Studiengangsbeschreibung
Inhalt
Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Das Studium vertieft die ingenieurwissenschaftliche, mathematische und naturwissenschaftliche Bachelor-Ausbildung und vermittelt Kompetenzen zum systematischen, wissenschaftlichen und eigenständigen Lösen von verantwortungsvollen Aufgaben in Industrie und Forschung. Inhaltlich abgedeckt wird der Produktentstehungsprozess von der strategischen Produktplanung, über die systematische und methodische Entwicklung von Produkten inklusive Konzeptentwicklung, Konstruktion, Werkstoffauswahl, Simulation und Test bis hin zur Produktion, deren Planung und Steuerung sowie dem Einsatz von modernen Fertigungsverfahren und Hochleistungswerkstoffen. Die Studierenden vertiefen sich in einer der drei Fachrichtungen und erwerben die Fähigkeit an den Schnittstellen der verbundenen Teildisziplinen zu arbeiten. Je nach individuellen Schwerpunkten können die Studierenden ihr Studium aufgrund des umfangreichen Angebots an Wahlpflichtfächern sehr flexibel anpassen und persönlich ausrichten.
Berufliche Perspektiven
Der konsekutive Master-Studiengang „Produktentwicklung, Werkstoffe und Produktion” bereitet Absolventen auf vielfältige Berufsbilder im Maschinenbau vor. Die Absolventen können aufgrund ihrer Spezialisierung auf eines der Themenfelder Produktentwicklung, Werkstoffe oder Produktion direkt in diesem arbeiten. Außerdem besitzen sie vielfältiges Methoden- und Schnittstellenwissen, das sie zur disziplinübergreifenden Arbeit befähigt. Die Absolventen können wissenschaftliche Tätigkeiten in Universitäten und Forschungsinstituten insbesondere mit dem Ziel der Promotion aufnehmen oder sich für den direkten Einstieg in die Industrie entscheiden. Hier können Sie zum Beispiel Fachlaufbahnen (z.B. Konstrukteur, Berechnungsingenieur, Produktionsplaner) einschlagen oder sich mit wachsender Berufserfahrung für anspruchsvolle Führungsaufgaben im technischen Bereich qualifizieren (z.B. Projekt-, Gruppen- oder Teamleiter, Entwicklungs- bzw. Produktionsleiter oder Technischer Leiter). Der Studiengang ist universell gestaltet und erlaubt es den Absolventen, in unterschiedlichen Branchen, insbesondere des Maschinen- und Anlagenbaus, an einer Vielzahl unterschiedlicher Produkte tätig zu werden.
Lernziele
Absolventen des Studiengangs sind in der Lage das individuell erworbene Fachwissen auf neue unbekannte Themenstellungen zu übertragen, komplexe Problemstellungen ihrer Disziplin wissenschaftlich zu erfassen, zu analysieren und zu lösen. Sie können fehlende Informationen selbstständig finden und dazu theoretische sowie experimentelle Untersuchungen planen und durchführen. Ingenieurwissenschaftliche Ergebnisse können sie beurteilen, evaluieren, kritisch hinterfragen sowie auf deren Basis Entscheidungen treffen und eigene weiterführende Schlussfolgerungen ziehen. Sie sind in der Lage methodisch vorzugehen, kleinere Projekte selbstständig zu organisieren und neue Technologien sowie wissenschaftliche Methoden auszuwählen und bei Bedarf weiterzuentwickeln.
Die Absolventen können sowohl selbstständig als auch in Teamarbeit neue Ideen und Lösungen entwickeln, dokumentieren sowie vor Fachpersonen präsentieren und vertreten. Eigene Stärken und Schwächen können sie einschätzen ebenso wie mögliche Konsequenzen ihres Handelns. Vor allem sind Sie befähigt sich selbstständig in komplexe Aufgaben einzuarbeiten, Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie geeignete Mittel systematisch zur Umsetzung einzusetzen.
Produktentwicklung
In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.
Werkstoffe
Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen.
Produktion
Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedener Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.
Studiengangsstruktur
Der Studiengang ist modular gestaltet und orientiert sich an der universitätsweiten standardisierten Studiengangsstruktur mit einheitlichen Modulgrößen (Vielfachen von sechs Leistungspunkten (LP)). Der Studiengang kombiniert die Teildisziplinen Produktentwicklung, Werkstoffe und Produktion des Maschinenbaus und erlaubt die Vertiefung in einer dieser Richtungen. Die Studierenden können dabei aufgrund der weitreichenden Wahlfreiheit ihr Studium individualisieren.
In der gemeinsamen Kernqualifikation belegen die Studierenden folgende Module:
- Finite-Elemente-Methoden und Schwingungslehre (12 LP)
- Wahlpflichtbereich Grundlagenfächer (Katalog) (12 LP)
- Fachlabor ( 6 LP)
- Ergänzungskurse Betrieb und Management (Katalog) (6 LP)
- Ergänzungskurse Nichttechnische Fächer (Katalog) (6 LP)
Die Studierenden spezialisieren sich durch die Wahl einer der folgenden fachlichen Vertiefungsrichtungen im Umfang von 36 Leistungspunkten:
- Produktentwicklung (Methoden der Produktentwicklung, Leichtbau),
- Produktion (Produktionsmanagement, Produktionstechnologie),
- Werkstoffe (Ingenieurwerkstoffe).
Innerhalb jeder Vertiefung sind den Studierenden drei Module mit sechs Leistungspunkten vorgegeben. Weitere 18 Leistungspunkte können aus einem fachlichen Modulkatalog (Modulgröße je sechs Leistungspunkte) gewählt werden. Alternatives können offene Module im maximalen Umfang von zwölf Leistungspunkten belegt werden, in denen spezialisierte kleinere Lehrveranstaltungen individuell kombiniert werden können.
Neben der abschließenden Masterarbeit bearbeiten die Studierenden eine zusätzliche wissenschaftliche Projektarbeit.
- Projektarbeit (12 LP)
- Masterarbeit (30 LP)
Fachmodule der Kernqualifikation
Im Rahmen der Kernqualifikation vertiefen die Studierenden ihr Wissen und ihre Fähigkeiten in weiterführenden ingenieurwissenschaftlichen Fächern (z.B. Schwingungslehre), aber auch im Bereich Betrieb und Management sowie weiteren nichttechnischen Fächern. Durch das Fachlabor und die Erstellung einer wissenschaftlichen Projektarbeit vertiefen die Studierenden Ihre Fähigkeiten im selbstständigen methodischen und wissenschaftlichen Arbeiten im Bereich der Produktentwicklung, der Werkstoffe und der Produktion.
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | -- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Ergänzungskurse im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0603: Nichtlineare Strukturanalyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Mathematik I, II, III, Mechanik I, II, III, IV Differentialgleichungen 2 (Partielle Differentialgleichungen) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können |
Fertigkeiten |
Studierende sind in der Lage |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können |
Selbstständigkeit |
Studierende sind fähig |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0277: Nichtlineare Strukturanalyse |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
1. Einleitung |
Literatur |
[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014. |
Lehrveranstaltung L0279: Nichtlineare Strukturanalyse |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0742: Wärmetechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Wärmetechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Wärmetechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0751: Technische Schwingungslehre |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können Begriffe und Zusammenhänge der Technischen Schwingungslehre wiedergeben und weiterentwickeln. |
Fertigkeiten | Studierende können Methoden der Technischen Schwingungslehre benennen und weiterentwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können auch in Gruppen zu Arbeitsergebnissen kommen. |
Selbstständigkeit | Studierende können sich eigenständig Forschungsaufgaben der Technischen Schwingungslehre erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0701: Technische Schwingungslehre |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen und Wellen. |
Literatur | K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen. Springer Verlag, 2013. |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0846: Control Systems Theory and Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Introduction to Control Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Pflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0656: Control Systems Theory and Design |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literatur |
|
Lehrveranstaltung L0657: Control Systems Theory and Design |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1150: Kontinuumsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Swantje Bargmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I Mechanik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Konzepte zur Berechnung von mechanischem Materialverhalten erklären. Sie können Methoden der Kontinuumsmechanik im größeren Kontext erläutern. |
Fertigkeiten |
Die Studierenden können Bilanzgleichungen aufstellen und Grundlagen der Deformationstheorie elastischer Körper anwenden und auf diesem Gebiet spezifische Aufgabenstellungen sowohl anwendungsorientiert als auch forschungsorientiert bearbeiten |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln und sich benötigtes Wissen aneignen. Sie können selbstständig und verantwortlich Aufgaben im Bereich der Kontinuumsmechanik lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1533: Kontinuumsmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Swantje Bargmann, Dr. Songyun Ma |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Lehrveranstaltung L1534: Kontinuumsmechanik Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Swantje Bargmann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Modul M1151: Werkstoffmodellierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Swantje Bargmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mechanik I Mechanik II Kontinuumsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen von mehrdimensionalen Werkstoffgesetzen erläutern. |
Fertigkeiten |
Die Studierenden können eigene Materialmodelle in ein Finite Elemente Programm implementieren. Insbesondere können Sie Ihre Kenntnisse auf verschiedene Problemstellung aus der Materialwissenschaft anwenden und Materialmodelle entsprechend bewerten.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln und sich benötigtes Wissen aneignen. Sie können selbstständig und verantwortlich Aufgaben im Bereich der Kontinuumsmechanik lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1535: Werkstoffmodellierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Swantje Bargmann, Dr. Dirk Steglich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer |
Lehrveranstaltung L1536: Werkstoffmodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Swantje Bargmann, Dr. Ingo Scheider |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer |
Modul M1173: Angewandte Statistik für Ingenieure |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Michael Morlock |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse statistischen Vorgehens |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten können die Einsatzgebiete der statistischen Verfahren, die in der Veranstaltung besprochen werden und die Voraussetzungen für den Einsatz des entsprechenden Verfahrens erläutern. |
Fertigkeiten |
Die Studenten können das verwendete Statistikprogramm zur Lösung von statistischen Fragestellungen einsetzen und die Ergebnisse fachgerecht darstellen und interpretieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Gruppenarbeit, gemeinsam Ergebnisse präsentieren |
Selbstständigkeit |
Fragestellung verstehen und selbständig lösen |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 minuten, 28 Fragen |
Zuordnung zu folgenden Curricula |
Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1584: Angewandte Statistik für Ingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Inhalt (deutsch) Lösung statistischer Fragestellungen unter Anwendung eines gebräuchlichen Statistikprogrammes. Die vermittelten statistischen Tests und Vorgehensweisen beinhalten: • Wahl des statistischen Verfahrens • Einfluss der Gruppengröße auf die Ergebnisse • Chi quadrat test • Regression und Korrelation mit einer unabhängigen Variablen • Regression und Korrelation mit mehreren unabhängigen Variablen • Varianzanalyse mit eine unabhängigen Variablen • Varianzanalyse mit mehreren unabhängigen Variablen • Diskriminantenanalyse • Analyse kategorischer Daten • Nichtparametrische Statistik • Überlebensanalysen |
Literatur |
Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University, Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, CB © 1998, ISBN/ISSN: 0-534-20910-6 |
Lehrveranstaltung L1586: Angewandte Statistik für Ingenieure |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studenten bekommen in Kleingruppen (n=5) eine Fragestellung, zu deren Beantwortung sie sowohl die Datenerhebung als auch die Analyse durchführen und die Ergebnisse in Form eines executive summaries in der letzten Vorlesung vorstellen müssen. |
Literatur |
Selbst zu finden |
Lehrveranstaltung L1585: Angewandte Statistik für Ingenieure |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Michael Morlock |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Anhand von praktischen Fragestellungen werden die wichtigsten statistischen Verfahren angewendet und gleichzeitig in die Benutzung der kommerziell am häufigsten eingesetzten Software eingeführt und deren Benutzung geübt. |
Literatur |
Student Solutions Manual for Kleinbaum/Kupper/Muller/Nizam's Applied Regression Analysis and Multivariable Methods, 3rd Edition, David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina at Chapel Hill, Keith E. Muller University of North Carolina at Chapel Hill, Azhar Nizam Emory University, Published by Duxbury Press, Paperbound © 1998, ISBN/ISSN: 0-534-20913-0 |
Modul M1204: Modellierung und Optimierung in der Dynamik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierenden
besitzen nach erfolgreichem Besuch des Moduls grundlegende Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme und Methoden zur Optimierung dynamischer Systeme. |
Fertigkeiten |
Die Studierenden sind in der Lage + ganzheitlich zu Denken +
grundlegende Problemstellungen aus der Dynamik starrer und flexibler Mehrkörpersysteme selbständig, sicher, + dynamische Problem mathematisch zu beschreiben
+ dynamsiche Probleme zu optimieren |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können + in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren. |
Selbstständigkeit |
Studierende sind fähig + ihren Kenntnisstand mit Hilfe von Übungsaufgaben einzuschätzen. + sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1632: Flexible Mehrkörpersysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Lehrveranstaltung L1633: Optimierung dynamischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Modul M0604: High-Order FEM |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Mathematics I, II, III, Mechanics I, II, III, IV Differential Equations 2 (Partial Differential Equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to |
Selbstständigkeit |
Students are able to |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0280: High-Order FEM |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 |
Lehrveranstaltung L0281: High-Order FEM |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen |
none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 20-30 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Introduction and Motivation |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0752: Nichtlineare Dynamik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende sind in der Lage bestehende Begriffe und Konzepte der Nichtlinearen Dynamik wiederzugeben und neue Begriffe und Konzepte zu entwickeln. |
Fertigkeiten | Studierende sind in der Lage bestehende Verfahren und Methoden der Nichtlinearen Dynamik anzuwenden und neue Verfahren und Methoden zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können Arbeitsergebnisse auch in Gruppen erzielen. |
Selbstständigkeit | Studierende können eigenständig vorgegebene Forschungsaufgaben angehen und selbständig neue Forschungsaufgaben identifizieren und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0702: Nichtlineare Dynamik |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Grundlagen der Nichtlinearen Dynamik. |
Literatur | S. Strogatz: Nonlinear Dynamics and Chaos. Perseus, 2013. |
Modul M1164: Fachlabor Produktentwicklung, Werkstoffe und Produktion |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hintze |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Produktentwicklung:
Werkstoffe:
Produktion:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können …
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können …
|
Selbstständigkeit |
Studierende sind fähig …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht |
Lehrveranstaltung L1566: Fachlabor Produktentwicklung, Werkstoffe und Produktion |
Typ | Fachlabor |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Wolfgang Hintze, Prof. Josef Schlattmann, Prof. Dieter Krause, Prof. Claus Emmelmann, Prof. Uwe Weltin, Prof. Bodo Fiedler, Prof. Hermann Lödding, Prof. Michael Morlock, Prof. Gerold Schneider, Prof. Thorsten Schüppstuhl, Prof. Otto von Estorff, Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Konstruktion:
Werkstoffe:
Fertigung:
|
Literatur |
Nach Themenstellung / depending on topic |
Modul M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20-30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Room acoustics - Standard computations - Practical applications |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1140: Technischer Ergänzungskurs Kernfächer für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Eigenstudium 180, Präsenzstudium 0 |
Leistungspunkte | 6 |
Prüfung | laut FSPO |
Prüfungsdauer und -umfang | Siehe gewähltes Modul laut FSPO |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht |
Modul M1184: Projektarbeit Produktentwicklung, Werkstoffe und Produktion |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Dozenten des Studiengangs | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
|
|
Fertigkeiten |
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 | |
Leistungspunkte | 12 | |
Prüfung | Studienarbeit | |
Prüfungsdauer und -umfang | ||
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht |
Modul M1339: Entwurfsoptimierung und probabilistische Verfahren in der Strukturmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1873: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. |
Lehrveranstaltung L1874: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Matlab-Übungen zur Vorlesung |
Literatur | siehe Vorlesung |
Fachmodule der Vertiefung Produktentwicklung
In der Fachrichtung Produktentwicklung erlernen die Absolventen schwierige konstruktive Aufgabenstellungen systematisch und methodisch zu bearbeiten. Sie verfügen über breite Kenntnisse neuer Entwicklungsmethoden, können passende Lösungsstrategien auswählen und diese selbstständig zum Entwickeln neuer Produkte einsetzen. Sie sind in der Lage, Vorgehensweisen der intergierten Produktenentwicklung, wie Simulation oder modernen Test- und Prüfverfahren, beispielsweise zur Entwicklung von Leichtbauprodukten zu nutzen. Durch die Verbindung mit Wissen über moderne Hochleistungswerkstoffe und Produktionsverfahren können die Absolventen Produkte auf dem neusten Stand der Technik konzipieren, berechnen und deren Entwicklung mit modernen Methoden aktiv vorantreiben.
Modul M0763: Flugzeugsysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeugsysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeugsysteme I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1024: Methoden der integrierten Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1254: Integrierte Produktentwicklung II |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Integrierte Produktentwicklung II |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in details. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. |
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0996: Supply Chain Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Blecker |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Besuch des Moduls Produktions- und Logistikmanagement |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1218: Supply Chain Management |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin. Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall. Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall. Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116. Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer. Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff. Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium. Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40. Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill. Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf. Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin. |
Lehrveranstaltung L1190: Wertschöpfungsnetzwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0764: Flugzeugsysteme II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0736: Flugzeugsysteme II |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugzeugsysteme II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1143: Methodisches Konstruieren |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Josef Schlattmann |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Grundlagenkenntnisse des Konstruierens |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können spezifische Produktentwicklungsmethoden |
Fertigkeiten |
Die Studierenden können |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen |
Selbstständigkeit |
Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1523: Methodisches Konstruieren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1524: Methodisches Konstruieren |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1144: Kunststoffverarbeitung - Vom Molekül zum Composite Bauteil |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Aufbau und Eigenschaften der Kunststoffe Aufbau und Eigenschaften der Verbundwerkstoffe |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Kunststoffen und Verbudnwerkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche / kunststofftechnische Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche 7 kunststofftechnische Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 1,5 h |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0511: Manufacturing with Polymers and Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Crawford: Plastics engineering, Pergamon Press Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Customer Request ("Handout") |
Modul M1145: Automation und Simulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Ackermann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
BSc Maschinenbau oder ähnlich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben. Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben. Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern. |
Fertigkeiten |
Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen. Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten. Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen. Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Zusammenarbeit in kleinen Teams |
Selbstständigkeit |
Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen durchzuführen und die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1525: Automation und Simulation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Aufbau von Automationseinrichtungen Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten Datenübertragung über Bussysteme Speicherprogrammierbare Steuerung Verfahren zur Beschreibung logischer Abläufe Prinzip der Modellierung und Simulation von kontinuierlichen technischen Systemen Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink) Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen. |
Literatur |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Lehrveranstaltung L1527: Automation und Simulation |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Franz Joos |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1170: Phänomene und Methoden der Materialwissenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Patrick Huber |
Zulassungsvoraussetzungen |
keine. |
Empfohlene Vorkenntnisse |
Grundlagen der Materialwissenschaften (I and II) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Patrick Huber |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur | Wird im Rahmen der Lehrveranstaltung bekannt gegeben. |
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Erica Lilleodden |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Theorie der Versetzungsplastizität |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Erica Lilleodden |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen. Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und –Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen |
Control Systems Theory and Design |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. |
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
Personale Kompetenzen | |
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. |
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende
können:
|
Selbstständigkeit |
Studierende
können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten im WS + 90 Minuten im SS |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Ralf Heinrich, Mike Montel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will gain insights into:
|
Fertigkeiten |
Students will gain deep insights into:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly |
Literatur | see/siehe Vorlesung Produktplanung/Product Planning |
Modul M0830: Environmental Protection and Management |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors. |
Fertigkeiten |
Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0502: Integrated Pollution Control |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0 Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3 |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0388: Health, Safety and Environmental Management |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1002: Produktions- und Logistikmanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Kersten |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Betriebswirtschaftslehre
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können |
Fertigkeiten |
Die Studierenden sind auf Basis des erlernten Wissens in der Lage, |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - Diskussionen und Teamsitzungen anzuleiten, - in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren, - in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten, - Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen, - sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009. Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010. Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011. Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000. Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005. Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003. Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994. Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010. Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996 Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001 |
Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten, Dr. Meike Schröder |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg. Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer. Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River. Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann. Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag. Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a. Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a. Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88 Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York. Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart: Lucius & Lucius Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a. |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1174: Automatisierungstechnik und -systeme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können…
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, …
|
Selbstständigkeit |
Studierende sind fähig, …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik -Analyse von Bauteilen und Handhabungsaufgaben -Zuführ- und Transfersysteme -Greifer -Industrieroboter: Aufbau, Steuerung und Programmierung -Maschinensicherheit |
Literatur |
Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 |
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1590: Produktionsautomatisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends -Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien -Entwurf von Pneumatikschaltplänen -Betrachtung der Energieeffizienz in der Produktion -Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen -Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems -Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems -Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends |
Literatur |
Reinhard Langmann: Taschenbuch der Automatisierung Holger Watter: Hydraulik und Pneumatik Horst Walter Grollius: Grundlagen der Pneumatik Hubertus Murrenhoff: Grundlagen der Fluidtechnik Christian Demant: Industrielle Bildverarbeitung Michael ten Hompel: Identifikationssysteme und Automatisierung Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion |
Lehrveranstaltung L1739: Produktionsautomatisierung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hintze |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - Mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - Für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu Dimensionieren z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, - in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen allgemein Einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Fachmodule der Vertiefung Produktion
Die Absolventinnen und Absolventen der Studienrichtung Produktionstechnik verfügen über vertiefte Kenntnisse der verschiedenen Produktions- und Fertigungsverfahren. Sie können diese vor dem Hintergrund der Geometrieerzeugung, Fehlerbeherrschung, Wirtschaftlichkeit und Humanisierung der Arbeit bewerten und sind in der Lage, die Schnittstellen von Technik, Organisation und Mensch ganzheitlich zu betrachten.
Modul M0763: Flugzeugsysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeugsysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeugsysteme I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hintze |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1174: Automatisierungstechnik und -systeme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können…
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, …
|
Selbstständigkeit |
Studierende sind fähig, …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik -Analyse von Bauteilen und Handhabungsaufgaben -Zuführ- und Transfersysteme -Greifer -Industrieroboter: Aufbau, Steuerung und Programmierung -Maschinensicherheit |
Literatur |
Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 |
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1590: Produktionsautomatisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends -Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien -Entwurf von Pneumatikschaltplänen -Betrachtung der Energieeffizienz in der Produktion -Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen -Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems -Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems -Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends |
Literatur |
Reinhard Langmann: Taschenbuch der Automatisierung Holger Watter: Hydraulik und Pneumatik Horst Walter Grollius: Grundlagen der Pneumatik Hubertus Murrenhoff: Grundlagen der Fluidtechnik Christian Demant: Industrielle Bildverarbeitung Michael ten Hompel: Identifikationssysteme und Automatisierung Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion |
Lehrveranstaltung L1739: Produktionsautomatisierung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in details. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. |
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0996: Supply Chain Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Blecker |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Besuch des Moduls Produktions- und Logistikmanagement |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1218: Supply Chain Management |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin. Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall. Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall. Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116. Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer. Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff. Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium. Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40. Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill. Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf. Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin. |
Lehrveranstaltung L1190: Wertschöpfungsnetzwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0764: Flugzeugsysteme II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0736: Flugzeugsysteme II |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugzeugsysteme II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1143: Methodisches Konstruieren |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Josef Schlattmann |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Grundlagenkenntnisse des Konstruierens |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können spezifische Produktentwicklungsmethoden |
Fertigkeiten |
Die Studierenden können |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen |
Selbstständigkeit |
Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1523: Methodisches Konstruieren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1524: Methodisches Konstruieren |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1144: Kunststoffverarbeitung - Vom Molekül zum Composite Bauteil |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Aufbau und Eigenschaften der Kunststoffe Aufbau und Eigenschaften der Verbundwerkstoffe |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Kunststoffen und Verbudnwerkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche / kunststofftechnische Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche 7 kunststofftechnische Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 1,5 h |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0511: Manufacturing with Polymers and Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Crawford: Plastics engineering, Pergamon Press Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Customer Request ("Handout") |
Modul M1145: Automation und Simulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Ackermann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
BSc Maschinenbau oder ähnlich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben. Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben. Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern. |
Fertigkeiten |
Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen. Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten. Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen. Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Zusammenarbeit in kleinen Teams |
Selbstständigkeit |
Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen durchzuführen und die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1525: Automation und Simulation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Aufbau von Automationseinrichtungen Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten Datenübertragung über Bussysteme Speicherprogrammierbare Steuerung Verfahren zur Beschreibung logischer Abläufe Prinzip der Modellierung und Simulation von kontinuierlichen technischen Systemen Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink) Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen. |
Literatur |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Lehrveranstaltung L1527: Automation und Simulation |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Franz Joos |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1170: Phänomene und Methoden der Materialwissenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Patrick Huber |
Zulassungsvoraussetzungen |
keine. |
Empfohlene Vorkenntnisse |
Grundlagen der Materialwissenschaften (I and II) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Patrick Huber |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur | Wird im Rahmen der Lehrveranstaltung bekannt gegeben. |
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Erica Lilleodden |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Theorie der Versetzungsplastizität |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Erica Lilleodden |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen. Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und –Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen |
Control Systems Theory and Design |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. |
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
Personale Kompetenzen | |
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. |
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende
können:
|
Selbstständigkeit |
Studierende
können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten im WS + 90 Minuten im SS |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Ralf Heinrich, Mike Montel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will gain insights into:
|
Fertigkeiten |
Students will gain deep insights into:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly |
Literatur | see/siehe Vorlesung Produktplanung/Product Planning |
Modul M0830: Environmental Protection and Management |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors. |
Fertigkeiten |
Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0502: Integrated Pollution Control |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0 Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3 |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0388: Health, Safety and Environmental Management |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1024: Methoden der integrierten Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Integrierte Produktentwicklung II |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Integrierte Produktentwicklung II |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1002: Produktions- und Logistikmanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Kersten |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Betriebswirtschaftslehre
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können |
Fertigkeiten |
Die Studierenden sind auf Basis des erlernten Wissens in der Lage, |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - Diskussionen und Teamsitzungen anzuleiten, - in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren, - in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten, - Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen, - sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009. Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010. Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011. Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000. Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005. Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003. Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994. Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010. Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996 Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001 |
Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten, Dr. Meike Schröder |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg. Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer. Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River. Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann. Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag. Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a. Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a. Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88 Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York. Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart: Lucius & Lucius Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a. |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - Mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - Für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu Dimensionieren z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, - in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen allgemein Einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Fachmodule der Vertiefung Werkstoffe
Absolventinnen und Absolventen der Fachrichtung Werkstoffe sind in der Lage in Entwicklung, Herstellung und Anwendung von Werkstoffen auf naturwissenschaftlicher Grundlage zu arbeiten. Die werkstofforientierten Absolventinnen oder Absolventen können neue Anwendungsfelder erkennen und die anwendungsspezifische Auswahl des Werkstoffs unter Berücksichtigung der Funktion, Kosten und Qualität treffen.
Modul M0763: Flugzeugsysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeugsysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeugsysteme I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1141: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1209: Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen |
Es darf nur eines der Module "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative A: 12 LP)" oder "Ausgewählte Themen der Produktentwicklung, Werkstoffwissenschaften und Produktion (Alternative B: 6 LP)" gewählt werden. |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1592: Angewandte Automatisierung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Project Based Learning -Robot Operating System -Roboteraufbau- und Beschreibung -Bewegungsbeschreibung -Kalibrierung -Genauigkeit |
Literatur |
John J. Craig Introduction to Robotics – Mechanics and Control ISBN: 0131236296 Pearson Education, Inc., 2005 Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 K. Thulasiraman and M. N. S. Swamy Graphs: Theory and Algorithms ISBN: 9781118033104 John Wüey & Sons, Inc., 1992 |
Lehrveranstaltung L0653: Arbeitswissenschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Armin Bossemeyer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Inhalt - Arbeitswissenschaftliche Konzepte, Belastung und Beanspruchung - Körpermaße, Muskel- und Montagearbeit, Anzeigen und Stellteile - Sitzen, Stehen, Heben und Tragen - Licht, Sehen, Beleuchtung und Lichtmessung - Lärm, Lärmmessung, Lärmschutz und mechanische Schwingungen - Klima und Strahlung; Gefahrstoffe - Gesetzlicher Arbeitsschutz, betriebliche Arbeitsschutzkonzepte, Gefährdungsbeurteilung - Gefährliche Arbeiten: Strom, Leitern, Kräne, Gerüste, Stapler, Alleinarbeit … - Persönliche Schutzausrüstungen: Gehörschutz, Handschuhe, Schuhe, Atemschutz … - Gestaltung von Bildschirmarbeit und ergonomischer Software - Psychische Belastungen, Motivation, Arbeitszufriedenheit und Ermüdung - Betriebliche Gesundheitsförderung, Demographie, Humanisierung der Arbeit - Entgeltgestaltung: Eingruppierung, Leistungsbeurteilung, Zielvereinbarung, Prämienlohn - Arbeitszeitgestaltung: Gleitende Arbeitszeit, Flexible Arbeitszeit, Vertrauensarbeitszeit - Gestaltung von Schichtarbeit Qualifikationsziele Die Teilnehmer erhalten einen Überblick über die ergonomische und menschengerechte Gestaltung von Arbeit und Technik. Ausgehend von den menschlichen Körperfunktionen wird vermittelt, wie Arbeitssysteme analysiert, Belastungen erkannt und Gefährdungen bewertet werden können. Die Teilnehmer erhalten praxisbezogene Kenntnisse zur ganzheitlichen Gestaltung von Arbeitsbedingungen in Produktions- und Dienstleistungsbetrieben sowie von Schnittstellen von Mensch und Technik. Diese Veranstaltung befähigt sie, Verantwortung zu übernehmen und technische Veränderungsprozesse personenbezogen auszulegen. |
Literatur |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L0513: Structure and Properties of Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L0927: Elemente Integrierter Produktionssysteme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung nähert sich dem Thema integrierter Produktionssysteme am Beispiel der Schlanken Produktion. Sie erläutert dazu zum einen die grundsätzliche Herangehensweise an betriebliche Verbesserungsprozesse. Zum anderen beschreibt sie ausgewählte Methoden der Schlanken Produktion. Schwerpunkte der Vorlesung sind u.a. die Themen Wertstromdesign, die Gestaltung von Fertigungsinseln sowie die Planung und Steuerung der Produktion und der zugehörigen Materialflüsse. |
Literatur |
Harris, R.; Harris, C.; Wilson, E.: Making Materials Flow, Lean Enterprise Institute, Cambridge, 2003. Ohno, T.: Das Toyota-Produktionssystem, Campus-Verlag, Frankfurt et al, 1993. Rother, M.: Die Kata des Weltmarktführers. Toyotas Erfolgsmethoden, Campus-Verlag, Frankfurt et al, 2009. Rother, M.; Shook, J.: Sehen lernen: Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen, Lean Management Institut, Aachen, 2006. Rother, M.; Harris, R.: Creating Continuous Flow, Lean Enterprise Institute, Brookline, 2001. Shingo, S.: A Revolution in Manufacturing. The SMED System, Productivity Press, 2006. Womack, J. P. et al: Die zweite Revolution in der Autoindustrie, Frankfurt/New York, Campus Verlag, 1992. |
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Referat |
Prüfungsdauer und -umfang | Teamarbeit und abschließender Vortrag |
Dozenten | Jörg Heuser |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesungsteile
Seminarteile
Projektarbeiten
|
Literatur | Wird in der Veranstaltung angegeben |
Lehrveranstaltung L1512: Entwicklungsmanagement Mechatronik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Dozenten | Dr. Daniel Steffen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1814: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 10 Seiten und Diskussion |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. [2] Haldar, A., and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons New York/Chichester, UK, 2000. |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literatur |
|
Lehrveranstaltung L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Sergio de Traglia Amancio Filho |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L1514: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1515: Leichtbau mit Faserverbundwerkstoffen - Strukturmechanik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Marco Schürg |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen der Elastizitätstheorie anisotroper Körper Verschiebungen, Verzerrungen und Spannungen; Gleichgewicht; Kinematik; Verallgemeinertes Hookesches Gesetz Verhalten einer Laminat-Einzelschicht Materialgesetz der Einzelschicht; Anisotropie und Koppeleffekte; Materialsymmetrien; Ingenieurkonstanten; Ebener Spannungszustand; Transformationsregeln Grundlagen der Mikromechanik der Einzelschicht Repräsentative Einheitszelle; Ermittlung effektiver Materialkonstanten; Effektive Steifigkeiten der Laminateinzelschicht Klassische Laminattheorie Bezeichnungen und Laminat-Code; Kinematik und Verschiebungsfeld; Verzerrungen und Spannungen; Spannungsresultanten; Konstitutive Gleichungen und Koppeleffekte; Spezielle Laminate und deren Verhalten; Effektive Laminat-Eigenschaften Festigkeit von Laminaten Grundlegendes Konzept; Phänomenologische Versagenskriterien: Maximalkriterien, Tsai-Hill, Tsai-Wu, Puck, Hashin Biegung von Laminaten Differentialgleichungen; Randbedingungen; Naviersche Lösungen; Lévysche Lösungen Spannungskonzentrations-Probleme Randeffekte; Spannungskonzentrationen an Löchern, Rissen, Delaminationen; Aspekte der Versagensbewertung Stabilität dünnwandiger Laminat-Strukturen Beulen anisotroper Platten und Schalen; Einfluss des Lastfalles; Einfluss der Randbedingungen; Exakte transzendente Lösungen und deren Behandlung; Beulen ausgesteifter Laminate; Mindeststeifigkeiten; Lokales Beulen von Trägerprofilen Hausübung (Ausarbeitung erforderlich) Bewertung eines dünnwandigen Composite-Laminat-Trägers unter verschiedenen Auslegungskriterien |
Literatur |
|
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L0950: Mechanismen, Systeme und Verfahren der Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vermittlung grundlegender und spezieller Prüfverfahren zur sicheren Beurteilung von Werkstoffen; sowie die Befähigung, für ein Bauteil-/Werkstoffproblem ein geeignetes Prüfprogramm auszuwählen und die Ergebnisse bzgl. Bauteil-/Werkstoffbeschaffenheit zu analysieren und zu diskutieren
|
Literatur |
|
Lehrveranstaltung L0514: Metallic Materials for Aircraft Applications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Joachim Albrecht |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literatur |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Lehrveranstaltung L0820: Methoden des Flugzeugentwurfs I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozeß
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen zur Anwendung von MatLab erlernen. Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen: Rumpf und Kabinen auslegen Flugzeugmassen ermitteln Flügel aerodynamisch auslegen und Geometrie festlegen Start-, Lande-, Streckenflugleistungen ermitteln Manöver- und Böenlasten ermitteln |
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0928: Produktivitätsmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bokranz, R.; Landau, K.:Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart, 2006. Takeda, H.: Das synchrone Produktionssystem: Just-in-Time für das ganze Unternehmen. 5. Aufl., mi-Wirtschaftsbuch, FinanzBuch Verlag, München, 2006. Nakajima, S.: Management der Produktionseinrichtungen (Total Productive Maintenance). Campus Verlag, New York, 1995. Shingo, S.: A Revolution in Manufacturing: The SMED System. Productivity, Inc., 1985 |
Lehrveranstaltung L0931: Produktivitätsmanagement |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0664: Regelungstechnische Methoden für die Medizintechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Ulf Pilz, Prof. Olaf Simanski |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Immer aus dem Blickwinkel des Ingenieurs betrachtet, gliedert sich die Vorlesung wie folgt • Einleitung in die Thematik an ausgewählten Beispielen • Physiologie - Einführung und Überblick • Wiederherstellung von Herz-Kreislauf-Funktionen • Wiederherstellung von Respiratorische Funktionen • Regelungen in der Anästhesie • Wiederherstellung von Nierenfunktionen • Wiederherstellung von Leberfunktionen • Wiederherstellung von Hörfunktionen • Wiederherstellung von motorischer Funktionen • Navigationssysteme und Robotik in der Medizin Es werden Techniken der Modellierung, Simulation und Reglerentwicklung besprochen. Bei den Modellen werden einfache „Ersatzschaltbilder“ für physiologische Abläufe ebenso behandelt, wie die Modellierung mit Hilfe Neuronaler Netze. Bei den Reglern diskutiert die Vorlesung den Einsatz von PID-Reglern ebenso wie die Entwicklung eines Fuzzy-Reglers oder eines Modelprädiktiven Reglers. MATLAB und SIMULINK sind die eingesetzten Entwicklungswerkzeuge. |
Literatur |
Silbernagel/Depopoulos: Taschenatlas der Physiologie, Thieme Verlag Stuttgart Werner: Kooperative und autonome Systeme der Medizintechnik, Oldenburg Verlag M.C.K.Khoo:“Physiological Control System“, IEEE Press, 2000 |
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Lehrveranstaltung L1130: Six Sigma Methodik im Qualitätsmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Claus Emmelmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Werkzeuge des Qualitätsmanagements Qualitätsmanagement-Methodik Six Sigma: DMAIC |
Literatur |
Pfeifer, T.: Qualitätsmanagement : Strategien, Methoden, Techniken, 4. Aufl., München 2008 Pfeifer, T.: Praxishandbuch Qualitätsmanagement, München 1996 Geiger, W., Kotte, W.: Handbuch Qualität : Grundlagen und Elemente des Qualitätsmanagements: Systeme, Perspektiven, 5. Aufl., Wiesbaden 2008 |
Lehrveranstaltung L0855: Systemanalyse im Lufttransport |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Dozenten | Dr. Marco Weiss |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Hand out |
Lehrveranstaltung L1513: Technisches Industriedesign |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | (Hausarbeit) |
Dozenten | Prof. Werner Granzeier |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur über technisches Produktdesign Technisches Rendering und Präsentation Zeichnen und perspektivisches Entwerfen Literaturhinweise What is Product Design ? Laura Slack RotoVision Schweiz 2006 Product Design Now Design and Scetches CollinsDesign and maomao publications Spanien 2006 Ronald B. Kemnitzer, Rendering With Markers - Definitive Techniques for Designers, Illustrators and Architects, Watson, Guptil Puplications,a division of Billboard Publications Inc., New York 1983 Creative Techniques DRAWING Barons Educational Series ISBN-13: 978-0-7641-6182-7 Joseph Ungar, Rendering In Mixed Media - Techniques for Concept Presentation for Designers and Illustrators Watson-Guptil Publication a division of Billboard Publications Inc., New York 1985 AIRWORLD Design und Architektur für die Flugreise Vitra Design Stiftung Weil am Rhein 2004 Airline Design Perter Deslius Jacek Slaski te Neues 2005 Technik und Sicherheit von Passagierflugzeugen Frank Littek Motorbuch Verlag 2003 Jetliner Cabins Jennifer Coutts Clay Cs books England 2006 BOEING Widebodies Michael Haenggi motorbooks international USA 2003 form - Zeitschrift für Gestaltung, Verlag form GmbH, Hofgut Ober-Berrbach, 6104 Seeheim-Jugenheim (erscheint vierteljährlich, Verlag form GmbH ) design report german magasin, (erscheint monatlich) md - möbel interior design, Konradin-Verlag Robert Kohlhammer GmbH, 7022 Leinfelden-Echterdingen (erscheint monatlich) CAR STYLING, Car Styling Publishing Co. 4-8-16-11F, Kitashinjuku, Shinjuku-ku, Tokio 160, Japan (erscheint vierteljährlich in japanischer und englischer Sprache, in Hamburg erhältlich bei: Overseas Courier Service Deutschland GmbH, Auto & Design, Corso Frabcia 161, 10139 Torino, Italia (erscheint vierteljährlich in italienischer und englischer Sprache alle zwei Monate , erhältlich am HBF Hamburg AERO International, Magazin für Zivilluftfahrt (erscheint monatlich) Aircraft interior international Engl. magasin for Aircraft cabin interior (erscheint 2 monatlich) aerotec Technik- und Branchenmagazin für die Luft- und Raumfahrtindustrie |
Lehrveranstaltung L0379: Technologie keramischer Werkstoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Rolf Janßen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
In dieser Vorlesung wird eine Einführung in die keramische Prozeßtechnologie gegeben, wobei der Schwerpunkt auf Struktur- und Funktionskeramiken liegt. Beginnend bei den Verfahren zur Synthese feiner Pulver wird Schritt für Schritt der Weg vom Rohstoff zum maßgeschneiderten Bauteil aufgezeigt und anhand von Beispielen aus der Praxis demonstriert. Neben etablierten Herstellungsverfahren werden dabei auch neue Methoden zur schnellen und kostengünstigen Herstellung von Hochleistungsbauteilen (Reactive Synthesis, Rapid Prototyping, etc.) sowie Fügetechniken und grundlegende Konstruktionskritierien behandelt. Inhalt: 1. Rohstoffe 2. Pulversynthese 3. Pulveraufbereitung und -charakterisierung 4. Formgebung 5. Sintern 6. Glas und Zement-Technologie 7. Neue Syntheseverfahren, Beschichtungen, etc. 8. Fügetechniken |
Literatur |
W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975 ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991 D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992 |
Lehrveranstaltung L0949: Werkstoffprüfung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Dr. Jan Oke Peters |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorstellung und Vermittlung grundlegender Kenntnisse und Methoden der mechanischen als auch zerstörungsfreien Prüfung von Werkstoffen.
|
Literatur |
E. Macherauch: Praktikum in Werkstoffkunde, Vieweg |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0511: Stromerzeugung aus Wind- und Wasserkraft |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Dr. Joachim Gerth |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Modul: Thermodynamik I, Modul: Thermodynamik II, Modul: Grundlagen der Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden vertieftes Kenntnisse über Windenergieanlagen mit besonderem Fokus der Windenergienutzung unter den Offshore-Bedingungen detailliert erklären und unter Einbeziehung aktueller Problemstellung kritisch dazu Stellung beziehen. Desweiteren sind sie in der Lage die Nutzung der Wasserkraft zur Stromerzeugung grundlegend zu beschreiben. Die Studieren können das grundsätzliche Vorgehen bei der Umsetzung regenerativer Energieprojekte im außereuropäischen Ausland wiedergeben und erklären. Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb des Seminars des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen. |
Fertigkeiten |
Die Studierenden können mit Abschluss dieses Moduls die erlernten theoretischen Grundlagen auf beispielhafte Wasser- oder Windkraftsysteme anwenden und die sich ergebenden Zusammenhänge bezüglich der Auslegung und des Betriebs dieser Anlagen fachlich einschätzen und beurteilen. Die besondere Verfahrensweise zur Umsetzung erneuerbarer Energieprojekte im außereuropäischen Ausland können sie grundsätzliche mit der in Europa angewendeten Vorgehensweise kritisch vergleichen und auf beispielhafte Projekte theoretisch anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können wissenschaftliche Aufgabenstellungen innerhalb eines Seminars fachspezifisch und fachübergreifend diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig auf Basis der Schwerpunkte des Vorlesungsmaterials Quellen über das Fachgebiet erschließen, dieses zur Nachbereitung der Vorlesung nutzen und sich Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Wahlpflicht |
Lehrveranstaltung L0014: Regenerative Energieprojekte in neuen Märkten |
Typ | Projektseminar |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb des Seminars werden die verschiedenen Themenschwerpunkte aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur | Folien der Vorlesung |
Lehrveranstaltung L0013: Wasserkraftnutzung |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stephan Heimerl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0012: Windenergienutzung - Schwerpunkt Offshore |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Skiba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in details. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. |
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0996: Supply Chain Management |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Blecker |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Besuch des Moduls Produktions- und Logistikmanagement |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Selbständigkeit: Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Wissen über das Fachgebiet des Supply Chain Management selbstständig zu erarbeiten und das erworbene Wissen auch auf neue Fragestellungen zu transferieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1218: Supply Chain Management |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bowersox, D. J., Closs, D. J. und Cooper, M. B. (2007): Supply chain logistics management, Boston, Mass. [u.a.], McGraw-Hill/Irwin. Chopra, S. und Meindl, P. (2007): Supply chain management: strategy, planning, and operation, 3rd edition, Upper Saddle River, NJ, Pearson/Prentice Hall. Heizer, J. und Render, B. (2006): Principles of Operations Management. Prentice Hall. Fisher, M. (1997): What is the right supply chain for your product?, Harvard Business Review, Vol. 75, No. pp., S. 105-116. Kuhn, A. und Hellingrath, B. (2002): Supply Chain Management: optimierte Zusammenarbeit in der Wertschöpfungskette, Berlin [u.a.], Springer. Larson, P., Poist, R., Halldórsson, Á. (2007): PERSPECTIVES ON LOGISTICS VS. SCM: A SURVEY OF SCM PROFESSIONALS, in: Journal of Business Logistics, Vol. 28, No. 1, 2007, S. 3ff. Kummer, S., Hrsg. (2006): Grundzüge der Beschaffung, Produktion und Logistik, München: Pearson Studium. Porter, M. (1986): Changing Patterns of International Competition, California Management Review, Vol. 28, No. 2, pp. 9-40. Simchi-Levi, D., Kaminsky, P. und Simchi-Levi, E. (2008): Designing and managing the supply chain: concepts, strategies and case studies, 3. ed., McGraw-Hill. Supply Chain Council (2010): Supply Chain Operations Reference (SCOR) model: Overview – Version 10.0, [online] :: http://supplychain.org/f/Web‐Scor‐Overview.pdf. Swink, M., Melnyk, S. A., Cooper, M. B., Hartley, J. L. (2011): Managing Operations – Across the Supply Chain. McGraw-Hill/Irwin. |
Lehrveranstaltung L1190: Wertschöpfungsnetzwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0764: Flugzeugsysteme II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0736: Flugzeugsysteme II |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugzeugsysteme II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0811: Bildgebende Systeme in der Medizin |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Michael Grass |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
keine |
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0819: Bildgebende Systeme in der Medizin |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Dr. Michael Grass, Dr. Tim Nielsen, Dr. Sven Prevrhal, Frank Michael Weber |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Rahmen der Vorlesung werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptapplikationsgebiete der Magnetresonanz Tomographie (MR), der Bildgebung mittels Röntgenstrahlung (X-ray und CT), der nuklearen Bildgebung (SPECT und PET) und des Ultraschalls (US) vermittelt. Am Ende der Vorlesung sollte jeder Student ein Basisverständniss der verschiedenen Modalitäten, ihrer Hauptanwendungsgebiete in der Medizin und ihre Stärken und Schwächen erworben haben. Die Vorlesung teilt sich in eine Einführung und fünf Blöcke auf: In jedem Block werden die physikalischen Grundlagen der Modalität erklärt. Darauf aufbauend werden die Prinzipien der Signalerzeugung und ihrer Detektion diskutiert. Im folgenden, werden die resultierenden Bildkontraste veranschaulicht und die Basis der zweidimensionalen und dreidimensionalen Bildgebung vermittelt. Abschließend werden die prinzipiellen Limitierungen jeder Modalität und erwartete zukünftige Entwicklungen vorgestellt. 0: Einführungsvorlesung
|
Literatur |
Primary book: 1. P. Suetens, "Fundamentals of Medical Imaging", Cambridge Press Secondary books: - A. Webb, "Introduction to Biomedical Imaging", IEEE Press 2003. - W.R. Hendee and E.R. Ritenour, "Medical Imaging Physics", Wiley-Liss, New York, 2002. - H. Morneburg (Edt), "Bildgebende Systeme für die medizinische Diagnostik", Erlangen: Siemens Publicis MCD Verlag, 1995. - O. Dössel, "Bildgebende Verfahren in der Medizin", Springer Verlag Berlin, 2000. |
Modul M1143: Methodisches Konstruieren |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Josef Schlattmann |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Grundlagenkenntnisse des Konstruierens |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können spezifische Produktentwicklungsmethoden |
Fertigkeiten |
Die Studierenden können |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können technisch-wissenschaftliche Aufgabenstellungen |
Selbstständigkeit |
Die Studierenden sind zur gezielten Konstruktionsprozessoptimierung fähig. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1523: Methodisches Konstruieren |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1524: Methodisches Konstruieren |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Josef Schlattmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1144: Kunststoffverarbeitung - Vom Molekül zum Composite Bauteil |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Aufbau und Eigenschaften der Kunststoffe Aufbau und Eigenschaften der Verbundwerkstoffe |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Kunststoffen und Verbudnwerkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche / kunststofftechnische Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche 7 kunststofftechnische Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 1,5 h |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0511: Manufacturing with Polymers and Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Crawford: Plastics engineering, Pergamon Press Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Customer Request ("Handout") |
Modul M1145: Automation und Simulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Ackermann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
BSc Maschinenbau oder ähnlich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben. Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben. Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern. |
Fertigkeiten |
Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen. Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten. Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen. Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Zusammenarbeit in kleinen Teams |
Selbstständigkeit |
Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen durchzuführen und die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1525: Automation und Simulation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Aufbau von Automationseinrichtungen Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten Datenübertragung über Bussysteme Speicherprogrammierbare Steuerung Verfahren zur Beschreibung logischer Abläufe Prinzip der Modellierung und Simulation von kontinuierlichen technischen Systemen Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink) Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen. |
Literatur |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Lehrveranstaltung L1527: Automation und Simulation |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Franz Joos |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1170: Phänomene und Methoden der Materialwissenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Patrick Huber |
Zulassungsvoraussetzungen |
keine. |
Empfohlene Vorkenntnisse |
Grundlagen der Materialwissenschaften (I and II) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Eigenschaften von modernen Hochleistungswerkstoffen sowie deren Einsatz in der Technik erläutern. Sie können die werkstoffwissenschaftliche Bedeutung und Anwendung von metallischen Werkstoffen, Keramiken, Polymeren, Halbleitern sowie von modernen Kompositmaterialien (insbesondere Biomaterialien) und Nanomaterialien beschreiben. |
Fertigkeiten |
Die Studierenden sind nach dem Erlernen grundlegender Prinzipien des
Materialdesigns in der Lage, selbst neue Materialkonfigurationen mit
gewünschten Eigenschaften zusammenzustellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ...
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Materialwissenschaft: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1580: Experimentelle Methoden der Materialcharakterisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Patrick Huber |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007). |
Lehrveranstaltung L1579: Phasengleichgewichte und Umwandlungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlagen der statistischen Physik, formale Struktur der phänomenologischen Thermodynamik, einfache atomistische Modelle und freie Energiefunktionen für Mischkristalle und Verbindungen. Korrekturen bei nichtlokaler Wechselwirkung (Elastizität, Gradiententerme). Phasengleichgewicht und Legierungsphasendiagramme als Konsequenz daraus. Einfache atomistische Betrachtungen für Wechselwirkungsenergien in metallischen Mischkristallen. Diffusion in realen Systemen. Kinetik von Phasenumwandlungen unter anwendungsrelevanten Randbedingungen. Partitionierung, Stabilität und Morphologie an Erstarrungsfronten. Ordnung von Phasenübergängen, Glasübergang. Phasenübergänge in nano- und mikroskaligen Systemen. |
Literatur | Wird im Rahmen der Lehrveranstaltung bekannt gegeben. |
Modul M1226: Mechanische Eigenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Erica Lilleodden |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Werkstoffwissenschaften I/II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können in der Kristallographie, Statik (Freikörperbilder, Traktionen) Grundlagen der Thermodynamik (Energieminimierung, Energiebarrieren, Entropie) grundlegende Konzepte erklären. |
Fertigkeiten |
Studierende sind in der Lage, standardisierte Berechnungsmethoden durchzuführen: Tensor Berechnungen, Ableitungen, Integrale, Tensor-Transformationen |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig: - eigene Stärken und Schwächen allgemein einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - selbständig auf Basis von Vorträgen zu arbeiten um Probleme zu lösen, und, wenn nötig, um Hilfe oder Klarstellungen zu bitten |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht |
Lehrveranstaltung L1661: Mechanisches Verhalten spröder Materialien |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerold Schneider |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Theoretische
Festigkeit Tatsächliche
Festigkeit von spröden Materialien Streuung der
Festigkeit Heterogene
Materialien I Heterogene
Materialien II Heterogene
Materialien III Messmethoden der zur Bestimmung der Bruchzähigkeit spröder Materialien R-Kurve, stabiles/ instabile Risswachstum, Fraktographie Thermoschock Unterkritisches
Risswachstum Kriechen Mechanische Eigenschaften von biologischen Materialien Anwendungsbeispiele zur mechanischen zuverlässigen Auslegung keramischer Bauteile |
Literatur |
D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992 |
Lehrveranstaltung L1662: Theorie der Versetzungsplastizität |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Erica Lilleodden |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Dieser Kurs deckt die Grundsätze der Versetzungstheorie aus einer metallkundlichen Perspektive ab und bietet ein grundlegendes Verständnis der Beziehungen zwischen mechanischen Eigenschaften und Defektverteilungen. Wir werden das Konzept von Versetzungen betrachten und einen Überblick über wichtige Konzepte (z.B. lineare Elastizität, Spannungs-Dehnungs-Beziehungen, und Stressverformung) für Theorieentwicklung erhalten. Wir werden die Theorie der Versetzungsplastizität durch abgeleitete Spannungs- und Dehnungs-Felder, dazugehörende Energien, und der induzierten Kräfte auf Versetzungen aufgrund interner und externer Spannungen entwickeln. Versetzungsstrukturen werden diskutiert, inkl. Kernstrukturmodelle, Stapelfehlern und Versetzungs-Arrays (inkl. einer Beschreibung der Grenzfläche). Mechanismen von Versetzungsmultiplikation und –Verfestigung werden abgedeckt, genau so wie generelle Prinzipien von Kriechverhalten und Dehngeschwindigkeitsempfindlichkeit. Weitere Themen beinhalten nicht-FCC Versetzungen mit einem Fokus auf dem Unterschied in Struktur und korrespondierenden Implikationen auf Versetzungsmobilität und makroskopischem mechanischen Verhalten; und Versetzungen in finiten Volumen. |
Literatur |
Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen |
Control Systems Theory and Design |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. |
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
Personale Kompetenzen | |
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. |
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende
können:
|
Selbstständigkeit |
Studierende
können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten im WS + 90 Minuten im SS |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Ralf Heinrich, Mike Montel |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0815: Product Planning |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Cornelius Herstatt |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Good basic-knowledge of Business Administration |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students will gain insights into:
|
Fertigkeiten |
Students will gain deep insights into:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Global Innovation Management: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung I. Management: Wahlpflicht Mechanical Engineering and Management: Vertiefung Management: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0851: Product Planning |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Product Planning Process This integrated lecture is designed to understand major issues, activities and tools in the context of systematic product planning, a key activity for managing the front-end of innovation, i.e.: |
Literatur | Ulrich, K./Eppinger, S.: Product Design and Development, 2nd. Edition, McGraw-Hill 2010 |
Lehrveranstaltung L0853: Product Planning Seminar |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Cornelius Herstatt |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Seminar is integrative part of the Module Product Planning (for content see lecture) and can not be choosen independantly |
Literatur | see/siehe Vorlesung Produktplanung/Product Planning |
Modul M0830: Environmental Protection and Management |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf Otterpohl |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to describe the basics of regulations, economic instruments, voluntary initiatives, fundamentals of HSE legislation ISO 14001, EMAS and Responsible Care ISO 14001 requirements. They can analyse and discuss industrial processes, substance cycles and approaches from end-of-pipe technology to eco-efficiency and eco-effectiveness, showing their sound knowledge of complex industry related problems. They are able to judge environmental issues and to widely consider, apply or carry out innovative technical solutions, remediation measures and further interventions as well as conceptual problem solving approaches in the full range of problems in different industrial sectors. |
Fertigkeiten |
Students are able to assess current problems and situations in the field of environmental protection. They can consider the best available techniques and to plan and suggest concrete actions in a company- or branch-specific context. By this means they can solve problems on a technical, administrative and legislative level. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work together in international groups. |
Selbstständigkeit |
Students are able to organize their work flow to prepare themselves for presentations and contributions to the discussions. They can acquire appropriate knowledge by making enquiries independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Umwelttechnik: Wahlpflicht Environmental Engineering: Kernqualifikation: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Wasser: Wahlpflicht Joint European Master in Environmental Studies - Cities and Sustainability: Vertiefung Energie: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Pflicht Wasser- und Umweltingenieurwesen: Vertiefung Stadt: Pflicht |
Lehrveranstaltung L0502: Integrated Pollution Control |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf Otterpohl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture focusses on:
|
Literatur |
Förstner, Ulrich (1998): Integrated Pollution Control, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-80313-0 Shen, Thomas T. (1999): Industrial Pollution Prevention, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-65208-3 |
Lehrveranstaltung L0387: Health, Safety and Environmental Management |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
C. Stephan: Industrial Health, Safety and Environmental Management, MV-Verlag, Münster, 2007/2012 (can be found in the library under GTG 315) Exercises can be downloaded from StudIP |
Lehrveranstaltung L0388: Health, Safety and Environmental Management |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Hans-Joachim Nau |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0867: Produktionsplanung und -steuerung und Digitales Unternehmen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Hermann Lödding |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen des Produktions- und Qualitätsmanagements |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die Inhalte des Moduls detailliert erläutern und dazu Stellung beziehen. |
Fertigkeiten | Studierende sind in der Lage, Modelle und Methoden des Moduls für industrielle Problemstellungen auszuwählen und anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in fachlich gemischten Teams gemeinsame Lösungen entwickeln und diese vor anderen vertreten. |
Selbstständigkeit | - |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 Minuten |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0932: Das digitale Unternehmen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Scheer, A.-W.: ARIS - vom Geschäftsprozeß zum Anwendungssystem. Springer-Verlag, Berlin 4. Aufl. 2002 Schuh, G. et. al.: Produktionsplanung und -steuerung, Springer-Verlag. Berlin 3. Auflage 2006 Becker, J.; Luczak, H.: Workflowmanagement in der Produktionsplanung und -steuerung. Springer-Verlag, Berlin 2004 Pfeifer, T; Schmitt, R.: Masing Handbuch Qualitätsmanagement. Hanser-Verlag, München 5. Aufl. 2007 Kühn, W.: Digitale Fabrik. Hanser-Verlag, München 2006 |
Lehrveranstaltung L0929: Produktionsplanung und -steuerung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0930: Produktionsplanung und -steuerung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Hermann Lödding |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0933: Übung: Das digitale Unternehmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Axel Friedewald |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung See interlocking course |
Modul M0962: Nachhaltigkeit und Risikomanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Kerstin Kuchta |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden besitzen Fachkompetenz in den Bereichen Verfahren der Sicherheits- und Risikobeurteilung sowie der Bewertung von Umweltschutz- und Nachhaltigkeitsaspekten von verschiedenen Technologien. Sie können zum Beispiel die folgenden Inhalte beschreiben und detailliert erläutern:
|
Fertigkeiten |
Die Studierenden sind in der Lage, fachübergreifend und systemorientiert Methoden zur Risikobewertung und Nachhaltigkeitsberichterstattung anzuwenden. Sie können den technischen Aufwand und die ökologischen Folgen von Energieerzeugungstechniken einschätzen, geeignete Prozesse auswählen und in Ansätzen ökonomisch bewerten. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Die Studierenden können sich gegebene Quellen über das jeweilige Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen transformieren. Sie sind in der Lage, für die Lösung von gegebenen Aufgaben aus dem Bereich der Nachhaltigkeit und Risikobewertung die notwendigen Arbeitsschritte zu definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Ausarbeitung und Präsentation (45 Minuten in Gruppen) |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Bauingenieurwesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L1145: Sicherheit, Zuverlässigkeit und Risikobewertung |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Marco Ritzkowski |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Es wird in die Verfahren der Sicherheits- und Risikobeurteilung eingeführt, und es werden typische Fragestellungen aus dem Bau- und Umweltingenieurwesen behandelt:
|
Literatur |
- Vorlesungsunterlagen - Schneider, J., Schlatter, H.P.: Sicherheit und Zuverlässigkeit im Bauwesen. www.risksafety.ch/files/sicherheit_und_zuverlaessigkeit.pdf |
Lehrveranstaltung L0319: Environment and Sustainability |
Typ | Vorlesung | |||||||||||||
SWS | 2 | |||||||||||||
LP | 3 | |||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | |||||||||||||
Dozenten | Prof. Kerstin Kuchta | |||||||||||||
Sprachen | EN | |||||||||||||
Zeitraum | WiSe | |||||||||||||
Inhalt |
This course presents actual methodologies and examples of environmental relevant, sustainable technologies, concepts and strategies in the field of energy supply, product design, water supply, waste water treatment or mobility. The following list show examples.
|
|||||||||||||
Literatur | Wird in der Veranstaltung bekannt gegeben. |
Modul M1024: Methoden der integrierten Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Integrierte Produktentwicklung II |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Integrierte Produktentwicklung II |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1002: Produktions- und Logistikmanagement |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Kersten |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der Betriebswirtschaftslehre
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können |
Fertigkeiten |
Die Studierenden sind auf Basis des erlernten Wissens in der Lage, |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - Diskussionen und Teamsitzungen anzuleiten, - in Gruppen zu Arbeitsergebnissen zu kommen und diese zu dokumentieren, - in fachlich gemischten Teams gemeinsame Lösungen zu erarbeiten und diese vor anderen zu vertreten, - Probleme und Lösungen vor Fachpersonen zu vertreten und Ideen weiterzuentwickeln. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen, - sich eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen zu erschließen sowie |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1198: Operatives Produktions- und Logistikmanagement |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Blecker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H.: Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, 12. Aufl., München 2009. Dyckhoff, H./Spengler T.: Produktionswirtschaft: Eine Einführung, 3. Aufl., Berlin Heidelberg 2010. Heizer, J./Render, B: Operations Management, 10. Auflage, Upper Saddle River 2011. Kaluza, B./Blecker, Th. (Hrsg.): Produktions- und Logistikmanagement in Virtuellen Unternehmen und Unternehmensnetzwerken, Berlin et al. 2000. Kaluza, B./Blecker, Th. (Hrsg.): Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen, Berlin 2005. Kurbel, K.: Produktionsplanung und ‑steuerung, 5., Aufl., München - Wien 2003. Schweitzer, M.: Industriebetriebslehre, 2. Auflage, München 1994. Thonemann, Ulrich (2005): Operations Management, 2. Aufl., München 2010. Zahn, E./Schmid, U.: Produktionswirtschaft I: Grundlagen und operatives Produktionsmanagement, Stuttgart 1996 Zäpfel, G.: Grundzüge des Produktions- und Logistikmanagement, 2. Aufl., München - Wien 2001 |
Lehrveranstaltung L1089: Strategisches Produktions- und Logistikmanagement |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Kersten, Dr. Meike Schröder |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Corsten, H. /Gössinger, R. (2009): Produktionswirtschaft – Einführung in das industrielle Produktionsmanagement, 12. Auflage, München: Oldenbourg. Dyckhoff, H. /Spengler, T. (2007): Produktionswirtschaft – eine Einführung für Wirtschaftsingenieure, 2. Auflage, Berlin Heidelberg [u.a.]: Springer. Heizer, J./Render, B (2011): Operations Management, 10. Auflage, Upper Saddle River. Henderson, S./ Illidge, R./Machardy, P. (1994): Management for engineers, Oxford: Butterworth-Heinemann. Porter, M. E. (2008): Wettbewerbsstrategie – Methoden zur Analyse von Branchen und Konkurrenten, 11. Auflage, Frankfurt/Main [u.a.]: Campus-Verlag. Slack, N./ Lewis, M.(2002): Operations Strategy, Harlow u.a. Swink, M./ Melnyk, S./ Cooper, M./ Hartley, J.(2011): Managing Operations across the Supply Chain, New York u.a. Wortmann, J. C. (1992): Production management systems for one-of-a-kind products, Computers in Industry 19, S. 79-88 Womack, J./ Jones, D./ Roos, D. (1990): The Machine that changed the world; New York. Zahn, E. /Schmid, U. (1996): Grundlagen und operatives Produktionsmanagement, Stuttgart: Lucius & Lucius Zäpfel, G.(2000): Produktionswirtschaft: Strategisches Produktions-Management, 2. Aufl., München u.a. |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1025: Fluidtechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse in Mechanik (Stereostatik, Elastostatik, Hydrostatik, Kinematik und Kinetik), Strömungsmechanik und Konstruktionslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen in der Lage,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 |
Zuordnung zu folgenden Curricula |
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1256: Fluidtechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Hydrostatik
Pneumatik
Hydrodynamik
Hörsaalübung Hydrostatik
Hydrodynamik
Exkursion
Übung Numerische Simulation hydrostatischer Systeme
|
Literatur |
Bücher
|
Lehrveranstaltung L1371: Fluidtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1257: Fluidtechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1183: Lasersysteme und Methoden der Fertigungsprozessauslegung und -analyse |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hintze |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische
Mechanik, Thermodynamik, Grundlagen der Werkstoffkunde, spanende und umformende
Fertigungsverfahren, Grundlagen der Werkzeugmaschinen, Grundlagen der
Regelungstechnik, Grundlagen der FEM, Grundlagen der Lasertechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Vertiefte Kenntnisse theoretischer und experimenteller Methoden zur Gestaltung und Analyse von Fertigungsprozessen Vertiefte Kenntnisse der Lasertechnik:
|
Fertigkeiten |
Modellhaftes Beschreiben von Fertigungsaufgaben mit ausgewählten Methoden Modellhaftes und wissenschaftliches Analysieren von Fertigungsproblemen Systematisches Auslegen und Analysieren von Laserprozessen und -anlagen |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren können |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1612: Laser Systems and Process Technologies |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Claus Emmelmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0876: Methoden der Fertigungsprozessanalyse |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Tönshoff, H.K.; Denkena, B.; Spanen Grundlagen, Springer (2004) Klocke, F.; König, W.; Fertigungsverfahren Umformen, Springer (2006) Weck, M.; Werkzeugmaschinen Fertigungssysteme 3, Springer (2001) Weck, M.; Werkzeugmaschinen Fertigungssysteme 5, Springer (2001) |
Modul M1174: Automatisierungstechnik und -systeme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Schüppstuhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können…
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, …
|
Selbstständigkeit |
Studierende sind fähig, …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1591: Handhabungs- und Montagetechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
-Grundlagen und Begriffe der Handhabungs- und Montagetechnik -Analyse von Bauteilen und Handhabungsaufgaben -Zuführ- und Transfersysteme -Greifer -Industrieroboter: Aufbau, Steuerung und Programmierung -Maschinensicherheit |
Literatur |
Stefan Hesse Grundlagen der Handhabungstechnik ISBN: 3446418725 München Hanser, 2010 |
Lehrveranstaltung L1738: Handhabungs- und Montagetechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1590: Produktionsautomatisierung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
-Einführung in die Automatisierungstechnik einschließlich ihrer Anwendungsfelder, wichtiger Begriffe, historischer Entwicklung und Trends -Überblick über die verschiedenen Aktorgruppen mit deren Wirkprinzipien -Entwurf von Pneumatikschaltplänen -Betrachtung der Energieeffizienz in der Produktion -Einblick in automatische Identifikationssystemen mit Fokus auf Barcodes und RFID-Systemen -Übersicht des Aufbaus, der verschiedenen Komponenten und der Algorithmen eines Bildverarbeitungssystems -Einführung in die Buskommunikation und der verschiedenen Ausführungen eines Bussystems -Vergleich von verbindungsprogrammierten und speicherprogrammierbaren Steuerungen inklusive der Trends |
Literatur |
Reinhard Langmann: Taschenbuch der Automatisierung Holger Watter: Hydraulik und Pneumatik Horst Walter Grollius: Grundlagen der Pneumatik Hubertus Murrenhoff: Grundlagen der Fluidtechnik Christian Demant: Industrielle Bildverarbeitung Michael ten Hompel: Identifikationssysteme und Automatisierung Hans-Jürgen Gevatter, Ulrich Grünhaupt: Handbuch der Mess- und Automatisierungstechnik in der Produktion |
Lehrveranstaltung L1739: Produktionsautomatisierung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0719: Biomaterialien und regenerative Medizin |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Michael Morlock |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse der operativen Verfahren und der benutzten Implantate bzw. Endoprothesen am Menschen. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Student kann die Materialcharakterisika der in Medizin eingesetzten Materialien sowie ihre Vor- und Nachteile benennen. Der Student kann die am Menschen eingesetzten Polymere, Metalle und Kunststoffe aufzählen. Der Student hat ein grundlegendes Verständnis zu Fragen der regenerativen Medizin. |
Fertigkeiten |
Der Student kann die Vorteile und Nachteile der unterschiedlichen in der Medizin eingesetzten Materialien erklären. Der Student kann die Grundprinzipien des Einsatzes von Zellen für regenerative medizinische Anwendungen erklären und beschreiben. Der Student kann Literatur-Datenbanken zur Acquirierung und Darstellung der relevanten up-to-date Daten nutzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Student kann Diskussionen anleiten und an ihnen mit Bezugnahme auf andere Studierenden teilnehmen und Arbeitsergebnisse vertreten. Der Student kann mit Kommilitonen respektvoll im Team zusammenarbeiten. |
Selbstständigkeit |
Der Student kann Wissen selbständig erschließen und das erworbene Wissen auch auf neue Fragestellungen transferieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | |
Prüfungsdauer und -umfang | 90 Minuten, zwischen 20 und 50 Fragen |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L0593: Biomaterials |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Michael Morlock |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Topics to be covered include: 1. Introduction (Importance, nomenclature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. |
Literatur |
Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987. Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998. Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988. Park J. Biomaterials: an introduction. New York: Plenum Press, 1980. Wintermantel, E. und Ha, S.-W : Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996. |
Lehrveranstaltung L0347: Regenerative Medizin |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Ralf Pörtner, Dr. Frank Feyerabend |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Der Kurs beschäftigt sich mit der Anwendung biotechnologischer Techniken für Regeneration menschlicher Gewebe. Die Hauptthemen sind Tissue engineering zur Erzeugung von künstlichen Organen wie Knorpel, Leber, Blutgefäßen etc. und ihre Anwendungen: Einleitung (historische Entwicklung, Beispiele für die medizinischen und technischen Anwendungen, Marktübersicht) Spezifische Grundlagen der Zelle (Zellenphysiologie, Biochemie, Metabolismus, spezielle Anforderungen für Zellenkultur "in-vitro") Spezifische Prozeßgrundlagen (Anforderungen für Kultursysteme, Beispiele für Reaktorentwurf, mathematisches Modellieren, Prozess- und Steuerstrategien) Beispiele für Anwendungen für klinische Anwendungen, Wirkstofftestung und Materialprüfung Die Grundlagen werden von den Dozenten dargestellt. Der aktelle Stand der Entwicklung wird von den Studenten anhand ausgewählter aktueller Publikationen selbstständig erarbeitet und während des Kurses präsentiert. |
Literatur |
Regenerative Biology and Medicine (Taschenbuch) von David L. Stocum; Academic Pr Inc; ISBN-10: 0123693713 , ISBN-13: 978-0123693716 Fundamentals of Tissue Engineering and Regenerative Medicine von Ulrich Meyer (Herausgeber), Thomas Meyer (Herausgeber), Jörg Handschel (Herausgeber), Hans Peter Wiesmann (Herausgeber): Springer, Berlin; ISBN-10: 3540777547; ISBN-13: 978-3540777540 |
Modul M1342: Kunststoffe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Hans Wittich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Kunststoffe wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um - Mechanische Eigenschaften (Modul, Festigkeit) zu berechnen und die unterschiedlichen Materialien zu bewerten. - Für werkstoffliche Probleme geeignete Lösungen auszuwählen und zu Dimensionieren z.B. Steifigkeit, Korrosion, Festigkeit. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, - in Gruppen zu Arbeitsergebnissen kommen und diese dokumentieren. - angemessen Feedback geben und mit Rückmeldungen zu ihren eigenen Leistungen konstruktiv umgehen. |
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen allgemein Einzuschätzen - angeleitet durch Lehrende ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht |
Lehrveranstaltung L0389: Aufbau und Eigenschaften der Kunststoffe |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Hans Wittich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Struktur und Eigenschaften der Kunststoffe - Aufbau des Makromoleküls Konstitution, Kofiguration, Konformation, Bindungen, Polyreaktionen, Molekulargewichtsverteilung - Morphologie Amorph, Kristallisation, Mischungen - Eigenschaften Elastizität, Plastizität, Wechselbelastungen, - Thermische Eigenschaften, - Elektrische Eigenschaften - Theoretische Modelle zur Vorhersage der Eigenschaften - Anwendungsbeispiele |
Literatur | Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag |
Lehrveranstaltung L1892: Verarbeitung und Konstruieren mit Kunststoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Dr. Hans Wittich |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Verarbeitung der Kunststoffe: Eigenschaften; Kalandrieren; Extrusion; Spritzgießen; Thermoformen; Schäumen; Fügen Designing with Polymers: Materials Selection; Structural Design; Dimensioning |
Literatur |
Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1185: Technischer Ergänzungskurs für PEPMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Siehe gewähltes Modul laut FSPO |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
siehe gewähltes Modul laut FSPO |
Fertigkeiten |
siehe gewähltes Modul laut FSPO |
Personale Kompetenzen | |
Sozialkompetenz |
siehe gewähltes Modul laut FSPO |
Selbstständigkeit |
siehe gewähltes Modul laut FSPO |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Ergänzungsmodule Kernfächer
Modul M0599: Integrierte Produktentwicklung und Leichtbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vertiefte Kenntnisse der Konstruktion: Grundlagen der Konstruktionslehre, Konstruktionslehre Gestalten, Vertiefte Konstruktionslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können nach Abschluss des Moduls:
|
Fertigkeiten |
Die Studierenden sind in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig:
|
Selbstständigkeit |
Die Studierenden können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L0271: CAE-Teamprojekt |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Beschreibung Bestandteil des Moduls ist ein projektbasiertes, teamorientiertes CAE-Praktikum nach der PBL-Methode, im Rahmen dessen die Studierenden den Umgang mit modernen CAD-, PDM- und FEM-Systemen (Creo, Windchill und Hyperworks) vertiefen sollen. Nach einer kurzen Einführung in die verwendeten Softwaresysteme werden die Studierenden semesterbegleitend in Teamarbeit eine Aufgabenstellung bearbeiten. Ziel ist die gemeinsame Entwicklung eines Produktes in einer PDM-Umgebung aus mehreren CAD-Bauteil-Modellen unter Einbeziehung von FEM-Berechnungen ausgewählter Bauteile, inklusive des 3D-Druckens von Teilen. Die entwickelte Produktkonstruktion muss in Form einer Präsentation gemeinsam vorgestellt werden. |
Literatur | - |
Lehrveranstaltung L0270: Entwicklung von Leichtbau-Produkten |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0269: Integrierte Produktentwicklung I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0726: Produktionstechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hintze |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine Leistungsnachweise erforderlich Grundpraktikum empfohlen Vorkenntnisse in Mathematik, Mechanik und Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können …
|
Fertigkeiten |
Studierende sind in der Lage …
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können, …
|
Selbstständigkeit |
Studierende sind fähig, …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L0689: Grundlagen der Werkzeugmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Begriffe und Trends im Werkzeugmaschinenbau CNC-Steuerungen NC-Programmierung und NC-Programmiersysteme Arten, Aufbau und Funktion von CNC-Maschinen Mehrmaschinensysteme Ausrüstungskomponenten für Werkzeugmaschinen Beurteilung von Werkzeugmaschinen |
Literatur |
Conrad, K.J Taschenbuch der Werkzeugmaschinen 9783446406414 Fachbuchverlag 2006
Perović, Božina Spanende Werkzeugmaschinen - Ausführungsformen und Vergleichstabellen ISBN: 3540899529 Berlin [u.a.]: Springer, 2009
Weck, Manfred Werkzeugmaschinen 1 - Maschinenarten und Anwendungsbereiche ISBN: 9783540225041 Berlin [u.a.]: Springer, 2005
Weck, Manfred; Brecher, Christian Werkzeugmaschinen 4 - Automatisierung von Maschinen und Anlagen ISBN: 3540225072 Berlin [u.a.]: Springer, 2006
Weck, Manfred; Brecher, Christian Werkzeugmaschinen 5 - Messtechnische Untersuchung und Beurteilung, dynamische Stabilität ISBN: 3540225056 Berlin [u.a.]: Springer, 2006 |
Lehrveranstaltung L0613: Umform- und Zerspantechnologie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Lange, K.; Umformtechnik Grundlagen, 2. Auflage, Springer (2002) Tönshoff, H.; Spanen Grundlagen, 2. Auflage, Springer Verlag (2004) König, W., Klocke, F.; Fertigungsverfahren Bd. 4 Massivumformung, 4. Auflage, VDI-Verlag (1996) König, W., Klocke, F.; Fertigungsverfahren Bd. 5 Blechbearbeitung, 3. Auflage, VDI-Verlag (1995) Klocke, F., König, W.; Fertigungsverfahren Schleifen, Honen, Läppen, 4. Auflage, Springer Verlag (2005) König, W., Klocke, F.: Fertigungsverfahren Drehen, Fräsen, Bohren, 7. Auflage, Springer Verlag (2002) |
Lehrveranstaltung L0614: Umform- und Zerspantechnologie |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1009: Materialwissenschaftliches Praktikum |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die fachlichen Details von werkstoffwissenschaftlichen Experimenten geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus den Werkstoffwissenschaften in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung werkstoffwissenschaftlicher Experimente. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen gemeinsam Experimente aus den Werkstoffwissenschaften durchführen und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. |
Selbstständigkeit |
Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen werkstoffwissenschaftliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 1,5 h schriftliche Klausur (50%) zur Vorlesung |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht Maschinenbau: Vertiefung Materialien in den Ingenieurwissenschaften: Pflicht Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht |
Lehrveranstaltung L1088: Begleitvorlesung zum Materialwissenschaftlichen Praktikum |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Patrick Huber |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vermittlung von physikalisch-chemischen und experimentellen Grundlagen zum Verständnis der folgenden aufgeführten Versuche, wobei in Klammern stichwortartig die jeweiligen Grundlagen genauer spezifiziert sind: |
Literatur |
William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011) William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007) |
Lehrveranstaltung L1235: Materialwissenschaftliches Praktikum |
Typ | Laborpraktikum |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Bodo Fiedler, Prof. Stefan Müller, Prof. Patrick Huber, Prof. Gerold Schneider, Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
8 Versuche: Zustandsdiagramm, Wärmebehandlung, Härtemessung Kerbschlagbiegeversuch Vorgänge bei der Erstarrung von Metallen Zugversuch Identifizierung von Kunststoffen Faserverstärkte Kunststoffe Herstellung und Gefüge keramischer Werkstoffe Mechanisches Verhalten keramischer Werkstoffe |
Literatur |
Vorlesungsunterlagen Grundlagen der Werkstoffwissenschaft I & II |
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |