Materials: Pflicht Engineering Science: Vertiefung Maschinenbau: Wahlpflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Materialien in den Ingenieurwissenschaften: Pflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1088: Begleitvorlesung zum Materialwissenschaftlichen Praktikum |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Kaline Pagnan Furlan |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- Vermittlung von Grundlagen zum Verständnis der aufgeführten Versuche im Materialwissenschaftliches Praktikum und die Lernmodule; |
Literatur |
1) W.D. Callister, Materials science and engineering: an introduction, Wiley 2000 https://katalog.tub.tuhh.de/Record/270018409 or https://katalog.tub.tuhh.de/Record/1696922097 (online link at ‘Exemplare’) 2) John R. Taylor, Fehleranalyse: eine Einführung in die Untersuchung von Unsicherheiten in physikalischen Messungen, 1. Aufl., VCH Verlag, 1988 https://katalog.tub.tuhh.de/Record/027422038 // An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2d Edition, University Science Books, 1997 https://katalog.tub.tuhh.de/Record/024511676
|
Lehrveranstaltung L1235: Materialwissenschaftliches Praktikum |
Typ | Laborpraktikum |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Kaline Pagnan Furlan, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller, Prof. Patrick Huber |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
5 Versuche: • Metalle: Zugversuch • Kunststoffe: Rasterelektronenmikroskopie an Bruchflächen von Faserverbundkunststoffen • Kunststoffe: Biegeversuch - Biegeeigenschaften von kohlenstofffaserverstärkten Kunststoffen • Keramik: Keramische Synthese - Von der Eingangskontrolle bis zum „charakterisierten“ Produkt • Keramik: Mechanisches Verhalten keramischer Werkstoffe |
Literatur |
1) Vorlesungsunterlagen Grundlagen der Werkstoffwissenschaft I & II 2) W.D. Callister, Materials science and engineering: an introduction, Wiley 2000 https://katalog.tub.tuhh.de/Record/270018409 or https://katalog.tub.tuhh.de/Record/1696922097 (online link at ‘Exemplare’) |
Modul M0726: Produktionstechnologie |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Jan Hendrik Dege |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich Grundpraktikum empfohlen Vorkenntnisse in Mathematik, Mechanik und Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können …
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, …
|
Selbstständigkeit |
Studierende sind fähig, …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L0689: Grundlagen der Werkzeugmaschinen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Begriffe und Trends im Werkzeugmaschinenbau CNC-Steuerungen NC-Programmierung und NC-Programmiersysteme Arten, Aufbau und Funktion von CNC-Maschinen Mehrmaschinensysteme Ausrüstungskomponenten für Werkzeugmaschinen Beurteilung von Werkzeugmaschinen |
Literatur |
Conrad, K.J Taschenbuch der Werkzeugmaschinen 9783446406414 Fachbuchverlag 2006
Perović, Božina Spanende Werkzeugmaschinen - Ausführungsformen und Vergleichstabellen ISBN: 3540899529 Berlin [u.a.]: Springer, 2009
Weck, Manfred Werkzeugmaschinen 1 - Maschinenarten und Anwendungsbereiche ISBN: 9783540225041 Berlin [u.a.]: Springer, 2005
Weck, Manfred; Brecher, Christian Werkzeugmaschinen 4 - Automatisierung von Maschinen und Anlagen ISBN: 3540225072 Berlin [u.a.]: Springer, 2006
Weck, Manfred; Brecher, Christian Werkzeugmaschinen 5 - Messtechnische Untersuchung und Beurteilung, dynamische Stabilität ISBN: 3540225056 Berlin [u.a.]: Springer, 2006 |
Lehrveranstaltung L1992: Grundlagen der Werkzeugmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0613: Umform- und Zerspantechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jan Hendrik Dege |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Lange, K.; Umformtechnik Grundlagen, 2. Auflage, Springer (2002) Tönshoff, H.; Spanen Grundlagen, 2. Auflage, Springer Verlag (2004) König, W., Klocke, F.; Fertigungsverfahren Bd. 4 Massivumformung, 4. Auflage, VDI-Verlag (1996) König, W., Klocke, F.; Fertigungsverfahren Bd. 5 Blechbearbeitung, 3. Auflage, VDI-Verlag (1995) Klocke, F., König, W.; Fertigungsverfahren Schleifen, Honen, Läppen, 4. Auflage, Springer Verlag (2005) König, W., Klocke, F.: Fertigungsverfahren Drehen, Fräsen, Bohren, 7. Auflage, Springer Verlag (2002) |
Lehrveranstaltung L0614: Umform- und Zerspantechnologie |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Jan Hendrik Dege |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Interdisciplinary Mathematics: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Luftfahrttechnik: Abschlussarbeit: Pflicht Materials Science and Engineering: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht |