

Module Manual

Master of Science

Materials Science

Cohort: Winter Term 2017

Updated: 8th July 2017

Table of Contents

Table of Contents	2
Program description	3
Core qualification	4
Module M0523: Business & Management	4
Module M0524: Nontechnical Elective Complementary Courses for Master	5
Module M1197: Multiphase Materials	7
Module M1198: Materials Physics and Atomistic Materials Modeling	9
Module M1218: Lecture: Multiscale Materials	11
Module M1170: Phenomena and Methods in Materials Science	13
Module M1219: Advanced Laboratory Materials Sciences	15
Module M1226: Mechanical Properties	16
Module M1199: Advanced Functional Materials	19
Module M1221: Project work on Modern Issues in the Materials Sciences	20
Specialization Engineering Materials	21
Module M1342: Polymers	21
Module M1344: Processing of fibre-polymer-composites	23
Module M1343: Fibre-polymer-composites	25
Module M0595: Examination of Materials, Structural Condition and Damages	27
Module M1291: Materials Science Seminar	28
Module M1345: Metallic and Hybrid Light-weight Materials	30
Specialization Modeling	34
Module M1151: Material Modeling	34
Module M0604: High-Order FEM	36
Module M0605: Computational Structural Dynamics	38
Module M0606: Numerical Algorithms in Structural Mechanics	40
Module M1152: Modeling Across The Scales	42
Module M1237: Methods in Theoretical Materials Science	44
Module M1238: Quantum Mechanics of Solids	45
Module M0603: Nonlinear Structural Analysis	46
Module M1150: Continuum Mechanics	48
Module M1291: Materials Science Seminar	50
Specialization Nano and Hybrid Materials	52
Module M0766: Microsystems Technology	52
Module M1334: BIO II: Biomaterials	54
Module M0643: Optoelectronics I - Wave Optics	56
Module M0930: Semiconductor Seminar	58
Module M1335: BIO II: Artificial Joint Replacement	59
Module M1220: Interfaces and interface-dominated Materials	60
Module M1238: Quantum Mechanics of Solids	62
Module M1239: Experimental Micro- and Nanomechanics	63
Module M0519: Particle Technology and Solid Matter Process Technology	65
Module M0644: Optoelectronics II - Quantum Optics	67
Module M1291: Materials Science Seminar	69
Thesis	71
Module M-002: Master Thesis	71

Program description

Content

Core qualification

Module M0522. Business	9 Management
Module M0523: Business	a management
Module Responsible	Prof. Matthias Meyer
Admission Requirements	None
Recommended Previous	None
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge Skills	 Students are able to find their way around selected special areas of management within the scope of business management. Students are able to explain basic theories, categories, and models in selected special areas of business management. Students are able to interrelate technical and management knowledge.
Personal Competence Social Competence Autonomy	
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Nontechnical Elective Complementary Courses for Master		
Module Responsible	Dagmar Richter	
Admission Requirements	quirements None	
Recommended Previous	None	
Knowledge	Knowledge	
Educational Objectives	Educational Objectives After taking part successfully, students have reached the following learning results	
Professional Competence		
Knowledae	The Nontechnical Academic Programms (NTA)	

imparts skills that, in view of the TUHH's training profile, professional engineering studies require but are not able to cover fully. Self-reliance, selfmanagement, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor's or Master's level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of "profiles".

The subjects that can be studied in parallel throughout the student's entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor's courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor's and Master's fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor's and Master's graduates in their future working life.

Specialized Competence (Knowledge)

Students can

- explain specialized areas in context of the relevant non-technical disciplines.
- outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
- different specialist disciplines relate to their own discipline and differentiate it as well as make connections,
- sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
- Can communicate in a foreign language in a manner appropriate to the subject.

Skills Professional Competence (Skills)

In selected sub-areas students can

- apply basic and specific methods of the said scientific disciplines,
- aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
- to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner.
- justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to

Personal Competence

Social Competence	Personal Competences (Social Skills)
	Students will be able
	 to learn to collaborate in different manner, to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees, to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), to explain nontechnical items to auditorium with technical background knowledge.
Autonomu	Devenuel Competences (Colf religions)
Autonomy	Personal Competences (Self-reliance)
	Students are able in selected areas
	to reflect on their own profession and professionalism in the context of real-life fields of application
	to organize themselves and their own learning processes
	to reflect and decide questions in front of a broad education background
	 to communicate a nontechnical item in a competent way in writen form or verbaly to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)
	to digatile the medical characteristic and an object central factor and an
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M1197: Multiphas	e Materials			
Courses				
Title		Тур	Hrs/wk	СР
Applied Computational Methods for Mate	erial Science (L1626)	Problem-based Learning	3	3
Polymer Composites (L1891)		Lecture	2	3
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	None			
Recommended Previous				
Knowledge	Polymers			
	Physics			
	Mechanic / Micromechanics			
Educational Objectives	After taking part successfully, students have reached the following lear	ning results		
Professional Competence				
Knowledge	Students can			
	- explain the complex relationships of the mechanics of composite mat	erials, the failure mechanisms a	nd physical properties	S .
	- assess the interactions of microstructure and properties of the matrix	and reinforcing materials.		
	- explain e.g. different fiber types, including relative contexts (e.g. susta	tinability, environmental protecti	on).	
	They know different methods of modeling multiphase materials an	d can apply them.		
Skills	Students are capable of			
	 using standardized methods of calculation and modeling using the Programming with Python, Automated control and evaluation of para bending, four point bend, crack propagation, J-Integral, Cohesive zone 	meter studies and examples to		
	- determining the material properties (elasticity, plasticity, small and lar	ge deformations, modeling of m	ultiphase materials).	
	- to calculate and evaluate the mechanical properties (modulus, streng	gth) of different materials.		
	- Approximate sizing using the network theory of the structural element	s implement and evaluate.		
	- selecting appropriate solutions for mechanical material probmethods).	olems: Solution of inverse p	oroblems (neural ne	etworks, optimization
Personal Competence				
Social Competence	Students can,			
	- arrive at work results in groups and document them.			
	- provide appropriate feedback and handle feedback on their own p	performance constructively.		
Autonomy	Students are able to,			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and to define furth	er work steps on this basis guid	ed by teachers.	
	They are able to fill gaps in as well as extent their knowledge. Furthermore, they can meaningfully extend given problems and concepts.	=	•	
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Examination	Written exam			
Examination duration and scale	1,5 h written exam in Polymermatrix Composites			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula				

Course L1626: Applied Computational Methods for Material Science		
Тур	Problem-based Learning	
Hrs/wk	3	
CP	3	
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42	
Lecturer	Prof. Norbert Huber	
Language	DE/EN	
Cycle	WiSe	
Content	Finite Element Method (discretisation, solver, programming with Python, automatized control and analysis of parametric studies)	
	Examples of elastomechanics (tension, bending, four-point-bending, crack propagation, J-integral, cohesive zone models, contact)	
	Material behaviour (elasticity, plasticity, small and finite deformations, modelling of multiphase materials)	
	Solution of inverse problems (artificial neural networks, optimization)	
Literature	Alle Vorlesungsmaterialien und Beispiellösungen (Input-Dateien, Python Scirpte) werden auf Stud.IP zur Verfügung gestellt.	
	All lecture material and example solutions (input files, python scripts) will be made available in Stud.IP.	

Course L1891: Polymer Composit	Course L1891: Polymer Composites	
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	WiSe	
Content	Manufacturing and Properties of CNTs and Graphen	
	Manufacturing and Properties of 3-dimensional Graphenstruktures	
	Polymer Composites with carbon nanoparticles	
Literature	Aktuelle Veröffentlichungen	

Module M1198: Materials	Physics and Atomistic Materials Mod	deling		
Courses				
Title		Тур	Hrs/wk	СР
Atomistic Materials Modeling (L1672)		Lecture	2	3
Materials Physics (L1624)		Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Advanced mathematics, physics and chemistry fo	or students in engineering or natural sciences		
Knowledge				
Educational Objectives	After taking part successfully, students have reach	hed the following learning results		
Professional Competence				
Knowledge	The students are able to			
	- explain the fundamentals of condensed matter p	physics		
	- describe the fundamentals of the microscopic str	ructure and mechanics, thermodynamics and option	es of materials systems.	
	- to understand concept and realization of advance	ced methods in atomistic modeling as well as to es	timate their potential an	d limitations.
Skills	are able to transfer their knowledge to relate	ermodynamics, mechanics, electrical and optical p ated technological and scientific fields, e.g. materia s for specific materials science problems and are a	als design problems.	,
Personal Competence				
Social Competence	The students are able to present solutions to spec	cialists and to develop ideas further.		
Autonomy	Students are able to assess their knowldege cont	tinuously on their own by exemplified practice.		
	The students are able to assess their own strengt	ths and weaknesses and define tasks independen	tly.	
Workload in Hours	Independent Study Time 124, Study Time in Lectu	ure 56		
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Core qualification: Compulsor	у		
Curricula	Theoretical Mechanical Engineering: Technical C			
	Theoretical Mechanical Engineering: Specialisati			

Course L1672: Atomistic Materials	ourse L1672: Atomistic Materials Modeling	
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	WiSe	
Content		
Literature		

Course L1624: Materials Physics	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	WiSe
Content	
Literature	Für den Elektromagnetismus:
	Bergmann-Schäfer: "Lehrbuch der Experimentalphysik", Band 2: "Elektromagnetismus", de Gruyter
	Für die Atomphysik:
	Haken, Wolf: "Atom- und Quantenphysik", Springer
	Für die Materialphysik und Elastizität:
	Hornbogen, Warlimont: "Metallkunde", Springer

Module M1218: Lecture: N	Multiscale Materials			
Courses				
Title		Тур	Hrs/wk	СР
Multiscale Materials (L1659)		Lecture	6	6
Module Responsible	Prof. Gerold Schneider			
Admission Requirements	None			
Recommended Previous	Fundamentals in physics and chemistry, Fundamentals and en	hanced fundamentals in materials	s science, Advanced mathe	matics, Fundamentals
Knowledge	of the theory elasticity			
Educational Objectives	After taking part successfully, students have reached the follow	ing learning results		
Professional Competence				
Knowledge	The master students will be able to explain			
	the fundamental chemical and physical properties of metals,	ceramics and polymers.		
	the correlation of chemical and physical phenomena on the	atomic, meso and macroscale and	d its consequences for the n	nacroscopic properties
	of materails.			
	The master students will then be able understand the depende	nce of the macroscopic material p	roperties on the underlying	hierarchical levels.
Skills	After attending this lecture the students can			
	perform materials design for multiscale materials.			
Personal Competence				
Social Competence	The student has an astonishing knowledge in materials properties which demands both, expertise in chemistry, physics and materials science		and materials science.	
	This makes him to an outstanding discussion partner who will	be able to understand the scient	ific arguments of "both side:	s". Up to now, such an
	education is hard to find at universities.			
Autonomy	The students are able to			
	assess their own strengths and weaknesses.			
	define tasks independently.			
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Examination	Presentation			
Examination duration and scale	90 minutes including discussion, short academic report			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula				

Course L1659: Multiscale Material	s
Тур	Lecture
Hrs/wk	6
СР	6
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Lecturer	Prof. Gerold Schneider, Prof. Norbert Huber, Prof. Stefan Müller, Prof. Patrick Huber, Prof. Manfred Eich, Prof. Bodo Fiedler, Dr. Erica Lilleodden,
	Prof. Karl Schulte, Prof. Jörg Weißmüller
Language	DE
Cycle	WiSe
Content	The materials discussed in this lecture differ from "conventional" ones due to their individual hierarchic microstructure. In conventional microstructure design, the morphology is adjusted, for instance, by thermal treatment and concurrent mechanical deformation. The material is continually and steadily optimized by small changes in structure or chemical composition, also in combination with self-organization processes (precipitation alloys, ceramic glasses, eutectic structures).
	The presented materials consist of functionalized elementary functional units based on polymers, ceramics, metals and carbon nanotubes (CNTs), which are used to create macroscopic hierarchical material systems, whose characteristic lengths range from the nanometer to the centimeter scale. These elementary functional units are either core-shell structures or cavities in metals created by alloy corrosion and subsequent polymer filling.
	Three classes of material systems will be presented:
	First, hierarchically structured ceramic/metal-polymer material systems similar to naturally occurring examples, namely nacre (1 hierarchical level), enamel (3 hierarchical levels) and bone (5 hierarchical levels) will be discussed. Starting with an elementary functional unit consisting of ceramic nanoparticles with a polymeric coating, a material is created in which on each hierarchical level, "hard" particles, made of the respective lower hierarchical level, are present in a soft polymer background. The resulting core-shell structure on each hierarchical level is the fundamental difference compared to a compound material made of rigid interpenetrating ceramic or metallic networks.
	The second material system is based on nanoporous gold, which acts as a prototypical material for new components in light weight construction with simultaneous actuator properties. Their production and resulting length-scale specific mechanical properties will be explained. Furthermore, related scale-spanning theoretical models for their mechanical behavior will be introduced. This covers the entire scale from the electronic structure on the atomic level up to centimeter-sized macroscopic samples.
	The third material system discussed in the lecture are novel hierarchical nanostructured materials based on thermally stable ceramics and metals for high-temperature photonics with potential use in thermophotovoltaic systems (TPVs) and thermal barrier coatings (TBCs). Direct and inverted 3D-photonic crystal structures (PhCs) as well as novel optically hyperbolic media, in particular, are worthwhile noting. Due to their periodicity and diffraction index contrast, PhCs exhibit a photonic band structure, characterized by photonic band gaps, areas of particularly high photonic densities of states and special dispersion relations. The presented properties are to be used to reflect thermal radiation in TBCs in a strong and directed manner, as well as to link radiation effectively and efficiently in TPVs.
Literature	Aktuelle Publikationen

Module M1170: Phenome	na and Methods in Materials Science			
Courses				
Title		Тур	Hrs/wk	СР
Experimental Methods for the Character	ization of Materials (L1580)	Lecture	2	3
Phase equilibria and transformations (L1	579)	Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Fundamentals of Materials Science (I and II)			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the fo	llowing learning results		
Professional Competence				
Knowledge	The students will be able to explain the properties of advan	ced materials along with their applicat	ions in technology, in part	icular metallic, ceramic,
	polymeric, semiconductor, modern composite materials (bid	omaterials) and nanomaterials.		
Chille	The students will be able to select meterial configurations	according to the technical needs and	f naccasany to docine	w motoriolo conciderine
SKIIIS	The students will be able to select material configurations a architectural principles from the micro- to the macroscale.			
	them to select optimum materials combinations depending	•	ew on modern materials	science, which enables
	them to select optimum materials combinations depending	on the technical applications.		
Personal Competence				
Social Competence	The students are able to present solutions to specialists and to develop ideas further.			
Autonomy	The students are able to			
	a cocca their our atropathe and week acce			
	assess their own strengths and weaknesses.			
	define tasks independently.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	International Management and Engineering: Specialisation	II. Product Development and Producti	on: Elective Compulsory	
Curricula	Materials Science: Core qualification: Compulsory			
	Product Development, Materials and Production: Specialisa	ation Product Development: Elective C	ompulsory	
	Product Development, Materials and Production: Specialisa	ation Production: Elective Compulsory		
	Product Development, Materials and Production: Specialisa	ation Materials: Compulsory		
	Theoretical Mechanical Engineering: Specialisation Materia	als Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical Compleme	ntary Course: Elective Compulsory		
	Theoretical Mechanical Engineering: Specialisation Materia	als Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical Compleme	ntary Course: Elective Compulsory		

Course L1580: Experimental Meth	ods for the Characterization of Materials
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	SoSe
Content	 Structural characterization by photons, neutrons and electrons (in particular X-ray and neutron scattering, electron microscopy, tomography) Mechanical and thermodynamical characterization methods (indenter measurements, mechanical compression and tension tests, specific heat measurements) Characterization of optical, electrical and magnetic properties (spectroscopy, electrical conductivity and magnetometry)
Literature	William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Course L1579: Phase equilibria an	nd transformations
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Jörg Weißmüller
Language	DE
Cycle	SoSe
Content	Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free-energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.
Literature	Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Module M1219: Advanced	Laboratory Materials Sciences			
Courses				
Title		Тур	Hrs/wk	СР
Advanced Laboratory Materials Science	es (L1653)	Laboratory Course	6	6
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	knowledge of Materials Science fundamentals			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the f	following learning results		
Professional Competence				
Knowledge	- not applicable -			
Skills	guided scientific experimentation data analysis			
Personal Competence Social Competence	 scientific discussion of results written presentation of results in a protocol oral presentation of scientific topics 			
Autonomy				
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Examination	Written elaboration			
Examination duration and scale	ca. 25 pages			
	Materials Science: Core qualification: Compulsory			
Curricula				

Course L1653: Advanced Laboratory Materials Sciences		
Тур	Laboratory Course	
Hrs/wk	6	
CP	6	
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84	
Lecturer	Prof. Jörg Weißmüller, Prof. Stefan Müller, Prof. Patrick Huber, Prof. Bodo Fiedler, Prof. Gerold Schneider	
Language	DE/EN	
Cycle	SoSe	
Content	 Actuators for modern fuel injection systems - synthesis and properties of a model lead-free actuator Actuation with porous metals 	
Literature	siehe Versuchsbeschreibungen sowie die dort angegebenen Literaturverweise auf StudIP	

Module M1226: Mechanica	al Properties			
Courses				
Title		Тур	Hrs/wk	СР
Mechanical Behaviour of Brittle Materials	(L1661)	Lecture	2	3
Dislocation Theory of Plasticity (L1662)		Lecture	2	3
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous	Basics in Materials Science I/II			
Knowledge				
Educational Objectives	After taking part successfully, students have reach	ed the following learning results		
Professional Competence				
Knowledge	Students can explain basic principles of crystallog	raphy, statics (free body diagrams, tractions) and	d thermodynamics (energ	gy minimization, energy
	barriers, entropy)			
Skills	Students are capable of using standardized calculation methods: tensor calculations, derivatives, integrals, tensor transformations			
Personal Competence				
Social Competence	Students can provide appropriate feedback and handle feedback on their own performance constructively.			
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific term	s and to define further work steps on this basis g	uided by teachers.	
	- work independently based on lectures and notes	to solve problems, and to ask for help or clarification	ations when needed	
Workload in Hours	Independent Study Time 124, Study Time in Lectur	re 56		
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula	Mechanical Engineering and Management: Specia	alisation Materials: Elective Compulsory		
	Product Development, Materials and Production: S	Specialisation Product Development: Elective Co	mpulsory	
	Product Development, Materials and Production: S			
	Product Development, Materials and Production: S	Specialisation Materials: Compulsory		

Typ Lecture Hrawk 2 CP 3 Workload in Hours Independent Study Time 62, Study Time in Lecture 28 Lecturer Flot. Genold Schneider Language DEEN Cycle SoSe Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Detect distribution, strength distribution, Weibuill distribution Heterogeneous materials II Toughaning mechanisms crack bridging, fibres Heterogeneous materials III Toughaning mechanisms crack bridging, fibres Heterogeneous materials III Toughaning mechanisms Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable-unstable crack growth, fractography Thermal shock Subcrittical crack growth V.K.curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. H. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics, Cambridge University Press, 1998 B.R. Lawn, Friciture of Brittle Solids, Cambridge University Press, 1993 D. Murx, T. Felt, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Material Decker, New York, 1992	Course L1661: Mechanical Behavi	our of Brittle Materials
Workload in Hours Independent Study Time 62, Study Time in Lecture 28 Lecturer Prof. Genold Schneider Language DEEN Cycle SoSa Content Thereticial Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, tracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials Internal stresses, micro-cracks, weight function, Heterogeneous materials Internal stresses, micro-cracks, weight function, Heterogeneous materials Internal stresses, micro-crack bridging, fibres Heterogeneous materials Internal stresses zone Testing methods to determine the fracture toughness of brittle materials Recurve, stable unstable crack growth, fractography Thermal shock Subcritical crack growth Vectorive, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F, Ashty, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An Introduction to the mechanical properties of coramics, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids; Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Тур	Lecture
Morkload In Hours Independent Study Time 62. Study Time in Lecture 28	Hrs/wk	2
Lecturer Language DEEN Cycle SoSe Content Theoretical Strength Ola perfect crystalline materials, theoretical critical shear stress Real strength of brittle materials Energy release reale, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuill distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subertitical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D. J. Green, An Introduction to the mechanical properties of ceramics', Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids', Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	СР	3
Cycle SoSe Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, stength distribution, Weibuil distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, libres Heterogeneous materials II Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thernal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. H. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An Introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids'; Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I Intermal stresses, micro cracks, weight function, Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Lecturer	Prof. Gerold Schneider
Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth V-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Language	DE/EN
Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials II Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Cycle	SoSe
Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I internal stresses, micro cracks, weight function, Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Content	
Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Sollds", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Of a perfect crystalline material, theoretical critical shear stress
Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Real strength of brittle materials
Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Energy release reate, stress intensity factor, fracture criterion
Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Scattering of strength of brittle materials
Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		internal suesses, micro clacks, weight function,
Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Heterogeneous materials II
Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Toughening mechanisms: crack bridging, fibres
Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Heterogeneous materials III
R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature DR H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Toughening mechanisms. Process zone
Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Testing methods to determine the fracture toughness of brittle materials
Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		R-curve, stable/unstable crack growth, fractography
v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Thermal shock
Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Subcritical crack growth)
Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		v-K-curve, life time prediction
Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Kriechen
Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Mechanical properties of biological materials
D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Examples of use for a mechanically reliable design of ceramic components
B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Literature	D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier
D. Munz, T. Fett, Ceramics, Springer, 2001		D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998
		B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993
D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992		D. Munz, T. Fett, Ceramics, Springer, 2001
		D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Course L1662: Dislocation Theory	of Plasticity
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects.
	We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes.
Literature	Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen

Module M1199: Advanced	Functional Materials			
Courses				
Title		Тур	Hrs/wk	СР
Advanced Functional Materials (L1625)		Lecture	2	6
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Fundamentals of Materials Science (I and II)			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the fo	llowing learning results		
Professional Competence				
Knowledge	The students will be able to explain the properties of advar	nced materials along with their applica	tions in technology, in parti	cular metallic, ceramic,
	polymeric, semiconductor, modern composite materials (bi	omaterials) and nanomaterials.		
Skille	The students will be able to select material configurations	according to the technical needs and	if necessary to design new	v materials considering
Skills	architectural principles from the micro- to the macroscale.			
	them to select optimum materials combinations depending	•	iew on modern materials s	science, which enables
Personal Competence				
Social Competence	The students are able to present solutions to specialists an	d to develop ideas further.		
Autonomy	The students are able to			
	 assess their own strengths and weaknesses. 			
	define tasks independently.			
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28			
	6			
Examination	Written exam			
	90 min			
	Materials Science: Core qualification: Compulsory			
	Mechanical Engineering and Management: Specialisation	Materials: Floative Compulsory		
Curricula	Biomedical Engineering: Specialisation Artificial Organs are		nmnulsorv	
	Biomedical Engineering: Specialisation Implants and Endo	•		
	Biomedical Engineering: Specialisation Medical Technology		ulsory	
	Biomedical Engineering: Specialisation Management and		•	
	Theoretical Mechanical Engineering: Technical Compleme			
	Theoretical Mechanical Engineering: Specialisation Materi			

Course L1625: Advanced Function	ourse L1625: Advanced Functional Materials			
Тур	Lecture			
Hrs/wk	2			
CP	6			
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28			
Lecturer	Prof. Patrick Huber, Prof. Stefan Müller, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller			
Language	DE/EN			
Cycle	WiSe			
Content	1. Porous Solids - Preparation, Characterization and Functionalities			
	2. Fluidics with nanoporous membranes			
	3. Thermoplastic elastomers			
	4. Optimization of polymer properties by nanoparticles			
	5. Fiber composites in automotive			
	6. Modeling of materials based on quantum mechanics			
	7. Biomaterials			
Literature	Wird in der Veranstaltung bekannt gegeben			

Module M1221: Project w	ork on Modern Issues in the Materials Sciences
Courses	
Title	Typ Hrs/wk CP
Module Responsible	Prof. Jörg Weißmüller
Admission Requirements	None
Recommended Previous	knowledge of Materials Science fundamentals
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	detailed knowledge in the area of the project topic
Skills	 independent familiarization with the scientific context of a specified topic guided execution of scientific experiment, computation or simulation data analysis and scientific discussion of results written presentation of results in a protocol oral presentation of the project results
Personal Competence	
Social Competence	Students are able to discuss scientific results with specific target groups, to document results in a written form and to present them orally.
Autonomy	,
Workload in Hours	Independent Study Time 360, Study Time in Lecture 0
Credit points	12
Examination	Project (accord. to Subject Specific Regulations)
Examination duration and scale	
Assignment for the Following Curricula	

Specialization Engineering Materials

Students learn in the Engineering Materials specialization the evaluation of the different materials in the technology-oriented environment.

They gain knowledge about process planning as well as managing of projects or personnel. Students are able to evaluate and make decisions on materials, industrial production, quality assurance and failure analysis.

Module M1342: Polymers					
Wodule W1342. Polymers					
Courses					
Title		Тур	Hrs/wk	СР	
Structure and Properties of Polymers (L	0389)	Lecture	2	3	
Processing and design with polymers (L		Lecture	2	3	
Module Responsible	Dr. Hans Wittich				
Admission Requirements	None				
Recommended Previous	Basics: chemistry / physics / material science				
Knowledge					
Educational Objectives	After taking part successfully, students have reached the following le	arning results			
Professional Competence					
Knowledge	Students can use the knowledge of plastics and define the nece	essary testing and analysis.			
	They can explain the complex relationships structure-property re	elationship and			
	the interactions of chemical structure of the polymers, include	ding to explain neighboring	contexts (e.g. sustaina	bility, environmental	
	protection).				
Skills	Students are capable of				
	- using standardized calculation methods in a given context to	mechanical properties (mo	dulus, strength) to calcul	ate and evaluate the	
	different materials.	(
	- For mechanical recycling problems selecting appropriate solutions and sizing example Stiffness, corrosion resistance.				
Personal Competence					
Social Competence	Students can,				
	- arrive at work results in groups and document them.				
	- arrive at work results in groups and document them.				
	- provide appropriate feedback and handle feedback on their own performance constructively.				
Autonomy	Students are able to,				
	- assess their own strengths and weaknesses	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and to defi	ne further work steps on thi	s basis guided by teache	rs.	
	- assess possible consequences of their professional activity.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Written exam				
Examination duration and scale	180 min				
	Materials Science: Specialisation Engineering Materials: Elective Co				
Curricula	Biomedical Engineering: Specialisation Implants and Endoprosthese	es: Compulsory			
	Biomedical Engineering: Specialisation Artificial Organs and Regen				
	Biomedical Engineering: Specialisation Management and Business				
	Biomedical Engineering: Specialisation Medical Technology and Co		ilsory		
	Product Development, Materials and Production: Specialisation Production:				
	Product Development, Materials and Production: Specialisation Materials				
	Product Development, Materials and Production: Specialisation Production:		ompulsory		
	Theoretical Mechanical Engineering: Specialisation Materials Science	ce: Elective Compulsory			

Course L0389: Structure and Properties of Polymers		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Dr. Hans Wittich	
Language	DE	
Cycle	WiSe	
Content	- Structure and properties of polymers	
	- Structure of macromolecules	
	Constitution, Configuration, Conformation, Bonds, Synthesis, Molecular weilhght distribution	
	- Morphology	
	amorph, crystalline, blends - Properties	
	Elasticity, plasticity, viscoelacity	
	- Thermal properties	
	- Electrical properties	
	- Theoretical modelling	
	- Applications	
Literature	Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag	

Course L1892: Processing and de	Course L1892: Processing and design with polymers			
Тур	Lecture			
Hrs/wk	2			
CP	3			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Lecturer	Prof. Bodo Fiedler, Dr. Hans Wittich			
Language	DE/EN			
Cycle	WiSe			
Content	Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining			
	Designing with Polymers: Materials Selection; Structural Design; Dimensioning			
Literature	Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag			
	Crawford: Plastics engineering, Pergamon Press			
	Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag			
	Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag			

Module M1344: Processin	g of fibre-polymer-composites			
Courses				
Title		Тур	Hrs/wk	CP
Processing of fibre-polymer-composites	(1.1895)	Lecture	2	3
From Molecule to Composites Part (L15	,	Problem-based Learning	2	3
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	None			
Recommended Previous	Structure and Properties of Polymers			
Knowledge	Structure and Properties of Composites			
Educational Objectives	After taking part successfully, students have reach	ed the following learning results		
Professional Competence				
Knowledge	Students are able to give a summary of the tech	nical details of the manufacturing processes com	posites and illustrate r	espective relationships.
	They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the			
	typical process of solving practical problems and p	present related results.		
Skills	The students can transfer their fundamental known	owledge on civil engineering to the process of	solving practical probl	ems. They identify and
	The students can transfer their fundamental knowledge on civil engineering to the process of solving practical problems. They identify and overcome typical problems during the realization of projects in the context of civil engineering. Students are able to develop, compare, and choose			
	conceptual solutions for non-standardized problems.			
Personal Competence				
Social Competence	Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of civil			
	engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the			
	ability to develop alternative approaches to an eng	gineering problem independently or in groups and	discuss advantages a	s well as drawbacks.
Autonomy	Students are capable of independently solving mechanical engineering problems using provided literature. They are able to fill gaps in as well as			
	extent their knowledge using the literature and	other sources provided by the supervisor. Furth	nermore, they can me	aningfully extend given
	problems and pragmatically solve them by means	of corresponding solutions and concepts.		
Workload in Hours	Independent Study Time 124, Study Time in Lectu	re 56		
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Specialisation Engineering Ma	terials: Elective Compulsory		
Curricula	Mechanical Engineering and Management: Speci	alisation Materials: Elective Compulsory		
	Product Development, Materials and Production: 9	Specialisation Product Development: Elective Con	npulsory	
	Product Development, Materials and Production: 9	•		
	Product Development, Materials and Production: S	Specialisation Materials: Elective Compulsory		

Course L1895: Processing of fibre-polymer-composites			
Тур	Lecture		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Bodo Fiedler		
Language	DE/EN		
Cycle	SoSe		
Content	Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding		
Literature	Äström: Manufacturing of Polymer Composites, Chapman and Hall		

Course L1516: From Molecule to C	Composites Part
Тур	Problem-based Learning
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	SoSe
Content	Students get the task in the form of a customer request for the development and production of a MTB handlebar made of fiber composites. In the task technical and normative requirements (standards) are given, all other required information come from the lectures and tutorials, and the respective documents (electronically and in conversation). The procedure is to specify in a milestone schedule and allows students to plan tasks and to work continuously. At project end, each group has a made handlebar with approved quality. In each project meeting the design (discussion of the requirements and risks) are discussed. The calculations are analyzed, evaluated and established manufacturing methods are selected. Materials are selected bar will be produced. The quality and the mechanical properties are checked. At the end of the final report created (compilation of the results for the "customers"). After the test during the "customer / supplier conversation" there is a mutual feedback-talk ("lessons learned") in order to ensure the continuous improvement.
Literature	Customer Request ("Handout")

Module M1343: Fibre-poly	mer-composites				
Courses					
itle		Тур	Hrs/wk	СР	
tructure and properties of fibre-polyme	r-composites (L1894)	Lecture	2	3	
Design with fibre-polymer-composites (Lecture	2	3	
Module Responsible					
Admission Requirements	None				
Recommended Previous	Basics: chemistry / physics / materials science				
Knowledge	Basissi sitemistry / physics / materials solemes				
Educational Objectives	After taking part successfully, students have read	ched the following learning results			
Professional Competence	,, part, ,	ggg			
Knowledge	Students can use the knowledge of fiber-reinforced composites (FRP) and its constituents to play (fiber / matrix) and define the necessary testing and analysis.				
	They can explain the complex relationships s	tructure-property relationship and			
	the interactions of chemical structure of the		nt fiber types, including	to explain neighbor	
	contexts (e.g. sustainability, environmental pr	rotection).			
Skills	Students are capable of				
	- using standardized calculation methods in a different materials.	a given context to mechanical properties (m	odulus, strength) to calc	ulate and evaluate t	
	- Approximate sizing using the network theory	y of the structural elements implement and e	valuate.		
	- For mechanical recycling problems selecting	g appropriate solutions and sizing example S	tiffness, corrosion resista	ance.	
Personal Competence					
Social Competence	Students can,				
	- arrive at work results in groups and docume	nt them.			
	- provide appropriate feedback and handle fee	edback on their own performance constructive	ely.		
Autonomy	Students are able to,				
	- assess their own strengths and weaknesses	5			
	- assess their own state of learning in specific	- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.			
	- assess possible consequences of their profe	essional activity			
Workload in Hours					
Credit points	6				
Examination					
Examination duration and scale					
Assignment for the Following	,				
Curricula	Aircraft Systems Engineering: Specialisation Cal				
	International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory				
	Materials Science: Specialisation Engineering M	• •			
Mechanical Engineering and Management: Core qualification: Compulsory					
	Product Development, Materials and Production:				
	Product Development, Materials and Production:		у		
	Product Development, Materials and Production	' ' '			
	Renewable Energies: Specialisation Bioenergy	, ,			
	Renewable Energies: Specialisation Solar Energies: Specialisation Wind Energies:				
	Renewable Energies: Specialisation Wind Energine Theoretical Mechanical Engineering: Specialisation				
	mooretical information Engineering. Specialisal	and materials objetice. Elective Compulsory			

Course L1894: Structure and properties of fibre-polymer-composites		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	EN	
Cycle	SoSe	
Content	- Microstructure and properties of the matrix and reinforcing materials and their interaction	
	- Development of composite materials	
	- Mechanical and physical properties	
	- Mechanics of Composite Materials	
	- Laminate theory	
	- Test methods	
	- Non destructive testing	
	- Failure mechanisms	
	- Theoretical models for the prediction of properties	
	- Application	
Literature	Hall, Clyne: Introduction to Composite materials, Cambridge University Press	
Literature	Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press	
	Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York	
<u>l</u>	Intallick. Fibre-Treimforded Composites, Matter Deckker, New Tork	

2 mars 14000. Designs with fibre and mars companies				
course L1893: Design with fibre-polymer-composites				
Тур	Lecture			
Hrs/wk	2			
CP	3			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Lecturer	Prof. Bodo Fiedler			
Language	EN			
Cycle	SoSe			
Content	Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques;			
	Compression Loading; Examples			
Literature	Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag			

Module M0595: Examinati	on of Materials, Structural Condition and	I Damages		
Courses				
Title		Тур	Hrs/wk	СР
Examination of Materials, Structural Cor	dition and Damages (L0260)	Lecture	4	4
Examination of Materials, Structural Con	dition and Damages (L0261)	Recitation Section (small) 1	2
Module Responsible	Prof. Frank Schmidt-Döhl			
Admission Requirements	None			
Recommended Previous	Basic knowledge about building materials or material s	cience, for example by the module Build	ing Materials and Building	Chemistry.
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	e following learning results		
Professional Competence				
Knowledge	The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.			
Skills	The students are able to responsibly discover the rules for trading and using of building products in Germany. They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to describe an examination in form of a test report or expert opinion.			
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70	l .		
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following	Civil Engineering: Specialisation Structural Engineering	g: Elective Compulsory		
Curricula	Civil Engineering: Specialisation Geotechnical Engineer	ering: Elective Compulsory		
	Civil Engineering: Specialisation Coastal Engineering:	Elective Compulsory		
	International Management and Engineering: Specialisa	ation II. Civil Engineering: Elective Comp	ulsory	
	Materials Science: Specialisation Engineering Material	s: Elective Compulsory		

Course L0260: Examination of Materials, Structural Condition and Damages		
Тур	Lecture	
Hrs/wk	4	
CP	4	
Workload in Hours	Independent Study Time 64, Study Time in Lecture 56	
Lecturer	Prof. Frank Schmidt-Döhl	
Language	DE	
Cycle	WiSe	
Content	Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert	
	opinions, describing the condition of a structure, from symptons to the cause of damages	
Literature	Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.	

Course L0261: Examination of Materials, Structural Condition and Damages		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Frank Schmidt-Döhl	
Language	DE	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1291: Materials S	Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L1801)		Seminar	2	3
Seminar on interface-dominated materials	s (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, electrochemi	stry, interface science, mechanics		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge	Students can explain the most important facts and relationships of a specific topic from the field of materials science.			
	Students are able to compile a specified topic from the field of materials science and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject.			
Personal Competence				
·	Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner.			
*	Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation.			
Workload in Hours	Depends on choice of courses	<u> </u>		
Credit points	6			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mater	rials: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elective Com	npulsory		
	Materials Science: Specialisation Engineering Materials:			

Course L1757: Seminar		
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Jörg Weißmüller	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1758: Seminar Composites		
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1801: Seminar Advanced Ceramics		
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Gerold Schneider	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1795: Seminar on interface-dominated materials		
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Module M1345: Metallic ar	nd Hybrid Light-weight Materials				
Courses					
Title Typ Hrs/wk CP			CP		
Joining of Polymer-Metal Lightweight Str	uctures (L0500)	Lecture	2	2	
Joining of Polymer-Metal Lightweight Str	uctures (L0501)	Laboratory Course	1	1	
Metallic Light-weight Materials (L1660)		Lecture	2	3	
Module Responsible	Prof. Sergio Amancio Filho				
Admission Requirements	None				
Recommended Previous					
Knowledge					
Educational Objectives	After taking part successfully, students have reached the follow	After taking part successfully, students have reached the following learning results			
Professional Competence					
Knowledge					
Skills					
Personal Competence					
Social Competence					
Autonomy					
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70				
Credit points	6				
Examination	Written exam				
Examination duration and scale	180 min				
Assignment for the Following	Materials Science: Specialisation Engineering Materials: Ele	ctive Compulsory			
Curricula	Materials Science: Specialisation Engineering Materials: Ele	ective Compulsory			

Course L0500: Joining of Polymer	-Metal Lightweight Structures
Тур	Lecture
Hrs/wk	2
СР	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Sergio Amancio Filho
Language	EN
Cycle	
Content	Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering
	Basic Knowledge of Science and Technology of Welding and Joining
	Contents:
	The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures:
	Theoretical Lectures:
	- Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology
	- Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics
	- Mechanical Fastening of Polymer-Metal Hybrid Structures
	- Adhesive Bonding of Polymer-Metal Hybrid Structures
	- Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures
	- Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures
	Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course)
	- Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining)
	- Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints
	Learning Outcomes:
	After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields.
Literature	 Lecture Notes and selected papers J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited

Course L0501: Joining of Polymer-Metal Lightweight Structures		
Тур	Laboratory Course	
Hrs/wk	1	
СР	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Sergio Amancio Filho	
Language	EN	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Course L1660: Metallic Light-weight Materials	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Karl-Ulrich Kainer
Language	DE
Cycle	WiSe

Content Lightweight construction

- Structural lightweight construction
- Material lightweight construction
- Choice criteria for metallic lightweight construction materials

Steel as lightweight construction materials

- Introduction to the fundamentals of steels
- Modern steels for the lightweight construction
- Fine grain steels
- High-strength low-alloyed steels
- Multi-phase steels (dual phase, TRIP)
- Weldability
- Applications

Aluminium alloys:

Introduction to the fundamentals of aluminium materials

Alloy systems

Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Magnesium alloys

Introduction to the fundamental of magnesium materials

Alloy systems

Magnesium casting alloys, processing, microstructure and qualities

Magnesium wrought alloys, processing, microstructure and qualities

Examples of applications

Titanium alloys

Introduction to the fundamental of the titanium materials

Alloy systems

Processing, microstructure and properties

Examples of applications

Exercises and excursions

Literature George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.

Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2

C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095

Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.

Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.

Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2

Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9

Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5

G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397

Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x

Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya "Fundamentals of Magnesium Alloy Metallurgy", Woodhead Publishing Ltd, 2013,ISBN 10:0857090887

Specialization Modeling

Module M1151: Material M	odeling			
Courses				
Title		Тур	Hrs/wk	CP
Material Modeling (L1535)		Lecture	2	3
Material Modeling (L1536)		Recitation Section (small)	2	3
Module Responsible	Prof. Swantje Bargmann			
Admission Requirements	None			
Recommended Previous	mechanics I			
Knowledge	mechanics II			
	continuum mechanics			
Educational Objectives	After taking part successfully, students have reached the following le	earning results		
Professional Competence				
Knowledge	The students can explain the fundamentals of multidimensional con-	situtive material laws		
Skills	The students can implement their own material laws in finite element codes. In particular, the students can apply their knowledge to various			
	problems of material science and evaluate the corresponding material models.			
Personal Competence				
Social Competence	The students are able to develop solutions, to present them to speci.	alists and to develop ideas further.		
Autonomy	The students are able to assess their own strengths and weakness	ses and to define tasks themselve	es. They can solve	exercises in the area of
	continuum mechanics on their own.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following	Computational Science and Engineering: Specialisation Scientific C	omputing: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elective Compulsory			
	Mechanical Engineering and Management: Specialisation Materials	: Elective Compulsory		
	Biomedical Engineering: Specialisation Artificial Organs and Regen	erative Medicine: Elective Compuls	sory	
	Biomedical Engineering: Specialisation Implants and Endoprosthes	es: Elective Compulsory		
	Biomedical Engineering: Specialisation Medical Technology and Co	ontrol Theory: Elective Compulsory		
	Biomedical Engineering: Specialisation Management and Business	Administration: Elective Compulso	ry	
	Product Development, Materials and Production: Core qualification:	Elective Compulsory		

Course L1535: Material Modeling	
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	WiSe
Content	fundamentals of finite element methods fundamentals of material modeling introduction to numerical implementation of material laws overview of modelling of different classes of materials combination of macroscopic quantities to material microstructure
Literature	D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer

Course L1536: Material Modeling	
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	WiSe
Content	
	fundamentals of finite element methods fundamentals of material modeling introduction to numerical implementation of material laws overview of modelling of different classes of materials combination of macroscopic quantities to material microstructure
Literature	D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer

Module M0604: High-Orde	er FEM					
Courses						
Title		Тур	Hrs/wk	СР		
High-Order FEM (L0280)		Lecture	3	4		
High-Order FEM (L0281)		Recitation Section (large)	1	2		
Module Responsible	Prof. Alexander Düster					
Admission Requirements	None					
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV					
Knowledge	Differential Fountiana C (Partial Differential Fountiana)					
	Differential Equations 2 (Partial Differential Equations)					
Educational Objectives	After taking part successfully, students have reached the following le	earning results				
Professional Competence						
Knowledge	Students are able to					
	+ give an overview of the different (h, p, hp) finite element procedure	es.				
	+ explain high-order finite element procedures.					
	+ specify problems of finite element procedures, to identify the	m in a given situation and to	explain their mathen	natical and mechanica		
	background.					
Skills	Students are able to					
	+ apply high-order finite elements to problems of structural mechanic	CS.				
	+ select for a given problem of structural mechanics a suitable finite					
	critically judge results of high-order finite elements.					
	+ transfer their knowledge of high-order finite elements to new probl	+ transfer their knowledge of high-order finite elements to new problems.				
Personal Competence						
Social Competence	Students are able to					
	+ solve problems in heterogeneous groups and to document the cor	responding results.				
Autonomy						
	+ assess their knowledge by means of exercises and E-Learning.	urah ariantad taaka				
	+ acquaint themselves with the necessary knowledge to solve resea	irch onemed lasks.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56					
Credit points	6					
Examination	Written exam					
Examination duration and scale	120 min					
Assignment for the Following	Energy Systems: Core qualification: Elective Compulsory					
Curricula	International Management and Engineering: Specialisation II. Produ	ct Development and Production:	Elective Compulsory			
	Materials Science: Specialisation Modeling: Elective Compulsory					
	Mechanical Engineering and Management: Specialisation Product I	Development and Production: Ele	ective Compulsory			
	Mechatronics: Technical Complementary Course: Elective Compuls	ory				
	Product Development, Materials and Production: Core qualification:	Elective Compulsory				
	Naval Architecture and Ocean Engineering: Core qualification: Elec	tive Compulsory				
	Theoretical Mechanical Engineering: Technical Complementary Co					
	Theoretical Mechanical Engineering: Core qualification: Elective Co	mpulsory				

Course L0280: High-Order FEM	
Тур	Lecture
Hrs/wk	3
CP	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	EN
Cycle	SoSe
Content	1. Introduction
	2. Motivation
	3. Hierarchic shape functions
	4. Mapping functions
	5. Computation of element matrices, assembly, constraint enforcement and solution
	6. Convergence characteristics
	7. Mechanical models and finite elements for thin-walled structures
	8. Computation of thin-walled structures
	9. Error estimation and hp-adaptivity
	10. High-order fictitious domain methods
Literature	[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014
	[2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis – Formulation, Verification and Validation, John Wiley & Sons, 2011

Course L0281: High-Order FEM		
Тур	Recitation Section (large)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0605: Computat	ional Structural Dynamics				
Courses					
Title		Тур	Hrs/wk	СР	
Computational Structural Dynamics (L02	282)	Lecture	3	4	
Computational Structural Dynamics (L02	283)	Recitation Section (small)	1	2	
Module Responsible	Prof. Alexander Düster				
Admission Requirements	None				
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV				
Knowledge	Differential Equations 2 (Partial Differential Equations	s)			
Educational Objectives	After taking part successfully, students have reached	the following learning results			
Professional Competence					
Knowledge	Students are able to				
	+ give an overview of the computational procedures f	or problems of structural dynamics.			
	+ explain the application of finite element programs to	o solve problems of structural dynamics.			
	+ specify problems of computational structural dynamics, to identify them in a given situation and to explain their mathematical and mechanical			matical and mechanica	
	background.				
Skills	Students are able to				
	+ model problems of structural dynamics.				
	+ select a suitable solution procedure for a given prol	- select a suitable solution procedure for a given problem of structural dynamics.			
	+ apply computational procedures to solve problems	- apply computational procedures to solve problems of structural dynamics.			
	+ verify and critically judge results of computational s	tructural dynamics.			
Personal Competence					
Social Competence	Students are able to				
	+ solve problems in heterogeneous groups and to do	cument the corresponding results.			
Autonomy	Students are able to				
	+ assess their knowledge by means of exercises and	E-Learning.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 9	56			
Credit points	6				
Examination	Written exam				
Examination duration and scale	2h				
Assignment for the Following	International Management and Engineering: Speciali	sation II. Mechatronics: Elective Compulsory			
Curricula	Materials Science: Specialisation Modeling: Elective	Compulsory			
	Mechatronics: Technical Complementary Course: Ele	ective Compulsory			
	Naval Architecture and Ocean Engineering: Core qua	alification: Elective Compulsory			
	Theoretical Mechanical Engineering: Technical Com	plementary Course: Elective Compulsory			
	Theoretical Mechanical Engineering: Core qualification	on: Elective Compulsory			

Course L0282: Computational Structural Dynamics		
Тур	Lecture	
Hrs/wk	3	
CP	4	
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	1. Motivation	
	2. Basics of dynamics	
	3. Time integration methods	
	4. Modal analysis	
	5. Fourier transform	
	6. Applications	
Litanatura	[41] Datha Finita Flamanta Mathadan Chringay 0000	
Literature	[1] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.	
	[2] J.L. Humar, Dynamics of Structures, Taylor & Francis, 2012.	

Course L0283: Computational Structural Dynamics		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0606: Numerical	Algorithms in Structural Mechanics				
Courses					
Title		Тур	Hrs/wk	СР	
Numerical Algorithms in Structural Mechanics (L0284)		Lecture	2	3	
Numerical Algorithms in Structural Mech		Recitation Section (small)	2	3	
Module Responsible	Prof. Alexander Düster				
Admission Requirements	None				
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV				
Knowledge	Differential Equations 2 (Partial Differential Equations)				
Educational Objectives	After taking part successfully, students have reached the following	ng learning results			
Professional Competence					
Knowledge	Students are able to				
	+ give an overview of the standard algorithms that are used in fir	nite element programs.			
	+ explain the structure and algorithm of finite element programs.				
	+ specify problems of numerical algorithms, to identify them in a given situation and to explain their mathematical and computer science				
	background.				
Skills	Students are able to				
	+ construct algorithms for given numerical methods.				
	- select for a given problem of structural mechanics a suitable algorithm apply numerical algorithms to solve problems of structural mechanics.				
	+ implement algorithms in a high-level programming languate (h	implement algorithms in a high-level programming languate (here C++).			
	+ critically judge and verfiy numerical algorithms.				
Personal Competence					
·	Students are able to				
	+ solve problems in heterogeneous groups and to document the	e corresponding results.			
		, ,			
Autonomy					
	+ assess their knowledge by means of exercises and E-Learning	g.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Written exam				
Examination duration and scale	2h				
Assignment for the Following	Materials Science: Specialisation Modeling: Elective Compulsor	ry			
Curricula	Naval Architecture and Ocean Engineering: Core qualification:	Elective Compulsory			
	Technomathematics: Specialisation III. Engineering Science: Ele	ective Compulsory			
	Technomathematics: Core qualification: Elective Compulsory				
	Theoretical Mechanical Engineering: Specialisation Numerics a	·	ulsory		
	Theoretical Mechanical Engineering: Technical Complementary	Course: Elective Compulsory			

Course L0284: Numerical Algorithms in Structural Mechanics		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	1. Motivation	
	2. Basics of C++	
	3. Numerical integration	
	4. Solution of nonlinear problems	
	5. Solution of linear equation systems	
	6. Verification of numerical algorithms	
	7. Selected algorithms and data structures of a finite element code	
Literature	[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001.	
	[2] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.	

Course L0285: Numerical Algorithms in Structural Mechanics	
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Alexander Düster
Language	DE
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1152: Modeling	Across The Scales			
Courses				
Title		Тур	Hrs/wk	СР
Modeling Across The Scales (L1537)		Lecture	2	3
Modeling Across The Scales - Excercise	e (L1538)	Recitation Section (small)	2	3
Module Responsible	Prof. Swantje Bargmann			
Admission Requirements	None			
Recommended Previous	mechanics I			
Knowledge	mechanics II			
Educational Objectives	After taking part successfully, students have reac	hed the following learning results		
Professional Competence				
Knowledge	The students can describe different deformation mechanisms on different scales and can name the appropriate kind of modeling concept suited for			
	its description.			
Skills	The students are able to predict first estimates of the effective material behavior based on the material's microstructure. They are able to correlate			
	and describe the damage behavior of materials based on their micromechanical behavior. In particular, they are able to apply their knowledge to			apply their knowledge to
	different problems of material science and evalua	te and implement material models into a finite elen	nent code.	
Personal Competence				
Social Competence	The students are able to present solutions to spe-	cialists and to develop ideas further.		
Autonomy	The students are able to assess their own strengt	hs and weaknesses and to define tasks themselve	3.	
Workload in Hours	Independent Study Time 124, Study Time in Lect	ure 56		
Credit points	6			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following	Computational Science and Engineering: Specia	lisation Scientific Computing: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elec	tive Compulsory		
	Theoretical Mechanical Engineering: Specialisat	on Materials Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical C	Complementary Course: Elective Compulsory		

Course L1537: Modeling Across T	he Scales
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	SoSe
Content	 modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models,) relationship between microstructure and macroscopic mechanical material behavior Eshelby problem effective material properties, concept of RVE homogenisation methods, coupling of scales (micro-meso-macro) micromechanical concepts for the description of damage and failure behavior
Literature	 D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch G. Gottstein., Physical Foundations of Materials Science, Springer

Course L1538: Modeling Across T	he Scales - Excercise
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	SoSe
Content	
	 modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models,) relationship between microstructure and macroscopic mechanical material behavior Eshelby problem effective material properties, concept of RVE homogenisation methods, coupling of scales (micro-meso-macro) micromechanical concepts for the description of damage and failure behavior
Literature	D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch G. Gottstein., Physical Foundations of Materials Science, Springer

Module M1237: Methods in				
	Theoretical Materials Science			
Courses				
Title		Тур	Hrs/wk	СР
Methods in Theoretical Materials Science ((L1677)	Lecture	2	4
Methods in Theoretical Materials Science	(L1678)	Recitation Section (small)	1	2
Module Responsible F	Prof. Stefan Müller			
Admission Requirements	None			
Recommended Previous	Advanced mathematics, solid state physics			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following lea	arning results		
Professional Competence				
Knowledge T	The master students will be able to explain			
	the basics of quantum mechanics.			
	the importance of quantum physics for the description of materials properties.			
	correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.			
т	The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in			
	order to understand these connections.			
Skills A	After attending this lecture the students can			
	perform materials design on a quantum mechanical basis.			
Personal Competence				
·	The student has an astonishing knowledge in materials properties w	hich demands both, expertise in ph	ysics AND materia	als science. This makes
	nim to an outstanding discussion partner who will be able to underst			
h	nard to find at universities.			
Autonomy T	The students are able to			
	assess their own strengths and weaknesses.			
	define tasks independently			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points 6				
	Oral exam			
Examination duration and scale				
Assignment for the Following	Materials Science: Specialisation Modeling: Elective Compulsory			
Curricula	, , ,			

Course L1677: Methods in Theoretical Materials Science		
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1678: Methods in Theoretical Materials Science		
Тур	Recitation Section (small)	
Hrs/wk	1	
СР	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1238: Quantum	Mechanics of Solids					
Courses						
Title			Turn	Hrs/wk	CP	
Quantum Mechanics of Solids (L1675)			Typ Lecture	Hrs/wk	4	
Quantum Mechanics of Solids (L1675) Quantum Mechanics of Solids (L1676)			Recitation Section (small)	1	2	
Module Responsible	Prof. Stefan Müller		(
Admission Requirements						
Recommended Previous						
Knowledge						
Educational Objectives	After taking part successfully, students have reach	ned the following learning	ng results			
Professional Competence						
Knowledge	The master students will be able to explain					
	the basics of quantum mechanics.	the basics of quantum mechanics.				
	the importance of quantum physics for the desc	the importance of quantum physics for the description of materials properties.				
	correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.					
	The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in					
	order to understand these connections.					
Skills	After attending this lecture the students can					
	perform materials design on a quantum mechan	nical basis.				
Personal Competence						
Social Competence	The student can connect the atomistic picture as teached in the lecture with her/his macroscopic observation. Therefore, she/he will be able to					
	develop an interpretation of the observed behavio	or based on the nanosca	ale.			
Autonomy	The students are able to					
	assess their own strengths and weaknesses.					
	define tasks independently.					
Workload in Hours	Independent Study Time 138, Study Time in Lectu	ure 42				
Credit points	6					
Examination	Oral exam					
Examination duration and scale						
Assignment for the Following	Materials Science: Specialisation Nano and Hybr	id Materials: Elective Co	ompulsory			
Curricula	Materials Science: Specialisation Modeling: Elect	ive Compulsory				

Course L1675: Quantum Mechanics of Solids		
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1676: Quantum Mechanics of Solids		
Тур	Recitation Section (small)	
Hrs/wk	1	
СР	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0603: Nonlinear	Structural Analysis				
Courses					
Title		Тур	Hrs/wk	CP	
Nonlinear Structural Analysis (L0277)		Lecture	3	4	
Nonlinear Structural Analysis (L0279)		Recitation Section (small)	1	2	
Module Responsible	Prof. Alexander Düster				
Admission Requirements					
Recommended Previous					
Knowledge					
	Differential Equations 2 (Partial Differential Equations)				
Educational Objectives	After taking part successfully, students have reached the followin	g learning results			
Professional Competence					
Knowledge	Students are able to				
	+ give an overview of the different nonlinear phenomena in struc	tural mechanics.			
	+ explain the mechanical background of nonlinear phenomena in	n structural mechanics.			
	+ to specify problems of nonlinear structural analysis, to ident	ify them in a given situation and to	explain their mather	matical and mechanica	
	background.				
Skille	Students are able to				
OKIIIS	+ model nonlinear structural problems.				
	+ select for a given nonlinear structural problem a suitable comp	utational procedure			
	+ apply finite element procedures for nonlinear structural analysi				
	+ critically verify and judge results of nonlinear finite elements.	.			
	+ to transfer their knowledge of nonlinear solution procedures to new problems.				
Personal Competence					
Social Competence					
	+ solve problems in heterogeneous groups and to document the corresponding results.				
	+ share new knowledge with group members.				
Autonomy					
	+ assess their knowledge by means of exercises and E-Learning	J.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Written exam				
Examination duration and scale	120 min				
Assignment for the Following	Civil Engineering: Specialisation Structural Engineering: Elective	e Compulsory			
Curricula	International Management and Engineering: Specialisation II. Ci	vil Engineering: Elective Compulsory	У		
	Materials Science: Specialisation Modeling: Elective Compulsor	y			
	Mechatronics: Specialisation System Design: Elective Compulso				
	Product Development, Materials and Production: Core qualificati				
	Naval Architecture and Ocean Engineering: Core qualification: E				
	Ship and Offshore Technology: Core qualification: Elective Comp				
	Theoretical Mechanical Engineering: Core qualification: Elective				
	Theoretical Mechanical Engineering: Technical Complementary	Course: Elective Compulsory			

Course L0277: Nonlinear Structura	al Analysis			
Тур	Lecture			
Hrs/wk	3			
СР	4			
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42			
Lecturer	Prof. Alexander Düster			
Language	DE/EN			
Cycle	WiSe			
Content	1. Introduction			
	2. Nonlinear phenomena			
	3. Mathematical preliminaries			
	4. Basic equations of continuum mechanics			
	5. Spatial discretization with finite elements			
	. Solution of nonlinear systems of equations			
	'. Solution of elastoplastic problems			
	8. Stability problems			
	9. Contact problems			
Literature	[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.			
Literature	[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.			
	[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.			
	[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.			

Course L0279: Nonlinear Structural Analysis		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	DE/EN	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1150: Continuur	n Mechanics				
Courses					
Title		Тур	Hrs/wk	CP	
Continuum Mechanics (L1533)		Lecture	2	3	
Continuum Mechanics Exercise (L1534)		Recitation Section (small)	2	3	
Module Responsible	Prof. Swantje Bargmann				
Admission Requirements	None				
Recommended Previous	Mechanics I				
Knowledge	Mechanics II				
Educational Objectives	After taking part successfully, students have reached the follow	owing learning results			
Professional Competence					
Knowledge					
	The students can explain the fundamental concepts to calculate the mechanical behavior of materials.				
	The students can set up balance laws and apply basics of de	eformation theory to specific aspects, both	in applied contexts a	s in research contexts.	
Personal Competence	The shirt share and shirt he successful the same he same significant	An alexander interesting			
Social Competence	The students are able to present solutions to specialists and	to develop ideas further.			
Autonomy	The students are able to assess their own strengths and weaknesses and to define tasks themselves. They can solve exercises in the area of continuum mechanics on their own.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Oral exam				
Examination duration and scale	30 min				
Assignment for the Following	Computational Science and Engineering: Specialisation Science	entific Computing: Elective Compulsory			
Curricula	Materials Science: Specialisation Modeling: Elective Compu	Isory			
	Mechanical Engineering and Management: Specialisation M	laterials: Elective Compulsory			
	Mechatronics: Technical Complementary Course: Elective C	ompulsory			
	Biomedical Engineering: Specialisation Artificial Organs and	Regenerative Medicine: Elective Compu	sory		
	Biomedical Engineering: Specialisation Implants and Endop	rostheses: Elective Compulsory			
	Biomedical Engineering: Specialisation Medical Technology	and Control Theory: Elective Compulsory	,		
	Biomedical Engineering: Specialisation Management and Br	usiness Administration: Elective Compulso	ory		
	Product Development, Materials and Production: Core qualif	ication: Elective Compulsory			
	Theoretical Mechanical Engineering: Technical Complemen	tary Course: Elective Compulsory			

Course L1533: Continuum Mechan	nics
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	WiSe
Content	 kinematics of undeformed and deformed bodies balance equations (balance of mass, balance of energy,) stress states material modelling
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer

Course L1534: Continuum Mechanics Exercise			
Тур	Recitation Section (small)		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Swantje Bargmann		
Language	DE/EN		
Cycle	WiSe		
Content	kinematics of undeformed and deformed bodies balance equations (balance of mass, balance of energy,) stress states material modelling		
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer		

Module M1291: Materials S	Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L1801)		Seminar	2	3
Seminar on interface-dominated material	s (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, ele	ectrochemistry, interface science, mechanics		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge	Students can explain the most important facts and relationships of a specific topic from the field of materials science.			
Skills	Students are able to compile a specified topic from the field of materials science and to give a clear, structured and comprehensible presentation			
	of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains			
	the most important results, relationships and explanations of the subject.			
Personal Competence				
Social Competence	Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous			
	knowledge of the audience. They can answer of	questions from the audience in a curt and precise m	nanner.	
Autonomy	Students are able to autonomously carry out a	a literature research concerning a given topic. The	y can indopondently eye	duate the material. They
Autonomy	can self-reliantly decide which parts of the mate		y can independently eva	iluate the material. They
	can sen-renantly decide which parts of the mate	enai snould be included in the presentation.		
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the Following	Materials Science: Specialisation Nano and Hy	ybrid Materials: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Ele	ective Compulsory		
	Materials Science: Specialisation Engineering	Materials: Elective Compulsory		

Course L1757: Seminar		
Тур	Seminar	
Hrs/wk	2	
CP		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Jörg Weißmüller	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1758: Seminar Composit	es
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1801: Seminar Advanced	l Ceramics
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1795: Seminar on interface	ce-dominated materials	
Тур	Seminar	
Hrs/wk	2	
СР		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Specialization Nano and Hybrid Materials

	ems Technology				
Courses					
Title		Тур	Hrs/wk	СР	
Microsystems Technology (L0724)		Lecture	2	4	
Module Responsible	Prof. Hoc Khiem Trieu				
Admission Requirements	None				
Recommended Previous	Basics in physics, chemistry and semiconductor technology	/			
Knowledge					
Educational Objectives	After taking part successfully, students have reached the fo	llowing learning results			
Professional Competence					
Knowledge					
	Students are able				
			and the same of th	6 :	
	to present and to explain current fabrication technique microactivators as well as the integration thereof in more or		methods for the fabricatio	n of microsensors and	
	nicroactuators, as well as the integration thereof in more complex systems				
	to explain in details operation principles of microsensors and microactuators and				
	to discuss the potential and limitation of microsystems in application.				
Skills					
	Oh, danda ana annahila				
	Students are capable				
	to analyze the feasibility of microsystems,				
	to develop process flows for the fabrication of microstructure.	ctures and			
	to apply them.				
Personal Competence					
Social Competence	None				
Autonomy	None				
	Independent Study Time 92, Study Time in Lecture 28				
	4				
·	Oral exam				
	30 min				
	Materials Science: Specialisation Nano and Hybrid Materia	als: Elective Compulsory			
Curricula	,	. ,			

Course L0724: Microsystems Tech	hnology
Тур	Lecture
Hrs/wk	2
СР	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Hoc Khiem Trieu
Language	EN
Cycle	WiSe
Content	 Introduction (historical view, scientific and economic relevance, scaling laws) Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting) Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing) Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, comer undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching) Surface Micromachining and alternative Techniques (spacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SUB, rapid prototyping) Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer) Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity, pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process; Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMF, fluxgate magnetometer) Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; principle of biosensor, Clark electrode, enzyme electro
	 System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)
Literature	M. Madou: Fundamentals of Microfabrication, CRC Press, 2002
	N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009
	T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010
	G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Module M1334: BIO II: Bio	materials			
Courses				
Title		Тур	Hrs/wk	СР
Biomaterials (L0593)		Lecture	2	3
Module Responsible	Prof. Michael Morlock			
Admission Requirements	None			
Recommended Previous				
Knowledge				
Educational Objectives	After taking part successfully, students have reached th	e following learning results		
Professional Competence				
Knowledge				
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Credit points	3			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	International Management and Engineering: Specialisa	ation II. Process Engineering and Biotech	nology: Elective Compulsor	у
Curricula	Materials Science: Specialisation Nano and Hybrid Ma	terials: Elective Compulsory		
	Biomedical Engineering: Specialisation Artificial Organ	s and Regenerative Medicine: Elective C	ompulsory	
	Biomedical Engineering: Specialisation Implants and E	indoprostheses: Compulsory		
	Biomedical Engineering: Specialisation Medical Techn	• • • • • • • • • • • • • • • • • • • •	•	
	Biomedical Engineering: Specialisation Management a		mpulsory	
	Theoretical Mechanical Engineering: Technical Compl	, , ,		
	Theoretical Mechanical Engineering: Specialisation Bio	o- and Medical Technology: Elective Com	npulsory	

Typ Lecture Worklader in Hours Adopted and Study Time 62, Study Time in Lecture 28 Lecture Miscondinate Motion Language CYcle Wilde Content Topics to be covered include: 1. Introduction (importance, nonenclabure, relations) 2. Biological materials 2.1 Basics (components, testing memods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartiflage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, syrovial fluid) 3. Biological structures 3.1 Menical of the knee joint 3.2 Interversibral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendone 3.6 Sión 3.7 None 3.8 Missoles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Seel (alloys, properties, reaction of the body) 4.3 Time falloys, properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used epilacements in viv.e), Acquisition of basics for fixes were in the area of biomechanics. Literature Hastings G and Ducheyne P: Natural and Inling biomaterials. Boos Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.	Course L0593: Biomaterials	
Workload in Nova. Lecturer Prof. Michael Mortock Language EN Cycle WiSe Content Topics to be covered include: 1. Introduction (Importance, nomenclature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cardiage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, symovial fluid) 3. Biological shuckures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Novos 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and plas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.5 Plastics (properties, reaction of the body) 4.6 Shatural replacement materials Knowledge of composition, structure, properties, function and changes/sudaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Corfort: Elsevier, 1987.	Тур	Lecture
Lecturer Pior Michael Mortook	Hrs/wk	2
Lacturer Language Syde WSe Content Indicated Montpotal Materials 1. Introduction (Importance, nomendature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Carillage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synoval fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Interventebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and gilds (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for these work in the area of biomechanics.	СР	3
Crote Wisse Content Topics to be covered include: 1. Introduction (Importance, nomenclature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cardisage (components), development, structure, properties, influencing factors) 2.4 Fluids (blood, synoval fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertiebral discs 3.3 Toeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Coramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for these work in the area of biomechanics.	Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Cycle Content Topics to be covered include: Introduction (Importance, nomenclature, relations) 2. Blological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartillage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Blological structures 3.1 Meniod of the knee joint 3.2 intervertebral cliess 3.3 Teeft 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Skee (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes@daptations of biological and technical materials (which are used replacements in vivo). Acquisision of basics for theses work in the area of biomechanics. Literature Hassings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Codord: Elsevier, 1987.		
Content Topics to be covered include: 1. Introduction (importance, nomenclature, relations) 2. Biological materials 2.1 Basics (composition, development, bructure, properties, influencing factors) 2.2 Bone (composition, development, structure, properties, influencing factors) 2.3 Cartillage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, sprovial fluid) 3. Biological structures 3.1 Maria (and included and included		
1. Introduction (importance, nomenciature, relations) 2. Biological materials 2.1 Basics (components, testing methods) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3. Biological structures 3.1 Meniaci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.5 Plastics (properties are action of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hästings G and Ducheyne P.: Natural and living biomaterials. Boca Raten: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		
2.1 Basics (composition, development, properties, influencing factors) 2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Reptacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.	-	
2.2 Bone (composition, development, properties, influencing factors) 2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.		Biological materials
2.3 Cartilage (composition, development, structure, properties, influencing factors) 2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		2.1 Basics (components, testing methods)
2.4 Fluids (blood, synovial fluid) 3 Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. **Uterature** **Literature** **Literature** **Literature** Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. **Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		2.2 Bone (composition, development, properties, influencing factors)
3. Biological structures 3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		2.3 Cartilage (composition, development, structure, properties, influencing factors)
3.1 Menisci of the knee joint 3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.		2.4 Fluids (blood, synovial fluid)
3.2 Intervertebral discs 3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3 Biological structures
3.3 Teeth 3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P::Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.1 Menisci of the knee joint
3.4 Ligaments 3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.2 Intervertebral discs
3.5 Tendons 3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.3 Teeth
3.6 Skin 3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.4 Ligaments
3.7 Nervs 3.8 Muscles 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.5 Tendons
4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.6 Skin
 4. Replacement materials 4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987. 		3.7 Nervs
4.1 Basics (history, requirements, norms) 4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		3.8 Muscles
4.2 Steel (alloys, properties, reaction of the body) 4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		4. Replacement materials
4.3 Titan (alloys, properties, reaction of the body) 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		4.1 Basics (history, requirements, norms)
 4.4 Ceramics and glas (properties, reaction of the body) 4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987. 		4.2 Steel (alloys, properties, reaction of the body)
4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body) 4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		4.3 Titan (alloys, properties, reaction of the body)
4.6 Natural replacement materials Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		4.4 Ceramics and glas (properties, reaction of the body)
Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		
replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics. Literature Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984. Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		
Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		
Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.		
	Literature	Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984.
Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.		Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.
		Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.
Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.		Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.
Park J. Biomaterials: an introduction. New York: Plenum Press, 1980.		Park J. Biomaterials: an introduction. New York: Plenum Press, 1980.
Wintermantel, E. und Ha, SW: Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.		Wintermantel, E. und Ha, SW: Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.

Module M0643: Optoelecti	ronics I - Wave Optics					
Courses						
Title		Тур	Hrs/wk	СР		
Optoelectronics I: Wave Optics (L0359)		Lecture	2	3		
Optoelectronics I: Wave Optics (Problem Solving Course) (L0361) Recitation Section (small)						
Module Responsible	Prof. Manfred Eich					
Admission Requirements	None					
Recommended Previous	Basics in electrodynamics, calculus					
Knowledge						
Educational Objectives	After taking part successfully, students have reached the follow	ng learning results				
Professional Competence	The land grant succession, stadents have reasted the lonew	ng rearning resents				
Knowledge	Students can explain the fundamental mathematical and physic	al relations of freely propagating optic	cal waves.			
rinemeage	Students can explain the fundamental mathematical and physical relations of freely propagating optical waves. They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc.					
	Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.					
	Casterno Car. Coccined national dated components soon as created prical modulators in an application ellerited way.					
Skills	Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.					
S.i.i.i	They can derive approximative solutions and judge factors influential on the components' performance.					
	, , , ,	·				
Personal Competence						
Social Competence	Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving					
	course.					
Autonomy	Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They					
	can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are					
	able to connect their knowledge with that acquired from other lectures.					
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42					
Credit points	4					
Examination	Written exam					
Examination duration and scale	40 minutes					
Assignment for the Following	Electrical Engineering: Specialisation Nanoelectronics and Mic	rosystems Technology: Elective Comp	oulsory			
Curricula	Electrical Engineering: Specialisation Microwave Engineering,			sory		
	Materials Science: Specialisation Nano and Hybrid Materials: E	lective Compulsory				
	Microelectronics and Microsystems: Specialisation Microelectro	nics Complements: Elective Compuls	ory			
	Renewable Energies: Specialisation Solar Energy Systems: Ele	ective Compulsory				

Course L0359: Optoelectronics I:	Wave Optics		
Тур	Lecture		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Manfred Eich		
Language			
Cycle	SoSe		
Content	 Introduction to optics Electromagnetic theory of light Interference Coherence Diffraction Fourier optics Polarisation and Crystal optics Matrix formalism Reflection and transmission Complex refractive index Dispersion Modulation and switching of light 		
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Hecht, E., Optics, Benjamin Cummings, 2001 Goodman, J.W. Statistical Optics, Wiley, 2000 Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002		

Course L0361: Optoelectronics I:	Wave Optics (Problem Solving Course)	
Тур	Recitation Section (small)	
Hrs/wk		
CP	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Manfred Eich	
Language	EN	
Cycle	SoSe	
Content	see lecture Optoelectronics 1 - Wave Optics	
Literature	see lecture Optoelectronics 1 - Wave Optics	

Module M0930: Semicond	luctor Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Semiconductor Seminar (L0760)		Seminar	2	2
Module Responsible	Dr. Dietmar Schröder			
Admission Requirements	None			
Recommended Previous	Bachelor of Science			
Knowledge	Semiconductors			
Educational Objectives	After taking part successfully, students have r	eached the following learning results		
Professional Competence				
Knowledge	Students can explain the most important facts	and relationships of a specific topic from the field of	f semiconductors.	
Skills	Students are able to compile a specified topic from the field of semiconductors and to give a clear, structured and comprehensible presentation of			
	the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contain			
	the most important results, relationships and	explanations of the subject.		
Personal Competence				
Social Competence	Students are able to adapt their presentati	on with respect to content, detailedness, and pre-	sentation style to the co	mposition and previous
	knowledge of the audience. They can answe	r questions from the audience in a curt and precise r	manner.	
Autonomy	Students are able to autonomously carry out	a literature research concerning a given topic. The	ey can independently eva	luate the material. They
	can self-reliantly decide which parts of the ma	aterial should be included in the presentation.		
Workload in Hours	Independent Study Time 32, Study Time in Le	ecture 28		
Credit points	2			
Examination	Presentation			
Examination duration and scale	15 minutesw presentation + 5-10 minutes dis	cussion + 2 pages written abstract		
Assignment for the Following	Electrical Engineering: Specialisation Nanoe	lectronics and Microsystems Technology: Elective C	Compulsory	
Curricula	Materials Science: Specialisation Nano and I	Hybrid Materials: Elective Compulsory		
	Microelectronics and Microsystems: Core qua	alification: Elective Compulsory		

Course L0760: Semiconductor Se	minar
Тур	Seminar
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Dietmar Schröder, Prof. Manfred Kasper, Prof. Wolfgang Krautschneider, Prof. Manfred Eich, Prof. Hoc Khiem Trieu
Language	EN
Cycle	SoSe
Content	Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English.
	understanding of subject, discussion, response to questions structure and logic of presentation (clarity, precision) coverage of the topic, selection of subjects presented linguistic presentation (clarity, comprehensibility) visual presentation (clarity, comprehensibility) handout (see below) compliance with timing requirement.
	Handout: Before your presentation, it is mandatory to distribute a printed handout (short abstract) of your presentation in English language. This must be no longer than two pages A4, and include the most important results, conclusions, explanations and diagrams.
Literature	Aktuelle Veröffentlichungen zu dem gewählten Thema

Module M1335: BIO II: Artificial Joint Replacement				
Courses				
Title	Тур		Hrs/wk	СР
Artificial Joint Replacement (L1306)	Lecture	е	2	3
Module Responsible	Prof. Michael Morlock			
Admission Requirements	None			
Recommended Previous				
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results	ults		
Professional Competence				
Knowledge				
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Credit points	3			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	International Management and Engineering: Specialisation II. Process Enginee	ering and Biotechnology: Electi	ve Compulsory	
Curricula	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compuls	sory		
	Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medical Engineering: Specialisation Artificial Organs and Regenerative Medical Engineering:	dicine: Elective Compulsory		
	Biomedical Engineering: Specialisation Implants and Endoprostheses: Compul-	Isory		
	Biomedical Engineering: Specialisation Medical Technology and Control Theorem			
	Biomedical Engineering: Specialisation Management and Business Administration			
	Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technolo			
	Theoretical Mechanical Engineering: Technical Complementary Course: Elective	ve Compulsory		

Course L1306: Artificial Joint Repl	Course L1306: Artificial Joint Replacement		
Тур	Lecture		
Hrs/wk	2		
СР	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Michael Morlock		
Language	DE		
Cycle	SoSe		
Content	Inhalt (deutsch)		
	1. EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes)		
	2. FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität)		
	3. DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate)		
	4. DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten)		
	5. DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren)		
	6. DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz)		
	7. DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz)		
	8. DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz)		
	9. TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß)		
Literature	Literatur:		
	Kapandji, I.:: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984.		
	Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley&Sons, New York 1994		
	Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea&Febiger, Philadelphia, 1989.		
	Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003.		
	Sobotta und Netter für Anatomie der Gelenke		

Module M1220: Interfaces	and interface-dominated Materials			
Courses				
Title		Тур	Hrs/wk	СР
Nature's Hierarchical Materials (L1663)		Seminar	2	3
Interfaces (L1654)		Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	None			
Recommended Previous	Fundamentals of Materials Science (I and II) and physical	chemistry		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the for	ollowing learning results		
Professional Competence				
Knowledge	The students will be able to explain the properties of adva	nced materials along with their applica	ations in technology, in par	ticular metallic, ceramic,
	polymeric, semiconductor, modern composite materials (b	iomaterials) and nanomaterials.		
01.11				
Skills	The students will be able to select material configurations	•		-
	architectural principles from the micro- to the macroscale them to select optimum materials combinations depending	•	view on modern materials	science, which enables
	them to select optimum materials combinations depending	g on the technical applications.		
Personal Competence				
Social Competence	The students are able to present solutions to specialists at	nd to develop ideas further.		
Autonomy	The students are able to			
	 assess their own strengths and weaknesses. 			
	 define tasks independently. 			
Workload in Hours				
Credit points				
Examination	Written exam			
Examination duration and scale	90 min			
•	Materials Science: Specialisation Nano and Hybrid Materi			
Curricula	Mechanical Engineering and Management: Specialisation	Materials: Elective Compulsory		

Course L1663: Nature's Hierarchi	cal Materials
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Gerold Schneider
Language	EN
Cycle	WiSe
Content	Biological materials are omnipresent in the world around us. They are the main constituents in plant and animal bodies and have a diversity of functions. A fundamental function is obviously mechanical providing protection and support for the body. But biological materials may also serve as ion reservoirs (bone is a typical example), as chemical barriers (like cell membranes), have catalytic function (such as enzymes), transfer chemical into kinetic energy (such as the muscle), etc. This lecture will focus on materials with a primarily (passive) mechanical function: cellulose tissues (such as wood), collagen tissues (such as tendon or cornea), mineralized tissues (such as bone, dentin and glass sponges). The main goal is to give an introduction to the current knowledge of the structure in these materials and how these structures relate to their (mostly mechanical) functions.
Literature	Peter Fratzl, Richard Weinkamer, Nature's hierarchical materialsProgress, in Materials Science 52 (2007) 1263-1334 Journal publications

Course L1654: Interfaces	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	SoSe
Content	 Microscopic structure and thermodynamics of interfaces (gas/solid, gas/liquid, liquid/liquid, liquid/solid) Experimental methods for the study of interfaces Interfacial forces wetting surfactants, foams, bio-membranes chemical grafting of interfaces
Literature	"Physics and Chemistry of Interfaces", K.H. Butt, K. Graf, M. Kappl, Wiley-VCH Weinheim (2006) "Interfacial Science", G.T. Barnes, I.R. Gentle, Oxford University Press (2005)

Module M1238: Quantum	Mochanics of Solids			
Module W1236. Quantum	Mechanics of Solids			
Courses				
Title		Тур	Hrs/wk	СР
Quantum Mechanics of Solids (L1675)		Lecture	2	4
Quantum Mechanics of Solids (L1676)		Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Müller			
Admission Requirements	None			
Recommended Previous	Advanced mathematics, solid state physics			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following lear	rning results		
Professional Competence				
Knowledge	The master students will be able to explain			
	the basics of quantum mechanics.			
	\ldots the importance of quantum physics for the description of materials \boldsymbol{p}	properties.		
	correlations between on quantum mechanics based phenomena be	etween individual atoms and mac	roscopic properties	of materials.
	The master students will then be able to connect essential materials	properties in engineering with ma	aterials properties o	n the atomistic scale in
	order to understand these connections.			
Skills	After attending this lecture the students can			
	perform materials design on a quantum mechanical basis.			
Personal Competence				
Social Competence	The student can connect the atomistic picture as teached in the lect	ure with her/his macroscopic obs	ervation. Therefore	, she/he will be able to
	develop an interpretation of the observed behavior based on the nano	oscale.		
Autonomy	The students are able to			
	assess their own strengths and weaknesses.			
	define tasks independently.			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Materials: Elective	Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elective Compulsory	•		

Course L1675: Quantum Mechanic	ourse L1675: Quantum Mechanics of Solids	
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1676: Quantum Mechanics of Solids	
Тур	Recitation Section (small)
Hrs/wk	1
СР	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Stefan Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1239: Experimen	ntal Micro- and Nanomechanics			
Courses				
Title		Тур	Hrs/wk	СР
Experimental Micro- and Nanomechanic	s (L1673)	Lecture	2	4
Experimental Micro- and Nanomechanic	s (L1674)	Recitation Section (small)	1	2
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	None			
Recommended Previous	Basics in Materials Science I/II, Mechanical Properties, Ph	enomena and Methods in Materials Scie	nce	
Knowledge				
Educational Objectives	After taking part successfully, students have reached the f	ollowing learning results		
Professional Competence				
Knowledge	Students are able to describe the principles of mechanica	I behavior (e.g., stress, strain, modulus, s	trength, hardening, failur	e, fracture).
	Students can explain the principles of characterization in diffraction)	nethods used for investigating microstru	cture (e.g., scanning elec	ctron microscopy, x-ra
	They can describe the fundamental relations between mid	crostructure and mechanical properties.		
Skills	Students are capable of using standardized calculation materials under varying loading states (e.g., uniaxial stres		anical properties (modulu	us, strength) of differen
Personal Competence				
Social Competence	Students can provide appropriate feedback and handle fe	edback on their own performance constr	uctively.	
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and to	define further work steps on this basis g	uided by teachers.	
	- to be able to work independently based on lectures and	notes to solve problems, and to ask for h	elp or clarifications when	needed
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Examination	Written exam			
Examination duration and scale	60 min			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mater	ials: Elective Compulsory		
Curricula				

Course L1673: Experimental Micro	Lecture
	2
Hrs/wk	
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of mechanical testing at the micron and nanometer scales. A focus will be made on metallic materials, though
	issues related to ceramics and polymeric materials will also be discussed. Modern methods will be explored, along with the scientific questions
	investigated by such methods.
	Principles of micromechanics
	Motivations for small-scale testing
	Sample preparation methods for small-scale testing
	General experimental artifacts and quantification of measurement resolution
	Complementary structural analysis methods
	Electron back scattered diffraction
	Transmission electron microscopy
	Micro-Laue diffraction
	Nanoindentation-based testing
	Principles of contact mechanics
	Berkovich indentation
	■ Loading geometry
	■ Governing equations for analysis of stress & strain
	■ Case study:
	Indentation size effects
	Microcompression
	■ Loading geometry
	Governing equations for analysis of stress & strain
	■ Case study:
	Size effects in yield strength and hardening
	Microbeam-bending
	Loading geometry Coversing equations for analysis of strong & strain
	Governing equations for analysis of stress & strainCase study:
	Fracture strength & toughness
	- 1 เผงเมาซ รมชาเหมา
	•
Litorotura	Verlegungsekrigt
Literature	Vorlesungsskript
	Aktuelle Publikationen

Course L1674: Experimental Micro	ourse L1674: Experimental Micro- and Nanomechanics	
Тур	Recitation Section (small)	
Hrs/wk	1	
СР	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Dr. Erica Lilleodden	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0519: Particle Te	echnology and Solid Matter Process	Technology		
Courses				
Title		Тур	Hrs/wk	СР
Advanced Particle Technology II (L0050)	Lecture	2	2
Advanced Particle Technology II (L0051	,	Recitation Section (small)	1	1
Experimental Course Particle Technolog	y (L0430)	Laboratory Course	3	3
Module Responsible	Prof. Stefan Heinrich			
Admission Requirements	None			
Recommended Previous	Basic knowledge of solids processes and particle	technology		
Knowledge				
Educational Objectives	After taking part successfully, students have reach	ned the following learning results		
Professional Competence				
Knowledge	After completion of the module the students	will be able to describe and explain processes	for solids processi	ng in detail based
	microprocesses on the particle level.			
Skills	Students are able to choose process steps and	apparatuses for the focused treatment of solids de	pending on the spec	ific characteristics. Th
	furthermore are able to adapt these processes and to simulate them.			
Personal Competence				
Social Competence	Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scientific			
	researchers.			
Autonomy	Students are able to analyze and solve problems regarding solid particles independently or in small groups.			
Workload in Hours	Independent Study Time 96, Study Time in Lectur	e 84		
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 minutes			
Assignment for the Following	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory			
Curricula	Bioprocess Engineering: Specialisation B - Indust	trial Bioprocess Engineering: Elective Compulsory		
	Energy and Environmental Engineering: Specialis	sation Environmental Engineering: Elective Compul-	sory	
	International Management and Engineering: Spec	cialisation II. Process Engineering and Biotechnolog	y: Elective Compulso	ory
	Materials Science: Specialisation Nano and Hybri	id Materials: Elective Compulsory		
	Process Engineering: Core qualification: Compuls	sory		

Course L0050: Advanced Particle	Technology II
Тур	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Stefan Heinrich
Language	DE
Cycle	WiSe
Content	 Exercise in form of "Project based Learning" Agglomeration, particle size enlargement advanced particle size reduction Advanced theorie of fluid/particle flows CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling Treatment of simulation problems with distributed properties, solution of population balances
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.

Course L0051: Advanced Particle	Course L0051: Advanced Particle Technology II	
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Stefan Heinrich	
Language	DE	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Course L0430: Experimental Cour	se Particle Technology
Тур	Laboratory Course
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Stefan Heinrich
Language	DE
Cycle	WiSe
Content	Fluidization Agglomeration Granulation Drying Determination of mechanical properties of agglomerats
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.

Module M0644: Optoelect	ronics II - Quantum Optics			
Courses				
Title		Тур	Hrs/wk	СР
Optoelectronics II: Quantum Optics (L0	360)	Lecture	2	3
Optoelectronics II: Quantum Optics (Pro	oblem Solving Course) (L0362)	Recitation Section (small)	1	1
Module Responsible	Prof. Manfred Eich			
Admission Requirements	None			
Recommended Previous	Basic principles of electrodynamics, optics and quantum med	chanics		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following	owing learning results		
Professional Competence				
Knowledge	Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontaneous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.			
Skills	Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.			
Personal Competence Social Competence	Students can jointly solve subject related problems in groups course.	s. They can present their results effectivel	y within the framewor	k of the problem solving
Autonomy	Students are capable to extract relevant information from the can reflect their acquired level of expertise with the help of lable to connect their knowledge with that acquired from other	lecture accompanying measures such a		•
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42			
Credit points	4			
Examination	Written exam			
Examination duration and scale	40 minutes			
Assignment for the Following	Electrical Engineering: Specialisation Nanoelectronics and N	Microsystems Technology: Elective Comp	ulsory	
Curricula	Electrical Engineering: Specialisation Microwave Engineerin	g, Optics, and Electromagnetic Compatib	oility: Elective Compul	sory
	Materials Science: Specialisation Nano and Hybrid Materials	s: Elective Compulsory		
	Microelectronics and Microsystems: Specialisation Microelec	ctronics Complements: Elective Compulse	ory	

Course L0360: Optoelectronics II:	Quantum Optics
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Manfred Eich
Language	EN
Cycle	WiSe
Content	 Generation of light Photons Thermal and nonthermal light Laser amplifier Noise Optical resonators Spectral properties of laser light CW-lasers (gas, solid state, semiconductor) Pulsed lasers
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002 Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001 Yariv, A., Quantum Electronics, Wiley, 1988 Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X Siegman, A.E., Lasers, University Science Books, 1986

Course L0362: Optoelectronics II:	Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)	
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Manfred Eich	
Language	EN	
Cycle	WiSe	
Content	see lecture Optoelectronics 1 - Wave Optics	
Literature	see lecture Optoelectronics 1 - Wave Optics	

Module M1291: Materials S	Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L1801)		Seminar	2	3
Seminar on interface-dominated materials	s (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Fundamental knowledge on nanomaterials, electrochemi	stry, interface science, mechanics		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge	Students can explain the most important facts and relation	nships of a specific topic from the field	of materials science.	
	Students are able to compile a specified topic from the field of materials science and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject.			
Personal Competence				
·	Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner.			
*	Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation.			
Workload in Hours	Depends on choice of courses	<u> </u>		
Credit points	6			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mater	rials: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elective Com	npulsory		
	Materials Science: Specialisation Engineering Materials:			

Course L1757: Seminar	Course L1757: Seminar	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Jörg Weißmüller	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1758: Seminar Composit	Course L1758: Seminar Composites	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1801: Seminar Advanced	Course L1801: Seminar Advanced Ceramics	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Gerold Schneider	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1795: Seminar on interface-dominated materials	
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Thesis

Module M-002: Master The	esis		
Courses			
Title	Тур	Hrs/wk	СР
Module Responsible	Professoren der TUHH		
Admission Requirements	According to Occasion Devolutions (OA/A):		
	According to General Regulations §24 (1):		
	At least 78 credit points have to be achieved in study programme. The examinations board decides of	n exceptions.	
Recommended Previous			
Knowledge			
Educational Objectives	After taking part successfully, students have reached the following learning results		
Professional Competence			
Knowledge		atly on onooioliz	ad issues
	 The students can use specialized knowledge (facts, theories, and methods) of their subject compete The students can explain in depth the relevant approaches and terminologies in one or more are 		
	developments and taking up a critical position on them.	ad or their subj	cot, accombing carrer
	The students can place a research task in their subject area in its context and describe and critically	assess the state	of research.
Skills	The students are able:		
	To select, apply and, if necessary, develop further methods that are suitable for solving the specialize.	ed problem in qu	iestion.
	To apply knowledge they have acquired and methods they have learnt in the course of their st		
	defined problems in a solution-oriented way.		
	To develop new scientific findings in their subject area and subject them to a critical assessment.		
Personal Competence			
Social Competence			
	Suborito dall'		
	Both in writing and orally outline a scientific issue for an expert audience accurately, understandably		
	Deal with issues competently in an expert discussion and answer them in a manner that is appropr	ate to the addre	ssees while upholding
	their own assessments and viewpoints convincingly.		
Autonomy	Students are able:		
Autonomy			
	To structure a project of their own in work packages and to work them off accordingly.		
	To work their way in depth into a largely unknown subject and to access the information required for	them to do so.	
	To apply the techniques of scientific work comprehensively in research of their own.		
Workload in Hours	Independent Study Time 900, Study Time in Lecture 0		
Credit points	30		
Examination	according to Subject Specific Regulations		
Examination duration and scale	see FSPO		
Assignment for the Following	Civil Engineering: Thesis: Compulsory		
Curricula	Bioprocess Engineering: Thesis: Compulsory		
	Chemical and Bioprocess Engineering: Thesis: Compulsory		
	Computer Science: Thesis: Compulsory		
	Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory		
	Energy Systems: Thesis: Compulsory		
	Environmental Engineering: Thesis: Compulsory		
	Aircraft Systems Engineering: Thesis: Compulsory		
	Global Innovation Management: Thesis: Compulsory		
	Computational Science and Engineering: Thesis: Compulsory		
	Information and Communication Systems: Thesis: Compulsory		
	International Production Management: Thesis: Compulsory		
	International Management and Engineering: Thesis: Compulsory		
	Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory		
	Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory		
	Mechanical Engineering and Management: Thesis: Compulsory		
	Mechatronics: Thesis: Compulsory		
	Biomedical Engineering: Thesis: Compulsory		
	Microelectronics and Microsystems: Thesis: Compulsory		
	Product Development, Materials and Production: Thesis: Compulsory		
	Renewable Energies: Thesis: Compulsory Naval Architecture and Ocean Engineering: Thesis: Compulsory		

Ship and Offshore Technology: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory