Modulhandbuch

Master

Produktentwicklung, Werkstoffe und Produktion

Kohorte: Wintersemester 2018

Stand: 28. September 2018

Studiengangsbeschreibung

Inhalt

Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Das Studium vertieft die ingenieurwissenschaftliche, mathematische und naturwissenschaftliche Bachelor-Ausbildung und vermittelt Kompetenzen zum systematischen, wissenschaftlichen und eigenständigen Lösen von verantwortungsvollen Aufgaben in Industrie und Forschung. Inhaltlich abgedeckt wird der Produktentstehungsprozess von der strategischen Produktplanung, über die systematische und methodische Entwicklung von Produkten inklusive Konzeptentwicklung, Konstruktion, Werkstoffauswahl, Simulation und Test bis hin zur Produktion, deren Planung und Steuerung sowie dem Einsatz von modernen Fertigungsverfahren und Hochleistungswerkstoffen. Die Studierenden vertiefen sich in einer der drei Fachrichtungen und erwerben die Fähigkeit an den Schnittstellen der verbundenen Teildisziplinen zu arbeiten. Je nach individuellen Schwerpunkten können die Studierenden ihr Studium aufgrund des umfangreichen Angebots an Wahlpflichtfächern sehr flexibel anpassen und persönlich ausrichten. 


Berufliche Perspektiven

Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Die Absolventen können aufgrund ihrer Spezialisierung auf eines der Themenfelder Produktentwicklung, Werkstoffe oder Produktion direkt in diesem arbeiten. Außerdem besitzen sie vielfältiges Methoden- und Schnittstellenwissen, das sie zur disziplinübergreifenden Arbeit befähigt. Die Absolventen können wissenschaftliche Tätigkeiten in Universitäten und Forschungsinstituten insbesondere mit dem Ziel der Promotion aufnehmen oder sich für den direkten Einstieg in die Industrie entscheiden. Hier können Sie zum Beispiel Fachlaufbahnen (z.B. Konstrukteur, Berechnungsingenieur, Produktionsplaner) einschlagen oder sich mit wachsender Berufserfahrung für anspruchsvolle Führungsaufgaben im technischen Bereich qualifizieren (z.B. Projekt-, Gruppen- oder Teamleiter, Entwicklungs- bzw. Produktionsleiter oder Technischer Leiter). Der Studiengang ist universell gestaltet und erlaubt es den Absolventen, in unterschiedlichen Branchen, insbesondere des Maschinen- und Anlagenbaus, an einer Vielzahl unterschiedlicher Produkte tätig zu werden.


Lernziele

Absolventen des Studiengangs sind in der Lage das individuell erworbene Fachwissen auf neue unbekannte Themenstellungen zu übertragen, komplexe Problemstellungen ihrer Disziplin wissenschaftlich zu erfassen, zu analysieren und zu lösen. Sie können fehlende Informationen selbstständig finden und dazu theoretische sowie experimentelle Untersuchungen planen und durchführen. Ingenieurwissenschaftliche Ergebnisse können sie beurteilen, evaluieren, kritisch hinterfragen sowie auf deren Basis Entscheidungen treffen und eigene weiterführende Schlussfolgerungen ziehen. Sie sind in der Lage methodisch vorzugehen, kleinere Projekte selbstständig zu organisieren und neue Technologien sowie wissenschaftliche Methoden auszuwählen und bei Bedarf weiterzuentwickeln.

Die Absolventen können sowohl selbstständig als auch in Teamarbeit neue Ideen und Lösungen entwickeln, dokumentieren sowie vor Fachpersonen präsentieren und vertreten. Eigene Stärken und Schwächen können sie einschätzen ebenso wie mögliche Konsequenzen ihres Handelns. Vor allem sind Sie befähigt sich selbstständig in komplexe Aufgaben einzuarbeiten, Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie geeignete Mittel systematisch zur Umsetzung einzusetzen.

Produktentwicklung

In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.

Werkstoffe

Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen.

Produktion

Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedener Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.


Studiengangsstruktur

Der Studiengang ist modular gestaltet und orientiert sich an der universitätsweiten standardisierten Studiengangsstruktur mit einheitlichen Modulgrößen (Vielfachen von sechs Leistungspunkten (LP)). Der Studiengang kombiniert die Teildisziplinen Produktentwicklung, Werkstoffe und Produktion des Maschinenbaus und erlaubt die Vertiefung in einer dieser Richtungen. Die Studierenden können dabei aufgrund der weitreichenden Wahlfreiheit ihr Studium individualisieren.

In der gemeinsamen Kernqualifikation belegen die Studierenden folgende Module:

  • Finite-Elemente-Methoden und Schwingungslehre (12 LP)
  • Wahlpflichtbereich Grundlagenfächer (Katalog) (12 LP)
  • Fachlabor ( 6 LP)
  • Ergänzungskurse Betrieb und Management (Katalog) (6 LP)
  • Ergänzungskurse Nichttechnische Fächer (Katalog) (6 LP)

Die Studierenden spezialisieren sich durch die Wahl einer der folgenden fachlichen Vertiefungsrichtungen im Umfang von 36 Leistungspunkten:

  • Produktentwicklung (Methoden der Produktentwicklung, Leichtbau),
  • Produktion (Produktionsmanagement, Produktionstechnologie),
  • Werkstoffe (Ingenieurwerkstoffe).

Innerhalb jeder Vertiefung sind den Studierenden drei Module mit sechs Leistungspunkten vorgegeben. Weitere 18 Leistungspunkte können aus einem fachlichen Modulkatalog (Modulgröße je sechs Leistungspunkte) gewählt werden. Alternatives können offene Module im maximalen Umfang von zwölf Leistungspunkten belegt werden, in denen spezialisierte kleinere Lehrveranstaltungen individuell kombiniert werden können.

Neben der abschließenden Masterarbeit bearbeiten die Studierenden eine zusätzliche wissenschaftliche Projektarbeit.

  • Projektarbeit (12 LP)
  • Masterarbeit (30 LP)

Fachmodule der Kernqualifikation

Im Rahmen der Kernqualifikation vertiefen die Studierenden ihr Wissen und ihre Fähigkeiten in weiterführenden ingenieurwissenschaftlichen Fächern (z.B. Schwingungslehre), aber auch im Bereich Betrieb und Management sowie weiteren nichttechnischen Fächern. Durch das Fachlabor und die Erstellung einer wissenschaftlichen Projektarbeit vertiefen die Studierenden Ihre Fähigkeiten im selbstständigen methodischen und wissenschaftlichen Arbeiten im Bereich der Produktentwicklung, der Werkstoffe und der Produktion.

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden sind in der Lage, in interdisziplinären Kleingruppen zu kommunizieren und gemeinsam Lösungen für komplexe Problemstellungen zu erarbeiten.


Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0524: Nichttechnische Ergänzungskurse im Master

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Nichttechnischen Angebote  (NTA)

vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewähltes Spezialgebiete des jeweiligen nichttechnischen Bereiches erläutern,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist).



Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende und teils auch spezielle Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache und teils auch fortgeschrittene Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.




Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist)



Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).




Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0603: Nichtlineare Strukturanalyse

Lehrveranstaltungen
Titel Typ SWS LP
Nichtlineare Strukturanalyse (L0277) Vorlesung 3 4
Nichtlineare Strukturanalyse (L0279) Gruppenübung 1 2
Modulverantwortlicher Prof. Alexander Düster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Vorkenntnisse bzgl. partieller Differentialgleichungen sind empfehlenswert.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können
+ einen Überblick über die verschiedenen nichtlinearen strukturmechanischen Phänomene geben.
+ den mechanischen Hintergrund von nichtlinearen Phänomenen in der Strukturmechanik erläutern.
+ mögliche Probleme bei der nichtlinearen Strukturanalyse aufzählen, im konkreten Fall erkennen und die entsprechenden mathematischen und mechanischen Hintergründe erläutern.

Fertigkeiten

Studierende sind in der Lage
+ nichtlineare strukturmechanische Probleme zu modellieren.
+ für gegebene nichtlineare strukturmechanische Probleme das geeignete Berechnungsverfahren auszuwählen.
+ Finite-Elemente-Verfahren auf nichtlineare strukturmechanische Probleme anzuwenden.
+ Ergebnisse von nichtlinearen finiten Elemente Berechnungen zu verifizieren und kritisch zu beurteilen.
+ die Vorgehensweise zur Lösung von nichtlinearen Problemen auf neue Problemstellungen zu übertragen.

Personale Kompetenzen
Sozialkompetenz

Studierende können
+ in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren.
+ erlerntes Wissen innerhalb der Gruppe weitergeben.

Selbstständigkeit

Studierende sind fähig
+ für die Lösung von komplexen Aufgaben eigenständig Wissen erwerben.
  


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Ship and Offshore Technology: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0277: Nichtlineare Strukturanalyse
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Alexander Düster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

1. Einleitung
2. Nichtlineare Phänomene
3. Mathematische Grundlagen
4. Kontinuumsmechanische Grundlagen
5. Räumliche Diskretisierung mit Finiten Elementen
6. Lösung nichtlinearer Gleichungssysteme
7. Lösung elastoplastischer Probleme
8. Stabilitätsprobleme
9. Kontaktprobleme

Literatur

[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.
[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.
[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.
[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.

Lehrveranstaltung L0279: Nichtlineare Strukturanalyse
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Alexander Düster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0742: Wärmetechnik

Lehrveranstaltungen
Titel Typ SWS LP
Wärmetechnik (L0023) Vorlesung 3 5
Wärmetechnik (L0024) Hörsaalübung 1 1
Modulverantwortlicher Prof. Gerhard Schmitz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in  der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut.


Fertigkeiten

Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.

Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.

  


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Pflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0023: Wärmetechnik
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einleitung

2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion

3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen

4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme

5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Lehrveranstaltung L0024: Wärmetechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0751: Technische Schwingungslehre

Lehrveranstaltungen
Titel Typ SWS LP
Technische Schwingungslehre (L0701) Integrierte Vorlesung 4 6
Modulverantwortlicher Prof. Norbert Hoffmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Analysis
  • Lineare Algebra
  • Technische Mechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können Begriffe und Zusammenhänge der Technischen Schwingungslehre wiedergeben und weiterentwickeln.
Fertigkeiten Studierende können Methoden der Technischen Schwingungslehre benennen und weiterentwickeln.
Personale Kompetenzen
Sozialkompetenz Studierende können auch in Gruppen zu Arbeitsergebnissen kommen.
Selbstständigkeit Studierende können sich eigenständig Forschungsaufgaben der Technischen Schwingungslehre erschließen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0701: Technische Schwingungslehre
Typ Integrierte Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Norbert Hoffmann
Sprachen DE/EN
Zeitraum WiSe
Inhalt Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen und Wellen.
Literatur K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen. Springer Verlag, 2013.

Modul M0808: Finite Elements Methods

Lehrveranstaltungen
Titel Typ SWS LP
Finite-Elemente-Methoden (L0291) Vorlesung 2 3
Finite-Elemente-Methoden (L0804) Hörsaalübung 2 3
Modulverantwortlicher Prof. Otto von Estorff
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method.



Fertigkeiten

The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions.

Selbstständigkeit

The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 20 % Midterm
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0291: Finite Element Methods
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum WiSe
Inhalt

- General overview on modern engineering
- Displacement method
- Hybrid formulation
- Isoparametric elements
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Eigenvalue problems
- Non-linear systems
- Applications

- Programming of elements (Matlab, hands-on sessions)
- Applications

Literatur

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Lehrveranstaltung L0804: Finite Element Methods
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0846: Control Systems Theory and Design

Lehrveranstaltungen
Titel Typ SWS LP
Theorie und Entwurf regelungstechnischer Systeme (L0656) Vorlesung 2 4
Theorie und Entwurf regelungstechnischer Systeme (L0657) Gruppenübung 2 2
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Introduction to Control Systems
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain how linear dynamic systems are represented as state space models; they can interpret the system response to initial states or external excitation as trajectories in state space
  • They can explain the system properties controllability and observability, and their relationship to state feedback and state estimation, respectively
  • They can explain the significance of a minimal realisation
  • They can explain observer-based state feedback and how it can be used to achieve tracking and disturbance rejection
  • They can extend all of the above to multi-input multi-output systems
  • They can explain the z-transform and its relationship with the Laplace Transform
  • They can explain state space models and transfer function models of discrete-time systems
  • They can explain the experimental identification of ARX models of dynamic systems, and how the identification problem can be solved by solving a normal equation
  • They can explain how a state space model can be constructed from a discrete-time impulse response

Fertigkeiten
  • Students can transform transfer function models into state space models and vice versa
  • They can assess controllability and observability and construct minimal realisations
  • They can design LQG controllers for multivariable plants
  •  They can carry out a controller design both in continuous-time and discrete-time domain, and decide which is  appropriate for a given sampling rate
  • They can identify transfer function models and state space models of dynamic systems from experimental data
  • They can carry out all these tasks using standard software tools (Matlab Control Toolbox, System Identification Toolbox, Simulink)

Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions. 

Selbstständigkeit

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Pflicht
Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0656: Control Systems Theory and Design
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum WiSe
Inhalt

State space methods (single-input single-output)

• State space models and transfer functions, state feedback 
• Coordinate basis, similarity transformations 
• Solutions of state equations, matrix exponentials, Caley-Hamilton Theorem
• Controllability and pole placement 
• State estimation, observability, Kalman decomposition 
• Observer-based state feedback control, reference tracking 
• Transmission zeros
• Optimal pole placement, symmetric root locus 
Multi-input multi-output systems
• Transfer function matrices, state space models of multivariable systems, Gilbert realization 
• Poles and zeros of multivariable systems, minimal realization 
• Closed-loop stability
• Pole placement for multivariable systems, LQR design, Kalman filter 

Digital Control
• Discrete-time systems: difference equations and z-transform 
• Discrete-time state space models, sampled data systems, poles and zeros 
• Frequency response of sampled data systems, choice of sampling rate 

System identification and model order reduction 
• Least squares estimation, ARX models, persistent excitation 
• Identification of state space models, subspace identification 
• Balanced realization and model order reduction 

Case study
• Modelling and multivariable control of a process evaporator using Matlab and Simulink 
Software tools
• Matlab/Simulink

Literatur
  • Werner, H., Lecture Notes „Control Systems Theory and Design“
  • T. Kailath "Linear Systems", Prentice Hall, 1980
  • K.J. Astrom, B. Wittenmark "Computer Controlled Systems" Prentice Hall, 1997
  • L. Ljung "System Identification - Theory for the User", Prentice Hall, 1999
Lehrveranstaltung L0657: Control Systems Theory and Design
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1150: Kontinuumsmechanik

Lehrveranstaltungen
Titel Typ SWS LP
Kontinuumsmechanik (L1533) Vorlesung 2 3
Kontinuumsmechanik Übung (L1534) Gruppenübung 2 3
Modulverantwortlicher Prof. Christian Cyron
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der linearen Kontinuumsmechanik wie z.B. im Modul Mechanik II unterrichtet (Kräfte und Drehmomente, Spannungen, lineare Verzerrungen, Schnittprinzip, linear-elastische Konstitutivgesetze, Verzerrungsenergie). 

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können grundlegende Konzepte zur Berechnung von mechanischem Materialverhalten erklären. Sie können Methoden der Kontinuumsmechanik im größeren Kontext erläutern.

Fertigkeiten

Die Studierenden können Bilanzgleichungen aufstellen und Grundlagen der Deformationstheorie elastischer Körper anwenden und auf diesem Gebiet spezifische Aufgabenstellungen sowohl anwendungsorientiert als auch forschungsorientiert bearbeiten

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten in Schriftform präsentieren und Ideen weiterentwickeln.


Selbstständigkeit

Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der Kontinuumsmechanik identifizieren und lösen und sich dafür benötigtes Wissen aneignen.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1533: Kontinuumsmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Christian Cyron
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Kinematik deformierbarer Körper
  • Bilanzgleichungen (Massenbilanz, Energiegleichung, …)
  • Spannungszustand
  • Materialmodellierung


Literatur

R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker

I-S. Liu: Continuum Mechanics, Springer


Lehrveranstaltung L1534: Kontinuumsmechanik Übung
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Christian Cyron
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Kinematik deformierbarer Körper
  • Bilanzgleichungen (Massenbilanz, Energiegleichung, …)
  • Spannungszustand
  • Materialmodellierung


Literatur

R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker

I-S. Liu: Continuum Mechanics, Springer


Modul M1151: Werkstoffmodellierung

Lehrveranstaltungen
Titel Typ SWS LP
Werkstoffmodellierung (L1535) Vorlesung 2 3
Werkstoffmodellierung (L1536) Gruppenübung 2 3
Modulverantwortlicher Prof. Christian Cyron
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der linearen und nichtlinearen Kontinuumsmechanik wie z.B. in den Modulen Mechanik II und Kontinuumsmechanik unterrichtet (Kräfte und Drehmomente, Spannungen, lineare und nichtlineare Verzerrungsmaße, Schnittprinzip, lineare und nichtlineare Konstitutivgesetze, Verzerrungsenergie). 

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Grundlagen von mehrdimensionalen Werkstoffgesetzen erläutern.

Fertigkeiten

Die Studierenden können eigene Materialmodelle in ein Finite Elemente Programm implementieren. Insbesondere können Sie Ihre Kenntnisse auf verschiedene Problemstellung aus der Materialwissenschaft anwenden und Materialmodelle entsprechend bewerten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten präsentieren und Ideen weiterentwickeln.


Selbstständigkeit

Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der Werkstoffmodellierung identifizieren und lösen und sich dafür benötigtes Wissen aneignen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1535: Werkstoffmodellierung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Christian Cyron
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Grundlagen der Finite-Element Methode
  • Grundlagen der Materialmodellierung
  • Einführung in die numerische Umsetzung von Materialgesetzen
  • Übersicht über die Modellierung verschiedener Werkstoffklassen
  • Verknüpfung von makroskopischen Größen zu mikromechanischen Vorgängen


Literatur

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge

G. Gottstein., Physical Foundations of Materials Science, Springer


Lehrveranstaltung L1536: Werkstoffmodellierung
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Christian Cyron
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Grundlagen der Finite-Element Methode
  • Grundlagen der Materialmodellierung
  • Einführung in die numerische Umsetzung von Materialgesetzen
  • Übersicht über die Modellierung verschiedener Werkstoffklassen
  • Verknüpfung von makroskopischen Größen zu mikromechanischen Vorgängen


Literatur

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge

G. Gottstein., Physical Foundations of Materials Science, Springer


Modul M1173: Angewandte Statistik für Ingenieure

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Statistik für Ingenieure (L1584) Vorlesung 2 3
Angewandte Statistik für Ingenieure (L1586) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Angewandte Statistik für Ingenieure (L1585) Gruppenübung 1 1
Modulverantwortlicher Prof. Michael Morlock
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse statistischen Vorgehens

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studenten können die Einsatzgebiete der statistischen Verfahren, die in der Veranstaltung besprochen werden und die Voraussetzungen für den Einsatz des entsprechenden Verfahrens erläutern.

Fertigkeiten

Die Studenten können das verwendete Statistikprogramm zur Lösung von statistischen Fragestellungen einsetzen und die Ergebnisse fachgerecht darstellen und interpretieren.

Personale Kompetenzen
Sozialkompetenz

Gruppenarbeit, gemeinsam Ergebnisse präsentieren

Selbstständigkeit

Fragestellung verstehen und selbständig lösen

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung
Prüfung Klausur
Prüfungsdauer und -umfang 90 minuten, 28 Fragen
Zuordnung zu folgenden Curricula Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L1584: Angewandte Statistik für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Michael Morlock
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Inhalt (deutsch)

Lösung statistischer Fragestellungen unter Anwendung eines gebräuchlichen Statistikprogrammes. Die vermittelten statistischen Tests und Vorgehensweisen beinhalten:

•          Wahl des statistischen Verfahrens

•          Einfluss der Gruppengröße auf die Ergebnisse

•          Chi quadrat test

•          Regression und Korrelation mit einer unabhängigen Variablen

•          Regression und Korrelation mit mehreren unabhängigen Variablen

•          Varianzanalyse mit eine unabhängigen Variablen

•          Varianzanalyse mit mehreren unabhängigen Variablen

•          Diskriminantenanalyse

•          Analyse kategorischer Daten

•          Nichtparametrische Statistik

•          Überlebensanalysen

Literatur

Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University, Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, CB © 1998, ISBN/ISSN: 0-534-20910-6

Lehrveranstaltung L1586: Angewandte Statistik für Ingenieure
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Michael Morlock
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Die Studenten bekommen in Kleingruppen (n=5) eine Fragestellung, zu deren Beantwortung sie sowohl die Datenerhebung als auch die Analyse durchführen und die Ergebnisse in Form eines executive summaries in der letzten Vorlesung vorstellen müssen.

Literatur

Selbst zu finden


Lehrveranstaltung L1585: Angewandte Statistik für Ingenieure
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Michael Morlock
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Anhand von praktischen Fragestellungen werden die wichtigsten statistischen Verfahren angewendet und gleichzeitig in die Benutzung der kommerziell am häufigsten eingesetzten Software eingeführt und deren Benutzung geübt.

Literatur

Student Solutions Manual for Kleinbaum/Kupper/Muller/Nizam's Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, Paperbound © 1998, ISBN/ISSN: 0-534-20913-0


Modul M1204: Modellierung und Optimierung in der Dynamik

Lehrveranstaltungen
Titel Typ SWS LP
Flexible Mehrkörpersysteme (L1632) Vorlesung 2 3
Optimierung dynamischer Systeme (L1633) Vorlesung 2 3
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mathematik I, II, III
  • Mechanik I, II, III, IV
  • Simulation dynamischer Systeme

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierenden besitzen nach erfolgreichem Besuch des Moduls grundlegende Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme und Methoden zur Optimierung dynamischer Systeme.


Fertigkeiten

Die Studierenden sind in der Lage

+ ganzheitlich zu Denken

+ grundlegende Problemstellungen aus der Dynamik starrer und flexibler Mehrkörpersysteme selbständig, sicher,
kritisch und bedarfsgerecht zu analysieren und zu optimieren

+ dynamische Problem mathematisch zu beschreiben 

+ dynamische Probleme zu optimieren


Personale Kompetenzen
Sozialkompetenz

Studierende können

+ in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren.



Selbstständigkeit

Studierende sind fähig

+ ihren Kenntnisstand mit Hilfe von Übungsaufgaben einzuschätzen.

+ sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1632: Flexible Mehrkörpersysteme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Grundlagen von Mehrkörpersystemen
  2. Kontinuumsmechanische Grundlagen
  3. Lineare finite Elemente Modelle und Modellreduktion
  4. Nichtlineare finite Elemente Modelle: Absolute Nodal Coordinate Formulation
  5. Kinematik eines elastischen Körpers
  6. Kinetik eines elastischen Körpers
  7. Zusammenbau des Gesamtsystems
Literatur

Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999.

Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014.

Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage.


Lehrveranstaltung L1633: Optimierung dynamischer Systeme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Robert Seifried, Dr. Leo Dostal
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Formulierung des Optimierungsproblems und Klassifikation
  2. Skalare Optimierung
  3. Sensitivitätsanalyse
  4. Parameteroptimierung ohne Nebenbedingungen
  5. Parameteroptimierung mit Nebenbedingungen
  6. Stochastische Optimierungsverfahren
  7. Mehrkriterienoptimierung
  8. Topologieoptimierung
Literatur

Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994.

Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006.


Modul M0604: High-Order FEM

Lehrveranstaltungen
Titel Typ SWS LP
High-Order FEM (L0280) Vorlesung 3 4
High-Order FEM (L0281) Hörsaalübung 1 2
Modulverantwortlicher Prof. Alexander Düster
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Knowledge of partial differential equations is recommended.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to
+ give an overview of the different (h, p, hp) finite element procedures.
+ explain high-order finite element procedures.
+ specify problems of finite element procedures, to identify them in a given situation and to explain their mathematical and mechanical background.

Fertigkeiten

Students are able to
+ apply high-order finite elements to problems of structural mechanics.
+ select for a given problem of structural mechanics a suitable finite element procedure.
+ critically judge results of high-order finite elements.
+ transfer their knowledge of high-order finite elements to new problems.

Personale Kompetenzen
Sozialkompetenz

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.

Selbstständigkeit

Students are able to
+ assess their knowledge by means of exercises and E-Learning.
+ acquaint themselves with the necessary knowledge to solve research oriented tasks.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Referat Forschendes Lernen
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0280: High-Order FEM
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Alexander Düster
Sprachen EN
Zeitraum SoSe
Inhalt

1. Introduction
2. Motivation
3. Hierarchic shape functions
4. Mapping functions
5. Computation of element matrices, assembly, constraint enforcement and solution
6. Convergence characteristics
7. Mechanical models and finite elements for thin-walled structures
8. Computation of thin-walled structures
9. Error estimation and hp-adaptivity
10. High-order fictitious domain methods


Literatur

[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014
[2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis – Formulation, Verification and Validation, John Wiley & Sons, 2011


Lehrveranstaltung L0281: High-Order FEM
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Alexander Düster
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics )

Lehrveranstaltungen
Titel Typ SWS LP
Technische Akustik I (Akustische Wellen, Lärmschutz, Psychoakustik) (L0516) Vorlesung 2 3
Technische Akustik I (Akustische Wellen, Lärmschutz, Psychoakustik) (L0518) Hörsaalübung 2 3
Modulverantwortlicher Prof. Otto von Estorff
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)

Mathematics I, II, III (in particular differential equations)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis.

Fertigkeiten

The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module.

Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions.

Selbstständigkeit

The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics )
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum SoSe
Inhalt

- Introduction and Motivation
- Acoustic quantities
- Acoustic waves
- Sound sources, sound radiation
- Sound engergy and intensity
- Sound propagation
- Signal processing
- Psycho acoustics
- Noise
- Measurements in acoustics

Literatur

Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin
Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg
Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg

Lehrveranstaltung L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics )
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0807: Boundary Element Methods

Lehrveranstaltungen
Titel Typ SWS LP
Boundary-Elemente-Methoden (L0523) Vorlesung 2 3
Boundary-Elemente-Methoden (L0524) Hörsaalübung 2 3
Modulverantwortlicher Prof. Otto von Estorff
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method.



Fertigkeiten

The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions.

Selbstständigkeit

The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 20 % Midterm
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0523: Boundary Element Methods
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum SoSe
Inhalt

- Boundary value problems
- Integral equations
- Fundamental Solutions
- Element formulations
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Special BEM formulations
- Coupling of FEM and BEM

- Hands-on Sessions (programming of BE routines)
- Applications

Literatur

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Lehrveranstaltung L0524: Boundary Element Methods
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1164: Fachlabor Produktentwicklung, Werkstoffe und Produktion

Lehrveranstaltungen
Titel Typ SWS LP
Fachlabor Produktentwicklung, Werkstoffe und Produktion (L1566) Laborpraktikum 6 6
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Produktentwicklung:

  • Vorlesung Mechanik I - III
  • Vorlesung Integrierte Produktentwicklung I inkl. CAD-Praktikum

Werkstoffe:

  • Vorlesungen Metallische Konstruktionswerkstoffe, Metallische Werkstoffe für Luftfahrtanwendungen, Grundlagen der Werkstoffprüfung
  • Grundlagen in metallischen, keramischen und polymeren Werkstoffen
  • Vorlesungen Aufbau und Eigenschaften der Kunsststoffe, Aufbau und Eigenschaften der Verbundwerkstoffe, Verarbeitung von Kunststoffen und Verbundwerkstoffen

Produktion:

  • Vorlesung Fertigungstechnik
  • Vorlesungen Umform- und Zerspantechnologie, Methoden der Fertigungsprozessgestaltung
  • Vorlesungen Werkzeugmaschinen und Robotik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können …

  • komplexere Zusammenhänge unterschiedlicher Fachrichtungen darstellen und erklären.
  • Funktionsweisen moderner Mess- und Maschinentechnik beschreiben.


Fertigkeiten

Studierende sind in der Lage …

  • erworbenes theoretisches Wissen praktisch anzuwenden.
  • vorgegebene Versuchsmethoden anzuwenden um Zusammenhänge unterschiedlicher Fachrichtungen zu untersuchen.
  • mittels vorgegebener Methoden Versuchsergebnisse zu analysieren und zu bewerten.
  • moderne Messtechnik anzuwenden.


Personale Kompetenzen
Sozialkompetenz

Studierende können …

  • in Gruppen Versuche durchführen und diese dokumentieren.
  • in fachlich gemischten Teams Versuchsergebnisse präsentieren und diskutieren.


Selbstständigkeit

Studierende sind fähig …

  • unter Anleitung von Lehrenden eigenständig Teilversuche durchzuführen.
  • eigenständig geeignete Mittel zu wählen und einzusetzen.
  • eigene Stärken und Schwächen einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Lehrveranstaltung L1566: Fachlabor Produktentwicklung, Werkstoffe und Produktion
Typ Laborpraktikum
SWS 6
LP 6
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Dozenten Prof. Wolfgang Hintze, Prof. Josef Schlattmann, Prof. Dieter Krause, Prof. Claus Emmelmann, Prof. Uwe Weltin, Prof. Bodo Fiedler, Prof. Hermann Lödding, Prof. Michael Morlock, Prof. Gerold Schneider, Prof. Thorsten Schüppstuhl, Prof. Otto von Estorff, Prof. Jörg Weißmüller
Sprachen DE
Zeitraum SoSe
Inhalt

Konstruktion:

  • Modalanalyse - Experiment und FEM-Simulation
  • Bauteilauslegung in der Konstruktion
  • Charakterisierung von gummielastischen Materialien (Hyperelastizität, Mullins-Effekt)
  • Stick-Slip-Untersuchungen an einem Reibungs- und Verschleißprüfstand

Werkstoffe:

  • Eigenschaftsprofile von Stählen
  • Aktoren für moderne Einspritzsysteme - Synthese und Eigenschaften eines Blei-freien Modellaktors
  • Verarbeitung, Eigenschaften und Struktur von Kunststoffen und deren Verbundwerkstoffen
  • Tribologie im Gelenk

Fertigung:

  • Schweißprozessparameteroptimierung beim Laser-Hybridschweißen auf Basis metallografischer Untersuchungen
  • Beurteilung von Zerspanprozessen
  • Untersuchung produktionslogistischer Grundgesetze
  • Untersuchung des Positionierverhaltens und der Bahntreue von Industrierobotern
Literatur

Nach Themenstellung / depending on topic

Modul M0752: Nichtlineare Dynamik

Lehrveranstaltungen
Titel Typ SWS LP
Nichtlineare Dynamik (L0702) Integrierte Vorlesung 4 6
Modulverantwortlicher Prof. Norbert Hoffmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Analysis
  • Lineare Algebra
  • Technische Mechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende sind in der Lage bestehende Begriffe und Konzepte der Nichtlinearen Dynamik wiederzugeben und neue Begriffe und Konzepte zu entwickeln.
Fertigkeiten Studierende sind in der Lage bestehende Verfahren und Methoden der Nichtlinearen Dynamik anzuwenden und neue Verfahren und Methoden zu entwickeln.
Personale Kompetenzen
Sozialkompetenz Studierende können Arbeitsergebnisse auch in Gruppen erzielen.
Selbstständigkeit Studierende können eigenständig vorgegebene Forschungsaufgaben angehen und selbständig neue Forschungsaufgaben identifizieren und bearbeiten.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0702: Nichtlineare Dynamik
Typ Integrierte Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Norbert Hoffmann
Sprachen DE/EN
Zeitraum SoSe
Inhalt Grundlagen der Nichtlinearen Dynamik.
Literatur S. Strogatz: Nonlinear Dynamics and Chaos. Perseus, 2013.

Modul M1339: Entwurfsoptimierung und probabilistische Verfahren in der Strukturmechanik

Lehrveranstaltungen
Titel Typ SWS LP
Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik (L1873) Vorlesung 2 3
Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik (L1874) Hörsaalübung 2 3
Modulverantwortlicher Prof. Benedikt Kriegesmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Technische Mechanik
  • Höhere Mathematik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Entwurfsoptimierung
    • Gradientenbasierte Verfahren
    • Genetische Algorithmen
    • Optimierung unter Nebenbedingungen
    • Topologieoptimierung
  • Zuverlässigkeitsanalyse
    • Grundlagen der Stochastik
    • Monte-Carlo-Methoden
    • Semi-analytische Verfahren
  • Robustheitsoptimierung Entwurfsoptimierung
    • Robustheitsmaße
    • Verknüpfung von Entwurfsoptimierung Zuverlässigkeitsanalyse
Fertigkeiten
  • Anwendung von Optimierungsalgorithmen und probabilistischen Methoden im Strukturentwurf
  • Programmieren mit Matlab
  • Implementieren von Algorithmen
  • Fehlersuche
Personale Kompetenzen
Sozialkompetenz
  • Arbeiten im Team (Hausarbeit)
  • Mündliche Verteidigung der eigenen Arbeit
Selbstständigkeit
  • Anwenden der erlernten Methoden im Rahmen einer Hausarbeit
  • Einarbeitung in vorgegebenen Quellcode
  • Darstellen der Lösungswege und Ergebnisse
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10 Seiten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1873: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt

Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren.  Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln.

Folgende Inhalte werden im Kurs behandelt:

  • Entwurfsoptimierung
    • Gradientenbasierte Verfahren
    • Genetische Algorithmen
    • Optimierung unter Nebenbedingungen
    • Topologieoptimierung
  • Zuverlässigkeitsanalyse
    • Grundlagen der Stochastik
    • Monte-Carlo-Methoden
    • Semi-analytische Verfahren
  • Robustheitsoptimierung Entwurfsoptimierung
    • Robustheitsmaße
    • Verknüpfung von Entwurfsoptimierung Zuverlässigkeitsanalyse
Literatur

[1] Arora, Jasbir. Introduction to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011.
[2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000.

Lehrveranstaltung L1874: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt Matlab-Übungen zur Vorlesung
Literatur siehe Vorlesung

Modul M0806: Technical Acoustics II (Room Acoustics, Computational Methods)

Lehrveranstaltungen
Titel Typ SWS LP
Technische Akustik II (Raumakustik, Berechnungsverfahren) (L0519) Vorlesung 2 3
Technische Akustik II (Raumakustik, Berechnungsverfahren) (L0521) Hörsaalübung 2 3
Modulverantwortlicher Prof. Otto von Estorff
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics)

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)

Mathematics I, II, III (in particular differential equations)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis.

Fertigkeiten

The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module.

Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions.

Selbstständigkeit

The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20-30 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L0519: Technical Acoustics II (Room Acoustics, Computational Methods)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum WiSe
Inhalt

- Room acoustics
- Sound absorber

- Standard computations
- Statistical Energy Approaches
- Finite Element Methods
- Boundary Element Methods
- Geometrical acoustics
- Special formulations

- Practical applications
- Hands-on Sessions: Programming of elements (Matlab)

Literatur

Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin
Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg
Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Lehrveranstaltung L0521: Technical Acoustics II (Room Acoustics, Computational Methods)
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Otto von Estorff
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1140: Technischer Ergänzungskurs Kernfächer für PEPMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

siehe gewähltes Modul laut FSPO


Fertigkeiten

siehe gewähltes Modul laut FSPO


Personale Kompetenzen
Sozialkompetenz

siehe gewähltes Modul laut FSPO


Selbstständigkeit

siehe gewähltes Modul laut FSPO


Arbeitsaufwand in Stunden Eigenstudium 180, Präsenzstudium 0
Leistungspunkte 6
Studienleistung Keine
Prüfung laut FSPO
Prüfungsdauer und -umfang Siehe gewähltes Modul laut FSPO
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht

Modul M1184: Studienarbeit Produktentwicklung, Werkstoffe und Produktion

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des Studiengangs
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
 Lehrinhalte des Studiengangs und insbesondere der gewählten Vertiefung. 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können das bearbeitete Projekt und darin selbstständig erarbeitete Wissen erläutern und zu aktuellen Themenstellungen in Bezug setzen.
  • Sie können die grundlegenden wissenschaftlichen Methoden, mit denen sie gearbeitet haben, detailliert erläutern
Fertigkeiten
Studierende können unter Anleitung eines Wissenschaftlers selbstständig eine begrenzte wissenschaftliche Aufgabe bearbeiten. Sie können dazu ihre Vorgehensweise zur Lösung einer Aufgabe begründen, aus den gewonnen Ergebnissen Schlussfolgerungen ziehen und wenn nötig neue Arbeitsmethoden finden. Studierende sind in der Lage, alternative Lösungskonzepte mit dem gewählten Ansatz bzgl. vorgegebener Kriterien zu vergleichen und zu beurteilen. 
Personale Kompetenzen
Sozialkompetenz
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und anderen Studierenden sowie den Betreuern Rückmeldung zu ihren Projekten geben.
Selbstständigkeit
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen.
Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang laut FSPO
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht

Fachmodule der Vertiefung Produktentwicklung

In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.

Modul M0763: Flugzeugsysteme I

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme I (L0735) Vorlesung 3 4
Flugzeugsysteme I (L0739) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die wichtigsten Komponenten und Auslegungspunkte von hydraulischen und elektrischen Systemen und Hochauftriebssystemen beschreiben
  • einen Überblick über Wirkprinzipien von Klimaanlagen geben
  • die Notwendigkeit von Hochauftriebssystemen sowie deren Funktionsweise und Wirkung erklären
  • die Schwierigkeiten bei der Auslegung von Versorgungssystemen von Flugzeugen richtig einschätzen
Fertigkeiten

Studierende können:

  • Hydraulische und elektrische Versorgungssysteme an Bord von Flugzeugen auslegen
  • Hochauftriebssysteme von Flugzeugen auslegen
  • Thermodynamische Analyse von Klimaanlagen durchführen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • Systemauslegungen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit

Studierende können:

  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0735: Flugzeugsysteme I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Hydraulische Energiesysteme (Flüssigkeiten; Druckverluste in Ventilen und Rohrleitungen; Komponenten hydraulischer Systeme wie Pumpen, Ventile, etc.; Druck/Durchflusscharakteristika; Aktuatoren; Behälter; Leistungs- und Wärmebilanzen; Notenergie)
  • Elektrisches Energiesystem (Generatoren; Konstantdrehzahlgetriebe; DC und AC Konverter; elektrische Energieverteilung; Bus-Systeme; Überwachung; Lastanalyse)
  • Hochauftriebssysteme (Prinzipien; Ermittlung von Lasten und Systemantriebsleistungen; Prinzipien und Auslegung von Antriebs- und Stellsystemen; Sicherheitsforderungen und -einrichtungen)
  • Klimaanlagen (Thermodynamische Analyse; Expansions- und Kompressions-Kältemaschinen; Kontrollmechanismen; Kabinendruck-Kontrollsysteme)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Green: Aircraft Hydraulic Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • SAE1991: ARP; Air Conditioning Systems for Subsonic Airplanes


Lehrveranstaltung L0739: Flugzeugsysteme I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1024: Methoden der integrierten Produktentwicklung

Lehrveranstaltungen
Titel Typ SWS LP
Integrierte Produktentwicklung II (L1254) Vorlesung 3 3
Integrierte Produktentwicklung II (L1255) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Fachbegriffe der Konstruktionsmethodik zu erklären,
  • wesentliche Elemente des Konstruktionsmanagements zu beschreiben,
  • aktuelle Problemstellungen und den gegenwärtigen Forschungsstand der integrierten Produktentwicklung zu beschreiben.


Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • für die nicht standardisierte Lösung eines Problems eine geeignete Konstruktionsmethode auszuwählen und anzuwenden sowie an neue Randbedingungen anzupassen,
  • Problemstellungen der Produktentwicklung mit Hilfe einer workshopbasierten Vorgehensweise zu lösen,
  • Moderationstechniken situationsspezifisch auszuwählen und durchzuführen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Teamsitzungen und Moderationsprozesse vorzubereiten und anzuleiten,
  • in Gruppenarbeitsprozessen komplexe Aufgaben gemeinsam zu bearbeiten,
  • Probleme und Lösungen vor Fachpersonen vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • strukturiertes Feedback zu geben und kritisches Feedback anzunehmen,
  • angenommenes Feedback eigenständig umzusetzen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1254: Integrierte Produktentwicklung II
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt

Vorlesung

Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf.

Themen der Vorlesung sind insbesondere:

  • Methoden der Produktentwicklung,
  • Moderationstechniken,
  • Industrial Design,
  • variantengerechte Produktgestaltung,
  • Modularisierungsmethoden,
  • Konstruktionskataloge,
  • angepasste QFD-Matrix,
  • systematische Werkstoffauswahl,
  • montagegerechtes Konstruieren,

Konstruktionsmanagement

  • CE-Kennzeichnung, Konformitätserklärung inkl. Gefährdungsbeurteilung,
  • Patentwesen, Patentrechte, Patentüberwachung
  • Projektmanagement (Kosten, Zeit, Qualität) und Eskalationsprinzipien,
  • Entwicklungsmanagement Mechatronik,
  • Technisches Supply Chain Management.

Übung (PBL)

In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft.

Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktions­managements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben.



Literatur
  • Andreasen, M.M., Design for Assembly, Berlin, Springer 1985.
  • Ashby, M. F.: Materials Selection in Mechanical Design, München, Spektrum 2007.
  • Beckmann, H.: Supply Chain Management, Berlin, Springer 2004.
  • Hartmann, M., Rieger, M., Funk, R., Rath, U.: Zielgerichtet moderieren. Ein Handbuch für Führungskräfte, Berater und Trainer, Weinheim, Beltz 2007.
  • Pahl, G., Beitz, W.: Konstruktionslehre, Berlin, Springer 2006.
  • Roth, K.H.: Konstruieren mit Konstruktionskatalogen, Band 1-3, Berlin, Springer 2000.
  • Simpson, T.W., Siddique, Z., Jiao, R.J.: Product Platform and Product Family Design. Methods and Applications, New York, Springer 2013.
Lehrveranstaltung L1255: Integrierte Produktentwicklung II
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1025: Fluidtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Fluidtechnik (L1256) Vorlesung 2 3
Fluidtechnik (L1371) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 1 2
Fluidtechnik (L1257) Hörsaalübung 1 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • Aufbau und Funktionsweise von Komponenten der Hydrostatik, Pneumatik und Hydrodynamik zu erklären,
  • das Zusammenwirken hydraulischer Komponenten in Systemen zu erläutern,
  • die Steuerung und Regelung hydraulischer Systeme detailliert zu erklären,
  • Funktion und Einsatzbereiche von hydrodynamischen Wandlern, Bremsen und Kupplungen sowie von Kreiselpumpen und Aggregaten in der Anlagentechnik zu beschreiben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • hydraulische und pneumatische Komponenten und  Systeme zu analysieren und zu beurteilen,
  • hydraulische Systeme für mechanische Anwendungen zu konzipieren und zu dimensionieren,
  • Numerische Simulationen hydraulischer Systeme anhand abstrakter Problemstellungen durchzuführen,
  • Pumpenkennlinien für hydraulische Anlagen auszuwählen und anzupassen,
  • Wandler und Bremsen für mechanische Aggregate auszulegen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • in der Vorlesung Funktionszusammenhänge in Gruppen zu diskutieren und vorzustellen,
  • Arbeiten in Teams selbstständig zu organisieren.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • für die Simulation erforderliches Wissen selbständig zu erschließen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1256: Fluidtechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Vorlesung

Hydrostatik

  • Physikalische Grundlagen
  • Druckflüssigkeiten
  • Hydrostatische Maschinen
  • Ventile
  • Komponenten
  • Hydrostatische Getriebe
  • Anwendungsbeispiele aus der Industrie

Pneumatik

  • Drucklufterzeugung
  • Pneumatische Motoren
  • Anwendungsbeispiele

Hydrodynamik

  • Physikalische Grundlagen
  • Hydraulische Strömungsmaschinen
  • Hydrodynamische Getriebe
  • Zusammenarbeit von Motor und Getriebe

Hörsaalübung

Hydrostatik

  • Lesen und Entwerfen von hydraulischen Schaltplänen
  • Auslegung von hydrostatischen Fahr- und Arbeitsantrieben
  • Leistungsberechnung

Hydrodynamik

  • Berechnung/Auslegung von hydrodynamischen Wandlern
  • Berechnung/Auslegung von Kreiselpumpen
  • Erstellen und Lesen von Pumpen- und Anlagenkennlinien

Exkursion

  • Es findet eine Exkursion zu einem regionalen Unternehmen der Hydraulikbranche statt.

Übung

Numerische Simulation hydrostatischer Systeme

  • Kennenlernen einer numerischen Simulationsumgebung für hydraulische Systeme
  • Umsetzen einer Aufgabenstellung in ein Simulationsmodell
  • Simulation gängiger Komponenten
  • Variation von Simulationsparametern
  • Nutzung von Simulation zur Systemauslegung und -optimierung
  • Z.T. selbstorganisiertes Arbeiten in Teams



Literatur

Bücher

  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 1: Hydraulik, Shaker Verlag, Aachen, 2011
  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 2: Pneumatik, Shaker Verlag, Aachen, 2006
  • Matthies, H.J. Renius, K.Th.: Einführung in die Ölhydraulik, Teubner Verlag, 2006
  • Beitz, W., Grote, K.-H.: Dubbel - Taschenbuch für den Maschinenbau, Springer-Verlag, Berlin, aktuelle Auflage
Skript zur Vorlesung
Lehrveranstaltung L1371: Fluidtechnik
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1257: Fluidtechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1193: Entwurf von Kabinensystemen

Lehrveranstaltungen
Titel Typ SWS LP
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1557) Vorlesung 2 2
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1558) Gruppenübung 1 1
Model-Based Systems Engineering (MBSE) mit SysML/UML (L1551) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Systems Engineering

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• den Aufbau und die Funktionsweise von Rechnerarchitekturen beschreiben
• den Aufbau und die Funktionsweise von digitalen Kommunikationsnetzwerken erläutern
• Architekturen von Kabinenelektronik, integrierter modularer Avionik (IMA) und Aircraft Data Communication Networks (ADCN) erklären
• das Vorgehen des Model-Based Systems Engineering (MBSE) beim Entwurf von hardware- und softwarebasierten Kabinensystemen verstehen

Fertigkeiten

Studierende können:
• einen Minicomputer verstehen, in Betrieb nehmen und betreiben
• eine Netzwerkkommunikation aufbauen und mit einem anderen Netzwerkteilnehmer kommunizieren
• einen Minicomputer mit einem Kabinenmanagementsystem (A380 CIDS) verbinden und über ein AFDX®-Netzwerk kommunizieren
• Systemfunktionen mittels der formalen Sprachen SysML/UML modellieren und aus den Modellen Softwarecode generieren
• Softwarecode auf einem Minicomputer ausführen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• Teilergebnisse praktisch und selbst erarbeiten und mit anderen zu einer Gesamtlösung zusammenführen    

Selbstständigkeit

Studierende können:
• ihre praktischen Aufgaben organisieren und planen

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert.

Die Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziele der problemorientierten Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®):
• Was ist ein Modell?
• Was ist Systems Engineering?
• Überblick zu MBSE Methodiken
• Die Modellierungssprachen SysML/UML
• Werkzeuge für das MBSE
• Vorgehensweisen beim MBSE 
• Anforderungsspezifikation, funktionale Architektur, Lösungsspezifikation
• Vom Modell zum Softwarecode
• Validierung und Verifikation: XiL-Methoden
• Begleitendes MBSE-Projekt

Literatur

- Skript zur Vorlesung
- Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008
- Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011


Modul M0511: Stromerzeugung aus Wind- und Wasserkraft

Lehrveranstaltungen
Titel Typ SWS LP
Regenerative Energieprojekte in neuen Märkten (L0014) Projektseminar 1 1
Wasserkraftnutzung (L0013) Vorlesung 1 1
Windenergieanlagen (L0011) Vorlesung 2 3
Windenergienutzung - Schwerpunkt Offshore (L0012) Vorlesung 1 1
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Modul: Thermodynamik I,

Modul: Thermodynamik II,

Modul: Grundlagen der Strömungsmechanik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären.

Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen.

Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren.

Selbstständigkeit

Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten
Typ Projektseminar
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Andreas Wiese
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
    • Entwicklung der erneuerbaren Energien weltweit
      • Historie
      • Zukünftige Märkte
    • Besondere Herausforderungen in neuen Märkten - Übersicht
  2. Beispielprojekt Windpark Korea
    • Übersicht
    • Technische Beschreibung
    • Projektphasen und Besonderheiten
  3. Förder- und Finanzierungsinstrumente für EE Projekten in neuen Märkten
    • Übersicht Fördermöglichkeiten
    • Übersicht Länder mit Einspeisegesetzen
    • Wichtige Finanzierungsprogramme
  4. CDM Projekte - Warum, wie, Beispiele
    • Übersicht CDM Prozess
    • Beispiele
    • Übungsaufgabe CDM
  5. Ländliche Elektrifizierung und Hybridsysteme - ein wichtiger Zukunftsmarkt für EE
    • Ländliche Elektrifizierung - Einführung
    • Typen von Elektrizifierungsprojekten
    • Die Rolle der EE
    • Auslegung von Hybridsystemen
    • Projektbeispiel: Hybridsystem Galapagos Inseln
  6. Ausschreibungsverfahren für EE Projekte - Beispiele
    • Südafrika
    • Brasilien
  7. Ausgewählte Projektbeispiele aus der Sicht einer Entwicklungsbank - Wesley Urena Vargas, KfW Entwicklungsbank
    • Geothermie
    • Wind oder CSP

Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt.

Literatur Folien der Vorlesung
Lehrveranstaltung L0013: Wasserkraftnutzung
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Stephan Heimerl
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung; Bedeutung der Wasserkraft im nationalen und globalen Kontext
  • Physikalische Grundlagen: Bernoulli-Gleichung, nutzbare Fallhöhe, hydrologische Grundlagen, Verlustmechanismen, Wirkungsgrade
  • Einteilung der Wasserkraft: Lauf- und Speicherwasserkraft, Nieder- und Hochdruckanlagen
  • Aufbau von Wasserkraftanlagen: Darstellung der einzelnen Komponenten und ihres systemtechnischen Zusammenspiels
    • Bautechnische Komponenten; Darstellung von Dämmen, Wehren, Staumauern, Krafthäusern, Rechenanlagen etc.
    • Energietechnische Komponenten: Darstellung der unterschiedlichen Arten der hydraulischen Strömungsmaschinen, der Generatoren und der Netzanbindung
  • Wasserkraft und Umwelt
  • Beispiele aus der Praxis


Literatur
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Skiba
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung , Bedeutung der Offshore-Windstromerzeugung, Besondere Anforderungen an die Offshore-Technik
  • Physikalische Grundlagen zur Nutzung der Windenergie
  • Aufbau und Funktionsweise von Offshore-Windenergieanlagen, Vorstellung unterschiedlicher Konzepte von Offshore-Windenergieanlagen, Darstellung der einzelnen Systemkomponenten und deren systemtechnisches Zusammenspiel
  • Gründungstechnik, Offshore-Baugrunderkundung, Vorstellung unterschiedlicher Konzepte von Offshore-Gründungsstrukturen, Planung und Fabrikation von Gründungsstrukturen
  • Elektrische Infrastruktur eines Offshore-Windparks, Innerpark-Verkabelung, Offshore-Umspannwerk, Netzanbindung
  • Installation von Offshore-Windparks, Installationstechniken und Hilfsgeräte, Errichtungslogistik
  • Entwicklung und Planung eines Offshore-Windparks
  • Betrieb und Optimierung von Offshore-Windparks
  • Tagesexkursion


Literatur
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Modul M0996: Supply Chain Management

Lehrveranstaltungen
Titel Typ SWS LP
Supply Chain Management (L1218) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Wertschöpfungsnetzwerke (L1190) Vorlesung 2 2
Modulverantwortlicher Prof. Thorsten Blecker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Besuch des Moduls Produktions- und Logistikmanagement
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Entwicklung des Welthandels und der Handelsströme sowie die Entwicklung internationaler Geschäftstätigkeiten zu interpretieren.
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie bspw. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von Beispielen aus der Praxis zu erläutern.
  • Theoretische Ansätze und Methoden in der Logistik und im Supply Chain Management vertiefend aufzuzeigen und in der Praxis einzusetzen.
  • Entscheidungsfelder des SCM zu identifizieren.
  • Gründe für die Bildung von Netzwerken anhand verschiedener Theorien aus der Institutionenökonomik (Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie) und der Ressourcen-basierten Sicht herzuleiten.
  • Ausgewählte Ansätze zur Erklärung und zur Entwicklung von Netzwerken zu erläutern.
  • Phasen der Netzwerkbildung zu erklären und darzustellen.
  • Funktionsmechanismen interorganisationaler und internationaler Netzwerkbeziehungen zu verstehen.
  • Beziehungen innerhalb von Netzwerken zu erläutern und zu kategorisieren.
  • Sourcing-Konzepte zu kategorisieren und Motive/Hemmnisse bzw. Vor und Nachteile zu erläutern.
  • Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe darzustellen.
  • Kriterien/Faktoren/Parameter, welche Produktionsstandortentscheidungen auf globaler Ebene beeinflussen (Gesamtnetzwerkkosten), zu nennen.
  • Methoden zur Standortentscheidung/-bewertung zu erläutern.
  • Produktionsnetzwerkphänotypen zu interpretieren.
  • Zusammenhänge zwischen F&E und Produktion bzw. deren Standorte zu erkennen bzw. damit zusammenhängende Modelle zu beschreiben.
  • Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke) durch die Anwendung adäquater Ansätze zu lösen.
  • Besonderheiten der Entsorgungslogistik inkl. deren Aufgaben & Ziele zu kategorisieren und praktische Beispiele guter Netzwerke zu nennen und zu beschreiben


Fertigkeiten
  • Trends und Herausforderungen in nationalen und internationalen Supply Chains und Logistiknetzwerken sowie ihre Folgen für das Unternehmen einzuschätzen.
  • Netzwerke und Netzwerkbeziehungen auf Basis der in der Vorlesung bearbeiteten Fallbeispiele zu systematisieren, zu bewerten und zu analysieren.
  • Partner und deren Eignung für die Zusammenarbeit in Kooperationen zu bewerten sowie Kooperationsbeziehungen zu analysieren.
  • Sourcing Konzepte für bestimmte Produkte/Produktbauteile auf Basis der in der Vorlesung besprochenen Vor- und Nachteile der einzelnen Konzepte auszuwählen.
  • Standortentscheidungen für Produktion sowie F&E auch in Abhängigkeit voneinander mit Hilfe erlernter Methoden und der Kenntnisse aus der Vorlesung zu bewerten und damit vorzubereiten.
  • Zusammenhänge zwischen F&E und Produktion sowie deren Standorte zu erkennen und die Eignung bestimmter Modelle für verschiedene Situationen zu bewerten.
  • Übertragung der analysierten Konzepte auf internationale Praxisbeispiele.
  • Produktentwicklungsprozesse zu analysieren und daraufhin zu bewerten.
  • Konzepte des Informations- und Kommunikationsmanagements in der Logistik zu analysieren.
  • Zuliefer-, Beschaffungs-, Produktions- und Entsorgungs- sowie F&E-Netzwerke zu gestalten,
  • effiziente und warenflussorientierte Unternehmensnetzwerke zu reorganisieren und zu planen.
  • Methoden des Komplexitätsmanagements und Risikomanagements in der Logistik anzuwenden.


Personale Kompetenzen
Sozialkompetenz
  • Interkulturelle und internationale Zusammenhänge auf Basis der bearbeiteten Fallstudien zu bewerten.
  • Netzwerkbildung auf Basis der Phasen und ihrer Ziele sowie Inhalte, die in der Vorlesung besprochen wurden, voranzutreiben, zu planen und zu gestalten.
  • Festlegung von Beschaffungsstrategien für einzelne Teile unter Nutzung der gewonnen Kenntnisse bezüglich Beschaffungsnetzwerken.
  • Gestaltung des Beschaffungsnetzwerks (Fremd-/Eigenbezug, Modular etc.) auf Basis der Sourcing-Konzepte und Kernkompetenzen, sowie den Erkenntnissen der Fallstudien.
  • Treffen von Standortentscheidungen für Produktionen unter Berücksichtigung globaler Zusammenhänge, Bewertungsmethoden und des Beschaffungs-/Absatzmarktes, welche auch durch Fallstudien besprochen wurden sowie ihrer Abhängigkeit von F&E.
  • Entscheidung für F&E Standorte auf Basis der gewonnen Erkenntnisse aus Fallstudien/Praxisbeispielen und die Auswahl eines geeigneten Modells.


Selbstständigkeit

Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung im Rahmen der Lehrveranstaltung "Supply Chain Management"
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1218: Supply Chain Management
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vermittlung eines tiefgreifenden Verständnisses von Logistik und Supply Chain Management
  • Vermittlung umfassender theoretischer Ansätze und Methoden in der Logistik und im Supply Chain Management; Übertragung der analysierten Konzepte auf internationale Praxisbeispiele
  • Identifikation von Trends und Herausforderungen nationaler und internationaler Supply Chains
  • Ausarbeitung und kritische Diskussion unterschiedlicher Supply Chain Konfigurationen  sowie strategischer Supply Chain Ansätze (z.B. prognosebasiert vs. nachfragebasiert, Effizienz vs. Reaktionsfähigkeit)
  • Ausarbeitung von Ansätzen und Zielen der Ressourcenplanung und des Lieferantenmanagements
  • Identifikation und Analyse von Konzepten des Logistikmanagements
  • Umsetzung der Unternehmensstrategie mit Fokus auf die Bereiche Purchasing, Operations und Sales
  • Vermittlung von Kenntnissen aus dem Demand Management und der Distributionslogistik
  • Integration eines Supply Chain Spiels, basierend auf dem SCOR-Modell; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin.

Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall.

Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall.

Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116.

Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer.

Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff.

Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium.

Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40.

Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill.

Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf.

Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin.


Lehrveranstaltung L1190: Wertschöpfungsnetzwerke
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie z.B. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von internationalen Beispielen aus der Praxis
  • Ausgewählte Ansätze zur Erklärung von Netzwerken einschließlich von Gründen für die Bildung von Netzwerken basierend auf verschiedenen Theorien aus der Institutionenökonomik, Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie- und der Ressourcen-basierten Sicht
  • Die Organisation der zwischenbetrieblichen Beziehungen, Netzwerktypen und Funktionsweise unter Berücksichtigung von Organisationsstrategien, Möglichkeiten der Einteilung sowie Systematisierung von Netzwerkbeziehungen und Funktionsmechanismen in Unternehmensnetzwerken. Zusätzlich werden die Phasen der Netzwerkbildung/Entwicklungszyklus, ihre Ziele sowie Inhalte ausführlich bearbeitet
  • Beschaffungsnetzwerke und Sourcing-Konzepte einschließlich ihrer Kategorisierung, Arten, Motive/Hemmnisse, Vor- und Nachteile, die mit Hilfe von Fallstudien erläutert werden
  • Produktionsnetzwerke: Kriterien, Faktoren/Parameter, welche die Produktionsstandortentscheidungen auch im internationalen Bereich beeinflussen (Gesamtnetzwerkkosten). Zusätzlich wird die Fertigungstiefe erläutert und Ausprägungen intensiv besprochen (Fremd-/Eigenbezug, Modular etc). Es werden internationale Betrachtungen bzgl. Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe getätigt. Ebenso werden Produktionsnetzwerkphänotypen anhand von Beispielen aus der Praxis erarbeitet.
  • F&E Netzwerke: Zusammenhänge zwischen F&E und Produktion, Modelle für F&E Standortbestimmung in Abhängigkeit zur Produktion anhand von internationalen Praxisbeispielen
  • Logistische Distributionsnetzwerke und Ersatzteilnetzwerke: Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke)
  • Entsorgungsnetzwerke: Besonderheiten der Entsorgungslogistik inkl. Aufgaben & Ziele und Vorteile bestimmter Entsorgungskonzepte sowie die Netzwerkbildung für die Entsorgung auf Basis globaler Beispiele/Fallstudien


Literatur
  • Ballou, R. Business Logistics/Supply Chain Management, Upper Saddle River 2004.
  • Bellmann, K. (Hrsg.): Kooperations- und Netzwerkmanagement, Berlin 2001.
  • Bretzke, W.R.: Logistische Netzwerke, Berlin Heidelberg 2008.
  • Blecker, Th. / Gemünden, H. G. (Hrsg.): Wertschöpfungsnetzwerke, Berlin 2006.
  • Kaluza, B. / Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.
  • Sydow, J. / Möllering: Produktion in Netzwerken, Berlin 2009.
  • Willibald A. G. (Hrsg.): Neue Wege in der Automobillogistik, Berlin Heidelberg 2007.


Modul M0630: Robotics and Navigation in Medicine

Lehrveranstaltungen
Titel Typ SWS LP
Robotik und Navigation in der Medizin (L0335) Vorlesung 2 3
Robotik und Navigation in der Medizin (L0338) Projektseminar 2 2
Robotik und Navigation in der Medizin (L0336) Gruppenübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • principles of math (algebra, analysis/calculus)
  • principles of programming, e.g., in Java or C++
  • solid R or Matlab skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and  safety and regulations. Students can assess typical systems regarding design and  limitations.

Fertigkeiten

The students are able to design and evaluate navigation systems and robotic systems for medical applications.


Personale Kompetenzen
Sozialkompetenz

The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work.

Selbstständigkeit

The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Schriftliche Ausarbeitung
Ja 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0335: Robotics and Navigation in Medicine
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt

- kinematics
- calibration
- tracking systems
- navigation and image guidance
- motion compensation
The seminar extends and complements the contents of the lecture with respect to recent research results.


Literatur

Spong et al.: Robot Modeling and Control, 2005
Troccaz: Medical Robotics, 2012
Further literature will be given in the lecture.

Lehrveranstaltung L0338: Robotics and Navigation in Medicine
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0336: Robotics and Navigation in Medicine
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0764: Flugzeugsysteme II

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme II (L0736) Vorlesung 3 4
Flugzeugsysteme II (L0740) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • den generellen Aufbau der primären Flugsteuerung sowie von Aktuator-, Avionik-,  Kraftstoff- und Fahrwerksystemen von Flugzeugen inklusive deren spezifischen Eigenschaften und Anwendungsfelder beschreiben,
  • unterschiedlicher Konfigurationen erläutern,
  • entsprechende Ausgestaltungen erklären.
  • atmosphärische Vereisungsbedingungen und Wirkprinzipien von Enteisungssystemen erläutern.

Fertigkeiten

Studierende können:

  • Aktuatorsysteme der primären Flugsteuerung auslegen
  • einen Reglerentwurfsprozess für Aktuatoren der Flugsteuerung  durchführen
  • Hochauftriebskinematiken entwerfen
  • Berechnung und Analyse von Fahrwerkskomponenten
  • Enteisungssysteme nach SAE Standardverfahren auslegen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • In gemischten Teams gemeinschaftlich Lösungen erarbeiten 
Selbstständigkeit

Studierende können:

  • Selbstständig aus komplexen Fragestellungen Anforderungen an Flugzeugsysteme ableiten und entsprechende, vereinfachte Entwurfsprozesse einleiten und durchführen
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0736: Flugzeugsysteme II
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuatorik (Grundkonzepte von Aktuatoren; elektro-mechanische Aktuatoren; Modellierung, Analyse  und Auslegung von Positionsregelsystemen; hydromotorische Stellsysteme)
  • Flugsteuerungssysteme (Steuerflächen, Scharniermomente; Stabilitäts- und Steuerbarkeitsanforderungen, Stellkräfte; reversible und irreversible Flugsteuerung; Servo-Stellsysteme)
  • Fahrwerksysteme (Konfigurationen und Geometrien; Analyse von Fahrwerkssystemen mit Hinblick auf Stoßdämpferdynamiken, Dynamik des abbremsenden Flugzeuges und Leistungsbedarf; Aufbau und Analyse von Bremssystemen im Hinblick auf Energie und Wärme; ABS)
  • Kraftstoffsysteme (Architekturen; Flugkraftstoffe; Systemkomponenten; Betankungsanlage; Tankinertisierung; Kraftstoffmanagement; Trimmtank)
  • Enteisungssysteme (Atmosphärische Vereisungsbedingungen; physikalische Prinzipien von Enteisungssystemen)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • Curry: Aircraft Landing Gear Design: Principles and Practices


Lehrveranstaltung L0740: Flugzeugsysteme II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0811: Bildgebende Systeme in der Medizin

Lehrveranstaltungen
Titel Typ SWS LP
Bildgebende Systeme in der Medizin (L0819) Vorlesung 4 6
Modulverantwortlicher Dr. Michael Grass
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • den Systemaufbau sowie die Systemkomponenten der wesentlichen klinischen bildgebenden Systeme beschreiben;
  • die Funktionsweise der Systemkomponenten und des Gesamtsystems der bildgebenden Systeme erklären;
  • die physikalischen Prozesse, die eine Bildgebung ermöglichen, erklären sowie die grundlegenden physikalischen Gleichungen anwenden;  
  • die physikalischen Effekte, die für die Erzeugung von Bildkontrasten notwendig sind, benennen und beschreiben; 
  • erklären, wie man räumliche und zeitliche Auflösung beeinflussen kann und wie man die erzeugten Bilder charakterisiert;
  • erklären, welche Bildrekonstruktionsverfahren für die Erzeugung von Bildern verwendet werden;
  • die wesentlichen klinischen Anwendungen der verschiedenen Systeme darstellen und begründen.


Fertigkeiten

Studierende sind in der Lage:

  • die physikalischen Prozesse der Bildgebung zu erklären und die benötigten mathematischen bzw. physikalischen Grundgleichungen den Systemen zuzuordnen.
  • durch Anwendung der mathematischen bzw. physikalischen Grundgleichungen Kenngrößen bildgebender Systeme zu berechnen;
  • den Einfluss von verschiedenen Systemkomponenten auf die räumliche und zeitliche Auflösung bildgebender Systeme zu bestimmen;
  • die Bedeutung verschiedener bildgebender Systeme für einige klinische Applikationen zu erläutern;
  • ein geeignetes bildgebendes System für eine Applikation auszuwählen.
Personale Kompetenzen
Sozialkompetenz

keine

Selbstständigkeit

Studierende können:

  • verstehen, welche physikalischen Effekte in der medizinischen Bildgebung verwendet werden;
  • selbstständig entscheiden, für welche klinische Fragestellung ein Messsystem eingesetzt werden kann.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin
Typ Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber
Sprachen DE
Zeitraum SoSe
Inhalt

Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben.

Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf:

In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt.

0: Einführungsvorlesung
1: medizinische Bildgebung mittels Ultraschalls
2: Projektionsröntgenbildgebung
3: Röntgen-Computertomographie
4: Magentresonanztomographie
5: Bildgebung mittels nuklearer Verfahren

  • Ultraschall: Physikalische Grundlagen, Aufbau und technische Realisierung eines Ultraschallsystems, Bildgebungsverfahren, Flußmessverfahren, medizinische Anwendungen.
  • Röntgen: Physikalische Grundlagen der Röntgenbildgebung, Aufbau von Röntgenröhren, Detektion von Röntgenstrahlung, Techniken der Bildaufnahme, Bildkontrast, Projektionsröntgen, Dosisquantifizierung.
  • Computer Tomographie (CT): Aufbau eines Computer-Tomographen, Datenakquisition, Bildrekonstruktion und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Magnetresonanz Tomographie (MRT): Physikalische Grundlagen, Aufbau eines MR-Tomographen, Grundlagen der MR-Bildgebung, Relaxation und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Nuklearmedizin: Kernphysikalische Grundlagen, Herstellung von Radionukleiden, Nuklearmedinische Meßtechnik, Szintigraphie, Single Photon Emission Computer Tomographie (SPECT), Positronen Emissions Tomographie (PET), medizinische Anwendungen.

Literatur

Primary book:

1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press

Secondary books:

- A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003.

- W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002.

- H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995.

- O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000.

Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln.
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1143: Methodisches Konstruieren

Lehrveranstaltungen
Titel Typ SWS LP
Methodisches Konstruieren (L1523) Vorlesung 3 4
Methodisches Konstruieren (L1524) Gruppenübung 1 2
Modulverantwortlicher Prof. Josef Schlattmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagenkenntnisse des Konstruierens

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können spezifische Produktentwicklungsmethoden
erläutern und kausale Zusammenhänge  zwischen Mensch - Technik -Organisation darstellen.

Fertigkeiten

Die Studierenden können
- wissenschaftlich fundiert arbeiten in der Produktentwicklung unter
gezielter Anwendung von Produktentwicklungsmethoden,
- Kreativ mit den Prozessen des wissenschaftlichen Aufbereitens und
Formalisierens von komplexen Produktentwicklungsaufgaben umgehen,
- diverse Produktentwicklungsmethoden theoriegeleitet anwenden,
- in Funktionen bzw. Funktionsstrukturen denken und arbeiten
- die Theorie des erfinderischen Problemlösens (TRIZ) anwenden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen
aus dem industriellen Bereich in kleinen  Übungsteams lösen sowie
gemeinschaftlich schöpferisch unter Nutzung von Kreativitätstechniken
handeln.

Selbstständigkeit

Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1523: Methodisches Konstruieren
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff
Lehrveranstaltung L1524: Methodisches Konstruieren
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff

Modul M1145: Automation und Simulation

Lehrveranstaltungen
Titel Typ SWS LP
Automation und Simulation (L1525) Vorlesung 3 3
Automation und Simulation (L1527) Hörsaalübung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse BSc Maschinenbau oder ähnlich.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben.

Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben.

Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern.


Fertigkeiten

Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen.

Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten.

Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen.

Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden.


Personale Kompetenzen
Sozialkompetenz Zusammenarbeit in kleinen Teams
Selbstständigkeit

Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen  durchzuführen und die Ergebnisse kritisch zu beurteilen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1525: Automation und Simulation
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt

Aufbau von Automationseinrichtungen

Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten

Datenübertragung über Bussysteme

Speicherprogrammierbare Steuerung

Verfahren zur Beschreibung logischer Abläufe

Prinzip der Modellierung und Simulation von kontinuierlichen  technischen Systemen

Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink)

Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen.



Literatur

U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag

R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag

Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag

Einführung/Tutorial Matlab/Simulink - verschiedene Autoren


Lehrveranstaltung L1527: Automation und Simulation
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1156: Systems Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Systems Engineering (L1547) Vorlesung 3 4
Systems Engineering (L1548) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Flugzeug-Kabinensysteme

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• Vorgehensmodelle, Methoden und Werkzeuge für das Systems Engineering zur Entwicklung komplexer Systeme verstehen
• Innovationsprozesse und die Notwendigkeit des Technologiemanagements beschreiben
• den Flugzeug-Entwicklungsprozess und den Vorgang der Musterzulassung bei Flugzeugen erläutern
• den System-Entwicklungsprozess inklusive der Anforderungen an die Zuverlässigkeit von Systemen erklären
• die Umgebungs- und Einsatzbedingungen von Luftfahrtausrüstung mit den entsprechenden Testanforderungen benennen
• die Methodik des Requirements-Based Engineering (RBE) und des Model-Based Requirements Engineering (MBRE) einschätzen

Fertigkeiten

Studierende können:
• das Vorgehen zur Entwicklung eines komplexen Systems planen
• die Entwicklungsphasen und Entwicklungsaufgaben organisieren
• erforderliche Geschäfts- und Technikprozesse zuordnen
• Werkzeuge und Methoden des Systems Engineering anwenden

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• ihre Aufgaben innerhalb eines Entwicklungsteams verstehen und sich mit ihrer Rolle in den Gesamtprozess einordnen

Selbstständigkeit

Studierende können:
• in einem Entwicklungsteam mit Aufgabenteilung interagieren und kommunizieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1547: Systems Engineering
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und  Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein.

Schwerpunkte der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement, der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und Methoden für das Systems Engineering:
• Innovationsprozesse
• IP-Schutz
• Technologiemanagement
• Systems Engineering
• Flugzeug-Entwicklungsprozess
• Themen der Zulassung
• System-Entwicklungsprozess
• Sicherheitsziele und Fehlertoleranz
• Umgebungs- und Einsatzbedingungen
• Werkzeuge und Methoden für das Systems Engineering
• Requirements-Based Engineering (RBE)
• Model-Based Requirements Engineering (MBRE)

Literatur

- Skript zur Vorlesung
- diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE)
- Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010
- NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007
- Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010
- De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010
- Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008

Lehrveranstaltung L1548: Systems Engineering
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1161: Strömungsmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmaschinen (L1562) Vorlesung 3 4
Strömungsmaschinen (L1563) Hörsaalübung 1 2
Modulverantwortlicher Prof. Franz Joos
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die physikalischen Phänomene der Energiewandlung unterscheiden,

- die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen,

- Strömungsmaschinen berechnen und bewerten.

Fertigkeiten

Die Studierenden können

- die Physik der Strömungsmaschinen verstehen,

- Übungsaufgaben selbstständig lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Die Studierenden können

  • eine komplexe Aufgabenstellung eigenständig bearbeiten,
  • die Ergebnisse kritisch analysieren.,
  • sich mit anderen Studierenden qualifiziert austauschen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1562: Strömungsmaschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt
  • Strömungsmaschinen der Antriebstechnik
  • Hauptgleichungen
  • Einführung in die Theorie der Stufe
  • Theorie der Schaufelprofile
  • Grenzen
  • Dichtelemente
  • Dampfturbinen
  • Gasturbinen


Literatur
  • Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York
  • Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York
  • Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York
  • Menny: Strömungsmaschinen, Teubner., Stuttgart


Lehrveranstaltung L1563: Strömungsmaschinen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1170: Phänomene und Methoden der Materialwissenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Experimentelle Methoden der Materialcharakterisierung (L1580) Vorlesung 2 3
Phasengleichgewichte und Umwandlungen (L1579) Vorlesung 2 3
Modulverantwortlicher Prof. Patrick Huber
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben.

Fertigkeiten

Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit gewünschten Eigenschaften zusammenzustellen.
Die Studierenden können einen Überblick über moderne Werkstoffe geben und optimale Werkstoffkombinationen für vorgegebene Anwendungen zusammenstellen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln.

Selbstständigkeit

Die Studierenden können ...

  • ihre eigenen Stärken und Schwächen ermitteln.
  • benötigtes Wissen aneignen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Patrick Huber
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Strukturelle Chrakterisierungsmethoden mit Photonen, Neutronen und Elektronen (insbesondere Röntgen- und Neutronenbeugung, Elektronenmikroskopie, Tomographietechniken, grenzflächensensitive Methoden)
  • Mechanische und thermodynamische Charakterisierungsmethoden (Indentermessungen
  • Charakterisierung von optischen, elektrischen und magnetischen Eigenschaften (Spektroskopie, elektrische Leitfähigkeit, Magnetometrie)

Literatur

William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011).

William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Jörg Weißmüller
Sprachen DE
Zeitraum SoSe
Inhalt

Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen.

Literatur Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1226: Mechanische Eigenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Mechanisches Verhalten spröder Materialien (L1661) Vorlesung 2 3
Theorie der Versetzungsplastizität (L1662) Vorlesung 2 3
Modulverantwortlicher Dr. Erica Lilleodden
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Werkstoffwissenschaften I/II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären.

Fertigkeiten

Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen

Personale Kompetenzen
Sozialkompetenz

Studierende können:

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.

Selbstständigkeit

Studierende sind fähig:

- eigene Stärken und Schwächen allgemein einzuschätzen

- angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerold Schneider
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Theoretische Festigkeit
eines perfekten Materials, theoretische kritische Schubspannung

Tatsächliche Festigkeit von spröden Materialien
Energiefreisetzungsrate, Spannungsintensitätsfaktor, Bruchkriterium

Streuung der Festigkeit
Fehlerverteilung, Festigkeitsverteilung, Weibullverteilung

Heterogene Materialien I
Innere Spannungen, Mikrorisse, Stoffgesetze (E-Modul parallel, senkrecht)

Heterogene Materialien II
Verstärkungsmechanismen: Rissbrücken, Faser

Heterogene Materialien III
Verstärkungsmechanismen: Prozesszone

Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien

R-Kurve, stabiles/ instabile Risswachstum, Fraktographie

Thermoschock

Unterkritisches Risswachstum
v-K-Kurve, Lebensdauerberechnung

Kriechen

Mechanische Eigenschaften von biologischen Materialien

Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile

Literatur

D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier

D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998

B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993

D. Munz, T. Fett, Ceramics, Springer, 2001

D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Lehrveranstaltung L1662: Theorie der Versetzungsplastizität
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Erica Lilleodden
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen.

Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und -Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen.

Literatur

Vorlesungsskript

Aktuelle Publikationen

Bücher:

Introduction to Dislocations, by D. Hull and D.J. Bacon

Theory of Dislocations, by J.P.  Hirth and J. Lothe

Physical Metallurgy, by Peter Hassen

Modul M0840: Optimal and Robust Control

Lehrveranstaltungen
Titel Typ SWS LP
Optimale und robuste Regelung (L0658) Vorlesung 2 3
Optimale und robuste Regelung (L0659) Gruppenübung 2 3
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Linear algebra, singular value decomposition
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the significance of the matrix Riccati equation for the solution of LQ problems.
  • They can explain the duality between optimal state feedback and optimal state estimation.
  • They can explain how the H2 and H-infinity norms are used to represent stability and performance constraints.
  • They can explain how an LQG design problem can be formulated as special case of an H2 design problem.
  • They  can explain how model uncertainty can be represented in a way that lends itself to robust controller design
  • They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant.
  • They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities.
Fertigkeiten
  • Students are capable of designing and tuning LQG controllers for multivariable plant models.
  • They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it.
  • They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design.
  • They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller.
  • They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them.
  • They can carry out all of the above using standard software tools (Matlab robust control toolbox).
Personale Kompetenzen
Sozialkompetenz Students can work in small groups on specific problems to arrive at joint solutions. 
Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0658: Optimal and Robust Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Optimal regulator problem with finite time horizon, Riccati differential equation
  • Time-varying and steady state solutions, algebraic Riccati equation, Hamiltonian system
  • Kalman’s identity, phase margin of LQR controllers, spectral factorization
  • Optimal state estimation, Kalman filter, LQG control
  • Generalized plant, review of LQG control
  • Signal and system norms, computing H2 and H∞ norms
  • Singular value plots, input and output directions
  • Mixed sensitivity design, H∞ loop shaping, choice of weighting filters
  • Case study: design example flight control
  • Linear matrix inequalities, design specifications as LMI constraints (H2, H∞ and pole region)
  • Controller synthesis by solving LMI problems, multi-objective design
  • Robust control of uncertain systems, small gain theorem, representation of parameter uncertainty
Literatur
  • Werner, H., Lecture Notes: "Optimale und Robuste Regelung"
  • Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994
  • Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996
  • Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988
  • Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998
Lehrveranstaltung L0659: Optimal and Robust Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde

Lehrveranstaltungen
Titel Typ SWS LP
Verarbeitung von Faser-Kunststoff-Verbunde (L1895) Vorlesung 2 3
Vom Molekül zum Composite Bauteil (L1516) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde 

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren.
Fertigkeiten

Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen.  

Personale Kompetenzen
Sozialkompetenz Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. 
Selbstständigkeit Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren

Literatur Åström: Manufacturing of Polymer Composites, Chapman and Hall
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch).

Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität.

In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende  Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“).

Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung  sicher zu stellen .

Literatur

Customer Request ("Handout")

Modul M1343: Fibre-polymer-composites

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde (L1894) Vorlesung 2 3
Konstruieren mit Faser-Kunststoff-Verbunden (L1893) Vorlesung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basics: chemistry / physics / materials science
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can use the knowledge of  fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis.

They can explain the complex relationships structure-property relationship and

the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection).

Fertigkeiten

Students are capable of

  • using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials.
  • approximate sizing using the network theory of the structural elements implement and evaluate.
  • selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance.
Personale Kompetenzen
Sozialkompetenz

Students can

  • arrive at funded work results in heterogenius groups and document them.
  • provide appropriate feedback and handle feedback on their own performance constructively.


Selbstständigkeit

Students are able to

- assess their own strengths and weaknesses.

- assess their own state of learning in specific terms and to define further work steps on this basis.

- assess possible consequences of their professional activity.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt

- Microstructure and properties of the matrix and reinforcing materials and their interaction
- Development of composite materials
- Mechanical and physical properties
- Mechanics of Composite Materials
- Laminate theory
- Test methods
- Non destructive testing
- Failure mechanisms
- Theoretical models for the prediction of properties
- Application

Literatur Hall, Clyne: Introduction to Composite materials, Cambridge University Press
Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press
Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York
Lehrveranstaltung L1893: Design with fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literatur Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M0563: Robotics

Lehrveranstaltungen
Titel Typ SWS LP
Robotik: Modellierung und Regelung (L0168) Vorlesung 3 3
Robotik: Modellierung und Regelung (L1305) Gruppenübung 2 3
Modulverantwortlicher Prof. Uwe Weltin
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Fundamentals of electrical engineering

Broad knowledge of mechanics

Fundamentals of control theory

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics.
Fertigkeiten

Students are able to derive and solve equations of motion for various manipulators.

Students can generate trajectories in various coordinate systems.

Students can design linear and partially nonlinear controllers for robotic manipulators.

Personale Kompetenzen
Sozialkompetenz Students are able to work goal-oriented in small mixed groups.
Selbstständigkeit

Students are able to recognize and improve knowledge deficits independently.

With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
International Production Management: Vertiefung Produktionstechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0168: Robotics: Modelling and Control
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt

Fundamental kinematics of rigid body systems

Newton-Euler equations for manipulators

Trajectory generation

Linear and nonlinear control of robots

Literatur

Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3

Spong, Mark W.; Hutchinson, Seth;  Vidyasagar, M. : Robot Modeling and Control. WILEY. ISBN 0-471-64990-2


Lehrveranstaltung L1305: Robotics: Modelling and Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0771: Flugphysik

Lehrveranstaltungen
Titel Typ SWS LP
Aerodynamik und Flugmechanik I (L0727) Vorlesung 3 3
Flugmechanik II (L0730) Vorlesung 2 2
Flugmechanik II (L0731) Hörsaalübung 1 1
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Themodynamik
  • Luftfahrtechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können:
  • Die Fundamentalgleichungen der Aerodynamik für kompressible, inkompressible und reibungsbehaftete Strömungen beschreiben 
  • Wirkprinzipien von Flügelprofilen und Tragflächen erläutern
  • Die Bewegungsgleichungen des Flugzeugs erklären
  • Die Flugleistung sowie Stabilität des Flugzeugs einschätzen 
  • Die Dynamik der Längs-und Seitenbewegung beschreiben
  • Methoden der Flugsimulation und Flugmesstechnik erläutern
Fertigkeiten Studierende können:
  • Flugmechanische Simulationen durchführen
  • Flugmechanische Zusammenhänge aus virtuellen wie realen Flugversuchsdaten herleiten
Personale Kompetenzen
Sozialkompetenz Studierende können:
  • Simulationen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit Studierende können:
  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten im WS + 90 Minuten im SS
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Frank Thielecke, Dr. Ralf Heinrich, Mike Montel
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aerodynamik (Fundamentalgleichungen; kompressible und inkompressible Strömungen; Flügelprofile und Tragflächen; Reibungsbehaftete Strömungen)
  • Flugmechanik (Bewegungsgleichungen; Flugleistung; Steuerflächen, Beiwerte; Längsstabilität und Steuerung; Trimmzustände; Flugmanöver)


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight


Lehrveranstaltung L0730: Flugmechanik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Dynamik der Längsbewegung
  • stationärer unsymmetrischer Flug
  • Flugmanöver der Seitenbewegung
  • Dynamik der Seitenbewegung
  • Methoden der Flugsimulation
  • Experimentelle Methoden der Flugmechanik
  • Modellvalidierung mit Parameteridentifikation


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight




Lehrveranstaltung L0731: Flugmechanik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0815: Product Planning

Lehrveranstaltungen
Titel Typ SWS LP
Produktplanung (L0851) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Produktplanung Seminar (L0853) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Cornelius Herstatt
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Good basic-knowledge of Business Administration

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students will gain  insights into:

  • Product Planning
    • Process
    • Methods
  • Design thinking
    • Process
    • Methods
    • User integration
Fertigkeiten

Students will gain deep insights into:

  • Product Planning
    • Process-related aspects
    • Organisational-related aspects
    • Human-Ressource related aspects
    • Working-tools, methods and instruments

Personale Kompetenzen
Sozialkompetenz
  • Interact within a team
  • Raise awareness for globabl issues
Selbstständigkeit
  • Gain access to knowledge sources
  • Interpret complex cases
  • Develop presentation skills
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Global Innovation Management: Kernqualifikation: Pflicht
Global Technology and Innovation Management & Entrepreneurship: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0851: Product Planning
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt

Product Planning Process

This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.:
•    Systematic scanning of markets for innovation opportunities
•    Understanding strengths/weakness and specific core competences of a firm as platforms for innovation
•    Exploring relevant sources for innovation (customers, suppliers, Lead Users, etc.)
•    Developing ideas for radical innovation, relying on the creativeness of employees, using techniques to stimulate creativity and creating a stimulating environment
•    Transferring ideas for innovation into feasible concepts which have a high market attractively

Literatur Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010
Lehrveranstaltung L0853: Product Planning Seminar
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly
Literatur see/siehe Vorlesung Produktplanung/Product Planning

Modul M0830: Environmental Protection and Management

Lehrveranstaltungen
Titel Typ SWS LP
Integrierter Umweltschutz (L0502) Vorlesung 2 2
Sicherheits-, Gesundheits- und Umweltmanagement (L0387) Vorlesung 2 3
Sicherheits-, Gesundheits- und Umweltmanagement (L0388) Gruppenübung 1 1
Modulverantwortlicher Prof. Ralf Otterpohl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Good knowledge in Technologies for Environmental Protection (end-of-pipe, integrated solutions)
  • Good knowledge of the relevant Environmental Legislation
  • Basic knowledge of instruments for Environmental Assessment
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors.


Fertigkeiten

Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level.


Personale Kompetenzen
Sozialkompetenz

The students can work together in international groups.


Selbstständigkeit

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht
Environmental Engineering: Kernqualifikation: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht
Lehrveranstaltung L0502: Integrated Pollution Control
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf Otterpohl
Sprachen EN
Zeitraum WiSe
Inhalt

The lecture focusses on:

  • The Regulatory Framework
  • Pollution & Impacts, Characteristics of Pollutants
  • Approaches of Integrated Pollution Control
  • Sevilla Process, Best Available Technologies & BREF Documents
  • Case Studies: paper industry, cement industry, automotive industry
  • Field Trip
Literatur

Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0

Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3






Lehrveranstaltung L0387: Health, Safety and Environmental Management
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literatur

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Lehrveranstaltung L0388: Health, Safety and Environmental Management
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen

Lehrveranstaltungen
Titel Typ SWS LP
Das digitale Unternehmen (L0932) Vorlesung 2 2
Produktionsplanung und -steuerung (L0929) Vorlesung 2 2
Produktionsplanung und -steuerung (L0930) Gruppenübung 1 1
Übung: Das digitale Unternehmen (L0933) Gruppenübung 1 1
Modulverantwortlicher Prof. Hermann Lödding
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen des Produktions- und Qualitätsmanagements
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen.
Fertigkeiten Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden.
Personale Kompetenzen
Sozialkompetenz Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten.
Selbstständigkeit -
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 Minuten
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0932: Das digitale Unternehmen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. 

Inhalte:

  • Geschäftsprozess- und Datenmodellierung, Simulation
  • Wissens-/Kompetenzmanagement
  • Prozess-Management (PPS, Workflow-Management)
  • Rechnerunterstützte Arbeitsplanung - Computer Aided Planning (CAP) und
  • NC-Programmierung
  • Virtual Reality (VR) und Augmented Reality (AR)
  • Computer Aided Quality Management (CAQ) 
  • Industrie 4.0
 


Literatur

Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002

Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006

Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004

Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 

Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006

Lehrveranstaltung L0929: Produktionsplanung und -steuerung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modelle der Logistik – Produktion und Lager
  • Produktionsprogamm- und Mengenplanung
  • Termin- und Kapazitätsplanung
  • Ausgewählte Verfahren der PPS
  • Fertigungssteuerung
  • Produktionscontrolling
  • Logistikmanagement in der Lieferkette
Literatur
  • Vorlesungsskript
  • Lödding, H: Verfahren der Fertigungssteuerung, Springer 2008
  • Nyhuis, P.; Wiendahl, H.-P.: Logistische Kennlinien, Springer 2002
Lehrveranstaltung L0930: Produktionsplanung und -steuerung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Siehe korrespondierende Vorlesung

Literatur

Siehe korrespondierende Vorlesung

See interlocking course

Modul M0962: Nachhaltigkeit und Risikomanagement

Lehrveranstaltungen
Titel Typ SWS LP
Sicherheit, Zuverlässigkeit und Risikobewertung (L1145) Seminar 2 3
Umweltschutz und Nachhaltigkeit (L0319) Vorlesung 2 3
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Produktion und Einsatz von Biokohle
  • Energieproduktion und -versorgung
  • Umweltfreundliches Produktdesign


Fertigkeiten

Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten.

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit

Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Ausarbeitung und Präsentation (45 Minuten in Gruppen)
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Marco Ritzkowski
Sprachen DE
Zeitraum WiSe
Inhalt

Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Beispiele aus der Praxis (Exkursionen)
  • Diskussionen, Präsentationen 
Literatur

- Vorlesungsunterlagen

- Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf‎


Lehrveranstaltung L0319: Environment and Sustainability
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta
Sprachen EN
Zeitraum WiSe
Inhalt This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
Production and Usage of Bio-char
Engergy production with algae
Environmental product design
Clean Development mechanism (CDM)
Democracy and Energy

New Concepts for a sustainable Energy Supply


Recycling of Wind Turbines
Alternative Mobility

Disposal of Nuclear Wastes
Waste2Energy
Offshore Wind energy

Literatur Wird in der Veranstaltung bekannt gegeben.

Modul M1002: Produktions- und Logistikmanagement

Lehrveranstaltungen
Titel Typ SWS LP
Operatives Produktions- und Logistikmanagement (L1198) Vorlesung 2 2
Strategisches Produktions- und Logistikmanagement (L1089) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Modulverantwortlicher Prof. Wolfgang Kersten
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Betriebswirtschaftslehre


Die zum erfolgreichen Absolvieren dieses Moduls erforderlichen Vorkenntnisse werden im Rahmen eines E-Learning-Angebots vermittelt. Einen Zugang sowie weitere Informationen zu dem zugehörigen Online-Lernmodul erhalten die Studierenden bei ihrer Einschreibung.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können
•    zwischen strategischem und operativem Produktions- und Logistikmanagement differenzieren;
•    Gestaltungsfelder des Produktions- und Logistikmanagements beschreiben;
•    den Unterschied zwischen traditionellen und neueren Produktionsplanungs- und
-steuerungskonzepten verstehen;
•    die aktuellen Herausforderungen an das Produktions- und Logistikmanagement, insbesondere in einem internationalen Kontext, wiedergeben und erläutern.



Fertigkeiten

Die Studierenden sind auf Basis des erlernten Wissens in der Lage,
-    Methoden des Produktions- und Logistikmanagements in einem internationalen Kontext anzuwenden,
-    für die Lösung praktischer Probleme geeignete produktionswirtschaftliche Methoden und Werkzeuge auszuwählen,
-    geeignete Vorgehensweisen des Produktions- und Logistikmanagements auch für nicht standardisierte Fragestellungen auszuwählen,
-    Entscheidungsfelder im Produktions- und Logistikmanagement sowie zugehörige Einflussgrößen ganzheitlich zu beurteilen.


Personale Kompetenzen
Sozialkompetenz Die Studierenden sind nach Abschluss des Moduls in der Lage,
-    Diskussionen und Teamsitzungen anzuleiten,
-    in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren,
-    in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten,
-    Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage,

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen,

- sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie
geeignete Mittel zur Umsetzung einzusetzen
- Forschungsaufgaben unter Reflexion möglicher gesellschaftlicher Auswirkungen zu definieren
und durchzuführen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 2.5 % Übungsaufgaben Online-Modul
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung PBL
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Vertiefende Kenntnisse des operativen Produktionsmanagements

  • Traditionelle Produktionsplanung und –steuerungskonzepte

  • Neuere Produktionsplanung und –steuerungskonzepte

  • Verständnis und Anwendung quantitativer Methoden

  • Weitere Konzepte des operativen Produktionsmanagements


Literatur


Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009.

Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010.

Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011.

Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.

Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005.

Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003.

Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994.

Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010.

Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996

Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001


Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum WiSe
Inhalt
  • Identifikation von Aufgabenschwerpunkten und Gestaltungsfeldern des Produktions- und Logistikmanagements
  • Berücksichtigung aktueller Herausforderungen bei der Formulierung der Produktionsstrategie
  • Charakterisierung, Entwicklung und Analyse geeigneter Wettbewerbsstrategien
  • Produktion und Logistik als Wettbewerbsfaktor
  • Identifikation und Gestaltung von Entscheidungsfeldern der Produktionsstrategie (Fertigungstiefenstrategie, Technologiestrategie, Standortstrategie, Kapazitätsstrategie) im Unternehmenskontext
  • Beurteilung der Produktionsstrategie verschiedener Branchen und Unternehmen
  • Vermittlung vertiefender Kenntnisse von Konzepten des Produktions- und Logistikmanagements
  • Vermittlung vertiefender Kenntnisse von Lean Management und verwandten Konzepten; Wesentliche Ziele und Maßnahmen, Einfluss von Lean auf die Produktionsstrategie
  • Vorstellung und Diskussion aktueller Forschungsergebnisse im Produktions- und Logistikmanagement
  • Integration umfangreicher Problem-Based-Learning Einheiten zur Bearbeitung vorlesungsrelevanter Fallbeispiele;  gemeinsame Erarbeitung und Entwicklung von Problemlösungsvorschlägen im Rahmen der interkulturellen Teamarbeit; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg.

Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer.

Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River.

Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann.

Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag.

Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a.

Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a.

Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88

Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York.

Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart:  Lucius & Lucius

Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a.


Modul M1155: Flugzeug-Kabinensysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Kabinensysteme (L1545) Vorlesung 3 4
Flugzeug-Kabinensysteme (L1546) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• die Betriebsabläufe in der Flugzeugkabine, deren Ausrüstung und Systeme beschreiben
• die funktionalen und nicht-funktionalen Anforderungen an Kabinensysteme erläutern
• die Notwendigkeit der Kabinenbetriebs- und Notfallsysteme erklären
• die Herausforderungen der Mensch-Technik-Interaktion in der Kabine einschätzen

Fertigkeiten

Studierende können:
• das Kabinenlayout für ein vorgegebenes Geschäftsmodell einer Fluggesellschaft erstellen
• Kabinensysteme für den sicheren Kabinenbetrieb auslegen
• Notfallsysteme für eine zuverlässige Mensch-Systeminteraktion gestalten
• Lösungen für Komfortanforderungen und Unterhaltungssysteme in der Kabine entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• bestehende Systemlösungen nachvollziehen und eigene Ideen mit Experten diskutieren

Selbstständigkeit

Studierende können:
• Vorlesungsinhalte und Expertenvorträge eigenständig reflektieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden.

Die Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie, Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt:
• Werkstoffe in der Kabine
• Ergonomie und Human Factors
• Kabinen-Innenausstattung und nicht-elektrische Systeme
• Kabinenelektrik und Beleuchtung
• Kabinenelektronik, Kommunikations-, Informations- und Unterhaltungssysteme
• Kabinen- und Passagierprozesse
• RFID-Kennzeichnung von Flugzeugbauteilen
• Energiequellen und Energiewandlung für den Betrieb

Literatur

- Skript zur Vorlesung
- Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999
- Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014
- Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008
- Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003
- Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006
- Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Lehrveranstaltung L1546: Flugzeug-Kabinensysteme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1174: Automatisierungstechnik und -systeme

Lehrveranstaltungen
Titel Typ SWS LP
Handhabungs- und Montagetechnik (L1591) Vorlesung 2 2
Handhabungs- und Montagetechnik (L1738) Gruppenübung 1 1
Produktionsautomatisierung (L1590) Vorlesung 2 2
Produktionsautomatisierung (L1739) Gruppenübung 1 1
Modulverantwortlicher Prof. Thorsten Schüppstuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine Leistungsnachweise erforderlich

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können…

  • typische Komponenten der Automatisierungstechnik benennen und ihr Zusammenspiel erklären  
  • Methoden zur systematischen Analyse von Automatisierungsaufgaben erläutern und anwenden
  • industrieroboterbasierten Automatisierungsysteme erlären
Fertigkeiten

Studierende sind in der Lage …

  • komplexe Automatisierungsaufgaben zu analysieren
  • anwendungsorientierte Lösungskonzepte zu entwickeln.
  • Teilsysteme auszulegen und zu einem Gesamtsystem zusammenzuführen
  • Anlagen hinsichtlich der Grundlagen der Maschinensicherheit zu untersuchen und zu bewerten
  • Einfache Programme für Roboter und speicherprogrammierbare Steuerungen zu schreiben
  • Schaltpläne für einfache Pneumatikanwendungen zu lesen und zu erstellen
Personale Kompetenzen
Sozialkompetenz

Studierende können, …

  • in Gruppen Lösungen für Aufgaben der Prozessautomatisierung und Handhabungstechnik erarbeiten.
  • im Produktionsumfeld mit Fachpersonal auf fachlicher Ebene Lösungen entwickeln und Entscheidungen vertreten.
Selbstständigkeit

Studierende sind fähig, …

  • mit Hilfe von Hinweisen eigenständig Aufgaben der Automatisierung zu analysieren.
  • eigenständig Programme für Roboter oder speicherprogrammierbare Steuerungen zu erstellen.
  • mit Hilfe von Hinweisen eigenständig Lösungen für praktische Aufgaben der Automatisierung zu finden
  • eigenständig Sicherheitskonzepte für Automatisierungsanlagen zu entwickeln.
  • mögliche Konsequenzen ihres beruflichen Handelns und ihre Verantwortung einzuschätzen.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik
-Analyse von Bauteilen und Handhabungsaufgaben
-Zuführ- und Transfersysteme
-Greifer
-Industrieroboter: Aufbau, Steuerung und Programmierung
-Maschinensicherheit
Literatur
Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1590: Produktionsautomatisierung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion
Lehrveranstaltung L1739: Produktionsautomatisierung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion

Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse

Lehrveranstaltungen
Titel Typ SWS LP
Lasersystem- und -prozesstechnik (L1612) Vorlesung 2 3
Methoden der Fertigungsprozessanalyse (L0876) Vorlesung 2 3
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen

Vertiefte Kenntnisse der Lasertechnik:

  • Laserstrahlquellen: CO2-, Nd:YAG-, Faser- und Diodenlaser
  • Lasersystemtechnik: Strahlformung, Strahlführungssysteme, Strahlbewegung und Strahlkontrolle
  • Laserbasierte Fertigungsverfahren: Lasergenerieren, Markieren, Trennen, Fügen, Oberflächenbehandlung
  • Qualitätssicherung und wirtschaftliche Aspekte der Lasermaterialbearbeitung
  • Märkte und Anwendungen der Lasertechnik


Fertigkeiten

Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden

 Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen

Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen

Personale Kompetenzen
Sozialkompetenz
  • Führen von Diskussionen
  • Vertreten von Arbeitsergebnissen
  • Respektvolles Zusammenarbeiten im Team


Selbstständigkeit

Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1612: Laser Systems and Process Technologies
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Claus Emmelmann
Sprachen EN
Zeitraum WiSe
Inhalt
  • Fundamentals of laser technology
  • Laser beam sources: CO2-, Nd:YAG-, Fiber- and Diodelasers
  • Laser system technology: beam forming, beam guidance systems, beam motion and beam control
  • Laser-based manufacturing technologies: generation, marking, cutting, joining, surface treatment
  • Quality assurance and economical aspects of laser material processing
  • Markets and Applications of laser technology
  • Student group exercises
Literatur
  • Hügel, H. , T. Graf: Laser in der Fertigung : Strahlquellen, Systeme, Fertigungsverfahren, 3. Aufl., Vieweg + Teubner Wiesbaden 2014.
  • Eichler, J., Eichler. H. J.: Laser: Bauformen, Strahlführung, Anwendungen, 7. Aufl., Springer-Verlag Berlin Heidelberg 2010.
  • Steen W. M.; Mazumder J.: Laser material processing, 4th Edition,  Springer-Verlag London 2010.
  • J.C. Ion: Laser processing of engineering materials: principles, procedure and industrial applications, Elsevier Butterworth-Heinemann 2005.
  • Gebhardt, A.: Understanding additive manufacturing, München [u.a.] Hanser 2011
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modellbildung und Simulation mechanischer Fertigungsprozesse
  • Numerische Simulation von Kräften, Temperaturen, Verformungen in Fertigungsprozessen
  • Analyse von Schwingungsproblemen in der Zerspanung (Rattern, Modalanalyse,..)
  • Wissensgestützte Prozeßplanung
  • Statistische Versuchsplanung
  • Zerspanbarkeit nichtmetallischer Werkstoffe
  • Analyse von Wechselwirkungen zwischen Prozess und Werkzeugmaschine in bezug auf Prozeßstabilität und Werkstückqualität
  • Simulation von Fertigungsprozessen mittels Virtual Reality Methoden
Literatur

Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004)

Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001)

Modul M1342: Kunststoffe

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Kunststoffe (L0389) Vorlesung 2 3
Verarbeitung und Konstruieren mit Kunststoffen (L1892) Vorlesung 2 3
Modulverantwortlicher Dr. Hans Wittich
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen aus der Chemie / Physik / Werkstoffkunde 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

- die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden.

- die komplexen Zusammenhänge  Struktur-Eigenschaftsbeziehung erklären.

- die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz).

Fertigkeiten

Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um

- mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten.

- für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit.

Personale Kompetenzen
Sozialkompetenz

Studierende können

- in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren.

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.


Selbstständigkeit

Studierende sind fähig,

- eigene Stärken und Schwächen einzuschätzen

- ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hans Wittich
Sprachen DE
Zeitraum WiSe
Inhalt - Struktur und Eigenschaften der Kunststoffe
- Aufbau des Makromoleküls
  Konstitution, Kofiguration, Konformation, Bindungen,
  Polyreaktionen, Molekulargewichtsverteilung
- Morphologie
  Amorph, Kristallisation, Mischungen
- Eigenschaften
  Elastizität, Plastizität, Wechselbelastungen,
- Thermische Eigenschaften,
- Elektrische Eigenschaften
- Theoretische Modelle zur Vorhersage der Eigenschaften
- Anwendungsbeispiele
Literatur Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler, Dr. Hans Wittich
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen

Designing with Polymers: Materials Selection; Structural Design; Dimensioning

Literatur

Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
Crawford: Plastics engineering, Pergamon Press
Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

siehe gewähltes Modul laut FSPO

Fertigkeiten

siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

siehe gewähltes Modul laut FSPO

Selbstständigkeit

siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht

Fachmodule der Vertiefung Produktion

Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedenen Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.

Modul M0763: Flugzeugsysteme I

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme I (L0735) Vorlesung 3 4
Flugzeugsysteme I (L0739) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die wichtigsten Komponenten und Auslegungspunkte von hydraulischen und elektrischen Systemen und Hochauftriebssystemen beschreiben
  • einen Überblick über Wirkprinzipien von Klimaanlagen geben
  • die Notwendigkeit von Hochauftriebssystemen sowie deren Funktionsweise und Wirkung erklären
  • die Schwierigkeiten bei der Auslegung von Versorgungssystemen von Flugzeugen richtig einschätzen
Fertigkeiten

Studierende können:

  • Hydraulische und elektrische Versorgungssysteme an Bord von Flugzeugen auslegen
  • Hochauftriebssysteme von Flugzeugen auslegen
  • Thermodynamische Analyse von Klimaanlagen durchführen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • Systemauslegungen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit

Studierende können:

  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0735: Flugzeugsysteme I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Hydraulische Energiesysteme (Flüssigkeiten; Druckverluste in Ventilen und Rohrleitungen; Komponenten hydraulischer Systeme wie Pumpen, Ventile, etc.; Druck/Durchflusscharakteristika; Aktuatoren; Behälter; Leistungs- und Wärmebilanzen; Notenergie)
  • Elektrisches Energiesystem (Generatoren; Konstantdrehzahlgetriebe; DC und AC Konverter; elektrische Energieverteilung; Bus-Systeme; Überwachung; Lastanalyse)
  • Hochauftriebssysteme (Prinzipien; Ermittlung von Lasten und Systemantriebsleistungen; Prinzipien und Auslegung von Antriebs- und Stellsystemen; Sicherheitsforderungen und -einrichtungen)
  • Klimaanlagen (Thermodynamische Analyse; Expansions- und Kompressions-Kältemaschinen; Kontrollmechanismen; Kabinendruck-Kontrollsysteme)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Green: Aircraft Hydraulic Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • SAE1991: ARP; Air Conditioning Systems for Subsonic Airplanes


Lehrveranstaltung L0739: Flugzeugsysteme I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen

Lehrveranstaltungen
Titel Typ SWS LP
Das digitale Unternehmen (L0932) Vorlesung 2 2
Produktionsplanung und -steuerung (L0929) Vorlesung 2 2
Produktionsplanung und -steuerung (L0930) Gruppenübung 1 1
Übung: Das digitale Unternehmen (L0933) Gruppenübung 1 1
Modulverantwortlicher Prof. Hermann Lödding
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen des Produktions- und Qualitätsmanagements
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen.
Fertigkeiten Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden.
Personale Kompetenzen
Sozialkompetenz Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten.
Selbstständigkeit -
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 Minuten
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0932: Das digitale Unternehmen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. 

Inhalte:

  • Geschäftsprozess- und Datenmodellierung, Simulation
  • Wissens-/Kompetenzmanagement
  • Prozess-Management (PPS, Workflow-Management)
  • Rechnerunterstützte Arbeitsplanung - Computer Aided Planning (CAP) und
  • NC-Programmierung
  • Virtual Reality (VR) und Augmented Reality (AR)
  • Computer Aided Quality Management (CAQ) 
  • Industrie 4.0
 


Literatur

Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002

Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006

Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004

Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 

Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006

Lehrveranstaltung L0929: Produktionsplanung und -steuerung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modelle der Logistik – Produktion und Lager
  • Produktionsprogamm- und Mengenplanung
  • Termin- und Kapazitätsplanung
  • Ausgewählte Verfahren der PPS
  • Fertigungssteuerung
  • Produktionscontrolling
  • Logistikmanagement in der Lieferkette
Literatur
  • Vorlesungsskript
  • Lödding, H: Verfahren der Fertigungssteuerung, Springer 2008
  • Nyhuis, P.; Wiendahl, H.-P.: Logistische Kennlinien, Springer 2002
Lehrveranstaltung L0930: Produktionsplanung und -steuerung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Siehe korrespondierende Vorlesung

Literatur

Siehe korrespondierende Vorlesung

See interlocking course

Modul M1174: Automatisierungstechnik und -systeme

Lehrveranstaltungen
Titel Typ SWS LP
Handhabungs- und Montagetechnik (L1591) Vorlesung 2 2
Handhabungs- und Montagetechnik (L1738) Gruppenübung 1 1
Produktionsautomatisierung (L1590) Vorlesung 2 2
Produktionsautomatisierung (L1739) Gruppenübung 1 1
Modulverantwortlicher Prof. Thorsten Schüppstuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine Leistungsnachweise erforderlich

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können…

  • typische Komponenten der Automatisierungstechnik benennen und ihr Zusammenspiel erklären  
  • Methoden zur systematischen Analyse von Automatisierungsaufgaben erläutern und anwenden
  • industrieroboterbasierten Automatisierungsysteme erlären
Fertigkeiten

Studierende sind in der Lage …

  • komplexe Automatisierungsaufgaben zu analysieren
  • anwendungsorientierte Lösungskonzepte zu entwickeln.
  • Teilsysteme auszulegen und zu einem Gesamtsystem zusammenzuführen
  • Anlagen hinsichtlich der Grundlagen der Maschinensicherheit zu untersuchen und zu bewerten
  • Einfache Programme für Roboter und speicherprogrammierbare Steuerungen zu schreiben
  • Schaltpläne für einfache Pneumatikanwendungen zu lesen und zu erstellen
Personale Kompetenzen
Sozialkompetenz

Studierende können, …

  • in Gruppen Lösungen für Aufgaben der Prozessautomatisierung und Handhabungstechnik erarbeiten.
  • im Produktionsumfeld mit Fachpersonal auf fachlicher Ebene Lösungen entwickeln und Entscheidungen vertreten.
Selbstständigkeit

Studierende sind fähig, …

  • mit Hilfe von Hinweisen eigenständig Aufgaben der Automatisierung zu analysieren.
  • eigenständig Programme für Roboter oder speicherprogrammierbare Steuerungen zu erstellen.
  • mit Hilfe von Hinweisen eigenständig Lösungen für praktische Aufgaben der Automatisierung zu finden
  • eigenständig Sicherheitskonzepte für Automatisierungsanlagen zu entwickeln.
  • mögliche Konsequenzen ihres beruflichen Handelns und ihre Verantwortung einzuschätzen.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik
-Analyse von Bauteilen und Handhabungsaufgaben
-Zuführ- und Transfersysteme
-Greifer
-Industrieroboter: Aufbau, Steuerung und Programmierung
-Maschinensicherheit
Literatur
Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1590: Produktionsautomatisierung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion
Lehrveranstaltung L1739: Produktionsautomatisierung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion

Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse

Lehrveranstaltungen
Titel Typ SWS LP
Lasersystem- und -prozesstechnik (L1612) Vorlesung 2 3
Methoden der Fertigungsprozessanalyse (L0876) Vorlesung 2 3
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen

Vertiefte Kenntnisse der Lasertechnik:

  • Laserstrahlquellen: CO2-, Nd:YAG-, Faser- und Diodenlaser
  • Lasersystemtechnik: Strahlformung, Strahlführungssysteme, Strahlbewegung und Strahlkontrolle
  • Laserbasierte Fertigungsverfahren: Lasergenerieren, Markieren, Trennen, Fügen, Oberflächenbehandlung
  • Qualitätssicherung und wirtschaftliche Aspekte der Lasermaterialbearbeitung
  • Märkte und Anwendungen der Lasertechnik


Fertigkeiten

Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden

 Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen

Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen

Personale Kompetenzen
Sozialkompetenz
  • Führen von Diskussionen
  • Vertreten von Arbeitsergebnissen
  • Respektvolles Zusammenarbeiten im Team


Selbstständigkeit

Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1612: Laser Systems and Process Technologies
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Claus Emmelmann
Sprachen EN
Zeitraum WiSe
Inhalt
  • Fundamentals of laser technology
  • Laser beam sources: CO2-, Nd:YAG-, Fiber- and Diodelasers
  • Laser system technology: beam forming, beam guidance systems, beam motion and beam control
  • Laser-based manufacturing technologies: generation, marking, cutting, joining, surface treatment
  • Quality assurance and economical aspects of laser material processing
  • Markets and Applications of laser technology
  • Student group exercises
Literatur
  • Hügel, H. , T. Graf: Laser in der Fertigung : Strahlquellen, Systeme, Fertigungsverfahren, 3. Aufl., Vieweg + Teubner Wiesbaden 2014.
  • Eichler, J., Eichler. H. J.: Laser: Bauformen, Strahlführung, Anwendungen, 7. Aufl., Springer-Verlag Berlin Heidelberg 2010.
  • Steen W. M.; Mazumder J.: Laser material processing, 4th Edition,  Springer-Verlag London 2010.
  • J.C. Ion: Laser processing of engineering materials: principles, procedure and industrial applications, Elsevier Butterworth-Heinemann 2005.
  • Gebhardt, A.: Understanding additive manufacturing, München [u.a.] Hanser 2011
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modellbildung und Simulation mechanischer Fertigungsprozesse
  • Numerische Simulation von Kräften, Temperaturen, Verformungen in Fertigungsprozessen
  • Analyse von Schwingungsproblemen in der Zerspanung (Rattern, Modalanalyse,..)
  • Wissensgestützte Prozeßplanung
  • Statistische Versuchsplanung
  • Zerspanbarkeit nichtmetallischer Werkstoffe
  • Analyse von Wechselwirkungen zwischen Prozess und Werkzeugmaschine in bezug auf Prozeßstabilität und Werkstückqualität
  • Simulation von Fertigungsprozessen mittels Virtual Reality Methoden
Literatur

Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004)

Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001)

Modul M1193: Entwurf von Kabinensystemen

Lehrveranstaltungen
Titel Typ SWS LP
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1557) Vorlesung 2 2
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1558) Gruppenübung 1 1
Model-Based Systems Engineering (MBSE) mit SysML/UML (L1551) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Systems Engineering

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• den Aufbau und die Funktionsweise von Rechnerarchitekturen beschreiben
• den Aufbau und die Funktionsweise von digitalen Kommunikationsnetzwerken erläutern
• Architekturen von Kabinenelektronik, integrierter modularer Avionik (IMA) und Aircraft Data Communication Networks (ADCN) erklären
• das Vorgehen des Model-Based Systems Engineering (MBSE) beim Entwurf von hardware- und softwarebasierten Kabinensystemen verstehen

Fertigkeiten

Studierende können:
• einen Minicomputer verstehen, in Betrieb nehmen und betreiben
• eine Netzwerkkommunikation aufbauen und mit einem anderen Netzwerkteilnehmer kommunizieren
• einen Minicomputer mit einem Kabinenmanagementsystem (A380 CIDS) verbinden und über ein AFDX®-Netzwerk kommunizieren
• Systemfunktionen mittels der formalen Sprachen SysML/UML modellieren und aus den Modellen Softwarecode generieren
• Softwarecode auf einem Minicomputer ausführen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• Teilergebnisse praktisch und selbst erarbeiten und mit anderen zu einer Gesamtlösung zusammenführen    

Selbstständigkeit

Studierende können:
• ihre praktischen Aufgaben organisieren und planen

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert.

Die Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziele der problemorientierten Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®):
• Was ist ein Modell?
• Was ist Systems Engineering?
• Überblick zu MBSE Methodiken
• Die Modellierungssprachen SysML/UML
• Werkzeuge für das MBSE
• Vorgehensweisen beim MBSE 
• Anforderungsspezifikation, funktionale Architektur, Lösungsspezifikation
• Vom Modell zum Softwarecode
• Validierung und Verifikation: XiL-Methoden
• Begleitendes MBSE-Projekt

Literatur

- Skript zur Vorlesung
- Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008
- Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011


Modul M0511: Stromerzeugung aus Wind- und Wasserkraft

Lehrveranstaltungen
Titel Typ SWS LP
Regenerative Energieprojekte in neuen Märkten (L0014) Projektseminar 1 1
Wasserkraftnutzung (L0013) Vorlesung 1 1
Windenergieanlagen (L0011) Vorlesung 2 3
Windenergienutzung - Schwerpunkt Offshore (L0012) Vorlesung 1 1
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Modul: Thermodynamik I,

Modul: Thermodynamik II,

Modul: Grundlagen der Strömungsmechanik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären.

Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen.

Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren.

Selbstständigkeit

Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten
Typ Projektseminar
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Andreas Wiese
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
    • Entwicklung der erneuerbaren Energien weltweit
      • Historie
      • Zukünftige Märkte
    • Besondere Herausforderungen in neuen Märkten - Übersicht
  2. Beispielprojekt Windpark Korea
    • Übersicht
    • Technische Beschreibung
    • Projektphasen und Besonderheiten
  3. Förder- und Finanzierungsinstrumente für EE Projekten in neuen Märkten
    • Übersicht Fördermöglichkeiten
    • Übersicht Länder mit Einspeisegesetzen
    • Wichtige Finanzierungsprogramme
  4. CDM Projekte - Warum, wie, Beispiele
    • Übersicht CDM Prozess
    • Beispiele
    • Übungsaufgabe CDM
  5. Ländliche Elektrifizierung und Hybridsysteme - ein wichtiger Zukunftsmarkt für EE
    • Ländliche Elektrifizierung - Einführung
    • Typen von Elektrizifierungsprojekten
    • Die Rolle der EE
    • Auslegung von Hybridsystemen
    • Projektbeispiel: Hybridsystem Galapagos Inseln
  6. Ausschreibungsverfahren für EE Projekte - Beispiele
    • Südafrika
    • Brasilien
  7. Ausgewählte Projektbeispiele aus der Sicht einer Entwicklungsbank - Wesley Urena Vargas, KfW Entwicklungsbank
    • Geothermie
    • Wind oder CSP

Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt.

Literatur Folien der Vorlesung
Lehrveranstaltung L0013: Wasserkraftnutzung
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Stephan Heimerl
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung; Bedeutung der Wasserkraft im nationalen und globalen Kontext
  • Physikalische Grundlagen: Bernoulli-Gleichung, nutzbare Fallhöhe, hydrologische Grundlagen, Verlustmechanismen, Wirkungsgrade
  • Einteilung der Wasserkraft: Lauf- und Speicherwasserkraft, Nieder- und Hochdruckanlagen
  • Aufbau von Wasserkraftanlagen: Darstellung der einzelnen Komponenten und ihres systemtechnischen Zusammenspiels
    • Bautechnische Komponenten; Darstellung von Dämmen, Wehren, Staumauern, Krafthäusern, Rechenanlagen etc.
    • Energietechnische Komponenten: Darstellung der unterschiedlichen Arten der hydraulischen Strömungsmaschinen, der Generatoren und der Netzanbindung
  • Wasserkraft und Umwelt
  • Beispiele aus der Praxis


Literatur
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Skiba
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung , Bedeutung der Offshore-Windstromerzeugung, Besondere Anforderungen an die Offshore-Technik
  • Physikalische Grundlagen zur Nutzung der Windenergie
  • Aufbau und Funktionsweise von Offshore-Windenergieanlagen, Vorstellung unterschiedlicher Konzepte von Offshore-Windenergieanlagen, Darstellung der einzelnen Systemkomponenten und deren systemtechnisches Zusammenspiel
  • Gründungstechnik, Offshore-Baugrunderkundung, Vorstellung unterschiedlicher Konzepte von Offshore-Gründungsstrukturen, Planung und Fabrikation von Gründungsstrukturen
  • Elektrische Infrastruktur eines Offshore-Windparks, Innerpark-Verkabelung, Offshore-Umspannwerk, Netzanbindung
  • Installation von Offshore-Windparks, Installationstechniken und Hilfsgeräte, Errichtungslogistik
  • Entwicklung und Planung eines Offshore-Windparks
  • Betrieb und Optimierung von Offshore-Windparks
  • Tagesexkursion


Literatur
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Modul M0996: Supply Chain Management

Lehrveranstaltungen
Titel Typ SWS LP
Supply Chain Management (L1218) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Wertschöpfungsnetzwerke (L1190) Vorlesung 2 2
Modulverantwortlicher Prof. Thorsten Blecker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Besuch des Moduls Produktions- und Logistikmanagement
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Entwicklung des Welthandels und der Handelsströme sowie die Entwicklung internationaler Geschäftstätigkeiten zu interpretieren.
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie bspw. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von Beispielen aus der Praxis zu erläutern.
  • Theoretische Ansätze und Methoden in der Logistik und im Supply Chain Management vertiefend aufzuzeigen und in der Praxis einzusetzen.
  • Entscheidungsfelder des SCM zu identifizieren.
  • Gründe für die Bildung von Netzwerken anhand verschiedener Theorien aus der Institutionenökonomik (Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie) und der Ressourcen-basierten Sicht herzuleiten.
  • Ausgewählte Ansätze zur Erklärung und zur Entwicklung von Netzwerken zu erläutern.
  • Phasen der Netzwerkbildung zu erklären und darzustellen.
  • Funktionsmechanismen interorganisationaler und internationaler Netzwerkbeziehungen zu verstehen.
  • Beziehungen innerhalb von Netzwerken zu erläutern und zu kategorisieren.
  • Sourcing-Konzepte zu kategorisieren und Motive/Hemmnisse bzw. Vor und Nachteile zu erläutern.
  • Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe darzustellen.
  • Kriterien/Faktoren/Parameter, welche Produktionsstandortentscheidungen auf globaler Ebene beeinflussen (Gesamtnetzwerkkosten), zu nennen.
  • Methoden zur Standortentscheidung/-bewertung zu erläutern.
  • Produktionsnetzwerkphänotypen zu interpretieren.
  • Zusammenhänge zwischen F&E und Produktion bzw. deren Standorte zu erkennen bzw. damit zusammenhängende Modelle zu beschreiben.
  • Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke) durch die Anwendung adäquater Ansätze zu lösen.
  • Besonderheiten der Entsorgungslogistik inkl. deren Aufgaben & Ziele zu kategorisieren und praktische Beispiele guter Netzwerke zu nennen und zu beschreiben


Fertigkeiten
  • Trends und Herausforderungen in nationalen und internationalen Supply Chains und Logistiknetzwerken sowie ihre Folgen für das Unternehmen einzuschätzen.
  • Netzwerke und Netzwerkbeziehungen auf Basis der in der Vorlesung bearbeiteten Fallbeispiele zu systematisieren, zu bewerten und zu analysieren.
  • Partner und deren Eignung für die Zusammenarbeit in Kooperationen zu bewerten sowie Kooperationsbeziehungen zu analysieren.
  • Sourcing Konzepte für bestimmte Produkte/Produktbauteile auf Basis der in der Vorlesung besprochenen Vor- und Nachteile der einzelnen Konzepte auszuwählen.
  • Standortentscheidungen für Produktion sowie F&E auch in Abhängigkeit voneinander mit Hilfe erlernter Methoden und der Kenntnisse aus der Vorlesung zu bewerten und damit vorzubereiten.
  • Zusammenhänge zwischen F&E und Produktion sowie deren Standorte zu erkennen und die Eignung bestimmter Modelle für verschiedene Situationen zu bewerten.
  • Übertragung der analysierten Konzepte auf internationale Praxisbeispiele.
  • Produktentwicklungsprozesse zu analysieren und daraufhin zu bewerten.
  • Konzepte des Informations- und Kommunikationsmanagements in der Logistik zu analysieren.
  • Zuliefer-, Beschaffungs-, Produktions- und Entsorgungs- sowie F&E-Netzwerke zu gestalten,
  • effiziente und warenflussorientierte Unternehmensnetzwerke zu reorganisieren und zu planen.
  • Methoden des Komplexitätsmanagements und Risikomanagements in der Logistik anzuwenden.


Personale Kompetenzen
Sozialkompetenz
  • Interkulturelle und internationale Zusammenhänge auf Basis der bearbeiteten Fallstudien zu bewerten.
  • Netzwerkbildung auf Basis der Phasen und ihrer Ziele sowie Inhalte, die in der Vorlesung besprochen wurden, voranzutreiben, zu planen und zu gestalten.
  • Festlegung von Beschaffungsstrategien für einzelne Teile unter Nutzung der gewonnen Kenntnisse bezüglich Beschaffungsnetzwerken.
  • Gestaltung des Beschaffungsnetzwerks (Fremd-/Eigenbezug, Modular etc.) auf Basis der Sourcing-Konzepte und Kernkompetenzen, sowie den Erkenntnissen der Fallstudien.
  • Treffen von Standortentscheidungen für Produktionen unter Berücksichtigung globaler Zusammenhänge, Bewertungsmethoden und des Beschaffungs-/Absatzmarktes, welche auch durch Fallstudien besprochen wurden sowie ihrer Abhängigkeit von F&E.
  • Entscheidung für F&E Standorte auf Basis der gewonnen Erkenntnisse aus Fallstudien/Praxisbeispielen und die Auswahl eines geeigneten Modells.


Selbstständigkeit

Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung im Rahmen der Lehrveranstaltung "Supply Chain Management"
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1218: Supply Chain Management
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vermittlung eines tiefgreifenden Verständnisses von Logistik und Supply Chain Management
  • Vermittlung umfassender theoretischer Ansätze und Methoden in der Logistik und im Supply Chain Management; Übertragung der analysierten Konzepte auf internationale Praxisbeispiele
  • Identifikation von Trends und Herausforderungen nationaler und internationaler Supply Chains
  • Ausarbeitung und kritische Diskussion unterschiedlicher Supply Chain Konfigurationen  sowie strategischer Supply Chain Ansätze (z.B. prognosebasiert vs. nachfragebasiert, Effizienz vs. Reaktionsfähigkeit)
  • Ausarbeitung von Ansätzen und Zielen der Ressourcenplanung und des Lieferantenmanagements
  • Identifikation und Analyse von Konzepten des Logistikmanagements
  • Umsetzung der Unternehmensstrategie mit Fokus auf die Bereiche Purchasing, Operations und Sales
  • Vermittlung von Kenntnissen aus dem Demand Management und der Distributionslogistik
  • Integration eines Supply Chain Spiels, basierend auf dem SCOR-Modell; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin.

Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall.

Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall.

Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116.

Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer.

Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff.

Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium.

Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40.

Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill.

Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf.

Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin.


Lehrveranstaltung L1190: Wertschöpfungsnetzwerke
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie z.B. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von internationalen Beispielen aus der Praxis
  • Ausgewählte Ansätze zur Erklärung von Netzwerken einschließlich von Gründen für die Bildung von Netzwerken basierend auf verschiedenen Theorien aus der Institutionenökonomik, Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie- und der Ressourcen-basierten Sicht
  • Die Organisation der zwischenbetrieblichen Beziehungen, Netzwerktypen und Funktionsweise unter Berücksichtigung von Organisationsstrategien, Möglichkeiten der Einteilung sowie Systematisierung von Netzwerkbeziehungen und Funktionsmechanismen in Unternehmensnetzwerken. Zusätzlich werden die Phasen der Netzwerkbildung/Entwicklungszyklus, ihre Ziele sowie Inhalte ausführlich bearbeitet
  • Beschaffungsnetzwerke und Sourcing-Konzepte einschließlich ihrer Kategorisierung, Arten, Motive/Hemmnisse, Vor- und Nachteile, die mit Hilfe von Fallstudien erläutert werden
  • Produktionsnetzwerke: Kriterien, Faktoren/Parameter, welche die Produktionsstandortentscheidungen auch im internationalen Bereich beeinflussen (Gesamtnetzwerkkosten). Zusätzlich wird die Fertigungstiefe erläutert und Ausprägungen intensiv besprochen (Fremd-/Eigenbezug, Modular etc). Es werden internationale Betrachtungen bzgl. Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe getätigt. Ebenso werden Produktionsnetzwerkphänotypen anhand von Beispielen aus der Praxis erarbeitet.
  • F&E Netzwerke: Zusammenhänge zwischen F&E und Produktion, Modelle für F&E Standortbestimmung in Abhängigkeit zur Produktion anhand von internationalen Praxisbeispielen
  • Logistische Distributionsnetzwerke und Ersatzteilnetzwerke: Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke)
  • Entsorgungsnetzwerke: Besonderheiten der Entsorgungslogistik inkl. Aufgaben & Ziele und Vorteile bestimmter Entsorgungskonzepte sowie die Netzwerkbildung für die Entsorgung auf Basis globaler Beispiele/Fallstudien


Literatur
  • Ballou, R. Business Logistics/Supply Chain Management, Upper Saddle River 2004.
  • Bellmann, K. (Hrsg.): Kooperations- und Netzwerkmanagement, Berlin 2001.
  • Bretzke, W.R.: Logistische Netzwerke, Berlin Heidelberg 2008.
  • Blecker, Th. / Gemünden, H. G. (Hrsg.): Wertschöpfungsnetzwerke, Berlin 2006.
  • Kaluza, B. / Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.
  • Sydow, J. / Möllering: Produktion in Netzwerken, Berlin 2009.
  • Willibald A. G. (Hrsg.): Neue Wege in der Automobillogistik, Berlin Heidelberg 2007.


Modul M0630: Robotics and Navigation in Medicine

Lehrveranstaltungen
Titel Typ SWS LP
Robotik und Navigation in der Medizin (L0335) Vorlesung 2 3
Robotik und Navigation in der Medizin (L0338) Projektseminar 2 2
Robotik und Navigation in der Medizin (L0336) Gruppenübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • principles of math (algebra, analysis/calculus)
  • principles of programming, e.g., in Java or C++
  • solid R or Matlab skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and  safety and regulations. Students can assess typical systems regarding design and  limitations.

Fertigkeiten

The students are able to design and evaluate navigation systems and robotic systems for medical applications.


Personale Kompetenzen
Sozialkompetenz

The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work.

Selbstständigkeit

The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Schriftliche Ausarbeitung
Ja 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0335: Robotics and Navigation in Medicine
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt

- kinematics
- calibration
- tracking systems
- navigation and image guidance
- motion compensation
The seminar extends and complements the contents of the lecture with respect to recent research results.


Literatur

Spong et al.: Robot Modeling and Control, 2005
Troccaz: Medical Robotics, 2012
Further literature will be given in the lecture.

Lehrveranstaltung L0338: Robotics and Navigation in Medicine
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0336: Robotics and Navigation in Medicine
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0764: Flugzeugsysteme II

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme II (L0736) Vorlesung 3 4
Flugzeugsysteme II (L0740) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • den generellen Aufbau der primären Flugsteuerung sowie von Aktuator-, Avionik-,  Kraftstoff- und Fahrwerksystemen von Flugzeugen inklusive deren spezifischen Eigenschaften und Anwendungsfelder beschreiben,
  • unterschiedlicher Konfigurationen erläutern,
  • entsprechende Ausgestaltungen erklären.
  • atmosphärische Vereisungsbedingungen und Wirkprinzipien von Enteisungssystemen erläutern.

Fertigkeiten

Studierende können:

  • Aktuatorsysteme der primären Flugsteuerung auslegen
  • einen Reglerentwurfsprozess für Aktuatoren der Flugsteuerung  durchführen
  • Hochauftriebskinematiken entwerfen
  • Berechnung und Analyse von Fahrwerkskomponenten
  • Enteisungssysteme nach SAE Standardverfahren auslegen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • In gemischten Teams gemeinschaftlich Lösungen erarbeiten 
Selbstständigkeit

Studierende können:

  • Selbstständig aus komplexen Fragestellungen Anforderungen an Flugzeugsysteme ableiten und entsprechende, vereinfachte Entwurfsprozesse einleiten und durchführen
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0736: Flugzeugsysteme II
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuatorik (Grundkonzepte von Aktuatoren; elektro-mechanische Aktuatoren; Modellierung, Analyse  und Auslegung von Positionsregelsystemen; hydromotorische Stellsysteme)
  • Flugsteuerungssysteme (Steuerflächen, Scharniermomente; Stabilitäts- und Steuerbarkeitsanforderungen, Stellkräfte; reversible und irreversible Flugsteuerung; Servo-Stellsysteme)
  • Fahrwerksysteme (Konfigurationen und Geometrien; Analyse von Fahrwerkssystemen mit Hinblick auf Stoßdämpferdynamiken, Dynamik des abbremsenden Flugzeuges und Leistungsbedarf; Aufbau und Analyse von Bremssystemen im Hinblick auf Energie und Wärme; ABS)
  • Kraftstoffsysteme (Architekturen; Flugkraftstoffe; Systemkomponenten; Betankungsanlage; Tankinertisierung; Kraftstoffmanagement; Trimmtank)
  • Enteisungssysteme (Atmosphärische Vereisungsbedingungen; physikalische Prinzipien von Enteisungssystemen)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • Curry: Aircraft Landing Gear Design: Principles and Practices


Lehrveranstaltung L0740: Flugzeugsysteme II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0811: Bildgebende Systeme in der Medizin

Lehrveranstaltungen
Titel Typ SWS LP
Bildgebende Systeme in der Medizin (L0819) Vorlesung 4 6
Modulverantwortlicher Dr. Michael Grass
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • den Systemaufbau sowie die Systemkomponenten der wesentlichen klinischen bildgebenden Systeme beschreiben;
  • die Funktionsweise der Systemkomponenten und des Gesamtsystems der bildgebenden Systeme erklären;
  • die physikalischen Prozesse, die eine Bildgebung ermöglichen, erklären sowie die grundlegenden physikalischen Gleichungen anwenden;  
  • die physikalischen Effekte, die für die Erzeugung von Bildkontrasten notwendig sind, benennen und beschreiben; 
  • erklären, wie man räumliche und zeitliche Auflösung beeinflussen kann und wie man die erzeugten Bilder charakterisiert;
  • erklären, welche Bildrekonstruktionsverfahren für die Erzeugung von Bildern verwendet werden;
  • die wesentlichen klinischen Anwendungen der verschiedenen Systeme darstellen und begründen.


Fertigkeiten

Studierende sind in der Lage:

  • die physikalischen Prozesse der Bildgebung zu erklären und die benötigten mathematischen bzw. physikalischen Grundgleichungen den Systemen zuzuordnen.
  • durch Anwendung der mathematischen bzw. physikalischen Grundgleichungen Kenngrößen bildgebender Systeme zu berechnen;
  • den Einfluss von verschiedenen Systemkomponenten auf die räumliche und zeitliche Auflösung bildgebender Systeme zu bestimmen;
  • die Bedeutung verschiedener bildgebender Systeme für einige klinische Applikationen zu erläutern;
  • ein geeignetes bildgebendes System für eine Applikation auszuwählen.
Personale Kompetenzen
Sozialkompetenz

keine

Selbstständigkeit

Studierende können:

  • verstehen, welche physikalischen Effekte in der medizinischen Bildgebung verwendet werden;
  • selbstständig entscheiden, für welche klinische Fragestellung ein Messsystem eingesetzt werden kann.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin
Typ Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber
Sprachen DE
Zeitraum SoSe
Inhalt

Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben.

Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf:

In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt.

0: Einführungsvorlesung
1: medizinische Bildgebung mittels Ultraschalls
2: Projektionsröntgenbildgebung
3: Röntgen-Computertomographie
4: Magentresonanztomographie
5: Bildgebung mittels nuklearer Verfahren

  • Ultraschall: Physikalische Grundlagen, Aufbau und technische Realisierung eines Ultraschallsystems, Bildgebungsverfahren, Flußmessverfahren, medizinische Anwendungen.
  • Röntgen: Physikalische Grundlagen der Röntgenbildgebung, Aufbau von Röntgenröhren, Detektion von Röntgenstrahlung, Techniken der Bildaufnahme, Bildkontrast, Projektionsröntgen, Dosisquantifizierung.
  • Computer Tomographie (CT): Aufbau eines Computer-Tomographen, Datenakquisition, Bildrekonstruktion und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Magnetresonanz Tomographie (MRT): Physikalische Grundlagen, Aufbau eines MR-Tomographen, Grundlagen der MR-Bildgebung, Relaxation und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Nuklearmedizin: Kernphysikalische Grundlagen, Herstellung von Radionukleiden, Nuklearmedinische Meßtechnik, Szintigraphie, Single Photon Emission Computer Tomographie (SPECT), Positronen Emissions Tomographie (PET), medizinische Anwendungen.

Literatur

Primary book:

1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press

Secondary books:

- A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003.

- W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002.

- H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995.

- O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000.

Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln.
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1143: Methodisches Konstruieren

Lehrveranstaltungen
Titel Typ SWS LP
Methodisches Konstruieren (L1523) Vorlesung 3 4
Methodisches Konstruieren (L1524) Gruppenübung 1 2
Modulverantwortlicher Prof. Josef Schlattmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagenkenntnisse des Konstruierens

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können spezifische Produktentwicklungsmethoden
erläutern und kausale Zusammenhänge  zwischen Mensch - Technik -Organisation darstellen.

Fertigkeiten

Die Studierenden können
- wissenschaftlich fundiert arbeiten in der Produktentwicklung unter
gezielter Anwendung von Produktentwicklungsmethoden,
- Kreativ mit den Prozessen des wissenschaftlichen Aufbereitens und
Formalisierens von komplexen Produktentwicklungsaufgaben umgehen,
- diverse Produktentwicklungsmethoden theoriegeleitet anwenden,
- in Funktionen bzw. Funktionsstrukturen denken und arbeiten
- die Theorie des erfinderischen Problemlösens (TRIZ) anwenden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen
aus dem industriellen Bereich in kleinen  Übungsteams lösen sowie
gemeinschaftlich schöpferisch unter Nutzung von Kreativitätstechniken
handeln.

Selbstständigkeit

Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1523: Methodisches Konstruieren
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff
Lehrveranstaltung L1524: Methodisches Konstruieren
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff

Modul M1145: Automation und Simulation

Lehrveranstaltungen
Titel Typ SWS LP
Automation und Simulation (L1525) Vorlesung 3 3
Automation und Simulation (L1527) Hörsaalübung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse BSc Maschinenbau oder ähnlich.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben.

Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben.

Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern.


Fertigkeiten

Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen.

Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten.

Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen.

Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden.


Personale Kompetenzen
Sozialkompetenz Zusammenarbeit in kleinen Teams
Selbstständigkeit

Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen  durchzuführen und die Ergebnisse kritisch zu beurteilen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1525: Automation und Simulation
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt

Aufbau von Automationseinrichtungen

Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten

Datenübertragung über Bussysteme

Speicherprogrammierbare Steuerung

Verfahren zur Beschreibung logischer Abläufe

Prinzip der Modellierung und Simulation von kontinuierlichen  technischen Systemen

Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink)

Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen.



Literatur

U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag

R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag

Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag

Einführung/Tutorial Matlab/Simulink - verschiedene Autoren


Lehrveranstaltung L1527: Automation und Simulation
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1156: Systems Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Systems Engineering (L1547) Vorlesung 3 4
Systems Engineering (L1548) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Flugzeug-Kabinensysteme

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• Vorgehensmodelle, Methoden und Werkzeuge für das Systems Engineering zur Entwicklung komplexer Systeme verstehen
• Innovationsprozesse und die Notwendigkeit des Technologiemanagements beschreiben
• den Flugzeug-Entwicklungsprozess und den Vorgang der Musterzulassung bei Flugzeugen erläutern
• den System-Entwicklungsprozess inklusive der Anforderungen an die Zuverlässigkeit von Systemen erklären
• die Umgebungs- und Einsatzbedingungen von Luftfahrtausrüstung mit den entsprechenden Testanforderungen benennen
• die Methodik des Requirements-Based Engineering (RBE) und des Model-Based Requirements Engineering (MBRE) einschätzen

Fertigkeiten

Studierende können:
• das Vorgehen zur Entwicklung eines komplexen Systems planen
• die Entwicklungsphasen und Entwicklungsaufgaben organisieren
• erforderliche Geschäfts- und Technikprozesse zuordnen
• Werkzeuge und Methoden des Systems Engineering anwenden

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• ihre Aufgaben innerhalb eines Entwicklungsteams verstehen und sich mit ihrer Rolle in den Gesamtprozess einordnen

Selbstständigkeit

Studierende können:
• in einem Entwicklungsteam mit Aufgabenteilung interagieren und kommunizieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1547: Systems Engineering
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und  Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein.

Schwerpunkte der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement, der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und Methoden für das Systems Engineering:
• Innovationsprozesse
• IP-Schutz
• Technologiemanagement
• Systems Engineering
• Flugzeug-Entwicklungsprozess
• Themen der Zulassung
• System-Entwicklungsprozess
• Sicherheitsziele und Fehlertoleranz
• Umgebungs- und Einsatzbedingungen
• Werkzeuge und Methoden für das Systems Engineering
• Requirements-Based Engineering (RBE)
• Model-Based Requirements Engineering (MBRE)

Literatur

- Skript zur Vorlesung
- diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE)
- Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010
- NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007
- Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010
- De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010
- Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008

Lehrveranstaltung L1548: Systems Engineering
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1161: Strömungsmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmaschinen (L1562) Vorlesung 3 4
Strömungsmaschinen (L1563) Hörsaalübung 1 2
Modulverantwortlicher Prof. Franz Joos
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die physikalischen Phänomene der Energiewandlung unterscheiden,

- die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen,

- Strömungsmaschinen berechnen und bewerten.

Fertigkeiten

Die Studierenden können

- die Physik der Strömungsmaschinen verstehen,

- Übungsaufgaben selbstständig lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Die Studierenden können

  • eine komplexe Aufgabenstellung eigenständig bearbeiten,
  • die Ergebnisse kritisch analysieren.,
  • sich mit anderen Studierenden qualifiziert austauschen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1562: Strömungsmaschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt
  • Strömungsmaschinen der Antriebstechnik
  • Hauptgleichungen
  • Einführung in die Theorie der Stufe
  • Theorie der Schaufelprofile
  • Grenzen
  • Dichtelemente
  • Dampfturbinen
  • Gasturbinen


Literatur
  • Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York
  • Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York
  • Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York
  • Menny: Strömungsmaschinen, Teubner., Stuttgart


Lehrveranstaltung L1563: Strömungsmaschinen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1170: Phänomene und Methoden der Materialwissenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Experimentelle Methoden der Materialcharakterisierung (L1580) Vorlesung 2 3
Phasengleichgewichte und Umwandlungen (L1579) Vorlesung 2 3
Modulverantwortlicher Prof. Patrick Huber
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben.

Fertigkeiten

Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit gewünschten Eigenschaften zusammenzustellen.
Die Studierenden können einen Überblick über moderne Werkstoffe geben und optimale Werkstoffkombinationen für vorgegebene Anwendungen zusammenstellen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln.

Selbstständigkeit

Die Studierenden können ...

  • ihre eigenen Stärken und Schwächen ermitteln.
  • benötigtes Wissen aneignen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Patrick Huber
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Strukturelle Chrakterisierungsmethoden mit Photonen, Neutronen und Elektronen (insbesondere Röntgen- und Neutronenbeugung, Elektronenmikroskopie, Tomographietechniken, grenzflächensensitive Methoden)
  • Mechanische und thermodynamische Charakterisierungsmethoden (Indentermessungen
  • Charakterisierung von optischen, elektrischen und magnetischen Eigenschaften (Spektroskopie, elektrische Leitfähigkeit, Magnetometrie)

Literatur

William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011).

William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Jörg Weißmüller
Sprachen DE
Zeitraum SoSe
Inhalt

Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen.

Literatur Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1226: Mechanische Eigenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Mechanisches Verhalten spröder Materialien (L1661) Vorlesung 2 3
Theorie der Versetzungsplastizität (L1662) Vorlesung 2 3
Modulverantwortlicher Dr. Erica Lilleodden
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Werkstoffwissenschaften I/II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären.

Fertigkeiten

Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen

Personale Kompetenzen
Sozialkompetenz

Studierende können:

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.

Selbstständigkeit

Studierende sind fähig:

- eigene Stärken und Schwächen allgemein einzuschätzen

- angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerold Schneider
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Theoretische Festigkeit
eines perfekten Materials, theoretische kritische Schubspannung

Tatsächliche Festigkeit von spröden Materialien
Energiefreisetzungsrate, Spannungsintensitätsfaktor, Bruchkriterium

Streuung der Festigkeit
Fehlerverteilung, Festigkeitsverteilung, Weibullverteilung

Heterogene Materialien I
Innere Spannungen, Mikrorisse, Stoffgesetze (E-Modul parallel, senkrecht)

Heterogene Materialien II
Verstärkungsmechanismen: Rissbrücken, Faser

Heterogene Materialien III
Verstärkungsmechanismen: Prozesszone

Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien

R-Kurve, stabiles/ instabile Risswachstum, Fraktographie

Thermoschock

Unterkritisches Risswachstum
v-K-Kurve, Lebensdauerberechnung

Kriechen

Mechanische Eigenschaften von biologischen Materialien

Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile

Literatur

D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier

D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998

B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993

D. Munz, T. Fett, Ceramics, Springer, 2001

D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Lehrveranstaltung L1662: Theorie der Versetzungsplastizität
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Erica Lilleodden
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen.

Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und -Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen.

Literatur

Vorlesungsskript

Aktuelle Publikationen

Bücher:

Introduction to Dislocations, by D. Hull and D.J. Bacon

Theory of Dislocations, by J.P.  Hirth and J. Lothe

Physical Metallurgy, by Peter Hassen

Modul M0840: Optimal and Robust Control

Lehrveranstaltungen
Titel Typ SWS LP
Optimale und robuste Regelung (L0658) Vorlesung 2 3
Optimale und robuste Regelung (L0659) Gruppenübung 2 3
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Linear algebra, singular value decomposition
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the significance of the matrix Riccati equation for the solution of LQ problems.
  • They can explain the duality between optimal state feedback and optimal state estimation.
  • They can explain how the H2 and H-infinity norms are used to represent stability and performance constraints.
  • They can explain how an LQG design problem can be formulated as special case of an H2 design problem.
  • They  can explain how model uncertainty can be represented in a way that lends itself to robust controller design
  • They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant.
  • They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities.
Fertigkeiten
  • Students are capable of designing and tuning LQG controllers for multivariable plant models.
  • They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it.
  • They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design.
  • They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller.
  • They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them.
  • They can carry out all of the above using standard software tools (Matlab robust control toolbox).
Personale Kompetenzen
Sozialkompetenz Students can work in small groups on specific problems to arrive at joint solutions. 
Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0658: Optimal and Robust Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Optimal regulator problem with finite time horizon, Riccati differential equation
  • Time-varying and steady state solutions, algebraic Riccati equation, Hamiltonian system
  • Kalman’s identity, phase margin of LQR controllers, spectral factorization
  • Optimal state estimation, Kalman filter, LQG control
  • Generalized plant, review of LQG control
  • Signal and system norms, computing H2 and H∞ norms
  • Singular value plots, input and output directions
  • Mixed sensitivity design, H∞ loop shaping, choice of weighting filters
  • Case study: design example flight control
  • Linear matrix inequalities, design specifications as LMI constraints (H2, H∞ and pole region)
  • Controller synthesis by solving LMI problems, multi-objective design
  • Robust control of uncertain systems, small gain theorem, representation of parameter uncertainty
Literatur
  • Werner, H., Lecture Notes: "Optimale und Robuste Regelung"
  • Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994
  • Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996
  • Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988
  • Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998
Lehrveranstaltung L0659: Optimal and Robust Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1343: Fibre-polymer-composites

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde (L1894) Vorlesung 2 3
Konstruieren mit Faser-Kunststoff-Verbunden (L1893) Vorlesung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basics: chemistry / physics / materials science
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can use the knowledge of  fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis.

They can explain the complex relationships structure-property relationship and

the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection).

Fertigkeiten

Students are capable of

  • using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials.
  • approximate sizing using the network theory of the structural elements implement and evaluate.
  • selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance.
Personale Kompetenzen
Sozialkompetenz

Students can

  • arrive at funded work results in heterogenius groups and document them.
  • provide appropriate feedback and handle feedback on their own performance constructively.


Selbstständigkeit

Students are able to

- assess their own strengths and weaknesses.

- assess their own state of learning in specific terms and to define further work steps on this basis.

- assess possible consequences of their professional activity.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt

- Microstructure and properties of the matrix and reinforcing materials and their interaction
- Development of composite materials
- Mechanical and physical properties
- Mechanics of Composite Materials
- Laminate theory
- Test methods
- Non destructive testing
- Failure mechanisms
- Theoretical models for the prediction of properties
- Application

Literatur Hall, Clyne: Introduction to Composite materials, Cambridge University Press
Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press
Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York
Lehrveranstaltung L1893: Design with fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literatur Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde

Lehrveranstaltungen
Titel Typ SWS LP
Verarbeitung von Faser-Kunststoff-Verbunde (L1895) Vorlesung 2 3
Vom Molekül zum Composite Bauteil (L1516) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde 

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren.
Fertigkeiten

Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen.  

Personale Kompetenzen
Sozialkompetenz Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. 
Selbstständigkeit Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren

Literatur Åström: Manufacturing of Polymer Composites, Chapman and Hall
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch).

Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität.

In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende  Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“).

Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung  sicher zu stellen .

Literatur

Customer Request ("Handout")

Modul M0563: Robotics

Lehrveranstaltungen
Titel Typ SWS LP
Robotik: Modellierung und Regelung (L0168) Vorlesung 3 3
Robotik: Modellierung und Regelung (L1305) Gruppenübung 2 3
Modulverantwortlicher Prof. Uwe Weltin
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Fundamentals of electrical engineering

Broad knowledge of mechanics

Fundamentals of control theory

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics.
Fertigkeiten

Students are able to derive and solve equations of motion for various manipulators.

Students can generate trajectories in various coordinate systems.

Students can design linear and partially nonlinear controllers for robotic manipulators.

Personale Kompetenzen
Sozialkompetenz Students are able to work goal-oriented in small mixed groups.
Selbstständigkeit

Students are able to recognize and improve knowledge deficits independently.

With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
International Production Management: Vertiefung Produktionstechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0168: Robotics: Modelling and Control
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt

Fundamental kinematics of rigid body systems

Newton-Euler equations for manipulators

Trajectory generation

Linear and nonlinear control of robots

Literatur

Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3

Spong, Mark W.; Hutchinson, Seth;  Vidyasagar, M. : Robot Modeling and Control. WILEY. ISBN 0-471-64990-2


Lehrveranstaltung L1305: Robotics: Modelling and Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0771: Flugphysik

Lehrveranstaltungen
Titel Typ SWS LP
Aerodynamik und Flugmechanik I (L0727) Vorlesung 3 3
Flugmechanik II (L0730) Vorlesung 2 2
Flugmechanik II (L0731) Hörsaalübung 1 1
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Themodynamik
  • Luftfahrtechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können:
  • Die Fundamentalgleichungen der Aerodynamik für kompressible, inkompressible und reibungsbehaftete Strömungen beschreiben 
  • Wirkprinzipien von Flügelprofilen und Tragflächen erläutern
  • Die Bewegungsgleichungen des Flugzeugs erklären
  • Die Flugleistung sowie Stabilität des Flugzeugs einschätzen 
  • Die Dynamik der Längs-und Seitenbewegung beschreiben
  • Methoden der Flugsimulation und Flugmesstechnik erläutern
Fertigkeiten Studierende können:
  • Flugmechanische Simulationen durchführen
  • Flugmechanische Zusammenhänge aus virtuellen wie realen Flugversuchsdaten herleiten
Personale Kompetenzen
Sozialkompetenz Studierende können:
  • Simulationen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit Studierende können:
  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten im WS + 90 Minuten im SS
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Frank Thielecke, Dr. Ralf Heinrich, Mike Montel
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aerodynamik (Fundamentalgleichungen; kompressible und inkompressible Strömungen; Flügelprofile und Tragflächen; Reibungsbehaftete Strömungen)
  • Flugmechanik (Bewegungsgleichungen; Flugleistung; Steuerflächen, Beiwerte; Längsstabilität und Steuerung; Trimmzustände; Flugmanöver)


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight


Lehrveranstaltung L0730: Flugmechanik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Dynamik der Längsbewegung
  • stationärer unsymmetrischer Flug
  • Flugmanöver der Seitenbewegung
  • Dynamik der Seitenbewegung
  • Methoden der Flugsimulation
  • Experimentelle Methoden der Flugmechanik
  • Modellvalidierung mit Parameteridentifikation


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight




Lehrveranstaltung L0731: Flugmechanik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0815: Product Planning

Lehrveranstaltungen
Titel Typ SWS LP
Produktplanung (L0851) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Produktplanung Seminar (L0853) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Cornelius Herstatt
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Good basic-knowledge of Business Administration

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students will gain  insights into:

  • Product Planning
    • Process
    • Methods
  • Design thinking
    • Process
    • Methods
    • User integration
Fertigkeiten

Students will gain deep insights into:

  • Product Planning
    • Process-related aspects
    • Organisational-related aspects
    • Human-Ressource related aspects
    • Working-tools, methods and instruments

Personale Kompetenzen
Sozialkompetenz
  • Interact within a team
  • Raise awareness for globabl issues
Selbstständigkeit
  • Gain access to knowledge sources
  • Interpret complex cases
  • Develop presentation skills
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Global Innovation Management: Kernqualifikation: Pflicht
Global Technology and Innovation Management & Entrepreneurship: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0851: Product Planning
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt

Product Planning Process

This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.:
•    Systematic scanning of markets for innovation opportunities
•    Understanding strengths/weakness and specific core competences of a firm as platforms for innovation
•    Exploring relevant sources for innovation (customers, suppliers, Lead Users, etc.)
•    Developing ideas for radical innovation, relying on the creativeness of employees, using techniques to stimulate creativity and creating a stimulating environment
•    Transferring ideas for innovation into feasible concepts which have a high market attractively

Literatur Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010
Lehrveranstaltung L0853: Product Planning Seminar
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly
Literatur see/siehe Vorlesung Produktplanung/Product Planning

Modul M0830: Environmental Protection and Management

Lehrveranstaltungen
Titel Typ SWS LP
Integrierter Umweltschutz (L0502) Vorlesung 2 2
Sicherheits-, Gesundheits- und Umweltmanagement (L0387) Vorlesung 2 3
Sicherheits-, Gesundheits- und Umweltmanagement (L0388) Gruppenübung 1 1
Modulverantwortlicher Prof. Ralf Otterpohl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Good knowledge in Technologies for Environmental Protection (end-of-pipe, integrated solutions)
  • Good knowledge of the relevant Environmental Legislation
  • Basic knowledge of instruments for Environmental Assessment
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors.


Fertigkeiten

Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level.


Personale Kompetenzen
Sozialkompetenz

The students can work together in international groups.


Selbstständigkeit

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht
Environmental Engineering: Kernqualifikation: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht
Lehrveranstaltung L0502: Integrated Pollution Control
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf Otterpohl
Sprachen EN
Zeitraum WiSe
Inhalt

The lecture focusses on:

  • The Regulatory Framework
  • Pollution & Impacts, Characteristics of Pollutants
  • Approaches of Integrated Pollution Control
  • Sevilla Process, Best Available Technologies & BREF Documents
  • Case Studies: paper industry, cement industry, automotive industry
  • Field Trip
Literatur

Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0

Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3






Lehrveranstaltung L0387: Health, Safety and Environmental Management
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literatur

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Lehrveranstaltung L0388: Health, Safety and Environmental Management
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0962: Nachhaltigkeit und Risikomanagement

Lehrveranstaltungen
Titel Typ SWS LP
Sicherheit, Zuverlässigkeit und Risikobewertung (L1145) Seminar 2 3
Umweltschutz und Nachhaltigkeit (L0319) Vorlesung 2 3
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Produktion und Einsatz von Biokohle
  • Energieproduktion und -versorgung
  • Umweltfreundliches Produktdesign


Fertigkeiten

Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten.

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit

Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Ausarbeitung und Präsentation (45 Minuten in Gruppen)
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Marco Ritzkowski
Sprachen DE
Zeitraum WiSe
Inhalt

Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Beispiele aus der Praxis (Exkursionen)
  • Diskussionen, Präsentationen 
Literatur

- Vorlesungsunterlagen

- Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf‎


Lehrveranstaltung L0319: Environment and Sustainability
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta
Sprachen EN
Zeitraum WiSe
Inhalt This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
Production and Usage of Bio-char
Engergy production with algae
Environmental product design
Clean Development mechanism (CDM)
Democracy and Energy

New Concepts for a sustainable Energy Supply


Recycling of Wind Turbines
Alternative Mobility

Disposal of Nuclear Wastes
Waste2Energy
Offshore Wind energy

Literatur Wird in der Veranstaltung bekannt gegeben.

Modul M1002: Produktions- und Logistikmanagement

Lehrveranstaltungen
Titel Typ SWS LP
Operatives Produktions- und Logistikmanagement (L1198) Vorlesung 2 2
Strategisches Produktions- und Logistikmanagement (L1089) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Modulverantwortlicher Prof. Wolfgang Kersten
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Betriebswirtschaftslehre


Die zum erfolgreichen Absolvieren dieses Moduls erforderlichen Vorkenntnisse werden im Rahmen eines E-Learning-Angebots vermittelt. Einen Zugang sowie weitere Informationen zu dem zugehörigen Online-Lernmodul erhalten die Studierenden bei ihrer Einschreibung.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können
•    zwischen strategischem und operativem Produktions- und Logistikmanagement differenzieren;
•    Gestaltungsfelder des Produktions- und Logistikmanagements beschreiben;
•    den Unterschied zwischen traditionellen und neueren Produktionsplanungs- und
-steuerungskonzepten verstehen;
•    die aktuellen Herausforderungen an das Produktions- und Logistikmanagement, insbesondere in einem internationalen Kontext, wiedergeben und erläutern.



Fertigkeiten

Die Studierenden sind auf Basis des erlernten Wissens in der Lage,
-    Methoden des Produktions- und Logistikmanagements in einem internationalen Kontext anzuwenden,
-    für die Lösung praktischer Probleme geeignete produktionswirtschaftliche Methoden und Werkzeuge auszuwählen,
-    geeignete Vorgehensweisen des Produktions- und Logistikmanagements auch für nicht standardisierte Fragestellungen auszuwählen,
-    Entscheidungsfelder im Produktions- und Logistikmanagement sowie zugehörige Einflussgrößen ganzheitlich zu beurteilen.


Personale Kompetenzen
Sozialkompetenz Die Studierenden sind nach Abschluss des Moduls in der Lage,
-    Diskussionen und Teamsitzungen anzuleiten,
-    in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren,
-    in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten,
-    Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage,

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen,

- sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie
geeignete Mittel zur Umsetzung einzusetzen
- Forschungsaufgaben unter Reflexion möglicher gesellschaftlicher Auswirkungen zu definieren
und durchzuführen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 2.5 % Übungsaufgaben Online-Modul
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung PBL
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Vertiefende Kenntnisse des operativen Produktionsmanagements

  • Traditionelle Produktionsplanung und –steuerungskonzepte

  • Neuere Produktionsplanung und –steuerungskonzepte

  • Verständnis und Anwendung quantitativer Methoden

  • Weitere Konzepte des operativen Produktionsmanagements


Literatur


Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009.

Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010.

Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011.

Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.

Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005.

Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003.

Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994.

Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010.

Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996

Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001


Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum WiSe
Inhalt
  • Identifikation von Aufgabenschwerpunkten und Gestaltungsfeldern des Produktions- und Logistikmanagements
  • Berücksichtigung aktueller Herausforderungen bei der Formulierung der Produktionsstrategie
  • Charakterisierung, Entwicklung und Analyse geeigneter Wettbewerbsstrategien
  • Produktion und Logistik als Wettbewerbsfaktor
  • Identifikation und Gestaltung von Entscheidungsfeldern der Produktionsstrategie (Fertigungstiefenstrategie, Technologiestrategie, Standortstrategie, Kapazitätsstrategie) im Unternehmenskontext
  • Beurteilung der Produktionsstrategie verschiedener Branchen und Unternehmen
  • Vermittlung vertiefender Kenntnisse von Konzepten des Produktions- und Logistikmanagements
  • Vermittlung vertiefender Kenntnisse von Lean Management und verwandten Konzepten; Wesentliche Ziele und Maßnahmen, Einfluss von Lean auf die Produktionsstrategie
  • Vorstellung und Diskussion aktueller Forschungsergebnisse im Produktions- und Logistikmanagement
  • Integration umfangreicher Problem-Based-Learning Einheiten zur Bearbeitung vorlesungsrelevanter Fallbeispiele;  gemeinsame Erarbeitung und Entwicklung von Problemlösungsvorschlägen im Rahmen der interkulturellen Teamarbeit; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg.

Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer.

Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River.

Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann.

Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag.

Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a.

Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a.

Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88

Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York.

Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart:  Lucius & Lucius

Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a.


Modul M1024: Methoden der integrierten Produktentwicklung

Lehrveranstaltungen
Titel Typ SWS LP
Integrierte Produktentwicklung II (L1254) Vorlesung 3 3
Integrierte Produktentwicklung II (L1255) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Fachbegriffe der Konstruktionsmethodik zu erklären,
  • wesentliche Elemente des Konstruktionsmanagements zu beschreiben,
  • aktuelle Problemstellungen und den gegenwärtigen Forschungsstand der integrierten Produktentwicklung zu beschreiben.


Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • für die nicht standardisierte Lösung eines Problems eine geeignete Konstruktionsmethode auszuwählen und anzuwenden sowie an neue Randbedingungen anzupassen,
  • Problemstellungen der Produktentwicklung mit Hilfe einer workshopbasierten Vorgehensweise zu lösen,
  • Moderationstechniken situationsspezifisch auszuwählen und durchzuführen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Teamsitzungen und Moderationsprozesse vorzubereiten und anzuleiten,
  • in Gruppenarbeitsprozessen komplexe Aufgaben gemeinsam zu bearbeiten,
  • Probleme und Lösungen vor Fachpersonen vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • strukturiertes Feedback zu geben und kritisches Feedback anzunehmen,
  • angenommenes Feedback eigenständig umzusetzen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1254: Integrierte Produktentwicklung II
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt

Vorlesung

Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf.

Themen der Vorlesung sind insbesondere:

  • Methoden der Produktentwicklung,
  • Moderationstechniken,
  • Industrial Design,
  • variantengerechte Produktgestaltung,
  • Modularisierungsmethoden,
  • Konstruktionskataloge,
  • angepasste QFD-Matrix,
  • systematische Werkstoffauswahl,
  • montagegerechtes Konstruieren,

Konstruktionsmanagement

  • CE-Kennzeichnung, Konformitätserklärung inkl. Gefährdungsbeurteilung,
  • Patentwesen, Patentrechte, Patentüberwachung
  • Projektmanagement (Kosten, Zeit, Qualität) und Eskalationsprinzipien,
  • Entwicklungsmanagement Mechatronik,
  • Technisches Supply Chain Management.

Übung (PBL)

In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft.

Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktions­managements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben.



Literatur
  • Andreasen, M.M., Design for Assembly, Berlin, Springer 1985.
  • Ashby, M. F.: Materials Selection in Mechanical Design, München, Spektrum 2007.
  • Beckmann, H.: Supply Chain Management, Berlin, Springer 2004.
  • Hartmann, M., Rieger, M., Funk, R., Rath, U.: Zielgerichtet moderieren. Ein Handbuch für Führungskräfte, Berater und Trainer, Weinheim, Beltz 2007.
  • Pahl, G., Beitz, W.: Konstruktionslehre, Berlin, Springer 2006.
  • Roth, K.H.: Konstruieren mit Konstruktionskatalogen, Band 1-3, Berlin, Springer 2000.
  • Simpson, T.W., Siddique, Z., Jiao, R.J.: Product Platform and Product Family Design. Methods and Applications, New York, Springer 2013.
Lehrveranstaltung L1255: Integrierte Produktentwicklung II
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1025: Fluidtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Fluidtechnik (L1256) Vorlesung 2 3
Fluidtechnik (L1371) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 1 2
Fluidtechnik (L1257) Hörsaalübung 1 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • Aufbau und Funktionsweise von Komponenten der Hydrostatik, Pneumatik und Hydrodynamik zu erklären,
  • das Zusammenwirken hydraulischer Komponenten in Systemen zu erläutern,
  • die Steuerung und Regelung hydraulischer Systeme detailliert zu erklären,
  • Funktion und Einsatzbereiche von hydrodynamischen Wandlern, Bremsen und Kupplungen sowie von Kreiselpumpen und Aggregaten in der Anlagentechnik zu beschreiben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • hydraulische und pneumatische Komponenten und  Systeme zu analysieren und zu beurteilen,
  • hydraulische Systeme für mechanische Anwendungen zu konzipieren und zu dimensionieren,
  • Numerische Simulationen hydraulischer Systeme anhand abstrakter Problemstellungen durchzuführen,
  • Pumpenkennlinien für hydraulische Anlagen auszuwählen und anzupassen,
  • Wandler und Bremsen für mechanische Aggregate auszulegen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • in der Vorlesung Funktionszusammenhänge in Gruppen zu diskutieren und vorzustellen,
  • Arbeiten in Teams selbstständig zu organisieren.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • für die Simulation erforderliches Wissen selbständig zu erschließen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1256: Fluidtechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Vorlesung

Hydrostatik

  • Physikalische Grundlagen
  • Druckflüssigkeiten
  • Hydrostatische Maschinen
  • Ventile
  • Komponenten
  • Hydrostatische Getriebe
  • Anwendungsbeispiele aus der Industrie

Pneumatik

  • Drucklufterzeugung
  • Pneumatische Motoren
  • Anwendungsbeispiele

Hydrodynamik

  • Physikalische Grundlagen
  • Hydraulische Strömungsmaschinen
  • Hydrodynamische Getriebe
  • Zusammenarbeit von Motor und Getriebe

Hörsaalübung

Hydrostatik

  • Lesen und Entwerfen von hydraulischen Schaltplänen
  • Auslegung von hydrostatischen Fahr- und Arbeitsantrieben
  • Leistungsberechnung

Hydrodynamik

  • Berechnung/Auslegung von hydrodynamischen Wandlern
  • Berechnung/Auslegung von Kreiselpumpen
  • Erstellen und Lesen von Pumpen- und Anlagenkennlinien

Exkursion

  • Es findet eine Exkursion zu einem regionalen Unternehmen der Hydraulikbranche statt.

Übung

Numerische Simulation hydrostatischer Systeme

  • Kennenlernen einer numerischen Simulationsumgebung für hydraulische Systeme
  • Umsetzen einer Aufgabenstellung in ein Simulationsmodell
  • Simulation gängiger Komponenten
  • Variation von Simulationsparametern
  • Nutzung von Simulation zur Systemauslegung und -optimierung
  • Z.T. selbstorganisiertes Arbeiten in Teams



Literatur

Bücher

  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 1: Hydraulik, Shaker Verlag, Aachen, 2011
  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 2: Pneumatik, Shaker Verlag, Aachen, 2006
  • Matthies, H.J. Renius, K.Th.: Einführung in die Ölhydraulik, Teubner Verlag, 2006
  • Beitz, W., Grote, K.-H.: Dubbel - Taschenbuch für den Maschinenbau, Springer-Verlag, Berlin, aktuelle Auflage
Skript zur Vorlesung
Lehrveranstaltung L1371: Fluidtechnik
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1257: Fluidtechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1155: Flugzeug-Kabinensysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Kabinensysteme (L1545) Vorlesung 3 4
Flugzeug-Kabinensysteme (L1546) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• die Betriebsabläufe in der Flugzeugkabine, deren Ausrüstung und Systeme beschreiben
• die funktionalen und nicht-funktionalen Anforderungen an Kabinensysteme erläutern
• die Notwendigkeit der Kabinenbetriebs- und Notfallsysteme erklären
• die Herausforderungen der Mensch-Technik-Interaktion in der Kabine einschätzen

Fertigkeiten

Studierende können:
• das Kabinenlayout für ein vorgegebenes Geschäftsmodell einer Fluggesellschaft erstellen
• Kabinensysteme für den sicheren Kabinenbetrieb auslegen
• Notfallsysteme für eine zuverlässige Mensch-Systeminteraktion gestalten
• Lösungen für Komfortanforderungen und Unterhaltungssysteme in der Kabine entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• bestehende Systemlösungen nachvollziehen und eigene Ideen mit Experten diskutieren

Selbstständigkeit

Studierende können:
• Vorlesungsinhalte und Expertenvorträge eigenständig reflektieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden.

Die Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie, Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt:
• Werkstoffe in der Kabine
• Ergonomie und Human Factors
• Kabinen-Innenausstattung und nicht-elektrische Systeme
• Kabinenelektrik und Beleuchtung
• Kabinenelektronik, Kommunikations-, Informations- und Unterhaltungssysteme
• Kabinen- und Passagierprozesse
• RFID-Kennzeichnung von Flugzeugbauteilen
• Energiequellen und Energiewandlung für den Betrieb

Literatur

- Skript zur Vorlesung
- Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999
- Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014
- Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008
- Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003
- Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006
- Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Lehrveranstaltung L1546: Flugzeug-Kabinensysteme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1342: Kunststoffe

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Kunststoffe (L0389) Vorlesung 2 3
Verarbeitung und Konstruieren mit Kunststoffen (L1892) Vorlesung 2 3
Modulverantwortlicher Dr. Hans Wittich
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen aus der Chemie / Physik / Werkstoffkunde 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

- die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden.

- die komplexen Zusammenhänge  Struktur-Eigenschaftsbeziehung erklären.

- die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz).

Fertigkeiten

Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um

- mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten.

- für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit.

Personale Kompetenzen
Sozialkompetenz

Studierende können

- in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren.

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.


Selbstständigkeit

Studierende sind fähig,

- eigene Stärken und Schwächen einzuschätzen

- ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hans Wittich
Sprachen DE
Zeitraum WiSe
Inhalt - Struktur und Eigenschaften der Kunststoffe
- Aufbau des Makromoleküls
  Konstitution, Kofiguration, Konformation, Bindungen,
  Polyreaktionen, Molekulargewichtsverteilung
- Morphologie
  Amorph, Kristallisation, Mischungen
- Eigenschaften
  Elastizität, Plastizität, Wechselbelastungen,
- Thermische Eigenschaften,
- Elektrische Eigenschaften
- Theoretische Modelle zur Vorhersage der Eigenschaften
- Anwendungsbeispiele
Literatur Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler, Dr. Hans Wittich
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen

Designing with Polymers: Materials Selection; Structural Design; Dimensioning

Literatur

Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
Crawford: Plastics engineering, Pergamon Press
Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

siehe gewähltes Modul laut FSPO

Fertigkeiten

siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

siehe gewähltes Modul laut FSPO

Selbstständigkeit

siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht

Fachmodule der Vertiefung Werkstoffe

Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen. 

Modul M0763: Flugzeugsysteme I

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme I (L0735) Vorlesung 3 4
Flugzeugsysteme I (L0739) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die wichtigsten Komponenten und Auslegungspunkte von hydraulischen und elektrischen Systemen und Hochauftriebssystemen beschreiben
  • einen Überblick über Wirkprinzipien von Klimaanlagen geben
  • die Notwendigkeit von Hochauftriebssystemen sowie deren Funktionsweise und Wirkung erklären
  • die Schwierigkeiten bei der Auslegung von Versorgungssystemen von Flugzeugen richtig einschätzen
Fertigkeiten

Studierende können:

  • Hydraulische und elektrische Versorgungssysteme an Bord von Flugzeugen auslegen
  • Hochauftriebssysteme von Flugzeugen auslegen
  • Thermodynamische Analyse von Klimaanlagen durchführen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • Systemauslegungen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit

Studierende können:

  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0735: Flugzeugsysteme I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Hydraulische Energiesysteme (Flüssigkeiten; Druckverluste in Ventilen und Rohrleitungen; Komponenten hydraulischer Systeme wie Pumpen, Ventile, etc.; Druck/Durchflusscharakteristika; Aktuatoren; Behälter; Leistungs- und Wärmebilanzen; Notenergie)
  • Elektrisches Energiesystem (Generatoren; Konstantdrehzahlgetriebe; DC und AC Konverter; elektrische Energieverteilung; Bus-Systeme; Überwachung; Lastanalyse)
  • Hochauftriebssysteme (Prinzipien; Ermittlung von Lasten und Systemantriebsleistungen; Prinzipien und Auslegung von Antriebs- und Stellsystemen; Sicherheitsforderungen und -einrichtungen)
  • Klimaanlagen (Thermodynamische Analyse; Expansions- und Kompressions-Kältemaschinen; Kontrollmechanismen; Kabinendruck-Kontrollsysteme)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Green: Aircraft Hydraulic Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • SAE1991: ARP; Air Conditioning Systems for Subsonic Airplanes


Lehrveranstaltung L0739: Flugzeugsysteme I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln.
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Automatisierung (L1592) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Arbeitswissenschaft (L0653) Vorlesung 2 3
Elemente Integrierter Produktionssysteme (L0927) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Emotional Design / Benutzerzentrierte Produktentwicklung (L1703) Seminar 2 2
Entwicklungsmanagement Mechatronik (L1512) Vorlesung 2 3
Ermüdung und Schadenstoleranz (L0310) Vorlesung 2 3
Industrie 4.0 für Ingenieure (L2012) Vorlesung 2 3
Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik (L1514) Vorlesung 2 3
Leichtbaupraktikum (L1258) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Mechanismen, Systeme und Verfahren der Werkstoffprüfung (L0950) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0820) Vorlesung 2 2
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Produktivitätsmanagement (L0928) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 2
Produktivitätsmanagement (L0931) Gruppenübung 1 1
Regelungstechnische Methoden für die Medizintechnik (L0664) Vorlesung 2 3
Regenerative Energien (L0313) Vorlesung 2 2
Regenerative Energien (L1434) Gruppenübung 1 1
Six Sigma Methodik im Qualitätsmanagement (L1130) Vorlesung 2 3
Technisches Industriedesign (L1513) Vorlesung 2 3
Technologie keramischer Werkstoffe (L0379) Vorlesung 2 3
Werkstoffprüfung (L0949) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L0176) Vorlesung 2 2
Zuverlässigkeit in der Maschinendynamik (L1303) Gruppenübung 1 2
Zuverlässigkeit von Flugzeugsystemen (L0749) Vorlesung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können vertieftes Wissen und Zusammenhänge in Spezialbereichen sowie Anwendungsfelder der Produktentwicklung, Werkstoffe und Produktion erklären.
  • Die Studierenden können unterschiedliche Spezialgebiete miteinander in Verbindung setzen.
Fertigkeiten
  • Die Studierenden können in den ausgewählten Teilbereichen spezialisierte Lösungsstrategien und neue wissenschaftliche Methoden anwenden.
  • Die Studierenden können die erlernten Fähigkeiten selbstständig auf neue und unbekannte Fragestellungen übertragen und hier Lösungsansätze entwickeln
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit
  • Studierende können durch eine eigenständige Wahl der geeigneten Fächer je nach Interessenlage selbstständig Kenntnisse und Fähigkeiten vertiefen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1592: Angewandte Automatisierung
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Project Based Learning
-Robot Operating System
-Roboteraufbau- und Beschreibung
-Bewegungsbeschreibung
-Kalibrierung
-Genauigkeit
Literatur
John J. Craig
Introduction to Robotics – Mechanics and Control 
ISBN: 0131236296
Pearson Education, Inc., 2005

Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010

K. Thulasiraman and M. N. S. Swamy
Graphs: Theory and Algorithms
ISBN: 9781118033104
John Wüey & Sons, Inc., 1992
Lehrveranstaltung L0653: Arbeitswissenschaft
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Armin Bossemeyer
Sprachen DE
Zeitraum WiSe
Inhalt

Inhalt

- Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung

- Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile

- Sitzen, Stehen, Heben und Tragen

- Licht, Sehen, Beleuchtung und Lichtmessung

- Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen

- Klima und Strahlung; Gefahrstoffe

- Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung

- Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit …

- Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz …

- Gestaltung von Bildschirmarbeit und ergonomischer Software

- Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung

- Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit

- Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn

- Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit

- Gestaltung von Schichtarbeit

Qualifikationsziele

Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen.

Literatur
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion.

Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse.

Literatur

Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003.

Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993.

Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009.

Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006.

Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001.

Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006.

Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992.

Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Daniel Steffen
Sprachen DE
Zeitraum SoSe
Inhalt
  • Prozesse und Methoden der Produktentwicklung - von der Idee bis zur Markteinführung 
    • Identifikation von Markt- und Technologiepotenzialen
    • Erarbeitung einer gemeinsamen Produktarchitektur
    • Synchronisierte Produktentwicklung über alle ingenieurwissenschaftlichen Fachdisziplinen
    • Produktabsicherung aus Kundensicht
  • Steuerung und Optimierung der Produktentwicklung
    • Gestaltung von Arbeitsabläufen in der Entwicklung
    • IT-Systeme in der Entwicklung
    • Etablierung von Management Standards
    • Typische Organisationsformen

Literatur
  • Bender: Embedded Systems - qualitätsorientierte Entwicklung 
  • Ehrlenspiel: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit 
  • Gausemeier/Ebbesmeyer/Kallmeyer: Produktinnovation - Strategische Planung und Entwicklung der Produkte von morgen
  • Haberfellner/de Weck/Fricke/Vössner: Systems Engineering: Grundlagen und Anwendung
  • Lindemann: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden
  • Pahl/Beitz: Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung 
  • VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme

Lehrveranstaltung L0310: Fatigue & Damage Tolerance
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Martin Flamm
Sprachen EN
Zeitraum WiSe
Inhalt Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences
Literatur Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989
Lehrveranstaltung L2012: Industrie 4.0 für Ingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Elastizitätstheorie anisotroper Körper

Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz

Verhalten einer Laminat-Einzelschicht

Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln

Grundlagen der Mikromechanik der Einzelschicht

Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht

Klassische Laminattheorie

Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften

Festigkeit von Laminaten

Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin

Biegung von Laminaten

Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen

Spannungskonzentrations-Probleme

Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung

Stabilität dünnwandiger Laminat-Strukturen

Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen

Hausübung (Ausarbeitung erforderlich)

Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien


Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, aktuelle Auflage.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, , aktuelle Auflage.
  • Reddy, J.N., „Mechanics of Composite Laminated Plates and Shells”, CRC Publishing, Boca Raton et al., current edition.
  • Jones, R.M., „Mechanics of Composite Materials“, Scripta Book Co., Washington, current edition.
  • Timoshenko, S.P., Gere, J.M., „Theory of elastic stability“, McGraw-Hill Book Company, Inc., New York, current edition.
  • Turvey, G.J., Marshall, I.H., „Buckling and postbuckling of composite plates“, Chapman and Hall, London, current edition.
  • Herakovich, C.T., „Mechanics of fibrous composites“, John Wiley and Sons, Inc., New York, current edition.
  • Mittelstedt, C., Becker, W., „Strukturmechanik ebener Laminate”, aktuelle Auflage.
Lehrveranstaltung L1258: Leichtbaupraktikum
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Dieter Krause
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Entwicklung eines Faserverbund-Sandwichbauteils

  • Einarbeiten in die Themengebiete Faserkunststoffverbunde (FKV) und Leichtbau
  • Konstruktion und Auslegung eines FKV-Sandwich-Bauteils unter Anwendung der Finite-Elemente-Methode (FEM)
  • Ermitteln von Werkstoffdaten an Materialproben
  • Eigenhändiger Bau der FKV-Struktur im Labor
  • Test der entwickelten Bauteile
  • Präsentation des Konzepts
  • Selbstorganisiertes Arbeiten in Teams
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Puck, A., „Festigkeitsanalsyse von Faser-Matrix-Laminaten“, Hanser, München, Wien, 1996.
  • R&G, „Handbuch Faserverbundwerkstoffe“, Waldenbuch, 2009.
  • VDI 2014 „Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund“
  • Ehrenstein, G. W., „Faserverbundkunststoffe“, Hanser, München, 2006.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
  • Wiedemann, J., „Leichtbau Band 2: Konstruktion“, Springer, Berlin, Heidelberg, 1986.
  • Backmann, B.F., „Composite Structures, Design, Safety and Innovation”, Oxford (UK), Elsevier, 2005.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum SoSe
Inhalt


Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren

  • Spannungs-Dehnungs-Zusammenhänge
  • DMS-Messtechnik
  • Viskoelastisches Verhalten
  • Zugversuch (Verfestigung, Einschnürung, Dehnrate)
  • Druckversuch, Biegeversuch, Torsionsversuch
  • Rissausbreitung bei statischer Belastung (J-Integral)                                
  • Rissausbreitung bei zyklischer Belastung (Mikro- und Makrorissausbreitung)
  • Einfluss von Kerben
  • Kriechversuch (Physikalischer Kriechversuch, Spannungs- und Temperatureinfluss, Larson-Miller-Parameter)
  • Verschleißuntersuchung
  • Zerstörungsfreie Werkstoffprüfung in der Triebwerksüberholung


Literatur
  • E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
  • G. E. Dieter: Mechanical Metallurgy, McGraw-Hill            
  • R. Bürgel: Lehr- und Übungsbuch Festigkeitslehre, Vieweg                        
  • R. Bürgel: Werkstoffe sícher beurteilen und richtig einsetzen, Vieweg
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 120 Minuten
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0928: Produktivitätsmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt
  • Grundlagen des Produktivitätsmanagements
  • Stückzahlenmanagement und Standardisierung
  • Taktanalyse und Gestaltung manueller Arbeit
  • Grundlagen der Instandhaltung
  • Total Productive Maintenance (TPM)
  • Rüstoptimierung
  • Analyse verketteter Produktionssysteme
Literatur

Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006.

Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006.

Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995.

Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985

Lehrveranstaltung L0931: Produktivitätsmanagement
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Johannes Kreuzer, Christian Neuhaus
Sprachen DE
Zeitraum SoSe
Inhalt

Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt

• Einleitung in die Thematik an ausgewählten Beispielen

• Physiologie - Einführung und Überblick

• Wiederherstellung von Herz-Kreislauf-Funktionen

• Wiederherstellung von Respiratorische Funktionen

• Regelungen in der Anästhesie

• Wiederherstellung von Nierenfunktionen

• Wiederherstellung von Leberfunktionen

• Wiederherstellung von Hörfunktionen

• Wiederherstellung von motorischer Funktionen

• Navigationssysteme und Robotik in der Medizin

Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge.

Literatur

Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart

Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag

M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000
Lehrveranstaltung L0313: Regenerative Energien
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einleitung
  • Sonnenenergie zur Wärme- und Stromerzeugung
  • Windenergie zur Stromerzeugung
  • Wasserkraft zur Stromerzeugung
  • Meeresenergie zur Stromerzeugung
  • Geothermische Energie zur Wärme- und Stromerzeugung
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1434: Regenerative Energien
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 Minuten
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber.

Mögliche Themen der Aufgaben sind:

  • Solarthermische Wärmeerzeugung
  • Konzentration Solarthermie
  • Photovoltaik 
  • Windenergie
  • Wasserkraft
  • Wärmepumpe
  • Tiefe Geothermie
Literatur
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Erneuerbare Energien - System­technik, Wirtschaft­lichkeit, Umweltaspekte; Springer, Berlin, Heidelberg, 2006, 4. Auflage
  • Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.): Renewable Energy - Technology, Economics and Environment; Springer, Berlin, Heidelberg,2007
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Claus Emmelmann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fokus Six Sigma

  • Einführung und Einordnung

  • Grundbegriffe der Qualitätssicherung

  • Mess- und Prüfmittel in der Qualitätssicherung

Werkzeuge des Qualitätsmanagements


Qualitätsmanagement-Methodik Six Sigma: DMAIC

Literatur

    Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008

    Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996

    Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008


Lehrveranstaltung L1513: Technisches Industriedesign
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 10-15 Entwurfszeichnungen, Skizzen und ca. 5-10 A4-Dokumentationsseiten (Themen- und Entwurfsbegründung)
Dozenten Prof. Werner Granzeier
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vertiefte Vermittlung komplexer Grundlagen durch Konzept, Analyse, Entwurfszeichnen und Fallbeispiele aus der Praxis der technischen Produktentwicklung
  • Produktkonzept mit Ideenfindung und Package
  • Entwurfserarbeitung - Struktur und Exterior mit Produktergonomie
  • Das Gesamt-Konzept visualisieren und präsentieren
  • Realisierung als individuelle Fallbeispiele
Literatur

Literatur über technisches Produktdesign

Technisches Rendering und Präsentation

Zeichnen und perspektivisches Entwerfen

Literaturhinweise

What is Product Design ?

Laura Slack

RotoVision Schweiz 2006

Product Design Now

Design and Scetches

CollinsDesign and maomao publications  Spanien 2006

Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques

for Designers, Illustrators and Architects, 

Watson, Guptil Puplications,a division of Billboard Publications Inc., 

New York 1983

Creative Techniques

DRAWING 

Barons Educational  Series

ISBN-13: 978-0-7641-6182-7

Joseph Ungar, Rendering In Mixed Media - Techniques for Concept 

Presentation for Designers and Illustrators

Watson-Guptil Publication a division of Billboard Publications Inc., 

New York 1985

AIRWORLD

Design und Architektur für die Flugreise

Vitra Design Stiftung   Weil am Rhein 2004

Airline Design

Perter Deslius  Jacek Slaski  te Neues 2005

Technik und Sicherheit von Passagierflugzeugen

Frank Littek

Motorbuch Verlag  2003

Jetliner Cabins

Jennifer Coutts Clay

Cs books   England 2006

BOEING Widebodies

Michael Haenggi   motorbooks international  USA  2003

form - Zeitschrift für Gestaltung, Verlag form GmbH, 

Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim

(erscheint vierteljährlich, Verlag form GmbH ) 

design report

german magasin,

(erscheint monatlich)

md - möbel interior design, Konradin-Verlag

Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen

(erscheint monatlich)

CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, 

Kitashinjuku, Shinjuku-ku, Tokio 160, Japan

(erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, 

Auto & Design, 

Corso Frabcia 161, 10139 Torino, Italia

(erscheint vierteljährlich in italienischer und englischer Sprache alle zwei 

Monate , erhältlich am HBF Hamburg 

AERO International,

Magazin für Zivilluftfahrt

(erscheint monatlich)

Aircraft interior international

Engl. magasin for  Aircraft  cabin interior

(erscheint 2 monatlich)

aerotec

Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie


Lehrveranstaltung L0379: Technologie keramischer Werkstoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Rolf Janßen
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt  und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt.

  Inhalt:                     1. Rohstoffe

                                 2. Pulversynthese

                                 3. Pulveraufbereitung und -charakterisierung

                                 4. Formgebung

                                 5. Sintern

                                 6. Glas und Zement-Technologie

                                 7. Neue Syntheseverfahren, Beschichtungen, etc.

                                  8. Fügetechniken


Literatur

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung
Lehrveranstaltung L0949: Werkstoffprüfung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Dr. Jan Oke Peters
Sprachen DE
Zeitraum WiSe
Inhalt


Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.

  • Untersuchungsmethodik bei mechanischen Werkstoffproblemen
  • Bestimmung elastischer Konstanten
  • Zugversuch
  • Schwingversuch (Versuche mit konstanter Spannung, Dehnung oder plastischer Dehnung, Zeitschwingfestigkeit, Dauerschwingfestigkeit, Mittelspannungseinfluss)
  • Rissausbreitung bei statischer Belastung (Spannungsintensitätsfaktor, Bruchzähigkeit)
  • Kriechversuch und Zeitstandfestigkeit
  • Härtemessung
  • Kerbschlagbiegeversuch
  • Zerstörungsfreie Werkstoffprüfung
Literatur

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Lehrveranstaltung L0176: Reliability in Engineering Dynamics
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min.
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt

Method for calculation and testing of reliability of dynamic machine systems 

  • Modeling
  • System identification
  • Simulation
  • Processing of measurement data
  • Damage accumulation
  • Test planning and execution
Literatur

Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4

Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737

Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936.

VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412

Lehrveranstaltung L1303: Reliability in Engineering Dynamics
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlegende Methoden der Zuverlässigkeit und Sicherheit (Regelwerke, Nachweisforderungen)
  • Grundlagen zur Analyse der Zuverlässigkeitsanalyse (FMEA, Fehlerbaum, Funktions- und Gefahrenanalyse)
  • Zuverlässigkeitsanalyse von elektrischen und mechanischen Systemen


Literatur
  • CS 25.1309
  • SAE ARP 4754
  • SAE ARP 4761

Modul M1193: Entwurf von Kabinensystemen

Lehrveranstaltungen
Titel Typ SWS LP
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1557) Vorlesung 2 2
Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik (L1558) Gruppenübung 1 1
Model-Based Systems Engineering (MBSE) mit SysML/UML (L1551) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Systems Engineering

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• den Aufbau und die Funktionsweise von Rechnerarchitekturen beschreiben
• den Aufbau und die Funktionsweise von digitalen Kommunikationsnetzwerken erläutern
• Architekturen von Kabinenelektronik, integrierter modularer Avionik (IMA) und Aircraft Data Communication Networks (ADCN) erklären
• das Vorgehen des Model-Based Systems Engineering (MBSE) beim Entwurf von hardware- und softwarebasierten Kabinensystemen verstehen

Fertigkeiten

Studierende können:
• einen Minicomputer verstehen, in Betrieb nehmen und betreiben
• eine Netzwerkkommunikation aufbauen und mit einem anderen Netzwerkteilnehmer kommunizieren
• einen Minicomputer mit einem Kabinenmanagementsystem (A380 CIDS) verbinden und über ein AFDX®-Netzwerk kommunizieren
• Systemfunktionen mittels der formalen Sprachen SysML/UML modellieren und aus den Modellen Softwarecode generieren
• Softwarecode auf einem Minicomputer ausführen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• Teilergebnisse praktisch und selbst erarbeiten und mit anderen zu einer Gesamtlösung zusammenführen    

Selbstständigkeit

Studierende können:
• ihre praktischen Aufgaben organisieren und planen

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert.

Die Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Kabinenelektronik und Kabinennetzwerken: 
• Historie der Computer- und Netzwerktechnik
• Schichtenmodell in der Computertechnik
• Rechnerarchitekturen (PC, IPC, Embedded Systeme)
• BIOS, UEFI und Betriebssystem (OS)
• Programmiersprachen (Maschinencode und Hochsprachen)
• Applikationen und Schnittstellen zur Anwendungsprogrammierung
• Externe Schnittstellen (seriell, USB, Ethernet)
• Schichtenmodell in der Netzwerktechnik
• Netzwerktopologien
• Netzwerkkomponenten
• Buszugriffsverfahren
• Integrierte modulare Avionik (IMA) und Aircraft Data Communication Networks (ADCN)
• Kabinenelektronik und Kabinennetzwerke

Literatur

- Skript zur Vorlesung
- Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003
- Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004
- Wüst, K.: Mikroprozessortechnik: Grundlagen, Architekturen und Programmierung von Mikroprozessoren, Mikrocontrollern und Signalprozessoren. Vieweg Verlag; 2. aktualisierte und erweiterte Auflage, 2006 

Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziele der problemorientierten Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®):
• Was ist ein Modell?
• Was ist Systems Engineering?
• Überblick zu MBSE Methodiken
• Die Modellierungssprachen SysML/UML
• Werkzeuge für das MBSE
• Vorgehensweisen beim MBSE 
• Anforderungsspezifikation, funktionale Architektur, Lösungsspezifikation
• Vom Modell zum Softwarecode
• Validierung und Verifikation: XiL-Methoden
• Begleitendes MBSE-Projekt

Literatur

- Skript zur Vorlesung
- Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008
- Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011


Modul M0511: Stromerzeugung aus Wind- und Wasserkraft

Lehrveranstaltungen
Titel Typ SWS LP
Regenerative Energieprojekte in neuen Märkten (L0014) Projektseminar 1 1
Wasserkraftnutzung (L0013) Vorlesung 1 1
Windenergieanlagen (L0011) Vorlesung 2 3
Windenergienutzung - Schwerpunkt Offshore (L0012) Vorlesung 1 1
Modulverantwortlicher Dr. Joachim Gerth
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Modul: Thermodynamik I,

Modul: Thermodynamik II,

Modul: Grundlagen der Strömungsmechanik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären.

Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen.

Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren.

Selbstständigkeit

Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht
Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht
Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten
Typ Projektseminar
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Andreas Wiese
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
    • Entwicklung der erneuerbaren Energien weltweit
      • Historie
      • Zukünftige Märkte
    • Besondere Herausforderungen in neuen Märkten - Übersicht
  2. Beispielprojekt Windpark Korea
    • Übersicht
    • Technische Beschreibung
    • Projektphasen und Besonderheiten
  3. Förder- und Finanzierungsinstrumente für EE Projekten in neuen Märkten
    • Übersicht Fördermöglichkeiten
    • Übersicht Länder mit Einspeisegesetzen
    • Wichtige Finanzierungsprogramme
  4. CDM Projekte - Warum, wie, Beispiele
    • Übersicht CDM Prozess
    • Beispiele
    • Übungsaufgabe CDM
  5. Ländliche Elektrifizierung und Hybridsysteme - ein wichtiger Zukunftsmarkt für EE
    • Ländliche Elektrifizierung - Einführung
    • Typen von Elektrizifierungsprojekten
    • Die Rolle der EE
    • Auslegung von Hybridsystemen
    • Projektbeispiel: Hybridsystem Galapagos Inseln
  6. Ausschreibungsverfahren für EE Projekte - Beispiele
    • Südafrika
    • Brasilien
  7. Ausgewählte Projektbeispiele aus der Sicht einer Entwicklungsbank - Wesley Urena Vargas, KfW Entwicklungsbank
    • Geothermie
    • Wind oder CSP

Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt.

Literatur Folien der Vorlesung
Lehrveranstaltung L0013: Wasserkraftnutzung
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Stephan Heimerl
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung; Bedeutung der Wasserkraft im nationalen und globalen Kontext
  • Physikalische Grundlagen: Bernoulli-Gleichung, nutzbare Fallhöhe, hydrologische Grundlagen, Verlustmechanismen, Wirkungsgrade
  • Einteilung der Wasserkraft: Lauf- und Speicherwasserkraft, Nieder- und Hochdruckanlagen
  • Aufbau von Wasserkraftanlagen: Darstellung der einzelnen Komponenten und ihres systemtechnischen Zusammenspiels
    • Bautechnische Komponenten; Darstellung von Dämmen, Wehren, Staumauern, Krafthäusern, Rechenanlagen etc.
    • Energietechnische Komponenten: Darstellung der unterschiedlichen Arten der hydraulischen Strömungsmaschinen, der Generatoren und der Netzanbindung
  • Wasserkraft und Umwelt
  • Beispiele aus der Praxis


Literatur
  • Schröder, W.; Euler, G.; Schneider, K.: Grundlagen des Wasserbaus; Werner, Düsseldorf, 1999, 4. Auflage
  • Quaschning, V.: Regenerative Energiesysteme: Technologie - Berechnung - Simulation; Carl Hanser, München, 2011, 7. Auflage
  • Giesecke, J.; Heimerl, S.; Mosony, E.: Wasserkraftanlagen ‑ Planung, Bau und Betrieb; Springer, Berlin, Heidelberg, 2009, 5. Auflage
  • von König, F.; Jehle, C.: Bau von Wasserkraftanlagen - Praxisbezogene Planungsunterlagen; C. F. Müller, Heidelberg, 2005, 4. Auflage
  • Strobl, T.; Zunic, F.: Wasserbau: Aktuelle Grundlagen - Neue Entwicklungen; Springer, Berlin, Heidelberg, 2006


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Skiba
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung , Bedeutung der Offshore-Windstromerzeugung, Besondere Anforderungen an die Offshore-Technik
  • Physikalische Grundlagen zur Nutzung der Windenergie
  • Aufbau und Funktionsweise von Offshore-Windenergieanlagen, Vorstellung unterschiedlicher Konzepte von Offshore-Windenergieanlagen, Darstellung der einzelnen Systemkomponenten und deren systemtechnisches Zusammenspiel
  • Gründungstechnik, Offshore-Baugrunderkundung, Vorstellung unterschiedlicher Konzepte von Offshore-Gründungsstrukturen, Planung und Fabrikation von Gründungsstrukturen
  • Elektrische Infrastruktur eines Offshore-Windparks, Innerpark-Verkabelung, Offshore-Umspannwerk, Netzanbindung
  • Installation von Offshore-Windparks, Installationstechniken und Hilfsgeräte, Errichtungslogistik
  • Entwicklung und Planung eines Offshore-Windparks
  • Betrieb und Optimierung von Offshore-Windparks
  • Tagesexkursion


Literatur
  • Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb; Vieweg + Teubner, Stuttgart, 2007, 7. Auflage
  • Molly, J. P.: Windenergie - Theorie, Anwendung, Messung; C. F. Müller, Heidel-berg, 1997, 3. Auflage
  • Hau, E.: Windkraftanalagen; Springer, Berlin, Heidelberg, 2008, 4.Auflage
  • Heier, S.: Windkraftanlagen - Systemauslegung, Integration und Regelung; Vieweg + Teubner, Stuttgart, 2009, 5. Auflage
  • Jarass, L.; Obermair, G.M.; Voigt, W.: Windenergie: Zuverlässige Integration in die Energieversorgung; Springer, Berlin, Heidelberg, 2009, 2. Auflage


Modul M0996: Supply Chain Management

Lehrveranstaltungen
Titel Typ SWS LP
Supply Chain Management (L1218) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Wertschöpfungsnetzwerke (L1190) Vorlesung 2 2
Modulverantwortlicher Prof. Thorsten Blecker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Besuch des Moduls Produktions- und Logistikmanagement
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Entwicklung des Welthandels und der Handelsströme sowie die Entwicklung internationaler Geschäftstätigkeiten zu interpretieren.
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie bspw. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von Beispielen aus der Praxis zu erläutern.
  • Theoretische Ansätze und Methoden in der Logistik und im Supply Chain Management vertiefend aufzuzeigen und in der Praxis einzusetzen.
  • Entscheidungsfelder des SCM zu identifizieren.
  • Gründe für die Bildung von Netzwerken anhand verschiedener Theorien aus der Institutionenökonomik (Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie) und der Ressourcen-basierten Sicht herzuleiten.
  • Ausgewählte Ansätze zur Erklärung und zur Entwicklung von Netzwerken zu erläutern.
  • Phasen der Netzwerkbildung zu erklären und darzustellen.
  • Funktionsmechanismen interorganisationaler und internationaler Netzwerkbeziehungen zu verstehen.
  • Beziehungen innerhalb von Netzwerken zu erläutern und zu kategorisieren.
  • Sourcing-Konzepte zu kategorisieren und Motive/Hemmnisse bzw. Vor und Nachteile zu erläutern.
  • Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe darzustellen.
  • Kriterien/Faktoren/Parameter, welche Produktionsstandortentscheidungen auf globaler Ebene beeinflussen (Gesamtnetzwerkkosten), zu nennen.
  • Methoden zur Standortentscheidung/-bewertung zu erläutern.
  • Produktionsnetzwerkphänotypen zu interpretieren.
  • Zusammenhänge zwischen F&E und Produktion bzw. deren Standorte zu erkennen bzw. damit zusammenhängende Modelle zu beschreiben.
  • Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke) durch die Anwendung adäquater Ansätze zu lösen.
  • Besonderheiten der Entsorgungslogistik inkl. deren Aufgaben & Ziele zu kategorisieren und praktische Beispiele guter Netzwerke zu nennen und zu beschreiben


Fertigkeiten
  • Trends und Herausforderungen in nationalen und internationalen Supply Chains und Logistiknetzwerken sowie ihre Folgen für das Unternehmen einzuschätzen.
  • Netzwerke und Netzwerkbeziehungen auf Basis der in der Vorlesung bearbeiteten Fallbeispiele zu systematisieren, zu bewerten und zu analysieren.
  • Partner und deren Eignung für die Zusammenarbeit in Kooperationen zu bewerten sowie Kooperationsbeziehungen zu analysieren.
  • Sourcing Konzepte für bestimmte Produkte/Produktbauteile auf Basis der in der Vorlesung besprochenen Vor- und Nachteile der einzelnen Konzepte auszuwählen.
  • Standortentscheidungen für Produktion sowie F&E auch in Abhängigkeit voneinander mit Hilfe erlernter Methoden und der Kenntnisse aus der Vorlesung zu bewerten und damit vorzubereiten.
  • Zusammenhänge zwischen F&E und Produktion sowie deren Standorte zu erkennen und die Eignung bestimmter Modelle für verschiedene Situationen zu bewerten.
  • Übertragung der analysierten Konzepte auf internationale Praxisbeispiele.
  • Produktentwicklungsprozesse zu analysieren und daraufhin zu bewerten.
  • Konzepte des Informations- und Kommunikationsmanagements in der Logistik zu analysieren.
  • Zuliefer-, Beschaffungs-, Produktions- und Entsorgungs- sowie F&E-Netzwerke zu gestalten,
  • effiziente und warenflussorientierte Unternehmensnetzwerke zu reorganisieren und zu planen.
  • Methoden des Komplexitätsmanagements und Risikomanagements in der Logistik anzuwenden.


Personale Kompetenzen
Sozialkompetenz
  • Interkulturelle und internationale Zusammenhänge auf Basis der bearbeiteten Fallstudien zu bewerten.
  • Netzwerkbildung auf Basis der Phasen und ihrer Ziele sowie Inhalte, die in der Vorlesung besprochen wurden, voranzutreiben, zu planen und zu gestalten.
  • Festlegung von Beschaffungsstrategien für einzelne Teile unter Nutzung der gewonnen Kenntnisse bezüglich Beschaffungsnetzwerken.
  • Gestaltung des Beschaffungsnetzwerks (Fremd-/Eigenbezug, Modular etc.) auf Basis der Sourcing-Konzepte und Kernkompetenzen, sowie den Erkenntnissen der Fallstudien.
  • Treffen von Standortentscheidungen für Produktionen unter Berücksichtigung globaler Zusammenhänge, Bewertungsmethoden und des Beschaffungs-/Absatzmarktes, welche auch durch Fallstudien besprochen wurden sowie ihrer Abhängigkeit von F&E.
  • Entscheidung für F&E Standorte auf Basis der gewonnen Erkenntnisse aus Fallstudien/Praxisbeispielen und die Auswahl eines geeigneten Modells.


Selbstständigkeit

Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung im Rahmen der Lehrveranstaltung "Supply Chain Management"
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1218: Supply Chain Management
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vermittlung eines tiefgreifenden Verständnisses von Logistik und Supply Chain Management
  • Vermittlung umfassender theoretischer Ansätze und Methoden in der Logistik und im Supply Chain Management; Übertragung der analysierten Konzepte auf internationale Praxisbeispiele
  • Identifikation von Trends und Herausforderungen nationaler und internationaler Supply Chains
  • Ausarbeitung und kritische Diskussion unterschiedlicher Supply Chain Konfigurationen  sowie strategischer Supply Chain Ansätze (z.B. prognosebasiert vs. nachfragebasiert, Effizienz vs. Reaktionsfähigkeit)
  • Ausarbeitung von Ansätzen und Zielen der Ressourcenplanung und des Lieferantenmanagements
  • Identifikation und Analyse von Konzepten des Logistikmanagements
  • Umsetzung der Unternehmensstrategie mit Fokus auf die Bereiche Purchasing, Operations und Sales
  • Vermittlung von Kenntnissen aus dem Demand Management und der Distributionslogistik
  • Integration eines Supply Chain Spiels, basierend auf dem SCOR-Modell; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin.

Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall.

Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall.

Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116.

Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer.

Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff.

Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium.

Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40.

Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill.

Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf.

Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin.


Lehrveranstaltung L1190: Wertschöpfungsnetzwerke
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuelle Entwicklungen internationaler Geschäftsaktivitäten wie z.B. Outsourcing, Offshoring, Internationalisierung und Globalisierung sowie emerging markets anhand von internationalen Beispielen aus der Praxis
  • Ausgewählte Ansätze zur Erklärung von Netzwerken einschließlich von Gründen für die Bildung von Netzwerken basierend auf verschiedenen Theorien aus der Institutionenökonomik, Transaktionskostentheorie, Principal-Agent-Theorie, Property-Right-Theorie- und der Ressourcen-basierten Sicht
  • Die Organisation der zwischenbetrieblichen Beziehungen, Netzwerktypen und Funktionsweise unter Berücksichtigung von Organisationsstrategien, Möglichkeiten der Einteilung sowie Systematisierung von Netzwerkbeziehungen und Funktionsmechanismen in Unternehmensnetzwerken. Zusätzlich werden die Phasen der Netzwerkbildung/Entwicklungszyklus, ihre Ziele sowie Inhalte ausführlich bearbeitet
  • Beschaffungsnetzwerke und Sourcing-Konzepte einschließlich ihrer Kategorisierung, Arten, Motive/Hemmnisse, Vor- und Nachteile, die mit Hilfe von Fallstudien erläutert werden
  • Produktionsnetzwerke: Kriterien, Faktoren/Parameter, welche die Produktionsstandortentscheidungen auch im internationalen Bereich beeinflussen (Gesamtnetzwerkkosten). Zusätzlich wird die Fertigungstiefe erläutert und Ausprägungen intensiv besprochen (Fremd-/Eigenbezug, Modular etc). Es werden internationale Betrachtungen bzgl. Vor-/Nachteile von Offshoring und Outsourcing bzw. die Unterscheidung beider Begriffe getätigt. Ebenso werden Produktionsnetzwerkphänotypen anhand von Beispielen aus der Praxis erarbeitet.
  • F&E Netzwerke: Zusammenhänge zwischen F&E und Produktion, Modelle für F&E Standortbestimmung in Abhängigkeit zur Produktion anhand von internationalen Praxisbeispielen
  • Logistische Distributionsnetzwerke und Ersatzteilnetzwerke: Teilprobleme bei der Konfiguration logistischer Netzwerke (Distributions- und Ersatzteilnetzwerke)
  • Entsorgungsnetzwerke: Besonderheiten der Entsorgungslogistik inkl. Aufgaben & Ziele und Vorteile bestimmter Entsorgungskonzepte sowie die Netzwerkbildung für die Entsorgung auf Basis globaler Beispiele/Fallstudien


Literatur
  • Ballou, R. Business Logistics/Supply Chain Management, Upper Saddle River 2004.
  • Bellmann, K. (Hrsg.): Kooperations- und Netzwerkmanagement, Berlin 2001.
  • Bretzke, W.R.: Logistische Netzwerke, Berlin Heidelberg 2008.
  • Blecker, Th. / Gemünden, H. G. (Hrsg.): Wertschöpfungsnetzwerke, Berlin 2006.
  • Kaluza, B. / Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.
  • Sydow, J. / Möllering: Produktion in Netzwerken, Berlin 2009.
  • Willibald A. G. (Hrsg.): Neue Wege in der Automobillogistik, Berlin Heidelberg 2007.


Modul M0630: Robotics and Navigation in Medicine

Lehrveranstaltungen
Titel Typ SWS LP
Robotik und Navigation in der Medizin (L0335) Vorlesung 2 3
Robotik und Navigation in der Medizin (L0338) Projektseminar 2 2
Robotik und Navigation in der Medizin (L0336) Gruppenübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • principles of math (algebra, analysis/calculus)
  • principles of programming, e.g., in Java or C++
  • solid R or Matlab skills
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and  safety and regulations. Students can assess typical systems regarding design and  limitations.

Fertigkeiten

The students are able to design and evaluate navigation systems and robotic systems for medical applications.


Personale Kompetenzen
Sozialkompetenz

The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work.

Selbstständigkeit

The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Schriftliche Ausarbeitung
Ja 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0335: Robotics and Navigation in Medicine
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt

- kinematics
- calibration
- tracking systems
- navigation and image guidance
- motion compensation
The seminar extends and complements the contents of the lecture with respect to recent research results.


Literatur

Spong et al.: Robot Modeling and Control, 2005
Troccaz: Medical Robotics, 2012
Further literature will be given in the lecture.

Lehrveranstaltung L0338: Robotics and Navigation in Medicine
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0336: Robotics and Navigation in Medicine
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0764: Flugzeugsysteme II

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme II (L0736) Vorlesung 3 4
Flugzeugsysteme II (L0740) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • den generellen Aufbau der primären Flugsteuerung sowie von Aktuator-, Avionik-,  Kraftstoff- und Fahrwerksystemen von Flugzeugen inklusive deren spezifischen Eigenschaften und Anwendungsfelder beschreiben,
  • unterschiedlicher Konfigurationen erläutern,
  • entsprechende Ausgestaltungen erklären.
  • atmosphärische Vereisungsbedingungen und Wirkprinzipien von Enteisungssystemen erläutern.

Fertigkeiten

Studierende können:

  • Aktuatorsysteme der primären Flugsteuerung auslegen
  • einen Reglerentwurfsprozess für Aktuatoren der Flugsteuerung  durchführen
  • Hochauftriebskinematiken entwerfen
  • Berechnung und Analyse von Fahrwerkskomponenten
  • Enteisungssysteme nach SAE Standardverfahren auslegen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • In gemischten Teams gemeinschaftlich Lösungen erarbeiten 
Selbstständigkeit

Studierende können:

  • Selbstständig aus komplexen Fragestellungen Anforderungen an Flugzeugsysteme ableiten und entsprechende, vereinfachte Entwurfsprozesse einleiten und durchführen
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0736: Flugzeugsysteme II
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuatorik (Grundkonzepte von Aktuatoren; elektro-mechanische Aktuatoren; Modellierung, Analyse  und Auslegung von Positionsregelsystemen; hydromotorische Stellsysteme)
  • Flugsteuerungssysteme (Steuerflächen, Scharniermomente; Stabilitäts- und Steuerbarkeitsanforderungen, Stellkräfte; reversible und irreversible Flugsteuerung; Servo-Stellsysteme)
  • Fahrwerksysteme (Konfigurationen und Geometrien; Analyse von Fahrwerkssystemen mit Hinblick auf Stoßdämpferdynamiken, Dynamik des abbremsenden Flugzeuges und Leistungsbedarf; Aufbau und Analyse von Bremssystemen im Hinblick auf Energie und Wärme; ABS)
  • Kraftstoffsysteme (Architekturen; Flugkraftstoffe; Systemkomponenten; Betankungsanlage; Tankinertisierung; Kraftstoffmanagement; Trimmtank)
  • Enteisungssysteme (Atmosphärische Vereisungsbedingungen; physikalische Prinzipien von Enteisungssystemen)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • Curry: Aircraft Landing Gear Design: Principles and Practices


Lehrveranstaltung L0740: Flugzeugsysteme II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0811: Bildgebende Systeme in der Medizin

Lehrveranstaltungen
Titel Typ SWS LP
Bildgebende Systeme in der Medizin (L0819) Vorlesung 4 6
Modulverantwortlicher Dr. Michael Grass
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • den Systemaufbau sowie die Systemkomponenten der wesentlichen klinischen bildgebenden Systeme beschreiben;
  • die Funktionsweise der Systemkomponenten und des Gesamtsystems der bildgebenden Systeme erklären;
  • die physikalischen Prozesse, die eine Bildgebung ermöglichen, erklären sowie die grundlegenden physikalischen Gleichungen anwenden;  
  • die physikalischen Effekte, die für die Erzeugung von Bildkontrasten notwendig sind, benennen und beschreiben; 
  • erklären, wie man räumliche und zeitliche Auflösung beeinflussen kann und wie man die erzeugten Bilder charakterisiert;
  • erklären, welche Bildrekonstruktionsverfahren für die Erzeugung von Bildern verwendet werden;
  • die wesentlichen klinischen Anwendungen der verschiedenen Systeme darstellen und begründen.


Fertigkeiten

Studierende sind in der Lage:

  • die physikalischen Prozesse der Bildgebung zu erklären und die benötigten mathematischen bzw. physikalischen Grundgleichungen den Systemen zuzuordnen.
  • durch Anwendung der mathematischen bzw. physikalischen Grundgleichungen Kenngrößen bildgebender Systeme zu berechnen;
  • den Einfluss von verschiedenen Systemkomponenten auf die räumliche und zeitliche Auflösung bildgebender Systeme zu bestimmen;
  • die Bedeutung verschiedener bildgebender Systeme für einige klinische Applikationen zu erläutern;
  • ein geeignetes bildgebendes System für eine Applikation auszuwählen.
Personale Kompetenzen
Sozialkompetenz

keine

Selbstständigkeit

Studierende können:

  • verstehen, welche physikalischen Effekte in der medizinischen Bildgebung verwendet werden;
  • selbstständig entscheiden, für welche klinische Fragestellung ein Messsystem eingesetzt werden kann.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin
Typ Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber
Sprachen DE
Zeitraum SoSe
Inhalt

Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben.

Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf:

In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt.

0: Einführungsvorlesung
1: medizinische Bildgebung mittels Ultraschalls
2: Projektionsröntgenbildgebung
3: Röntgen-Computertomographie
4: Magentresonanztomographie
5: Bildgebung mittels nuklearer Verfahren

  • Ultraschall: Physikalische Grundlagen, Aufbau und technische Realisierung eines Ultraschallsystems, Bildgebungsverfahren, Flußmessverfahren, medizinische Anwendungen.
  • Röntgen: Physikalische Grundlagen der Röntgenbildgebung, Aufbau von Röntgenröhren, Detektion von Röntgenstrahlung, Techniken der Bildaufnahme, Bildkontrast, Projektionsröntgen, Dosisquantifizierung.
  • Computer Tomographie (CT): Aufbau eines Computer-Tomographen, Datenakquisition, Bildrekonstruktion und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Magnetresonanz Tomographie (MRT): Physikalische Grundlagen, Aufbau eines MR-Tomographen, Grundlagen der MR-Bildgebung, Relaxation und Bildkontrast, ausgewählte medizinische Anwendungen.
  • Nuklearmedizin: Kernphysikalische Grundlagen, Herstellung von Radionukleiden, Nuklearmedinische Meßtechnik, Szintigraphie, Single Photon Emission Computer Tomographie (SPECT), Positronen Emissions Tomographie (PET), medizinische Anwendungen.

Literatur

Primary book:

1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press

Secondary books:

- A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003.

- W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002.

- H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995.

- O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000.

Modul M1143: Methodisches Konstruieren

Lehrveranstaltungen
Titel Typ SWS LP
Methodisches Konstruieren (L1523) Vorlesung 3 4
Methodisches Konstruieren (L1524) Gruppenübung 1 2
Modulverantwortlicher Prof. Josef Schlattmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagenkenntnisse des Konstruierens

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können spezifische Produktentwicklungsmethoden
erläutern und kausale Zusammenhänge  zwischen Mensch - Technik -Organisation darstellen.

Fertigkeiten

Die Studierenden können
- wissenschaftlich fundiert arbeiten in der Produktentwicklung unter
gezielter Anwendung von Produktentwicklungsmethoden,
- Kreativ mit den Prozessen des wissenschaftlichen Aufbereitens und
Formalisierens von komplexen Produktentwicklungsaufgaben umgehen,
- diverse Produktentwicklungsmethoden theoriegeleitet anwenden,
- in Funktionen bzw. Funktionsstrukturen denken und arbeiten
- die Theorie des erfinderischen Problemlösens (TRIZ) anwenden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen
aus dem industriellen Bereich in kleinen  Übungsteams lösen sowie
gemeinschaftlich schöpferisch unter Nutzung von Kreativitätstechniken
handeln.

Selbstständigkeit

Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1523: Methodisches Konstruieren
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff
Lehrveranstaltung L1524: Methodisches Konstruieren
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Josef Schlattmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Systematische Betrachtung und Analyse des Konstruktionsprozesses
  • Strukturierung des Prozesses nach Abschnitten (Aufgabenstellung, Funktionen, Wirkprinzipien, Konstruktionselemente und Gesamtkonstruktion) sowie Ebenen (Bearbeiten, Steuern und Entscheiden)
  • Kreativitätstechniken (Grundlagen, Methoden, Anwendung am Beispiel Mechatronik)
  • Diverse Methoden als Werkzeuge (Funktionsstrukturen, GALFMOS, AEIOU-Methode, GAMPFT, Simulationswerkzeuge, TRIZ)
  • Bewertung und Auswahl von Lösungen (technisch-wirtschaftliche Bewertung, Präferenzmatrix)
  • Wertanalyse / Nutzwertanalyse
  • Entwickeln von Baureihen und Baukästen
  • Lärmarmes Gestalten von Produkten
  • Projektverfolgung und -führung (Projekte leiten / Führen von Mitarbeitern, Organisation im Bereich Produktentwicklung, Ideen gewinnen / Verantwortung und Kommunikation)
  • Ästhetische Produktgestaltung (Industrial Design, Farbgestaltung, konkrete Beispiele / Übungsaufgaben)
Literatur
  • Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre: Grundlage erfolgreicher Produktentwicklung, Methoden und Anwendung, 7. Auflage, Springer Verlag, Berlin 2007
  • VDI-Richtlinien: 2206; 2221ff

Modul M1145: Automation und Simulation

Lehrveranstaltungen
Titel Typ SWS LP
Automation und Simulation (L1525) Vorlesung 3 3
Automation und Simulation (L1527) Hörsaalübung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse BSc Maschinenbau oder ähnlich.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben.

Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben.

Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern.


Fertigkeiten

Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen.

Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten.

Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen.

Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden.


Personale Kompetenzen
Sozialkompetenz Zusammenarbeit in kleinen Teams
Selbstständigkeit

Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen  durchzuführen und die Ergebnisse kritisch zu beurteilen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1525: Automation und Simulation
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt

Aufbau von Automationseinrichtungen

Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten

Datenübertragung über Bussysteme

Speicherprogrammierbare Steuerung

Verfahren zur Beschreibung logischer Abläufe

Prinzip der Modellierung und Simulation von kontinuierlichen  technischen Systemen

Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink)

Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen.



Literatur

U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag

R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag

Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag

Einführung/Tutorial Matlab/Simulink - verschiedene Autoren


Lehrveranstaltung L1527: Automation und Simulation
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1156: Systems Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Systems Engineering (L1547) Vorlesung 3 4
Systems Engineering (L1548) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Flugzeug-Kabinensysteme

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• Vorgehensmodelle, Methoden und Werkzeuge für das Systems Engineering zur Entwicklung komplexer Systeme verstehen
• Innovationsprozesse und die Notwendigkeit des Technologiemanagements beschreiben
• den Flugzeug-Entwicklungsprozess und den Vorgang der Musterzulassung bei Flugzeugen erläutern
• den System-Entwicklungsprozess inklusive der Anforderungen an die Zuverlässigkeit von Systemen erklären
• die Umgebungs- und Einsatzbedingungen von Luftfahrtausrüstung mit den entsprechenden Testanforderungen benennen
• die Methodik des Requirements-Based Engineering (RBE) und des Model-Based Requirements Engineering (MBRE) einschätzen

Fertigkeiten

Studierende können:
• das Vorgehen zur Entwicklung eines komplexen Systems planen
• die Entwicklungsphasen und Entwicklungsaufgaben organisieren
• erforderliche Geschäfts- und Technikprozesse zuordnen
• Werkzeuge und Methoden des Systems Engineering anwenden

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• ihre Aufgaben innerhalb eines Entwicklungsteams verstehen und sich mit ihrer Rolle in den Gesamtprozess einordnen

Selbstständigkeit

Studierende können:
• in einem Entwicklungsteam mit Aufgabenteilung interagieren und kommunizieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1547: Systems Engineering
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und  Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein.

Schwerpunkte der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement, der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und Methoden für das Systems Engineering:
• Innovationsprozesse
• IP-Schutz
• Technologiemanagement
• Systems Engineering
• Flugzeug-Entwicklungsprozess
• Themen der Zulassung
• System-Entwicklungsprozess
• Sicherheitsziele und Fehlertoleranz
• Umgebungs- und Einsatzbedingungen
• Werkzeuge und Methoden für das Systems Engineering
• Requirements-Based Engineering (RBE)
• Model-Based Requirements Engineering (MBRE)

Literatur

- Skript zur Vorlesung
- diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE)
- Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010
- NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007
- Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010
- De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010
- Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008

Lehrveranstaltung L1548: Systems Engineering
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1161: Strömungsmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmaschinen (L1562) Vorlesung 3 4
Strömungsmaschinen (L1563) Hörsaalübung 1 2
Modulverantwortlicher Prof. Franz Joos
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die physikalischen Phänomene der Energiewandlung unterscheiden,

- die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen,

- Strömungsmaschinen berechnen und bewerten.

Fertigkeiten

Die Studierenden können

- die Physik der Strömungsmaschinen verstehen,

- Übungsaufgaben selbstständig lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Die Studierenden können

  • eine komplexe Aufgabenstellung eigenständig bearbeiten,
  • die Ergebnisse kritisch analysieren.,
  • sich mit anderen Studierenden qualifiziert austauschen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1562: Strömungsmaschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt
  • Strömungsmaschinen der Antriebstechnik
  • Hauptgleichungen
  • Einführung in die Theorie der Stufe
  • Theorie der Schaufelprofile
  • Grenzen
  • Dichtelemente
  • Dampfturbinen
  • Gasturbinen


Literatur
  • Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York
  • Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York
  • Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York
  • Menny: Strömungsmaschinen, Teubner., Stuttgart


Lehrveranstaltung L1563: Strömungsmaschinen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Franz Joos
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1170: Phänomene und Methoden der Materialwissenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Experimentelle Methoden der Materialcharakterisierung (L1580) Vorlesung 2 3
Phasengleichgewichte und Umwandlungen (L1579) Vorlesung 2 3
Modulverantwortlicher Prof. Patrick Huber
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in Werkstoffwissenschaften, z.B. aus den Modulen Werkstoffwissenschaft I/II


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben.

Fertigkeiten

Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit gewünschten Eigenschaften zusammenzustellen.
Die Studierenden können einen Überblick über moderne Werkstoffe geben und optimale Werkstoffkombinationen für vorgegebene Anwendungen zusammenstellen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln.

Selbstständigkeit

Die Studierenden können ...

  • ihre eigenen Stärken und Schwächen ermitteln.
  • benötigtes Wissen aneignen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Patrick Huber
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Strukturelle Chrakterisierungsmethoden mit Photonen, Neutronen und Elektronen (insbesondere Röntgen- und Neutronenbeugung, Elektronenmikroskopie, Tomographietechniken, grenzflächensensitive Methoden)
  • Mechanische und thermodynamische Charakterisierungsmethoden (Indentermessungen
  • Charakterisierung von optischen, elektrischen und magnetischen Eigenschaften (Spektroskopie, elektrische Leitfähigkeit, Magnetometrie)

Literatur

William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011).

William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Jörg Weißmüller
Sprachen DE
Zeitraum SoSe
Inhalt

Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen.

Literatur Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Modul M1226: Mechanische Eigenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Mechanisches Verhalten spröder Materialien (L1661) Vorlesung 2 3
Theorie der Versetzungsplastizität (L1662) Vorlesung 2 3
Modulverantwortlicher Dr. Erica Lilleodden
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Werkstoffwissenschaften I/II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären.

Fertigkeiten

Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen

Personale Kompetenzen
Sozialkompetenz

Studierende können:

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.

Selbstständigkeit

Studierende sind fähig:

- eigene Stärken und Schwächen allgemein einzuschätzen

- angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerold Schneider
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Theoretische Festigkeit
eines perfekten Materials, theoretische kritische Schubspannung

Tatsächliche Festigkeit von spröden Materialien
Energiefreisetzungsrate, Spannungsintensitätsfaktor, Bruchkriterium

Streuung der Festigkeit
Fehlerverteilung, Festigkeitsverteilung, Weibullverteilung

Heterogene Materialien I
Innere Spannungen, Mikrorisse, Stoffgesetze (E-Modul parallel, senkrecht)

Heterogene Materialien II
Verstärkungsmechanismen: Rissbrücken, Faser

Heterogene Materialien III
Verstärkungsmechanismen: Prozesszone

Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien

R-Kurve, stabiles/ instabile Risswachstum, Fraktographie

Thermoschock

Unterkritisches Risswachstum
v-K-Kurve, Lebensdauerberechnung

Kriechen

Mechanische Eigenschaften von biologischen Materialien

Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile

Literatur

D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier

D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998

B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993

D. Munz, T. Fett, Ceramics, Springer, 2001

D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Lehrveranstaltung L1662: Theorie der Versetzungsplastizität
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Erica Lilleodden
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen.

Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und -Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen.

Literatur

Vorlesungsskript

Aktuelle Publikationen

Bücher:

Introduction to Dislocations, by D. Hull and D.J. Bacon

Theory of Dislocations, by J.P.  Hirth and J. Lothe

Physical Metallurgy, by Peter Hassen

Modul M0840: Optimal and Robust Control

Lehrveranstaltungen
Titel Typ SWS LP
Optimale und robuste Regelung (L0658) Vorlesung 2 3
Optimale und robuste Regelung (L0659) Gruppenübung 2 3
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Linear algebra, singular value decomposition
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the significance of the matrix Riccati equation for the solution of LQ problems.
  • They can explain the duality between optimal state feedback and optimal state estimation.
  • They can explain how the H2 and H-infinity norms are used to represent stability and performance constraints.
  • They can explain how an LQG design problem can be formulated as special case of an H2 design problem.
  • They  can explain how model uncertainty can be represented in a way that lends itself to robust controller design
  • They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant.
  • They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities.
Fertigkeiten
  • Students are capable of designing and tuning LQG controllers for multivariable plant models.
  • They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it.
  • They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design.
  • They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller.
  • They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them.
  • They can carry out all of the above using standard software tools (Matlab robust control toolbox).
Personale Kompetenzen
Sozialkompetenz Students can work in small groups on specific problems to arrive at joint solutions. 
Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0658: Optimal and Robust Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Optimal regulator problem with finite time horizon, Riccati differential equation
  • Time-varying and steady state solutions, algebraic Riccati equation, Hamiltonian system
  • Kalman’s identity, phase margin of LQR controllers, spectral factorization
  • Optimal state estimation, Kalman filter, LQG control
  • Generalized plant, review of LQG control
  • Signal and system norms, computing H2 and H∞ norms
  • Singular value plots, input and output directions
  • Mixed sensitivity design, H∞ loop shaping, choice of weighting filters
  • Case study: design example flight control
  • Linear matrix inequalities, design specifications as LMI constraints (H2, H∞ and pole region)
  • Controller synthesis by solving LMI problems, multi-objective design
  • Robust control of uncertain systems, small gain theorem, representation of parameter uncertainty
Literatur
  • Werner, H., Lecture Notes: "Optimale und Robuste Regelung"
  • Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994
  • Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996
  • Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988
  • Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998
Lehrveranstaltung L0659: Optimal and Robust Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1343: Fibre-polymer-composites

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde (L1894) Vorlesung 2 3
Konstruieren mit Faser-Kunststoff-Verbunden (L1893) Vorlesung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basics: chemistry / physics / materials science
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can use the knowledge of  fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis.

They can explain the complex relationships structure-property relationship and

the interactions of chemical structure of the polymers, their processing with the different fiber types, including to explain neighboring contexts (e.g. sustainability, environmental protection).

Fertigkeiten

Students are capable of

  • using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials.
  • approximate sizing using the network theory of the structural elements implement and evaluate.
  • selecting appropriate solutions for mechanical recycling problems and sizing example stiffness, corrosion resistance.
Personale Kompetenzen
Sozialkompetenz

Students can

  • arrive at funded work results in heterogenius groups and document them.
  • provide appropriate feedback and handle feedback on their own performance constructively.


Selbstständigkeit

Students are able to

- assess their own strengths and weaknesses.

- assess their own state of learning in specific terms and to define further work steps on this basis.

- assess possible consequences of their professional activity.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt

- Microstructure and properties of the matrix and reinforcing materials and their interaction
- Development of composite materials
- Mechanical and physical properties
- Mechanics of Composite Materials
- Laminate theory
- Test methods
- Non destructive testing
- Failure mechanisms
- Theoretical models for the prediction of properties
- Application

Literatur Hall, Clyne: Introduction to Composite materials, Cambridge University Press
Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press
Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York
Lehrveranstaltung L1893: Design with fibre-polymer-composites
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen EN
Zeitraum SoSe
Inhalt Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literatur Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde

Lehrveranstaltungen
Titel Typ SWS LP
Verarbeitung von Faser-Kunststoff-Verbunde (L1895) Vorlesung 2 3
Vom Molekül zum Composite Bauteil (L1516) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Bodo Fiedler
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde 

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren.
Fertigkeiten

Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen.  

Personale Kompetenzen
Sozialkompetenz Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. 
Selbstständigkeit Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren

Literatur Åström: Manufacturing of Polymer Composites, Chapman and Hall
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch).

Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität.

In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende  Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“).

Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung  sicher zu stellen .

Literatur

Customer Request ("Handout")

Modul M0563: Robotics

Lehrveranstaltungen
Titel Typ SWS LP
Robotik: Modellierung und Regelung (L0168) Vorlesung 3 3
Robotik: Modellierung und Regelung (L1305) Gruppenübung 2 3
Modulverantwortlicher Prof. Uwe Weltin
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Fundamentals of electrical engineering

Broad knowledge of mechanics

Fundamentals of control theory

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics.
Fertigkeiten

Students are able to derive and solve equations of motion for various manipulators.

Students can generate trajectories in various coordinate systems.

Students can design linear and partially nonlinear controllers for robotic manipulators.

Personale Kompetenzen
Sozialkompetenz Students are able to work goal-oriented in small mixed groups.
Selbstständigkeit

Students are able to recognize and improve knowledge deficits independently.

With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht
International Production Management: Vertiefung Produktionstechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0168: Robotics: Modelling and Control
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt

Fundamental kinematics of rigid body systems

Newton-Euler equations for manipulators

Trajectory generation

Linear and nonlinear control of robots

Literatur

Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3

Spong, Mark W.; Hutchinson, Seth;  Vidyasagar, M. : Robot Modeling and Control. WILEY. ISBN 0-471-64990-2


Lehrveranstaltung L1305: Robotics: Modelling and Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Uwe Weltin
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0771: Flugphysik

Lehrveranstaltungen
Titel Typ SWS LP
Aerodynamik und Flugmechanik I (L0727) Vorlesung 3 3
Flugmechanik II (L0730) Vorlesung 2 2
Flugmechanik II (L0731) Hörsaalübung 1 1
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Themodynamik
  • Luftfahrtechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können:
  • Die Fundamentalgleichungen der Aerodynamik für kompressible, inkompressible und reibungsbehaftete Strömungen beschreiben 
  • Wirkprinzipien von Flügelprofilen und Tragflächen erläutern
  • Die Bewegungsgleichungen des Flugzeugs erklären
  • Die Flugleistung sowie Stabilität des Flugzeugs einschätzen 
  • Die Dynamik der Längs-und Seitenbewegung beschreiben
  • Methoden der Flugsimulation und Flugmesstechnik erläutern
Fertigkeiten Studierende können:
  • Flugmechanische Simulationen durchführen
  • Flugmechanische Zusammenhänge aus virtuellen wie realen Flugversuchsdaten herleiten
Personale Kompetenzen
Sozialkompetenz Studierende können:
  • Simulationen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit Studierende können:
  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten im WS + 90 Minuten im SS
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Frank Thielecke, Dr. Ralf Heinrich, Mike Montel
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aerodynamik (Fundamentalgleichungen; kompressible und inkompressible Strömungen; Flügelprofile und Tragflächen; Reibungsbehaftete Strömungen)
  • Flugmechanik (Bewegungsgleichungen; Flugleistung; Steuerflächen, Beiwerte; Längsstabilität und Steuerung; Trimmzustände; Flugmanöver)


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight


Lehrveranstaltung L0730: Flugmechanik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Dynamik der Längsbewegung
  • stationärer unsymmetrischer Flug
  • Flugmanöver der Seitenbewegung
  • Dynamik der Seitenbewegung
  • Methoden der Flugsimulation
  • Experimentelle Methoden der Flugmechanik
  • Modellvalidierung mit Parameteridentifikation


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight




Lehrveranstaltung L0731: Flugmechanik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0815: Product Planning

Lehrveranstaltungen
Titel Typ SWS LP
Produktplanung (L0851) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 3
Produktplanung Seminar (L0853) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Cornelius Herstatt
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Good basic-knowledge of Business Administration

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students will gain  insights into:

  • Product Planning
    • Process
    • Methods
  • Design thinking
    • Process
    • Methods
    • User integration
Fertigkeiten

Students will gain deep insights into:

  • Product Planning
    • Process-related aspects
    • Organisational-related aspects
    • Human-Ressource related aspects
    • Working-tools, methods and instruments

Personale Kompetenzen
Sozialkompetenz
  • Interact within a team
  • Raise awareness for globabl issues
Selbstständigkeit
  • Gain access to knowledge sources
  • Interpret complex cases
  • Develop presentation skills
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Global Innovation Management: Kernqualifikation: Pflicht
Global Technology and Innovation Management & Entrepreneurship: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0851: Product Planning
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt

Product Planning Process

This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.:
•    Systematic scanning of markets for innovation opportunities
•    Understanding strengths/weakness and specific core competences of a firm as platforms for innovation
•    Exploring relevant sources for innovation (customers, suppliers, Lead Users, etc.)
•    Developing ideas for radical innovation, relying on the creativeness of employees, using techniques to stimulate creativity and creating a stimulating environment
•    Transferring ideas for innovation into feasible concepts which have a high market attractively

Literatur Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010
Lehrveranstaltung L0853: Product Planning Seminar
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Cornelius Herstatt
Sprachen EN
Zeitraum WiSe
Inhalt Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly
Literatur see/siehe Vorlesung Produktplanung/Product Planning

Modul M0830: Environmental Protection and Management

Lehrveranstaltungen
Titel Typ SWS LP
Integrierter Umweltschutz (L0502) Vorlesung 2 2
Sicherheits-, Gesundheits- und Umweltmanagement (L0387) Vorlesung 2 3
Sicherheits-, Gesundheits- und Umweltmanagement (L0388) Gruppenübung 1 1
Modulverantwortlicher Prof. Ralf Otterpohl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Good knowledge in Technologies for Environmental Protection (end-of-pipe, integrated solutions)
  • Good knowledge of the relevant Environmental Legislation
  • Basic knowledge of instruments for Environmental Assessment
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors.


Fertigkeiten

Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level.


Personale Kompetenzen
Sozialkompetenz

The students can work together in international groups.


Selbstständigkeit

Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Vertiefung Wasser und Verkehr: Wahlpflicht
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht
Environmental Engineering: Kernqualifikation: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht
Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht
Lehrveranstaltung L0502: Integrated Pollution Control
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ralf Otterpohl
Sprachen EN
Zeitraum WiSe
Inhalt

The lecture focusses on:

  • The Regulatory Framework
  • Pollution & Impacts, Characteristics of Pollutants
  • Approaches of Integrated Pollution Control
  • Sevilla Process, Best Available Technologies & BREF Documents
  • Case Studies: paper industry, cement industry, automotive industry
  • Field Trip
Literatur

Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0

Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3






Lehrveranstaltung L0387: Health, Safety and Environmental Management
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt
  • Objectives of and benefit from HSE management
  • From dilution and end-of-pipe technology to eco-efficiency and eco-effectiveness Behaviour control: regulations, economic instruments and voluntary initiatives
  • Fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements Environmental performance evaluation Risk management: hazard, risk and safety Health and safety at the workplace
  • Crisis management
Literatur

C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315)

Exercises can be downloaded from StudIP

Lehrveranstaltung L0388: Health, Safety and Environmental Management
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Hans-Joachim Nau
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen

Lehrveranstaltungen
Titel Typ SWS LP
Das digitale Unternehmen (L0932) Vorlesung 2 2
Produktionsplanung und -steuerung (L0929) Vorlesung 2 2
Produktionsplanung und -steuerung (L0930) Gruppenübung 1 1
Übung: Das digitale Unternehmen (L0933) Gruppenübung 1 1
Modulverantwortlicher Prof. Hermann Lödding
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen des Produktions- und Qualitätsmanagements
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen.
Fertigkeiten Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden.
Personale Kompetenzen
Sozialkompetenz Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten.
Selbstständigkeit -
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 Minuten
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0932: Das digitale Unternehmen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Im Kontext von Industrie 4.0 werden die Vernetzung und die Digitalisierung von Unternehmen zu einem strategischen Vorteil im internationalen Wettbewerb. Die Vorlesung thematisiert die relevantesten Bausteine hierfür und befähigt die Teilnehmer, aktuelle Entwicklungen kritisch zu hinterfragen. Insbesondere werden dafür die Themen Wissensmanagement, Simulation, Prozessmodellierung und virtuelle Technologien behandelt. 

Inhalte:

  • Geschäftsprozess- und Datenmodellierung, Simulation
  • Wissens-/Kompetenzmanagement
  • Prozess-Management (PPS, Workflow-Management)
  • Rechnerunterstützte Arbeitsplanung - Computer Aided Planning (CAP) und
  • NC-Programmierung
  • Virtual Reality (VR) und Augmented Reality (AR)
  • Computer Aided Quality Management (CAQ) 
  • Industrie 4.0
 


Literatur

Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002

Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006

Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004

Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 

Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006

Lehrveranstaltung L0929: Produktionsplanung und -steuerung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modelle der Logistik – Produktion und Lager
  • Produktionsprogamm- und Mengenplanung
  • Termin- und Kapazitätsplanung
  • Ausgewählte Verfahren der PPS
  • Fertigungssteuerung
  • Produktionscontrolling
  • Logistikmanagement in der Lieferkette
Literatur
  • Vorlesungsskript
  • Lödding, H: Verfahren der Fertigungssteuerung, Springer 2008
  • Nyhuis, P.; Wiendahl, H.-P.: Logistische Kennlinien, Springer 2002
Lehrveranstaltung L0930: Produktionsplanung und -steuerung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Hermann Lödding
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Axel Friedewald
Sprachen DE
Zeitraum WiSe
Inhalt

Siehe korrespondierende Vorlesung

Literatur

Siehe korrespondierende Vorlesung

See interlocking course

Modul M0962: Nachhaltigkeit und Risikomanagement

Lehrveranstaltungen
Titel Typ SWS LP
Sicherheit, Zuverlässigkeit und Risikobewertung (L1145) Seminar 2 3
Umweltschutz und Nachhaltigkeit (L0319) Vorlesung 2 3
Modulverantwortlicher Prof. Kerstin Kuchta
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Produktion und Einsatz von Biokohle
  • Energieproduktion und -versorgung
  • Umweltfreundliches Produktdesign


Fertigkeiten

Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten.

Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit

Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Ausarbeitung und Präsentation (45 Minuten in Gruppen)
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Marco Ritzkowski
Sprachen DE
Zeitraum WiSe
Inhalt

Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:

  • Grundlagen der Sicherheit und Zuverlässigkeit technischer Anlagen
  • Verfahren der Sicherheitsanalyse und Zuverlässigkeitsbewertung
  • Risikobewertung
  • Beispiele aus der Praxis (Exkursionen)
  • Diskussionen, Präsentationen 
Literatur

- Vorlesungsunterlagen

- Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf‎


Lehrveranstaltung L0319: Environment and Sustainability
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Kerstin Kuchta
Sprachen EN
Zeitraum WiSe
Inhalt This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
Production and Usage of Bio-char
Engergy production with algae
Environmental product design
Clean Development mechanism (CDM)
Democracy and Energy

New Concepts for a sustainable Energy Supply


Recycling of Wind Turbines
Alternative Mobility

Disposal of Nuclear Wastes
Waste2Energy
Offshore Wind energy

Literatur Wird in der Veranstaltung bekannt gegeben.

Modul M1002: Produktions- und Logistikmanagement

Lehrveranstaltungen
Titel Typ SWS LP
Operatives Produktions- und Logistikmanagement (L1198) Vorlesung 2 2
Strategisches Produktions- und Logistikmanagement (L1089) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 3 4
Modulverantwortlicher Prof. Wolfgang Kersten
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Betriebswirtschaftslehre


Die zum erfolgreichen Absolvieren dieses Moduls erforderlichen Vorkenntnisse werden im Rahmen eines E-Learning-Angebots vermittelt. Einen Zugang sowie weitere Informationen zu dem zugehörigen Online-Lernmodul erhalten die Studierenden bei ihrer Einschreibung.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können
•    zwischen strategischem und operativem Produktions- und Logistikmanagement differenzieren;
•    Gestaltungsfelder des Produktions- und Logistikmanagements beschreiben;
•    den Unterschied zwischen traditionellen und neueren Produktionsplanungs- und
-steuerungskonzepten verstehen;
•    die aktuellen Herausforderungen an das Produktions- und Logistikmanagement, insbesondere in einem internationalen Kontext, wiedergeben und erläutern.



Fertigkeiten

Die Studierenden sind auf Basis des erlernten Wissens in der Lage,
-    Methoden des Produktions- und Logistikmanagements in einem internationalen Kontext anzuwenden,
-    für die Lösung praktischer Probleme geeignete produktionswirtschaftliche Methoden und Werkzeuge auszuwählen,
-    geeignete Vorgehensweisen des Produktions- und Logistikmanagements auch für nicht standardisierte Fragestellungen auszuwählen,
-    Entscheidungsfelder im Produktions- und Logistikmanagement sowie zugehörige Einflussgrößen ganzheitlich zu beurteilen.


Personale Kompetenzen
Sozialkompetenz Die Studierenden sind nach Abschluss des Moduls in der Lage,
-    Diskussionen und Teamsitzungen anzuleiten,
-    in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren,
-    in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten,
-    Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage,

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen,

- sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie
geeignete Mittel zur Umsetzung einzusetzen
- Forschungsaufgaben unter Reflexion möglicher gesellschaftlicher Auswirkungen zu definieren
und durchzuführen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 2.5 % Übungsaufgaben Online-Modul
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung PBL
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Blecker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Vertiefende Kenntnisse des operativen Produktionsmanagements

  • Traditionelle Produktionsplanung und –steuerungskonzepte

  • Neuere Produktionsplanung und –steuerungskonzepte

  • Verständnis und Anwendung quantitativer Methoden

  • Weitere Konzepte des operativen Produktionsmanagements


Literatur


Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009.

Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010.

Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011.

Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000.

Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005.

Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003.

Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994.

Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010.

Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996

Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001


Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Wolfgang Kersten
Sprachen DE
Zeitraum WiSe
Inhalt
  • Identifikation von Aufgabenschwerpunkten und Gestaltungsfeldern des Produktions- und Logistikmanagements
  • Berücksichtigung aktueller Herausforderungen bei der Formulierung der Produktionsstrategie
  • Charakterisierung, Entwicklung und Analyse geeigneter Wettbewerbsstrategien
  • Produktion und Logistik als Wettbewerbsfaktor
  • Identifikation und Gestaltung von Entscheidungsfeldern der Produktionsstrategie (Fertigungstiefenstrategie, Technologiestrategie, Standortstrategie, Kapazitätsstrategie) im Unternehmenskontext
  • Beurteilung der Produktionsstrategie verschiedener Branchen und Unternehmen
  • Vermittlung vertiefender Kenntnisse von Konzepten des Produktions- und Logistikmanagements
  • Vermittlung vertiefender Kenntnisse von Lean Management und verwandten Konzepten; Wesentliche Ziele und Maßnahmen, Einfluss von Lean auf die Produktionsstrategie
  • Vorstellung und Diskussion aktueller Forschungsergebnisse im Produktions- und Logistikmanagement
  • Integration umfangreicher Problem-Based-Learning Einheiten zur Bearbeitung vorlesungsrelevanter Fallbeispiele;  gemeinsame Erarbeitung und Entwicklung von Problemlösungsvorschlägen im Rahmen der interkulturellen Teamarbeit; Aufbereitung der Ergebnisse mit Hilfe moderner Präsentationsmedien


Literatur

Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg.

Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer.

Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River.

Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann.

Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag.

Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a.

Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a.

Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88

Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York.

Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart:  Lucius & Lucius

Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a.


Modul M1024: Methoden der integrierten Produktentwicklung

Lehrveranstaltungen
Titel Typ SWS LP
Integrierte Produktentwicklung II (L1254) Vorlesung 3 3
Integrierte Produktentwicklung II (L1255) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Fachbegriffe der Konstruktionsmethodik zu erklären,
  • wesentliche Elemente des Konstruktionsmanagements zu beschreiben,
  • aktuelle Problemstellungen und den gegenwärtigen Forschungsstand der integrierten Produktentwicklung zu beschreiben.


Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • für die nicht standardisierte Lösung eines Problems eine geeignete Konstruktionsmethode auszuwählen und anzuwenden sowie an neue Randbedingungen anzupassen,
  • Problemstellungen der Produktentwicklung mit Hilfe einer workshopbasierten Vorgehensweise zu lösen,
  • Moderationstechniken situationsspezifisch auszuwählen und durchzuführen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Teamsitzungen und Moderationsprozesse vorzubereiten und anzuleiten,
  • in Gruppenarbeitsprozessen komplexe Aufgaben gemeinsam zu bearbeiten,
  • Probleme und Lösungen vor Fachpersonen vertreten und Ideen weiterzuentwickeln.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • strukturiertes Feedback zu geben und kritisches Feedback anzunehmen,
  • angenommenes Feedback eigenständig umzusetzen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1254: Integrierte Produktentwicklung II
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt

Vorlesung

Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf.

Themen der Vorlesung sind insbesondere:

  • Methoden der Produktentwicklung,
  • Moderationstechniken,
  • Industrial Design,
  • variantengerechte Produktgestaltung,
  • Modularisierungsmethoden,
  • Konstruktionskataloge,
  • angepasste QFD-Matrix,
  • systematische Werkstoffauswahl,
  • montagegerechtes Konstruieren,

Konstruktionsmanagement

  • CE-Kennzeichnung, Konformitätserklärung inkl. Gefährdungsbeurteilung,
  • Patentwesen, Patentrechte, Patentüberwachung
  • Projektmanagement (Kosten, Zeit, Qualität) und Eskalationsprinzipien,
  • Entwicklungsmanagement Mechatronik,
  • Technisches Supply Chain Management.

Übung (PBL)

In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft.

Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktions­managements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben.



Literatur
  • Andreasen, M.M., Design for Assembly, Berlin, Springer 1985.
  • Ashby, M. F.: Materials Selection in Mechanical Design, München, Spektrum 2007.
  • Beckmann, H.: Supply Chain Management, Berlin, Springer 2004.
  • Hartmann, M., Rieger, M., Funk, R., Rath, U.: Zielgerichtet moderieren. Ein Handbuch für Führungskräfte, Berater und Trainer, Weinheim, Beltz 2007.
  • Pahl, G., Beitz, W.: Konstruktionslehre, Berlin, Springer 2006.
  • Roth, K.H.: Konstruieren mit Konstruktionskatalogen, Band 1-3, Berlin, Springer 2000.
  • Simpson, T.W., Siddique, Z., Jiao, R.J.: Product Platform and Product Family Design. Methods and Applications, New York, Springer 2013.
Lehrveranstaltung L1255: Integrierte Produktentwicklung II
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1025: Fluidtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Fluidtechnik (L1256) Vorlesung 2 3
Fluidtechnik (L1371) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 1 2
Fluidtechnik (L1257) Hörsaalübung 1 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • Aufbau und Funktionsweise von Komponenten der Hydrostatik, Pneumatik und Hydrodynamik zu erklären,
  • das Zusammenwirken hydraulischer Komponenten in Systemen zu erläutern,
  • die Steuerung und Regelung hydraulischer Systeme detailliert zu erklären,
  • Funktion und Einsatzbereiche von hydrodynamischen Wandlern, Bremsen und Kupplungen sowie von Kreiselpumpen und Aggregaten in der Anlagentechnik zu beschreiben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • hydraulische und pneumatische Komponenten und  Systeme zu analysieren und zu beurteilen,
  • hydraulische Systeme für mechanische Anwendungen zu konzipieren und zu dimensionieren,
  • Numerische Simulationen hydraulischer Systeme anhand abstrakter Problemstellungen durchzuführen,
  • Pumpenkennlinien für hydraulische Anlagen auszuwählen und anzupassen,
  • Wandler und Bremsen für mechanische Aggregate auszulegen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • in der Vorlesung Funktionszusammenhänge in Gruppen zu diskutieren und vorzustellen,
  • Arbeiten in Teams selbstständig zu organisieren.
Selbstständigkeit

Die Studierenden sind nach erfolgreichem Bestehen in der Lage,

  • für die Simulation erforderliches Wissen selbständig zu erschließen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90
Zuordnung zu folgenden Curricula Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1256: Fluidtechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Vorlesung

Hydrostatik

  • Physikalische Grundlagen
  • Druckflüssigkeiten
  • Hydrostatische Maschinen
  • Ventile
  • Komponenten
  • Hydrostatische Getriebe
  • Anwendungsbeispiele aus der Industrie

Pneumatik

  • Drucklufterzeugung
  • Pneumatische Motoren
  • Anwendungsbeispiele

Hydrodynamik

  • Physikalische Grundlagen
  • Hydraulische Strömungsmaschinen
  • Hydrodynamische Getriebe
  • Zusammenarbeit von Motor und Getriebe

Hörsaalübung

Hydrostatik

  • Lesen und Entwerfen von hydraulischen Schaltplänen
  • Auslegung von hydrostatischen Fahr- und Arbeitsantrieben
  • Leistungsberechnung

Hydrodynamik

  • Berechnung/Auslegung von hydrodynamischen Wandlern
  • Berechnung/Auslegung von Kreiselpumpen
  • Erstellen und Lesen von Pumpen- und Anlagenkennlinien

Exkursion

  • Es findet eine Exkursion zu einem regionalen Unternehmen der Hydraulikbranche statt.

Übung

Numerische Simulation hydrostatischer Systeme

  • Kennenlernen einer numerischen Simulationsumgebung für hydraulische Systeme
  • Umsetzen einer Aufgabenstellung in ein Simulationsmodell
  • Simulation gängiger Komponenten
  • Variation von Simulationsparametern
  • Nutzung von Simulation zur Systemauslegung und -optimierung
  • Z.T. selbstorganisiertes Arbeiten in Teams



Literatur

Bücher

  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 1: Hydraulik, Shaker Verlag, Aachen, 2011
  • Murrenhoff, H.: Grundlagen der Fluidtechnik - Teil 2: Pneumatik, Shaker Verlag, Aachen, 2006
  • Matthies, H.J. Renius, K.Th.: Einführung in die Ölhydraulik, Teubner Verlag, 2006
  • Beitz, W., Grote, K.-H.: Dubbel - Taschenbuch für den Maschinenbau, Springer-Verlag, Berlin, aktuelle Auflage
Skript zur Vorlesung
Lehrveranstaltung L1371: Fluidtechnik
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1257: Fluidtechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1155: Flugzeug-Kabinensysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Kabinensysteme (L1545) Vorlesung 3 4
Flugzeug-Kabinensysteme (L1546) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• die Betriebsabläufe in der Flugzeugkabine, deren Ausrüstung und Systeme beschreiben
• die funktionalen und nicht-funktionalen Anforderungen an Kabinensysteme erläutern
• die Notwendigkeit der Kabinenbetriebs- und Notfallsysteme erklären
• die Herausforderungen der Mensch-Technik-Interaktion in der Kabine einschätzen

Fertigkeiten

Studierende können:
• das Kabinenlayout für ein vorgegebenes Geschäftsmodell einer Fluggesellschaft erstellen
• Kabinensysteme für den sicheren Kabinenbetrieb auslegen
• Notfallsysteme für eine zuverlässige Mensch-Systeminteraktion gestalten
• Lösungen für Komfortanforderungen und Unterhaltungssysteme in der Kabine entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• bestehende Systemlösungen nachvollziehen und eigene Ideen mit Experten diskutieren

Selbstständigkeit

Studierende können:
• Vorlesungsinhalte und Expertenvorträge eigenständig reflektieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden.

Die Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie, Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt:
• Werkstoffe in der Kabine
• Ergonomie und Human Factors
• Kabinen-Innenausstattung und nicht-elektrische Systeme
• Kabinenelektrik und Beleuchtung
• Kabinenelektronik, Kommunikations-, Informations- und Unterhaltungssysteme
• Kabinen- und Passagierprozesse
• RFID-Kennzeichnung von Flugzeugbauteilen
• Energiequellen und Energiewandlung für den Betrieb

Literatur

- Skript zur Vorlesung
- Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999
- Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014
- Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008
- Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003
- Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006
- Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Lehrveranstaltung L1546: Flugzeug-Kabinensysteme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1174: Automatisierungstechnik und -systeme

Lehrveranstaltungen
Titel Typ SWS LP
Handhabungs- und Montagetechnik (L1591) Vorlesung 2 2
Handhabungs- und Montagetechnik (L1738) Gruppenübung 1 1
Produktionsautomatisierung (L1590) Vorlesung 2 2
Produktionsautomatisierung (L1739) Gruppenübung 1 1
Modulverantwortlicher Prof. Thorsten Schüppstuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine Leistungsnachweise erforderlich

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können…

  • typische Komponenten der Automatisierungstechnik benennen und ihr Zusammenspiel erklären  
  • Methoden zur systematischen Analyse von Automatisierungsaufgaben erläutern und anwenden
  • industrieroboterbasierten Automatisierungsysteme erlären
Fertigkeiten

Studierende sind in der Lage …

  • komplexe Automatisierungsaufgaben zu analysieren
  • anwendungsorientierte Lösungskonzepte zu entwickeln.
  • Teilsysteme auszulegen und zu einem Gesamtsystem zusammenzuführen
  • Anlagen hinsichtlich der Grundlagen der Maschinensicherheit zu untersuchen und zu bewerten
  • Einfache Programme für Roboter und speicherprogrammierbare Steuerungen zu schreiben
  • Schaltpläne für einfache Pneumatikanwendungen zu lesen und zu erstellen
Personale Kompetenzen
Sozialkompetenz

Studierende können, …

  • in Gruppen Lösungen für Aufgaben der Prozessautomatisierung und Handhabungstechnik erarbeiten.
  • im Produktionsumfeld mit Fachpersonal auf fachlicher Ebene Lösungen entwickeln und Entscheidungen vertreten.
Selbstständigkeit

Studierende sind fähig, …

  • mit Hilfe von Hinweisen eigenständig Aufgaben der Automatisierung zu analysieren.
  • eigenständig Programme für Roboter oder speicherprogrammierbare Steuerungen zu erstellen.
  • mit Hilfe von Hinweisen eigenständig Lösungen für praktische Aufgaben der Automatisierung zu finden
  • eigenständig Sicherheitskonzepte für Automatisierungsanlagen zu entwickeln.
  • mögliche Konsequenzen ihres beruflichen Handelns und ihre Verantwortung einzuschätzen.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik
-Analyse von Bauteilen und Handhabungsaufgaben
-Zuführ- und Transfersysteme
-Greifer
-Industrieroboter: Aufbau, Steuerung und Programmierung
-Maschinensicherheit
Literatur
Stefan Hesse
Grundlagen der Handhabungstechnik
ISBN: 3446418725
München Hanser, 2010
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1590: Produktionsautomatisierung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion
Lehrveranstaltung L1739: Produktionsautomatisierung
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum SoSe
Inhalt
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends
-Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien 
-Entwurf von Pneumatikschaltplänen
-Betrachtung der Energieeffizienz in der Produktion
-Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen
-Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems
-Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems 
-Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends
Literatur
Reinhard Langmann: Taschenbuch der Automatisierung

Holger Watter: Hydraulik und Pneumatik

Horst Walter Grollius: Grundlagen der Pneumatik

Hubertus Murrenhoff: Grundlagen der Fluidtechnik

Christian Demant: Industrielle Bildverarbeitung

Michael ten Hompel: Identifikationssysteme und Automatisierung

Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion

Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse

Lehrveranstaltungen
Titel Typ SWS LP
Lasersystem- und -prozesstechnik (L1612) Vorlesung 2 3
Methoden der Fertigungsprozessanalyse (L0876) Vorlesung 2 3
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen

Vertiefte Kenntnisse der Lasertechnik:

  • Laserstrahlquellen: CO2-, Nd:YAG-, Faser- und Diodenlaser
  • Lasersystemtechnik: Strahlformung, Strahlführungssysteme, Strahlbewegung und Strahlkontrolle
  • Laserbasierte Fertigungsverfahren: Lasergenerieren, Markieren, Trennen, Fügen, Oberflächenbehandlung
  • Qualitätssicherung und wirtschaftliche Aspekte der Lasermaterialbearbeitung
  • Märkte und Anwendungen der Lasertechnik


Fertigkeiten

Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden

 Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen

Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen

Personale Kompetenzen
Sozialkompetenz
  • Führen von Diskussionen
  • Vertreten von Arbeitsergebnissen
  • Respektvolles Zusammenarbeiten im Team


Selbstständigkeit

Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1612: Laser Systems and Process Technologies
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Claus Emmelmann
Sprachen EN
Zeitraum WiSe
Inhalt
  • Fundamentals of laser technology
  • Laser beam sources: CO2-, Nd:YAG-, Fiber- and Diodelasers
  • Laser system technology: beam forming, beam guidance systems, beam motion and beam control
  • Laser-based manufacturing technologies: generation, marking, cutting, joining, surface treatment
  • Quality assurance and economical aspects of laser material processing
  • Markets and Applications of laser technology
  • Student group exercises
Literatur
  • Hügel, H. , T. Graf: Laser in der Fertigung : Strahlquellen, Systeme, Fertigungsverfahren, 3. Aufl., Vieweg + Teubner Wiesbaden 2014.
  • Eichler, J., Eichler. H. J.: Laser: Bauformen, Strahlführung, Anwendungen, 7. Aufl., Springer-Verlag Berlin Heidelberg 2010.
  • Steen W. M.; Mazumder J.: Laser material processing, 4th Edition,  Springer-Verlag London 2010.
  • J.C. Ion: Laser processing of engineering materials: principles, procedure and industrial applications, Elsevier Butterworth-Heinemann 2005.
  • Gebhardt, A.: Understanding additive manufacturing, München [u.a.] Hanser 2011
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt
  • Modellbildung und Simulation mechanischer Fertigungsprozesse
  • Numerische Simulation von Kräften, Temperaturen, Verformungen in Fertigungsprozessen
  • Analyse von Schwingungsproblemen in der Zerspanung (Rattern, Modalanalyse,..)
  • Wissensgestützte Prozeßplanung
  • Statistische Versuchsplanung
  • Zerspanbarkeit nichtmetallischer Werkstoffe
  • Analyse von Wechselwirkungen zwischen Prozess und Werkzeugmaschine in bezug auf Prozeßstabilität und Werkstückqualität
  • Simulation von Fertigungsprozessen mittels Virtual Reality Methoden
Literatur

Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004)

Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001)

Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001)

Modul M1342: Kunststoffe

Lehrveranstaltungen
Titel Typ SWS LP
Aufbau und Eigenschaften der Kunststoffe (L0389) Vorlesung 2 3
Verarbeitung und Konstruieren mit Kunststoffen (L1892) Vorlesung 2 3
Modulverantwortlicher Dr. Hans Wittich
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen aus der Chemie / Physik / Werkstoffkunde 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

- die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden.

- die komplexen Zusammenhänge  Struktur-Eigenschaftsbeziehung erklären.

- die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz).

Fertigkeiten

Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um

- mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten.

- für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu dimensionieren, z.B. Steifigkeit, Korrosion, Festigkeit.

Personale Kompetenzen
Sozialkompetenz

Studierende können

- in heterogen Gruppen zu fundierten Arbeitsergebnissen kommen und diese dokumentieren.

- angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen.


Selbstständigkeit

Studierende sind fähig,

- eigene Stärken und Schwächen einzuschätzen

- ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.

- mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hans Wittich
Sprachen DE
Zeitraum WiSe
Inhalt - Struktur und Eigenschaften der Kunststoffe
- Aufbau des Makromoleküls
  Konstitution, Kofiguration, Konformation, Bindungen,
  Polyreaktionen, Molekulargewichtsverteilung
- Morphologie
  Amorph, Kristallisation, Mischungen
- Eigenschaften
  Elastizität, Plastizität, Wechselbelastungen,
- Thermische Eigenschaften,
- Elektrische Eigenschaften
- Theoretische Modelle zur Vorhersage der Eigenschaften
- Anwendungsbeispiele
Literatur Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler, Dr. Hans Wittich
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen

Designing with Polymers: Materials Selection; Structural Design; Dimensioning

Literatur

Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
Crawford: Plastics engineering, Pergamon Press
Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag

Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

siehe gewähltes Modul laut FSPO

Fertigkeiten

siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

siehe gewähltes Modul laut FSPO

Selbstständigkeit

siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht

Thesis

Modul M-002: Masterarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 21 (1):

    Es müssen mindestens 60 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.


Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches sicher zur Bearbeitung fachlicher Fragestellungen einsetzen.
  • Die Studierenden können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • Die Studierenden können eine eigene Forschungsaufgabe in ihrem Fachgebiet verorten, den Forschungsstand erheben und kritisch einschätzen.


Fertigkeiten
  • Die Studierenden sind in der Lage, für die jeweilige fachliche Problemstellung geeignete Methoden auszuwählen, anzuwenden und ggf. weiterzuentwickeln.
  • Die Studierenden sind in der Lage, im Studium erworbenes Wissen und erlernte Methoden auch auf komplexe und/oder unvollständig definierte Problemstellungen lösungsorientiert anzuwenden.
  • Die Studierenden können in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse erarbeiten und diese kritisch beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können

  • eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht beantworten und dabei eigene Einschätzungen überzeugend vertreten.


Selbstständigkeit

Studierende sind fähig,

  • ein eigenes Projekt in Arbeitspakete zu strukturieren und abzuarbeiten.
  • sich in ein teilweise unbekanntes Arbeitsgebiet des Studiengangs vertieft einzuarbeiten und dafür benötigte Informationen zu erschließen.
  • Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit anzuwenden.


Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energie- und Umwelttechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Global Innovation Management: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
International Production Management: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mathematical Modelling in Engineering: Theory, Numerics, Applications: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Ship and Offshore Technology: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht