

Module Manual

Master of Science

Materials Science

Cohort: Winter Term 2016

Updated: 28th June 2017

Table of Contents

Table of Contents	2
Program description	3
Core qualification	4
Module M0523: Business & Management	4
Module M0524: Nontechnical Elective Complementary Courses for Master	5
Module M1197: Multiphase Materials	7
Module M1198: Materials Physics and Atomistic Materials Modeling	9
Module M1218: Lecture: Multiscale Materials	11
Module M1170: Phenomena and Methods in Materials Science	13
Module M1219: Advanced Laboratory Materials Sciences	15
Module M1226: Mechanical Properties	16
Module M1199: Advanced Functional Materials	19
Module M1221: Project work on Modern Issues in the Materials Sciences	20
Specialization Engineering Materials	21
Module M1202: Design with Polymers and Composites	21
Module M1206: Ceramics and Polymers	24
Module M1225: Metallic Light-weight Materials	26
Module M0593: Building Materials and Building Preservation	29
Module M1144: Manufacturing with Polymers and Composites - From Molecule to Part	31
Module M0595: Examination of Materials, Structural Condition and Damages	33
Module M1345: Metallic and Hybrid Light-weight Materials	34
Module M1291: Materials Science Seminar	38
Specialization Modeling	40
Module M1151: Material Modeling	40
Module M0604: High-Order FEM	42
Module M0605: Computational Structural Dynamics	44
Module M0606: Numerical Algorithms in Structural Mechanics	46
Module M1152: Modeling Across The Scales	48
Module M1237: Methods in Theoretical Materials Science	50
Module M1238: Quantum Mechanics of Solids	51
Module M0603: Nonlinear Structural Analysis	52
Module M1150: Continuum Mechanics	54
Module M1291: Materials Science Seminar	56
Specialization Nano and Hybrid Materials	58
Module M0766: Microsystems Technology	58
Module M1040: BIO II: Endoprostheses and Materials	60
Module M0643: Optoelectronics I - Wave Optics	63
Module M0930: Semiconductor Seminar	65
Module M1220: Interfaces and interface-dominated Materials	66
Module M1238: Quantum Mechanics of Solids	68
Module M1239: Experimental Micro- and Nanomechanics	69
Module M0519: Particle Technology and Solid Matter Process Technology	71
Module M0644: Optoelectronics II - Quantum Optics	73
Module M1291: Materials Science Seminar	77
Thesis	
Module M-002: Master Thesis	77

Program description

Content

Core qualification

Module M0502: Business	9 Management
Module M0523: Business	a management
Module Responsible	Prof. Matthias Meyer
Admission Requirements	None
Recommended Previous	None
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge Skills	 Students are able to find their way around selected special areas of management within the scope of business management. Students are able to explain basic theories, categories, and models in selected special areas of business management. Students are able to interrelate technical and management knowledge.
Personal Competence Social Competence Autonomy	
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Nontechnical Elective Complementary Courses for Master		
Module Responsible	Dagmar Richter	
Admission Requirements	None	
Recommended Previous	None	
Knowledge		
Educational Objectives	After taking part successfully, students have reached the following learning results	
Professional Competence		
Knowledae	The Nontechnical Academic Programms (NTA)	

imparts skills that, in view of the TUHH's training profile, professional engineering studies require but are not able to cover fully. Self-reliance, selfmanagement, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor's or Master's level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of "profiles".

The subjects that can be studied in parallel throughout the student's entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor's courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor's and Master's fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor's and Master's graduates in their future working life.

Specialized Competence (Knowledge)

Students can

- explain specialized areas in context of the relevant non-technical disciplines.
- outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
- different specialist disciplines relate to their own discipline and differentiate it as well as make connections,
- sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
- Can communicate in a foreign language in a manner appropriate to the subject.

Skills Professional Competence (Skills)

In selected sub-areas students can

- apply basic and specific methods of the said scientific disciplines,
- aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
- to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner.
- justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to

Personal Competence

Social Competence	Personal Competences (Social Skills)
	Students will be able
	 to learn to collaborate in different manner, to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees, to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), to explain nontechnical items to auditorium with technical background knowledge.
Autonomu	Devenuel Competences (Colf religions)
Autonomy	Personal Competences (Self-reliance)
	Students are able in selected areas
	to reflect on their own profession and professionalism in the context of real-life fields of application
	to organize themselves and their own learning processes
	to reflect and decide questions in front of a broad education background
	 to communicate a nontechnical item in a competent way in writen form or verbaly to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)
	to digatile the medical characteristic and an object central factor and an
Workload in Hours	Depends on choice of courses
Credit points	6

Courses

Information regarding lectures and courses can be found in the corresponding module handbook published separately.

urses				
e		Тур	Hrs/wk	СР
lied Computational Methods for Mate	erial Science (L1626)	Problem-based Learning	3	3
acture and Properties of Composites	(L0513)	Lecture	2	3
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	Non			
Recommended Previous	TBD			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the fo	llowing learning results		
Professional Competence Knowledge				
	- explain the complex relationships of the mechanics of cor	nposite materials, the failure mechanisms	and physical properties	5.
	- assess the interactions of microstructure and properties o	-		
	- explain e.g. different fiber types, including relative context		tion).	
Skills	They know different methods of modeling multiphase n Students are capable of	rateriais and can apply them.		
	- using standardized methods of calculation and modelir Programming with Python, Automated control and evalua bending, four point bend, crack propagation, J -Integral, Co	tion of parameter studies and examples		
	- determining the material properties (elasticity, plasticity, s	mall and large deformations, modeling of r	multiphase materials).	
	- to calculate and evaluate the mechanical properties (mod	dulus, strength) of different materials.		
	- Approximate sizing using the network theory of the structu	ıral elements implement and evaluate.		
	- selecting appropriate solutions for mechanical material problems: Solution of inverse problems (neural networks, optimizatio methods).			
Personal Competence				
Social Competence				
	- arrive at work results in groups and document them.			
	- provide appropriate feedback and handle feedback on	their own performance constructively.		
Autonomy	Students are able to,			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and to	define further work steps on this basis guid	ded by teachers.	
	They are able to fill gaps in as well as extent their	knowledge using the literature and o	ther sources provide	d by the supervis
	Furthermore, they can meaningfully extend given pro	blems and pragmatically solve them I	by means of corresp	onding solutions a
	concepts.			
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Examination	Written exam			
xamination duration and scale	1,5 h written exam in S. a. P. of Composites			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula	Mechanical Engineering and Management: Core qualificat	ion: Compulsory		

Course L1626: Applied Computational Methods for Material Science		
Тур	Problem-based Learning	
Hrs/wk	3	
CP	3	
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42	
Lecturer	Prof. Norbert Huber	
Language	DE/EN	
Cycle	WiSe	
Content	Finite Element Method (discretisation, solver, programming with Python, automatized control and analysis of parametric studies)	
	Examples of elastomechanics (tension, bending, four-point-bending, crack propagation, J-integral, cohesive zone models, contact)	
	Material behaviour (elasticity, plasticity, small and finite deformations, modelling of multiphase materials)	
	Solution of inverse problems (artificial neural networks, optimization)	
Literature	Alle Vorlesungsmaterialien und Beispiellösungen (Input-Dateien, Python Scirpte) werden auf Stud.IP zur Verfügung gestellt.	
	All lecture material and example solutions (input files, python scripts) will be made available in Stud.IP.	

Course L0513: Structure and Properties of Composites		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	EN	
Cycle	WiSe	
Content	- Microstructure and properties of the matrix and reinforcing materials and their interaction	
	- Development of composite materials	
	- Mechanical and physical properties	
	- Mechanics of Composite Materials	
	- Laminate theory	
	- Test methods	
	- Non destructive testing	
	- Failure mechanisms	
	- Theoretical models for the prediction of properties	
	- Application	
Literature	Hall, Clyne: Introduction to Composite materials, Cambridge University Press	
	Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press	
	Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York	

Module M1198: Materials F	Physics and Atomistic Materials Modeling			
	Tryotoc and Attornions materials modeling			
Courses				
Title		Тур	Hrs/wk	CP
Atomistic Materials Modeling (L1672)		Lecture	2	3
Materials Physics (L1624)		Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	none.			
Recommended Previous	Advanced mathematics, physics and chemistry for students	in engineering or natural sciences		
Knowledge				
Educational Objectives	After taking part successfully, students have reached the fol	lowing learning results		
Professional Competence				
Knowledge	The students are able to			
	- explain the fundamentals of condensed matter physics			
	- describe the fundamentals of the microscopic structure an	d mechanics, thermodynamics and op	otics of materials systems.	
	- to understand concept and realization of advanced metho	ds in atomistic modeling as well as to	estimate their potential and	d limitations.
Skills	After attending this lecture the students			
	can perform calculations regarding the thermodynar	mics mechanics electrical and optical	I properties of condensed a	matter systems
	are able to transfer their knowledge to related techn			nation dydicinio
	can select appropriate model descriptions for specifications.		• .	nole models.
				.,
Personal Competence				
Social Competence	The students are able to present solutions to specialists and	d to develop ideas further.		
Autonomy	Students are able to assess their knowldege continuously of	on their own by exemplified practice.		
	The students are able to assess their own strengths and we	eaknesses and define tasks independe	ently.	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula				

Course L1672: Atomistic Materials Modeling	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Stefan Müller
Language	DE/EN
Cycle	WiSe
Content	
Literature	

Course L1624: Materials Physics	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	WiSe
Content	
Literature	Für den Elektromagnetismus:
	Bergmann-Schäfer: "Lehrbuch der Experimentalphysik", Band 2: "Elektromagnetismus", de Gruyter
	Für die Atomphysik:
	Haken, Wolf: "Atom- und Quantenphysik", Springer
	Für die Materialphysik und Elastizität:
	Hornbogen, Warlimont: "Metallkunde", Springer

Module M1218: Lecture: N	fultiscale Materials
Courses	
Title	Typ Hrs/wk CP
Multiscale Materials (L1659)	Lecture 6 6
Module Responsible	Prof. Gerold Schneider
Admission Requirements	Mandatory lectures of the first semester of the master course "materials science"
Recommended Previous	Fundamentals in physics and chemistry, Fundamentals and enhanced fundamentals in materials science, Advanced mathematics, Fundamentals
Knowledge	of the theory elasticity
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	The master students will be able to explain
	the fundamental chemical and physical properties of metals, ceramics and polymers.
	the correlation of chemical and physical phenomena on the atomic, meso and macroscale and its consequences for the macroscopic properties
	of materails.
	The master students will then be able understand the dependence of the macroscopic material properties on the underlying hierarchical levels.
Skills	After attending this lecture the students can
	perform materials design for multiscale materials.
Personal Competence	
Social Competence	The student has an astonishing knowledge in materials properties which demands both, expertise in chemistry, physics and materials science.
	This makes him to an outstanding discussion partner who will be able to understand the scientific arguments of "both sides". Up to now, such an
	education is hard to find at universities.
Autonomy	The students are able to
	assess their own strengths and weaknesses.
	define tasks independently.
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Credit points	6
Examination	Presentation
Examination duration and scale	90 minutes including discussion, short academic report
Assignment for the Following	Materials Science: Core qualification: Compulsory
Curricula	

Course L1659: Multiscale Material	s
Тур	Lecture
Hrs/wk	6
СР	6
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84
Lecturer	Prof. Gerold Schneider, Prof. Norbert Huber, Prof. Stefan Müller, Prof. Patrick Huber, Prof. Manfred Eich, Prof. Bodo Fiedler, Dr. Erica Lilleodden,
	Prof. Karl Schulte, Prof. Jörg Weißmüller
Language	DE
Cycle	WiSe
Content	The materials discussed in this lecture differ from "conventional" ones due to their individual hierarchic microstructure. In conventional microstructure design, the morphology is adjusted, for instance, by thermal treatment and concurrent mechanical deformation. The material is continually and steadily optimized by small changes in structure or chemical composition, also in combination with self-organization processes (precipitation alloys, ceramic glasses, eutectic structures).
	The presented materials consist of functionalized elementary functional units based on polymers, ceramics, metals and carbon nanotubes (CNTs), which are used to create macroscopic hierarchical material systems, whose characteristic lengths range from the nanometer to the centimeter scale. These elementary functional units are either core-shell structures or cavities in metals created by alloy corrosion and subsequent polymer filling.
	Three classes of material systems will be presented:
	First, hierarchically structured ceramic/metal-polymer material systems similar to naturally occurring examples, namely nacre (1 hierarchical level), enamel (3 hierarchical levels) and bone (5 hierarchical levels) will be discussed. Starting with an elementary functional unit consisting of ceramic nanoparticles with a polymeric coating, a material is created in which on each hierarchical level, "hard" particles, made of the respective lower hierarchical level, are present in a soft polymer background. The resulting core-shell structure on each hierarchical level is the fundamental difference compared to a compound material made of rigid interpenetrating ceramic or metallic networks.
	The second material system is based on nanoporous gold, which acts as a prototypical material for new components in light weight construction with simultaneous actuator properties. Their production and resulting length-scale specific mechanical properties will be explained. Furthermore, related scale-spanning theoretical models for their mechanical behavior will be introduced. This covers the entire scale from the electronic structure on the atomic level up to centimeter-sized macroscopic samples.
	The third material system discussed in the lecture are novel hierarchical nanostructured materials based on thermally stable ceramics and metals for high-temperature photonics with potential use in thermophotovoltaic systems (TPVs) and thermal barrier coatings (TBCs). Direct and inverted 3D-photonic crystal structures (PhCs) as well as novel optically hyperbolic media, in particular, are worthwhile noting. Due to their periodicity and diffraction index contrast, PhCs exhibit a photonic band structure, characterized by photonic band gaps, areas of particularly high photonic densities of states and special dispersion relations. The presented properties are to be used to reflect thermal radiation in TBCs in a strong and directed manner, as well as to link radiation effectively and efficiently in TPVs.
Literature	Aktuelle Publikationen

Module M1170: Phenome	na and Methods in Materials Science			
Courses				
Title		Тур	Hrs/wk	СР
Experimental Methods for the Character	ization of Materials (L1580)	Lecture	2	3
Phase equilibria and transformations (L1	579)	Lecture	2	3
Module Responsible	Prof. Patrick Huber			
Admission Requirements	none.			
Recommended Previous	Fundamentals of Materials Science (I and II)			
Knowledge				
Educational Objectives	After taking part successfully, students have reached t	he following learning results		
Professional Competence				
Knowledge	The students will be able to explain the properties of a	dvanced materials along with their applicat	ions in technology, in part	icular metallic, ceramic
	polymeric, semiconductor, modern composite materia	ls (biomaterials) and nanomaterials.		
Skills	The students will be able to select material configuration	ions according to the technical needs and,	if necessary, to design ne	w materials considering
	architectural principles from the micro- to the macros	cale. The students will also gain an overvi	ew on modern materials	science, which enables
	them to select optimum materials combinations deper	iding on the technical applications.		
Personal Competence				
Social Competence	The students are able to present solutions to specialists and to develop ideas further.			
Autonomy	The students are able to			
	 assess their own strengths and weaknesses. 			
	define tasks independently.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 5	6		
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	International Management and Engineering: Specialis	sation II. Product Development and Product	ion: Elective Compulsory	
Curricula	Materials Science: Core qualification: Compulsory			
	Product Development, Materials and Production: Spec	cialisation Product Development: Elective C	ompulsory	
	Product Development, Materials and Production: Spec	cialisation Production: Elective Compulsory		
	Product Development, Materials and Production: Spec	cialisation Materials: Compulsory		
	Theoretical Mechanical Engineering: Specialisation N	faterials Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical Comp	elementary Course: Elective Compulsory		

Course L1580: Experimental Meth	ods for the Characterization of Materials
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	SoSe
Content	 Structural characterization by photons, neutrons and electrons (in particular X-ray and neutron scattering, electron microscopy, tomography) Mechanical and thermodynamical characterization methods (indenter measurements, mechanical compression and tension tests, specific heat measurements) Characterization of optical, electrical and magnetic properties (spectroscopy, electrical conductivity and magnetometry)
Literature	William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011). William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Course L1579: Phase equilibria an	Course L1579: Phase equilibria and transformations		
Тур	Lecture		
Hrs/wk	2		
СР	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Jörg Weißmüller		
Language	DE		
Cycle	SoSe		
Content	Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free-energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.		
Literature	Wird im Rahmen der Lehrveranstaltung bekannt gegeben.		

Module M1219: Advanced	Laboratory Materials Sciences			
Courses				
Title		Тур	Hrs/wk	СР
Advanced Laboratory Materials Science	es (L1653)	Laboratory Course	6	6
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	open to all students of the degree course			
Recommended Previous	knowledge of Materials Science fundamentals			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the fo	ollowing learning results		
Professional Competence				
Knowledge	- not applicable -			
Skills	guided scientific experimentation data analysis			
Personal Competence				
Social Competence	scientific discussion of results written presentation of results in a protocol oral presentation of scientific topics			
Autonomy				
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6	,		
Examination	Written elaboration			
Examination duration and scale	ca. 25 pages			
Assignment for the Following Curricula	Materials Science: Core qualification: Compulsory			

Course L1653: Advanced Laborate	ourse L1653: Advanced Laboratory Materials Sciences			
Тур	Laboratory Course			
Hrs/wk	6			
CP	6			
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Lecturer	Prof. Jörg Weißmüller, Prof. Patrick Huber, Prof. Bodo Fiedler, Dr. Erica Lilleodden, Prof. Gerold Schneider			
Language	DE/EN			
Cycle	SoSe			
Content				
Literature				

Module M1226: Mechanic	al Properties			
Courses				
Title		Тур	Hrs/wk	СР
Mechanical Behaviour of Brittle Materials	s (L1661)	Lecture	2	3
Dislocation Theory of Plasticity (L1662)		Lecture	2	3
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	none			
Recommended Previous	Basics in Materials Science I/II			
Knowledge				
Educational Objectives	After taking part successfully, students have read	ched the following learning results		
Professional Competence				
Knowledge	Students can explain basic principles of crystallo	ography, statics (free body diagrams, tractions) and	d thermodynamics (energ	gy minimization, energy
	barriers, entropy)			
Ckilla				aatiana
SKIIIS	Students are capable of using standardized calculation methods: tensor calculations, derivatives, integrals, tensor transformations			
Personal Competence				
Social Competence	Students can provide appropriate feedback and handle feedback on their own performance constructively.			
Autonomy				
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	aggage their own state of learning in angelfic to	rms and to define further work steps on this basis g	uidad by taashara	
	assess their own state of learning in specific ter	ins and to define further work steps on this basis g	dided by teachers.	
	- work independently based on lectures and note	es to solve problems, and to ask for help or clarifica	ations when needed	
Workload in Hours	Independent Study Time 124, Study Time in Lec	ture 56		
Credit points	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Core qualification: Compulso	ry		
Curricula	Mechanical Engineering and Management: Spe-	cialisation Materials: Elective Compulsory		
	Product Development, Materials and Production	: Specialisation Product Development: Elective Co	mpulsory	
	Product Development, Materials and Production	: Specialisation Production: Elective Compulsory		
	Product Development, Materials and Production	: Specialisation Materials: Compulsory		

Typ Lecture Hrawk 2 CP 3 Workload in Hours Independent Study Time 62, Study Time in Lecture 28 Lecturer Flot. Genold Schneider Language DEEN Cycle SoSe Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Detect distribution, strength distribution, Weibuill distribution Heterogeneous materials II Toughaning mechanisms crack bridging, fibres Heterogeneous materials III Toughaning mechanisms crack bridging, fibres Heterogeneous materials III Toughaning mechanisms Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable-unstable crack growth, fractography Thermal shock Subcrittical crack growth V.K.curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. H. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics, Cambridge University Press, 1998 B.R. Lawn, Friciture of Brittle Solids, Cambridge University Press, 1993 D. Murx, T. Felt, Ceramics, Springer, 2001 D.W. Richerson, Modern Ceramic Engineering, Material Decker, New York, 1992	Course L1661: Mechanical Behavi	our of Brittle Materials
Workload in Hours Independent Study Time 62, Study Time in Lecture 28 Lecturer Prof. Genold Schneider Language DEEN Cycle SoSa Content Thereticial Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, tracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials Internal stresses, micro-cracks, weight function, Heterogeneous materials Internal stresses, micro-cracks, weight function, Heterogeneous materials Internal stresses, micro-crack bridging, fibres Heterogeneous materials Internal stresses zone Testing methods to determine the fracture toughness of brittle materials Recurve, stable unstable crack growth, fractography Thermal shock Subcritical crack growth Vectorive, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F, Ashty, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An Introduction to the mechanical properties of coramics, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids; Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Тур	Lecture
Morkload In Hours Independent Study Time 62. Study Time in Lecture 28	Hrs/wk	2
Lecturer Language DEEN Cycle SoSe Content Theoretical Strength Ola perfect crystalline materials, theoretical critical shear stress Real strength of brittle materials Energy release reale, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuill distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subertitical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D. J. Green, An Introduction to the mechanical properties of ceramics', Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids', Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	СР	3
Cycle SoSe Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, stength distribution, Weibuil distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, libres Heterogeneous materials II Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thernal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. H. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An Introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids'; Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I Intermal stresses, micro cracks, weight function, Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Lecturer	Prof. Gerold Schneider
Content Theoretical Strength Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Language	DE/EN
Of a perfect crystalline material, theoretical critical shear stress Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials II Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Cycle	SoSe
Real strength of brittle materials Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I internal stresses, micro cracks, weight function, Heterogeneous materials III Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Content	
Energy release reate, stress intensity factor, fracture criterion Scattering of strength of brittle materials Defect distribution, strength distribution, Weibuil distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Sollds", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Of a perfect crystalline material, theoretical critical shear stress
Scattering of strength of brittle materials Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms: Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Real strength of brittle materials
Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Energy release reate, stress intensity factor, fracture criterion
Defect distribution, strength distribution, Weibull distribution Heterogeneous materials I Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Scattering of strength of brittle materials
Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Internal stresses, micro cracks, weight function, Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Heterogeneous materials II Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Toughening mechanisms: crack bridging, fibres Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		internal suesses, micro clacks, weight function,
Heterogeneous materials III Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics*, Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids*, Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Heterogeneous materials II
Toughening mechanisms. Process zone Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Toughening mechanisms: crack bridging, fibres
Testing methods to determine the fracture toughness of brittle materials R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Heterogeneous materials III
R-curve, stable/unstable crack growth, fractography Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature DR H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Toughening mechanisms. Process zone
Thermal shock Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Testing methods to determine the fracture toughness of brittle materials
Subcritical crack growth) v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		R-curve, stable/unstable crack growth, fractography
v-K-curve, life time prediction Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Thermal shock
Kriechen Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Subcritical crack growth)
Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		v-K-curve, life time prediction
Mechanical properties of biological materials Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Kriechen
Examples of use for a mechanically reliable design of ceramic components Literature D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		
Literature D. R. H. Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Mechanical properties of biological materials
D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998 B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001		Examples of use for a mechanically reliable design of ceramic components
B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993 D. Munz, T. Fett, Ceramics, Springer, 2001	Literature	D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier
D. Munz, T. Fett, Ceramics, Springer, 2001		D.J. Green, An introduction to the mechanical properties of ceramics", Cambridge University Press, 1998
		B.R. Lawn, Fracture of Brittle Solids", Cambridge University Press, 1993
D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992		D. Munz, T. Fett, Ceramics, Springer, 2001
		D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Course L1662: Dislocation Theory	of Plasticity
Тур	Lecture
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects.
	We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes.
Literature	Vorlesungsskript Aktuelle Publikationen Bücher: Introduction to Dislocations, by D. Hull and D.J. Bacon Theory of Dislocations, by J.P. Hirth and J. Lothe Physical Metallurgy, by Peter Hassen

Module M1199: Advanced	Functional Materials			
Courses				
Title		Тур	Hrs/wk	СР
Advanced Functional Materials (L1625)		Lecture	2	6
Module Responsible	Prof. Patrick Huber			
Admission Requirements	none.			
Recommended Previous	Fundamentals of Materials Science (I and II)			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following	owing learning results		
Professional Competence				
Knowledge	The students will be able to explain the properties of advance	ed materials along with their applica	tions in technology, in parti	cular metallic, ceramic,
	polymeric, semiconductor, modern composite materials (bior	materials) and nanomaterials.		
Skille	The students will be able to select material configurations ac	ecording to the technical needs and	if necessary to design new	materials considering
Okins	architectural principles from the micro- to the macroscale. T			
	them to select optimum materials combinations depending o	•	iew on modern materials s	olonoo, willon onables
	3 · · · · · · · · · · · · · · · · · · ·			
Personal Competence				
Social Competence	The students are able to present solutions to specialists and	to develop ideas further.		
Autonomy	The students are able to			
	 assess their own strengths and weaknesses. 			
	 define tasks independently. 			
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28			
	6			
Examination	Written exam			
Examination duration and scale	90 min			
Assignment for the Following	Materials Science: Core qualification: Compulsory			
Curricula	Mechanical Engineering and Management: Specialisation M	Materials: Elective Compulsory		
	Biomedical Engineering: Specialisation Artificial Organs and	Regenerative Medicine: Elective Co	ompulsory	
	Biomedical Engineering: Specialisation Implants and Endop	rostheses: Elective Compulsory		
	Biomedical Engineering: Specialisation Medical Technology	and Control Theory: Elective Comp	ulsory	
	Biomedical Engineering: Specialisation Management and B	usiness Administration: Elective Con	npulsory	
	Theoretical Mechanical Engineering: Technical Complemen			
	Theoretical Mechanical Engineering: Specialisation Material	Is Science: Elective Compulsory		

Course L1625: Advanced Functional Materials		
Тур	Lecture	
Hrs/wk	2	
CP	6	
Workload in Hours	Independent Study Time 152, Study Time in Lecture 28	
Lecturer	Prof. Patrick Huber, Prof. Stefan Müller, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller	
Language	DE/EN	
Cycle	WiSe	
Content	1. Porous Solids - Preparation, Characterization and Functionalities	
	2. Fluidics with nanoporous membranes	
	3. Thermoplastic elastomers	
	4. Optimization of polymer properties by nanoparticles	
	5. Fiber composites in automotive	
	6. Modeling of materials based on quantum mechanics	
	7. Biomaterials	
Literature	Wird in der Veranstaltung bekannt gegeben	

Module M1221: Project wo	ork on Modern Issues in the Materials Sciences
Courses	
Title	Typ Hrs/wk CP
Module Responsible	Prof. Jörg Weißmüller
Admission Requirements	open to all students of the degree course
Recommended Previous	knowledge of Materials Science fundamentals
Knowledge	
Educational Objectives	After taking part successfully, students have reached the following learning results
Professional Competence	
Knowledge	detailed knowledge in the area of the project topic
Skills	 independent familiarization with the scientific context of a specified topic guided execution of scientific experiment, computation or simulation data analysis and scientific discussion of results written presentation of results in a protocol oral presentation of the project results
Personal Competence	
Social Competence	Students are able to discuss scientific results with specific target groups, to document results in a written form and to present them orally.
Autonomy	
Workload in Hours	Independent Study Time 360, Study Time in Lecture 0
Credit points	12
Examination	Project (accord. to Subject Specific Regulations)
Examination duration and scale	
Assignment for the Following Curricula	

Specialization Engineering Materials

Students learn in the Engineering Materials specialization the evaluation of the different materials in the technology-oriented environment.

They gain knowledge about process planning as well as managing of projects or personnel. Students are able to evaluate and make decisions on materials, industrial production, quality assurance and failure analysis.

Module M1202: Design wi	th Polymers and Composites			
Courses				
Title		Тур	Hrs/wk	CP
Joining of Polymer-Metal Lightweight Str		Lecture	2	2
Joining of Polymer-Metal Lightweight Str		Laboratory Course	1	1
Design with Polymers and Composites (Lecture	2	3
Module Responsible				
Admission Requirements				
Recommended Previous Knowledge	Structure and Properties of Polymers			
Kilowieuge	Structure and Properties of Composites			
Educational Objectives	After taking part successfully, students have reached the follow	ing learning results		
Professional Competence				
Knowledge	Students can reflect the fundamentals of design elements	of fiber composites and plastics.		
	They can explain the complex relationships of loads on Po	lymer- and fiber composite structu	res.	
	The interactions of processing technologies, design an	d strength (calculation), includin	g to explain contexts	s (e.g. sustainability,
	environment).			
Skills	Students are capable of using standardized calculation me	thods in a given context to solve		
	- Problem such as Layer design and to solve manufacturin	g technology for which non-standa	rd solutions exist.	
	- Approximate sizing using the network theory of the structural elements implement and evaluate.			
	- For their constructive problem select appropriate design elements and dimensioning example Connection technology, sandwich technology.			
	- In the field of thermoplastic construction elements su performance appropriate.	ch as Film hinge to assess sna	ap with manufacturing	technologies, costs,
Personal Competence				
Social Competence	Students can,			
	- arrive at work results in groups and document them.			
	- provide appropriate feedback and handle feedback on the	ir own performance constructively.		
Autonomy	Students are able to,			
	the transmitter and another and			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and to	define further work steps on this	basis guided by teach	ers.
		access the state of loaning in epocine terms and to define father work steps of this basis guided by teachers.		
	- assess possible consequences of their professional activ	ity.		
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Examination	Written exam			
Examination duration and scale	3 h			
Assignment for the Following	Aircraft Systems Engineering: Specialisation Cabin Systems: E	lective Compulsorv		
Curricula	International Management and Engineering: Specialisation II. F		n: Elective Compulsory	
	Materials Science: Specialisation Engineering Materials: Electi	'		
		· · ·		

Course L0500: Joining of Polymer-	- Metal Lightweight Structures	
	Lecture	
Hrs/wk	2	
СР	2	
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28	
Lecturer	Prof. Sergio Amancio Filho	
Language	EN	
Cycle	WiSe	
	Recommended Previous Knowledge:	
	Fundamentals of Materials Science and Engineering	
	Basic Knowledge of Science and Technology of Welding and Joining	
	Contents:	
	The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures:	
	Theoretical Lectures:	
	- Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology	
	- Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics	
	- Mechanical Fastening of Polymer-Metal Hybrid Structures	
	- Adhesive Bonding of Polymer-Metal Hybrid Structures	
	- Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures	
	- Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures	
	Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course)	
	- Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining)	
	- Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints	
	Learning Outcomes:	
	After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields.	
Literature	 Lecture Notes and selected papers J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited 	

Course L0501: Joining of Polymer-Metal Lightweight Structures	
Тур	Laboratory Course
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Sergio Amancio Filho
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L0057: Design with Polymers and Composites		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	DE	
Cycle	WiSe	
Content	Designing with Polymers: Materials Selection; Structural Design; Dimensioning	
	Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques;	
	Compression Loading; Examples	
Literature	Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag	

Module M1206: Ceramics	and Polymers			
Courses				
Title		Тур	Hrs/wk	СР
Structure and Properties of Polymers (L	0389)	Lecture	2	3
Ceramics Technology (L0379)		Lecture	2	3
Module Responsible	Dr. Hans Wittich			
Admission Requirements	none			
Recommended Previous	Basics in Materials Science II			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	following learning results		
Professional Competence Knowledge	Students can use the knowledge of ceramic	es and polymers and define the	necessary testing a	nd analysis.
	They can explain the complex relationships	structure-property relationship	and	
	the interactions of chemical structure of neighboring contexts (e.g. sustainability, en		eir processing, incl	uding to explain
Skills	Students are capable of			
	- using standardized calculation methods calculate and evaluate the different materia	_	nical properties (mod	dulus, strength) to
	- For mechanical recycling problems sele resistance.	cting appropriate solutions an	d sizing example S	tiffness, corrosion
Personal Competence Social Competence				
	- arrive at work results in groups and docum	ent them.		
Autonomy	- provide appropriate feedback and handle	feedback on their own performa	ance constructively.	
	Students are able to,			
	- assess their own strengths and weakness	es		
	- assess their own state of learning in spe teachers.	cific terms and to define further	er work steps on this	s basis guided by
	- assess possible consequences of their pro	ofessional activity.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	3 h			
Assignment for the Following				
Curricula	Biomedical Engineering: Specialisation Artificial Organs		ompulsory	
	Biomedical Engineering: Specialisation Implants and En		ulaani	
	Biomedical Engineering: Specialisation Medical Technol			
	Biomedical Engineering: Specialisation Management an	u business Administration: Elective Con	npuisory	

Course L0389: Structure and Properties of Polymers	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Dr. Hans Wittich
Language	DE
Cycle	WiSe
Content	
Literature	Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag

Course L0379: Ceramics Technology	ogy		
Тур	Lecture		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Dr. Rolf Janßen		
Language	DE/EN		
Cycle	WiSe		
Content	Introduction to ceramic processing with emphasis on advanced structural ceramics. The course focus predominatly on powder-based processing, e.g. "powder-metauurgical techniques and sintering (soild state and liquid phase). Also, some aspects of glass and cement science as well as new developments in powderless forming techniques of ceramics and ceramic composites will be addressed Examples will be discussed in order to give engineering students an understanding of technology development and specific applications of ceramic components.		
	Content: 1. Introduction		
	Inhalt: 2. Raw materials		
	3. Powder fabrication		
	4. Powder processing		
	5. Shape-forming processes		
	6. Densification, sintering		
	7. Glass and Cement technology		
	8. Ceramic-metal joining techniques		
Literature	W.D. Kingery, "Introduction to Ceramics", John Wiley & Sons, New York, 1975		
	ASM Engineering Materials Handbook Vol.4 "Ceramics and Glasses", 1991		
	D.W. Richerson, "Modern Ceramic Engineering", Marcel Decker, New York, 1992		
	Skript zur Vorlesung		

Module M1225: Metallic Li	ight-weight Materials			
Courses				
Title		Тур	Hrs/wk	СР
Metallic Light-weight Materials (L1660)		Lecture	2	4
Materials Testing (L0949)	,	Lecture	2	2
Module Responsible	Prof. Karl-Ulrich Kainer			
Admission Requirements				
Recommended Previous	Basics in chemistry / physics / material science			
Knowledge	After the large most accessorially, and another house years had the fall accions	la avaina va avilta		
Educational Objectives Professional Competence		learning results		
Knowledge				
	- to use the basics of metallic lightweight structural materials			
	- to apply selection criteria known for metallic lightweight structural	material		
	- to select suitable test methods and analysis methods for the chara-	acterisation of the materials		
	- to understand complex correlation between processing-microstruc	cture-properties in example	es	
	- to show application potential and typical examples of use			
Skills	Students are able			
	- to weigh pros and cons of the different material groups,			
	- to make decisions on the choice of suitable materials for application	on in material lightweight d	esign,	
	- to evaluate the property potential of the materials and to assess th	e different materials,		
	- to select suitable solutions for material related prob corrosion and processability	olems and for designing	ng of parts, e.g., med	hanical properties
Personal Competence				
Social Competence	Students are able to			
	- arrive at work results in groups, document and evaluate them,			
	- provide appropriate feedback and handle external feed	back on their own perf	ormance constructively.	
Autonomy	Students are able to			
	- assess their own strengths and weaknesses,			
	- assess their own state of learning in specific terms and to define f	rurther work steps on this ba	asis guided by lecturers,	
	- assess possible consequences of their professional a	ctivity		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min		-	
Assignment for the Following	Materials Science: Specialisation Engineering Materials: Elective C	Compulsory		
Curricula				

Course L1660: Metallic Light-weight Materials	
Тур	Lecture
Hrs/wk	2
СР	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Prof. Karl-Ulrich Kainer
Language	DE
Cycle	
Content	Lightweight construction
	- Structural lightweight construction
	- Material lightweight construction
	- Choice criteria for metallic lightweight construction materials
	Steel as lightweight construction materials
	- Introduction to the fundamentals of steels
	- Modern steels for the lightweight construction
	- Fine grain steels

- High-strength low-alloyed steels
- Multi-phase steels (dual phase, TRIP)
- Weldability
- Applications

Aluminium alloys:

Introduction to the fundamentals of aluminium materials

Alloy systems

Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Magnesium alloys

Introduction to the fundamental of magnesium materials

Alloy systems

Magnesium casting alloys, processing, microstructure and qualities

Magnesium wrought alloys, processing, microstructure and qualities

Examples of applications

Titanium alloys

Introduction to the fundamental of the titanium materials

Alloy systems

Processing, microstructure and properties

Examples of applications

Exercises and excursions

Literature George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.

Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2

C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095

Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.

Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.

Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2

Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9

Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5

G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397

Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x

Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya "Fundamentals of Magnesium Alloy Metallurgy", Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887

Course L0949: Materials Testing	
Тур	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Jan Oke Peters
Language	DE
Cycle	WiSe
Content	
	Application and analysis of basic mechanical as well as non-destructive testing of materials Determination elastic constants Tensile test Fatigue test (testing with constant stress, strain, or plastiv strain amplitude, low and high cycle fatigue, mean stress effect) Crack growth upon static loading (stress intensity factor, fracture toughness) Creep test Hardness test Charpy impact test Non destructive testing
Literature	E. Macherauch: Praktikum in Werkstoffkunde, Vieweg G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Module M0593: Building M	Materials and Building Preservation			
Courses				
Title		Тур	Hrs/wk	СР
Anchor Technology and Design, Post In	stalled Rebar Connections (L0257)	Recitation Section (small)	1	1
Repair of Structures (L0255)		Lecture	1	1
Mineral Building Materials (L0253) Technology of mineral Building Materials	(1.0356)	Lecture Recitation Section (small)	2 1	2
Fransport Processes in Building Materials		Lecture	1	1
Module Responsible			·	
Admission Requirements	None			
Recommended Previous	Basic knowledge about building materials, building	g physics and building chemistry, for example b	y the modules Princip	les of Building Material
Knowledge	and Building Physics and Building Materials and Bu		,	· ·
Educational Objectives	After taking part successfully, students have reache	d the following learning results		
Professional Competence				
Knowledge	The students are able to describe the components	of mineral building materials and their function in	n detail and to use the	m for the manufacture of
	special mineral building materials. They are able	e to show the characteristics of mineral buildi	ng materials. They a	re able to describe the
	manufacture, properties and fields of application of	f special mortars and special concretes and the	correlations of their m	aterial parameters. The
	are able to show the principles of anchor technolog	y and design.		
Ol::II-	The shadows are all a second one or anticoloration	formania anatomora for animoral building anatomial. Th		
Skills	The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to			
		'	•	
	assess possible causes, to use the fundamentals of	r construction preservation and to select repair ar	nd strengthening meas	sures.
Personal Competence				
Social Competence	The students are able to develop in small grous the	e mixture of a special mortar. They present their r	esults to the lecturer a	and the other students. I
	a critical discussion they defend and adjust their re	esults. The students are able to manufacture the	ir special building ma	terial on the basis of thi
	feedback.			
Autonomy	The students are able to responsibly use the resc	ources of materials and lab equipment for their	project and to invest	gate and to get missing
Autonomy	components.	orders of materials and lab equipment for their	project and to invest	gate and to get missing
	components.			
Workload in Hours	Independent Study Time 96, Study Time in Lecture 84			
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following	Civil Engineering: Specialisation Geotechnical Eng	ineering: Compulsory		
Curricula	Civil Engineering: Specialisation Coastal Engineeri	ing: Elective Compulsory		
	Civil Engineering: Specialisation Structural Engineer	ering: Elective Compulsory		
	Materials Science: Specialisation Engineering Mate	erials: Elective Compulsory		

Course L0257: Anchor Technology	y and Design, Post Installed Rebar Connections
Тур	Recitation Section (small)
Hrs/wk	1
СР	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Dr. Gernod Deckelmann
Language	DE
Cycle	SoSe
Content	 Working principles of friction, keying and bonding anchors Selection of anchors Anchor design Installation of anchors Post installed rebar connections and additional german regulations
Literature	Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung Beton-Kalender 2012: Infrastrukturbau, Befestigungstechnik. Eurocode 2. Herausgegeben von Konrad Bergmeister, Frank Fingerloos und Johann-Dietrich Wörner; 2012 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG. DIBt: Hinweise für die Montage von Dübelverankerungen; Oktober 2010 Ratgeber Dübeltechnik, Basiswissen - Metalldübel, chemische Dübel, Kunststoffdübel; Herausgeber Hilti AG

Course L0255: Repair of Structures	
Тур	Lecture
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann
Language	DE
Cycle	SoSe
Content	Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature	BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen

Course L0253: Mineral Building Materials	
Тур	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Frank Schmidt-Döhl
Language	DE
Cycle	SoSe
Content	Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature	Taylor, H.F.W.: Cement Chemistry
	Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mine	Course L0256: Technology of mineral Building Materials	
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Frank Schmidt-Döhl	
Language	DE	
Cycle	SoSe	
Content	Design and production of mineral building materials	
Literature	Taylor, H.F.W.: Cement Chemistry	
	Springenschmid, R.: Betontechnologie für die Praxis	

Course L0254: Transport Process	Course L0254: Transport Processes in Building Materials and Damage Processes	
Тур	Lecture	
Hrs/wk	1	
CP	1	
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14	
Lecturer	Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann	
Language	DE	
Cycle	SoSe	
Content	Transport Processes in Building Materials and Damage Processes	
Literature	Blaich, J.: Bauschäden, Analyse und Vermeidung	

Module M1144: Manufactu	ring with Polymers and Composites	From Molecule to Part		
Courses				
Title		Тур	Hrs/wk	СР
Manufacturing with Polymers and Compo	osites (L0511)	Lecture	2	3
From Molecule to Composites Part (L15	16)	Problem-based Learning	2	3
Module Responsible	Prof. Bodo Fiedler			
Admission Requirements	Non			
Recommended Previous	Structure and Properties of Polymers			
Knowledge	Structure and Properties of Composites			
Educational Objectives	After taking part successfully, students have reache	d the following learning results		
Professional Competence				
Knowledge	Students are able to give a summary of the techni relationships. They are capable of describing and can explain the typical process of solving practical	communicating relevant problems and questions		
Skills	The students can transfer their fundamental known overcome typical problems during the realization of conceptual solutions for non-standardized problems	projects in the context of civil engineering. Stude		
Personal Competence Social Competence	Students are able to cooperate in small, mixed-sul	oject groups in order to independently derive solu	utions to given proble	ms in the context of civil
	engineering. They are able to effectively present a ability to develop alternative approaches to an eng		·	
Autonomy	Students are capable of independently solving me- extent their knowledge using the literature and of problems and pragmatically solve them by means of	other sources provided by the supervisor. Further	•	• .
Workload in Hours	Independent Study Time 124, Study Time in Lectur	e 56		
Credit points	6			
Examination	Written elaboration			
Examination duration and scale	1,5 h			
Assignment for the Following	International Management and Engineering: Speci	alisation II. Product Development and Production:	Elective Compulsory	
Curricula	Materials Science: Specialisation Engineering Mate	erials: Elective Compulsory		
	Mechanical Engineering and Management: Specia	lisation Materials: Elective Compulsory		
	Product Development, Materials and Production: S	pecialisation Product Development: Elective Com	pulsory	
	Product Development, Materials and Production: S	pecialisation Production: Elective Compulsory		
	Product Development, Materials and Production: S	pecialisation Materials: Compulsory		
	Theoretical Mechanical Engineering: Specialisation			
	Theoretical Mechanical Engineering: Technical Co	mplementary Course: Elective Compulsory		

Course L0511: Manufacturing with Polymers and Composites	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Bodo Fiedler
Language	EN
Cycle	SoSe
Content	Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining
	Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding
Literature	Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
	Crawford: Plastics engineering, Pergamon Press
	Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
	Åström: Manufacturing of Polymer Composites, Chapman and Hall

Course L1516: From Molecule to Composites Part		
Тур	Problem-based Learning	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	SoSe	
Content	Students get the task in the form of a customer request for the development and production of a MTB handlebar made of fiber composites. In the task technical and normative requirements (standards) are given, all other required information come from the lectures and tutorials, and the respective documents (electronically and in conversation). The procedure is to specify in a milestone schedule and allows students to plan tasks and to work continuously. At project end, each group has a made handlebar with approved quality. In each project meeting the design (discussion of the requirements and risks) are discussed. The calculations are analyzed, evaluated and established manufacturing methods are selected. Materials are selected bar will be produced. The quality and the mechanical properties are checked. At the end of the final report created (compilation of the results for the "customers"). After the test during the "customer / supplier conversation" there is a mutual feedback-talk ("lessons learned") in order to ensure the continuous improvement.	
Literature	Customer Request ("Handout")	

Module M0595: Examinati	on of Materials, Structural Condition a	ind Damages		
Courses				
Title		Тур	Hrs/wk	СР
Examination of Materials, Structural Con	dition and Damages (L0260)	Lecture	4	4
Examination of Materials, Structural Con	dition and Damages (L0261)	Recitation Section (small)	1	2
Module Responsible	Prof. Frank Schmidt-Döhl			
Admission Requirements	None			
Recommended Previous	Basic knowledge about building materials or materi	al science, for example by the module Building M	aterials and Building (Chemistry.
Knowledge				
Educational Objectives	After taking part successfully, students have reached	d the following learning results		
Professional Competence				
Knowledge	The students are able to describe the rules for trad- testing of building material properties are usable an			
Skills	The students are able to responsibly discover the rules for trading and using of building products in Germany. They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to describe an examination in form of a test report or expert opinion.			
Personal Competence				
Social Competence	The students can describe the different roles of material testing. They can describe the different role		d certification bodies v	within the framework of
Autonomy				
Workload in Hours	Independent Study Time 110, Study Time in Lecture	e 70		
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following	Civil Engineering: Specialisation Structural Engineering: Elective Compulsory			
Curricula	Civil Engineering: Specialisation Geotechnical Eng			
	Civil Engineering: Specialisation Coastal Engineeri	ng: Elective Compulsory		
	International Management and Engineering: Specia	alisation II. Civil Engineering: Elective Compulsor	у	
	Materials Science: Specialisation Engineering Mate	erials: Elective Compulsory		

Course L0260: Examination of Materials, Structural Condition and Damages	
Тур	Lecture
Hrs/wk	4
CP	4
Workload in Hours	Independent Study Time 64, Study Time in Lecture 56
Lecturer	Prof. Frank Schmidt-Döhl
Language	DE
Cycle	WiSe
Content	Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert
	opinions, describing the condition of a structure, from symptons to the cause of damages
Literature	Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.

Course L0261: Examination of Ma	Course L0261: Examination of Materials, Structural Condition and Damages	
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Frank Schmidt-Döhl	
Language	DE	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1345: Metallic and Hybrid Light-weight Materials				
Courses				
Title		Тур	Hrs/wk	СР
Joining of Polymer-Metal Lightweight Str	uctures (L0500)	Lecture	2	2
Joining of Polymer-Metal Lightweight Str	uctures (L0501)	Laboratory Course	1	1
Metallic Light-weight Materials (L1660)		Lecture	2	3
Module Responsible	Prof. Sergio Amancio Filho			
Admission Requirements	None			
Recommended Previous				
Knowledge				
Educational Objectives	After taking part successfully, students have reached the foll	owing learning results		
Professional Competence				
Knowledge				
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Independent Study Time 110, Study Time in Lecture 70			
Credit points	6			
Examination	Written exam			
Examination duration and scale	180 min			
Assignment for the Following	Materials Science: Specialisation Engineering Materials: Ele	ective Compulsory		
Curricula	Materials Science: Specialisation Engineering Materials: Ele	ective Compulsory		

Course L0500: Joining of Polymer	-Metal Lightweight Structures
Тур	Lecture
Hrs/wk	2
СР	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Sergio Amancio Filho
Language	EN
Cycle	
Content	Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering
	Basic Knowledge of Science and Technology of Welding and Joining
	Contents:
	The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures:
	Theoretical Lectures:
	- Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology
	- Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics
	- Mechanical Fastening of Polymer-Metal Hybrid Structures
	- Adhesive Bonding of Polymer-Metal Hybrid Structures
	- Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures
	- Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures
	Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course)
	- Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining)
	- Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints
	Learning Outcomes:
	After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields.
Literature	 Lecture Notes and selected papers J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited

Course L0501: Joining of Polymer-Metal Lightweight Structures	
Тур	Laboratory Course
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Sergio Amancio Filho
Language	EN
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L1660: Metallic Light-weight Materials	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Karl-Ulrich Kainer
Language	DE
Cycle	WiSe

Content Lightweight construction

- Structural lightweight construction
- Material lightweight construction
- Choice criteria for metallic lightweight construction materials

Steel as lightweight construction materials

- Introduction to the fundamentals of steels
- Modern steels for the lightweight construction
- Fine grain steels
- High-strength low-alloyed steels
- Multi-phase steels (dual phase, TRIP)
- Weldability
- Applications

Aluminium alloys:

Introduction to the fundamentals of aluminium materials

Alloy systems

Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Magnesium alloys

Introduction to the fundamental of magnesium materials

Alloy systems

Magnesium casting alloys, processing, microstructure and qualities

Magnesium wrought alloys, processing, microstructure and qualities

Examples of applications

Titanium alloys

Introduction to the fundamental of the titanium materials

Alloy systems

Processing, microstructure and properties

Examples of applications

Exercises and excursions

Literature George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.

Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2

C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095

Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.

Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.

Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2

Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9

Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5

G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397

Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x

Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya "Fundamentals of Magnesium Alloy Metallurgy", Woodhead Publishing Ltd, 2013,ISBN 10:0857090887

Module M1291: Materials \$	Science Seminar				
Courses					
Title		Тур	Hrs/wk	СР	
Seminar (L1757)		Seminar	2	3	
Seminar Composites (L1758)		Seminar	2	3	
Seminar Advanced Ceramics (L1801)		Seminar	2	3	
Seminar on interface-dominated materia	s (L1795)	Seminar	2	3	
Module Responsible	Prof. Jörg Weißmüller				
Admission Requirements	None				
Recommended Previous	Advanced materials science knowledge from the first ye	ear of the Master course "Materials Science	ce"		
Knowledge					
Educational Objectives	After taking part successfully, students have reached th	After taking part successfully, students have reached the following learning results			
Professional Competence					
Knowledge	Insights into current issues in materials science.				
	Ability to present and communicate scientific topics to p	peers through talks.			
Skills					
Personal Competence					
Social Competence					
Autonomy					
Workload in Hours	Depends on choice of courses				
Credit points	6				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Ma	terials: Elective Compulsory			
Curricula	Materials Science: Specialisation Modeling: Elective C	ompulsory			
	Materials Science: Specialisation Engineering Material	s: Elective Compulsory			

Course L1757: Seminar	Course L1757: Seminar		
Тур	Seminar		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Examination Form	Referat		
Examination duration and scale			
Lecturer	Prof. Jörg Weißmüller		
Language	DE/EN		
Cycle	WiSe/SoSe		
Content			
Literature			

Course L1758: Seminar Composit	Course L1758: Seminar Composites		
Тур	Seminar		
Hrs/wk	2		
CP	3		
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Examination Form	Referat		
Examination duration and scale			
Lecturer	Prof. Bodo Fiedler		
Language	DE/EN		
Cycle	WiSe/SoSe		
Content			
Literature			

Course L1801: Seminar Advanced Ceramics		
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Gerold Schneider	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1795: Seminar on interface-dominated materials		
Тур	Seminar	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Specialization Modeling

Module M1151: Material M	odeling			
Courses				
Title		Тур	Hrs/wk	СР
Material Modeling (L1535)		Lecture	2	3
Material Modeling (L1536)		Recitation Section (small)	2	3
Module Responsible	Prof. Swantje Bargmann			
Admission Requirements	None			
Recommended Previous	mechanics I			
Knowledge	mechanics II			
	continuum mechanics			
Educational Objectives	After taking part successfully, students have reached the following le	earning results		
Professional Competence				
Knowledge	The students can explain the fundamentals of multidimensional con	situtive material laws		
Skills	The students can implement their own material laws in finite eler	ment codes. In particular, the stud	dents can apply their	knowledge to various
	problems of material science and evaluate the corresponding mater	rial models.		
Personal Competence				
Social Competence	The students are able to develop solutions, to present them to speci	alists and to develop ideas further.		
Autonomy	The students are able to assess their own strengths and weaknes	sses and to define tasks themselv	es. They can solve e	exercises in the area of
ria.c.i.e.ii.y	continuum mechanics on their own.		oo. may aan conto c	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following	Computational Science and Engineering: Specialisation Scientific C	Computing: Elective Compulsory		
Curricula	Materials Science: Specialisation Modelling: Elective Compulsory			
	Mechanical Engineering and Management: Specialisation Materials			
	Biomedical Engineering: Specialisation Artificial Organs and Regen	·	Isory	
	Biomedical Engineering: Specialisation Implants and Endoprosthes	, ,		
	Biomedical Engineering: Specialisation Medical Technology and Co			
	Biomedical Engineering: Specialisation Management and Business	·	ory	
	Product Development, Materials and Production: Core qualification:			
	Theoretical Mechanical Engineering: Specialisation Materials Scien			
	Theoretical Mechanical Engineering: Technical Complementary Co	urse: Elective Compulsory		

Course L1535: Material Modeling	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann, Dr. Dirk Steglich
Language	DE/EN
Cycle	WiSe
Content	fundamentals of finite element methods fundamentals of material modeling introduction to numerical implementation of material laws overview of modelling of different classes of materials combination of macroscopic quantities to material microstructure
Literature	D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer

Course L1536: Material Modeling	
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann, Dr. Ingo Scheider
Language	DE/EN
Cycle	WiSe
Content	
	fundamentals of finite element methods fundamentals of material modeling introduction to numerical implementation of material laws overview of modelling of different classes of materials combination of macroscopic quantities to material microstructure
Literature	D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge G. Gottstein., Physical Foundations of Materials Science, Springer

Module M0604: High-Orde	r FEM			
Courses				
Title		Тур	Hrs/wk	CP
High-Order FEM (L0280)		Lecture	3 1	4
High-Order FEM (L0281)	D (4)	Recitation Section (large)		2
Module Responsible	Prof. Alexander Düster			
Admission Requirements	None			
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV			
Knowledge	D''' '' '' ' ' ' ' ' ' ' ' ' ' ' ' ' '			
	Differential Equations 2 (Partial Differential Equations)			
Educational Objectives	After taking part successfully, students have reached the following learn	ning results		
Professional Competence				
Knowledge	Students are able to			
	+ give an overview of the different (h, p, hp) finite element procedures.			
	+ explain high-order finite element procedures.			
	+ specify problems of finite element procedures, to identify them	in a given situation and to explai	n their mathemat	ical and mechanical
	background.			
Skills	Students are able to			
	+ apply high-order finite elements to problems of structural mechanics.			
	+ select for a given problem of structural mechanics a suitable finite ele	ment procedure.		
	critically judge results of high-order finite elements.			
	+ transfer their knowledge of high-order finite elements to new problem	S.		
Personal Competence				
Social Competence	Students are able to			
	+ solve problems in heterogeneous groups and to document the corres	ponding results.		
Autonomy	Students are able to			
	+ assess their knowledge by means of exercises and E-Learning.			
	+ acquaint themselves with the necessary knowledge to solve research	oriented tasks.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following	Energy Systems: Core qualification: Elective Compulsory			
Curricula	Computational Science and Engineering: Specialisation Scientific Com	puting: Elective Compulsory		
	Materials Science: Specialisation Modelling: Elective Compulsory			
	Mechanical Engineering and Management: Specialisation Product Dev		Compulsory	
	Mechatronics: Technical Complementary Course: Elective Compulsory			
	Product Development, Materials and Production: Core qualification: Ele			
	Naval Architecture and Ocean Engineering: Core qualification: Elective			
	Theoretical Mechanical Engineering: Core qualification: Elective Comp			
	Theoretical Mechanical Engineering: Technical Complementary Cours	e: Elective Compulsory		

Course L0280: High-Order FEM			
Тур	Lecture		
Hrs/wk	3		
CP	4		
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42		
Lecturer	Prof. Alexander Düster		
Language	EN		
Cycle	SoSe		
Content	1. Introduction		
	2. Motivation		
	3. Hierarchic shape functions		
	4. Mapping functions		
	5. Computation of element matrices, assembly, constraint enforcement and solution		
	6. Convergence characteristics		
	7. Mechanical models and finite elements for thin-walled structures		
	8. Computation of thin-walled structures		
	9. Error estimation and hp-adaptivity		
	10. High-order fictitious domain methods		
Literature	[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014		
	[2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis – Formulation, Verification and Validation, John Wiley & Sons, 2011		

Course L0281: High-Order FEM	ourse L0281: High-Order FEM		
Тур	Recitation Section (large)		
Hrs/wk	1		
CP	2		
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14		
Lecturer	Prof. Alexander Düster		
Language	EN		
Cycle	SoSe		
Content	See interlocking course		
Literature	See interlocking course		

Module M0605: Computat	ional Structural Dynamics				
Courses					
Title		Тур	Hrs/wk	СР	
Computational Structural Dynamics (L02	282)	Lecture	3	4	
Computational Structural Dynamics (L02	283)	Recitation Section (small)	1	2	
Module Responsible	Prof. Alexander Düster				
Admission Requirements	None				
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV				
Knowledge	Differential Equations 2 (Partial Differential Equations)				
Educational Objectives	After taking part successfully, students have reached the	e following learning results			
Professional Competence					
Knowledge	Students are able to				
	+ give an overview of the computational procedures for	problems of structural dynamics.			
	+ explain the application of finite element programs to se	olve problems of structural dynamics.			
	+ specify problems of computational structural dynamic	cs, to identify them in a given situation and to	explain their mather	matical and mechanical	
	background.				
Skills	Students are able to				
	+ model problems of structural dynamics.				
	+ select a suitable solution procedure for a given proble	+ select a suitable solution procedure for a given problem of structural dynamics.			
	+ apply computational procedures to solve problems of	+ apply computational procedures to solve problems of structural dynamics.			
	+ verify and critically judge results of computational stru-	ctural dynamics.			
Personal Competence					
Social Competence	Students are able to				
	+ solve problems in heterogeneous groups and to docu	ment the corresponding results.			
Autonomy	Students are able to				
	+ assess their knowledge by means of exercises and E-	Learning.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Written exam				
Examination duration and scale	2h				
Assignment for the Following	Computational Science and Engineering: Specialisation	Scientific Computing: Elective Compulsory			
Curricula	International Management and Engineering: Specialisa	tion II. Mechatronics: Elective Compulsory			
	Materials Science: Specialisation Modelling: Elective Co	ompulsory			
	Mechatronics: Technical Complementary Course: Electi	ve Compulsory			
	Naval Architecture and Ocean Engineering: Core qualif	ication: Elective Compulsory			
	Theoretical Mechanical Engineering: Core qualification	: Elective Compulsory			
	Theoretical Mechanical Engineering: Technical Comple	mentary Course: Elective Compulsory			

Course L0282: Computational Structural Dynamics			
Тур	Lecture		
Hrs/wk	3		
СР	4		
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42		
Lecturer	Prof. Alexander Düster		
Language	DE		
Cycle	SoSe		
Content	1. Motivation		
	2. Basics of dynamics		
	3. Time integration methods		
	4. Modal analysis		
	5. Fourier transform		
	6. Applications		
Literature	[1] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.		
	[2] J.L. Humar, Dynamics of Structures, Taylor & Francis, 2012.		

Course L0283: Computational Structural Dynamics		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M0606: Numerical	Algorithms in Structural Mechanics				
Courses					
Title		Тур	Hrs/wk	СР	
Numerical Algorithms in Structural Mech	anics (L0284)	Lecture	2	3	
Numerical Algorithms in Structural Mech	anics (L0285)	Recitation Section (small)	2	3	
Module Responsible	Prof. Alexander Düster				
Admission Requirements	None				
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV				
Knowledge					
	Differential Equations 2 (Partial Differential Equations	5)			
Educational Objectives	After taking part successfully, students have reached	the following learning results			
Professional Competence					
Knowledge	Students are able to				
	+ give an overview of the standard algorithms that are	used in finite element programs.			
	+ explain the structure and algorithm of finite element	programs.			
	+ specify problems of numerical algorithms, to ide	ntify them in a given situation and to explain	their mathematical	and computer science	
	background.				
Skills	Students are able to				
	+ construct algorithms for given numerical methods.				
	+ select for a given problem of structural mechanics a	suitable algorithm.			
	+ apply numerical algorithms to solve problems of stru	- apply numerical algorithms to solve problems of structural mechanics.			
	+ implement algorithms in a high-level programming I	anguate (here C++).			
	+ critically judge and verfiy numerical algorithms.				
Personal Competence					
Social Competence	Students are able to				
	+ solve problems in heterogeneous groups and to do	cument the corresponding results.			
Autonomy	Students are able to				
	+ assess their knowledge by means of exercises and	E-Learning.			
Workload in Hours	Independent Study Time 124, Study Time in Lecture 5	56			
Credit points	6				
Examination	Written exam				
Examination duration and scale	2h				
Assignment for the Following	Computational Science and Engineering: Specialisati	ion Scientific Computing: Elective Compulsory			
Curricula	Materials Science: Specialisation Modelling: Elective	Compulsory			
	Naval Architecture and Ocean Engineering: Core qua	lification: Elective Compulsory			
	Technomathematics: Specialisation III. Engineering S	cience: Elective Compulsory			
	Technomathematics: Core qualification: Elective Com	pulsory			
	Theoretical Mechanical Engineering: Specialisation N	Numerics and Computer Science: Elective Comp	ulsory		
	Theoretical Mechanical Engineering: Technical Comp	plementary Course: Elective Compulsory			

Course L0284: Numerical Algorith	Course L0284: Numerical Algorithms in Structural Mechanics			
Тур	Lecture			
Hrs/wk	2			
CP	3			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28			
Lecturer	Prof. Alexander Düster			
Language	DE			
Cycle	SoSe			
Content	1. Motivation			
	2. Basics of C++			
	3. Numerical integration			
	. Solution of nonlinear problems			
	Solution of linear equation systems			
	6. Verification of numerical algorithms			
	7. Selected algorithms and data structures of a finite element code			
Literature	[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001.			
	[2] KJ. Bathe, Finite-Elemente-Methoden, Springer, 2002.			

Course L0285: Numerical Algorithms in Structural Mechanics		
Тур	Recitation Section (small)	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Alexander Düster	
Language	DE	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1152: Modeling	Across The Scales			
Courses				
Title		Тур	Hrs/wk	СР
Modeling Across The Scales (L1537)		Lecture	2	3
Modeling Across The Scales - Excercise	e (L1538)	Recitation Section (small)	2	3
Module Responsible	Prof. Swantje Bargmann			
Admission Requirements	None			
Recommended Previous	mechanics I			
Knowledge	mechanics II			
Educational Objectives	After taking part successfully, students have reached th	e following learning results		
Professional Competence				
Knowledge	The students can describe different deformation mecha	nisms on different scales and can name the	appropriate kind of mo	deling concept suited for
	its description.			
Skills	The students are able to predict first estimates of the e	ffective material behavior based on the mate	erial's microstructure. Ti	ney are able to correlate
	and describe the damage behavior of materials based	on their micromechanical behavior. In parti	cular, they are able to a	apply their knowledge to
	different problems of material science and evaluate and	d implement material models into a finite ele	ment code.	
Personal Competence				
Social Competence	The students are able to present solutions to specialists	s and to develop ideas further.		
Autonomy	The students are able to assess their own strengths and	d weaknesses and to define tasks themselve	S.	
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following	Computational Science and Engineering: Specialisation	n Scientific Computing: Elective Compulsory		
Curricula	Materials Science: Specialisation Modelling: Elective C	ompulsory		
	Theoretical Mechanical Engineering: Specialisation Ma	aterials Science: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical Compl	ementary Course: Elective Compulsory		

Course L1537: Modeling Across T	he Scales		
	Lecture		
**	ioui o		
Hrs/wk			
СР			
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28		
Lecturer	Prof. Swantje Bargmann		
Language	DE/EN		
Cycle	SoSe		
Content	 modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models,) relationship between microstructure and macroscopic mechanical material behavior Eshelby problem effective material properties, concept of RVE homogenisation methods, coupling of scales (micro-meso-macro) micromechanical concepts for the description of damage and failure behavior 		
Literature	 D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch G. Gottstein., Physical Foundations of Materials Science, Springer 		

Course L1538: Modeling Across T	he Scales - Excercise
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	SoSe
Content	
	 modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models,) relationship between microstructure and macroscopic mechanical material behavior Eshelby problem effective material properties, concept of RVE homogenisation methods, coupling of scales (micro-meso-macro) micromechanical concepts for the description of damage and failure behavior
Literature	
	D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer
	T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics
	D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch
	G. Gottstein., Physical Foundations of Materials Science, Springer

Module M1237: Methods i	n Theoretical Materials Science				
Courses					
Title		Тур	Hrs/wk	СР	
Methods in Theoretical Materials Science	e (L1677)	Lecture	2	4	
Methods in Theoretical Materials Science	e (L1678)	Recitation Section (small)	1	2	
Module Responsible	Prof. Stefan Müller				
Admission Requirements	Obligatory lectures of the first semester of the master cou	rse of studies "materials science"			
Recommended Previous	Advanced mathematics, solid state physics				
Knowledge					
Educational Objectives	After taking part successfully, students have reached the	following learning results			
Professional Competence					
Knowledge	The master students will be able to explain				
	the basics of quantum mechanics.				
	the importance of quantum physics for the description of materials properties.				
	correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.				
	The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in				
	order to understand these connections.				
Skills	After attending this lecture the students can				
	perform materials design on a quantum mechanical ba	asis.			
Personal Competence					
Social Competence	The student has an astonishing knowledge in materials	properties which demands both, expertise in	physics AND materia	als science. This makes	
	him to an outstanding discussion partner who will be ab	le to understand the scientific arguments of "b	oth sides". Up to no	w, such an education is	
	hard to find at universities.				
Autonomy	The students are able to				
	assess their own strengths and weaknesses.				
	define tasks independently				
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42				
Credit points	6				
Examination	Oral exam				
Examination duration and scale					
Assignment for the Following	Materials Science: Specialisation Modelling: Elective Co	mpulsory			
Curricula					

Course L1677: Methods in Theoretical Materials Science		
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1678: Methods in Theoretical Materials Science		
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content	See interlocking course	
Literature	See interlocking course	

Martinia M4000 Consultore	Markania at Oalida			
Module M1238: Quantum	Mechanics of Solids			
Courses				
Title		Тур	Hrs/wk	CP
Quantum Mechanics of Solids (L1675)		Lecture	2	4
Quantum Mechanics of Solids (L1676)		Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Müller			
Admission Requirements	Obligatory lectures of the first semester of the master cou	urse of studies "materials science"		
Recommended Previous Knowledge	Advanced mathematics, solid state physics			
Educational Objectives	After taking part successfully, students have reached the	following learning results		
Professional Competence	Alter taking part successionly, students have reached the	Tollowing learning results		
Knowledge	The master students will be able to explain			
	the basics of quantum mechanics.			
	the importance of quantum physics for the description of materials properties.			
	correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.			
	The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in order to understand these connections.			
Skills	After attending this lecture the students can			
	perform materials design on a quantum mechanical ba	asis.		
Personal Competence				
Social Competence	The student can connect the atomistic picture as teach develop an interpretation of the observed behavior base		servation. Therefore	e, she/he will be able to
Autonomy	The students are able to			
	assess their own strengths and weaknesses.			
	define tasks independently.			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mate	erials: Elective Compulsory		
Curricula	Materials Science: Specialisation Modelling: Elective Co	ompulsory		

Course L1675: Quantum Mechanic	course L1675: Quantum Mechanics of Solids	
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1676: Quantum Mechanics of Solids	
Тур	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Stefan Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M0603: Nonlinear	Structural Analysis			
Courses				
Title		Тур	Hrs/wk	CP
Nonlinear Structural Analysis (L0277)		Lecture	3	4
Nonlinear Structural Analysis (L0279)		Recitation Section (small)	1	2
Module Responsible	Prof. Alexander Düster			
Admission Requirements	None			
Recommended Previous	Mathematics I, II, III, Mechanics I, II, III, IV			
Knowledge				
	Differential Equations 2 (Partial Differential Equations)			
Educational Objectives	After taking part successfully, students have reached the follow	ing learning results		
Professional Competence				
Knowledge	Students are able to			
I	+ give an overview of the different nonlinear phenomena in str	uctural mechanics.		
	+ explain the mechanical background of nonlinear phenomena	in structural mechanics.		
	+ to specify problems of nonlinear structural analysis, to ide	ntify them in a given situation and to	explain their mathe	matical and mechanic
	background.			
Skills	Students are able to			
	+ model nonlinear structural problems.			
	+ select for a given nonlinear structural problem a suitable com	putational procedure.		
	+ apply finite element procedures for nonlinear structural analy	sis.		
	+ critically verify and judge results of nonlinear finite elements.			
	+ to transfer their knowledge of nonlinear solution procedures	o new problems.		
Personal Competence				
Social Competence	Students are able to			
	+ solve problems in heterogeneous groups and to document the	e corresponding results.		
	+ share new knowledge with group members.			
_				
Autonomy				
	+ assess their knowledge by means of exercises and E-Learni	ng.		
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 min			
Assignment for the Following	Civil Engineering: Specialisation Structural Engineering: Electi	ve Compulsory		
Curricula	International Management and Engineering: Specialisation II.	Civil Engineering: Elective Compulsor	у	
	Materials Science: Specialisation Modeling: Elective Compulse	ory		
	Mechatronics: Specialisation System Design: Elective Compul	sory		
	Product Development, Materials and Production: Core qualification	ation: Elective Compulsory		
	Naval Architecture and Ocean Engineering: Core qualification	Elective Compulsory		
	Ship and Offshore Technology: Core qualification: Elective Core	mpulsory		
	Theoretical Mechanical Engineering: Core qualification: Election	ve Compulsory		
	Theoretical Mechanical Engineering: Technical Complementa	ry Course: Elective Compulsory		

Course L0277: Nonlinear Structura	al Analysis
Тур	Lecture
Hrs/wk	3
СР	4
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42
Lecturer	Prof. Alexander Düster
Language	DE/EN
Cycle	WiSe
Content	1. Introduction
	2. Nonlinear phenomena
	3. Mathematical preliminaries
	4. Basic equations of continuum mechanics
	5. Spatial discretization with finite elements
	6. Solution of nonlinear systems of equations
	7. Solution of elastoplastic problems
	8. Stability problems
	9. Contact problems
Literature	[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.
Literature	[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.
	[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.
	[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.

Course L0279: Nonlinear Structure	Course L0279: Nonlinear Structural Analysis	
Тур	Recitation Section (small)	
Hrs/wk	1	
CP	2	
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14	
Lecturer	Prof. Alexander Düster	
Language	DE/EN	
Cycle	WiSe	
Content	See interlocking course	
Literature	See interlocking course	

Module M1150: Continuur	n Mechanics			
Courses				
Title		Тур	Hrs/wk	CP
Continuum Mechanics (L1533)		Lecture	2	3
Continuum Mechanics Exercise (L1534)		Recitation Section (small)	2	3
Module Responsible	Prof. Swantje Bargmann			
Admission Requirements	None			
Recommended Previous	Mechanics I			
Knowledge	Mechanics II			
Educational Objectives	After taking part successfully, students have reached the follow	owing learning results		
Professional Competence				
Knowledge				
	The students can explain the fundamental concepts to calcul	ate the mechanical behavior of materials.		
	The students can set up balance laws and apply basics of de	eformation theory to specific aspects, both	in applied contexts a	s in research contexts.
Personal Competence	The shirt share and shirt he successful the same he same significant	An alexander interesting		
Social Competence	The students are able to present solutions to specialists and	to develop ideas further.		
Autonomy	The students are able to assess their own strengths and w continuum mechanics on their own.	reaknesses and to define tasks themselv	es. They can solve o	exercises in the area of
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56			
Credit points	6			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following	Computational Science and Engineering: Specialisation Science	entific Computing: Elective Compulsory		
Curricula	Materials Science: Specialisation Modeling: Elective Compu	Isory		
	Mechanical Engineering and Management: Specialisation M	laterials: Elective Compulsory		
	Mechatronics: Technical Complementary Course: Elective C	ompulsory		
	Biomedical Engineering: Specialisation Artificial Organs and	Regenerative Medicine: Elective Compu	sory	
	Biomedical Engineering: Specialisation Implants and Endop	rostheses: Elective Compulsory		
	Biomedical Engineering: Specialisation Medical Technology	and Control Theory: Elective Compulsory	,	
	Biomedical Engineering: Specialisation Management and Br	usiness Administration: Elective Compulso	ory	
	Product Development, Materials and Production: Core qualif	ication: Elective Compulsory		
	Theoretical Mechanical Engineering: Technical Complemen	tary Course: Elective Compulsory		

Course L1533: Continuum Mechan	Course L1533: Continuum Mechanics	
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Swantje Bargmann	
Language	DE/EN	
Cycle	WiSe	
Content	 kinematics of undeformed and deformed bodies balance equations (balance of mass, balance of energy,) stress states material modelling 	
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer	

Course L1534: Continuum Mechanics Exercise	
Тур	Recitation Section (small)
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Swantje Bargmann
Language	DE/EN
Cycle	WiSe
Content	 kinematics of undeformed and deformed bodies balance equations (balance of mass, balance of energy,) stress states material modelling
Literature	R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer

Module M1291: Materials S	Science Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Seminar (L1757)		Seminar	2	3
Seminar Composites (L1758)		Seminar	2	3
Seminar Advanced Ceramics (L1801)		Seminar	2	3
Seminar on interface-dominated materia	s (L1795)	Seminar	2	3
Module Responsible	Prof. Jörg Weißmüller			
Admission Requirements	None			
Recommended Previous	Advanced materials science knowledge from the file	Advanced materials science knowledge from the first year of the Master course "Materials Science"		
Knowledge				
Educational Objectives	After taking part successfully, students have reache	ed the following learning results		
Professional Competence				
Knowledge	Insights into current issues in materials science.			
	Ability to present and communicate scientific topics to peers through talks.			
Skills				
Personal Competence				
Social Competence				
Autonomy				
Workload in Hours	Depends on choice of courses			
Credit points	6			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory			
Curricula	Materials Science: Specialisation Modeling: Electiv	ve Compulsory		
	Materials Science: Specialisation Engineering Mat	erials: Elective Compulsory		

O 14757. O	
Course L1757: Seminar	
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Jörg Weißmüller
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1758: Seminar Composit	Course L1758: Seminar Composites	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Bodo Fiedler	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1801: Seminar Advanced	Course L1801: Seminar Advanced Ceramics	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Gerold Schneider	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1795: Seminar on interface-dominated materials		
Тур	Seminar	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Patrick Huber	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Specialization Nano and Hybrid Materials

Module M0766: Microsysto	ems Technology			
Courses				
Title	Typ Hrs/wk	СР		
Microsystems Technology (L0724)	Lecture 2	4		
Module Responsible	Prof. Hoc Khiem Trieu			
Admission Requirements	None			
Recommended Previous	Basics in physics, chemistry and semiconductor technology			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the following learning results			
Professional Competence				
Knowledge				
	Students are able			
	to present and to explain current fabrication techniques for microstructures and especially methods for the fabrica	tion of missons and		
	microactuators, as well as the integration thereof in more complex systems	alon of microsensors and		
	microactators, as well as the integration thereof in more complex systems			
	to explain in details operation principles of microsensors and microactuators and			
	to discuss the potential and limitation of microsystems in application.			
Skills				
	Students are capable			
	Students are capable			
	to analyze the feasibility of microsystems,			
	to develop process flows for the fabrication of microstructures and			
	to apply them.			
Personal Competence				
Social Competence	None			
Autonomy	None			
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28			
Credit points	4			
Examination	Oral exam			
Examination duration and scale	30 min			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory			
Curricula				

Course L0724: Microsystems Tec	hnology
Тур	Lecture
	2
СР	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
	Prof. Hoc Khiem Trieu
0 0	
Content	
	 Introduction (historical view, scientific and economic relevance, scaling laws) Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting) Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing) Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching) Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami
	microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping) • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer) • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity, pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process) • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magnetoresistive se
	resistance, AMR and GMR, fluxgate magnetometer) Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip) Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
	 MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration) Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship) System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)
Literature	M. Madou: Fundamentals of Microfabrication, CRC Press, 2002
	N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009
	T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010
	G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Module M1040: BIO II: Endoprostheses and Materials					
Courses					
Title		Тур	Hrs/wk	СР	
Biomaterials (L0593)		Lecture	2	3	
Artificial Joint Replacement (L1306)		Lecture	2	3	
Module Responsible	Prof. Michael Morlock				
Admission Requirements	None				
Recommended Previous	basic knowledge of orthopedic and surgical techniques	is recommended			
Knowledge					
Educational Objectives	After taking part successfully, students have reached th	e following learning results			
Professional Competence					
Knowledge	The students can describe the materials being used in medical engineering, and their fields of use.				
	The students can name the diseases which can require the use of replacement joints.				
	The students can name the different kinds of artificial limbs				
Skills	The students can explain the advantages and disadvantages of different kinds of biomaterials and endoprotheses.				
Personal Competence					
Social Competence	The student is able to discuss issues related to endoprothese and their materials with student mates and the teachers.				
Autonomy	The student is able to acquire information on his own. He can also judge the information with respect to its credebility.				
Workload in Hours	Independent Study Time 124, Study Time in Lecture 56				
Credit points	6				
Examination	Written exam				
Examination duration and scale	90 minutes, questions and drawing of pictures				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Ma	erials: Elective Compulsory			
Curricula					
	Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory				
	Biomedical Engineering: Specialisation Medical Techn	ology and Control Theory: Elective Compul-	sory		
	Biomedical Engineering: Specialisation Management a	nd Business Administration: Elective Comp	ulsory		
	Theoretical Mechanical Engineering: Specialisation Bio	- and Medical Technology: Elective Compu	ılsory		
	Theoretical Mechanical Engineering: Technical Comple	ementary Course: Elective Compulsory			
	Theoretical Mechanical Engineering: Technical Comple	ementary Course: Elective Compulsory			

Course L0593: Biomaterials		
Тур	Lecture	
Hrs/wk	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer		
Language Cycle		
-	Topics to be covered include:	
	Introduction (Importance, nomenclature, relations)	
	Biological materials	
	2.1 Basics (components, testing methods)	
	2.2 Bone (composition, development, properties, influencing factors)	
	2.3 Cartilage (composition, development, structure, properties, influencing factors)	
	2.4 Fluids (blood, synovial fluid)	
	3 Biological structures	
	3.1 Menisci of the knee joint	
	3.2 Intervertebral discs	
	3.3 Teeth	
	3.4 Ligaments	
	3.5 Tendons	
	6 Skin	
	7 Nervs	
	3.8 Muscles	
	4. Replacement materials	
	4.1 Basics (history, requirements, norms)	
	4.2 Steel (alloys, properties, reaction of the body)	
	4.3 Titan (alloys, properties, reaction of the body)	
	4.4 Ceramics and glas (properties, reaction of the body)	
	4.5 Plastics (properties of PMMA, HDPE, PET, reaction of the body)	
	4.6 Natural replacement materials	
	Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.	
Literature	Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984.	
	Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.	
	Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.	
	Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.	
	Park J. Biomaterials: an introduction. New York: Plenum Press, 1980.	
	Wintermantel, E. und Ha, SW: Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.	

Course L1306: Artificial Joint Repl	acement	
Тур	Lecture	
	2	
СР	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Language		
	SoSe	
Content	Inhalt (deutsch)	
	1. EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes)	
	2. FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität)	
	3. DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate)	
	DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten)	
	DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren)	
	DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz)	
	7. DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz)	
	8. DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz)	
	9. TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß)	
Literature	Literatur:	
	Kapandji, I: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984.	
	Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley&Sons, New York 1994	
	Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea&Febiger, Philadelphia, 1989.	
	Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003.	
	Sobotta und Netter für Anatomie der Gelenke	

Module M0643: Optoelect	ronics I - Wave Optics			
Courses				
Title		Тур	Hrs/wk	СР
Optoelectronics I: Wave Optics (L0359)		Lecture	2	3
Optoelectronics I: Wave Optics (Problem	m Solving Course) (L0361)	Recitation Section (small)	1	1
Module Responsible	Prof. Manfred Eich			
Admission Requirements	Keine			
Recommended Previous	Basics in electrodynamics, calculus			
Knowledge				
Educational Objectives	After taking part successfully, students have reached the follow	owing learning results		
Professional Competence				
Knowledge		sical relations of freely propagating opti	ical waves.	
	They can give an overview on wave optical phenomena such	h as diffraction, reflection and refraction,	etc.	
	Students can describe waveoptics based components such	as electrooptical modulators in an applic	cation oriented way.	
Skills	Students can generate models and derive mathematical des They can derive approximative solutions and judge factors in	·		
Personal Competence				
Social Competence	Students can jointly solve subject related problems in groups	s. They can present their results effective	ely within the framewor	rk of the problem solving
	course.			
Autonomy	1			
	can reflect their acquired level of expertise with the help of		as exam typical exam	questions. Students are
	able to connect their knowledge with that acquired from other	r lectures.		
Workload in Hours				
Credit points Examination				
Examination Examination duration and scale				
		dioraguatama Taghnalasuu Flastius Ossa	nulony	
Assignment for the Following				loon
Curricula	Electrical Engineering: Specialisation Microwave Engineerin Materials Science: Specialisation Nano and Hybrid Materials		ioiiity: Elective Compu	isury
	Microelectronics and Microsystems: Specialisation Microelec		eory	
	who be rectionated and who by stems. Specialisation who been	aromos comprements. Elective Comput	SUI y	

Course L0359: Optoelectronics I: Wave Optics		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Manfred Eich	
Language	EN	
Cycle	SoSe	
Content	 Introduction to optics Electromagnetic theory of light Interference Coherence Diffraction Fourier optics Polarisation and Crystal optics Matrix formalism Reflection and transmission Complex refractive index Dispersion Modulation and switching of light 	
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Hecht, E., Optics, Benjamin Cummings, 2001 Goodman, J.W. Statistical Optics, Wiley, 2000 Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002	

Course L0361: Optoelectronics I:	ourse L0361: Optoelectronics I: Wave Optics (Problem Solving Course)			
Тур	Recitation Section (small)			
Hrs/wk	1			
CP	1			
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14			
Lecturer	Prof. Manfred Eich			
Language	EN			
Cycle	SoSe			
Content	see lecture Optoelectronics 1 - Wave Optics			
Literature	see lecture Optoelectronics 1 - Wave Optics			

Module M0930: Semicond	luctor Seminar			
Courses				
Title		Тур	Hrs/wk	СР
Semiconductor Seminar (L0760)		Seminar	2	2
Module Responsible	Dr. Dietmar Schröder			
Admission Requirements				
Recommended Previous	Bachelor of Science			
Knowledge	Semiconductors			
Educational Objectives	After taking part successfully, students have reach	ed the following learning results		
Professional Competence				
Knowledge	Students can explain the most important facts and	relationships of a specific topic from the field of	semiconductors.	
Skills	Students are able to compile a specified topic from the field of semiconductors and to give a clear, structured and comprehensible presentation of			
	the subject. They can comply with a given duration	on of the presentation. They can write in Englis	sh a summary including il	lustrations that contains
	the most important results, relationships and expla	anations of the subject.		
Personal Competence				
Social Competence	Students are able to adapt their presentation w	ith respect to content, detailedness, and pres	sentation style to the cor	mposition and previous
	knowledge of the audience. They can answer que	stions from the audience in a curt and precise m	nanner.	
Autonomy	Students are able to autonomously carry out a lit-	erature research concerning a given topic. The	y can independently eva	luate the material. They
	can self-reliantly decide which parts of the materia	I should be included in the presentation.		
Workload in Hours	Independent Study Time 32, Study Time in Lecture	e 28		
Credit points	2			
Examination	Presentation			
Examination duration and scale	15 minutesw presentation + 5-10 minutes discuss	on + 2 pages written abstract		
Assignment for the Following	Electrical Engineering: Specialisation Nanoelectro	onics and Microsystems Technology: Elective Co	ompulsory	
Curricula	Materials Science: Specialisation Nano and Hybri	d Materials: Elective Compulsory		
	Microelectronics and Microsystems: Core qualifica	tion: Elective Compulsory		

Course L0760: Semiconductor Se	minar
Тур	Seminar
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Dr. Dietmar Schröder, Prof. Manfred Kasper, Prof. Wolfgang Krautschneider, Prof. Manfred Eich, Prof. Hoc Khiem Trieu
Language	EN
Cycle	SoSe
Content	Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English.
	understanding of subject, discussion, response to questions structure and logic of presentation (clarity, precision) coverage of the topic, selection of subjects presented linguistic presentation (clarity, comprehensibility) visual presentation (clarity, comprehensibility) handout (see below) compliance with timing requirement.
	Handout: Before your presentation, it is mandatory to distribute a printed handout (short abstract) of your presentation in English language. This must be no longer than two pages A4, and include the most important results, conclusions, explanations and diagrams.
Literature	Aktuelle Veröffentlichungen zu dem gewählten Thema

Module M1220: Interfaces	and interface-dominated Materials				
Courses					
Title		Тур	Hrs/wk	СР	
Nature's Hierarchical Materials (L1663)		Seminar	2	3	
Interfaces (L1654)		Lecture	2	3	
Module Responsible	Prof. Patrick Huber				
Admission Requirements	None				
Recommended Previous	Fundamentals of Materials Science (I and II) and physical	chemistry			
Knowledge					
Educational Objectives	After taking part successfully, students have reached the t	following learning results			
Professional Competence					
Knowledge	The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic,				
	polymeric, semiconductor, modern composite materials (b	piomaterials) and nanomaterials.			
01.11					
Skills	The students will be able to select material configurations	•			
	architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables				
	them to select optimum materials combinations dependin	g on the technical applications.			
Personal Competence					
Social Competence	The students are able to present solutions to specialists a	nd to develop ideas further.			
Autonomy	The students are able to				
	 assess their own strengths and weaknesses. 				
	define tasks independently.				
Workload in Hours	, , ,				
Credit points	6				
Examination	Written exam				
Examination duration and scale	90 min				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mater	ials: Elective Compulsory	·	·	
Curricula	Mechanical Engineering and Management: Specialisation	n Materials: Elective Compulsory			

Course L1663: Nature's Hierarchic	cal Materials
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Gerold Schneider
Language	EN
Cycle	WiSe
Content	Biological materials are omnipresent in the world around us. They are the main constituents in plant and animal bodies and have a diversity of functions. A fundamental function is obviously mechanical providing protection and support for the body. But biological materials may also serve as ion reservoirs (bone is a typical example), as chemical barriers (like cell membranes), have catalytic function (such as enzymes), transfer chemical into kinetic energy (such as the muscle), etc. This lecture will focus on materials with a primarily (passive) mechanical function: cellulose tissues (such as wood), collagen tissues (such as tendon or cornea), mineralized tissues (such as bone, dentin and glass sponges). The main goal is to give an introduction to the current knowledge of the structure in these materials and how these structures relate to their (mostly mechanical) functions.
Literature	Peter Fratzl, Richard Weinkamer, Nature's hierarchical materialsProgress, in Materials Science 52 (2007) 1263-1334 Journal publications

Course L1654: Interfaces	
Тур	Lecture
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	SoSe
Content	 Microscopic structure and thermodynamics of interfaces (gas/solid, gas/liquid, liquid/liquid, liquid/solid) Experimental methods for the study of interfaces Interfacial forces wetting surfactants, foams, bio-membranes chemical grafting of interfaces
Literature	"Physics and Chemistry of Interfaces", K.H. Butt, K. Graf, M. Kappl, Wiley-VCH Weinheim (2006) "Interfacial Science", G.T. Barnes, I.R. Gentle, Oxford University Press (2005)

Martinia M4000 Consultore	Markania at Oalida			
Module M1238: Quantum	Mechanics of Solids			
Courses				
Title		Тур	Hrs/wk	CP
Quantum Mechanics of Solids (L1675)		Lecture	2	4
Quantum Mechanics of Solids (L1676)		Recitation Section (small)	1	2
Module Responsible	Prof. Stefan Müller			
Admission Requirements	Obligatory lectures of the first semester of the master cou	urse of studies "materials science"		
Recommended Previous Knowledge	Advanced mathematics, solid state physics			
Educational Objectives	After taking part successfully, students have reached the	following learning results		
Professional Competence	Alter taking part successionly, students have reached the	Tollowing learning results		
Knowledge	The master students will be able to explain			
	the basics of quantum mechanics.			
	the importance of quantum physics for the description of materials properties correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.			
				of materials.
	The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale order to understand these connections.		on the atomistic scale in	
Skills	After attending this lecture the students can			
	perform materials design on a quantum mechanical ba	asis.		
Personal Competence				
Social Competence	The student can connect the atomistic picture as teached in the lecture with her/his macroscopic observation. Therefore, she/he will be able to develop an interpretation of the observed behavior based on the nanoscale.			
Autonomy	The students are able to			
	assess their own strengths and weaknesses.			
	define tasks independently.			
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Examination	Oral exam			
Examination duration and scale				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mate	erials: Elective Compulsory		
Curricula	Materials Science: Specialisation Modelling: Elective Co	ompulsory		

Course L1675: Quantum Mechanic	ourse L1675: Quantum Mechanics of Solids	
Тур	Lecture	
Hrs/wk	2	
CP	4	
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28	
Lecturer	Prof. Stefan Müller	
Language	DE/EN	
Cycle	SoSe	
Content		
Literature		

Course L1676: Quantum Mechanics of Solids	
Тур	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Prof. Stefan Müller
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

Module M1239: Experimen	ntal Micro- and Nanomechanics			
Courses				
Title		Тур	Hrs/wk	СР
Experimental Micro- and Nanomechanic	s (L1673)	Lecture	2	4
Experimental Micro- and Nanomechanic	s (L1674)	Recitation Section (small)	1	2
Module Responsible	Dr. Erica Lilleodden			
Admission Requirements	none			
Recommended Previous	Basics in Materials Science I/II, Mechanical Properties, Pl	nenomena and Methods in Materials Sci	ience	
Knowledge				
Educational Objectives	After taking part successfully, students have reached the	following learning results		
Professional Competence				
Knowledge	Students are able to describe the principles of mechanical	ll behavior (e.g., stress, strain, modulus,	strength, hardening, failur	e, fracture).
	Students can explain the principles of characterization idiffraction)	nethods used for investigating microstra	ucture (e.g., scanning ele	ctron microscopy, x-ra
	They can describe the fundamental relations between mi	crostructure and mechanical properties.		
Skills	Students are capable of using standardized calculation materials under varying loading states (e.g., uniaxial stress		nanical properties (moduli	us, strength) of differer
Personal Competence				
Social Competence	Students can provide appropriate feedback and handle fe	eedback on their own performance cons	tructively.	
Autonomy	Students are able to			
	- assess their own strengths and weaknesses			
	- assess their own state of learning in specific terms and t	o define further work steps on this basis	guided by teachers.	
	- to be able to work independently based on lectures and	I notes to solve problems, and to ask for	help or clarifications when	needed
Workload in Hours	Independent Study Time 138, Study Time in Lecture 42			
Credit points	6			
Examination	Written exam			
Examination duration and scale	60 min			
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Mater	ials: Elective Compulsory		
Curricula				

Course L1673: Experimental Micro	o- and Nanomechanics
Тур	Lecture
Hrs/wk	2
CP	4
Workload in Hours	Independent Study Time 92, Study Time in Lecture 28
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	This class will cover the principles of mechanical testing at the micron and nanometer scales. A focus will be made on metallic materials, though
	issues related to ceramics and polymeric materials will also be discussed. Modern methods will be explored, along with the scientific questions
	investigated by such methods.
	Principles of micromechanics
	Motivations for small-scale testing
	Sample preparation methods for small-scale testing
	 General experimental artifacts and quantification of measurement resolution
	Complementary structural analysis methods
	Electron back scattered diffraction
	Transmission electron microscopy
	Micro-Laue diffraction
	Nanoindentation-based testing
	Principles of contact mechanics
	Berkovich indentation
	■ Loading geometry
	■ Governing equations for analysis of stress & strain
	■ Case study:
	■ Indentation size effects
	Microcompression
	■ Loading geometry
	■ Governing equations for analysis of stress & strain
	■ Case study:
	■ Size effects in yield strength and hardening
	Microbeam-bending
	■ Loading geometry
	■ Governing equations for analysis of stress & strain
	■ Case study:
	■ Fracture strength & toughness
	•
Literature	Vorlesungsskript
	Aktuelle Publikationen
	Andone i duninghorien

Course L1674: Experimental Micro- and Nanomechanics	
Тур	Recitation Section (small)
Hrs/wk	1
CP	2
Workload in Hours	Independent Study Time 46, Study Time in Lecture 14
Lecturer	Dr. Erica Lilleodden
Language	DE/EN
Cycle	SoSe
Content	See interlocking course
Literature	See interlocking course

_				
Courses				
Title		Тур	Hrs/wk	CP
Advanced Particle Technology II (L0050	•	Lecture	2	2
Advanced Particle Technology II (L0051		Recitation Section (small)	1	1
Experimental Course Particle Technolog		Laboratory Course	3	3
Module Responsible				
Admission Requirements	None			
Recommended Previous	Basic knowledge of solids processes and particle	technology		
Knowledge				
Educational Objectives	After taking part successfully, students have reach	ned the following learning results		
Professional Competence				
Knowledge	After completion of the module the students will be able to describe and explain processes for solids processing in detail based		ng in detail based	
microprocesses on the particle level.				
Skills	Students are able to choose process steps and	apparatuses for the focused treatment of solids dep	ending on the spec	ific characteristics. The
	furthermore are able to adapt these processes and to simulate them.			
Personal Competence				
Social Competence	Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scien		nowledge with scient	
	researchers.			
Autonomy	Students are able to analyze and solve problems	regarding solid particles independently or in small \boldsymbol{g}	roups.	
Workload in Hours	Independent Study Time 96, Study Time in Lectur	re 84		
Credit points	6			
Examination	Written exam			
Examination duration and scale	120 minutes			
Assignment for the Following	Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory			
Curricula	Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory			
	Energy and Environmental Engineering: Speciali	sation Environmental Engineering: Elective Compuls	sory	
	International Management and Engineering: Spe	cialisation II. Process Engineering and Biotechnolog	y: Elective Compulso	ory
	Materials Science: Specialisation Nano and Hybr	id Materials: Elective Compulsory		
	Process Engineering: Core qualification: Compul	conv		

Course L0050: Advanced Particle	Technology II
Тур	Lecture
Hrs/wk	2
CP	2
Workload in Hours	Independent Study Time 32, Study Time in Lecture 28
Lecturer	Prof. Stefan Heinrich
Language	DE
Cycle	WiSe
Content	 Exercise in form of "Project based Learning" Agglomeration, particle size enlargement advanced particle size reduction Advanced theorie of fluid/particle flows CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling Treatment of simulation problems with distributed properties, solution of population balances
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.

Course L0051: Advanced Particle Technology II	
Тур	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Stefan Heinrich
Language	DE
Cycle	WiSe
Content	See interlocking course
Literature	See interlocking course

Course L0430: Experimental Cour	se Particle Technology
Тур	Laboratory Course
Hrs/wk	3
CP	3
Workload in Hours	Independent Study Time 48, Study Time in Lecture 42
Lecturer	Prof. Stefan Heinrich
Language	DE
Cycle	WiSe
Content	Fluidization Agglomeration Granulation Drying Determination of mechanical properties of agglomerats
Literature	Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.

Module M0644: Optoelecti	ronics II - Quantum Ontics				
Module Moo44. Optoelecti	onics ii - Quantum Optics				
Courses					
Title		Тур)	Hrs/wk	СР
Optoelectronics II: Quantum Optics (L03	360)	Lec	ture	2	3
Optoelectronics II: Quantum Optics (Pro	oblem Solving Course) (L0362)	Rec	citation Section (small)	1	1
Module Responsible	Prof. Manfred Eich				
Admission Requirements	None				
Recommended Previous	Basic principles of electrodynamics, optics and quantur	m mechanics			
Knowledge					
Educational Objectives	After taking part successfully, students have reached th	e following learning re	esults		
Professional Competence					
Knowledge	Students can explain the fundamental mathematical a spontanous emission. They can describe material pr components in technical applications.				•
Skills	Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.				
Personal Competence Social Competence	Students can jointly solve subject related problems in g course.	roups. They can pres	ent their results effectively w	ithin the framework	c of the problem solving
Autonomy	Students are capable to extract relevant information from can reflect their acquired level of expertise with the help able to connect their knowledge with that acquired from	lp of lecture accompa			•
Workload in Hours	Independent Study Time 78, Study Time in Lecture 42				
Credit points	4				
Examination	Written exam				
Examination duration and scale	40 minutes				
Assignment for the Following	Electrical Engineering: Specialisation Nanoelectronics	and Microsystems Te	chnology: Elective Compuls	ory	
Curricula	Electrical Engineering: Specialisation Microwave Engir	neering, Optics, and E	lectromagnetic Compatibility	: Elective Compuls	sory
	Materials Science: Specialisation Nano and Hybrid Ma	terials: Elective Comp	oulsory		
	Microelectronics and Microsystems: Specialisation Micro	roelectronics Complei	ments: Elective Compulsory		

Course L0360: Optoelectronics II: Quantum Optics		
Тур	Lecture	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Lecturer	Prof. Manfred Eich	
Language	EN	
Cycle	WiSe	
Content	 Generation of light Photons Thermal and nonthermal light Laser amplifier Noise Optical resonators Spectral properties of laser light CW-lasers (gas, solid state, semiconductor) Pulsed lasers 	
Literature	Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002 Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001 Yariv, A., Quantum Electronics, Wiley, 1988 Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X Siegman, A.E., Lasers, University Science Books, 1986	

Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)	
Тур	Recitation Section (small)
Hrs/wk	1
CP	1
Workload in Hours	Independent Study Time 16, Study Time in Lecture 14
Lecturer	Prof. Manfred Eich
Language	EN
Cycle	WiSe
Content	see lecture Optoelectronics 1 - Wave Optics
Literature	see lecture Optoelectronics 1 - Wave Optics

Module M1291: Materials S	Science Seminar				
Courses					
Title		Тур	Hrs/wk	СР	
Seminar (L1757)		Seminar	2	3	
Seminar Composites (L1758)		Seminar	2	3	
Seminar Advanced Ceramics (L1801)		Seminar	2	3	
Seminar on interface-dominated material	s (L1795)	Seminar	2	3	
Module Responsible	Prof. Jörg Weißmüller				
Admission Requirements	None				
Recommended Previous	Advanced materials science knowledge from the first y	ear of the Master course "Materials Scien	ce"		
Knowledge					
Educational Objectives	After taking part successfully, students have reached the	ne following learning results			
Professional Competence					
Knowledge	Insights into current issues in materials science.				
	Ability to present and communicate scientific topics to	peers through talks.			
Skills					
Personal Competence					
Social Competence					
Autonomy					
Workload in Hours	Depends on choice of courses				
Credit points	6				
Assignment for the Following	Materials Science: Specialisation Nano and Hybrid Ma	aterials: Elective Compulsory			
Curricula	Materials Science: Specialisation Modeling: Elective C	Compulsory			
	Materials Science: Specialisation Engineering Materia	ls: Elective Compulsory			

Course L1757: Seminar	Course L1757: Seminar	
Тур	Seminar	
Hrs/wk	2	
CP	3	
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28	
Examination Form	Referat	
Examination duration and scale		
Lecturer	Prof. Jörg Weißmüller	
Language	DE/EN	
Cycle	WiSe/SoSe	
Content		
Literature		

Course L1758: Seminar Composites	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Bodo Fiedler
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1801: Seminar Advanced Ceramics	
Тур	Seminar
Hrs/wk	2
CP	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Gerold Schneider
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Course L1795: Seminar on interface-dominated materials	
Тур	Seminar
Hrs/wk	2
СР	3
Workload in Hours	Independent Study Time 62, Study Time in Lecture 28
Examination Form	Referat
Examination duration and scale	
Lecturer	Prof. Patrick Huber
Language	DE/EN
Cycle	WiSe/SoSe
Content	
Literature	

Thesis

Module Responsible Professoren der TUHH Admission Requirements Admission Requirements Knowledge Educational Objectives Knowledge Educational Objectives Knowledge **The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues. **The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing curre developments and taking up a critical position on them. **The students can place a research task in their subject area in its context and describe and critically assess the state of research. **Skills** The students are able: **To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. **To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incomplete defined problems in a solution-oriented way. **To develop new scientific findings in their subject area and subject them to a critical assessment. **But in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.	Module M-002: Master The	esis
Advisors Requirements Amission Requirements According to Central Regulations \$24 (1): All load 78 coding to point have to be achieved in study programme. The examinations board decides on exceptions. Recommended Previous Recompletered Professional Competence Notwindor The students can use appediative to knowledge (acts. Previous and methods of their subject competently on specialized steasons) The students can place as exceeding the inclination approaches and terminologies in one or more areas of their subject describes and interest of their subject area in its company on specialized steason of exceeding care developments and talking up a critical position on him. The students can place as exceeding their interests of their subject area in its company and decides and officially assess the state of recearch. The students are abble: To solicit, apply and, if necessary, develop further methods that are subsidies for solving the appellation previous and solving the state of recearch. To solicit, apply and, if necessary, develop further methods they have learnt in the course of their studies to complete active or proteins in a selection careation way. To solicit apply and, if necessary, develop further methods that are subsidies for solving the applications to complete active proteins in a selection careation way. To solicit apply and, if necessary, develop further methods they have learnt in the course of their studies to complete active proteins and solicit for proteins and solicit solicits and solicits and solicits to complete active proteins and solicits and soli	Courses	
Admission Regularisments • According to Cameral Regulations (\$64 (1)) Alterest 75 credit points have to be achieved in study programme. The examinations board decides on exceptions. Recommended Previous Frotessional Objectives Professional Objectives After studing part successfully, students have reached the following learning results. • The students can use seculative disorder (and in the recent approximate) • The students can use seculative disorder (and in the recent approximate) • The students can use seculative disorder (and in the recent approximate) • The students are able: • The students are able: • To seved, along his workings and in recessary, develop further methods that are satisfied from the contract of their studies to complex and/or incomplete defined program in a studient-recent base in their studies of contract and describe and circuity assess the state of expectations of their studies to complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base in their studies of complex and/or incomplete defined program in a studient-recent base and studient base in a consist from the course of their studies to complete and could program and studient base and studient base and studient base in their studies to complete and could program and country in an appear discussion and studient base and studient base in a manner than in a manner than is appropriate to the addressess while upholding than an administration and scote and base and studient base in the studient base	Title	Typ Hrs/wk CP
Recommended Previous Kroeledge Educational Objectives In Maristarry part successfully, suderins have table achieved in study programme. The examinations board decides on exceptions. Professional Competence Frontiesional Competence Frontiesional Competence In Students are subset in the students are septial in depth for recovering the students are subset in the subset in the subset are subset in the subset i	Module Responsible	Professoren der TUHH
Recommended Previous Recommended Previous Browness of the students are subsequently, students have reached the following learning requits Professional Competence Aroundings - The students can use specialized innovinger flacis, theories, and methods) of their student competence of the students can use specialized innovinger flacis, theories, and methods) of their students competency of the students can use specialized innovinger flacis, theories, and methods) of their students competency of the students can place a research task in their subject area in its content and desorbe and critically assess the date of research. - The students can place a research task in their subject area in its content and desorbe and critically assess the date of research. - To supply towordings they have acquired and methods that are suitable for solving the specialized problem in question. - To supply towordings they have acquired and methods that yet have learn in the outside of their studies to complex and/or incomplete defined problems in a public problems in question. - To devolop new scientific findings in their subject area and subject flores in a critical assessment. - Both in writing and coally cultime a scientific issue for an expert audience accurately, understandably and in a structured way. - Double with issues competency in an expert discussion and onserve flore in a manner that is appropriate to the addressess while uphriding their own assessments and viewpoints convincingly. - To structure a project of flore own in work packages and to work flore of accordingly. - To structure a project of flore own in work packages and to work flore of accordingly. - To structure a project of flore own in work packages and to work flore of accordingly. - To structure a project of flore own in work packages and to work flore of accordingly. - To structure a project of flore own in work packages and to work flore of accordingly. - To structure a project of flore own in work packages and to work flore or accordingly.	Admission Requirements	A 5 4 0 45 45 204(f)
Recommended Previous Exactational Objectives After taking part successfully, students have reached the billowing learning results Professional Competence **To subdefine can use specialized knowledge (flocts, heories, and methods) of their subject competently on specialized issues. **To students can use specialized knowledge (flocts, heories, and methods) in one or more areas of their subject, describing cure developments and belong as a crisical position on them. **To students can able to the students are able: **To select apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. **To spely trovivelage they have acquired and methods they have found in the course of their studes to complete additional problems in a solution-oriented very. **To reply trovivelage they have acquired and methods they have found in the course of their studes to complete additional problems in a solution-oriented very. **To review preve pointfills findings in their subject area and subject them to a critical assessment. **Personal Competence** Solidal Competence** **Solidal Competence** **Solidal International Solidal Solida		According to General Regulations §24 (1):
Educational Objectives Professional Competence NotiveCode Professional Competence NotiveCode - The students can see specialized knowledge flacin, florides, and methods of their subject competently on specialized issues. - The students can see specialized knowledge flacin, florides, and methods of their subject competently on specialized issues. - The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing cure developments and laking up a critical position on them. - The students can place a research task in their subject area in its context and desorbe and distostly assess the state of research. - To seed, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. - To apply knowledges they have acquired and methods they have learnt in the coruse of their studies to complex and/or incomplete defined problems in a solution elemental way. - To develop new acquired and methods florid them to a critical assessment. - To apply knowledge findings in their subject area and subject them to a critical assessment. - To select apply couldings findings in their subject area and subject them to a critical assessment. - Both in writing and orally cultims a celerific fiscue for an expect successor, understandably and in a dructured way. - Does limit issues competently in an expect discussion and arreser them in a manner that is appropriate to the addressment shall be addressment and very limited their can assessments and very limited and to access the information required for them to do so. - To apply the schniques of scientific fears in work packages and to work them of accordingly. - To work their way in depth into a largely unknown subject and to access the information required for them to do so. - To apply the schniques of scientific fears in work packages and to work them of accordingly. - To work their way in depth in was largely unknown subject and to access the information require		At least 78 credit points have to be achieved in study programme. The examinations board decides on exceptions.
Educational Objectives Professional Competence NotiveCode Professional Competence NotiveCode - The students can see specialized knowledge flacin, florides, and methods of their subject competently on specialized issues. - The students can see specialized knowledge flacin, florides, and methods of their subject competently on specialized issues. - The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing cure developments and laking up a critical position on them. - The students can place a research task in their subject area in its context and desorbe and distostly assess the state of research. - To seed, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. - To apply knowledges they have acquired and methods they have learnt in the coruse of their studies to complex and/or incomplete defined problems in a solution elemental way. - To develop new acquired and methods florid them to a critical assessment. - To apply knowledge findings in their subject area and subject them to a critical assessment. - To select apply couldings findings in their subject area and subject them to a critical assessment. - Both in writing and orally cultims a celerific fiscue for an expect successor, understandably and in a dructured way. - Does limit issues competently in an expect discussion and arreser them in a manner that is appropriate to the addressment shall be addressment and very limited their can assessments and very limited and to access the information required for them to do so. - To apply the schniques of scientific fears in work packages and to work them of accordingly. - To work their way in depth into a largely unknown subject and to access the information required for them to do so. - To apply the schniques of scientific fears in work packages and to work them of accordingly. - To work their way in depth in was largely unknown subject and to access the information require	Recommended Previous	
Protessional Competence Notice of the students can use specialized knowledge (tacs), theories, and methods) of their subject competency on specialized issues. The students can spison in depth the reviewant approaches and terminologies in one or more areas of their subject, describing curve developments and stating up a critical position on them. The students can place a research task in their subject area in its context and describe and critically assess the state of research. The students are able: To select, apply and, if recospany, develop further methods that are suitable for polying the specialized problem in guestion. To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence Social Competence Social Competence Social Competence Buildents can Buildents are able: To distriction a project of their dwn in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to accose the information required for them to do so. To distriction and scale Examination Curriction Computation and Social Engineering. Thesis: Computatory Chemical and Bioprocess Engineering. Thesis: Computatory Chemical and Bioprocess Engineering. Thesis: Computatory Energy Systems: Thesis: Computatory Computationness Management the facis: Computatory Revisions Engineering. Thesis: Computatory Computationness Management and Engineering. Thesis: Computatory Mechanical Engineering Thesis: Computatory		
The students can use specialized knowledge (flacts, theories, and methods) of their subject compressity on specialized issues. The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing cure developments and subject part of interests on them. The students can place a research task in their subject area in its context and describe and critically assess the stats of research. The students are able: The students are able: To select, apply and, if necessary, develor further methods that are suitable for solving the appositized problem in a question. To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incomplete defined problems in a solubton-nerhand every. To develop new sclenific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence Social Competence Social Competence Social Competence Social Ministry and orally outline a scientific issue for an expert audiscrea accurably, undestandably and in a structured way. Deal with issues competency in an expert discussion and answer them in a manner that is appropriate to the addressans while upholding their competency in the competency of their own in work packages and to work them off accordingly. To work their way in depth intios largely unknown subject and to access the information required for them to do so. To apply the schriques of sclenific work competency in research of their own. Workload in Hours Examination and access the information in the schripping of sclenific propriets computery Compute Social Engineering Thesis Computery Compute Social Engineering Thesis Computery Computer Social Engineering Thesis Computery Computer Social Engineering Thesis Computery International Production Management Thesis Computery International Engineering Thesis Computery Marchanical Engineering Thesis Computery Marchanical Engineering Thesis Computery Marchanical Engi		
The students can suse specialized several represents and terminotings in one or more areas of their subject, describing cure developments and taking up a critical position on them. The students can place a research task in their subject area in its context and describe and critically assess the state of research. The students are abole: To select, apply and, it necessary, develop further methods that are suitable for solving the specialized sproblem in question. To select, apply and, it necessary, develop further methods that are suitable for solving the specialized problem in question. To select apply and, it necessary, develop further methods that are suitable for solving the specialized problem in question. To select apply and, it necessary, develop further methods that are suitable for solving the specialized problem in question. To apply however, and individually and in a solution oriented way. To apply the scheding of solving the subject area and subject them to a critical assessment. Personal Competence Social Competence So		
The students can explain in depth for relevant approaches and terminologies in one or more areas of their subject, describing curre developments and state jue a critical polision on them. The students can place a research task in their subject area in its context and describe and critically assess the state of research. **Notice of the students are able: To seplay knowledge they have acquired and methods that are suitable for solving the specialized problem in question. To supply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. To supply knowledge they have acquired and methods they have learnt in the course of their studies to complex and or incomplete defined problems in a solution oriented way. To students can Students can Students can **Budents can **Budents are able: **Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressess while upholds their own assessments and viewpoints convincingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To structure a project of their own in work packages and to work them off accordingly. **To switch their ways in depth into a largely uniform own accordingly. **To switch their ways in depth into a largely uniform own accordingly. **To switch their ways in depth into a largely	Knowledge	
developments and taking up a critical position on them. The students can place a research task in their subject area in its context and describe and critically assess the state of research. Skills The students are able: To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. To apply and if necessary, develop further methods that are suitable for solving the specialized problem in question. To apply and if necessary, develop further methods that are suitable for solving the specialized problem in question. To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social seasons are able: To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To structure a project of their own in work packages and to work them of accordingly. To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Ceredit points Examination Examination Examination Curricula Social and Social according to Subject Specific Regulations Examination according to Subject Specific Regulations Examination and scele Examination and scele Assignment for the Following Curricula and Signoress Engineering: Thesis: Computory Ending Ingineering: Thesis: Computory Computer States and States and States and Studies of Development Thesis: Computory International Production Management and Eng		
The students can place a research task in their subject area in its context and describe and critically assess the state of research. Solid: The students are able: 10 select, apply and, if necessary, develop further methods that are suitable for solving the apecialized problem in question. 10 select, apply and, if necessary, develop further methods that are suitable for solving the apecialized problem in a solution-oriented vary. 10 select, apply and, if necessary, develop further methods that are suitable for solving the apecialized problem in a solution-oriented vary. 10 selected in florary in the course of their studies to complex and/or incomplete defined problems in a solution-oriented vary. 10 solution is can 10 solution as a solution-oriented indings in their subject area and subject them to a critical assessment. 10 Solution as a solution oriented in their subject area and subject them to a critical assessment. 10 Solution as a solution oriented in an expert discussion and answer them in a manner that is appropriate to the addressees while upholdin their own assessments and viewpoints convincingly. 10 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 10 To structure a project of their own in work packages and to work them of accordingly. 11 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 12 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 12 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 12 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 12 To work their wary in depth into a largely unknown subject and to access the information required for them to do so. 12 To work their wary in depth into a largely unknown subject and to access the information req		
The students are able: • To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question. • To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incomplete defined problems in a solution-oriented way. • To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence Social Competence Suddents can • Both in witting and orally outline a scientific issue for an opport auditinee accurately, understandably and in a structured way. • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while uphold in the control of the control of their own in work packages and to work them of accordingly. • To work their way in depth into a largely unknown subject and to access the information required for them to do so. • To apply the tochniques of scientific work comprehensively in research of their own. Workload in Hours Workload in Hours To exist the reason of their studies to continue to the control of their own. Workload in Hours Circetit points: Satemination duration and scale Satemination duration and scale Sea PSD Examination duration and scale Computer Science: Thesis: Computery Becraft Engineering: Thesis: Computery Computer Science: Thesis: Computery Becraft Engineering: Thesis: Computery Energy systems: Thesis: Computery Energy systems: Thesis: Computery International Management: Thesis: Computery International Management: Thesis: Computery International Management: Thesis: Computery Microelectorius and Management: Thesis: Compute		
To select, apply and, if necessary, develop turther methods that are suitable for solving the specialized problem in question. To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incomplete defined problems in a evalution-inemal way. To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence To social particle and social s		
To select, apply and, if necessary, develop turther methods that are suitable for solving the specialized problem in question. To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incomplete defined problems in a evalution-inemal way. To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence To social particle and social s		
Personal Competence Social Competence To spot the sechniques of scientific work competency in research of their own. Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Credit points Social Competence Social S	Skills	The students are able:
Personal Competence Social Competence To spot the sechniques of scientific work competency in research of their own. Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Credit points Social Competence Social S		To select apply and, if necessary develop further methods that are suitable for solving the specialized problem in question.
defined problems in a solution-oriented way. • To develop new scientific findings in their subject area and subject them to a critical assessment. Personal Competence Social Competence Social Competence Social Competence Social Competence • Both in writing and crally outline a scientific issue for an expert audience accurately, understandably and in a structured way. • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own in work packages and to work them off accordingly. • To structure a project of their own in work packages and to work them off accordingly. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensively in research of their own. • To apply the techniques of scientific work comprehensivel		
Personal Competence Social Competence Social Competence Social Competence Autonomy Sudents are able: Buddents are able: To abuduture a project of their own in work packages and to work them off accordingly. To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To abuduture a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To abuduture a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To abuduture a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To abuduture a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information and to access the information and sealers of accordingly. To work their way in depth into a largely unknown subject and to access the information and to access the information and to access the information and to access		
Social Competence Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way. Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly. To structure a project of their own in work packages and to work them off accordingly. To structure a project of their own in work packages and to work them off accordingly. To apply the techniques of scientific work competensively in research of their own. Workload in Hours Credit points Examination duration and scale Examination and scale Exa		
Social Competence Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way. Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly. To structure a project of their own in work packages and to work them off accordingly. To structure a project of their own in work packages and to work them off accordingly. To apply the techniques of scientific work competensively in research of their own. Workload in Hours Credit points Examination duration and scale Examination and scale Exa	B 10 .	
Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way. Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly. Autionomy Students are able: To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Credit points Examination Examination according to Subject Specific Regulations Examination duration and scale See FSPO Assignment for the Following Curricula Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy Agreem: Thesis: Compulsory Energy Agreem: Thesis: Compulsory Energy Agreem: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Management and Engineering: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanics: Thesis: Compulsory Mechanics: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanics: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Mechanics: Thesis: Compulsory Microel		
Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly. **To work their way in depth into a largely unknown subject and to access the information required for them to do so. **To apply the techniques of scientific work comprehensively in research of their own. **Workload in Hours** **Independent Study Time 900, Study Time in Lecture 0 **Credit points** **Examination** Examination duration and scale** **Examination duration and scale** **See FSPO** Assignment for the Following Curricula** **Curricula** **Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Computer Science: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Production Management: Thesis: Compulsory International Production Management: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Microelectronics	Social Competence	Students can
Autonomy Students are able: • To structure a project of their own in work packages and to work them off accordingly. • To work their way in depth into a largety unknown subject and to access the information required for them to do so. • To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Credit points Examination Examination and scale aser SPPO Assignment for the Following Curricuta Bioprocess Engineering: Thesis: Compulsory Clivil Engineering: Thesis: Compulsory Chemical and Stoprocess Engineering: Thesis: Compulsory Chemical and Stoprocess Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Informational Production Management: Thesis: Compulsory International Production Management: Thesis: Compulsory Mermational Production Management: Thesis: Compulsory Mermational Engineering: Thesis: Compulsory Methanical Engineering: Thesis: Compulsory Methanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectonics and Microeystems: Thesis: Compulsor		Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
Autonomy Students are able: • To structure a project of their own in work packages and to work them off accordingly. • To work their way in depth into a largely unknown subject and to access the information required for them to do so. • To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Examination according to Subject Specific Regulations Examination duration and scale Assignment for the Following Curricula Gioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Production Management: Thesis: Compulsory Information and Production Management and Engineering: Thesis: Compulsory Information and Ranagement and Engineering: Thesis: Compulsory Information and Ranagement and Engineering: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectonics and Microeystems: Thesis: Compulsory		Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding
To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Credit points Examination Examination duration and scale See FSPO Curricula Curricula Curricula Computer Science: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy systems: Thesis: Compulsory Energy systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: The		their own assessments and viewpoints convincingly.
To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Credit points Examination Examination duration and scale See FSPO Curricula Curricula Curricula Computer Science: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy systems: Thesis: Compulsory Energy systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: The		
To structure a project of their own in work packages and to work them off accordingly. To work their way in depth into a largely unknown subject and to access the information required for them to do so. To apply the techniques of scientific work comprehensively in research of their own. Workload in Hours Credit points Examination Examination duration and scale See FSPO Curricula Curricula Curricula Computer Science: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy systems: Thesis: Compulsory Energy systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: The		
To work their way in depth into a largely unknown subject and to access the information required for them to do so. To apply the techniques of scientific work comprehensively in research of their own. Workload In Hours Examination Examination according to Subject Specific Regulations Examination duration and scale Examination duration and scale Examination Curricula Curric	Autonomy	Students are able:
Workload in Hours Independent Study Time 900, Study Time in Lecture 0 Credit points 30 Examination according to Subject Specific Regulations Examination duration and scale see FSPO Assignment for the Following Curricula Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical Engineering: Thesi		To structure a project of their own in work packages and to work them off accordingly.
Workload in Hours Credit points 30 Examination Examination according to Subject Specific Regulations Examination duration and scale Assignment for the Following Curricula Curricula Curricula Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory International Hanagement and Engineering: Thesis: Compulsory International Hanagement and Engineering: Thesis: Compulsory Materials Science: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechatronics: Thesis: Compulsory Mechatronics: Thesis: Compulsory Microelectronics and Microeystems: Thesis: Compulsory Renewable Energies: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		To work their way in depth into a largely unknown subject and to access the information required for them to do so.
Credit points 30 Examination duration and scale see FSPO Assignment for the Following Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy And Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Management: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory International Engineering: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Microelectronics and Microsystems: T		To apply the techniques of scientific work comprehensively in research of their own.
Credit points 30 Examination duration and scale see FSPO Assignment for the Following Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy And Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Management: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory International Engineering: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Microelectronics and Microsystems: T	Workload in Hours	Independent Study Time 900, Study Time in Lecture 0
Examination duration and scale Assignment for the Following Curricula Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy And Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Informational Production Management: Thesis: Compulsory International Production Management: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Methalial Science: Thesis: Compulsory Methalial Science: Thesis: Compulsory Mecharronics: Thesis: Compulsory Biomedical Engineering and Management: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Assignment for the Following Curricula Curricu		
Curricula Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory	Examination duration and scale	see FSPO
Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory	Assignment for the Following	Civil Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mecharonics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory	Curricula	Bioprocess Engineering: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		Chemical and Bioprocess Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		Information and Communication Systems: Thesis: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory		
Naval Architecture and Ocean Engineering: Thesis: Compulsory		Renewable Energies: Thesis: Compulsory
		Naval Architecture and Ocean Engineering: Thesis: Compulsory

Ship and Offshore Technology: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory