

Module Manual

Master of Science (M.Sc.) Materials Science

Cohort: Winter Term 2021 Updated: 7th July 2022

Table of Contents

Table of Contents	2
Program description	3
Core Qualification	5
Module M0523: Business & Management	5
Module M0524: Non-technical Courses for Master	6
Module M1198: Materials Physics and Atomistic Materials Modeling	8
Module M1170: Phenomena and Methods in Materials Science	10
Module M1569: Applied Computational Methods for Material Science	12
Module M1219: Advanced Laboratory Materials Sciences	13
Module M1226: Mechanical Properties	14
Module M1197: Multiphase Materials	17
Module M1199: Advanced Functional Materials	19
Module M1221: Study work on Modern Issues in the Materials Sciences	20
Specialization Engineering Materials	21
Module M1342: Polymers	21
Module M1344: Processing of fibre-polymer-composites	23
Module M1570: Fatioue of metallic structural materials and methods for extending service life	25
Module M1343: Structure and properties of fibre-polymer-composites	27
Module M1345: Metallic and Hybrid Light-weight Materials	29
Module M0595: Examination of Materials, Structural Condition and Damages	32
Module M1291: Materials Science Seminar	33
Module M1665: Design with fibre-polymer-composites	35
Specialization Modeling	37
Module M1151: Materials Modeling	37
Module M0604: High-Order EEM	30
Module M0605: Computational Structural Dynamics	41
Module M0606: Numerical Algorithms in Structural Mechanics	43
Module M1237: Methods in Theoretical Materials Science	45
Module M1237: Quantum Mechanics of Solids	47
Module M0603: Nonlinear Structural Analysis	49
Module M1201: Materials Science Seminar	51
Module M1150: Continuum Mechanics	53
Product Mittal Continuant Medianes	56
Madel M0366 Microsystems Technology	50
Module M0700. Microsystems recimiliogy	50
Module M1534, biol il. biolinaterials Module M0643, opticalectropical. Wave Optica	50
Module M0042. Optionedustra Compar	62
Module M0950. Semiconductor Seminar Module M1220. Interfaces and interface dominated Materials	62
Module M1220, interfaces and interface of Solids	65
Module M1230. Evantimental Micro and Nanomochanics	67
Module M1235: EApermentar Micro- and Mailonechanics	60
Module M0510, Particle Technology and Solid Matter Process Technology	70
Module M0644: Ontoelectronics II Quantum Ontics	70 70
Module M1201: Materials Science Seminar	7/
Theoic	74
Madula M 002) Mastar Theois	10
ויוטעעוב ויו-טעב. ויומגובו דוובאג	/0

Program description

Content

Materials - both classic as well as novel - are the basis and the driving force for products and product innovations. The most important material-based industries in Germany, including automotive and engineering, chemical, power engineering, electrical and electronics as well as metal manufacturing and processing, generate annual sales of nearly one trillion euros and employ around five million people.

Materials scientists are developing entirely new materials concepts - for example in current key fields such as energy storage and conversion or structural lightweight construction - or they are improving existing materials and adapting them to the constantly changing requirements of global competition. With their expertise on the complex implication of structure, composition, processing steps and load and environmental influences on the performance and behavior of materials in practical use, they are also a link between design and production.

Due to the importance of material behavior for the structural design and processing of products, the study of materials has a strong engineering component. At the same time, the understanding of material behavior is based on the most recent insights in basic natural science subjects. For example, although modern high-performance steels are produced on a 1000-tonne scale, the trend is increasing towards the design of such materials and their processing steps based on model calculations based on quantum-physical principles covering the entire scale from atom to component.

Novel composite and hybrid materials that combine high strength and low weight with functional properties such as actuators or sensors are using current research results from the nanoscience. The development of biomaterials, which are increasingly important in health care, requires insights from medicine in addition to materials physical and chemical approaches. The broad interdisciplinary approach of materials science makes them a bridging discipline between the engineering and natural sciences.

The master's program Materials Science (M.Sc.) - Multiscale Material Systems is addressed to bachelor graduates of engineering as well as physics or chemistry. With its baseline-oriented curriculum, taking into account both natural science and engineering aspects, the program provides an understanding of the fabrication, design, properties, and design principles of materials, from atomic structures and processes to component behavior.

The focus of the first year of study are the core topics: physics and chemistry of materials, methods in experiment, theory and cross-scale modeling, mechanical properties ranging from molecules to idealized monocrystalline states to real material, phase transitions and microstructure design as well as properties of functional materials. Specialization areas open up the fields of nano- and hybrid materials, technical materials, and material modeling. In the second year of study, participation in current research is the focus, with a study project on Modern Problems of Materials Science as well as the Master's Thesis.

Career prospects

Examples of task areas of materials scientists are:

- Materials expertise in construction
- · process development and support in the materials producing and processing industry
- material and process development in research and development departments
- failure analysis
- quality assurance
- patents
- scientific research at universities and state research institutions

Business sectors include:

- vehicle and aircraft construction
- mechanical engineering
- chemical industry
- energy management
- electrical and electronics industry
- metal smelting and processing
- medical engineering
- civil engineering

Learning target

Knowledge

- Graduates have learned the basic principles and acquired the knowledge and skills in the field of materials science that qualifies them for professional practice in a national and international environment. Graduates are able to describe the underlying scientific principles of materials science as well as the central experimental and computational methods.
- They have an advanced knowledge in the following subject areas and can explain them:
- metals, ceramics, polymers and their composites
 - the mutual interplay between materials behavior, microstructure, and processing
 - mechanical properties, functional properties, phase transitions and microstructure evolution
 - · characterization techniques in materials science
 - modeling approaches in materials science.
- Graduates can apply their knowledge in the above-mentioned subject areas as well as their methodological skills to scientific as well as technical materials-related tasks.
- They can identify and link the relevant fundamental methods and insights in order to solve scientific as well as technical problems in the area of
 materials science and specifically in subject areas of their specialization.

Graduates with the specialization "Construction Materials"

- can evaluate metals, ceramics, polymers and composite materials for specific tasks in a technology-oriented environment.
- can develop and supervise sequences of processing steps.
- can make decisions on material selection, industrial production, quality assurance and failure analysis.

Graduates with the specialization "Modeling"

- can identify the appropriate modeling approaches for different phenomena on different length and time scales, adapt them to the respective problem and use them specifically for problem solving.
- can select and implement appropriate modeling approaches for given materials problems in science and technology. They can assess the

significance and reliability of modeling results in relation to the real world observations.

Graduates with the specialization "Nano and Hybrid Materials"

- are familiar with the phenomena and physical or physico-chemical principles that link the properties of nanoscale bodies or of materials with a nanoscale microstructure to the characteristic length scales and to the presence and properties of interfaces. In particular, they can explain the relationships mentioned.
- can implement this knowledge for setting up or for optimizing and for implementing materials design strategies that modify the material's behavior through the following approaches: tailoring nanoscale microstructure geometry; tailoring the interfacial behavior; combining hard and soft matter at the nanoscale into hybrid materials.

Social competence

- Graduates can work in teams and can organize their workflow in a problem-based approach, as a preparation for a research-oriented occupatio
- Graduates are able to present their results and insights in writing and orally and to match their presentation to its target audience
- Graduates should be able to critically and reflectively shape social processes, as well as play a decisive role in them with a sense of responsibility and a democratic sense of community.

Independence

- Graduates are able to develop branches of their subject in an effectively self-organized manner using scientific methodology.
- They are able to present their acquired knowledge in an independent manner using appropriate presentation techniques or to present it in a written document of appropriate scope.
- Graduates are able to identify additional information needs and develop a strategy to expand their knowledge independently.

Program structure

The curriculum of the master's program "Materials Science" is structured as follows:

Core qualification: 1.-3. Semester, a total of 66 credit points. In the core qualification, the modules "Non-technical supplementary courses in the Master" and "Operation & Management" are also anchored with six credit points each.

Specialization: The students choose one of the three topics listed below, with the respective specializations during the 1st-3rd. Semesters 24 credits are earned:

- Specialization construction materials
- Specialization modeling
- Specialization nano and hybrid materials

Master thesis in the 4th semester: 30 credit points

Core Qualification

Module M0523: Busin	ess & Management
Module Responsible	Prof. Matthias Meyer
Admission Requirements	None
Recommended Previous	None
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge Skills	 Students are able to find their way around selected special areas of management within the scope of business management. Students are able to explain basic theories, categories, and models in selected special areas of business management. Students are able to interrelate technical and management knowledge. Students are able to apply basic methods in selected areas of business management. Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.
Personal Competence Social Competence Autonomy	 Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Non-technical Courses for Master			
Module Responsible	Dagmar Richter		
Admission Requirements	None		
Recommended Previous	None		
Knowledge			
Educational Objectives	After taking part successfully, students have reached the following learning results		
Knowledge	The Nontechnical Academic Programms (NTA)		
	imparts skills that in view of the THEH's training profile, professional engineering studies require but are not able to cover fully.		
	Self-reliance, self-management, collaboration and professional and personnel management competences. The department		
	implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching		
	areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence		
	complementary courses.		
	The Leaving Architecture		
	consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.		
	The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of "profiles".		
	The subjects that can be studied in parallel throughout the student's entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.		
	Teaching and Learning Arrangements		
	provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.		
	Fields of Teaching		
	are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor's courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.		
	The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal- oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.		
	The Competence Level		
	of the courses offered in this area is different as regards the basic training objective in the Bachelor's and Master's fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.		
	This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor's and Master's graduates in their future working life.		
	Specialized Competence (Knowledge)		
	Students can		
	 explain specialized areas in context of the relevant non-technical disciplines, outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area, different specialist disciplines relate to their own discipline and differentiate it as well as make connections, sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity, Can communicate in a foreign language in a manner appropriate to the subject. 		
Skills	Professional Competence (Skills)		
	In selected sub-areas students can		
	 apply basic and specific methods of the said scientific disciplines, aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline, to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner, justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject. 		

Module Manual M.Sc. "Materials Science"

Personal Competence	
Social Competence	Personal Competences (Social Skills)
	 Students will be able to learn to collaborate in different manner, to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees, to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), to explain nontechnical items to auditorium with technical background knowledge.
Autonomy	Personal Competences (Self-reliance) Students are able in selected areas
	 to reflect on their own profession and professionalism in the context of real-life fields of application
	to organize themselves and their own learning processes
	 to reflect and decide questions in front of a broad education background to communicate a pontechnical item in a competent way in writen form or verbaly.
	 to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)
Workload in Hours	Depends on choice of courses
Credit points	6
	·

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M1198: Mate	rials Physics and Atomistic Mate	erials Modeling		
Courses				
Title		Тур	Hrs/wk	СР
Materials Physics (L1624)		Lecture	2	2
Quantum Mechanics and Atomistic	Materials Modeling (L1672)	Lecture	2	2
Exercises in Materials Physics and	Modeling (L2002)	Recitation Section (small)	2	2
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Advanced mathematics, physics and chemistr	y for students in engineering or natural science	25	
Knowledge				
Educational Objectives	After taking part successfully, students have r	eached the following learning results		
Professional Competence				
Knowledge	The students are able to			
	- explain the fundamentals of condensed matt	er physics		
	- describe the fundamentals of the microscopi	c structure and mechanics, thermodynamics a	nd optics of mate	rials systems.
	- to understand concept and realization of a	dvanced methods in atomistic modeling as w	ell as to estimat	e their potential and
	limitations.	5		·
<i>CL1</i> ///				
SKIIIS	After attending this lecture the students			
	can perform calculations regarding the	thermodynamics, mechanics, electrical and o	ptical properties	of condensed matter
	systems			
	• are able to transfer their knowledge to	related technological and scientific fields, e.g.	materials design p	problems.
	can select appropriate model descripti	ons for specific materials science problems a	nd are able to fu	rther develop simple
	models.			
Personal Competence				
Social Competence	The students are able to present solutions to s	pecialists and to develop ideas further.		
Autonomy	Students are able to assess their knowldege c	ontinuously on their own by exemplified practi	ce.	
	The students are able to assess their own stre	ngths and weaknesses and define tasks indepe	endently.	
Workload in Hours	Independent Study Time 96, Study Time in Le	cture 84		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	Materials Science: Core Qualification: Compute	sory		
Following Curricula	Theoretical Mechanical Engineering: Specialisa	ation Materials Science: Elective Compulsory		
i				

Course L1624: Materials Physics		
Тур	Lecture	
Hrs/wk	2	
СР	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Patrick Huber	
Language	DE	
Cycle	WiSe	
Content		
Literature	Für den Elektromagnetismus:	
	Bergmann-Schäfer: "Lehrbuch der Experimentalphysik", Band 2: "Elektromagnetismus", de Gruyter	
	Für die Atomphysik:	
	Haken, Wolf: "Atom- und Quantenphysik", Springer	
	Für die Materialphysik und Elastizität:	
	Hornbogen, Warlimont: "Metallkunde", Springer	

Course L1672: Quantum Mechanics and Atomistic Materials Modeling		
Тур	Lecture	
Hrs/wk	2	
CP	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Robert Meißner	
Language	DE	
Cycle	WiSe	
Content	- Why atomistic materials modeling	
	- Newton's equations of motion and numerical approaches	
	- Ergodicity	
	- Atomic models	
	- Basics of quantum mechanics	
	- Atomic & molecular many-electron systems	
	- Hartree-Fock and Density-Functional Theory	
	- Monte-Carlo Methods	
	- Molecular Dynamics Simulations	
	- Phase Field Simulations	
Literature	Begleitliteratur zur Vorlesung (sortiert nach Relevanz):	
	1. Daan Frenkel & Berend Smit "Understanding Molecular Simulations"	
	2. Mark E. Tuckerman "Statistical Mechanics: Theory and Molecular Simulations"	
	3. Andrew R. Leach "Molecular Modelling: Principles and Applications"	
	Zur Vorbereitung auf den quantenmechanischen Teil der Klausur empfiehlt sich folgende Literatur	
	1. Regine Freudenstein & Wilhelm Kulisch "Wiley Schnellkurs Quantenmechanik"	

Course L2002: Exercises in Materials Physics and Modeling		
Тур	Recitation Section (small)	
Hrs/wk	2	
СР	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Robert Meißner, Prof. Patrick Huber	
Language	DE	
Cycle	WiSe	
Content		
Literature	- Daan Frenkel & Berend Smit: Understanding Molecular Simulation from Algorithms to Applications	
	- Rudolf Gross und Achim Marx: Festkörperphysik - Neil Ashcroft and David Mermin: Solid State Physics	

Module M1170: Phene	omena and Methods in Materia	Is Science		
Courses				
Title		Тур	Hrs/wk	СР
Experimental Methods for the Characterization of Materials (L1580)		Lecture	2	3
Phase equilibria and transformation	ns (L1579)	Lecture	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Basic knowledge in Materials Science, e.g. W	erkstoffwissenschaft I/II		
Knowledge				
Educational Objectives	After taking part successfully, students have	reached the following learning results		
Professional Competence				
Knowledge	The students will be able to explain the prop	erties of advanced materials along with th	eir applications in tech	nnology, in particular
	metallic, ceramic, polymeric, semiconductor,	modern composite materials (biomaterials) and nanomaterials.	
Skills	The students will be able to select materia	I configurations according to the technica	I needs and if neces	sary to design new
01110	materials considering architectural principle	s from the micro- to the macroscale. Th	e students will also o	ain an overview on
	modern materials science, which enables	them to select optimum materials c	ombinations dependir	ng on the technical
	applications.			
Demonst Commentence				
Fersonal Competence	The students are able to present solutions to	specialists and to dovelop ideas further		
Social Competence	The students are able to present solutions to	specialists and to develop ideas further.		
Autonomy	The students are able to			
, aconomy				
	assess their own strengths and weakn	esses.		
	 gather new necessary expertise by the 	eir own.		
Workload in Hours	Independent Study Time 124, Study Time in	Lecture 56		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	International Management and Engineering:	Specialisation II. Product Development and	Production: Elective Co	ompulsory
Following Curricula	Materials Science: Core Qualification: Compu	lsory		
	Product Development, Materials and Product	on: Specialisation Product Development: El	ective Compulsory	
	Product Development, Materials and Product	on: Specialisation Production: Elective Com	ipulsory	
	Theoretical Machanical Engineering: Constant	on: Specialisation Materials: Compulsory		
	Theoretical Mechanical Engineering: Specialis	acion Materials Science: Elective Compulso	лу	

Course L1580: Experimental	Methods for the Characterization of Materials
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Jürgen Markmann, Prof. Patrick Huber
Language	DE
Cycle	WiSe
Content	 Structural characterization by photons, neutrons and electrons (in particular X-ray and neutron scattering, electron microscopy, tomography) Mechanical and thermodynamical characterization methods (indenter measurements, mechanical compression and tension tests, specific heat measurements) Characterization of optical, electrical and magnetic properties (spectroscopy, electrical conductivity and magnetometry)
Literature	William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Course L1579: Phase equilibria and transformations		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Jörg Weißmüller	
Language	DE	
Cycle	WiSe	
Content	Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free- energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.	
Literature	 D.A. Porter, K.E. Easterling, "Phase transformations in metals and alloys", New York, CRC Press, Taylor & Francis, 2009, 3. Auflage Peter Haasen, "Physikalische Metallkunde", Springer 1994 Herbert B. Callen, "Thermodynamics and an introduction to thermostatistics", New York, NY: Wiley, 1985, 2. Auflage. Robert W. Cahn und Peter Haasen, "Physical Metallurgy", Elsevier 1996 H. Ibach, "Physics of Surfaces and Interfaces" 2006, Berlin: Springer. 	

Module M1569: Appli	ed Computational Methods for Material Science
Courses	
Title	Typ Hrs/wk CP
Applied Computational Methods for	Material Science (L1626) Project-/problem-based Learning 3 6
Module Responsible	Prof. Norbert Huber
Admission Requirements	None
Recommended Previous	Fundamentals of technical mechanics (statics, strength of materials, beam bending), fundamentals of mechanical properties of
Knowledge	materials (elasticity, plasticity), materials science (tensile testing, hardness testing, bending strength), programming (Python)
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	The students are able to model a specimen/part using an FEM preprocessor, to mesh it and to apply boundary conditions and materials. They are able to establish 2D models (plain strain, axisymmetric) as well as 3D models and to solve these with ABAQUS Further, they will learn how to implement contact, as e.g. needed for the simulation of nanoindentation or four point bending with rollers. With the help of Python the reading of the results and their processing will be automized. The students will be able to submit and analyze jobs in an automized way for building a data base. They can analyze such data bases with respect to underlying relationships using machine learning and test hypotheses in relation to uniqueness and completeness.
Skills	The students are able to address a given problem in a scientific approach by splitting it into subproblems and by gaining the required knowledge needed for solving each sub problem. They learn based on examples, how hypotheses are developed and how these can be verified or falsified using computer methods. In addition, the students learn how the results of the individual sub problems can be tested with regard to their correctness and how to discuss them scientificially, at one hand, and how the sum o all subresults are to be discussed in the context of the given problem and formulated hypotheses, on the other hand. A significant part of this work is the documentation in a written report, which is in style and structure comparable in all relevant elements to a scientific report.
Personal Competence	
Social Competence	As the module is based on Problem Based Learning, the students will be able to work in small groups. This includes to discuss the content of the problem, to brainstorm, to work out hypotheses, prioritize them and to agree on those hypotheses and subproblems which shall be worked out in an organized way. Due to this, a significant part of the module relies on communication skills organizational skills and time management. Finally, the ability to split a problem into the right subproblems and to put to gether the results from the subproblems for getting the answer of the big picture is an asset for efficient and effective problem solving in general.
Autonomy	The acquisition of the necessary know-how and the solution of the subproblems is carried out individually. Due to this, the students are in the position to adopt new computer methods (here in particular Python programming, FE modeling, machine learning) and to expand those as far as necessary to solve the given task. Furthermore, the students learn to document their methods and results in a comprehensible manner and via the corrections to absorb feedback for continuously furthering the existing skills.
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42
Credit points	6
Course achievement	None
Examination	Subject theoretical and practical work
Examination duration and	In total 3 problems, duration 3-4 weeks each, completed by submission of a written report. Assessment group/individa
scale	performance 30,300
Assignment for the Following Curricula	materials Science: Core Qualification: Compulsory

Course L1626: Applied Comp	utational Methods for Material Science
Тур	Project-/problem-based Learning
Hrs/wk	3
СР	6
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42
Lecturer	Prof. Norbert Huber
Language	DE/EN
Cycle	WiSe
Content	Finite Element Method (discretisation, solver, programming with Python, automatized control and analysis of parametric studies)
	Examples of elastomechanics (tension, bending, four-point-bending, contact)
	Material behaviour (elasticity, plasticity, small and finite deformations, nonlinearities)
	Solution of inverse problems (machining of data, artificial neural networks, direct and inverse solutions, existence and uniqueness)
Literature	Alle Vorlesungsmaterialien und Beispiellösungen (Input-Dateien, Python Scirpte) werden auf Stud.IP zur Verfügung gestellt.
	All lecture material and example solutions (input files, python scripts) will be made available in Stud.IP.

Module M1219: Adva	nced Laboratory Materials Sciences	5		
Courses				
Title		Тур	Hrs/wk	СР
Advanced Laboratory Materials Sci	ences (L1653)	Practical Course	6	6
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	knowledge of Materials Science fundamentals			
Knowledge				
Educational Objectives	After taking part successfully, students have reach	ed the following learning results		
Professional Competence				
Knowledge	The students know about selected experimenta	l approaches in materials science.	They are familiar wit	h the sequence of
	representative experiments, typically including s	sample preparation and conditioning	g, characterization, d	ata reduction, data
	analysis, error analysis and interpretation of the re-	sults.		
Skills	The students are able to			
	 independently execute material science rele 	vant experiments		
	analyze experimental data	vantexperiments		
	 critically assess the results and recognized in 	mplications in the relevant material sc	ience context	
	,			
Personal Competence				
Social Competence	The students are able to			
	 perform experiments and protocol them thro 	ough team work		
	discuss scientific results in a format matched	d to an expert target audience		
Autonomy	The students are able to			
	 gain access so the contents of the lab classe 	s through on essentially self-organized	d approach	
	 independently write up a comprehensible pr 	otocol of the experimental procedures	and results	
	 recognize the need for additional informat 	ion and develop a strategy to inde	pendently advancing	the knowledge and
	understanding			
Workload in Hours	Independent Study Time 96, Study Time in Lecture	84		
Credit points	6			
Course achievement	None			
Examination	Written elaboration			
Examination duration and	ca. 25 pages			
scale				
Assignment for the	Materials Science: Core Qualification: Compulsory			
Following Curricula				

Course L1653: Advanced Lab	Course L1653: Advanced Laboratory Materials Sciences	
Тур	Practical Course	
Hrs/wk	6	
СР	6	
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84	
Lecturer	Prof. Jörg Weißmüller, Prof. Stefan Fritz Müller, Prof. Patrick Huber, Prof. Bodo Fiedler, Prof. Gerold Schneider	
Language	DE/EN	
Cycle	SoSe	
Content	 Actuators for modern fuel injection systems - synthesis and properties of a model lead-free actuator Actuation with porous metals 	
Literature	siehe Versuchsbeschreibungen sowie die dort angegebenen Literaturverweise auf StudIP	

Module M1226: Mech	anical Properties			
Courses				
Title		Тур	Hrs/wk	СР
Mechanical Behaviour of Brittle Ma	terials (L1661)	Lecture	2	3
Dislocation Theory of Plasticity (L1)	662)	Lecture	2	3
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous	Basics in Materials Science I/II			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	e following learning results		
Professional Competence				
Knowledge	Students can explain basic principles of crystallograp	hy, statics (free body diagrams	, tractions) and therm	nodynamics (energy
	minimization, energy barriers, entropy)			
Skills	Students are capable of using standardized calculation	methods: tensor calculations, de	rivatives integrals ten	sor transformations
			···, ···, ···, ····	
Personal Competence				
Social Competence	Students can provide appropriate feedback and handle	feedback on their own performa	nce constructively.	
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and	I to define further work steps on	this basis guided by te	achers.
	- work independently based on lectures and notes to so	ve problems, and to ask for help	or clarifications when	needed
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	Materials Science: Core Qualification: Compulsory			
Following Curricula	Mechanical Engineering and Management: Specialisation	n Materials: Elective Compulsory	(
	Product Development, Materials and Production: Specia	lisation Product Development: El	ective Compulsory	
	Product Development, Materials and Production: Specia	lisation Production: Elective Com	pulsory	
	Product Development, Materials and Production: Specia	lisation Materials: Compulsory		
	Theoretical Mechanical Engineering: Specialisation Mate	rials Science: Elective Compulso	iry	

Course L1661: Mechanical Be	ehaviour of Brittle Materials
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	SoSe
Content	Theoretical Strength
	Of a perfect crystalline material, theoretical critical shear stress
	Real strength of brittle materials
	Energy release reate, stress intensity factor, fracture criterion
	Scattering of strength of brittle materials
	Defect distribution, strength distribution, Weibull distribution
	Heterogeneous materials I
	Internal stresses, micro cracks, weight function,
	Heterogeneous materials II
	Toughening mechanisms: crack bridging, fibres
	Heterogeneous materials III
	Toughening mechanisms. Process zone
	Testing methods to determine the fracture toughness of brittle materials
	R-curve, stable/unstable crack growth, fractography
	Thermal shock
	Subcritical crack growth)
	v-K-curve, life time prediction
	Kriechen
	Mechanical properties of biological materials
	Examples of use for a mechanically reliable design of ceramic components
Literature	D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier
	D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998
	B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993
	D. Munz, T. Fett, Ceramics, Springer, 2001
	D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Course L1662: Dislocation Theory of Plasticity		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Dr. Erica Lilleodden	
Language	DE/EN	
Cycle	SoSe	
Content	This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects.	
	We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes.	
Literature	Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen	

Module M1197: Multi	phase Materials			
Courses				
Title		Тур	Hrs/wk	СР
Polymer Composites (L1891)		Lecture	3	3
Lecture: Multiscale Materials (L165	9)	Lecture	3	3
Module Responsible	Prof. Robert Meißner			
Admission Requirements	None			
Keconniended Previous	Knowledge in basics of polymers, physics a	nd mechanics/micromechanics		
Educational Objectives	After taking part successfully, students have	e reached the following learning results		
Professional Competence				
Knowledge	Students can			
	- explain the complex relationships of the m	echanics of composite materials, the failure	mechanisms and phys	ical properties.
	- assess the interactions of microstructure a	nd properties of the matrix and reinforcing n	naterials.	
	- explain e.g. different fiber types, including	relative contexts (e.g. sustainability, enviror	nmental protection).	
	They know different methods of modelin	g multiphase materials and can apply the	em.	
Skills	Students are capable of			
	- using standardized methods of calculation and modeling using the finite element method in a specified context to us discretization, solver, Programming with Python, Automated control and evaluation of parameter studies and examples t calculate of elastic mechanics like tensile, bending, four point bend, crack propagation, J -Integral, Cohesive zone models, Contact			fied context to use is and examples to ne models, Contact.
	- determining the material properties (elast	icity, plasticity, small and large deformations	, modeling of multipha	se materials).
	- to calculate and evaluate the mechanical	properties (modulus, strength) of different m	aterials.	
	- Approximate sizing using the network theo	ory of the structural elements implement and	l evaluate.	
	 selecting appropriate solutions for m optimization methods). 	nechanical material problems: Solution of	of inverse problems	(neural networks,
Personal Competence				
Social Competence	Students can			
	- arrive at funded work results in heterogen	ius groups and document them.		
	- provide appropriate feedback and handle	feedback on their own performance construc	tively.	
Autonomy	Students are able to,			
	- assess their own strengths and weaknesse	25		
	- assess their own state of learning in specif	ic terms and to define further work steps on	this basis	
	They are able to fill gaps in as well as exter Furthermore, they can meaningfully extend and concepts.	ent their knowledge using the literature and d given problems and pragmatically solve t	other sources provide hem by means of corr	d by the supervisor. responding solutions
Workload in Hours	Independent Study Time 96, Study Time in	Lecture 84		
Credit points	6			
Course achievement	Compulsory Bonus Form Yes 0 % Written elaboration	Description		
Examination	Written exam			
Examination duration and	1 h written exam in Polymermatrix Compos	ites		
scale				
Assignment for the	Materials Science: Core Qualification: Comp	ulsory		
Following Curricula				

Course L1891: Polymer Composites	
Тур	Lecture
Hrs/wk	3
СР	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Robert Meißner
Language	DE
Cycle	SoSe
Content	Manufacturing and Properties of CNTs and Graphen
	Manufacturing and Properties of 3-dimensional Graphenstruktures Polymer Composites with carbon nanoparticles
Literature	Aktuelle Veröffentlichungen

Course L1659: Lecture: Multiscale Materials		
Тур	Lecture	
Hrs/wk	3	
СР	3	
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42	
Lecturer	Prof. Gerold Schneider, Prof. Norbert Huber, Prof. Stefan Fritz Müller, Prof. Patrick Huber, Prof. Manfred Eich, Prof. Bodo Fiedler, Dr.	
	Erica Lilleodden, Prof. Jörg Weißmüller, Prof. Robert Meißner	
Language	DE	
Cycle	SoSe	
Content	The materials discussed in this lecture differ from "conventional" ones due to their individual hierarchic microstructure. In	
	conventional microstructure design, the morphology is adjusted, for instance, by thermal treatment and concurrent mechanical	
	deformation. The material is continually and steadily optimized by small changes in structure or chemical composition, also in	
	combination with self-organization processes (precipitation alloys, ceramic glasses, eutectic structures).	
	The presented materials consist of functionalized elementary functional units based on polymers, ceramics, metals and carbon	
	nanotubes (CNTs), which are used to create macroscopic hierarchical material systems, whose characteristic lengths range from	
	the nanometer to the centimeter scale. These elementary functional units are either core-shell structures or cavities in metals	
	created by alloy corrosion and subsequent polymer filling.	
	Three classes of material systems will be presented:	
	First, hierarchically structured ceramic/metal-polymer material systems similar to naturally occurring examples, namely nacre (1	
	hierarchical level), enamel (3 hierarchical levels) and bone (5 hierarchical levels) will be discussed. Starting with an elementary	
	functional unit consisting of ceramic nanoparticles with a polymeric coating, a material is created in which on each hierarchical	
	level, "hard" particles, made of the respective lower hierarchical level, are present in a soft polymer background. The resulting	
	core-shell structure on each hierarchical level is the fundamental difference compared to a compound material made of rigid	
	interpenetrating ceramic or metallic networks.	
	The second material system is based on nanoporous gold, which acts as a prototypical material for new components in light	
	weight construction with simultaneous actuator properties. Their production and resulting length-scale specific mechanical	
	properties will be explained. Furthermore, related scale-spanning theoretical models for their mechanical behavior will be	
	introduced. This covers the entire scale from the electronic structure on the atomic level up to centimeter-sized macroscopic	
	samples.	
	The third material system discussed in the lecture are novel hierarchical nanostructured materials based on thermally stable	
	ceramics and metals for high-temperature photonics with potential use in thermophotovoltaic systems (TPVs) and thermal barrier	
	coatings (TBCs). Direct and inverted 3D-photonic crystal structures (PhCs) as well as novel optically hyperbolic media, in	
	particular, are worthwhile noting. Due to their periodicity and diffraction index contrast, PhCs exhibit a photonic band structure,	
	characterized by photonic band gaps, areas of particularly high photonic densities of states and special dispersion relations. The	
	presented properties are to be used to reflect thermal radiation in TBCs in a strong and directed manner, as well as to link	
	radiation effectively and efficiently in TPVs.	
Literature	Aktuelle Publikationen	

Module M1199: Adva	nced Functional Materials			
Courses				
Title		Тур	Hrs/wk	СР
Advanced Functional Materials (L1	625)	Seminar	2	6
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Basic knowledge in Materials Science, e.g. Mat	erials Science I/II		
Knowledge				
Educational Objectives	After taking part successfully, students have re	eached the following learning results		
Professional Competence				
Knowledge	The students will be able to explain the prope	rties of advanced materials along with th	neir applications in tech	nology, in particular
	metallic, ceramic, polymeric, semiconductor, n	nodern composite materials (biomaterial	s) and nanomaterials.	
Skills	The students will be able to select material	configurations according to the technic	al needs and if neces	sary to design new
JKIIIS	materials considering architectural principles	from the micro- to the macroscale Th	ar needs and, it neces	lain an overview on
	modern materials science, which enables	them to select optimum materials	combinations dependir	ng on the technical
	applications.			ig on the teenmean
Personal Competence				
Social Competence	The students are able to present solutions to s	pecialists and to develop ideas further.		
Autonomy	The students are able to			
	 assess their own strengths and weakness 	ises.		
	 gather new necessary expertise by their 	own.		
Workload in Hours	Independent Study Time 152, Study Time in Le	ecture 28		
Credit points	6			
Course achievement	None			
Examination	Presentation			
Examination duration and	30 min			
Acciment for the	Matariala Science: Care Qualification: Compute			
Following Curricula	Mechanical Engineering and Management: Spe	cialisation Materials: Elective Compulsor	V.	
i onowing curricula	Biomedical Engineering, Specialisation Artificia	Organs and Regenerative Medicine: Elective	ctive Compulsory	
	Biomedical Engineering: Specialisation Implant	s and Endoprostheses: Elective Compuls	ory	
	Biomedical Engineering: Specialisation Medical	Technology and Control Theory: Elective	e Compulsory	
	Biomedical Engineering: Specialisation Manage	ement and Business Administration: Elect	ive Compulsory	
	Theoretical Mechanical Engineering: Specialisa	tion Materials Science: Elective Compuls	ory	

Course L1625: Advanced Functional Materials		
Тур	Seminar	
Hrs/wk	2	
СР	6	
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28	
Lecturer	Prof. Patrick Huber, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller, Prof. Robert Meißner, Prof. Kaline Pagnan	
	Furlan	
Language	DE	
Cycle	WiSe	
Content	1. Porous Solids - Preparation, Characterization and Functionalities	
	2. Fluidics with nanoporous membranes	
	3. Thermoplastic elastomers	
	4. Optimization of polymer properties by nanoparticles	
	5. Fiber composites in automotive	
	6. Modeling of materials based on quantum mechanics	
	7. Biomaterials	
Literature	Aktuelle Publikationen aus der Fachliteratur werden während der Veranstaltung bekanntgegeben.	

Module M1221: Study	work on Modern Issues in the Materials Sciences		
Courses			
Title	Typ Hrs/wk CP		
Module Responsible	Prof. Jörg Weißmüller		
Admission Requirements	None		
Recommended Previous	knowledge of Materials Science fundamentals		
Knowledge			
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence			
Knowledge	In the field of their Research Project, the students can provide examples concerning the state-of-the-art in research, development or application. They can critically discuss the relevant issues in the context of current problems and frameworks in science and society. In the context of the Research Project, the students know the relevant fundamentals of materials science as well as methodologica approach is suitable for the problem of the project.		
Skills	The students have familiarized themselves with the approaches for independently acquiring the basic knowledge for solving the material science problem of their project. They can use the relevant resources as for example search engines and databases for scientific publications of patents.		
	The students are familiar with writing a report addressing a scientific audience, including the conventions for outline, citation and bibliography.		
	The can design and deliver on oral presentation of the project results.		
	The students can expose in detail and critically assess the scientific approaches that they chose for their scientific work on the project.		
	The students are able to independently perform scientific experiment, computations or simulation relevant for the project, perform the data analysis and provide a critical scientific discussion of their results.		
Personal Competence			
Social Competence	Students are able to discuss scientific results with specific target groups, to document results in a written form and to presen them orally.		
Autonomy	The students have familiarized themselves with the challenges and approaches involved in independently solving a new research problems in the field of material science (see also Fachkompetenz/Fertigkeiten - English).		
Workload in Hours	Independent Study Time 360, Study Time in Lecture 0		
Credit points	12		
Course achievement	None		
Examination	Study work		
Examination duration and scale	according to FSPO		
Assignment for the Following Curricula	Materials Science: Core Qualification: Compulsory		

Specialization Engineering Materials

Students learn in the Engineering Materials specialization the evaluation of the different materials in the technology-oriented environment.

They gain knowledge about process planning as well as managing of projects or personnel. Students are able to evaluate and make decisions on materials, industrial production, quality assurance and failure analysis.

Module M1342: Polyn	ners			
Courses				
Title		Тур	Hrs/wk	СР
Structure and Properties of Polyme	rs (L0389)	Lecture	2	3
Processing and design with polyme	ers (L1892)	Lecture	2	3
Module Responsible	Dr. Hans Wittich			
Admission Requirements	None			
Recommended Previous	Basics: chemistry / physics / material scient	ce		
Knowledge				
Educational Objectives	After taking part successfully, students hav	re reached the following learning results		
Professional Competence				
Knowledge	Students can use the knowledge of plastics	and define the necessary testing and analys	is.	
	They can explain the complex relationships	structure-property relationship and		
	the interactions of chemical structure of the	e polymers, including to explain neighboring	contexts (e.g. sustaina	bility, environmental
Skills	Students are capable of			
	- using standardized calculation methods	in a given context to mechanical proper	ties (modulus, strengt	th) to calculate and
	evaluate the different materials.			
Demonst Commentance	 selecting appropriate solutions for mecha 	anical recycling problems and sizing example	stiffness, corrosion res	sistance.
Personal Competence	Chudanta ann			
Social Competence	Students can			
	- arrive at funded work results in heteroger	nius groups and document them.		
	- provide appropriate feedback and handle	feedback on their own performance construc	tively.	
Autonomy	Students are able to			
	- assess their own strengths and weakness	es.		
	- assess their own state of learning in speci	fic terms and to define further work steps on	this basis.	
	- assess possible consequences of their pro	fessional activity.		
Workload in Hours	Independent Study Time 124, Study Time i	n Lecture 56		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	180 min			
scale				
Assignment for the	Materials Science: Specialisation Engineerin	ng Materials: Elective Compulsory		
Following Curricula	Biomedical Engineering: Specialisation Imp	lants and Endoprostneses: Compulsory	stive Compulson	
	Biomedical Engineering: Specialisation Artil	agement and Business Administration: Election		
	Biomedical Engineering: Specialisation Mar	lical Technology and Control Theory. Flective	Compulsory	
	Product Development. Materials and Product	ction: Specialisation Production: Elective Com	npulsory	
	Product Development, Materials and Product	ction: Specialisation Materials: Elective Comp	oulsory	
	Product Development, Materials and Product	ction: Specialisation Product Development: El	lective Compulsory	
	Theoretical Mechanical Engineering: Specia	lisation Materials Science: Elective Compulso	ory	

Course L0389: Structure and	Properties of Polymers
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Hans Wittich
Language	DE
Cycle	WiSe
Content	- Structure and properties of polymers
	- Structure of macromolecules
	Constitution, Configuration, Conformation, Bonds, Synthesis, Molecular weihght distribution
	- Morphology
	amorph, crystalline, blends
	- Properties
	Elasticity, plasticity, viscoelacity
	- Thermal properties
	- Electrical properties
	- Theoretical modelling
	- Applications
Literature	Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag

Course L1892: Processing and design with polymers		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler, Dr. Hans Wittich	
Language	DE/EN	
Cycle	WiSe	
Content	Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining	
	Designing with Polymers: Materials Selection; Structural Design; Dimensioning	
Literature	Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag	
	Crawford: Plastics engineering, Pergamon Press	
	Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag	
	Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag	

Module M1344: Proce	ssing of fibre-polymer-composites			
Courses				
Title		Тур	Hrs/wk	СР
Processing of fibre-polymer-composition	sites (L1895)	Lecture	2	3
From Molecule to Composites Part	(L1516)	Project-/problem-based Learning	2	3
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	None			
Recommended Previous	Knowledge in the basics of chemistry / physics / material	s science		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	e following learning results		
Professional Competence				
Knowledge	Students are able to give a summary of the technical de relationships. They are capable of describing and com- language. They can explain the typical process of solving	etails of the manufacturing processes co municating relevant problems and ques practical problems and present related	mposites and itions using a results.	illustrate respective appropriate technical
Skills	Students can use the knowledge of fiber-reinforced com testing and analysis.	posites (FRP) and its constituents (fiber /	matrix) and	define the necessary
	They can explain the complex structure-property relation the interactions of chemical structure of the polymer	nship and rs, their processing with the different	fiber types,	including to explain
Personal Competence	neighborning contexts (e.g. sustainability, environmental	protection).		
Social Competence	Students are able to cooperate in small mixed-subject of	roups in order to independently derive	solutions to a	liven problems in the
	context of civil engineering. They are able to effectively audience. Students have the ability to develop alternati discuss advantages as well as drawbacks.	present and explain their results alone ve approaches to an engineering problem	or in groups i m independe	n front of a qualified ntly or in groups and
Autonomy	Students are capable of independently solving mechan	ical engineering problems using provide	ed literature.	They are able to fill
	gaps in as well as extent their knowledge using the litera	ature and other sources provided by the	supervisor. Fu	urthermore, they can
	meaningfully extend given problems and pragmatically s	olve them by means of corresponding so	olutions and c	oncepts.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	Materials Science: Specialisation Engineering Materials: I	Elective Compulsory		
Following Curricula	Mechanical Engineering and Management: Specialisation	Materials: Elective Compulsory		
	Product Development, Materials and Production: Speciali	sation Product Development: Elective Co	mpulsory	
	Product Development, Materials and Production: Speciali	sation Production: Elective Compulsory		
	Product Development, Materials and Production: Speciali	sation Materials: Elective Compulsory		

Course L1895: Processing of fibre-polymer-composites		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	SoSe	
Content	Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding	
Literature	Åström: Manufacturing of Polymer Composites, Chapman and Hall	

Course L1516: From Molecul	e to Composites Part
Тур	Project-/problem-based Learning
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	SoSe
Content	Students get the task in the form of a customer request for the development and production of a MTB handlebar made of fiber composites. In the task technical and normative requirements (standards) are given, all other required information come from the lectures and tutorials, and the respective documents (electronically and in conversation). The procedure is to specify in a milestone schedule and allows students to plan tasks and to work continuously. At project end, each group has a made handlebar with approved quality. In each project meeting the design (discussion of the requirements and risks) are discussed. The calculations are analyzed, evaluated and established manufacturing methods are selected. Materials are selected bar will be produced. The quality and the mechanical properties are checked. At the end of the final report created (compilation of the results for the "customers"). After the test during the "customer / supplier conversation" there is a mutual feedback-talk ("lessons learned") in order to ensure the continuous improvement.
Literature	Customer Request ("Handout")

Courses				
Title		Тур	Hrs/wk	СР
atigue of metallic structural mate	rials (L2355)	Lecture	2	3
Method for life extension (L2356)		Lecture	2	3
Module Responsible	PD Dr. Nikolai Kashaev			
Admission Requirements	None			
Recommended Previous				
Knowledge				
Educational Objectives	After taking part successfully, studer	ts have reached the following learning results		
Professional Competence				
Knowledge				
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 124, Study	Time in Lecture 56		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	120 min			
scale				
Assignment for the	Materials Science: Specialisation Eng	ineering Materials: Elective Compulsory		
Eollowing Curricula	, ,	-		

Course L2355: Fatigue of me	itallic structural materials
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	PD Dr. Nikolai Kashaev
Language	DE/EN
Cycle	SoSe
Content	1. introduction (definition, historical). Failure behaviour of metallic construction materials
	2. experimental methodology
	3. the main features of fracture mechanics and their consequences for fatigue
	4. fatigue crack propagation
	5. crack closing effects
	6. prediction concepts for fatigue crack propagation
	7. fatigue at very high number of cycles (VHCF), short cracks
	8. fracture mechanical Wöhler curve
	9. innovative manufacturing technologies and their influence on fatigue behaviour (welding processes)
	10. innovative manufacturing technologies and their influence on fatigue behaviour
	(Generative manufacturing processes)
	11 concents for structural integrity assessment (fail-safe safe-life damage tolerance, defect tolerance)
Literature	TBD

Course L2356: Method for lif	e extension
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	PD Dr. Nikolai Kashaev
Language	DE/EN
Cycle	SoSe
Content	1. introduction (definition, historical). Failure behaviour of metallic construction materials
	2. experimental methodology
	3. the main features of fracture mechanics and their consequences for fatigue
	4. fatigue crack propagation
	5. crack closing effects
	6. prediction concepts for fatigue crack propagation
	7. fatigue at very high number of cycles (VHCF), short cracks
	8. fracture mechanical Wöhler curve
	9. innovative manufacturing technologies and their influence on fatigue behaviour (welding processes)
	10. innovative manufacturing technologies and their influence on fatigue behaviour
	(Generative manufacturing processes)
	11. concepts for structural integrity assessment (fail-safe, safe-life, damage tolerance, defect tolerance).
Literature	

Module M1343: Struc	ture and properties of fibre-po	olymer-compos	sites		
Courses					
Title			Тур	Hrs/wk	СР
Structure and properties of fibre-po	olymer-composites (L1894)		Lecture	2	3
Structure and properties of fibre-po	olymer-composites (L2614)		Project-/problem-based Learning	2	2
Structure and properties of fibre-po	olymer-composites (L2613)		Recitation Section (large)	1	1
Module Responsible	Prof. Bodo Fiedler				
Admission Requirements	None				
Recommended Previous	Basics: chemistry / physics / materials scien	ce			
Knowledge					
Educational Objectives	After taking part successfully, students have	e reached the followir	ig learning results		
Professional Competence					
Knowledge	Students can use the knowledge of fiber-re	einforced composites	(FRP) and its constituents to p	lay (fiber / m	atrix) and define the
	necessary testing and analysis.				
	They can explain the complex relationships	structure-property re	lationship and		
	the interactions of chemical structure of neighboring contexts (e.g. sustainability, en	the polymers, their vironmental protection	processing with the different on).	fiber types,	including to explair
Skills	Students are capable of				
	 using standardized calculation method evaluate the different materials. approximate sizing using the network colocting appropriate solutions for methods. 	ods in a given conte	xt to mechanical properties (m ural elements implement and ev	odulus, streng aluate.	gth) to calculate and
	• selecting appropriate solutions for me		oblems and sizing example sum	ness, conosic	in resistance.
Personal Competence					
Social Competence	Students can				
	 arrive at funded work results in heter provide appropriate feedback and had 	ogenius groups and c ndle feedback on the	locument them. ir own performance constructive	ely.	
Autonomy	Students are able to				
	- assess their own strengths and weaknesse	s.			
	- assess their own state of learning in specif	ic terms and to define	e further work steps on this basi	s.	
	- assess possible consequences of their prof	essional activity.			
Workload in Hours	Independent Study Time 110, Study Time in	Lecture 70			
Credit points	6				
Course achievement	None				
Examination	Written exam				
Examination duration and	90 min				
scale					
Assignment for the	Energy Systems: Core Qualification: Elective	e Compulsory			
Following Curricula	Aircraft Systems Engineering: Core Qualifica	ation: Elective Compu	lsory		
	International Management and Engineering:	Specialisation II. Pro	duct Development and Producti	on: Elective C	ompulsory
	Materials Science: Specialisation Engineerin	g Materials: Elective	Compulsory		
	Mechanical Engineering and Management: C	Core Qualification: Co	mpulsory		
	Product Development, Materials and Produc	tion: Specialisation P	roduct Development: Elective Co	ompulsory	
	Product Development, Materials and Produc	tion: Specialisation P	roduction: Elective Compulsory		
	Product Development, Materials and Produc	tion: Specialisation M	aterials: Compulsory		
	Renewable Energies: Specialisation Bioenergies	gy Systems: Elective	Compulsory		
	Renewable Energies: Specialisation Wind En	ergy Systems: Electiv	ve Compulsory		
	Renewable Energies: Specialisation Solar En	ergy Systems: Electiv	ve Compulsory		
	Theoretical Mechanical Engineering: Special	isation Materials Scie	nce: Elective Compulsory		

Course L1894: Structure and	properties of fibre-polymer-composites
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	SoSe
Content	- Microstructure and properties of the matrix and reinforcing materials and their interaction
	- Development of composite materials
	- Mechanical and physical properties
	- Mechanics of Composite Materials
	- Laminate theory
	- Test methods
	- Non destructive testing
	- Failure mechanisms
	- Theoretical models for the prediction of properties
	- Application
Literature	Hall, Clyne: Introduction to Composite materials, Cambridge University Press
	Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press
	Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York

Course L2614: Structure and	properties of fibre-polymer-composites
Тур	Project-/problem-based Learning
Hrs/wk	2
СР	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	SoSe
Content	
Literature	

Course L2613: Structure and properties of fibre-polymer-composites	
Тур	Recitation Section (large)
Hrs/wk	1
СР	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	SoSe
Content	
Literature	

Module M1345: Meta	llic and Hybrid Light-weight Mat	erials		
Courses				
Title		Тур	Hrs/wk	СР
Joining of Polymer-Metal Lightweig	nt Structures (L0500)	Lecture	2	2
Joining of Polymer-Metal Lightweig	nt Structures (L0501)	Practical Course	1	1
Metallic Light-weight Materials (L16	560)	Lecture	2	3
Module Responsible	Prof. Marcus Rutner			
Admission Requirements	None			
Recommended Previous				
Knowledge				
Educational Objectives	After taking part successfully, students have re	ached the following learning results		
Professional Competence				
Knowledge				
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 110, Study Time in Le	cture 70		
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and	45 min			
scale				
Assignment for the	Civil Engineering: Specialisation Structural Engi	ineering: Elective Compulsory		
Following Curricula	Materials Science: Specialisation Engineering Materials: Elective Compulsory			
	Materials Science: Specialisation Engineering M	laterials: Elective Compulsory		
	Theoretical Mechanical Engineering: Specialisa	tion Materials Science: Elective Compul	sory	

Course L0500: Joining of Polymer-Metal Lightweight Structures		
Тур	Lecture	
Hrs/wk	2	
СР	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Marcus Rutner	
Language	EN	
Cycle	WiSe	
Content	Contents:	
	The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures. Theoretical Lectures:	
	 Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics Mechanical Fastening of Polymer-Metal Hybrid Structures Adhesive Bonding of Polymer-Metal Hybrid Structures Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures 	
	 Laboratory Exercises: Joining Processes: Introduction to state-of-the-art joining technologies Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Course Outcomes: 	
	After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer- metal lightweight structures as well as their application fields.	
Literature	 S. T. Amancio-Filho, LA. Blaga, Joining of Polymer-Metal Hybrid Structures, Wiley, 2018 J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited J. Friedrich, Metal-Polymer Systems: Interface Design and Chemical Bonding, Wiley, 2017 	

Course L0501: Joining of Polymer-Metal Lightweight Structures	
Тур	Practical Course
Hrs/wk	1
СР	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Marcus Rutner
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1660: Metallic Light	-weight Materials
Тур	Lecture
Hrs/wk	2
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Domonkos Tolnai
Language	EN
Cycle	Wise
Content	- Structural lightweight construction
	- Material lightweight construction
	- Choice criteria for metallic lightweight construction materials
	Steel as lightweight construction materials
	- Introduction to the fundamentals of steels
	- Modern steels for the lightweight construction
	- Fine grain steels
	- High-strength low-alloyed steels
	- Multi-phase steels (dual phase, TRIP)
	- Weldability
	- Applications
	Aluminium alloys:
	Introduction to the fundamentals of aluminium materials
	Alloy systems
	Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications
	Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications
	Magnesium alloys
	Introduction to the fundamental of magnesium materials
	Alloy systems
	Magnesium casting alloys, processing, microstructure and qualities
	Magnesium wrought alloys, processing, microstructure and qualities
	Examples of applications
	Titanium alloys
	Introduction to the fundamental of the titanium materials
	Alloy systems
	Processing, microstructure and properties
	Examples of applications

	Exercises and excursions
Literature	George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.
	Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2
	C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095
	Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.
	Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.
	Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth, 16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2
	Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9
	Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith, 17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5
	G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397
	Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x
	Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya "Fundamentals of Magnesium Alloy Metallurgy", Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887

Module M0595: Exam	ination of Materials, Structural Cond	ition and Damages		
Courses				
Title Examination of Materials, Structura Examination of Materials, Structura	Il Condition and Damages (L0260) Il Condition and Damages (L0261)	Typ Lecture Recitation Section (small)	Hrs/wk 3 1	CP 4 2
Module Responsible	Prof. Frank Schmidt-Döhl			
Admission Requirements	None			
Recommended Previous Knowledge	Basic knowledge about building materials or mate Chemistry.	rial science, for example by the mo	odule Building M	aterials and Building
Educational Objectives	After taking part successfully, students have reached	the following learning results		
Professional Competence				
Knowledge	The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.			
Skills	The students are able to responsibly discover the rules for trading and using of building products in Germany. They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to describe an examination in form of a test report or expert opinion.			
Personal Competence Social Competence	The students can describe the different roles of man framework of material testing. They can describe the	ufacturers as well as testing, supervis different roles of the participants in leg	ory and certificat al proceedings.	ion bodies within the
Autonomy	The students are able to make the timing and the ope	ration steps to learn the specialist kno	wledge of a very	extensive field.
Workload in Hours	Independent Study Time 124, Study Time in Lecture 5	6		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	120 min			
scale	Civil Englished in a Constitution Characteristic Structures			
Following Curricula	Civil Engineering: Specialisation Structural Engineerin	ring: Elective Compulsory		
r onowing curricula	Civil Engineering: Specialisation Coastal Engineering:	Elective Compulsory		
	Civil Engineering: Specialisation Water and Traffic: Ele	ctive Compulsory		
	International Management and Engineering: Specialis	ation II. Civil Engineering: Elective Com	pulsory	
	Materials Science: Specialisation Engineering Material	s: Elective Compulsory		

Course L0260: Examination of Materials, Structural Condition and Damages	
Тур	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Frank Schmidt-Döhl
Language	DE
Cycle	WiSe
Content	Materials testing and marking process of construction products, testing methods for building materials and structures, testing
	reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature	Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.

Course L0261: Examination of Materials, Structural Condition and Damages	
Тур	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Frank Schmidt-Döhl
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Module M1291: Mater	rials Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L180	1)	Seminar	2	3
Seminar on interface-dominated ma	aterials (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, elect	rochemistry, interface science, mecha	anics	
Knowledge				
Educational Objectives	After taking part successfully, students have rea	ched the following learning results		
Professional Competence				
Knowledge	Students can explain the most important facts and relationships of a specific topic from the field of materials science.			
Skills	Students are able to compile a specified topic from the field of materials science and to give a clear, structured and			
	comprehensible presentation of the subject. The	v can comply with a given duration of	the presentation. They	can write in English a
	summary including illustrations that contains the	e most important results, relationships	and explanations of the	subject.
Personal Competence				
Social Competence	Students are able to adapt their presentation wi	th respect to content, detailedness, ar	nd presentation style to	the composition and
	previous knowledge of the audience. They can a	nswer questions from the audience in	a curt and precise mann	ner.
Autonomy	Students are able to autonomously carry out a l	iterature research concerning a given	topic. They can indepe	ndently evaluate the
-	material. They can self-reliantly decide which pa	rts of the material should be included	in the presentation.	
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the	Materials Science: Specialisation Nano and Hybr	id Materials: Elective Compulsory		
Following Curricula	Materials Science: Specialisation Modeling: Elect	ive Compulsory		
	Materials Science: Specialisation Engineering Ma	terials: Elective Compulsory		

Course L1757: Seminar	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Jörg Weißmüller
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1758: Seminar Composites	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Module Manual M.Sc. "Materials Science"

Course L1801: Seminar Advanced Ceramics	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1795: Seminar on interface-dominated materials		
Тур	Seminar	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and		
scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Module M1665: Design with fibre-polymer-composites					
Courses					
Title Design with fibre-polymer-composites (L1893) Design with fibre-polymer-composites (L2616)		Typ Lecture Project-/problem-based Learning Becitation Section (Jarge)	Hrs/wk 2 2	CP 3 2	
Module Responsible	Prof. Bodo Fiedler	Accitation Section (large)	-	1	
Admission Requirements	None				
Recommended Previous	Basics: chemistry / physics / materials science				
Knowledge					
Educational Objectives	After taking part successfully, students have reached the	ollowing learning results			
Professional Competence					
Knowledge	Students can use the knowledge of fiber-reinforced com necessary testing and analysis.	posites (FRP) and its constituents to p	lay (fiber / m	atrix) and define the	
	They can explain the complex relationships structure-prop	erty relationship and			
	the interactions of chemical structure of the polymers neighboring contexts (e.g. sustainability, environmental p	, their processing with the different rotection).	fiber types,	including to explain	
Skills	Students are capable of				
	 using standardized calculation methods in a given evaluate the different materials. approximate sizing using the network theory of the selecting appropriate solutions for mechanical recy 	context to mechanical properties (me structural elements implement and eva ling problems and sizing example stiff	odulus, strens aluate. ness, corrosic	gth) to calculate and in resistance.	
Personal Competence					
Social Competence	Students can				
	 arrive at funded work results in heterogenius group provide appropriate feedback and handle feedback 	s and document them. on their own performance constructive	ly.		
Autonomy	Students are able to				
	- assess their own strengths and weaknesses.				
	- assess their own state of learning in specific terms and to	o define further work steps on this basi	s.		
	- assess possible consequences of their professional activi	ty.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70				
Credit points	6				
Course achievement	None Written exam				
Examination	90 min				
scale	20 mm				
Assignment for the	Materials Science: Specialisation Engineering Materials: El	ective Compulsory			
Following Curricula	Theoretical Mechanical Engineering: Specialisation Produc	t Development and Production: Elective	e Compulsory		

Course L1893: Design with fibre-polymer-composites		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	EN	
Cycle	WiSe	
Content	Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining	
	Techniques; Compression Loading; Examples	
Literature	Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag	
Course L2616: Design with fibre-polymer-composites		
--	---	--
Тур	Project-/problem-based Learning	
Hrs/wk	2	
СР	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	WiSe	
Content		
Literature		

Course L2615: Design with fibre-polymer-composites		
Тур	Recitation Section (large)	
Hrs/wk	1	
СР	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Bodo Fiedler	
Language	EN	
Cycle	WiSe	
Content		
Literature		

Specialization Modeling

Module M1151: Materials Modeling

	-			
Courses				
Title		Тур	Hrs/wk	СР
Material Modeling (L1535)		Lecture	2	3
Material Modeling (L1536)		Recitation Section (small)	2	3
Module Responsible	Prof. Christian Cyron			
Admission Requirements	None			
Recommended Previous	Basics of linear and nonlinear continuum mechanics as tau	ight, e.g., in the modules Mechanic	s II and Continuu	im Mechanics (forces
Knowledge	and moments, stress, linear and nonlinear strain, free-body	y principle, linear and nonlinear con	stitutive laws, st	rain energy)
Educational Objectives	After taking part successfully, students have reached the f	ollowing learning results		
Professional Competence				
Knowledge	The students can explain the fundamentals of multidimens	ional consitutive material laws		
Skills	The students can implement their own material laws in fin	ite element codes. In particular, th	e students can a	pply their knowledge
	to various problems of material science and evaluate the c	orresponding material models.		
Personal Competence				
Social Competence	The students are able to develop solutions, to present ther	n to specialists and to develop idea	s further.	
Autonomy	The students are able to assess their own strengths and w	eaknesses. They can independentl	y and on their ow	vn identify and solve
	problems in the area of materials modeling and acquire the	e knowledge required to this end.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	60 min			
scale				
Assignment for the	Materials Science: Specialisation Modeling: Elective Compu	Ilsory		
Following Curricula	Mechanical Engineering and Management: Specialisation N	laterials: Elective Compulsory		
	Biomedical Engineering: Specialisation Artificial Organs and	d Regenerative Medicine: Elective C	Compulsory	
	Biomedical Engineering: Specialisation Implants and Endop	prostheses: Elective Compulsory		
	Biomedical Engineering: Specialisation Medical Technology	and Control Theory: Elective Comp	oulsory	
	Biomedical Engineering: Specialisation Management and B	usiness Administration: Elective Co	mpulsory	
	Product Development, Materials and Production: Core Qual	ification: Elective Compulsory		
	Theoretical Mechanical Engineering: Specialisation Materia	Is Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Specialisation Simulat	ion Technology: Elective Compulso	ry	

Course L1535: Material Mode	eling
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Christian Cyron
Language	DE
Cycle	WiSe
Content	One of the most important questions when modeling mechanical systems in practice is how to model the behavior of the materials
	of their different components. In addition to simple isotropic elasticity in particular the following phenomena play key roles
	- anisotropy (material behavior depending on direction, e.g., in fiber-reinforced materials)
	- plasticity (permanent deformation due to one-time overload, e.g., in metal forming)
	- viscoelasticity (absorption of energy, e.g., in dampers)
	- creep (slow deformation under permanent load, e.g., in pipes)
	This lecture briefly introduces the theoretical foundations and mathematical modeling of the above phenomena. It is complemented by exercises where simple examples problems are solved by calculations and where the implementation of the content of the lecture in computer simulations is explained. It will also briefly discussed how important material parameters can be determined from experimental data.
Literature	

Module Manual M.Sc. "Materials Science"

Course L1536: Material Modeling			
Тур	Recitation Section (small)		
Hrs/wk	2		
СР	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Christian Cyron		
Language	DE		
Cycle	WiSe		
Content	See interlocking course		
Literature	See interlocking course		

Module M0604: High-	Order FEM				
Courses					
Title			Τνρ	Hrs/wk	СР
High-Order FEM (L0280)			Lecture	3	4
High-Order FEM (L0281)			Recitation Section (large)	1	2
Module Responsible	Prof. Alexander Düste	er			
Admission Requirements	None				
Recommended Previous	Knowledge of partial	differential equations i	is recommended.		
Knowledge					
Educational Objectives	After taking part succ	essfully, students hav	e reached the following learning results		
Professional Competence					
Knowledge	Students are able to				
	+ give an overview o	f the different (h, p, hp) finite element procedures.		
	+ explain high-order	finite element procedu	ires.		
	+ specify problems	of finite element proc	edures, to identify them in a given situation	n and to explain the	ir mathematical and
	mechanical backgrou	ind.			
Skills	Students are able to				
	+ apply high-order fi	nite elements to proble	ems of structural mechanics.		
	+ select for a given p	roblem of structural m	nechanics a suitable finite element procedure.		
	+ critically judge resu	ults of high-order finite	elements.		
	+ transfer their know	ledge of high-order fin	ite elements to new problems.		
Personal Competence					
Social Competence	Students are able to	atorogonoous groups	and to decument the corresponding results		
	+ solve problems in r	leterogeneous groups	and to document the corresponding results.		
Autonomy	Students are able to				
	+ assess their knowle	edge by means of exer	cises and E-Learning.		
	+ acquaint themselve	es with the necessary	knowledge to solve research oriented tasks.		
Workload in Hours	Independent Study T	ime 124. Study Time ir	n Lecture 56		
Credit points	6	- ,			
Course achievement	Compulsory Bonus	Form	Description		
	No 10 %	Presentation	Forschendes Lernen		
Examination	Written exam				
Examination duration and	120 min				
scale					
Assignment for the	Energy Systems: Core	e Qualification: Electiv	e Compulsory		
Following Curricula	International Manage	ment and Engineering	: Specialisation II. Product Development and P	roduction: Elective Co	ompulsory
	Materials Science: Sp	ecialisation Modeling:	Elective Compulsory		
	Mechanical Engineeri	ng and Management:	Specialisation Product Development and Produ	iction: Elective Comp	ulsory
	Mechatronics: Techni	cal Complementary Co	ourse: Elective Compulsory		
	Product Development	t, Materials and Produc	ction: Core Qualification: Elective Compulsory		
	Naval Architecture an	a Ucean Engineering:	Core Qualification: Elective Compulsory		
	Theoretics:	Specialisation III. Engl	neering Science: Elective Compulsory		
	meoretical Mechanic	ai Engineering: Core Q	uanneation: Elective Compulsory		

Course L0280: High-Order Fl	EM
Тур	Lecture
Hrs/wk	3
СР	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	EN
Cycle	SoSe
Content	1. Introduction
	2. Motivation
	3. Hierarchic shape functions
	4. Mapping functions
	5. Computation of element matrices, assembly, constraint enforcement and solution
	6. Convergence characteristics
	7. Mechanical models and finite elements for thin-walled structures
	8. Computation of thin-walled structures
	9. Error estimation and hp-adaptivity
	10. High-order fictitious domain methods
Literature	[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014
	[2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis - Formulation, Verification and Validation, John Wiley & Sons,
	2011

Course L0281: High-Order FEM		
Тур	Recitation Section (large)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0605: Comp	outational Structural Dynamics			
Courses				
Title		Тур	Hrs/wk	СР
Computational Structural Dynamics	s (L0282)	Lecture	3	4
Computational Structural Dynamics	s (L0283)	Recitation Section (small)	1	2
Module Responsible	Prof. Alexander Düster			
Admission Requirements	None			
Recommended Previous	Knowledge of partial differential equations is recomm	ended.		
Knowledge				
Educational Objectives	After taking part successfully, students have reached	the following learning results		
Professional Competence				
Knowledge	Students are able to			
	+ give an overview of the computational procedures	for problems of structural dynamics.		
	+ explain the application of finite element programs	to solve problems of structural dynamics	5.	
	+ specify problems of computational structural dyna	mics, to identify them in a given situat	ion and to explai	n their mathematical
	and mechanical background.			
Skills	Students are able to			
	+ model problems of structural dynamics.			
	+ select a suitable solution procedure for a given pro	blem of structural dynamics.		
	+ apply computational procedures to solve problems	of structural dynamics.		
	+ verify and critically judge results of computational	structural dynamics.		
Personal Competence				
Social Competence	Students are able to			
,	+ solve problems in heterogeneous groups and to do	cument the corresponding results.		
Autonomy	Students are able to			
	+ acquire independently knowledge to solve complex	c problems.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture	56		
Credit points	6	50		
Course achievement	None			
Examination	Written exam			
Examination duration and	2h			
scale				
Assignment for the	International Management and Engineering: Specialis	ation II. Mechatronics: Elective Compuls	ory	
Following Curricula	Materials Science: Specialisation Modeling: Elective C	ompulsory		
	Mechatronics: Technical Complementary Course: Elec	tive Compulsory		
	Naval Architecture and Ocean Engineering: Core Qua	lification: Elective Compulsory		
	Theoretical Mechanical Engineering: Specialisation Si	mulation Technology: Elective Compulse	ory	

Course L0282: Computationa	al Structural Dynamics
Тур	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	DE
Cycle	SoSe
Content	1. Motivation
	2. Basics of dynamics
	3. Time integration methods
	4. Modal analysis
	5. Fourier transform
	6. Applications
Literature	[1] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.
	[2] J.L. Humar, Dynamics of Structures, Taylor & Francis, 2012.

Module Manual M.Sc. "Materials Science"

Course L0283: Computational Structural Dynamics			
Тур	Recitation Section (small)		
Hrs/wk	1		
СР	2		
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14		
Lecturer	Prof. Alexander Düster		
Language	DE		
Cycle	SoSe		
Content	See interlocking course		
Literature	See interlocking course		

Module M0606: Nume	rical Algorithms in Structural Mec	hanics		
Courses				
Title		Тур	Hrs/wk	СР
Numerical Algorithms in Structural	Mechanics (L0284)	Lecture	2	3
Numerical Algorithms in Structural	Mechanics (L0285)	Recitation Section (small)	2	3
Module Responsible	Prof. Alexander Düster			
Admission Requirements	None			
Recommended Previous	Knowledge of partial differential equations is recor	nmended.		
Knowledge				
Educational Objectives	After taking part successfully, students have reach	ted the following learning results		
Professional Competence				
Knowledge	Students are able to	t are used in finite element pregrams		
	+ give an overview of the standard algorithms that	t are used in finite element programs.		
	+ explain the structure and algorithm of finite eler	nent programs.	lain their mathen	natical and computer
	science background	entity them in a given situation and to exp		
	Science Background.			
Skills	Students are able to			
	+ construct algorithms for given numerical method	ds.		
	+ select for a given problem of structural mechani	cs a suitable algorithm.		
	+ apply numerical algorithms to solve problems of	structural mechanics.		
	+ implement algorithms in a high-level programmi	ing languate (here C++).		
	+ critically judge and verfiy numerical algorithms.			
Personal Competence				
Social Competence	Students are able to			
	+ solve problems in heterogeneous groups and to	document the corresponding results.		
Autonomy	Students are able to			
, aconomy	+ acquire independently knowledge to solve comp	plex problems.		
	······································			
Workload in Hours	Independent Study Time 124, Study Time in Lectur	re 56		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	2h			
scale				
Assignment for the	Materials Science: Specialisation Modeling: Elective	e Compulsory		
Following Curricula	Naval Architecture and Ocean Engineering: Core Q	ualification: Elective Compulsory		
	Technomathematics: Specialisation III. Engineering	g Science: Elective Compulsory		
	I neoretical Mechanical Engineering: Specialisation	Simulation Technology: Elective Compulse	ory	

Course L0284: Numerical Algorithms in Structural Mechanics		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	1. Motivation	
	2. Basics of C++	
	3. Numerical integration	
	4. Solution of nonlinear problems	
	5. Solution of linear equation systems	
	6. Verification of numerical algorithms	
	7. Selected algorithms and data structures of a finite element code	
Literature	[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001.	
	[2] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.	

Module Manual M.Sc. "Materials Science"

Course L0285: Numerical Algorithms in Structural Mechanics		
Тур	Recitation Section (small)	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1237: Meth	ods in Theoretical Materials Scie	nce		
Courses				
Title Methods in Theoretical Materials So Methods in Theoretical Materials So	cience (L1677) cience (L1678)	Typ Lecture Becitation Section (small)	Hrs/wk 2 1	CP 4 2
Module Responsible	Prof Stefan Fritz Müller		-	-
Admission Requirements	None			
Recommended Previous	Knowledge of advanced mathematics like analy	ysis, linear algebra, differential equations an	d complex functio	ns, e.g., Mathematics
Knowledge	I-IV			
	Knowledge of physics, particularly solid state p	hysics, e.g., Materials Physics		
Educational Objectives	After taking part successfully, students have re	ached the following learning results		
Professional Competence				
Knowledge	The master students will be able to			
	explain how different modeling methods worl	ς.		
	assess the field of application of individual m	ethodological approaches.		
	evaluate the strengths and weaknesses of different methods.			
	The students are thereby able to assess which expected from the simulation results.	h method is best suited to solve a scientif	ic problem and w	hat accuracy can be
Skills	After completing the module, the students are able to			
	select the most suitable modeling method a material type, etc	s a function of various parameters such as	length scale, time	e scale, temperature
Personal Competence				
Social Competence	The students are able to discuss competently and materials science, for example at conferen groups.	and adapted to the target group with exper	ts from various fie neir abilities to wo	elds including physic: rk in interdisciplinary
Autonomy	The students are able to			
	assess their own strengths and weaknesses.			
	acquire the knowledge they need on their ow	n.		
Workload in Hours	Independent Study Time 138, Study Time in Le	cture 42		
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following Curricula	Materials Science: Specialisation Modeling: Elec Theoretical Mechanical Engineering: Specialisat	tive Compulsory ion Materials Science: Elective Compulsory		

Course L1677: Methods in Theoretical Materials Science			
Тур	Lecture		
Hrs/wk	2		
СР	4		
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28		
Lecturer	Prof. Stefan Fritz Müller		
Language	DE/EN		
Cycle	SoSe		
Content	1. Introduction		
	1.1 Classification of Modelling Approaches and the Solid State		
	2 Quantum Mechanical Approaches		
	2.1 Electronic states : Atoms. Molecules. Solids		
	2.2 Density Functional Theory		
	2.3 Spin-Dynamics		
	2. Thermodynamic Approaches		
	3. Thermodynamic Approaches		
	3.2 Allovs		
	3.3 Cluster Expansion		
	3.4 Monte-Carlo-Methods		
Literature	Solid State Physics, Ashcroft/Mermin, Saunders College		
	Computational Physics Thilson Cambridge		
	comparational Physics, Physicia, Cambridge		
	Computational Materials Science, Ohno et al Springer		
	n an		
	Materials Science and Engineering: An Introduction, Callister/Rethwisch, Edition 9, Wiley		

Course L1678: Methods in Theoretical Materials Science		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Stefan Fritz Müller	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1238: Quan	tum Mechanics of Solids			
Courses				
Title		Тур	Hrs/wk	СР
Quantum Mechanics of Solids (L16	75)	Lecture	2	4
Quantum Mechanics of Solids (L16	76)	Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Fritz Müller			
Admission Requirements	None			
Recommended Previous	Knowledge of advanced mathematics like analysis, linear alge	bra, differential equations and co	omplex function	s, e.g., Mathematics
Knowledge	I-IV			
	Knowledge of mechanics and physics, particularly solid state pl	hysics, e.g., Materials Physics		
Educational Objectives	After taking part successfully, students have reached the follow	ving learning results		
Professional Competence				
Knowledge	The master students will be able to explain			
	the basics of quantum mechanics.			
	the importance of quantum physics for the description of me	storials proportios		
	the importance of quantum physics for the description of ma	ateriais properties.		
	correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of			
	materials.			
	The master students will then be able to connect essential m	naterials properties in engineeri	ng with materia	als properties on the
Skills	After attending this lecture the students can			
	perform materials design on a quantum mechanical basis.			
Personal Competence				
Social Competence	The students are able to discuss competently quantum-mech	anics-based subjects with expe	rts from fields s	such as physics and
	materials science.			
Autonomy	The students are able to independently develop solutions to qu	uantum mechanical problems. T	ney can also ac	quire the knowledge
	they need to deal with more complex questions with a quantum	n mechanical background from t	ne literature.	
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and				
scale				
Assignment for the	Materials Science: Specialisation Nano and Hybrid Materials: El	ective Compulsory		
Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsor	У		
	Theoretical Mechanical Engineering: Specialisation Materials So	cience: Elective Compulsory		

Course L1675: Quantum Mechanics of Solids			
Тур	Lecture		
Hrs/wk	2		
CP	4		
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28		
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller		
Language	DE/EN		
Cycle	SoSe		
Content	1. Introduction		
	1.1 Relevance of Quantum Mechanics		
	1.2 Classification of Solids		
	2 Foundations of Quantum Mechanics		
	2.1 Reminder · Elements of Classical Mechanics		
	2.2 Motivation for Ouantum Mechanics		
	2.3 Particle-Wave Duality		
	2.4 Formalism		
	2. Elementary ON Broblems		
	3. Liemenicary QM Problems		
	3.3 Harmonic Occillator		
	3.4 Electrons in a Magnetic Field		
	3.5 Hydrogen Atom		
	4. Quantum Effects in Condensed Matter		
	4.1 Preliminary		
	4.2 Electronic Levels		
	4.3 Magnetism		
	4.4 Superconductivity		
	4.5 Quantum Hall Effect		
Literature	Physik für Ingenieure, Hering/Martin/Stohrer, Springer		
	Atom- und Quantenphysik, Haken/Wolf, Springer		
	Grundkurs Theoretische Physik 5 1, Nolting, Springer		
	Electronic Structure of Materials, Sutton, Oxford		
	Materials Science and Engineering: An Introduction, Callister/Rethwisch, Edition 9, Wiley		

Course L1676: Quantum Mechanics of Solids		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0603: Nonli	near Structural Analysis			
Courses				
Title		Тур	Hrs/wk	СР
Nonlinear Structural Analysis (L027	77)	Lecture	3	4
Nonlinear Structural Analysis (L027	79)	Recitation Section (small)	1	2
Module Responsible	Prof. Alexander Düster			
Admission Requirements	None			
Recommended Previous	Knowledge of partial differential equations is recommen	ded.		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	e following learning results		
Professional Competence				
Knowledge	Students are able to			
	+ give an overview of the different nonlinear phenomer	a in structural mechanics.		
	+ explain the mechanical background of nonlinear pher	omena in structural mechanics.		
	+ to specify problems of nonlinear structural analysis,	to identify them in a given situation ar	id to explain the	eir mathematical and
	mechanical background.			
Skills	Students are able to			
	+ model nonlinear structural problems.			
	+ select for a given nonlinear structural problem a suita	ble computational procedure.		
	+ apply finite element procedures for nonlinear structure	al analysis.		
	+ critically verify and judge results of nonlinear finite el	ements.		
	+ to transfer their knowledge of nonlinear solution proc	edures to new problems.		
Personal Competence				
Social Competence	Students are able to			
Social competence	+ solve problems in heterogeneous groups.			
	+ present and discuss their results in front of others.			
	+ give and accept professional constructive criticism.			
Autonomy	Students are able to	opening		
	+ assess their knowledge by means of exercises and E-	_earning.		
	+ acquaint themselves with the necessary knowledge to solve research oriented tasks.			
	T to transform the acquired knowledge to similar problems.			
Workload in Hours	Independent Study Time 124. Study Time in Lecture 56			
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	120 min			
scale				
Assignment for the	Civil Engineering: Specialisation Structural Engineering:	Elective Compulsory		
Following Curricula	International Management and Engineering: Specialisat	on II. Civil Engineering: Elective Comp	ulsory	
	Materials Science: Specialisation Modeling: Elective Con	npulsory		
	Mechatronics: Specialisation System Design: Elective Co	ompulsory		
	Product Development, Materials and Production: Core Q	ualification: Elective Compulsory		
	Naval Architecture and Ocean Engineering: Core Qualifi	cation: Elective Compulsory		
	Ship and Offshore Technology: Core Qualification: Election	ve Compulsory		
	Theoretical Mechanical Engineering: Specialisation Simu	lation Technology: Elective Compulsor	У	

Course L0277: Nonlinear Structural Analysis			
Тур	Lecture		
Hrs/wk	3		
СР	4		
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42		
Lecturer	Prof. Alexander Düster		
Language	DE/EN		
Cycle	WiSe		
Content	1. Introduction		
	2. Nonlinear phenomena		
	3. Mathematical preliminaries		
	4. Basic equations of continuum mechanics		
	5. Spatial discretization with finite elements		
	6. Solution of nonlinear systems of equations		
	7. Solution of elastoplastic problems		
	8. Stability problems		
	9. Contact problems		
Literature	[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.		
	[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.		
	[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.		
	[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.		

Course L0279: Nonlinear Structural Analysis		
Тур	Recitation Section (small)	
Hrs/wk	1	
СР	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	DE/EN	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1291: Mater	rials Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L180	1)	Seminar	2	3
Seminar on interface-dominated m	aterials (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, elec	ctrochemistry, interface science, mecha	inics	
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge	Students can explain the most important facts and relationships of a specific topic from the field of materials science.			
Skills	Students are able to compile a specified topic from the field of materials science and to give a clear, structured and			
	comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a			
	summary including illustrations that contains the most important results, relationships and explanations of the subject.			
Personal Competence				
Social Competence	Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and			
	previous knowledge of the audience. They can	answer questions from the audience in	a curt and precise manr	ner.
Autonomy	Students are able to autonomously carry out a	literature research concerning a given	topic. They can indepe	endently evaluate the
	material. They can self-reliantly decide which p	arts of the material should be included	in the presentation.	-
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the	Materials Science: Specialisation Nano and Hyb	rid Materials: Elective Compulsory		
Following Curricula	Materials Science: Specialisation Modeling: Elec	tive Compulsory		
	Materials Science: Specialisation Engineering M	aterials: Elective Compulsory		

Course L1757: Seminar	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Jörg Weißmüller
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1758: Seminar Composites			
Тур	Seminar		
Hrs/wk	2		
СР	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Examination Form	Referat		
Examination duration and			
scale			
Lecturer	Prof. Bodo Fiedler		
Language	DE/EN		
Cycle	WiSe/SoSe		
Content			
Literature			

Module Manual M.Sc. "Materials Science"

Course L1801: Seminar Advanced Ceramics		
Тур	Seminar	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and		
scale		
Lecturer	Prof. Gerold Schneider	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1795: Seminar on interface-dominated materials		
Тур	Seminar	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and		
scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Module M1150: Conti	nuum Mechanics				
Courses					
Title	Typ Hrs/wk CP				
Continuum Mechanics (L1533)	Lecture 2 3				
Continuum Mechanics Exercise (L1	534) Recitation Section (small) 2 3				
Module Responsible	Prof. Christian Cyron				
Admission Requirements	None				
Recommended Previous	Basics of mechanics as taught, e.g., in the modules Engineering Mechanics I and Engineering Mechanics II at TUHH (forces and				
Knowledge	moments, stress, linear strain, free-body principle, linear-elastic constitutive laws, strain energy); basics of mathematics as taught,				
	e.g., in the modules Mathematics I and Mathematics II at TUHH				
Educational Objectives	After taking part successfully, students have reached the following learning results				
Brofossional Competence	After taking part successiony, students have reached the following learning results				
Froressional Competence	In this module, students learn the fundamental concents of poplinear continuum mechanics. This theory enables students to				
Knowledge	describe arbitrary deformations of continuous bodies (solid liquid or gaseous) under arbitrary loads. The module is a continuation				
	of the basic module Engineering Mechanics II (elastostatics), the limiting assumptions (isotropic, linear-elastic material behavior.				
	small deformations, simple geometries) of which are successively eliminated.				
	of arbitrarily deformable bodies is dealt with. The students learn the mathematical formalism for characterizing the stress state of				
	a body and for formulating the balance equations for mass momentum, energy and entropy in various forms. Furthermore, the				
	students know which constitutive assumptions have to be made for modeling the material behavior of a mechanical body.				
Chille					
SKIIIS	The students can set up balance laws and apply basics of deformation theory to specific aspects, both in applied contexts as in				
Personal Competence					
Social Competence	The students are able to develop solutions also for complex problems of solid mechanics, to present them to specialists in written				
	form and to develop ideas further.				
A					
Autonomy	The students are able to assess their own strengths and weaknesses. They can independently and on their own identify and solve				
	problems in the area of continuum mechanics and acquire the knowledge required to this end.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Course achievement	None				
Examination	Written exam				
Examination duration and	60 min				
scale					
Assignment for the	Materials Science: Specialisation Modeling: Elective Compulsory				
Following Curricula	mechanical Engineering and Management: Specialisation Materials: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory				
	Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Flective Compulsory				
	Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory				
	Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory				
	Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory				
	Product Development, Materials and Production: Core Qualification: Elective Compulsory				
	Theoretical Mechanical Engineering: Core Qualification: Elective Compulsory				

Course L1533: Continuum Mechanics					
Тур	Lecture				
Hrs/wk	2				
CP	3				
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28				
	Prof. Christian Cyron				
Lecturer	те				
Language	л <u>ь</u>				
Cycle					
Content	Continuum mechanics is a general theory to describe the effect of mechanical forces on continuous mechanical (both solid and				
	fluid) bodies. An important part of continuum mechanics is the mathematical description of strains and stresses as well as the				
	stress-strain response of continuous mechanical bodies. The lecture continuum mechanics builds on the foundations tought in the				
	recture Engineering Mechanics II (Elastostatics) but extends them significantly. While in the lecture Engineering Mechanics II				
	(clastostatics) the focus was by and large infinited to small deformations of simple bodies under simple foading, the fecture				
	dergoing very general kinds of deformations. This lecture focuses primarily on theoretical aspects of continuum mechanics but				
	content is key to numerous applications. This lecture focuses primarily on theoretical aspects of continuum mechanics but				
	angineering. The lecture covers:				
	chymeening. The lecture covers.				
	Fundamentals of tensor calculus				
	 Transformation invariance 				
	Tensor algebra				
	Tensor analysis				
	Kinematics				
	Motion of continuum				
	 Deformation of infinitesimal line, area and volume elements 				
	Material and spatial description				
	Polar decomposition				
	Spectral decomposition				
	Objectivity				
	Ime derivatives Partial / material time derivatives				
	 Objective time rates 				
	 Strain and deformation rates 				
	Transport theorems				
	Balance equations (global and local form)				
	Balance of mass				
	• The stress state				
	 Surface traction vectors 				
	 Cauchy's fundamental theorem 				
	 Stress tensors (Cauchy, 1. and 2. Piola-Kirchhoff, Kirchhoff stress tensor) 				
	Balance of linear momentum				
	Balance of angular momentum				
	Balance of energy				
	Balance of entropy				
	Clausius-Duhem inequality				
	Constitutive laws				
	Constitutive assumptions				
	 Fluids Electric colida 				
	 Hyperelasticity Material symmetry 				
	Flasto-plastic solids				
	Analysis				
	 Initial-boundary value problems and their numerical solution 				
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker				
	L.C. Liu, Castianus Masharing Casingsa				
	I-S. LIU: CONUMUUM MECHANICS, Springer				

Course L1534: Continuum Mechanics Exercise				
Тур	Recitation Section (small)			
Hrs/wk	2			
СР	3			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Lecturer	Prof. Christian Cyron			
Language	DE			
Cycle	WiSe			
Content	The exercise on Continuum Mechanics explains the theoretical content of the lecture on Continuum Mechanics by way of a series			
	of specific example problems.			
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker			
	I-S. Liu: Continuum Mechanics, Springer			

Specialization Nano and Hybrid Materials

Module M0766: Micro	systems Technology		
Courses			
Title	Түр	Hrs/wk	СР
Microsystems Technology (L0724)	Lecture	2	4
Module Responsible	Prof. Hoc Khiem Trieu		
Admission Requirements	None		
Recommended Previous	Basics in physics, chemistry and semiconductor technology		
Knowledge			
Educational Objectives	After taking part successfully, students have reached the following learning result	:S	
Professional Competence			
Knowledge			
	Students are able		
	• to present and to explain current fabrication techniques for microstructur	es and especially methods for t	he fabrication of
	microsensors and microactuators, as well as the integration thereof in more comp	olex systems	
	to explain in details operation principles of microsensors and microactuators	and	
	 to discuss the potential and limitation of microsystems in application. 		
Skills			
	Students are capable		
	 to analyze the feasibility of microsystems, 		
	 to develop process flows for the fabrication of microstructures and 		
	to apply them.		
Personal Competence			
Social Competence	None		
Autonomy	None		
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28		
Credit points	4		
Course achievement	None		
Examination	Oral exam		
Examination duration and	30 min		
scale			
Assignment for the	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory		
Following Curricula			

Course L0724: Microsystems Technology						
Тур	Lecture					
Hrs/wk	2					
СР	4					
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28					
Lecturer	Prof. Hoc Khiem Trieu					
Language	EN					
Cycle	iSe					
Content	Lecture 2 4 1ndependent Study Time 92, Study Time in Lecture 28 Prof. Hoc Khiem Trieu EN WiSe • Introduction (historical view, scientific and economic relevance, scaling laws) • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generator 1lithography, nano-imprinting, molecular imprinting) • Deposition Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generator 1lithography, nano-imprinting, molecular imprinting) • Deposition Technology Basics, Lithography (wafer fabrication, pitolithography, improving resolution, next-generator 1lithography, nano-imprinting, molecular imprinting) • Deposition Technology Education, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVI techniques: APCVD, LPCVD, PECVD and LECVD; screen printing) • Etching and Bulk Micromachinig (definitions, wet chemical etching, listorapci etch with HNA, electrochemical etching anisotropic etching: back sputtering, plasma etching, RE, Bosch Process, Cyro Paccess, XeF2 etching) • Surface Micromachining (definition, passure schore, Surface Schores, XeF2 etching) • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures Origami microstructures, Epi-Pely, porous silicon, SOJ, SCREAM process, LIGA, SUB, rapid prototyping) • Thermal and Baldiation schores: thermopile and bolometer) • Mechanical Sensors (temmer dass accelerometer: plezoresistive, plezoelectric and Capacitive; angular rats sensor: operating principel and fabrication process; accelerometer; plezoelectric and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMK, fluxgate magnetometer) • Chemical and Bio Sensors (termeral dass sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor; Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor Clark electrode, enzyme electrode, DNA chip) • Micro A					
Literature	M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009					
	I. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008					

Module M1334: BIO II	: Biomaterials			
Courses				
Title	Тур	Hrs/w	k	СР
Biomaterials (L0593)	Lecture	2		3
Module Responsible	Prof. Michael Morlock			
Admission Requirements	None			
Recommended Previous	Basic knowledge of orthopedic and surgical techniques is recommended.			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge	The students can describe the materials of the human body and the materials being	used in medical engi	ineering, a	and their fields of
	use.			
Skille	The students can explain the advantages and disadvantages of different kinds of hi	omatorials		
54///5	The students can explain the advantages and disadvantages of different kinds of bi	officiencia.		
Personal Competence				
Social Competence	The students are able to discuss issues related to materials being present or being	used for replacement	ts with stu	udent mates and
	the teachers.			
Autonomy	The students are able to acquire information on their own. They can also judge the	information with resp	ect to its o	credibility.
				-
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Credit points	3			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	International Management and Engineering: Specialisation II. Process Engineering a	nd Biotechnology: Ele	ective Com	npulsory
Following Curricula	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory			
	Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine:	Elective Compulsory		
	Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory			
	Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elec	tive Compulsory		
	Biomedical Engineering: Specialisation Management and Business Administration: E	lective Compulsory		
	Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Ele	ective Compulsory		

Course L0593: Biomaterials		
Тур	Lecture	
Hrs/wk	2	
CP Workload in Hours	3 Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Michael Morlock	
Language	EN	
Cycle	WiSe	
Content	Topics to be covered include:	
	1. Introduction (Importance, nomenclature, relations)	
	2. Biological materials	
	2.1 Basics (components, testing methods)	
	2.2 Bone (composition, development, properties, influencing factors)	
	2.3 Cartilage (composition, development, structure, properties, influencing factors)	
	2.4 Fluids (blood, synovial fluid)	
	3 Biological structures	
	3.1 Menisci of the knee joint	
	3.2 Intervertebral discs	
	3.3 Teeth	
	3.4 Ligaments	
	3.5 Tendons	
	3.6 Skin	
	3.7 Nervs	
	3.8 Muscles	
	4. Replacement materials	
	4.1 Basics (history, requirements, norms)	
	4.2 Steel (alloys, properties, reaction of the body)	
	4.3 Titan (alloys, properties, reaction of the body)	
	4.4 Ceramics and glas (properties, reaction of the body)	
	4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body)	
	4.6 Natural replacement materials	
	Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are	
	used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.	
Literature	Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984.	
	Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.	
	Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.	
	Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.	
	Park J. Biomaterials: an introduction. New York: Plenum Press, 1980.	
	Wintermantel, E. und Ha, SW : Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.	

Module M0643: Opto	electronics I - Wave Optics				
Courses					
Title Optoelectronics I: Wave Optics (LO. Optoelectronics I: Wave Optics (Pro	359) oblem Solving Course) (L0361)	Typ Lecture Recitation Sect	ion (small)	Hrs/wk 2 1	CP 3
Module Responsible	Dr. Alexander Petrov				
Admission Requirements	None				
Recommended Previous	Basics in electrodynamics, calculus				
Knowledge					
Educational Objectives	After taking part successfully, students have	ve reached the following learning res	ults		
Professional Competence					
Knowledge	Students can explain the fundamental mat	hematical and physical relations of fr	reely propagating	optical waves	i.
	They can give an overview on wave optica	phenomena such as diffraction, refle	ection and refract	ion, etc.	
	Students can describe waveoptics based c	omponents such as electrooptical mo	odulators in an app	olication orien	ted way.
Skills	Students can generate models and derive	mathematical descriptions in relation	to free optical wa	ave propagati	on.
	They can derive approximative solutions and judge factors influential on the components' performance.				
Personal Competence					
Social Competence	Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the				
	problem solving course.				
Autonomy	Students are capable to extract relevant in	nformation from the provided referer	nces and to relate	this informat	ion to the content of
	the lecture. They can reflect their acquir	ed level of expertise with the help	of lecture accom	panying mea	sures such as exam
	typical exam questions. Students are able	to connect their knowledge with that	acquired from ot	her lectures.	
Workload in Hours	Independent Study Time 78, Study Time in	Lecture 42			
Credit points	4				
Course achievement	None				
Examination	Written exam				
Examination duration and	60 minutes				
scale	Electrical Engineering, Engelalisation Name	electropics and Microsystem - T	alaguu Flastius Car	mulcon	
Assignment for the	Electrical Engineering: Specialisation Nano	electronics and Microsystems Techno	company: Elective Col	npuisory	
Following Curricula	Materials Science: Specialisation Macro	Hybrid Materials: Elective Compulso	rv	acionity: Electi	ve compuisory
	Microelectronics and Microsystems: Specia	lisation Microelectronics Complemen	' ' ts: Elective Comp	ulsory	
	Renewable Energies: Specialisation Solar E	nergy Systems: Elective Compulsorv			

Course L0359: Optoelectronics I: Wave Optics	
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Alexander Petrov
Language	EN
Cycle	SoSe
Content	 Introduction to optics Electromagnetic theory of light Interference Coherence Diffraction Fourier optics Polarisation and Crystal optics Matrix formalism Reflection and transmission Complex refractive index Dispersion Modulation and switching of light
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Hecht, E., Optics, Benjamin Cummings, 2001 Goodman, J.W. Statistical Optics, Wiley, 2000 Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Course L0361: Optoelectronics I: Wave Optics (Problem Solving Course)	
Тур	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Alexander Petrov
Language	EN
Cycle	SoSe
Content	see lecture Optoelectronics 1 - Wave Optics
Literature	see lecture Optoelectronics 1 - Wave Optics

Module M0930: Semi	conductor Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Semiconductor Seminar (L0760)		Seminar	2	2
Module Responsible	Prof. Matthias Kuhl			
Admission Requirements	None			
Recommended Previous	Semiconductors			
Knowledge				
Educational Objectives	After taking part successfully, students have reached	the following learning results		
Professional Competence				
Knowledge	Students can explain the most important facts and rel	ationships of a specific topic fro	m the field of semiconduc	ctors.
Skills	Students are able to compile a specified topic from the field of semiconductors and to give a clear, structured and comprehensible			
	presentation of the subject. They can comply with a	given duration of the present	ation. They can write in	English a summary
	including illustrations that contains the most importan	t results, relationships and expl	anations of the subject.	
Personal Competence				
Social Competence	Students are able to adapt their presentation with res	pect to content, detailedness, a	and presentation style to	the composition and
	previous knowledge of the audience. They can answer	questions from the audience in	a curt and precise mann	ier.
Autonomy	Students are able to autonomously carry out a literat	ure research concerning a give	n topic. They can indeper	ndently evaluate the
	material. They can self-reliantly decide which parts of	the material should be included	I in the presentation.	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28			
Credit points	2			
Course achievement	None			
Examination	Presentation			
Examination duration and	15 minutesw presentation + 5-10 minutes discussion	+ 2 pages written abstract		
scale				
Assignment for the	Materials Science: Specialisation Nano and Hybrid Mat	erials: Elective Compulsory		
Following Curricula				

Course L0760: Semiconductor Seminar	
Тур	Seminar
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Matthias Kuhl, Prof. Manfred Eich, Prof. Hoc Khiem Trieu, Dr. rer. nat. Thomas Kusserow
Language	EN
Cycle	SoSe
Content	Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in
	English.
	Evaluation Criteria:
	 understanding of subject, discussion, response to questions structure and logic of presentation (clarity, precision) coverage of the topic, selection of subjects presented linguistic presentation (clarity, comprehensibility)
	 visual presentation (clarity, comprehensibility)
	 handout (see below)
	compliance with timing requirement.
	Handout:
	Before your presentation, it is mandatory to distribute a printed
	handout (short abstract) of your presentation in English language. This must be no
	longer than two pages A4, and include the most important results,
	conclusions, explanations and diagrams.
Literature	Aktuelle Veröffentlichungen zu dem gewählten Thema

Module M1220: Interf	faces and interface-dominated	d Materials		
Courses				
Title		Тур	Hrs/wk	СР
Nature's Hierarchical Materials (L16	663)	Seminar	2	3
Interfaces (L1654)	Γ	Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Basic knowledge in Materials Science, e.g.	Materials Science I/II, and physical chemistry		
Knowledge				
Educational Objectives	After taking part successfully, students hav	ve reached the following learning results		
Professional Competence				
Knowledge	The students will be able to explain the str	ructural and thermodynamic properties of inte	erfaces in comparison	to the bulk systems.
	They will be able to describe the relevance	of interfaces and physico-chemical modification	tions of interfaces. Mo	reover, they are able
	nolymers		is systems, such as m	lietais, cerainics and
	polymers.			
Skills	The students are able to rationalize the im	pact of interfaces on material properties and	functionalities Moreo	over they are able to
01110	trace the peculiar properties of biomaterial	s to their hierarchical hybrid structure.		
Personal Competence				
Social Competence	The students are able to present solutions	to specialists and to develop ideas further.		
A				
Autonomy	The students are able to			
	 assess their own strengths and weak 	knesses.		
	 define tasks independently. 			
Workload in Hours	Independent Study Time 124, Study Time i	n Lecture 56		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	Materials Science: Specialisation Nano and	Hybrid Materials: Elective Compulsory		
Following Curricula	Mechanical Engineering and Management:	Specialisation Materials: Elective Compulsory	,	

Course L1663: Nature's Hiera	archical Materials
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Gerold Schneider
Language	EN
Cycle	WiSe
Content	Biological materials are omnipresent in the world around us. They are the main constituents in plant and animal bodies and have a diversity of functions. A fundamental function is obviously mechanical providing protection and support for the body. But biological materials may also serve as ion reservoirs (bone is a typical example), as chemical barriers (like cell membranes), have catalytic function (such as enzymes), transfer chemical into kinetic energy (such as the muscle), etc.This lecture will focus on materials with a primarily (passive) mechanical function: cellulose tissues (such as wood), collagen tissues (such as tendon or cornea), mineralized tissues (such as bone, dentin and glass sponges). The main goal is to give an introduction to the current knowledge of the structure in these materials and how these structures relate to their (mostly mechanical) functions.
Literature	Peter Fratzl, Richard Weinkamer, Nature's hierarchical materialsProgress, in Materials Science 52 (2007) 1263-1334 Journal publications

Course L1654: Interfaces	
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE
Cycle	SoSe
Content	 Microscopic structure and thermodynamics of interfaces (gas/solid, gas/liquid, liquid/liquid, liquid/solid) Experimental methods for the study of interfaces Interfacial forces wetting surfactants, foams, bio-membranes chemical grafting of interfaces
Literature	"Physics and Chemistry of Interfaces", K.H. Butt, K. Graf, M. Kappl, Wiley-VCH Weinheim (2006) "Interfacial Science", G.T. Barnes, I.R. Gentle, Oxford University Press (2005)

Module M1238: Quan	tum Mechanics of Solids			
Courses				
Title		Тур	Hrs/wk	СР
Quantum Mechanics of Solids (L16	75)	Lecture	2	4
Quantum Mechanics of Solids (L16	76)	Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Fritz Müller			
Admission Requirements	None			
Recommended Previous	Knowledge of advanced mathematics like analysis, linear alge	bra, differential equations and co	mplex function	s, e.g., Mathematics
Knowledge				
	Knowledge of mechanics and physics, particularly solid state p	hysics, e.g., Materials Physics		
Educational Objectives	After taking part successfully, students have reached the follow	wing learning results		
Professional Competence	T I			
Knowledge	The master students will be able to explain			
	the basics of quantum mechanics.			
	the importance of quantum physics for the description of m	atorials proportios		
	the importance of quantum physics for the description of ma	ateriais properties.		
	correlations between on quantum mechanics based phere	nomena between individual ato	ms and macros	scopic properties of
	materials.			
	The master students will then be able to connect essential n	naterials properties in engineerir	ng with materia	als properties on the
	atomistic scale in order to understand these connections.			
Skills	After attending this lecture the students can			
	perform materials design on a quantum mechanical basis.			
Personal Competence				
Social Competence	The students are able to discuss competently quantum-mech	nanics-based subjects with expe	rts from fields s	such as physics and
	materials science.			
Autonomy	The students are able to independently develop solutions to q	uantum mechanical problems. Th	ney can also ac	quire the knowledge
	they need to deal with more complex questions with a quantur	m mechanical background from t	ne literature.	
Workload in Hours	Independent Study Time 138 Study Time in Lecture 42			
Credit points	6			
Course achievement	None			
Examination	Oral exam			
Examination duration and				
scale				
Assignment for the	Materials Science: Specialisation Nano and Hybrid Materials: E	lective Compulsory		
Following Curricula	Materials Science: Specialisation Modeling: Elective Compulsor	у		
	Theoretical Mechanical Engineering: Specialisation Materials S	cience: Elective Compulsory		

Course L1675: Quantum Mechanics of Solids	
Тур	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	1. Introduction
	1.1 Relevance of Quantum Mechanics
	1.2 Classification of Solids
	2 Foundations of Quantum Mechanics
	2.1 Reminder · Elements of Classical Mechanics
	2.2 Motivation for Ouantum Mechanics
	2.3 Particle-Wave Duality
	2.4 Formalism
	2. Elementary ON Broblems
	3. Liemenicary QM Problems
	3.3 Harmonic Occillator
	3.4 Electrons in a Magnetic Field
	3.5 Hydrogen Atom
	4. Quantum Effects in Condensed Matter
	4.1 Preliminary
	4.2 Electronic Levels
	4.3 Magnetism
	4.4 Superconductivity
	4.5 Quantum Hall Effect
Literature	Physik für Ingenieure, Hering/Martin/Stohrer, Springer
	Atom- und Quantenphysik, Haken/Wolf, Springer
	Grundkurs Theoretische Physik 5 1, Nolting, Springer
	Electronic Structure of Materials, Sutton, Oxford
	Materials Science and Engineering: An Introduction, Callister/Rethwisch, Edition 9, Wiley

Course L1676: Quantum Mechanics of Solids	
Тур	Recitation Section (small)
Hrs/wk	1
СР	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Gregor Vonbun-Feldbauer, Prof. Stefan Fritz Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1239: Expe	rimental Micro- and Nanomechanics			
Courses				
Title		Тур	Hrs/wk	СР
Experimental Micro- and Nanomec	hanics (L1673)	Lecture	2	4
Experimental Micro- and Nanomec	hanics (L1674)	Recitation Section (small)	1	2
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous	Basics in Materials Science I/II, Mechanical Properties,	Phenomena and Methods in Materials So	cience	
Knowledge				
Educational Objectives	After taking part successfully, students have reached	the following learning results		
Professional Competence				
Knowledge	Students are able to describe the principles of mech fracture).	hanical behavior (e.g., stress, strain, m	odulus, strength	n, hardening, failure,
	Students can explain the principles of characterizat microscopy, x-ray diffraction)	ion methods used for investigating mid	crostructure (e.g	J., scanning electron
	They can describe the fundamental relations between	microstructure and mechanical properti	es.	
Skills	Students are capable of using standardized calcula strength) of different materials under varying loading	ation methods to calculate and evalua states (e.g., uniaxial stress or plane stra	te mechanical p in).	properties (modulus,
Personal Competence				
Social Competence	Students can provide appropriate feedback and handl	e feedback on their own performance co	nstructively.	
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms a	nd to define further work steps on this b	asis guided by te	eachers.
	- to be able to work independently based on lectur needed	res and notes to solve problems, and to	o ask for help o	r clarifications when
Workload in Hours	Independent Study Time 138, Study Time in Lecture 4	2		
Credit points	6			
Course achievement	None			
Examination	Written exam			
Examination duration and	60 min			
scale				
Assignment for the	Materials Science: Specialisation Nano and Hybrid Mat	terials: Elective Compulsory		
Following Curricula	Theoretical Mechanical Engineering: Specialisation Ma	terials Science: Elective Compulsory		

Course L1673: Experimental	Micro- and Nanomechanics
Тур	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of mechanical testing at the micron and nanometer scales. A focus will be made on metallic
	materials, though issues related to ceramics and polymeric materials will also be discussed. Modern methods will be explored,
	along with the scientific questions investigated by such methods.
	Principles of micromechanics
	Motivations for small-scale testing
	 Sample preparation methods for small-scale testing
	 General experimental artifacts and guantification of measurement resolution
	Complementary structural analysis methods
	Electron back scattered diffraction
	Transmission electron microscopy
	Micro-Laue diffraction
	Nanoindentation-based testing
	 Principles of contact mechanics
	 Berkovich indentation
	Loading geometry
	 Governing equations for analysis of stress & strain
	Case study:
	 Indentation size effects
	Microcompression
	 Loading geometry
	 Governing equations for analysis of stress & strain
	■ Case study:
	 Size effects in yield strength and hardening Misselesse baseling
	 Microbeam-behaing Loading geometry
	 Loduing geometry Coversing equations for applysis of stress £ strain
	 Eracture strength & toughness
	•
Literature	Vorlesungsskript
	Aktuelle Publikationen

Course L1674: Experimental Micro- and Nanomechanics		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Dr. Erica Lilleodden	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1335: BIO II	: Artificial Joint Replacement			
Courses				
Title		Тур	Hrs/wk	СР
Artificial Joint Replacement (L1306)		Lecture	2	3
Module Responsible	Prof. Michael Morlock			
Admission Requirements	None			
Recommended Previous	Basic knowledge of orthopedic and surgical te	chniques is recommended.		
Knowledge				
Educational Objectives	After taking part successfully, students have r	eached the following learning results		
Professional Competence				
Knowledge	The students can name the different kinds of	artificial limbs.		
Skille	The students can explain the advantages and	disadvantages of different kinds of endo	protheses	
JAIIIS	The students can explain the advantages and		procheses.	
Personal Competence				
Social Competence	The students are able to discuss issues relate	d to endoprothese with student mates an	d the teachers.	
Autonomy	The students are able to acquire information (on their own. They can also judge the info	rmation with respect to	its credibility.
,				,
Workload in Hours	Independent Study Time 62, Study Time in Le	cture 28		
Credit points	3			
Course achievement	None			
Examination	Written exam			
Examination duration and	90 min			
scale				
Assignment for the	International Management and Engineering: S	pecialisation II. Process Engineering and	Biotechnology: Elective	Compulsory
Following Curricula	Materials Science: Specialisation Nano and Hy	brid Materials: Elective Compulsory		
	Biomedical Engineering: Specialisation Artifici	al Organs and Regenerative Medicine: Ele	ective Compulsory	
	Biomedical Engineering: Specialisation Implar	its and Endoprostheses: Compulsory		
	Biomedical Engineering: Specialisation Medica	al Technology and Control Theory: Electiv	e Compulsory	
	Biomedical Engineering: Specialisation Manag	ement and Business Administration: Elec	tive Compulsory	
	Orientation Studies: Core Qualification: Electiv	e Compulsory	ua Compulson	
	Theoretical Mechanical Engineering: Specialis	ation Bio- and Medical Technology: Electr	ve compuisory	

Course L1306: Artificial Joint Replacement				
Тур	Lecture			
Hrs/wk	2			
СР	3			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Lecturer	Prof. Michael Morlock			
Language	DE			
Cycle	SoSe			
Content	Inhalt (deutsch)			
	1. EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes)			
	2. FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität)			
	3. DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate)			
	4. DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten)			
	5. DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren)			
	6. DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz)			
	7. DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz)			
	8. DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz)			
	9. TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß)			
Literature	Literatur:			
	Kapandji, I: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984.			
	Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley&Sons, New York 1994			
	Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea&Febiger, Philadelphia, 1989.			
	Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003.			
	Sobotta und Netter für Anatomie der Gelenke			

Module M0519: Partic	le Techn	ology a	and Solid Matter P	rocess Tec	hnology		
Courses							
Title					Тур	Hrs/wk	СР
Advanced Particle Technology II (L0051)				Project-/problem-based Learning	1	1	
Advanced Particle Technology II (LC	0050)				Lecture	2	2
Experimental Course Particle Techr	ology (L0430)				Practical Course	3	3
Module Responsible	Prof. Stefan	Heinrich					
Admission Requirements	None						
Recommended Previous	Basic knowle	edge of so	lids processes and particle	technology			
Knowledge							
Educational Objectives	After taking	part succe	essfully, students have read	ched the followir	ng learning results		
Professional Competence							
Knowledge	After comple	After completion of the module the students will be able to describe and explain processes for solids processing in detail based on					
	microproces	ses on the	e particle level.				
Skills	Students an	e able to	choose process steps an	id apparatuses	for the focused treatment of	solids depen	ding on the specific
	characteristi	ics. They f	urthermore are able to ada	pt these proces	ses and to simulate them.		
Personal Competence	Ch. J. J.					A. 1	Later Contractor Street
Social Competence	Students are	e able to	present results from small	teamwork proj	ects in an oral presentation an	id to discuss t	neir knowledge with
Autor	Scientific res	searchers.		an and the second set			
Autonomy	Students are	e able to a	nalyze and solve problems	regarding solid	particles independently or in sm	nall groups.	
Workload in Hours	Independent	t Study Tir	ne 96, Study Time in Lectu	re 84			
Credit points	6		F	Description			
Course achievement	Yes N	None	Written elaboration	fünf Berichte	(pro Versuch ein Bericht) à 5-10) Seiten	
Examination	Written exar	n		Turn Derience	(pro versuell elli beriene) a s re	Jociten	
Examination duration and	120 minutes						
scale							
Assignment for the	Bioprocess E	Engineerin	g: Specialisation A - Genera	al Bioprocess En	gineering: Elective Compulsory		
Following Curricula	Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory						
	Internationa	l Manager	nent and Engineering: Spec	cialisation II. Pro	cess Engineering and Biotechno	ology: Elective	Compulsory
	Materials Sc	ience: Spe	cialisation Nano and Hybrid	d Materials: Elec	ctive Compulsory		
	Process Eng	ineering: (Core Qualification: Compuls	ory			

Course L0051: Advanced Particle Technology II	
Тур	Project-/problem-based Learning
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Stefan Heinrich
Language	DE/EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L0050: Advanced Particle Technology II			
Тур	Lecture		
Hrs/wk	2		
СР	2		
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28		
Lecturer	Prof. Stefan Heinrich		
Language	DE/EN		
Cycle	WiSe		
Content	 Exercise in form of "Project based Learning" Agglomeration, particle size enlargement advanced particle size reduction Advanced theorie of fluid/particle flows CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling Treatment of simulation problems with distributed properties, solution of population balances 		
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.		

Course L0430: Experimental	Course Particle Technology			
Тур	Practical Course			
Hrs/wk	3			
СР	3			
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42			
Lecturer	Prof. Stefan Heinrich			
Language	DE/EN			
Cycle	WiSe			
Content	 Fluidization Agglomeration Granulation Drying Determination of mechanical properties of agglomerats 			
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.			
Module M0644: Optoelectronics II - Quantum Optics				
---	--	--	---	--
Courses				
Title Optoelectronics II: Quantum Optics Optoelectronics II: Quantum Optics	(L0360) (Problem Solving Course) (L0362)	Typ Lecture Recitation Section (small)	Hrs/wk 2 1	CP 3
Module Responsible	Dr. Alexander Petrov			
Admission Requirements	None			
Recommended Previous	Basic principles of electrodynamics, optics and qu	antum mechanics		
Knowledge				
Educational Objectives	After taking part successfully, students have reac	hed the following learning results		
Professional Competence				
Knowledge	Students can explain the fundamental mathema stimulated and spontanous emission. They can overview on quantum optical components in tech	tical and physical relations of quantum op describe material properties as well as t nical applications.	tical phenomena echnical solution	such as absorption, s. They can give an
Skills	Students can generate models and derive mathe They can derive approximative solutions and judg	ematical descriptions in relation to quantu e factors influential on the components' pe	m optical phenor formance.	nena and processes.
Personal Competence Social Competence	Students can jointly solve subject related problem problem solving course.	is in groups. They can present their results	effectively within	the framework of the
Autonomy	Students are capable to extract relevant informal the lecture. They can reflect their acquired leve typical exam questions. Students are able to conr	tion from the provided references and to re el of expertise with the help of lecture ac nect their knowledge with that acquired fror	late this informat companying mea n other lectures.	tion to the content of sures such as exam
Workload in Hours	Independent Study Time 78, Study Time in Lectur	e 42		
Credit points	4			
Course achievement	None			
Examination	Written exam			
Examination duration and	60 minutes			
scale				
Assignment for the	Electrical Engineering: Specialisation Nanoelectro	nics and Microsystems Technology: Elective	Compulsory	
Following Curricula	Electrical Engineering: Specialisation Microwave E Materials Science: Specialisation Nano and Hybrid Microelectronics and Microsystems: Specialization	ingineering, Optics, and Electromagnetic Co Materials: Elective Compulsory	mpatibility: Elect	ive Compulsory

Course L0360: Optoelectronics II: Quantum Optics		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Dr. Alexander Petrov	
Language	EN	
Cycle	WiSe	
Content	 Generation of light Photons Thermal and nonthermal light Laser amplifier Noise Optical resonators Spectral properties of laser light CW-lasers (gas, solid state, semiconductor) Pulsed lasers 	
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002 Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001 Yariv, A., Quantum Electronics, Wiley, 1988 Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X Siegman, A.E., Lasers, University Science Books, 1986	

Module Manual M.Sc. "Materials Science"

Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)	
Тур	Recitation Section (small)
Hrs/wk	1
СР	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Alexander Petrov
Language	EN
Cycle	WiSe
Content	see lecture Optoelectronics 1 - Wave Optics
Literature	see lecture Optoelectronics 1 - Wave Optics

Module M1291: Mater	rials Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L180	1)	Seminar	2	3
Seminar on interface-dominated ma	aterials (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, elect	rochemistry, interface science, mecha	nics	
Knowledge				
Educational Objectives	After taking part successfully, students have rea	ched the following learning results		
Professional Competence				
Knowledge	Students can explain the most important facts and relationships of a specific topic from the field of materials science.			
Skills	Students are able to compile a specified topic from the field of materials science and to give a clear. structured and			
	comprehensible presentation of the subject. The	v can comply with a given duration of	the presentation. They	can write in English a
	summary including illustrations that contains the	e most important results, relationships	and explanations of the	subject.
Personal Competence				
Social Competence	Students are able to adapt their presentation wi	th respect to content, detailedness, ar	nd presentation style to	the composition and
	previous knowledge of the audience. They can a	nswer questions from the audience in	a curt and precise manr	ner.
Autonomy	Students are able to autonomously carry out a l	iterature research concerning a given	topic. They can indepe	ndently evaluate the
-	material. They can self-reliantly decide which pa	rts of the material should be included	in the presentation.	
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the	Materials Science: Specialisation Nano and Hybr	id Materials: Elective Compulsory		
Following Curricula	Materials Science: Specialisation Modeling: Elect	ive Compulsory		
	Materials Science: Specialisation Engineering Ma	terials: Elective Compulsory		

Course L1757: Seminar	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Jörg Weißmüller
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1758: Seminar Composites	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Module Manual M.Sc. "Materials Science"

Course L1801: Seminar Advanced Ceramics	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1795: Seminar on interface-dominated materials	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and	
scale	
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Thesis

Module M-002: Maste	r Thesis
Courses	
Title	Typ Hrs/wk CP
Module Responsible	Professoren der TUHH
Admission Requirements	According to General Regulations (21.(1))
	• According to General Regulations §21 (1):
	At least 60 credit points have to be achieved in study programme. The examinations board decides on exceptions.
Recommended Previous	
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	• The students can use specialized knowledge (facts theories and methods) of their subject competently on specialized
	• The students can use specialized knowledge (lacts, theones, and methods) of their subject competently on specialized issues
	 The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject,
	describing current developments and taking up a critical position on them.
	• The students can place a research task in their subject area in its context and describe and critically assess the state of
	research.
Skills	The students are able:
	• To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
	• To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or
	incompletely defined problems in a solution-oriented way.
	 To develop new scientific findings in their subject area and subject them to a critical assessment.
Personal Competence	
Social Competence	Students can
	Roth in writing and orally outling a scientific issue for an expert audience accurately, understandably and in a structured
	 Both in whiting and orany outline a scientific issue for an expert addience accurately, understandably and in a scientific way.
	• Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees
	while upholding their own assessments and viewpoints convincingly.
Autonomy	Students are able:
	 To structure a project of their own in work packages and to work them off accordingly.
	• To work their way in depth into a largely unknown subject and to access the information required for them to do so.
	 To apply the techniques of scientific work comprehensively in research of their own.
Workload in Hours	Independent Study Time 900. Study Time in Lecture 0
Credit points	30
Course achievement	None
Examination	Thesis
Examination duration and	According to General Regulations
scale	
Assignment for the	Civil Engineering: Thesis: Compulsory
Following Curricula	Bioprocess Engineering: Thesis: Compulsory
	Computer Science: Thesis: Compulsory
	Electrical Engineering: Thesis: Compulsory
	Energy Systems: Thesis: Compulsory
	Environmental Engineering: Thesis: Compulsory
	Aircraft Systems Engineering: Thesis: Compulsory
	Global Innovation Management: Thesis: Compulsory
	Computer Science in Engineering: Thesis: Compulsory
	Information and Communication Systems: Thesis: Compulsory
	International Production Management: Thesis: Compulsory
	International Management and Engineering: Thesis: Compulsory
	Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
	Logistics, Infrastructure and Mobility: Thesis: Compulsory
	Materials Science: Thesis: Compulsory
	Mechanical Engineering and Management: Thesis: Compulsory
ļ	

Module Manual M.Sc. "Materials Science"

Science	
	Mechatronics: Thesis: Compulsory
	Biomedical Engineering: Thesis: Compulsory
	Microelectronics and Microsystems: Thesis: Compulsory
	Product Development, Materials and Production: Thesis: Compulsory
	Renewable Energies: Thesis: Compulsory
	Naval Architecture and Ocean Engineering: Thesis: Compulsory
	Ship and Offshore Technology: Thesis: Compulsory
	Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
	Theoretical Mechanical Engineering: Thesis: Compulsory
	Process Engineering: Thesis: Compulsory
	Water and Environmental Engineering: Thesis: Compulsory
	Lertification in Engineering & Advisory in Aviation: Thesis: Compulsory