Studiengangsbeschreibung
Inhalt
Der konsekutive Master-Studiengang „Luftfahrttechnik” bereitet Absolvent*innen auf vielfältige Berufsbilder in der Luftfahrtindustrie und angrenzenden Disziplinen vor. Das Studium vertieft die ingenieurwissenschaftliche, mathematische und naturwissenschaftliche Bachelor-Ausbildung und vermittelt Kompetenzen zum systematischen, wissenschaftlichen und eigenständigen Lösen von verantwortungsvollen Aufgaben in Industrie und Forschung.
Die Studierenden erwerben insbesondere Kenntnisse über den Umgang mit den Methoden der Systemtechnik, sowie den Einsatz moderner, rechnergestützte Verfahren für Systementwurf, -analyse und -bewertung. Hierzu zählen unter anderem Methoden wie das Model Based Systems Engineering oder Model Based / Virtual Testing. Hinzu kommen notwendige Kenntnisse aus der Luftfahrttechnik in den Bereichen Flugzeugsysteme, Kabinensysteme, Lufttransportsysteme und Flugzeugvorentwurf sowie Flugphysik und Werkstofftechnik.
Darüber hinaus erhalten die Studierenden Einblicke in aktuelle Forschungsthemen und -trends wie zum Beispiel aus den Bereichen Brennstoffzelle und elektrische Energieversorgung, Betätigungssysteme und Aktuatoren, Virtuelle Integration und Gesamtbewertung, Avionische Systeme und Software, hydraulischen Energieversorgung oder dem integrierten Flugzeugentwurf.
Je nach individuellen Schwerpunkten können die Studierenden ihr Studium aufgrund des umfangreichen Angebots an Wahlpflichtfächern sehr flexibel anpassen und persönlich ausrichten.
Berufliche Perspektiven
Der konsekutive Master-Studiengang „Luftfahrttechnik” bereitet Absolvent*innen auf vielfältige Berufsbilder in der Luftfahrtindustrie und angrenzenden Disziplinen vor. Die Absolvent*innen können aufgrund ihrer individuellen Spezialisierung beispielsweise auf eines der Themenfelder Flugzeug-Systemtechnik, Kabinensysteme, Lufttransportsysteme und Flugzeugvorentwurf oder Avionische Systeme direkt in diesem arbeiten. Darüber hinaus besitzen sie vielfältiges Methoden- und Schnittstellenwissen, das sie zur disziplinübergreifenden Arbeit befähigt.
Die Absolvent*innen können wissenschaftliche Tätigkeiten an Universitäten und Forschungsinstituten insbesondere mit dem Ziel der Promotion aufnehmen oder sich für den direkten Einstieg in die Industrie entscheiden. Hier können sie Fachlaufbahnen einschlagen oder sich mit wachsender Berufserfahrung für anspruchsvolle Führungsaufgaben im technischen Bereich qualifizieren (z.B. Projekt-, Gruppen- oder Teamleitung, Entwicklungsleiter*in).
Neben dem klassischen Einstieg in der Luftfahrtindustrie erlaubt der systemtechnische Charakter des Studiengangs auch den Einstieg in andere Industrien wie die Automobil- oder Windkraftindustrie.
Lernziele
Wissen
- Die Studierenden können die theoretischen Grundlagen und Methoden der Systemtechnik benennen und beschreiben.
- Die Studierenden können die Grundlagen und Methoden der Systemtechnik erläutern und können einen Überblick über ihr Fach, insbesondere hinsichtlich luftfahrtspezifischer Fragestellungen geben.
- Die Studierenden können die Grundlagen, Methoden und Anwendungsgebiete der Teilbereiche der Luftfahrttechnik im Detail erklären.
- Die Studierenden können die Grundlagen und Methoden der Systemtechnik wiedergeben und können einen Überblick über die relevanten sozialen, ethischen, ökologischen und ökonomischen Randbedingungen ihres Faches geben.
Fertigkeiten
- Die Studierenden können ihr Wissen über theoretische Grundlagen und spezifische Methoden der Systemtechnik auf komplexe Probleme anwenden und Lösungen erarbeiten.
- Die Studierenden können typische komplexe Problemstellungen aus der Luftfahrttechnik (z.B. Auslegung von Fahrwerk- oder Hochauftriebssystemen) analysieren, geeignete Lösungsmethoden finden und umsetzen. Sie können den eingeschlagenen Lösungsweg mit Methoden des Systems Engineering nachvollziehbar, strukturiert und überprüfbar dokumentieren.
- Die Studierenden können mit unüblichen, unvollständigen und konkurrierenden Spezifikationen umgehen und vor diesem Hintergrund optimale Lösungen auf Systemebene entwickeln bzw. aus bestehenden Lösungsvarianten auswählen.
- Die Studierenden können Fragestellungen aus der Forschung unter Verwendung geeigneter bestehender Methoden eigenverantwortlich bearbeiten, neue Methoden entwickeln, ihren eingeschlagenen Lösungsweg dokumentieren und vor einem fachkundigen Publikum präsentieren.
Sozialkompetenz
- Die Studierenden sind in der Lage, Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen.
- Die Studierenden können über Inhalte und Probleme des Maschinenbaus mit Fachleuten und Laien kommunizieren. Sie können auf Nachfragen, Ergänzungen und Kommentare geeignet reagieren.
- Die Studierenden sind in der Lage in Gruppen zu arbeiten. Sie können Teilaufgaben definieren, verteilen und integrieren. Sie können zeitliche Vereinbarungen treffen und sozial interagieren.
Selbsttändigkeit
- Die Studierenden sind in der Lage Informationsbedarf zu erkennen, notwendige fachliche Informationen zu beschaffen und in den Kontext ihres Wissens zu setzen.
- Die Studierenden können ihre vorhandenen Kompetenzen realistisch einschätzen und Defizite selbstständig in kurzer Zeit aufarbeiten.
- Die Studierenden sind in der Lage ihren Lernfortschritt eigenständig zu überprüfen.
Studiengangsstruktur
Der Studiengang ist modular gestaltet und orientiert sich an der universitätsweiten standardisierten Studiengangsstruktur mit einheitlichen Modulgrößen (Vielfachen von sechs Leistungspunkten (LP)).
Er besteht aus einem 60 Leistungspunkte umfassenden Katalog von Kernqualifikationen (Flugzeug-Energiesysteme, Flugzeug-Kabinensysteme, Luftfahrzeugentwurf, Flugzeugphysik, Flugsteuerungssysteme, Systems-Engineering, Betrieb und Management sowie ein nicht-technisches Wahlmodul und ein systemtechnisches Entwicklungsprojekt), welche von allen Studierenden gemeinsam gehört werden. Weitere 30 Leistungspunkte werden durch einen Wahlpflichtbereich abgedeckt, bei dem die Studierenden aus einem Katalog von Wahlpflichtmodulen auswählen und so die Möglichkeit haben sich individuell zu spezialisieren. Abgeschlossen wird der Studiengang mit der Anfertigung einer Masterarbeit.
Sämtliche Pflichtmodule der Kernqualifikation werden in den ersten beiden Semestern des Studiums gehört. Das dritte Semester beinhaltet lediglich Wahlpflichtmodule, was den Studierenden die Planung eines Auslandsaufenthaltes in diesem Semester erleichtert.
Fachmodule der Kernqualifikation
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Angebote im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0763: Flugzeug-Energiesysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke | |
Zulassungsvoraussetzungen | Keine | |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | |
Fachkompetenz | ||
Wissen |
Studierende können:
|
|
Fertigkeiten |
Studierende können:
|
|
Personale Kompetenzen | ||
Sozialkompetenz |
Studierende können:
|
|
Selbstständigkeit |
|
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | |
Leistungspunkte | 6 | |
Studienleistung | Keine | |
Prüfung | Klausur | |
Prüfungsdauer und -umfang | 165 Minuten | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeug-Energiesysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeug-Energiesysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0771: Flugphysik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende
können:
|
Fertigkeiten |
Studierende
können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 160 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke, Dr. Ralf Heinrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0730: Flugmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
|
Lehrveranstaltung L0731: Flugmechanik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0812: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Arbeiten in interdisziplinären Teams Kommunikation |
||||||||
Selbstständigkeit | Organisation von Arbeitsabläufen und -strategien | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 180 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0820: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung in den Flugzeugentwurfsprozess
|
Literatur |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Introduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Lehrveranstaltung L0834: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0846: Control Systems Theory and Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Timm Faulwasser |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Introduction to Control Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0656: Control Systems Theory and Design |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literatur |
|
Lehrveranstaltung L0657: Control Systems Theory and Design |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Timm Faulwasser |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1193: Entwurf von Kabinensystemen |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1557: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Computer- und Kommunikationstechnik bei elektronischen Systemen in der Kabine und im Flugzeug. Software, mechanische und elektronische Systemkomponenten wirken heute so intensiv zusammen, dass dies für den Systemtechniker ein grundlegendes Verständnis von Kabinenelektronik und Avionik erfordert. Die
Vorlesung vermittelt die Grundlagen zum Aufbau und der Funktionsweise von
Computern und Datennetzwerken und fokussiert dann auf aktuelle Prinzipien und Anwendungen
bei integrierter modularer Avionik (IMA), Aircraft Data Communication Networks (ADCN), Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1558: Computer- und Kommunikationstechnik bei Kabinenelektronik und Avionik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kabinenelektronik
und Kabinennetzwerken: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1551: Model-Based Systems Engineering (MBSE) mit SysML/UML |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziele der problemorientierten
Lehrveranstaltung sind der Erwerb von Kenntnissen zum Vorgehen beim
Systementwurf mittels der formalen Sprachen SysML/UML, das Kennenlernen von
Werkzeugen zur Modellierung und schließlich die Durchführung eines Projekts mit
Methoden und Werkzeugen des Model-Based Systems Engineering (MBSE) auf einer
realistischen Hardwareplattform (z.B. Arduino®, Raspberry Pi®): |
Literatur |
- Skript zur Vorlesung |
Modul M0832: Advanced Topics in Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Timm Faulwasser |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | H-infinity optimal control, mixed-sensitivity design, linear matrix inequalities |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups and arrive at joint results. |
Selbstständigkeit |
Students can find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0661: Advanced Topics in Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0662: Advanced Topics in Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1744: Ausgewählte Themen der Luftfahrt-Systemtechnik (Alternative A: 6 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden können in ausgewählten ingenieurtechnischen Teilbereichen grundlegende Methoden anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können selbstständig auswählen, welche Kenntnisse und Fähigkeiten sie durch die Wahl der geeigneten Fächer vertiefen. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L1310: Betrieb einer Luftverkehrsgesellschaft |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Volker Gollnick, Dr. Felix Presto |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
bis SoSe 2022 |
Literatur |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: “Buying the Big Jets”, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0848: Flugführung I (Grundlagen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung und Motivation Flugführungsprinzipien Cockpit- und Avioniksysteme (Cockpitgestaltung, Cockpitausrüstung, Bus- und Rechnersysteme) Luftverkehrsmanagement (Luftraumstrukturen, Organisation der Flugsicherung, etc.) Grundlagen der Flugmeßtechnik Positionsmessung (geometrische Verfahren, Entfernungsmessung, Richtungmessung) Bestimmung der Fluglage (Magnetfeld- und Trägheitssensoren) Geschwindigkeitsmessung Theorie der Navigation Funknavigation Satellitennavigation Luftraumüberwachung (Radarsysteme) Kommunikationssysteme Integrierte Navigations- und Führungssysteme |
Literatur |
Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics”, Springer Berlin Heidelberg New York 2003 |
Lehrveranstaltung L0854: Flugführung I (Grundlagen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2374: Flugführung II (Missionsmanagement/Flugregelung) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011 R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011 |
Lehrveranstaltung L2375: Flugführung II (Missionsmanagement/Flugregelung) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1276: Flughafenbetrieb |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Volker Gollnick, Dr. Peter Willems |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | FA-F Flugbetrieb Flugbetrieb - Produktion Infrastruktur Betrieb Planung Masterplanung Flughafenkapazität Bodenverkehrdienste Terminalbetrieb |
Literatur | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Lehrveranstaltung L1275: Flughafenplanung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick, Dr. Ulrich Häp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003
|
Lehrveranstaltung L1469: Flughafenplanung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick, Dr. Ulrich Häp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
[1] Albers, A., Rapp, S., Spadinger, M., Richter, T., Birk, C., Marthaler, M., Heimicke, J., Kurtz, V., Wessels, H. (2019). Das Referenzsystem im Modell der PGE - Produktgenerationsentwicklung: Vorschlag einer generalisierten Beschreibung von Referenzprodukten und ihrer Wechselbeziehungen, ICED 2019 [2] Albers et al. (2017). PGE - Produktgenerationsentwicklung am Beispiel des Zweimassenschwungrads, Forschung im Ingenieurwesen 81(1), 13-31, 2017 [3] Albers, A., Heimicke, J., et. al. (2018). Product Profiles: Modelling customer benefits as a foundation to bring inventions to innovations. Procedia CIRP. (70), 253-258 [4] Stachowiak, H., (1973). Allgemeine Modelltheorie. ISBN 3-211-81106-0 [5] Rophol, G., (2009). Systemtheorie der Technik. ISBN: 978-3-86644-374-7 [6] Herstatt, C., & Verworn, B. (2007). Management der frühen Innovationsphasen: Grundlagen - Methoden - Neue Ansätze. Gabler Verlag. |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L1549: Luftsicherheit |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Aufgaben und Maßnahmen zum Schutz vor Angriffen auf die Sicherheit des zivilen Lufttransportsystems. Die Aufgaben und Maßnahmen werden im Kontext der drei Systemteile Mensch, Technik und Organisation herausgearbeitet. Die
Vorlesung vermittelt die Grundlagen der Luftsicherheit. Die Luftsicherheit ist
eine notwendige Voraussetzung für einen wirtschaftlich erfolgreichen
Luftverkehr. Das Risikomanagement für das Gesamtsystem gelingt nur mit einem integrierten
Ansatz, welcher Mensch, Technik und Organisation berücksichtigt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1550: Luftsicherheit |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Aufgaben und Maßnahmen zum Schutz vor Angriffen auf die Sicherheit des zivilen Lufttransportsystems. Die Aufgaben und Maßnahmen werden im Kontext der drei Systemteile Mensch, Technik und Organisation herausgearbeitet. Die
Vorlesung vermittelt die Grundlagen der Luftsicherheit. Die Luftsicherheit ist
eine notwendige Voraussetzung für einen wirtschaftlich erfolgreichen
Luftverkehr. Das Risikomanagement für das Gesamtsystem gelingt nur mit einem integrierten
Ansatz, welcher Mensch, Technik und Organisation berücksichtigt: |
Literatur |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Lehrveranstaltung L2376: Luftverkehr und Umwelt |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Florian Linke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Lehrveranstaltung vermittelt die notwendigen Grundlagen und Methoden für das Verständnis der Wechselwirkungen des Luftverkehrs mit der Umwelt, sowohl in Bezug auf die Wirkung von Wetter/Klima auf das Fliegen als auch hinsichtlich der Auswirkungen des Luftverkehrs auf Schadstoffemissionen, Lärm und Klima. Es werden im Einzelnen die folgenden Themen behandelt:
|
Literatur |
|
Lehrveranstaltung L2934: Maschinelles Lernen in sicherheitskritischen cyberphysischen Systemen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Der Einsatz von maschinellem Lernen ermöglicht viele hochkomplexe Anwendungen, beispielsweise bei autonomen Systemen. Die Anwendung in sicherheitskritischen Systemen bietet jedoch besondere Herausforderungen und stellt spezielle Anforderungen an die Entwicklung. Die Lehrveranstaltung vermittelt die notwendigen Grundlagen und Methoden im Kontext des Systems Engineering für den Einsatz von Data Science, maschinellem Lernen und KI in sicherheitskritischen Systemen. Darüber hinaus erfolgt eine Diskussion aktueller Einsatzgebiete und über den aktuellen Stand der Forschung. Es werden im Einzelnen die folgenden Themen behandelt:
|
Literatur |
- J. Holt, S. A. Perry, M.
Brownsword. Model-Based Requirements Engineering. Institution Engineering
& Tech, 2011. |
Lehrveranstaltung L2935: Maschinelles Lernen in sicherheitskritischen cyberphysischen Systemen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2809: Multidisziplinäre Design Optimierung im Luftfahrzeugentwurf |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0908: Strahltriebwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Burkhard Andrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1515: Structural Mechanics of Fibre Reinforced Composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1738: Ausgewählte Themen der Luftfahrt-Systemtechnik (Alternative B: 12 LP) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden können in ausgewählten ingenieurtechnischen Teilbereichen grundlegende Methoden anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können selbstständig auswählen, welche Kenntnisse und Fähigkeiten sie durch die Wahl der geeigneten Fächer vertiefen. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L2739: Aufbaukurs SE-ZERT |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 120 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das SE-ZERT® Programm (vgl. https://www.sezert.de/de/anwaerter-de.html) ist eine Weiterbildung zum „Certified Systems Engineer (GfSE)®“. An der TUHH baut diese Weiterbildung auf der Vorlesung und Übung Systems Engineering auf. Es wurde von der GfSE e.V. zusammen mit dem TÜV Rheinland als Personenzertifikat entwickelt. Das Programm orientiert sich an der EN ISO/IEC 17024 zur Personenzertifizierung. Trainingsinhalte sind: - Grundlagen des Systems Engineering (inkl. Einführung) - Projektübergreifende Schnittstellen - Schnittstellen des Systems Engineering zu Projekt Management - Systems Engineering Management - Anforderungsmanagement und Validierung & Verifikation - Realisationsprozesse - Querschnittsfunktionen innerhalb von Entwicklungsprojekten - Berücksichtigung von operationellen Aspekten und der Stilllegung im Design - Konfliktmanagement und soziale Kompetenz Als Trainingsanbieter ist das TUHH-Institut für Flugzeug-Kabinensysteme korporatives Mitglied der GfSE und bereitet als akkreditierte Trainingsstelle die Studierenden optimal und unabhängig auf die Zertifizierung vor, die von einem Prüfungsausschuss der SE-ZERT® Assessorengruppe der GfSE e.V. auf SE Wissen geprüft werden. Somit soll und wird eine hohe Qualität dieser Weiterbildung sichergestellt. Mit einem SE-ZERT® Zertifikat sind Absolventen branchenübergreifend für Ihre Arbeit als Systems Engineer in der Industrie qualifiziert. Die Weiterbildung wird an der TUHH in deutscher, sonst aber vielfach auch in englischer Sprache weltweit angeboten. SE-ZERT® an der TUHH richtet sich an Studierende im Masterstudiengang. Das SE-ZERT® Programm unterscheidet vier Qualifikationsebenen, die aufeinander aufbauen. Für Absolventen der TUHH erfolgt der Einstieg nach Wissensvermittlung und erfolgreich abgelegter Prüfung über die Ebene D. Aufbauend können Ingenieure mit Berufserfahrung die Ebene C mit dem Ziel der Mitarbeit im Team anstreben, gefolgt von der Ebene B mit dem Ziel „Anwenden“ und u.U. dem Führen von kleinen Projekten. Die höchste Qualifikationsebene ist die Ebene A mit dem Ziel zu eigenen Problemformulierungen, Lösungen, Begründungen, Folgerungen, Interpretationen oder Wertungen zu gelangen und diese anderen auch vermitteln zu können. Das Ziel des Zertifikats ist die Etablierung eines branchenübergreifenden Standards für Systems Engineering mit praktischen Übungen und praxisnahen Inhalten. Basis hierzu ist das INCOSE Systems Engineering Handbuch (in dt. oder engl. Ausgabe) als auch die Norm ISO/IEC 15288 und angrenzende Normen des Systems Engineering. |
Literatur |
INCOSE Systems Engineering Handbuch - Ein Leitfaden für Systemlebenszyklus-Prozesse und -Aktivitäten, GfSE (Hrsg. der deutschen Übersetzung), ISBN 978-3-9818805-0-2. ISO/IEC 15288 System- und Software-Engineering - System-Lebenszyklus-Prozesse (Systems and Software Engineering - System Life Cycle Processes). |
Lehrveranstaltung L1310: Betrieb einer Luftverkehrsgesellschaft |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Volker Gollnick, Dr. Felix Presto |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
bis SoSe 2022 |
Literatur |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: “Buying the Big Jets”, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Lehrveranstaltung L0310: Fatigue & Damage Tolerance |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Martin Flamm |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literatur | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Lehrveranstaltung L0848: Flugführung I (Grundlagen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung und Motivation Flugführungsprinzipien Cockpit- und Avioniksysteme (Cockpitgestaltung, Cockpitausrüstung, Bus- und Rechnersysteme) Luftverkehrsmanagement (Luftraumstrukturen, Organisation der Flugsicherung, etc.) Grundlagen der Flugmeßtechnik Positionsmessung (geometrische Verfahren, Entfernungsmessung, Richtungmessung) Bestimmung der Fluglage (Magnetfeld- und Trägheitssensoren) Geschwindigkeitsmessung Theorie der Navigation Funknavigation Satellitennavigation Luftraumüberwachung (Radarsysteme) Kommunikationssysteme Integrierte Navigations- und Führungssysteme |
Literatur |
Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2011 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2016 R.P.G. Collinson „Introduction to Avionics”, Springer Berlin Heidelberg New York 2003 |
Lehrveranstaltung L0854: Flugführung I (Grundlagen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2374: Flugführung II (Missionsmanagement/Flugregelung) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Brockhaus, Alles, Luckner: Flugregelung, Springer Verlag, 2011 R.P.G Collinson: Introduction to Avionics Systems, Springer Verlag, 2011 |
Lehrveranstaltung L2375: Flugführung II (Missionsmanagement/Flugregelung) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1276: Flughafenbetrieb |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Volker Gollnick, Dr. Peter Willems |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | FA-F Flugbetrieb Flugbetrieb - Produktion Infrastruktur Betrieb Planung Masterplanung Flughafenkapazität Bodenverkehrdienste Terminalbetrieb |
Literatur | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Lehrveranstaltung L1275: Flughafenplanung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick, Dr. Ulrich Häp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003
|
Lehrveranstaltung L1469: Flughafenplanung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Prof. Volker Gollnick, Dr. Ulrich Häp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L3064: Generationsübergreifende Blechkonstruktion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Nikola Bursac |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Erfahrung in Konstruktionslehre und den Grundlagen der Fertigungstechnik Die Studierenden sind nach erfolgreichem Bestehen in der Lage, Entwicklungsprojekte anhand der Theorie der Produktgenerationsentwicklung zu erklären und Gestaltungsregeln der Blechkonstruktion zu erläutern. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, in einem Team ein Produkt zu entwickeln und in einem Wettbewerb gegen andere Teams anzutreten. Die Studierenden sind nach erfolgreichem Bestehen in der Lage, für die Blechkonstruktion erforderliches Wissen selbstständig zu erschließen. |
Literatur |
[1] Albers, A., Rapp, S., Spadinger, M., Richter, T., Birk, C., Marthaler, M., Heimicke, J., Kurtz, V., Wessels, H. (2019). Das Referenzsystem im Modell der PGE - Produktgenerationsentwicklung: Vorschlag einer generalisierten Beschreibung von Referenzprodukten und ihrer Wechselbeziehungen, ICED 2019 [2] Albers et al. (2017). PGE - Produktgenerationsentwicklung am Beispiel des Zweimassenschwungrads, Forschung im Ingenieurwesen 81(1), 13-31, 2017 [3] Albers, A., Heimicke, J., et. al. (2018). Product Profiles: Modelling customer benefits as a foundation to bring inventions to innovations. Procedia CIRP. (70), 253-258 [4] Stachowiak, H., (1973). Allgemeine Modelltheorie. ISBN 3-211-81106-0 [5] Rophol, G., (2009). Systemtheorie der Technik. ISBN: 978-3-86644-374-7 [6] Herstatt, C., & Verworn, B. (2007). Management der frühen Innovationsphasen: Grundlagen - Methoden - Neue Ansätze. Gabler Verlag. |
Lehrveranstaltung L1258: Leichtbaupraktikum |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Dieter Krause |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Entwicklung eines Faserverbund-Sandwichbauteils
|
Literatur |
|
Lehrveranstaltung L1549: Luftsicherheit |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Aufgaben und Maßnahmen zum Schutz vor Angriffen auf die Sicherheit des zivilen Lufttransportsystems. Die Aufgaben und Maßnahmen werden im Kontext der drei Systemteile Mensch, Technik und Organisation herausgearbeitet. Die
Vorlesung vermittelt die Grundlagen der Luftsicherheit. Die Luftsicherheit ist
eine notwendige Voraussetzung für einen wirtschaftlich erfolgreichen
Luftverkehr. Das Risikomanagement für das Gesamtsystem gelingt nur mit einem integrierten
Ansatz, welcher Mensch, Technik und Organisation berücksichtigt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1550: Luftsicherheit |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Aufgaben und Maßnahmen zum Schutz vor Angriffen auf die Sicherheit des zivilen Lufttransportsystems. Die Aufgaben und Maßnahmen werden im Kontext der drei Systemteile Mensch, Technik und Organisation herausgearbeitet. Die
Vorlesung vermittelt die Grundlagen der Luftsicherheit. Die Luftsicherheit ist
eine notwendige Voraussetzung für einen wirtschaftlich erfolgreichen
Luftverkehr. Das Risikomanagement für das Gesamtsystem gelingt nur mit einem integrierten
Ansatz, welcher Mensch, Technik und Organisation berücksichtigt: |
Literatur |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Lehrveranstaltung L2376: Luftverkehr und Umwelt |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Florian Linke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Lehrveranstaltung vermittelt die notwendigen Grundlagen und Methoden für das Verständnis der Wechselwirkungen des Luftverkehrs mit der Umwelt, sowohl in Bezug auf die Wirkung von Wetter/Klima auf das Fliegen als auch hinsichtlich der Auswirkungen des Luftverkehrs auf Schadstoffemissionen, Lärm und Klima. Es werden im Einzelnen die folgenden Themen behandelt:
|
Literatur |
|
Lehrveranstaltung L2934: Maschinelles Lernen in sicherheitskritischen cyberphysischen Systemen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Der Einsatz von maschinellem Lernen ermöglicht viele hochkomplexe Anwendungen, beispielsweise bei autonomen Systemen. Die Anwendung in sicherheitskritischen Systemen bietet jedoch besondere Herausforderungen und stellt spezielle Anforderungen an die Entwicklung. Die Lehrveranstaltung vermittelt die notwendigen Grundlagen und Methoden im Kontext des Systems Engineering für den Einsatz von Data Science, maschinellem Lernen und KI in sicherheitskritischen Systemen. Darüber hinaus erfolgt eine Diskussion aktueller Einsatzgebiete und über den aktuellen Stand der Forschung. Es werden im Einzelnen die folgenden Themen behandelt:
|
Literatur |
- J. Holt, S. A. Perry, M.
Brownsword. Model-Based Requirements Engineering. Institution Engineering
& Tech, 2011. |
Lehrveranstaltung L2935: Maschinelles Lernen in sicherheitskritischen cyberphysischen Systemen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Simon Markus Kothe |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet: - Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen; - Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte; - Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz; - Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3); - Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA); - Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments. |
Literatur |
Literatur: - Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing. - Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing. - Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer. - Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing. - Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG. - Vorlesungsskript. |
Lehrveranstaltung L0908: Strahltriebwerke |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Burkhard Andrich |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1514: Structural Mechanics of Fibre Reinforced Composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Classical laminate theory Rules of mixture Failure mechanisms and criteria of composites Boundary value problems of isotropic and anisotropic shells Stability of composite structures Optimization of laminated composites Modelling composites in FEM Numerical multiscale analysis of textile composites Progressive failure analysis |
Literatur |
|
Lehrveranstaltung L1515: Structural Mechanics of Fibre Reinforced Composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsart | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0749: Zuverlässigkeit von Flugzeugsystemen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsart | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Dozenten | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1919: Nachhaltiger Betrieb technischer Anlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerko Wende |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Für dieses Modul wird Hintergrundwissen im Bereich der allgemeinen Ingenieurswissenschaften, Luftfahrttechnik und Flugzeug-Systemtechnik empfohlen. Technische Disziplinen wie allgemeiner Maschinenbau, Mechatronik und Produktionstechnik werden in die relevanten luftfahrtspezifischen Themen eingeführt. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Zusammenhänge für den nachhaltigen Betrieb technischer Anlagen beschreiben und Lösungswege für komplexe Optimierungsaufgaben aufzeigen. |
Fertigkeiten |
Die Studierenden können das allgemeine Ingenieurswissen der jeweiligen Studienrichtung für die Optimierung der Nachhaltigkeit des Betriebs technischer Anlagen anwenden. Die erworbenen Fertigkeiten ermöglichen einen Einstieg in die Entwicklung und Produktion sowie den technischen Betrieb von nachhaltigen Produkten der Mobilitätsindustrien sowie des Maschinen- und Anlagenbaus. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können lösungsorientiert in heterogenen Kleingruppen arbeiten und Arbeitsergebnisse für ein komplexes Umfeld verschiedener Interessensgruppen vertreten. |
Selbstständigkeit |
Die Studierenden können selbstständig Optimierungsaufgaben lösen und eigenständig Entscheidungen für die Bewertung der zugehörigen Rahmenbedingungen treffen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L3160: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlagen für den nachhaltigen Betrieb technischer Anlagen durch Instandhaltung, Reparatur und Überholung:
|
Literatur |
|
Lehrveranstaltung L3161: Grundlagen der Instandhaltung, Reparatur und Überholung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerko Wende |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0764: Flugsteuerungssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
unterschiedlicher Konfigurationen der jeweiligen Flugzeugsysteme erläutern, |
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0736: Flugsteuerungssysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0740: Flugsteuerungssysteme |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1156: Systems Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: Vorkenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1547: Systems Engineering |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein. Schwerpunkte
der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement,
der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und
Methoden für das Systems Engineering: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1548: Systems Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0837: Simulation of Communication Networks |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. |
Fertigkeiten |
Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. |
Selbstständigkeit |
Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0887: Simulation of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 5 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Dozenten | Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. |
Literatur |
Further literature is announced at the beginning of the lecture. |
Modul M1248: Compilers for Embedded Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Module "Embedded Systems" C/C++ Programming skills |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The relevance of embedded systems increases from year to year. Within such systems, the amount of software to be executed on embedded processors grows continuously due to its lower costs and higher flexibility. Because of the particular application areas of embedded systems, highly optimized and application-specific processors are deployed. Such highly specialized processors impose high demands on compilers which have to generate code of highest quality. After the successful attendance of this course, the students are able
The high demands on compilers for embedded systems make effective code optimizations mandatory. The students learn in particular,
Since compilers for embedded systems often have to optimize for multiple objectives (e.g., average- or worst-case execution time, energy dissipation, code size), the students learn to evaluate the influence of optimizations on these different criteria. |
Fertigkeiten |
After successful completion of the course, students shall be able to translate high-level program code into machine code. They will be enabled to assess which kind of code optimization should be applied most effectively at which abstraction level (e.g., source or assembly code) within a compiler. While attending the labs, the students will learn to implement a fully functional compiler including optimizations. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
Selbstständigkeit |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L1692: Compilers for Embedded Systems |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1693: Compilers for Embedded Systems |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0803: Embedded Systems |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Computer Engineering | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models). Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered. |
||||||||
Fertigkeiten |
After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Selbstständigkeit |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten, Inhalte der Vorlesung und Übungen | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Information and Communication Systems: Pflicht Engineering Science: Vertiefung Mechatronics: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Mechatronik: Vertiefung Schiffstechnik: Pflicht Mechatronik: Vertiefung Elektrische Systeme: Pflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Pflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht Mechatronik: Vertiefung Medizintechnik: Pflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L0805: Embedded Systems |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2938: Embedded Systems |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0806: Embedded Systems |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sören Keuchel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Introduction and Motivation |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sören Keuchel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1616: Flight Control Laws: Design and Application |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Basic knowledge in:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able to:
|
||||||||
Fertigkeiten |
Students are able to:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to:
|
||||||||
Selbstständigkeit |
Students are able to:
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 60 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L2448: Flight Control Law Design and Application |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Julian Theis |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L2449: Flight Control Law Design and Application |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Julian Theis |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1340: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen der Physik und Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden im Bereich des Entwurfs von Wellenleitern und Antennen sowie der Elektromagnetischen Verträglichkeit wiedergeben und erklären. Spezifische Themen sind: - Fundamentale Eigenschaften und Phänome elektrischer
Schaltungen |
Fertigkeiten | Die Studierenden können eine Reihe von Verfahren und Modellen zur Beschreibung und zur Auswahl von Wellenleitern und Antennen anwenden. Dafür können Sie deren elementare elektromagnetische Eigenschaften einschätzen und beurteilen. Sie können Erkenntnisse und Strategien aus dem Feld der Elektromagnetischen Verträglichkeit auf die Entwicklung von elektrischen Komponenten und Systemen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während Kleingruppenübungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, Informationen aus einschlägigen Fachpublikationen zu gewinnen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Grundlagen der Elektrotechnik oder Physik) zu verknüpfen. Sie können technische Probleme und physikalische Effekte auf Englisch diskutieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1669: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Diese Vorlesung ist gedacht als Einführung in die Gebiete der Wellenausbreitung, -führung, - aussendung, und -empfang sowie der Elektromagnetischen Verträglichkeit. Die Themen der Vorlesung werden von Nutzen sein für alle Ingenieure/-innen, die technische Herausforderungen im Bereich der hochfrequenten / hochratigen Übermittlung von Daten in solchen Gebieten wie Medizintechnik, Automobiltechnik oder Avionik meistern müssen. Sowohl Schaltungs- als auch Feldkonzepte der Wellenausbreitung und der Elektromagnetischen Verträglichkeit werden eingeführt und besprochen. Themen: - Fundamentale Eigenschaften und Phänome elektrischer Schaltungen |
Literatur |
- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999) - J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008) - H. Ott, "Electromagnetic Compatibility Engineering", Wiley (2009) - A. Schwab, W. Kürner, "Elektromagnetische Verträglichkeit", Springer (2007) |
Lehrveranstaltung L1877: Einführung in Wellenleiter, Antennen und Elektromagnetische Verträglichkeit |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1287: Risikomanagement, Wasserstoff- und Brennstoffzellentechnologie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden die Grundlagen des Risikomanagements unter Einbeziehung fachangrenzender Kontexte erläutern und die optimale Nutzung von Energiesystemen beschreiben. Des Weiteren können die Studierenden solide theoretische Kenntnisse über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik wiedergeben und fachangrenzende Aspekte der Nutzung, Herstellung und Aufbereitung von Wasserstoff erläutern. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage Risiken von Energiesysteme unter energiewirtschaftlichen Rahmenbedingungen zu bewerten. Die beinhaltet auch, dass die Studierenden unter anderem in der Lage sind Risiken in der Einsatzplanung von Kraftwerkparks aus technischer, ökonomischer und ökologischer Sicht zu beurteilen. In diesem Zusammenhang können die Studierenden auch die Potenziale von Logistik- und Informationstechnologie insbesondere auf energetische Problemstellungen einschätzen. Zusätzlich sind die Studierenden in der Lage den Energieträger Wasserstoff auf seine Anwendungsmöglichkeiten, die gegebene Sicherheit und bezüglich der vorhandenen Nutzungspotenziale und -grenzen zu beschreiben und aus technischer, ökologischer und ökonomischer Sicht zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das enthaltene Wissen aneignen. Auf diese Weise erkennen sich eigenständig Schwächen innerhalb ihres Leistungsstandes. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden Klausur |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L1831: Angewandte Brennstoffzellentechnologie |
Typ | Vorlesung | ||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||
LP | 2 | ||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 | ||||||||||||||||||||||
Dozenten | Prof. Klaus Bonhoff | ||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||
Zeitraum | SoSe | ||||||||||||||||||||||
Inhalt |
Die Vorlesung gibt einen Einblick in die
vielfältigen Nutzungsmöglichkeiten von Brennstoffzellen im Energiesystem
(Strom, Wärme und Verkehr). Dazu werden für einzelne Brennstoffzellentypen und anwendungsorientierten Anforderungsprofile dargestellt und diskutiert; auch im Systemvergleich mit alternativen Technologien. Für die einzelnen Varianten wird der aktuelle Stand der
Technologie mit Praxisbeispielen aus Deutschland und weltweit vorgestellt.
Auch wird auf die sich abzeichnenden Entwicklungstendenzen und
Entwicklungslinien - und die in den kommenden Jahren zu erwartenden Technologien
- eingegangen. Neben den technischen Aspekten, die den Schwerpunkt der
Veranstaltung darstellen, werden auch energie-, umwelt- und industriepolitische
Aspekte - auch im Kontext der sich verändernden Gegebenheiten im deutschen und
internationalen Energiesystem - diskutiert.
|
||||||||||||||||||||||
Literatur |
Vorlesungsunterlagen |
Lehrveranstaltung L1748: Risikomanagement in der Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Christian Wulf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0060: Wasserstofftechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Julian Jepsen |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0513: Systemaspekte regenerativer Energien |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul: Technische Thermodynamik I Modul: Technische Thermodynamik II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können mit Abschluss dieses Moduls die Prozesse im Energiehandel und die Gestaltung der Energiemärkte beschreiben und kritisch in Bezug zu aktuellen Problemstellungen bewerten. Des Weiteren sind sie in der Lage die thermodynamischen Grundlagen der elektrochemischen Energiewandlung in Brennstoffzellen zu erklären und den Bezug zu verschiedenen Bauarten von Brennstoffzellen und deren jeweiligem Aufbau herzustellen und zu erläutern. Die Studierenden können diese Technologie mit weiteren Energiespeichermöglichkeiten vergleichen. Zusätzlich können die Studenten einen Überblick über die Verfahrensweise und der energetischen Einbindung von tiefer Geothermie geben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen zur Speicherung überschüssiger Energie anwenden, um für unterschiedlicher Energiesysteme Lösungsansätze für eine versorgungssichere Energiebereitstellung erläutern. Insbesondere können sie diesbezüglich häusliche, gewerbliche und industrielle Beheizungsanlagen unter Anwendung von Speichern energiesparend planen und berechnen, und im Bezug zu komplexen Energiesystemen beurteilen. In diesem Zusammenhang können die Studierenden die Potenziale und Grenzen von Geothermieanlagen einschätzen und deren Funktionsweise erläutern. Des Weiteren sind die Studierenden in der Lage die Vorgehensweisen und Strategien zur Vermarktung von Energie zu erläutern und im Kontext anderer Module auf erneuerbare Energieprojekte anwenden. In diesem Zusammenhang können die Studierenden eigenständig Analysen zur Bewertung von Energiehandel und Energiemärkten erstellen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesungen erschließen und sich das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht |
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Fröba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0019: Energiehandel und Energiemärkte |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Robert Gersdorf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Innerhalb der Übung werden die verschiedenen Aufgabenstellungen aktiv diskutiert und auf verschiedene Anwendungsfälle angewandt. |
Literatur |
Lehrveranstaltung L0020: Energiehandel und Energiemärkte |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Robert Gersdorf |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0025: Tiefe Geothermie |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Ben Norden |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1344: Verarbeitung von Faser-Kunststoff-Verbunde |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Kenntnisse in den Grundlagen der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden können einen Überblick über die fachlichen Details der Verarbeitung von Verbunderkstoffen geben und können ihre Zusammenhänge erklären. Sie können relevante Problemstellungen in fachlicher Sprache beschreiben und kommunizieren. Sie können den typischen Ablauf bei der Lösung praxisnaher Probleme schildern und Ergebnisse präsentieren. |
Fertigkeiten |
Die Studierenden können ihr Grundlagenwissen aus dem Maschinenbau in die Lösung praktischer Aufgabenstellung transferieren. Sie erkennen und überwinden typische Probleme bei der Umsetzung maschinenbaulicher Projekte. Sie können für nicht-standardisierte Fragestellungen Lösungskonzepte erarbeiten, vergleichen und auswählen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in kleinen, fachlich gemischten Gruppen gemeinsam Lösungen für maschinenbauliche Probleme entwickeln und diese einzeln oder in Gruppen vor Fachpersonen präsentieren und erläutern. Sie können alternative Lösungswege einer maschinenbaulichen Aufgabenstellung eigenständig oder in Gruppen entwickeln sowie Vor- bzw. Nachteile diskutieren. |
Selbstständigkeit | Die Studierenden sind in der Lage anhand von zur Verfügung gestellten Unterlagen maschinenbauliche Fragestellungen selbstständig zu lösen. Sie sind fähig, eigene Wissenslücken anhand vorgegebener Quellen zu schließen sowie Fachthemen eigenständig zu erarbeiten. Sie sind ferner in der Lage vorgegebene Aufgabenstellungen sinnvoll zu erweitern und diese sodann mit selbst zu definierenden Konzepten/Ansätzen pragmatisch zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1895: Verarbeitung von Faser-Kunststoff-Verbunde |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Verarbeitung der Verbundwerkstoffe: Handlaminieren; Pre-Preg; GMT; BMC; SMC; RIM; Pultrusion; Wickelverfahren |
Literatur | Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Lehrveranstaltung L1516: Vom Molekül zum Composite Bauteil |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bekommen die Aufgabenstellung in Form einer Kundenanfrage für die Entwicklung und Fertigung eines MTB-Lenkers aus Faserverbundwerkstoffen. In der Aufgabenstellung sind technische und normative Anforderungen angeführt, alle weiteren benötigten Informationen kommen aus den Vorlesungen und Übungen bzw. den jeweiligen Unterlagen (elektronisch und im Gespräch). Der Ablauf ist in einem Meilensteinplan angeben und ermöglicht den Studierenden Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Bei Projektende besitzt jede Gruppe einen selbst gefertigten Lenker mit geprüfter Qualität. In den einzelnen Projekttreffen werden die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen analysiert, die Fertigungsmethoden evaluiert und festgelegt. Materialien werden ausgewählt und der Lenker wird gefertigt. Die Qualität und die mechanischen Eigenschaften werden geprüft und eingeordnet. Am Ende Abschlussbericht erstellt (Zusammenstellung der Ergebnisse für den „Kunden“). Nach der Prüfung während des „Kunden/Lieferanten Gesprächs“ gibt es ein gegenseitiges Feedback-gespräch („lessons learned“), um die kontinuierliche Verbesserung sicher zu stellen . |
Literatur |
Åström: Manufacturing of Polymer Composites, Chapman and Hall |
Modul M1690: Luftfahrzeugentwurf II (Entwurf von Flugsystemen) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Gollnick |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) Lufttransportsysteme
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Kenntnis verschiedener Flugsystemkonzepte und deren Besonderheiten (Überschallflugzeuge, Drehflügler, Hochleistungsflugzeuge, Unbemannte Flugsysteme) Verständnis der Vor- und Nachteile sowie physikalischen Wirkprinzipien unterschiedlicher Luftfahrzeugsysteme Kenntnis des Einflusses spezieller Missionsanforderungen auf die Definition und Konzeption von Luftfahrzeugsystemen Vertiefte Kenntnis der Leistungsauslegung und Bewertung verschiedener Luftfahrzeugsysteme |
Fertigkeiten |
Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren Verstehen interdisziplinärer und integrativer Wechselwirkungen Missionsorientierte technische Definition von Luftfahrzeugsystemen Anwendung geeigneter spezieller konzeptioneller Berechnungsmethoden für besondere Ausrüstungsmerkmale Bewertung verschiedener Entwurfslösungen |
Personale Kompetenzen | |
Sozialkompetenz |
Arbeiten in Gruppen zur konzentrierten Lösungsfindung Kommunikation, Durchsetzungsfähigkeit, fachliche Überzeugungsfähigkeit |
Selbstständigkeit |
Organisation von Arbeitsabläufen und Strategien Strukturierte Aufgabenanalyse und Lösungsfindung |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0844: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Gollnick, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gareth Padfield: Helicopter Flight Dynamics, butterworth ltd. Raymond Prouty: Helicopter Performance Stability and Control, Krieger Publ. Klaus Hünecke: Das Kampfflugzeug von Heute, Motorbuch Verlag Jay Gundelach: Designing Unmanned Aircraft Systems - Configurative Approach, AIAA |
Lehrveranstaltung L0847: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Gollnick, Dr. Bernd Liebhardt, Jens Thöben |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1343: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
Studierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Pflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Materialwissenschaften: Wahlpflicht |
Lehrveranstaltung L1894: Structure and properties of fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Microstructure and properties of the matrix and reinforcing materials and their interaction |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press Daniel, Ishai: Engineering Mechanics of Composites Materials, Oxford University Press Mallick: Fibre-Reinforced Composites, Marcel Deckker, New York |
Lehrveranstaltung L2614: Aufbau und Eigenschaften der Faser-Kunststoff-Verbunde |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch). Das Vorgehen ist in einem Meilensteinplan festgelegt und ermöglicht es den Studierenden, Teilaufgaben zu planen und so kontinuierlich zu arbeiten. Am Ende des Projekts wurden verschiedene Probekörper im Zug- oder Biegeversuch geprüft. In den einzelnen Projektbesprechungen wird die Konzeption (Diskussion der Anforderungen und Risiken) hinterfragt. Die Berechnungen werden analysiert, die Produktionsmethoden werden bewertet und festgelegt. Die Werkstoffe werden ausgewählt und die Probekörper normgerecht hergestellt. Die Qualität und die mechanischen Eigenschaften werden geprüft und klassifiziert. Am Ende wird ein Abschlussbericht erstellt und die Ergebnisse werden allen Teilnehmern in Form einer Präsentation vorgestellt und diskutiert. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Lehrveranstaltung L2613: Structure and properties of fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literatur |
Hall, Clyne: Introduction to Composite materials, Cambridge University Press |
Modul M1339: Entwurfsoptimierung und probabilistische Verfahren in der Strukturmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 10 Seiten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1873: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Im Kurs werden theoretischen Grundlagen der Entwurfsoptimierung und Zuverlässigkeitsanalyse vermittelt, der Fokus liegt jedoch auf dem Anwendungsbezug dieser Verfahren. Die Inhalte werden in Veranstaltungen vermittelt, die sowohl Vorlesungskomponenten als auch Rechnerübungen enthalten. In den Rechnerübungen werden die erlernten Methoden in Matlab implementiert, um deren praktische Umsetzung zu vermitteln. Folgende Inhalte werden im Kurs behandelt:
|
Literatur |
[1] Arora, Jasbir. Introduction
to Optimum Design. 3rd ed. Boston, MA: Academic Press, 2011. |
Lehrveranstaltung L1874: Entwurfsoptimierung und Probabilistische Verfahren in der Strukturmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Matlab-Übungen zur Vorlesung |
Literatur | siehe Vorlesung |
Modul M1909: Systemsimulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Speerforck |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I-III, Informatik, Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung, Regelungstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L3150: Systemsimulation Modul |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung zur
gleichungsbasierten, physikalischen Modellierung unter Verwendung der
Modellierungssprache Modelica und der kostenfreien Simulationsplattform
OpenModelica 1.17.0.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification - Version 3.5", Linköping, Sweden, 2021. [2] OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021. [3] M. Tiller: “Modelica by Example", https://book.xogeny.com, 2014. [4] M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme", at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000. [5] P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015. [6] P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica”, Wiley, New York, 2011. |
Lehrveranstaltung L3151: Systemsimulation Modul |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Arne Speerforck, Dr. Johannes Brunnemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1213: Avionik sicherheitskritischer Systeme |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Martin Halle | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können:
|
||||||||
Fertigkeiten |
Studierende können:
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können:
|
||||||||
Selbstständigkeit |
Studierende können:
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L1640: Avionik sicherheitskritischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Martin Halle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Avionik als Flugelektronik ist die Grundlage für alle Flugzeugfunktionen und eine Hauptquelle für Innovationen. Da es sich bei Flugsteuerung und anderen Systemkontrollern um hochgradig sicherheitskritische Funktionen handelt, unterliegen die Entwicklung von Hardware und Software besonderen Einschränkungen, Techniken und Prozessen. Diese zu verstehen und anzuwenden ist unabdingbar für jeden Systementwickler oder Informationstechniken in der Luftfahrt. Praxisnah werden Risiken und Techniken von sicherheitskritischer Hard- und Softwareentwicklung, Avionikkomponenten, sowie Integration und Test vermittelt. Ein Schwerpunkt ist die Integrierten Modularen Avionik (IMA). Die Vorlesung wird begleitet von einer Pflichtübung mit Laborversuchen. Inhalt:
|
Literatur |
|
Lehrveranstaltung L1641: Avionik sicherheitskritischer Systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Martin Halle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1652: Avionik sicherheitskritischer Systeme |
Typ | Laborpraktikum |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Martin Halle |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1204: Modellierung und Optimierung in der Dynamik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierenden
besitzen nach erfolgreichem Besuch des Moduls grundlegende Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme und Methoden zur Optimierung dynamischer Systeme. |
Fertigkeiten |
Die Studierenden sind in der Lage + ganzheitlich zu Denken +
grundlegende Problemstellungen aus der Dynamik starrer und flexibler Mehrkörpersysteme selbständig, sicher, + dynamische Problem mathematisch zu beschreiben
+ dynamische Probleme zu optimieren |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können + in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren. |
Selbstständigkeit |
Studierende sind fähig + ihren Kenntnisstand mit Hilfe von Übungsaufgaben einzuschätzen. + sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1632: Flexible Mehrkörpersysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Lehrveranstaltung L1633: Optimierung dynamischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried, Dr. Svenja Drücker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Modul M0791: Computer Architecture |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Module "Computer Engineering" |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
This module presents advanced concepts from the discipline of computer architecture. In the beginning, a broad overview over various programming models is given, both for general-purpose computers and for special-purpose machines (e.g., signal processors). Next, foundational aspects of the micro-architecture of processors are covered. Here, the focus particularly lies on the so-called pipelining and the methods used for the acceleration of instruction execution used in this context. The students get to know concepts for dynamic scheduling, branch prediction, superscalar execution of machine instructions and for memory hierarchies. |
||||||||
Fertigkeiten |
The students are able to describe the organization of processors. They know the different architectural principles and programming models. The students examine various structures of pipelined processor architectures and are able to explain their concepts and to analyze them w.r.t. criteria like, e.g., performance or energy efficiency. They evaluate different structures of memory hierarchies, know parallel computer architectures and are able to distinguish between instruction- and data-level parallelism. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Selbstständigkeit |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Min., Vorlesungsstoff + 4 Testate zur PBL "Rechnerarchitektur" | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L0793: Computer Architecture |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The theoretical tutorials amplify the lecture's content by solving and discussing exercise sheets and thus serve as exam preparation. Practical aspects of computer architecture are taught in the FPGA-based PBL on computer architecture whose attendance is mandatory. |
Literatur |
|
Lehrveranstaltung L0794: Computer Architecture |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1864: Computer Architecture |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Martin Gomse | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. | ||||||||
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. | ||||||||
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Martin Gomse |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sören Keuchel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- Room acoustics - Standard computations - Practical applications |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Sören Keuchel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0836: Communication Networks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Fertigkeiten |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Selbstständigkeit |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte. |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0899: Selected Topics of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literatur |
|
Lehrveranstaltung L0897: Communication Networks |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L0898: Communication Networks Excercise |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literatur |
|
Modul M1809: Einführung in Data Science |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Pierre-Alexandre Murena |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erhalten in der Lehrveranstaltung einen breiten Überblick über das Wissenschaftsgebiet Data Science. Die grundlegenden Begriffe und Konzepte werden auf einer hohen Abstraktionsebene erläutert und ermöglichen den Studierenden, die im weiteren Studienverlauf vermittelten Methoden einzuordnen. Neben einem historischen Überblick werden auch aktuelle Anwendungsbeispiele der Data Science vorgestellt. |
Fertigkeiten |
Die Studierenden können:
|
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in kleinen Gruppen eine Fragestellung mit Data Science Bezug erörtern und gemeinsam präsentieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage die Vorlesungsinhalte eigenständig vor- und nachzubearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | Erstellung und Vorstellung eines Posters über ein Data Science Thema |
Zuordnung zu folgenden Curricula |
Data Science: Kernqualifikation: Pflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Wahlpflicht |
Lehrveranstaltung L2998: Einführung in Data Science |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Pierre-Alexandre Murena |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Studierenden erhalten in der Lehrveranstaltung einen breiten Überblick über das Wissenschaftsgebiet Data Science. Die grundlegenden Begriffe und Konzepte werden auf einer hohen Abstraktionsebene erläutert und ermöglichen den Studierenden, die im weiteren Studienverlauf vermittelten Methoden einzuordnen. Neben einem historischen Überblick werden auch aktuelle Anwendungsbeispiele der Data Science vorgestellt. |
Literatur |
Christopher M. Bishop: Pattern Recognition and Machine Learning |
Lehrveranstaltung L2999: Einführung in Data Science |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Pierre-Alexandre Murena |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1024: Methoden der Produktentwicklung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Integrierten Produktentwicklung und CAE-Anwendung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Selbstständigkeit |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1254: Methoden der Produktentwicklung |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vorlesung Die Vorlesung erweitert und vertieft die im Modul „Integrierte Produktentwicklung und Leichtbau“ erlernten Inhalte und baut auf den dort erworbenen Kenntnissen und Fähigkeiten auf. Themen der Vorlesung sind insbesondere:
Konstruktionsmanagement
Übung (PBL) In der Übung werden die in der Vorlesung Integrierte Produktentwicklung II vorgestellten Inhalte und Methoden der Produktentwicklung und des Konstruktionsmanagement weiter vertieft. Die Studierenden erlernen über industrienahe Praxisbeispiele ein selbstständig moderiertes und Workshop basiertes Vorgehen zur Lösung komplexer, aktuell bestehender Sachverhalte in der Produktentwicklung. Sie erlernen die Fähigkeit, selbstständig wichtige Methoden der Produktentwicklung und des Konstruktionsmanagements anzuwenden, und erwerben so weiterführende Fachkompetenzen auf dem Gebiet der Integrierten Produktentwicklung. Daneben werden personale Kompetenzen, wie Teamfähigkeit, Führen von Diskussionen und Vertreten von Arbeitsergebnissen durch den workshopbasierten Aufbau der Veranstaltung unter eigener Planung und Leitung erworben. |
Literatur |
|
Lehrveranstaltung L1255: Methoden der Produktentwicklung |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Benedikt Kriegesmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Benedikt Kriegesmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1665: Auslegung und Dimensionierung von Faser-Kunststoff-Verbunden (FKV) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bodo Fiedler |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen aus der Chemie / Physik / Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können - die Grundlagen der Faser-Kunststoff-Verbunde (FKV) und ihrer Konstituenten (Faser / Matrix) wiedergeben und kennen die entsprechenden Prüf- und Analysemethoden. - die komplexen Zusammenhänge Struktur-Eigenschaftsbeziehung erklären. - die Wechselwirkungen von chemischen Aufbau der Polymere, deren Verarbeitung mit den unterschiedlichen Fasertypen unter Einbeziehung fachangrenzender Kontexte erläutern (z.B. Nachhaltigkeit, Umweltschutz). |
Fertigkeiten |
tudierende sind in der Lage standardisierte Berechnungsmethoden in einem angegebenen Kontext einzusetzen, um
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
tudierende sind fähig, - eigene Stärken und Schwächen einzuschätzen. - ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren. - mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Luftfahrttechnik: Kernqualifikation: Wahlpflicht Materials Science and Engineering: Vertiefung Engineering Materials: Wahlpflicht Materialwissenschaft: Vertiefung Konstruktionswerkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1893: Design with fibre-polymer-composites |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur | Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L2616: Auslegung und Dimensionierung von Faser-Kunststoff-Verbunden (FKV) |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden erhalten die Aufgabenstellung in Form eines Materialdesigns für Prüfkörper aus Faserverbundwerkstoffen. Technische und normative Anforderungen sind in der Aufgabenstellung aufgeführt, alle weiteren benötigten Informationen stammen aus den Vorlesungen und Übungen bzw. den entsprechenden Unterlagen (elektronisch und im Gespräch). |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Lehrveranstaltung L2615: Design with fibre-polymer-composites |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The contents of the lecture are repeated and deepened using practical examples. Calculations are carried out together or individually, and the results are discussed critically. |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M1807: Machine Learning for Physical Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Roland Can Aydin | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
No prior knowledge in machine learning or Python programming is strictly required, although it would be beneficial to have had some degree of experience in one of the standard ML libraries in Python (e.g., PyTorch, Keras, or TF). |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
In this module, students will explore the integration of machine learning techniques with physical systems. The course covers a wide array of topics, demonstrating how machine learning methodologies can be applied not only in non-physical domains but specifically tailored for physical systems. Key areas of study include:
Complementing the lectures, the associated exercise sessions will use various Python libraries such as Sklearn and Pytorch, typically within Jupyter notebooks. These practical sessions are designed to reinforce the concepts discussed in the lectures, with a reciprocal relationship between the theoretical and practical aspects of the course. This course is designed for those looking to understand and apply machine learning in the realm of physical systems, bridging the gap between abstract algorithms and real-world physical phenomena. |
||||||||
Fertigkeiten | The students will be able to competently evaluate suitable machine learning methods for a given problem involving physical systems, understanding the advantages and disadvantages of each approach. They will be able to do so both for standard machine learning tools and methods as well as for specialised models. | ||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
The students will be able to reason for and against solutions for complex problems involving physical systems and to present their conclusions on how to incorporate their domain knowledge to facilitate the choice, design, training, and validation of an appropriate machine learning algorithm. |
||||||||
Selbstständigkeit |
The students will be able to develop solutions for complex problems involving physical systems and to incorporate their domain knowledge to facilitate the choice, design, training, and validation of an appropriate machine learning algorithm. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 75 min | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Data Science: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Data Science: Vertiefung III. Applications: Wahlpflicht Data Science: Vertiefung II. Anwendung: Wahlpflicht Engineering Science: Vertiefung Advanced Materials: Pflicht Engineering Science: Vertiefung Data Science: Wahlpflicht Luftfahrttechnik: Kernqualifikation: Wahlpflicht Mechatronik: Vertiefung Roboter- und Maschinensysteme: Wahlpflicht Mechatronik: Vertiefung Dynamische Systeme und AI: Wahlpflicht |
Lehrveranstaltung L2987: Machine Learning for Physical Systems |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Roland Can Aydin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Introduction into various approaches and methods for using Machine Learning in conjunction with physical systems. |
Literatur | Relevante Literatur basiert vor allem auf wissenschaftlichen Veröffentlichungen (statt Lehrbüchern), die jeweiligen Referenzen werden in der Vorlesung genannt. |
Lehrveranstaltung L2988: Machine Learning for Physical Systems |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Roland Can Aydin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The exercise (PBL) demonstrates the methods introduced in the lecture on different example applications, focusing on gaining practical hands-on proficiency. By submitting correctly solved homework assignments, points can be earned for the module examination. Topics include: - Data pre- and postprocessing - Decision-trees and random forests - Convolutional Neural Networks (CNNs) - Physics-informed Neural Networks (PINNs) - Feature selection and feature engineering - Neural architecture search (NAS) and hyperparameter tuning - Constitutive artificial neural networks (CANNs) - Synthetic data - Multimodal and ensemble learning - Optimal experimental design (active learning) - Transformer-based architectures (such as Large Language Models) as applicable for physical systems - Process-structure-properties machine learning pipelines |
Literatur | Keine über die in der Vorlesung genannten Referenzen herausgehende Literatur ist notwendig. |
Fachmodule der Vertiefung Systemtechnisches Entwicklungsprojekt
Modul M1404: Projektarbeit Flugzeug-Systemtechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dozenten des SD M |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können ihre Detailkenntnisse im Gebiet der Flugzeugsystemtechnik demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren. Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Flugzeugsystemtechnik eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen. Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern. |
Fertigkeiten |
Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben. |
Selbstständigkeit |
Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen. |
Arbeitsaufwand in Stunden | Eigenstudium 192, Präsenzstudium 168 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | ca. 60 - 150 Seiten |
Zuordnung zu folgenden Curricula |
Luftfahrttechnik: Vertiefung Systemtechnisches Entwicklungsprojekt: Wahlpflicht |
Lehrveranstaltung L3226: Projektarbeit Flugzeug-Systemtechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 12 |
LP | 12 |
Arbeitsaufwand in Stunden | Eigenstudium 192, Präsenzstudium 168 |
Dozenten | Dozenten des SD M |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Wird in der Veranstaltung bekannt gegeben. |
Literatur |
Wird in der Veranstaltung bekannt gegeben. |
Modul M1399: Systemtechnisches Entwicklungsprojekt |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können …
|
Fertigkeiten |
Studierende können…
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können…
|
Selbstständigkeit |
Studierende können…
|
Arbeitsaufwand in Stunden | Eigenstudium 192, Präsenzstudium 168 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | ca. 60 - 200 Seiten |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Luftfahrttechnik: Vertiefung Systemtechnisches Entwicklungsprojekt: Wahlpflicht |
Lehrveranstaltung L1993: Systemtechnisches Entwicklungsprojekt |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 12 |
LP | 12 |
Arbeitsaufwand in Stunden | Eigenstudium 192, Präsenzstudium 168 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wird in der Veranstaltung bekannt gegeben. |
Literatur |
Wird in der Veranstaltung bekannt gegeben. |
Thesis
Dabei wird besonderer Wert auf eine wissenschaftliche Bearbeitung der Problemstellung gelegt, die neben einer Literaturübersicht, Einordnung in aktuelle Fragestellungen und Beschreibung theoretischer Grundlagen eine kritische Analyse und Bewertung der Ergebnisse umfasst.
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Interdisciplinary Mathematics: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Luftfahrttechnik: Abschlussarbeit: Pflicht Materials Science and Engineering: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht |