Module Manual

Master

Materials Science

Cohort: Winter Term 2015

Updated: 31st May 2017

Program description

Content

Core qualification

Module M0523: Business & Management

Module Responsible Prof. Matthias Meyer
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way around selected special areas of management within the scope of business management.
  • Students are able to explain basic theories, categories, and models in selected special areas of business management.
  • Students are able to interrelate technical and management knowledge.


Skills
  • Students are able to apply basic methods in selected areas of business management.
  • Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.


Personal Competence
Social Competence
Autonomy
  • Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.


Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0524: Nontechnical Elective Complementary Courses for Master

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Non-technical Elective Study Area

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the “non-technical department” follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”.

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • explain specialized areas in context of the relevant non-technical disciplines,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic and specific methods of the said scientific disciplines,
  • aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.



Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.





Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)     



Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M1198: Materials Physics and Atomistic Materials Modeling

Courses
Title Typ Hrs/wk CP
Atomistic Materials Modeling (L1672) Lecture 2 3
Materials Physics (L1624) Lecture 1 3
Module Responsible Prof. Patrick Huber
Admission Requirements none.
Recommended Previous Knowledge Advanced mathematics, physics and chemistry for students in engineering or natural sciences
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to 

- explain the fundamentals of condensed matter physics

- describe the fundamentals of the microscopic structure and mechanics, thermodynamics and optics of materials systems.

- to understand concept and realization of advanced methods in atomistic modeling as well as to estimate their potential and limitations.



Skills

After attending this lecture the students

  • can perform calculations regarding the thermodynamics, mechanics, electrical and optical properties of condensed matter systems
  • are able to transfer their knowledge to related technological and scientific fields, e.g. materials design problems.
  • can select appropriate model descriptions for specific materials science problems and are able to further develop simple models.


Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

Students are able to assess their knowldege continuously on their own by exemplified practice.

The students are able to assess their own strengths and weaknesses and define tasks independently.

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Course L1672: Atomistic Materials Modeling
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle WiSe
Content
Literature
Course L1624: Materials Physics
Typ Lecture
Hrs/wk 1
CP 3
Workload in Hours Independent Study Time 76, Study Time in Lecture 14
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle WiSe
Content
Literature

Für den Elektromagnetismus:

  • Bergmann-Schäfer: „Lehrbuch der Experimentalphysik“, Band 2: „Elektromagnetismus“, de Gruyter

Für die Atomphysik:

  • Haken, Wolf: „Atom- und Quantenphysik“, Springer

Für die Materialphysik und Elastizität:

  • Hornbogen, Warlimont: „Metallkunde“, Springer


Module M1197: Multiphase Materials

Courses
Title Typ Hrs/wk CP
Applied Computational Methods for Material Science (L1626) Problem-based Learning 3 3
Structure and Properties of Composites (L0513) Lecture 2 3
Module Responsible Prof. Bodo Fiedler
Admission Requirements Non
Recommended Previous Knowledge TBD
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can

- explain the complex relationships of the mechanics of composite materials, the failure mechanisms and physical properties.

- assess the interactions of microstructure and properties of the matrix and reinforcing materials.

- explain e.g. different fiber types, including relative contexts (e.g. sustainability, environmental protection).

They know different methods of modeling multiphase materials and can apply them.
Skills

Students are capable of

- using standardized methods of calculation and modeling using the finite element method in a specified context to use discretization, solver, Programming with Python, Automated control and evaluation of parameter studies and examples to calculate of elastic mechanics like tensile, bending, four point bend, crack propagation, J -Integral, Cohesive zone models, Contact.

- determining the material properties (elasticity, plasticity, small and large deformations, modeling of multiphase materials).

- to calculate and evaluate the  mechanical properties (modulus, strength) of different materials.

- Approximate sizing using the network theory of the structural elements implement and evaluate.

- selecting appropriate solutions for mechanical material problems: Solution of inverse problems (neural networks, optimization methods).
Personal Competence
Social Competence

Students can,

- arrive at work results in groups and document them.

- provide appropriate feedback and handle feedback on their own performance constructively.
Autonomy

Students are able to,

- assess their own strengths and weaknesses

- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.

They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Examination Written exam
Examination duration and scale 1,5 h written exam in S. a. P. of Composites
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Course L1626: Applied Computational Methods for Material Science
Typ Problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Norbert Huber
Language DE/EN
Cycle WiSe
Content

Finite Element Method (discretisation, solver, programming with Python, automatized control and analysis of parametric studies)

Examples of elastomechanics (tension, bending, four-point-bending, crack propagation, J-integral, cohesive zone models, contact)

Material behaviour (elasticity, plasticity, small and finite deformations, modelling of multiphase materials)

Solution of inverse problems (artificial neural networks, optimization)


Literature Alle Vorlesungsmaterialien und Beispiellösungen (Input-Dateien, Python Scirpte) werden auf Stud.IP zur Verfügung gestellt.
Course L0513: Structure and Properties of Composites
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Bodo Fiedler
Language EN
Cycle WiSe
Content

- Microstructure and properties of the matrix and reinforcing materials and their interaction
- Development of composite materials
- Mechanical and physical properties
- Mechanics of Composite Materials
- Laminate theory
- Test methods
- Non destructive testing
- Failure mechanisms
- Theoretical models for the prediction of properties
- Application

Literature Hall, Clyne: Introduction to Composite materials, Cambridge University Press
Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press
Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York

Module M1218: Lecture: Multiscale Materials

Courses
Title Typ Hrs/wk CP
Multiscale Materials (L1659) Lecture 6 6
Module Responsible Prof. Gerold Schneider
Admission Requirements

Mandatory lectures of the first semester of the master course "materials science"

Recommended Previous Knowledge

Fundamentals in physics and chemistry, Fundamentals and enhanced fundamentals in materials science, Advanced mathematics,  Fundamentals of the theory elasticity

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The master students will be able to explain…

…the fundamental chemical and physical properties of metals, ceramics and polymers.

… the correlation of chemical and physical phenomena on the atomic, meso and macroscale and its consequences for the macroscopic properties of materails.

The master students will then be able understand the dependence of the macroscopic material properties on the underlying hierarchical levels.

Skills

After attending this lecture the students can …

…perform materials design for multiscale materials.

Personal Competence
Social Competence

The student has an astonishing knowledge in materials properties which demands both, expertise in chemistry, physics and materials science. This makes him to an outstanding discussion partner who will be able to understand the scientific arguments of “both sides”. Up to now, such an education is hard to find at universities. 

Autonomy

The students are able to ...

…assess their own strengths and weaknesses.

…define tasks independently.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Examination Written exam
Examination duration and scale
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Course L1659: Multiscale Materials
Typ Lecture
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Prof. Gerold Schneider, Prof. Norbert Huber, Prof. Stefan Müller, Prof. Patrick Huber, Prof. Manfred Eich, Prof. Bodo Fiedler, Dr. Erica Lilleodden, Prof. Karl Schulte, Prof. Jörg Weißmüller
Language DE
Cycle WiSe
Content

The materials discussed in this lecture differ from „conventional“ ones due to their individual hierarchic microstructure. In conventional microstructure design, the morphology is adjusted, for instance, by thermal treatment and concurrent mechanical deformation. The material is continually and steadily optimized by small changes in structure or chemical composition, also in combination with self-organization processes (precipitation alloys, ceramic glasses, eutectic structures).

The presented materials consist of functionalized elementary functional units based on polymers, ceramics, metals and carbon nanotubes (CNTs), which are used to create macroscopic hierarchical material systems, whose characteristic lengths range from the nanometer to the centimeter scale. These elementary functional units are either core-shell structures or cavities in metals created by alloy corrosion and subsequent polymer filling.

Three classes of material systems will be presented:

First, hierarchically structured ceramic/metal-polymer material systems similar to naturally occurring examples, namely nacre (1 hierarchical level), enamel (3 hierarchical levels) and bone (5 hierarchical levels) will be discussed. Starting with an elementary functional unit consisting of ceramic nanoparticles with a polymeric coating, a material is created in which on each hierarchical level, “hard” particles, made of the respective lower hierarchical level, are present in a soft polymer background. The resulting core-shell structure on each hierarchical level is the fundamental difference compared to a compound material made of rigid interpenetrating ceramic or metallic networks.

The second material system is based on nanoporous gold, which acts as a prototypical material for new components in light weight construction with simultaneous actuator properties. Their production and resulting length-scale specific mechanical properties will be explained. Furthermore, related scale-spanning theoretical models for their mechanical behavior will be introduced. This covers the entire scale from the electronic structure on the atomic level up to centimeter-sized macroscopic samples.

The third material system discussed in the lecture are novel hierarchical nanostructured materials based on thermally stable ceramics and metals for high-temperature photonics with potential use in thermophotovoltaic systems (TPVs) and thermal barrier coatings (TBCs). Direct and inverted 3D-photonic crystal structures (PhCs) as well as novel optically hyperbolic media, in particular, are worthwhile noting. Due to their periodicity and diffraction index contrast, PhCs exhibit a photonic band structure, characterized by photonic band gaps, areas of particularly high photonic densities of states and special dispersion relations. The presented properties are to be used to reflect thermal radiation in TBCs in a strong and directed manner, as well as to link radiation effectively and efficiently in TPVs.

Literature

Aktuelle Publikationen

Module M1170: Phenomena and Methods in Materials Science

Courses
Title Typ Hrs/wk CP
Experimental Methods for the Characterization of Materials (L1580) Lecture 2 3
Phase equilibria and transformations (L1579) Lecture 2 3
Module Responsible Prof. Patrick Huber
Admission Requirements

none.

Recommended Previous Knowledge

Fundamentals of Materials Science (I and II)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials.

Skills

The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications.

Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.


Autonomy

The students are able to ...

  • assess their own strengths and weaknesses.
  • define tasks independently.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Compulsory
Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory
Course L1580: Experimental Methods for the Characterization of Materials
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle SoSe
Content
  • Structural characterization by photons, neutrons and electrons (in particular X-ray and neutron scattering, electron microscopy, tomography)
  • Mechanical and thermodynamical characterization methods (indenter measurements, mechanical compression and tension tests, specific heat measurements)
  • Characterization of optical, electrical and magnetic properties (spectroscopy, electrical conductivity and magnetometry)


Literature

William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011).

William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).

Course L1579: Phase equilibria and transformations
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Jörg Weißmüller
Language DE
Cycle SoSe
Content

Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free-energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.

Literature Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Module M1219: Advanced Laboratory Materials Sciences

Courses
Title Typ Hrs/wk CP
Advanced Laboratory Materials Sciences (L1653) Laboratory Course 6 6
Module Responsible Prof. Jörg Weißmüller
Admission Requirements

open to all students of the degree course

Recommended Previous Knowledge

knowledge of Materials Science fundamentals

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

- not applicable -

Skills
  • guided scientific experimentation
  • data analysis
Personal Competence
Social Competence
  • scientific discussion of results
  • written presentation of results in a protocol
  • oral presentation of scientific topics 
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Examination Written elaboration
Examination duration and scale ca. 25 pages
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Course L1653: Advanced Laboratory Materials Sciences
Typ Laboratory Course
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Lecturer Prof. Jörg Weißmüller, Prof. Patrick Huber, Prof. Bodo Fiedler, Dr. Erica Lilleodden, Prof. Gerold Schneider
Language DE/EN
Cycle SoSe
Content
Literature

Module M1226: Mechanical Properties

Courses
Title Typ Hrs/wk CP
Mechanical Behaviour of Brittle Materials (L1661) Lecture 2 3
Dislocation Theory of Plasticity (L1662) Lecture 2 3
Module Responsible Dr. Erica Lilleodden
Admission Requirements none
Recommended Previous Knowledge

Basics in Materials Science I/II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain basic principles of crystallography, statics (free body diagrams, tractions) and thermodynamics (energy minimization, energy barriers, entropy)

Skills

Students are capable of using standardized calculation methods: tensor calculations, derivatives, integrals, tensor transformations

Personal Competence
Social Competence

Students can provide appropriate feedback and handle feedback on their own performance constructively.

Autonomy

Students are able to

- assess their own strengths and weaknesses

- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.

- work independently based on lectures and notes to solve problems, and to ask for help or clarifications when needed

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula International Production Management: Specialisation Production Technology: Elective Compulsory
Materials Science: Core qualification: Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Compulsory
Course L1661: Mechanical Behaviour of Brittle Materials
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Gerold Schneider
Language DE/EN
Cycle SoSe
Content

Theoretical Strength
Of a perfect crystalline material, theoretical critical shear stress

Real strength of brittle materials
Energy release reate, stress intensity factor, fracture criterion

Scattering of strength of brittle materials
Defect distribution, strength distribution, Weibull distribution

Heterogeneous materials I
Internal stresses, micro cracks, weight function,

Heterogeneous materials II
Toughening mechanisms: crack bridging, fibres

Heterogeneous materials III
Toughening mechanisms. Process zone

Testing methods to determine the fracture toughness of brittle materials

R-curve, stable/unstable crack growth, fractography

Thermal shock

Subcritical crack growth)
v-K-curve, life time prediction

Kriechen

Mechanical properties of biological materials

Examples of use for a mechanically reliable design of ceramic components

Literature

D R H Jones, Michael F. Ashby, Engineering Materials 1, An Introduction to Properties, Applications and Design, Elesevier

D.J. Green, An introduction to the mechanical properties of ceramics”, Cambridge University Press, 1998

B.R. Lawn, Fracture of Brittle Solids“, Cambridge University Press, 1993

D. Munz, T. Fett, Ceramics, Springer, 2001

D.W. Richerson, Modern Ceramic Engineering, Marcel Decker, New York, 1992

Course L1662: Dislocation Theory of Plasticity
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Erica Lilleodden
Language DE/EN
Cycle SoSe
Content

This class will cover the principles of dislocation theory from a physical metallurgy perspective, providing a fundamental understanding of the relations between the strength and of crystalline solids and distributions of defects.

We will review the concept of dislocations, defining terminology used, and providing an overview of important concepts (e.g. linear elasticity, stress-strain relations, and stress transformations) for theory development. We will develop the theory of dislocation plasticity through derived stress-strain fields, associated self-energies, and the induced forces on dislocations due to internal and externally applied stresses. Dislocation structure will be discussed, including core models, stacking faults, and dislocation arrays (including grain boundary descriptions). Mechanisms of dislocation multiplication and strengthening will be covered along with general principles of creep and strain rate sensitivity. Final topics will include non-FCC dislocations, emphasizing the differences in structure and corresponding implications on dislocation mobility and macroscopic mechanical behavior; and dislocations in finite volumes.

Literature

Vorlesungsskript

Aktuelle Publikationen

Bücher:

Introduction to Dislocations, by D. Hull and D.J. Bacon

Theory of Dislocations, by J.P.  Hirth and J. Lothe

Physical Metallurgy, by Peter Hassen

Module M1199: Advanced Functional Materials

Courses
Title Typ Hrs/wk CP
Advanced Functional Materials (L1625) Lecture 2 6
Module Responsible Prof. Patrick Huber
Admission Requirements none.
Recommended Previous Knowledge

Fundamentals of Materials Science (I and II)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials.

Skills

The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications.

Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

The students are able to ...

  • assess their own strengths and weaknesses.
  • define tasks independently.
Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Credit points 6
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory
Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Course L1625: Advanced Functional Materials
Typ Lecture
Hrs/wk 2
CP 6
Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Lecturer Prof. Patrick Huber, Prof. Stefan Müller, Prof. Bodo Fiedler, Prof. Gerold Schneider, Prof. Jörg Weißmüller
Language DE/EN
Cycle WiSe
Content

1. Porous Solids - Preparation, Characterization and Functionalities
2. Fluidics with nanoporous membranes
3. Thermoplastic elastomers
4. Optimization of polymer properties by nanoparticles
5. Fiber composites in automotive
6. Modeling of materials based on quantum mechanics
7. Biomaterials

Literature

Wird in der Veranstaltung bekannt gegeben

Module M1221: Project work on Modern Issues in the Materials Sciences

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Jörg Weißmüller
Admission Requirements
open to all students of the degree course
Recommended Previous Knowledge

knowledge of Materials Science fundamentals

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

detailed knowledge in the area of the project topic

Skills
  • independent familiarization with the scientific context of a specified topic
  • guided execution of scientific experiment, computation or simulation
  • data analysis and scientific discussion of results
  • written presentation of results in a protocol
  • oral presentation of the project results 
Personal Competence
Social Competence Students are able to discuss scientific results with specific target groups, to document results in a written form and to present them orally.
Autonomy
Workload in Hours Independent Study Time 360, Study Time in Lecture 0
Credit points 12
Examination Project (accord. to Subject Specific Regulations)
Examination duration and scale
Assignment for the Following Curricula Materials Science: Core qualification: Compulsory

Specialization Engineering Materials

Students learn in the Engineering Materials specialization the evaluation of the different materials in the technology-oriented environment.

They gain knowledge about process planning as well as managing of projects or personnel. Students are able to evaluate and make decisions on materials, industrial production, quality assurance and failure analysis.

Module M1202: Design with Polymers and Composites

Courses
Title Typ Hrs/wk CP
Joining of Polymer-Metal Lightweight Structures (L0500) Lecture 2 2
Joining of Polymer-Metal Lightweight Structures (L0501) Laboratory Course 1 1
Design with Polymers and Composites (L0057) Lecture 2 3
Module Responsible Prof. Bodo Fiedler
Admission Requirements Non
Recommended Previous Knowledge

Structure and Properties of Polymers

Structure and Properties of Composites

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can reflect the fundamentals of design elements of fiber composites and plastics.

They can explain the complex relationships of loads on Polymer- and fiber composite structures.

The interactions of processing technologies, design and strength (calculation), including to explain contexts (e.g. sustainability, environment).
Skills

Students are capable of using standardized calculation methods in a given context to solve

- Problem such as Layer design and to solve manufacturing technology for which non-standard solutions exist.

- Approximate sizing using the network theory of the structural elements implement and evaluate.

- For their constructive problem select appropriate design elements and dimensioning example Connection technology, sandwich technology.

- In the field of thermoplastic construction elements such as Film hinge to assess snap with manufacturing technologies, costs, performance appropriate.

Personal Competence
Social Competence

Students can,

- arrive at work results in groups and document them.

- provide appropriate feedback and handle feedback on their own performance constructively.
Autonomy

Students are able to,

- assess their own strengths and weaknesses


- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.

- assess possible consequences of their professional activity.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Examination Written exam
Examination duration and scale 3 h
Assignment for the Following Curricula Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0500: Joining of Polymer-Metal Lightweight Structures
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Sergio Amancio Filho
Language EN
Cycle WiSe
Content

Recommended Previous Knowledge:

Fundamentals of Materials Science and Engineering

Basic Knowledge of Science and Technology of Welding and Joining

Contents:

The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures:

Theoretical Lectures:

- Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology

- Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics

- Mechanical Fastening of Polymer-Metal Hybrid Structures

- Adhesive Bonding of Polymer-Metal Hybrid Structures

- Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures

- Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures

Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course)

- Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining)

- Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints

Learning Outcomes:

After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields.


Literature
  • Lecture Notes and selected papers
  • J.F. Shackelford, Introduction to materials science for engineers, Prentice-Hall International
  • J. Rotheiser, Joining of Plastics, Handbook for designers and engineers, Hanser Publishers
  • D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook
  • D. Lohwasser, Z. Chen, Friction Stir Welding, From basics to applications, Woodhead Publishing Limited


Course L0501: Joining of Polymer-Metal Lightweight Structures
Typ Laboratory Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Sergio Amancio Filho
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0057: Design with Polymers and Composites
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Bodo Fiedler
Language DE
Cycle WiSe
Content Designing with Polymers: Materials Selection; Structural Design; Dimensioning
Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples
Literature

Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag


Module M1206: Ceramics and Polymers

Courses
Title Typ Hrs/wk CP
Structure and Properties of Polymers (L0389) Lecture 2 3
Ceramics Technology (L0379) Lecture 2 3
Module Responsible Dr. Hans Wittich
Admission Requirements none
Recommended Previous Knowledge Basics in Materials Science II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can use the knowledge of ceramics and polymers and define the necessary testing and analysis.

 

They can explain the complex relationships structure-property relationship and

 

the interactions of chemical structure of ceramics and polymers, their processing, including to explain neighboring contexts (e.g. sustainability, environmental protection).

Skills

Students are capable of

 

- using standardized calculation methods in a given context to mechanical properties (modulus, strength) to calculate and evaluate the different materials.

 

- For mechanical recycling problems selecting appropriate solutions and sizing example Stiffness, corrosion resistance.

Personal Competence
Social Competence

Students can,

 

- arrive at work results in groups and document them.

 

- provide appropriate feedback and handle feedback on their own performance constructively.

Autonomy



Students are able to,

- assess their own strengths and weaknesses

- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.

- assess possible consequences of their professional activity.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 3 h
Assignment for the Following Curricula Materials Science: Specialisation Engineering Materials: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Course L0389: Structure and Properties of Polymers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Hans Wittich
Language DE
Cycle WiSe
Content
Literature Ehrenstein: Polymer-Werkstoffe, Carl Hanser Verlag
Course L0379: Ceramics Technology
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Rolf Janßen
Language DE/EN
Cycle WiSe
Content

Introduction to ceramic processing with emphasis on advanced structural ceramics. The course focus predominatly on powder-based processing, e.g. “powder-metauurgical techniques and sintering (soild state and liquid phase). Also, some aspects of glass and cement science as well as  new developments in powderless forming techniques of ceramics and ceramic composites will be addressed  Examples will be discussed in order to give engineering students an understanding of technology development  and specific applications of ceramic components.

Content:                                     1. Introduction

Inhalt:                                         2. Raw materials

                                                   3. Powder fabrication

                                                   4. Powder processing

                                                   5. Shape-forming processes

                                                   6. Densification, sintering

                                                   7. Glass and Cement technology

                                                   8. Ceramic-metal joining techniques


Literature

W.D. Kingery, „Introduction to Ceramics“, John Wiley & Sons, New York, 1975

ASM Engineering Materials Handbook Vol.4 „Ceramics and Glasses“, 1991

D.W. Richerson, „Modern Ceramic Engineering“, Marcel Decker, New York, 1992


Skript zur Vorlesung

Module M1225: Metallic Light-weight Materials

Courses
Title Typ Hrs/wk CP
Metallic Light-weight Materials (L1660) Lecture 2 4
Materials Testing (L0949) Lecture 2 2
Module Responsible Prof. Karl-Ulrich Kainer
Admission Requirements none
Recommended Previous Knowledge Basics in chemistry / physics / material science
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able

- to use the basics of metallic lightweight structural materials

- to apply selection criteria known for metallic lightweight structural material

- to select suitable test methods and analysis methods for the characterisation of the materials.

- to understand complex correlation between processing-microstructure-properties in examples

- to show application potential and typical examples of use

Skills

Students are able

- to weigh pros and cons of the different material groups,

- to make decisions on the choice of suitable materials for application in material lightweight design,

- to evaluate the property potential of the materials and to assess the different materials,

- to select suitable solutions for material related problems and for designing of parts, e. g. , mechanical properties, corrosion and processability
Personal Competence
Social Competence

Students are able to

- arrive at work results in groups, document and evaluate them,

- provide appropriate feedback and handle external feedback on their own performance constructively.
Autonomy

Students are able to

 - assess their own strengths and weaknesses,

 - assess their own state of learning in specific terms and to define further work steps on this basis guided by lecturers,

 - assess possible consequences of their professional activity

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L1660: Metallic Light-weight Materials
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Karl-Ulrich Kainer
Language DE
Cycle WiSe
Content

Lightweight construction

- Structural lightweight construction

- Material lightweight construction

- Choice criteria for metallic lightweight construction materials

 Steel as lightweight construction materials

- Introduction to the fundamentals of steels

- Modern steels for the lightweight construction

  - Fine grain steels

  - High-strength low-alloyed steels

  - Multi-phase steels (dual phase, TRIP)

  - Weldability

  - Applications


Aluminium alloys:

Introduction to the fundamentals of aluminium materials

Alloy systems

Non age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

Age-hardenable Al alloys: Processing and microstructure, mechanical qualities and applications

 

Magnesium alloys

Introduction to the fundamental of magnesium materials

Alloy systems

Magnesium casting alloys, processing, microstructure and qualities

Magnesium wrought alloys, processing, microstructure and qualities

Examples of applications


Titanium alloys

Introduction to the fundamental of the titanium materials

Alloy systems

Processing, microstructure and properties

Examples of applications

 

Exercises and excursions

Literature

George Krauss, Steels: Processing, Structure, and Performance, 978-0-87170-817-5, 2006, 613 S.

Hans Berns, Werner Theisen, Ferrous Materials: Steel and Cast Iron, 2008. http://dx.doi.org/10.1007/978-3-540-71848-2

C. W. Wegst, Stahlschlüssel = Key to steel = La Clé des aciers = Chiave dell'acciaio = Liave del acero ISBN/ISSN: 3922599095

Bruno C., De Cooman / John G. Speer: Fundamentals of Steel Product Physical Metallurgy, 2011, 642 S.

Harry Chandler, Steel Metallurgy for the Non-Metallurgist 0-87170-652-0, 2006, 84 S.

Catrin Kammer, Aluminium Taschenbuch 1, Grundlagen und Werkstoffe, Beuth,16. Auflage 2009. 784 S., ISBN 978-3-410-22028-2

Günter Drossel, Susanne Friedrich, Catrin Kammer und Wolfgang Lehnert, Aluminium Taschenbuch 2, Umformung von Aluminium-Werkstoffen, Gießen von Aluminiumteilen, Oberflächenbehandlung von Aluminium, Recycling und Ökologie, Beuth, 16. Auflage 2009. 768 S., ISBN 978-3-410-22029-9

Catrin Kammer, Aluminium Taschenbuch 3, Weiterverarbeitung und Anwendung, Beuith,17. Auflage 2014. 892 S., ISBN 978-3-410-22311-5

G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397

Magnesium - Alloys and Technologies, K. U. Kainer (Hrsg.), Wiley-VCH, Weinheim 2003, ISBN 3-527-30570-x

Mihriban O. Pekguleryuz, Karl U. Kainer and Ali Kaya “Fundamentals of Magnesium Alloy Metallurgy”, Woodhead Publishing Ltd, 2013,ISBN 10: 0857090887




Course L0949: Materials Testing
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Jan Oke Peters
Language DE
Cycle WiSe
Content


Application and analysis of basic mechanical as well as non-destructive testing of materials  

  • Determination elastic constants                                                                                                                    
  • Tensile test
  • Fatigue test (testing with constant stress, strain, or plastiv strain amplitude, low and high cycle fatigue, mean stress effect)
  • Crack growth upon static loading (stress intensity factor, fracture toughness)
  • Creep test
  • Hardness test
  • Charpy impact test
  • Non destructive testing
Literature

E. Macherauch: Praktikum in Werkstoffkunde, Vieweg
G. E. Dieter: Mechanical Metallurgy, McGraw-Hill

Module M0593: Building Materials and Building Preservation

Courses
Title Typ Hrs/wk CP
Anchor Technology and Design, Post Installed Rebar Connections (L0257) Recitation Section (small) 1 1
Repair of Structures (L0255) Lecture 1 1
Mineral Building Materials (L0253) Lecture 2 2
Technology of mineral Building Materials (L0256) Recitation Section (small) 1 1
Transport Processes in Building Materials and Damage Processes (L0254) Lecture 1 1
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge about building materials, building physics and building chemistry, for example by the modules Principles of Building Materials and Building Physics and Building Materials and Building Chemistry.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the components of mineral building materials and their function in detail and to use them for the manufacture of special mineral building materials. They are able to show the characteristics of mineral building materials. They are able to describe the manufacture, properties and fields of application of special mortars and special concretes and the correlations of their material parameters. They are able to show the principles of anchor technology and design. 

Skills

The students are able to perform an optimization of granulometry of a mineral building material. They are able to design a special mineral mortar and to manufacture this mortar. The students are able to manufacture post installed rebar connections. They are able to recognize damages, to assess possible causes, to use the fundamentals of construction preservation and to select repair and strengthening measures.


Personal Competence
Social Competence

The students are able to develop in small grous the mixture of a special mortar. They present their results to the lecturer and the other students. In a critical discussion they defend and adjust their results. The students are able to manufacture their special building material on the basis of this feedback.


Autonomy

The students are able to responsibly use the resources of materials and lab equipment for their project and to investigate and to get missing components.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0257: Anchor Technology and Design, Post Installed Rebar Connections
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Gernod Deckelmann
Language DE
Cycle SoSe
Content
  • Working principles of friction, keying and bonding anchors
  • Selection of anchors
  • Anchor design
  • Installation of anchors
  • Post installed rebar connections and additional german regulations
Literature

Vortragsfolien der Lehrveranstaltung stehen über STUD.IP zum download zur Verfügung

Beton-Kalender 2012: lnfrastrukturbau, Befestigungstechnik. Eurocode 2. Herausgegeben von Konrad Bergmeister, Frank Fingerloos und Johann-Dietrich Wörner; 2012 Ernst & Sohn GmbH & Co. KG. Published by Ernst & Sohn GmbH & Co. KG.

DIBt: Hinweise für die Montage von Dübelverankerungen; Oktober 2010

Ratgeber Dübeltechnik, Basiswissen - Metalldübel, chemische Dübel, Kunststoffdübel; Herausgeber Hilti AG

 

Course L0255: Repair of Structures
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann
Language DE
Cycle SoSe
Content Maintenance of structures, repair and strengthening, subsequent waterproofing of structures
Literature BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen – schützen, erhalten, instandsetzen
Course L0253: Mineral Building Materials
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Components of mineral building materials and their function, binding materials, concrete and mortar, special mortars, special concretes
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0256: Technology of mineral Building Materials
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle SoSe
Content Design and production of mineral building materials
Literature

Taylor, H.F.W.: Cement Chemistry

Springenschmid, R.: Betontechnologie für die Praxis

Course L0254: Transport Processes in Building Materials and Damage Processes
Typ Lecture
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl, Dr. Gernod Deckelmann
Language DE
Cycle SoSe
Content Transport Processes in Building Materials and Damage Processes
Literature Blaich, J.: Bauschäden, Analyse und Vermeidung

Module M1144: Manufacturing with Polymers and Composites - From Molecule to Part

Courses
Title Typ Hrs/wk CP
Manufacturing with Polymers and Composites (L0511) Lecture 2 3
From Molecule to Composites Part (L1516) Problem-based Learning 2 3
Module Responsible Prof. Bodo Fiedler
Admission Requirements Non
Recommended Previous Knowledge

Structure and Properties of Polymers

Structure and Properties of Composites

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to give a summary of the technical details of projects in the area of civil engineering and illustrate respective relationships. They are capable of describing and communicating relevant problems and questions using appropriate technical language. They can explain the typical process of solving practical problems and present related results.

Skills

The students can transfer their fundamental knowledge on civil engineering to the process of solving practical problems. They identify and overcome typical problems during the realization of projects in the context of civil engineering. Students are able to develop, compare, and choose conceptual solutions for non-standardized problems.


Personal Competence
Social Competence

Students are able to cooperate in small, mixed-subject groups in order to independently derive solutions to given problems in the context of civil engineering. They are able to effectively present and explain their results alone or in groups in front of a qualified audience. Students have the ability to develop alternative approaches to an engineering problem independently or in groups and discuss advantages as well as drawbacks.

Autonomy

Students are capable of independently solving mechanical engineering problems using provided literature. They are able to fill gaps in as well as extent their knowledge using the literature and other sources provided by the supervisor. Furthermore, they can meaningfully extend given problems and pragmatically solve them by means of corresponding solutions and concepts.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written elaboration
Examination duration and scale 1,5 h
Assignment for the Following Curricula Materials Science: Specialisation Engineering Materials: Elective Compulsory
Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory
Product Development, Materials and Production: Specialisation Production: Elective Compulsory
Product Development, Materials and Production: Specialisation Materials: Compulsory
Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory
Course L0511: Manufacturing with Polymers and Composites
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Bodo Fiedler
Language EN
Cycle SoSe
Content Manufacturing of Polymers: General Properties; Calendering; Extrusion; Injection Moulding; Thermoforming, Foaming; Joining
Manufacturing of Composites: Hand Lay-Up; Pre-Preg; GMT, BMC; SMC, RIM; Pultrusion; Filament Winding
Literature Osswald, Menges: Materials Science of Polymers for Engineers, Hanser Verlag
Crawford: Plastics engineering, Pergamon Press
Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
Åström: Manufacturing of Polymer Composites, Chapman and Hall
Course L1516: From Molecule to Composites Part
Typ Problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Bodo Fiedler
Language DE/EN
Cycle SoSe
Content

Students get the task in the form of a customer request for the development and production of a MTB handlebar made ​​of fiber composites. In the task technical and normative requirements (standards) are given, all other required information come from the lectures and tutorials, and the respective documents (electronically and in conversation). 
  The procedure is to specify in a milestone schedule and allows students to plan tasks and to work continuously. At project end, each group has a made handlebar with approved quality.
In each project meeting the design (discussion of the requirements and risks) are discussed. The calculations are analyzed, evaluated and established manufacturing methods are selected. Materials are selected bar will be produced. The quality and the mechanical properties are checked. At the end of the final report created (compilation of the results for the "customers").
After the test during the "customer / supplier conversation" there is a mutual feedback-talk ("lessons learned") in order to ensure the continuous improvement.

Literature

Customer Request ("Handout")

Module M0595: Examination of Materials, Structural Condition and Damages

Courses
Title Typ Hrs/wk CP
Examination of Materials, Structural Condition and Damages (L0260) Lecture 4 4
Examination of Materials, Structural Condition and Damages (L0261) Recitation Section (small) 1 2
Module Responsible Prof. Frank Schmidt-Döhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about building materials or material science, for example by the module Building Materials and Building Chemistry.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students are able to describe the rules for trading, use and marking of construction products in Germany. They know which methods for the testing of building material properties are usable and know the limitations and characterics of the most important testing methods.

Skills

The students are able to responsibly discover the rules for trading and using of building products in Germany. 
They are able to chose suitable methods for the testing and inspection of construction products, the examination of damages and the examination of the structural conditions of buildings. They are able to conclude from symptons to the cause of damages. They are able to  describe an examination in form of a test report or expert opinion.


Personal Competence
Social Competence

The students can describe the different roles of manufacturers as well as testing, supervisory and certification bodies within the framework of material testing. They can describe the different roles of the participants in legal proceedings.


Autonomy --
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
Civil Engineering: Specialisation Geotechnical Engineering: Elective Compulsory
Civil Engineering: Specialisation Coastal Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L0260: Examination of Materials, Structural Condition and Damages
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content Materials testing and marking process of construction products, testing methods for building materials and structures, testing reports and expert opinions, describing the condition of a structure, from symptons to the cause of damages
Literature Frank Schmidt-Döhl: Materialprüfung im Bauwesen. Fraunhofer irb-Verlag, Stuttgart, 2013.
Course L0261: Examination of Materials, Structural Condition and Damages
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Frank Schmidt-Döhl
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1291: Materials Science Seminar

Courses
Title Typ Hrs/wk CP
Seminar (L1757) Seminar 2 3
Seminar Composites (L1758) Seminar 2 3
Seminar Advanced Ceramics (L1801) Seminar 2 3
Seminar on interface-dominated materials (L1795) Seminar 2 3
Module Responsible Prof. Jörg Weißmüller
Admission Requirements None
Recommended Previous Knowledge Advanced materials science knowledge from the first year of the Master course "Materials Science" 
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Insights into current issues in materials science.

Ability to present and communicate scientific topics to peers through talks.

Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L1757: Seminar
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Jörg Weißmüller
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1758: Seminar Composites
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Bodo Fiedler
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1801: Seminar Advanced Ceramics
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Gerold Schneider
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1795: Seminar on interface-dominated materials
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle WiSe/SoSe
Content
Literature

Specialization Modelling

Module M1151: Material Modeling

Courses
Title Typ Hrs/wk CP
Material Modeling (L1535) Lecture 2 3
Material Modeling (L1536) Recitation Section (small) 2 3
Module Responsible Prof. Swantje Bargmann
Admission Requirements None
Recommended Previous Knowledge

mechanics I

mechanics II

 continuum mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students can explain the fundamentals of multidimensional consitutive material laws
Skills The students can implement their own material laws in finite element codes. In particular, the students can apply their knowledge to various problems of material science and evaluate the corresponding material models.
Personal Competence
Social Competence

The students are able to develop solutions, to present them to specialists and to develop ideas further.

Autonomy

The students are able to assess their own strengths and weaknesses and to define tasks themselves. They can solve exercises in the area of continuum mechanics on their own.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Product Development, Materials and Production: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory
Course L1535: Material Modeling
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann, Dr. Benjamin Klusemann
Language DE/EN
Cycle WiSe
Content
  • fundamentals of finite element methods
  • fundamentals of material modeling
  • introduction to numerical implementation of material laws 
  • overview of modelling of different classes of materials
  • combination of macroscopic quantities to material microstructure


Literature

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge

G. Gottstein., Physical Foundations of Materials Science, Springer


Course L1536: Material Modeling
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann, Dr. Benjamin Klusemann
Language DE/EN
Cycle WiSe
Content


  • fundamentals of finite element methods
  • fundamentals of material modeling
  • introduction to numerical implementation of material laws 
  • overview of modelling of different classes of materials
  • combination of macroscopic quantities to material microstructure
Literature

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge

G. Gottstein., Physical Foundations of Materials Science, Springer


Module M0604: High-Order FEM

Courses
Title Typ Hrs/wk CP
High-Order FEM (L0280) Lecture 3 4
High-Order FEM (L0281) Recitation Section (large) 1 2
Module Responsible Prof. Alexander Düster
Admission Requirements

None

Recommended Previous Knowledge

Differential Equations 2 (Partial Differential Equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to
+ give an overview of the different (h, p, hp) finite element procedures.
+ explain high-order finite element procedures.
+ specify problems of finite element procedures, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills

Students are able to
+ apply high-order finite elements to problems of structural mechanics.
+ select for a given problem of structural mechanics a suitable finite element procedure.
+ critically judge results of high-order finite elements.
+ transfer their knowledge of high-order finite elements to new problems.

Personal Competence
Social Competence

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.

Autonomy

Students are able to
+ assess their knowledge by means of exercises and E-Learning.
+ acquaint themselves with the necessary knowledge to solve research oriented tasks.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Energy Systems: Core qualification: Elective Compulsory
Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
International Production Management: Specialisation Production Technology: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Product Development, Materials and Production: Core qualification: Elective Compulsory
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
Course L0280: High-Order FEM
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Alexander Düster
Language EN
Cycle SoSe
Content

1. Introduction
2. Motivation
3. Hierarchic shape functions
4. Mapping functions
5. Computation of element matrices, assembly, constraint enforcement and solution
6. Convergence characteristics
7. Mechanical models and finite elements for thin-walled structures
8. Computation of thin-walled structures
9. Error estimation and hp-adaptivity
10. High-order fictitious domain methods


Literature

[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014
[2] Barna Szabo, Ivo Babuska, Introduction to Finite Element Analysis – Formulation, Verification and Validation, John Wiley & Sons, 2011


Course L0281: High-Order FEM
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Alexander Düster
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0605: Computational Structural Dynamics

Courses
Title Typ Hrs/wk CP
Computational Structural Dynamics (L0282) Lecture 3 4
Computational Structural Dynamics (L0283) Recitation Section (small) 1 2
Module Responsible Prof. Alexander Düster
Admission Requirements

None

Recommended Previous Knowledge

Differential Equations 2 (Partial Differential Equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to
+ give an overview of the computational procedures for problems of structural dynamics.
+ explain the application of finite element programs to solve problems of structural dynamics.
+ specify problems of computational structural dynamics, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills

Students are able to
+ model problems of structural dynamics.
+ select a suitable solution procedure for a given problem of structural dynamics.
+ apply computational procedures to solve problems of structural dynamics.
+ verify and critically judge results of computational structural dynamics.

Personal Competence
Social Competence

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.

Autonomy

Students are able to
+ assess their knowledge by means of exercises and E-Learning.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 2h
Assignment for the Following Curricula International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
Course L0282: Computational Structural Dynamics
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Alexander Düster
Language DE
Cycle SoSe
Content

1. Motivation
2. Basics of dynamics
3. Time integration methods
4. Modal analysis
5. Fourier transform
6. Applications

Literature

[1] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002.
[2] J.L. Humar, Dynamics of Structures, Taylor & Francis, 2012.

Course L0283: Computational Structural Dynamics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Alexander Düster
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0606: Numerical Algorithms in Structural Mechanics

Courses
Title Typ Hrs/wk CP
Numerical Algorithms in Structural Mechanics (L0284) Lecture 2 3
Numerical Algorithms in Structural Mechanics (L0285) Recitation Section (small) 2 3
Module Responsible Prof. Alexander Düster
Admission Requirements

None

Recommended Previous Knowledge

Differential Equations 2 (Partial Differential Equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to
+ give an overview of the standard algorithms that are used in finite element programs.
+ explain the structure and algorithm of finite element programs.
+ specify problems of numerical algorithms, to identify them in a given situation and to explain their mathematical and computer science background.

Skills

Students are able to
+ construct algorithms for given numerical methods.
+ select for a given problem of structural mechanics a suitable algorithm.
+ apply numerical algorithms to solve problems of structural mechanics.
+ implement algorithms in a high-level programming languate (here C++).
+ critically judge and verfiy numerical algorithms.

Personal Competence
Social Competence

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.

Autonomy

Students are able to
+ assess their knowledge by means of exercises and E-Learning.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 2h
Assignment for the Following Curricula Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Numerics and Computer Science: Elective Compulsory
Course L0284: Numerical Algorithms in Structural Mechanics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Düster
Language DE
Cycle SoSe
Content

1. Motivation
2. Basics of C++
3. Numerical integration
4. Solution of nonlinear problems
5. Solution of linear equation systems
6. Verification of numerical algorithms
7. Selected algorithms and data structures of a finite element code

Literature

[1] D. Yang, C++ and object-oriented numeric computing, Springer, 2001.
[2] K.-J. Bathe, Finite-Elemente-Methoden, Springer, 2002.

Course L0285: Numerical Algorithms in Structural Mechanics
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Alexander Düster
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1152: Modeling Across The Scales

Courses
Title Typ Hrs/wk CP
Modeling Across The Scales (L1537) Lecture 2 3
Modeling Across The Scales - Excercise (L1538) Recitation Section (small) 2 3
Module Responsible Prof. Swantje Bargmann
Admission Requirements None
Recommended Previous Knowledge

mechanics I

mechanics II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students can describe different deformation mechanisms on different scales and can name the appropriate kind of modeling concept suited for its description.
Skills The students are able to predict first estimates of the effective material behavior based on the material's microstructure. They are able to correlate and describe the damage behavior of materials based on their micromechanical behavior. In particular, they are able to apply their knowledge to different problems of material science and evaluate and implement material models into a finite element code.
Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

The students are able to assess their own strengths and weaknesses and to define tasks themselves.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Oral exam
Examination duration and scale
Assignment for the Following Curricula Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Materials Science: Elective Compulsory
Course L1537: Modeling Across The Scales
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann, Dr. Benjamin Klusemann
Language DE/EN
Cycle SoSe
Content
  • modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models, ...)
  • relationship between microstructure and macroscopic mechanical material behavior
  • Eshelby problem
  • effective material properties, concept of RVE 
  • homogenisation methods, coupling of scales (micro-meso-macro)
  • micromechanical concepts for the description of damage and failure behavior 


Literature

D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer

T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

G. Gottstein., Physical Foundations of Materials Science, Springer


Course L1538: Modeling Across The Scales - Excercise
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann
Language DE/EN
Cycle SoSe
Content


  • modeling of deformation mechanisms in materials at different scales (e.g., molecular dynamics, crystal plasticity, phenomenological models, ...)
  • relationship between microstructure and macroscopic mechanical material behavior
  • Eshelby problem
  • effective material properties, concept of RVE 
  • homogenisation methods, coupling of scales (micro-meso-macro)
  • micromechanical concepts for the description of damage and failure behavior 
Literature


D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer

T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics

D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch

G. Gottstein., Physical Foundations of Materials Science, Springer

Module M1237: Methods in Theoretical Materials Science

Courses
Title Typ Hrs/wk CP
Methods in Theoretical Materials Science (L1677) Lecture 2 4
Methods in Theoretical Materials Science (L1678) Recitation Section (small) 1 2
Module Responsible Prof. Stefan Müller
Admission Requirements

Obligatory lectures of the first semester of the master course of studies “materials science”

Recommended Previous Knowledge

Advanced mathematics, solid state physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The master students will be able to explain…

…the basics of quantum mechanics.

… the importance of quantum physics for the description of materials properties.

… correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.

The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in order to understand these connections.

Skills

After attending this lecture the students can …

…perform materials design on a quantum mechanical basis.

Personal Competence
Social Competence

The student has an astonishing knowledge in materials properties which demands both, expertise in physics AND materials science. This makes him to an outstanding discussion partner who will be able to understand the scientific arguments of “both sides”. Up to now, such an education is hard to find at universities. 

Autonomy

The students are able to ...

…assess their own strengths and weaknesses.

…define tasks independently

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Examination Oral exam
Examination duration and scale
Assignment for the Following Curricula Materials Science: Specialisation Modelling: Elective Compulsory
Course L1677: Methods in Theoretical Materials Science
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content
Literature
Course L1678: Methods in Theoretical Materials Science
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1238: Quantum Mechanics of Solids

Courses
Title Typ Hrs/wk CP
Quantum Mechanics of Solids (L1675) Lecture 2 4
Quantum Mechanics of Solids (L1676) Recitation Section (small) 1 2
Module Responsible Prof. Stefan Müller
Admission Requirements

Obligatory lectures of the first semester of the master course of studies “materials science”

Recommended Previous Knowledge

Advanced mathematics, solid state physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The master students will be able to explain…

…the basics of quantum mechanics.

… the importance of quantum physics for the description of materials properties.

… correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.

The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in order to understand these connections.

Skills

After attending this lecture the students can …

…perform materials design on a quantum mechanical basis.

Personal Competence
Social Competence

The student can connect the atomistic picture as teached in the lecture with her/his macroscopic observation. Therefore, she/he will be able to develop an interpretation of the observed behavior based on the nanoscale.

Autonomy

The students are able to ...

…assess their own strengths and weaknesses.

…define tasks independently.

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Examination Oral exam
Examination duration and scale
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Course L1675: Quantum Mechanics of Solids
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content
Literature
Course L1676: Quantum Mechanics of Solids
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1291: Materials Science Seminar

Courses
Title Typ Hrs/wk CP
Seminar (L1757) Seminar 2 3
Seminar Composites (L1758) Seminar 2 3
Seminar Advanced Ceramics (L1801) Seminar 2 3
Seminar on interface-dominated materials (L1795) Seminar 2 3
Module Responsible Prof. Jörg Weißmüller
Admission Requirements None
Recommended Previous Knowledge Advanced materials science knowledge from the first year of the Master course "Materials Science" 
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Insights into current issues in materials science.

Ability to present and communicate scientific topics to peers through talks.

Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L1757: Seminar
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Jörg Weißmüller
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1758: Seminar Composites
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Bodo Fiedler
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1801: Seminar Advanced Ceramics
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Gerold Schneider
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1795: Seminar on interface-dominated materials
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle WiSe/SoSe
Content
Literature

Module M0603: Nonlinear Structural Analysis

Courses
Title Typ Hrs/wk CP
Nonlinear Structural Analysis (L0277) Lecture 3 4
Nonlinear Structural Analysis (L0279) Recitation Section (small) 1 2
Module Responsible Prof. Alexander Düster
Admission Requirements

None

Recommended Previous Knowledge

Mathematics I, II, III, Mechanics I, II, III, IV

Differential Equations 2 (Partial Differential Equations)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to
+ give an overview of the different nonlinear phenomena in structural mechanics.
+ explain the mechanical background of nonlinear phenomena in structural mechanics.
+ to specify problems of nonlinear structural analysis, to identify them in a given situation and to explain their mathematical and mechanical background.

Skills

Students are able to
+ model nonlinear structural problems.
+ select for a given nonlinear structural problem a suitable computational procedure.
+ apply finite element procedures for nonlinear structural analysis.
+ critically verify and judge results of nonlinear finite elements.
+ to transfer their knowledge of nonlinear solution procedures to new problems.

Personal Competence
Social Competence

Students are able to
+ solve problems in heterogeneous groups and to document the corresponding results.
+ share new knowledge with group members.

Autonomy

Students are able to
+ assess their knowledge by means of exercises and E-Learning.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula Civil Engineering: Specialisation Structural Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Civil Engineering: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Product Development, Materials and Production: Core qualification: Elective Compulsory
Naval Architecture and Ocean Engineering: Core qualification: Elective Compulsory
Ship and Offshore Technology: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L0277: Nonlinear Structural Analysis
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Alexander Düster
Language DE/EN
Cycle WiSe
Content

1. Introduction
2. Nonlinear phenomena
3. Mathematical preliminaries
4. Basic equations of continuum mechanics
5. Spatial discretization with finite elements
6. Solution of nonlinear systems of equations
7. Solution of elastoplastic problems
8. Stability problems
9. Contact problems

Literature

[1] Alexander Düster, Nonlinear Structrual Analysis, Lecture Notes, Technische Universität Hamburg-Harburg, 2014.
[2] Peter Wriggers, Nonlinear Finite Element Methods, Springer 2008.
[3] Peter Wriggers, Nichtlineare Finite-Elemente-Methoden, Springer 2001.
[4] Javier Bonet and Richard D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2008.

Course L0279: Nonlinear Structural Analysis
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Alexander Düster
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1150: Continuum Mechanics

Courses
Title Typ Hrs/wk CP
Continuum Mechanics (L1533) Lecture 2 3
Continuum Mechanics Exercise (L1534) Recitation Section (small) 2 3
Module Responsible Prof. Swantje Bargmann
Admission Requirements None
Recommended Previous Knowledge

Mechanics I

Mechanics II

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge


The students can explain the fundamental concepts to calculate the mechanical behavior of materials.


Skills

The students can set up balance laws and apply basics of deformation theory to specific aspects, both in applied contexts as in research contexts.

Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

The students are able to assess their own strengths and weaknesses and to define tasks themselves. They can solve exercises in the area of continuum mechanics on their own.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Mechanical Engineering and Management: Specialisation Materials: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Product Development, Materials and Production: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Course L1533: Continuum Mechanics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann, Dr. Songyun Ma
Language DE/EN
Cycle WiSe
Content
  • kinematics of undeformed and deformed bodies
  • balance equations (balance of mass, balance of energy, …)
  • stress states
  • material modelling


Literature

R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker

I-S. Liu: Continuum Mechanics, Springer


Course L1534: Continuum Mechanics Exercise
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Swantje Bargmann
Language DE/EN
Cycle WiSe
Content
  • kinematics of undeformed and deformed bodies
  • balance equations (balance of mass, balance of energy, …)
  • stress states
  • material modelling


Literature

R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker

I-S. Liu: Continuum Mechanics, Springer


Specialization Nano and Hybrid Materials

Module M0766: Microsystems Technology

Courses
Title Typ Hrs/wk CP
Microsystems Technology (L0724) Lecture 2 4
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Basics in physics, chemistry and semiconductor technology


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge


Students are able

     to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems

     to explain in details operation principles of microsensors and microactuators and

     to discuss the potential and limitation of microsystems in application.


Skills


Students are capable

     to analyze the feasibility of microsystems,

     to develop process flows for the fabrication of microstructures and

     to apply them.



Personal Competence
Social Competence

None

Autonomy None
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Credit points 4
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Course L0724: Microsystems Technology
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language EN
Cycle WiSe
Content
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literature

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Module M1040: BIO II: Endoprostheses and Materials

Courses
Title Typ Hrs/wk CP
Biomaterials (L0593) Lecture 2 3
Artificial Joint Replacement (L1306) Lecture 2 3
Module Responsible Prof. Michael Morlock
Admission Requirements None
Recommended Previous Knowledge basic knowledge of orthopedic and surgical techniques is recommended
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can describe the materials being used in medical engineering, and their fields of use.

The students can name the diseases which can require the use of replacement joints.

The students can name the different kinds of artificial limbs

Skills The students can explain the advantages and disadvantages of different kinds of biomaterials and endoprotheses.
Personal Competence
Social Competence

The student is able to discuss issues related to endoprothese and their materials with student mates and the teachers.

Autonomy

The student is able to acquire information on his own. He can also judge the information with respect to its credebility.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 90 minutes, questions and drawing of pictures
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory
Course L0593: Biomaterials
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Michael Morlock
Language EN
Cycle WiSe
Content

Topics to be covered include:

1.    Introduction (Importance, nomenclature, relations)

2.    Biological materials

2.1  Basics (components, testing methods)

2.2  Bone (composition, development, properties, influencing factors)

2.3  Cartilage (composition, development, structure, properties, influencing factors)

2.4  Fluids (blood, synovial fluid)

3     Biological structures

3.1  Menisci of the knee joint

3.2  Intervertebral discs

3.3  Teeth

3.4  Ligaments

3.5  Tendons

3.6  Skin

3.7  Nervs

3.8  Muscles

4.    Replacement materials

4.1  Basics (history, requirements, norms)

4.2  Steel (alloys, properties, reaction of the body)

4.3  Titan (alloys, properties, reaction of the body)

4.4  Ceramics and glas (properties, reaction of the body)

4.5  Plastics (properties of PMMA, HDPE, PET, reaction of the body)

4.6  Natural replacement materials

Knowledge of composition, structure, properties, function and changes/adaptations of biological and technical materials (which are used for replacements in-vivo). Acquisition of basics for theses work in the area of biomechanics.


Literature

Hastings G and Ducheyne P.: Natural and living biomaterials. Boca Raton: CRC Press, 1984.

Williams D.: Definitions in biomaterials. Oxford: Elsevier, 1987.

Hastings G.: Mechanical properties of biomaterials: proceedings held at Keele University, September 1978. New York: Wiley, 1998.

Black J.: Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.

Park J.  Biomaterials: an introduction. New York: Plenum Press, 1980.

Wintermantel, E. und Ha, S.-W : Biokompatible Werkstoffe und Bauweisen. Berlin, Springer, 1996.


Course L1306: Artificial Joint Replacement
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Michael Morlock
Language DE
Cycle SoSe
Content

Inhalt (deutsch)

1.  EINLEITUNG (Bedeutung, Ziel, Grundlagen, allg. Geschichte des künstlichen Gelenker-satzes)

2.  FUNKTIONSANALYSE (Der menschliche Gang, die menschliche Arbeit, die sportliche Aktivität)

3.  DAS HÜFTGELENK (Anatomie, Biomechanik, Gelenkersatz Schaftseite und Pfannenseite, Evolution der Implantate)

4.  DAS KNIEGELENK (Anatomie, Biomechanik, Bandersatz, Gelenkersatz femorale, tibiale und patelläre Komponenten)

5.  DER FUß (Anatomie, Biomechanik, Gelen-kersatz, orthopädische Verfahren)

6.  DIE SCHULTER (Anatomie, Biomechanik, Gelenkersatz)

7.  DER ELLBOGEN (Anatomie, Biomechanik, Gelenkersatz)

8.  DIE HAND (Anatomie, Biomechanik, Ge-lenkersatz)

9.  TRIBOLOGIE NATÜRLICHER UND KÜNST-LICHER GELENKE (Korrosion, Reibung, Verschleiß)

Literature

Literatur:

Kapandji, I..: Funktionelle Anatomie der Gelenke (Band 1-4), Enke Verlag, Stuttgart, 1984.

Nigg, B., Herzog, W.: Biomechanics of the musculo-skeletal system, John Wiley&Sons, New York 1994

Nordin, M., Frankel, V.: Basic Biomechanics of the Musculoskeletal System, Lea&Febiger, Philadelphia, 1989.

Czichos, H.: Tribologiehandbuch, Vieweg, Wiesbaden, 2003.

Sobotta und Netter für Anatomie der Gelenke

Module M0643: Optoelectronics I - Wave Optics

Courses
Title Typ Hrs/wk CP
Optoelectronics I: Wave Optics (L0359) Lecture 2 3
Optoelectronics I: Wave Optics (Problem Solving Course) (L0361) Recitation Section (small) 1 1
Module Responsible Prof. Manfred Eich
Admission Requirements

Keine

Recommended Previous Knowledge

Basics in electrodynamics, calculus


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental mathematical and physical relations of freely propagating optical waves.
They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc. 
Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.



Skills

Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.
They can derive approximative solutions and judge factors influential on the components' performance.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Credit points 4
Examination Written exam
Examination duration and scale 40 minutes
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements : Elective Compulsory
Course L0359: Optoelectronics I: Wave Optics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language EN
Cycle SoSe
Content
  • Introduction to optics
  • Electromagnetic theory of light
  • Interference
  • Coherence
  • Diffraction
  • Fourier optics
  • Polarisation and Crystal optics
  • Matrix formalism
  • Reflection and transmission
  • Complex refractive index
  • Dispersion
  • Modulation and switching of light
Literature

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 
Hecht, E., Optics, Benjamin Cummings, 2001
Goodman, J.W. Statistical Optics, Wiley, 2000
Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Course L0361: Optoelectronics I: Wave Optics (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Manfred Eich
Language EN
Cycle SoSe
Content see lecture Optoelectronics 1 - Wave Optics
Literature

see lecture Optoelectronics 1 - Wave Optics

Module M0930: Semiconductor Seminar

Courses
Title Typ Hrs/wk CP
Semiconductor Seminar (L0760) Seminar 2 2
Module Responsible Dr. Dietmar Schröder
Admission Requirements
Recommended Previous Knowledge

Bachelor of Science

Semiconductors

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can explain the most important facts and relationships of a specific topic from the field of semiconductors.
Skills

Students are able to compile a specified topic from the field of semiconductors and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject.

Personal Competence
Social Competence Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner.
Autonomy Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation.
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Credit points 2
Examination Presentation
Examination duration and scale 15 minutesw presentation + 5-10 minutes discussion + 2 pages written abstract
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Microelectronics and Microsystems: Core qualification: Elective Compulsory
Course L0760: Semiconductor Seminar
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Dietmar Schröder, Prof. Manfred Kasper, Prof. Wolfgang Krautschneider, Prof. Manfred Eich, Prof. Hoc Khiem Trieu
Language EN
Cycle SoSe
Content

Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English.

Evaluation Criteria:

  • understanding of subject, discussion, response to questions
  • structure and logic of presentation (clarity, precision)
  • coverage of the topic, selection of subjects presented
  • linguistic presentation (clarity, comprehensibility)
  • visual presentation (clarity, comprehensibility)
  • handout (see below)
  • compliance with timing requirement.

Handout:
Before your presentation, it is mandatory to distribute a printed
handout (short abstract) of your presentation in English language. This must be no
longer than two pages A4, and include the most important results,
conclusions, explanations and diagrams.

Literature

Aktuelle Veröffentlichungen zu dem gewählten Thema

Module M1220: Interfaces and interface-dominated Materials

Courses
Title Typ Hrs/wk CP
Nature's Hierarchical Materials (L1663) Lecture 2 3
Interfaces (L1654) Lecture 2 3
Module Responsible Prof. Patrick Huber
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Materials Science (I and II) and physical chemistry

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials.

Skills

The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications.

Personal Competence
Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

The students are able to ...

  • assess their own strengths and weaknesses.
  • define tasks independently.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula International Production Management: Specialisation Production Technology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Course L1663: Nature's Hierarchical Materials
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Gerold Schneider
Language EN
Cycle WiSe
Content

Biological materials are omnipresent in the world around us. They are the main constituents in plant and animal bodies and have a diversity of functions. A fundamental function is obviously mechanical providing protection and support for the body. But biological materials may also serve as ion reservoirs (bone is a typical example), as chemical barriers (like cell membranes), have catalytic function (such as enzymes), transfer chemical into kinetic energy (such as the muscle), etc.This lecture will focus on materials with a primarily (passive) mechanical function: cellulose tissues (such as wood), collagen tissues (such as tendon or cornea), mineralized tissues (such as bone, dentin and glass sponges). The main goal is to give an introduction to the current knowledge of the structure in these materials and how these structures relate to their (mostly mechanical) functions.

Literature

Peter Fratzl, Richard Weinkamer, Nature’s hierarchical materialsProgress,  in Materials Science 52 (2007) 1263–1334

Journal publications

Course L1654: Interfaces
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle SoSe
Content
  • Microscopic structure and thermodynamics of interfaces (gas/solid, gas/liquid, liquid/liquid, liquid/solid)
  • Experimental methods for the study of interfaces
  • Interfacial forces
  • wetting
  • surfactants, foams, bio-membranes
  • chemical grafting of interfaces
Literature

"Physics and Chemistry of Interfaces", K.H. Butt, K. Graf, M. Kappl, Wiley-VCH Weinheim (2006)

"Interfacial Science", G.T. Barnes, I.R. Gentle, Oxford University Press (2005)

Module M1238: Quantum Mechanics of Solids

Courses
Title Typ Hrs/wk CP
Quantum Mechanics of Solids (L1675) Lecture 2 4
Quantum Mechanics of Solids (L1676) Recitation Section (small) 1 2
Module Responsible Prof. Stefan Müller
Admission Requirements

Obligatory lectures of the first semester of the master course of studies “materials science”

Recommended Previous Knowledge

Advanced mathematics, solid state physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The master students will be able to explain…

…the basics of quantum mechanics.

… the importance of quantum physics for the description of materials properties.

… correlations between on quantum mechanics based phenomena between individual atoms and macroscopic properties of materials.

The master students will then be able to connect essential materials properties in engineering with materials properties on the atomistic scale in order to understand these connections.

Skills

After attending this lecture the students can …

…perform materials design on a quantum mechanical basis.

Personal Competence
Social Competence

The student can connect the atomistic picture as teached in the lecture with her/his macroscopic observation. Therefore, she/he will be able to develop an interpretation of the observed behavior based on the nanoscale.

Autonomy

The students are able to ...

…assess their own strengths and weaknesses.

…define tasks independently.

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Examination Oral exam
Examination duration and scale
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Course L1675: Quantum Mechanics of Solids
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content
Literature
Course L1676: Quantum Mechanics of Solids
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Stefan Müller
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1239: Experimental Micro- and Nanomechanics

Courses
Title Typ Hrs/wk CP
Experimental Micro- and Nanomechanics (L1673) Lecture 2 4
Experimental Micro- and Nanomechanics (L1674) Recitation Section (small) 1 2
Module Responsible Dr. Erica Lilleodden
Admission Requirements none
Recommended Previous Knowledge

Basics in Materials Science I/II, Mechanical Properties, Phenomena and Methods in Materials Science 

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe the principles of mechanical behavior (e.g., stress, strain, modulus, strength, hardening, failure, fracture).

Students can explain the principles of characterization methods used for investigating microstructure (e.g., scanning electron microscopy, x-ray diffraction)

They can describe the fundamental relations between microstructure and mechanical properties.

Skills

Students are capable of using standardized calculation methods to calculate and evaluate mechanical properties (modulus, strength) of different materials under varying loading states (e.g., uniaxial stress or plane strain).

Personal Competence
Social Competence

Students can provide appropriate feedback and handle feedback on their own performance constructively.

Autonomy

Students are able to

- assess their own strengths and weaknesses

- assess their own state of learning in specific terms and to define further work steps on this basis guided by teachers.

-  to be able to work independently based on lectures and notes to solve problems, and to ask for help or clarifications when needed

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Course L1673: Experimental Micro- and Nanomechanics
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Erica Lilleodden
Language DE/EN
Cycle SoSe
Content

This class will cover the principles of mechanical testing at the micron and nanometer scales. A focus will be made on metallic materials, though issues related to ceramics and polymeric materials will also be discussed. Modern methods will be explored, along with the scientific questions investigated by such methods.

  • Principles of micromechanics
    • Motivations for small-scale testing
    • Sample preparation methods for small-scale testing
    • General experimental artifacts and quantification of measurement resolution
  • Complementary structural analysis methods
    • Electron back scattered diffraction
    • Transmission electron microscopy
    • Micro-Laue diffraction
  • Nanoindentation-based testing
    • Principles of contact mechanics
    • Berkovich indentation
      • Loading geometry
      • Governing equations for analysis of stress & strain
      • Case study:
        • Indentation size effects
    • Microcompression
      • Loading geometry
      • Governing equations for analysis of stress & strain
      • Case study:
        • Size effects in yield strength and hardening
    • Microbeam-bending
      • Loading geometry
      • Governing equations for analysis of stress & strain                    
      • Case study:
        • Fracture strength & toughness

Literature

Vorlesungsskript

Aktuelle Publikationen

Course L1674: Experimental Micro- and Nanomechanics
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dr. Erica Lilleodden
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1291: Materials Science Seminar

Courses
Title Typ Hrs/wk CP
Seminar (L1757) Seminar 2 3
Seminar Composites (L1758) Seminar 2 3
Seminar Advanced Ceramics (L1801) Seminar 2 3
Seminar on interface-dominated materials (L1795) Seminar 2 3
Module Responsible Prof. Jörg Weißmüller
Admission Requirements None
Recommended Previous Knowledge Advanced materials science knowledge from the first year of the Master course "Materials Science" 
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Insights into current issues in materials science.

Ability to present and communicate scientific topics to peers through talks.

Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Materials Science: Specialisation Modelling: Elective Compulsory
Materials Science: Specialisation Engineering Materials: Elective Compulsory
Course L1757: Seminar
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Jörg Weißmüller
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1758: Seminar Composites
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Bodo Fiedler
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1801: Seminar Advanced Ceramics
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Gerold Schneider
Language DE/EN
Cycle WiSe/SoSe
Content
Literature
Course L1795: Seminar on interface-dominated materials
Typ Seminar
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Patrick Huber
Language DE/EN
Cycle WiSe/SoSe
Content
Literature

Module M0519: Particle Technology and Solid Matter Process Technology

Courses
Title Typ Hrs/wk CP
Advanced Particle Technology II (L0050) Lecture 2 2
Advanced Particle Technology II (L0051) Recitation Section (small) 1 1
Experimental Course Particle Technology (L0430) Laboratory Course 3 3
Module Responsible Prof. Stefan Heinrich
Admission Requirements None
Recommended Previous Knowledge Basic knowledge of solids processes and particle technology
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge After completion of the module the students will be able to describe and explain processes for solids processing in detail based on microprocesses on the particle level.
Skills Students are able to choose process steps and apparatuses for the focused treatment of solids depending on the specific characteristics. They furthermore are able to adapt these processes and to simulate them.
Personal Competence
Social Competence Students are able to present results from small teamwork projects in an oral presentation and to discuss their knowledge with scientific researchers.
Autonomy
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Bioprocess Engineering: Specialisation A - General Bioprocess Engineering: Elective Compulsory
Bioprocess Engineering: Specialisation B - Industrial Bioprocess Engineering: Elective Compulsory
Energy and Environmental Engineering: Specialisation Environmental Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Process Engineering and Biotechnology: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Process Engineering: Core qualification: Compulsory
Course L0050: Advanced Particle Technology II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Heinrich
Language DE
Cycle WiSe
Content
  • Exercise in form of "Project based Learning"
  • Agglomeration, particle size enlargement
  • advanced particle size reduction
  • Advanced theorie of fluid/particle flows
  • CFD-methods for the simulation of disperse fluid/solid flows, Euler/Euler methids, Descrete Particle Modeling
  • Treatment of simulation problems with distributed properties, solution of population balances


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Course L0051: Advanced Particle Technology II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Stefan Heinrich
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0430: Experimental Course Particle Technology
Typ Laboratory Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Stefan Heinrich
Language DE
Cycle WiSe
Content
  • Fluidization
  • Agglomeration
  • Granulation
  • Drying
  • Determination of mechanical properties of agglomerats


Literature

Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990.

Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992.


Module M0644: Optoelectronics II - Quantum Optics

Courses
Title Typ Hrs/wk CP
Optoelectronics II: Quantum Optics (L0360) Lecture 2 3
Optoelectronics II: Quantum Optics (Problem Solving Course) (L0362) Recitation Section (small) 1 1
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge

Basic principles of electrodynamics, optics and quantum mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.

Skills

Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Credit points 4
Examination Written exam
Examination duration and scale 40 minutes
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0360: Optoelectronics II: Quantum Optics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language EN
Cycle WiSe
Content
  • Generation of light
  • Photons
  • Thermal and nonthermal light
  • Laser amplifier
  • Noise
  • Optical resonators
  • Spectral properties of laser light
  • CW-lasers (gas, solid state, semiconductor)
  • Pulsed lasers
Literature

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002
Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001
Yariv, A., Quantum Electronics, Wiley, 1988
Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X
Siegman, A.E., Lasers, University Science Books, 1986

Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Manfred Eich
Language EN
Cycle WiSe
Content see lecture Optoelectronics 1 - Wave Optics
Literature

see lecture Optoelectronics 1 - Wave Optics

Thesis

Module M-002: Master Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §24 (1):

    At least 126 ECTS credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues.
  • The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing current developments and taking up a critical position on them.
  • The students can place a research task in their subject area in its context and describe and critically assess the state of research.


Skills

The students are able:

  • To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
  • To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incompletely defined problems in a solution-oriented way.
  • To develop new scientific findings in their subject area and subject them to a critical assessment.
Personal Competence
Social Competence

Students can

  • Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly.


Autonomy

Students are able:

  • To structure a project of their own in work packages and to work them off accordingly.
  • To work their way in depth into a largely unknown subject and to access the information required for them to do so.
  • To apply the techniques of scientific work comprehensively in research of their own.
Workload in Hours Independent Study Time 900, Study Time in Lecture 0
Credit points 30
Examination according to Subject Specific Regulations
Examination duration and scale see FSPO
Assignment for the Following Curricula Civil Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory
Energy Systems: Thesis: Compulsory
Environmental Engineering: Thesis: Compulsory
Aircraft Systems Engineering: Thesis: Compulsory
Global Innovation Management: Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Information and Communication Systems: Thesis: Compulsory
International Production Management: Thesis: Compulsory
International Management and Engineering: Thesis: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
Logistics, Infrastructure and Mobility: Thesis: Compulsory
Materials Science: Thesis: Compulsory
Mechanical Engineering and Management: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Biomedical Engineering: Thesis: Compulsory
Microelectronics and Microsystems: Thesis: Compulsory
Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Ship and Offshore Technology: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory