Studiengangsbeschreibung

Inhalt

Der konsekutive Master-Studiengang „Flugzeug-Systemtechnik” bereitet Absolventen auf vielfältige Berufsbilder in der Luftfahrtindustrie und angrenzenden Disziplinen vor. Das Studium vertieft die ingenieurwissenschaftliche, mathematische und naturwissenschaftliche Bachelor-Ausbildung und vermittelt Kompetenzen zum systematischen, wissenschaftlichen und eigenständigen Lösen von verantwortungsvollen Aufgaben in Industrie und Forschung.

Die Studierenden erwerben insbesondere Kenntnisse über den Umgang mit den Methoden der Systemtechnik, sowie den Einsatz moderner, rechnergestützte Verfahren für Systementwurf, -analyse und -bewertung. Hierzu zählen unter anderem Methoden wie das Model Based Systems Engineering oder Model Based / Virtual Testing. Hinzu kommen notwendige Kenntnisse aus der Luftfahrttechnik in den Bereichen Flugzeugsysteme, Kabinensysteme, Lufttransportsysteme und Flugzeugvorentwurf sowie Flugphysik und Werkstofftechnik.

Darüber hinaus erhalten die Studierenden Einblicke in aktuelle Forschungsthemen und -trends wie zum Beispiel aus den Bereichen Brennstoffzelle und elektrische Energieversorgung, Betätigungssysteme und Aktuatoren, Virtuelle Integration und Gesamtbewertung, Avionische Systeme und Software, hydraulischen Energieversorgung oder dem integrierten Flugzeugentwurf.

Die Studierenden spezialisieren sich in einer von drei Vertiefungen und erwerben die Fähigkeit an den Schnittstellen der verbundenen Teildisziplinen zu arbeiten. Je nach individuellen Schwerpunkten können die Studierenden ihr Studium aufgrund des umfangreichen Angebots an Wahlpflichtfächern sehr flexibel anpassen und persönlich ausrichten.



Berufliche Perspektiven

Der konsekutive Master-Studiengang „Flugzeug-Systemtechnik ” bereitet Absolventen auf vielfältige Berufsbilder in der Luftfahrtindustrie und angrenzenden Disziplinen vor. Die Absolventen können aufgrund ihrer Spezialisierung auf eines der Themenfelder Flugzeug-Systemtechnik, Kabinensysteme oder Lufttransportsysteme und Flugzeugvorentwurf direkt in diesem arbeiten. Darüber hinaus besitzen sie vielfältiges Methoden- und Schnittstellenwissen, das sie zur disziplinübergreifenden Arbeit befähigt.

Die Absolventen können wissenschaftliche Tätigkeiten an Universitäten und Forschungsinstituten insbesondere mit dem Ziel der Promotion aufnehmen oder sich für den direkten Einstieg in die Industrie entscheiden. Hier können Sie Fachlaufbahnen einschlagen oder sich mit wachsender Berufserfahrung für anspruchsvolle Führungsaufgaben im technischen Bereich qualifizieren (z.B. Projekt-, Gruppen- oder Teamleiter, Entwicklungsleiter).

Neben dem klassischen Einstieg in der Luftfahrtindustrie erlaubt der systemtechnische Charakter des Studienganges auch den Einstieg in andere Industrien wie die Automobil- oder Windkraftindustrie.



Lernziele

Die Absolventen können:

  • Probleme wissenschaftlich analysieren und lösen, auch wenn sie unüblich oder unvollständig definiert sind und konkurrierende Spezifikationen aufweisen;
  • Komplexe Problemstellungen aus einem neuen oder im Entwicklung begriffenen Bereich ihrer Disziplin abstrahieren und formulieren;
  • Innovative Methoden bei der grundlagenorientierten Problemlösung anwenden und neue wissenschaftliche Methoden entwickeln;
  • Informationsbedarf erkennen, Informationen finden und beschaffen;
  • Theoretische und experimentelle Untersuchungen planen und durchführen;
  • Daten kritisch bewerten und daraus Schlüsse ziehen;
  • Die Anwendung von neuen und aufkommenden Technologien untersuchen und bewerten.

Die Absolventen sind in der Lage:

  • Konzepte und Lösungen zu grundlagenorientierten, zum Teil unüblichen Fragestellungen, ggf. unter Einbeziehung anderer Disziplinen, zu entwickeln;
  • Neue Produkte, Prozesse und Methoden zu kreieren und zu entwickeln;
  • Ihr ingenieurswissenschaftliches Urteilsvermögen anzuwenden, um mit komplexen, möglicherweise unvollständigen Informationen zu arbeiten, Widersprüche zu erkennen und mit ihnen umzugehen;
  • Wissen aus verschiedenen Bereichen methodisch zu klassifizieren und systematisch zu kombinieren sowie mit Komplexität umzugehen;
  • Sich systematisch und in kurzer Zeit in neue Aufgaben einzuarbeiten;
  • Auch nicht-technische Auswirkungen der Ingenieurstätigkeit systematisch zu reflektieren und ihr Handeln verantwortungsbewusst einzubeziehen;
  • Lösungen, die einer vertieften Methodenkompetenz bedürfen, zu erarbeiten;
  • Einer wissenschaftlichen Tätigkeit mit dem Ziel der Promotion erfolgreich nachzugehen.



Studiengangsstruktur

Der Studiengang ist modular gestaltet und orientiert sich an der universitätsweiten standardisierten Studiengangsstruktur mit einheitlichen Modulgrößen (Vielfachen von sechs Leistungspunkten (LP)). Er besteht aus einem 60 ECTS umfassenden Katalog von Kernqualifikationen, welche von allen Studierenden gemeinsam gehört werden und ein semesterübergreifendes Systemtechnisches Entwicklungsprojekt umfasst. Darüber hinaus erfolgt die Wahl von einer aus drei angebotenen Vertiefungsrichtungen zu je 30 ECTS, bestehend aus einem Pflichtmodul und einem Katalog aus Wahlpflichtmodulen. Abgeschlossen wird der Studiengang mit der Anfertigung einer Masterarbeit.

Sämtliche Pflichtmodule der Kernqualifikation und der Vertiefungsrichtungen werden in den ersten beiden Semestern des Studiums gehört. Das dritte Semester beinhaltet lediglich Wahlpflichtmodule, was den Studierenden somit die Planung eines Auslandsaufenthaltes in diesem Semester erleichtert.


Fachmodule der Kernqualifikation

Im Rahmen der Kernqualifikation vertiefen die Studierenden ihr Wissen und ihre Fähigkeiten in weiterführenden, luftfahrtechnischen Fächern. Die Studierenden erlangen so neben fachlichem Wissen auch methodische Kompetenzen in den Bereichen Flugzeug-Systemtechnik, Kabinensysteme, Flugzeugvorentwurf, Flugphysik und Systems Engineering. Im Rahmen des Systemtechnischen Entwicklungsprojektes wenden die Studierenden ihre erworbenen Fähigkeiten in Teamarbeit auf eine praktische Fragestellung an.

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden sind in der Lage, in interdisziplinären Kleingruppen zu kommunizieren und gemeinsam Lösungen für komplexe Problemstellungen zu erarbeiten.


Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0524: Nichttechnische Angebote im Master

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Nichttechnischen Angebote  (NTA)

vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewähltes Spezialgebiete des jeweiligen nichttechnischen Bereiches erläutern,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist).



Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende und teils auch spezielle Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache und teils auch fortgeschrittene Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.




Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist)



Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).




Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0763: Flugzeug-Energiesysteme (FS1)

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme I (L0735) Vorlesung 3 4
Flugzeugsysteme I (L0739) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die wichtigsten Komponenten und Auslegungspunkte von hydraulischen und elektrischen Systemen und Hochauftriebssystemen beschreiben
  • einen Überblick über Wirkprinzipien von Klimaanlagen geben
  • die Notwendigkeit von Hochauftriebssystemen sowie deren Funktionsweise und Wirkung erklären
  • die Schwierigkeiten bei der Auslegung von Versorgungssystemen von Flugzeugen richtig einschätzen
Fertigkeiten

Studierende können:

  • Hydraulische und elektrische Versorgungssysteme an Bord von Flugzeugen auslegen
  • Hochauftriebssysteme von Flugzeugen auslegen
  • Thermodynamische Analyse von Klimaanlagen durchführen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • Systemauslegungen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit

Studierende können:

  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0735: Flugzeugsysteme I
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Hydraulische Energiesysteme (Flüssigkeiten; Druckverluste in Ventilen und Rohrleitungen; Komponenten hydraulischer Systeme wie Pumpen, Ventile, etc.; Druck/Durchflusscharakteristika; Aktuatoren; Behälter; Leistungs- und Wärmebilanzen; Notenergie)
  • Elektrisches Energiesystem (Generatoren; Konstantdrehzahlgetriebe; DC und AC Konverter; elektrische Energieverteilung; Bus-Systeme; Überwachung; Lastanalyse)
  • Hochauftriebssysteme (Prinzipien; Ermittlung von Lasten und Systemantriebsleistungen; Prinzipien und Auslegung von Antriebs- und Stellsystemen; Sicherheitsforderungen und -einrichtungen)
  • Klimaanlagen (Thermodynamische Analyse; Expansions- und Kompressions-Kältemaschinen; Kontrollmechanismen; Kabinendruck-Kontrollsysteme)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Green: Aircraft Hydraulic Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • SAE1991: ARP; Air Conditioning Systems for Subsonic Airplanes


Lehrveranstaltung L0739: Flugzeugsysteme I
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0771: Flugphysik

Lehrveranstaltungen
Titel Typ SWS LP
Aerodynamik und Flugmechanik I (L0727) Vorlesung 3 3
Flugmechanik II (L0730) Vorlesung 2 2
Flugmechanik II (L0731) Hörsaalübung 1 1
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Themodynamik
  • Luftfahrtechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Studierende können:
  • Die Fundamentalgleichungen der Aerodynamik für kompressible, inkompressible und reibungsbehaftete Strömungen beschreiben 
  • Wirkprinzipien von Flügelprofilen und Tragflächen erläutern
  • Die Bewegungsgleichungen des Flugzeugs erklären
  • Die Flugleistung sowie Stabilität des Flugzeugs einschätzen 
  • Die Dynamik der Längs-und Seitenbewegung beschreiben
  • Methoden der Flugsimulation und Flugmesstechnik erläutern
Fertigkeiten Studierende können:
  • Flugmechanische Simulationen durchführen
  • Flugmechanische Zusammenhänge aus virtuellen wie realen Flugversuchsdaten herleiten
Personale Kompetenzen
Sozialkompetenz Studierende können:
  • Simulationen in Gruppen durchführen und Ergebnisse diskutieren
Selbstständigkeit Studierende können:
  • Lehrinhalte eigenständig aufbereiten
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten im WS + 90 Minuten im SS
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L0727: Aerodynamik und Flugmechanik I
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Frank Thielecke, Dr. Ralf Heinrich, Mike Montel
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aerodynamik (Fundamentalgleichungen; kompressible und inkompressible Strömungen; Flügelprofile und Tragflächen; Reibungsbehaftete Strömungen)
  • Flugmechanik (Bewegungsgleichungen; Flugleistung; Steuerflächen, Beiwerte; Längsstabilität und Steuerung; Trimmzustände; Flugmanöver)


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight


Lehrveranstaltung L0730: Flugmechanik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Dynamik der Längsbewegung
  • stationärer unsymmetrischer Flug
  • Flugmanöver der Seitenbewegung
  • Dynamik der Seitenbewegung
  • Methoden der Flugsimulation
  • Experimentelle Methoden der Flugmechanik
  • Modellvalidierung mit Parameteridentifikation


Literatur
  • Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeuges I und II
  • Etkin, B.: Dynamics of Atmospheric Flight
  • Sachs/Hafer: Flugmechanik
  • Brockhaus: Flugregelung
  • J.D. Anderson: Introduction to flight




Lehrveranstaltung L0731: Flugmechanik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Frank Thielecke, Mike Montel
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0812: Luftfahrzeugentwurf

Lehrveranstaltungen
Titel Typ SWS LP
Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen) (L0820) Vorlesung 2 2
Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) (L0844) Vorlesung 2 2
Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV) (L0847) Hörsaalübung 1 1
Methoden des Flugzeugentwurfs I (L0834) Hörsaalübung 1 1
Modulverantwortlicher Prof. Volker Gollnick
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Bachelor Mech. Eng.
  • Vordiplom Maschinenbau
  • Modul Luftfahrtsysteme
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  1. Grundlegendes Verständnis der Vorgehensweise für den ganzheitlichen Flugzeugentwurf
  2. Verständnis der Wechselwirkungen und Beiträge der verschiedenen Disziplinen
  3. Einfluß der relevanten Entwurfparameter auf die Auslegung des Flugzeugs
  4. Kennenlernen der grundlegenden Berechnungsmethoden
Fertigkeiten

Verstehen und Anwenden von Auslegungsmethoden und Berechnungsverfahren

Verstehen interdisziplinärer und integrativer Wechselwirkungen

Personale Kompetenzen
Sozialkompetenz

Arbeiten in interdisziplinären Teams

Kommunikation

Selbstständigkeit Organisation von Arbeitsabläufen und -strategien
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0820: Luftfahrzeugentwurf I (Entwurf von Verkehrsflugzeugen)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Einführung in den Flugzeugentwurfsprozeß

  1. Einführung/Ablauf der Flugzeugentwicklung/Verschiedene Flugzeugkonfigurationen
  2. Anforderungen und Auslegungsziele, wesentliche Auslegungsparameter (u.a. Nutzlast-Reichweiten-Diagramm)
  3. Statistische Methoden im Gesamtentwurf/Datenbankmethoden
  4. Grundlagen der Flugleistungsauslegung (Gleichgewicht, Stabilität, V-n-Diagramm)
  5. Grundlagen des aerodynamischen Entwurfs (Polare, Geometrie, 2D/3DAerodynamik)
  6. Grundlagen der Strukturauslegung (Massenberechnung, Balken/Röhren-Modelle, Geometrien)
  7. Grundlagen der Triebwerksdimensionsierung und -integration
  8. Auslegung des Reiseflugs
  9. Auslegung Start u. Landung (Streckenberechnung)
  10. Kabinenauslegung (Rumpfdimensionierung, Ausstattung, Ladesysteme)
  11. System-/Ausrüstungsaspekte
  12. Variationen im Entwurf
Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Lehrveranstaltung L0844: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Volker Gollnick, Dr. Bernd Liebhardt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Start- und Landung von Flugzeugen

Lasten am Flugzeug

Betriebskosten und Flugzeugentwurf

Grundlagen für den Entwurf von Drehflüglern

Grundlagen für die Auslegung von Hochleistungsflugzeugen

Grundlagen für die Auslegung von Sonderflugzeugen

Grundlagen für die Auslegung von unbemannten Flugsystemen

Literatur

Gareth Padfield: Helicopter Flight Dynamics

Raymond Prouty: Helicopter Performance Stability and Control

Klaus Hünecke: Das Kampfflugzeug von Heute

Lehrveranstaltung L0847: Luftfahrzeugentwurf II (Drehflügler, Sonderflugzeuge, UAV)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Volker Gollnick, Dr. Bernd Liebhardt
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0834: Methoden des Flugzeugentwurfs I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Volker Gollnick
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen zur Anwendung von MatLab erlernen.

Erlernen und Anwenden der Methoden zur Vorauslegung und Bewertung von Verkehrsflugzeugen:

Rumpf und Kabinen auslegen

Flugzeugmassen ermitteln

Flügel aerodynamisch auslegen und Geometrie festlegen

Start-, Lande-, Streckenflugleistungen ermitteln

Manöver- und Böenlasten ermitteln

Literatur

J. Roskam: "Airplane Design"

D.P. Raymer: "Aircraft Design - A Conceptual Approach"

J.P. Fielding: "Intorduction to Aircraft Design"

Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design"

Modul M1155: Flugzeug-Kabinensysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Kabinensysteme (L1545) Vorlesung 3 4
Flugzeug-Kabinensysteme (L1546) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• die Betriebsabläufe in der Flugzeugkabine, deren Ausrüstung und Systeme beschreiben
• die funktionalen und nicht-funktionalen Anforderungen an Kabinensysteme erläutern
• die Notwendigkeit der Kabinenbetriebs- und Notfallsysteme erklären
• die Herausforderungen der Mensch-Technik-Interaktion in der Kabine einschätzen

Fertigkeiten

Studierende können:
• das Kabinenlayout für ein vorgegebenes Geschäftsmodell einer Fluggesellschaft erstellen
• Kabinensysteme für den sicheren Kabinenbetrieb auslegen
• Notfallsysteme für eine zuverlässige Mensch-Systeminteraktion gestalten
• Lösungen für Komfortanforderungen und Unterhaltungssysteme in der Kabine entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• bestehende Systemlösungen nachvollziehen und eigene Ideen mit Experten diskutieren

Selbstständigkeit

Studierende können:
• Vorlesungsinhalte und Expertenvorträge eigenständig reflektieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden.

Die Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie, Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt:
• Werkstoffe in der Kabine
• Ergonomie und Human Factors
• Kabinen-Innenausstattung und nicht-elektrische Systeme
• Kabinenelektrik und Beleuchtung
• Kabinenelektronik, Kommunikations-, Informations- und Unterhaltungssysteme
• Kabinen- und Passagierprozesse
• RFID-Kennzeichnung von Flugzeugbauteilen
• Energiequellen und Energiewandlung für den Betrieb

Literatur

- Skript zur Vorlesung
- Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999
- Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014
- Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008
- Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003
- Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006
- Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006

Lehrveranstaltung L1546: Flugzeug-Kabinensysteme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0764: Flugsteuerungssysteme (FS2)

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeugsysteme II (L0736) Vorlesung 3 4
Flugzeugsysteme II (L0740) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Hydraulik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • den generellen Aufbau der primären Flugsteuerung sowie von Aktuator-, Avionik-,  Hochauftriebssystemen von Flugzeugen inklusive deren spezifischen Eigenschaften und Anwendungsfelder beschreiben,
  • unterschiedlicher Konfigurationen erläutern,
  • entsprechende Ausgestaltungen erklären.


Fertigkeiten

Studierende können:

  • Aktuatorsysteme der primären Flugsteuerung auslegen
  • einen Reglerentwurfsprozess für Aktuatoren der Flugsteuerung  durchführen
  • Hochauftriebskinematiken entwerfen

Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • In gemischten Teams gemeinschaftlich Lösungen erarbeiten 
Selbstständigkeit

Studierende können:

  • Selbstständig aus komplexen Fragestellungen Anforderungen an Flugzeugsysteme ableiten und entsprechende, vereinfachte Entwurfsprozesse einleiten und durchführen
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0736: Flugzeugsysteme II
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt
  • Aktuatorik (Grundkonzepte von Aktuatoren; elektro-mechanische Aktuatoren; Modellierung, Analyse  und Auslegung von Positionsregelsystemen; hydromotorische Stellsysteme)
  • Flugsteuerungssysteme (Steuerflächen, Scharniermomente; Stabilitäts- und Steuerbarkeitsanforderungen, Stellkräfte; reversible und irreversible Flugsteuerung; Servo-Stellsysteme)
  • Fahrwerksysteme (Konfigurationen und Geometrien; Analyse von Fahrwerkssystemen mit Hinblick auf Stoßdämpferdynamiken, Dynamik des abbremsenden Flugzeuges und Leistungsbedarf; Aufbau und Analyse von Bremssystemen im Hinblick auf Energie und Wärme; ABS)
  • Kraftstoffsysteme (Architekturen; Flugkraftstoffe; Systemkomponenten; Betankungsanlage; Tankinertisierung; Kraftstoffmanagement; Trimmtank)
  • Enteisungssysteme (Atmosphärische Vereisungsbedingungen; physikalische Prinzipien von Enteisungssystemen)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • Curry: Aircraft Landing Gear Design: Principles and Practices


Lehrveranstaltung L0740: Flugzeugsysteme II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1156: Systems Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Systems Engineering (L1547) Vorlesung 3 4
Systems Engineering (L1548) Hörsaalübung 1 2
Modulverantwortlicher Prof. Ralf God
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:
• Mathematik
• Mechanik
• Thermodynamik
• Elektrotechnik
• Regelungstechnik

Vorkenntnisse in:
• Flugzeug-Kabinensysteme

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:
• Vorgehensmodelle, Methoden und Werkzeuge für das Systems Engineering zur Entwicklung komplexer Systeme verstehen
• Innovationsprozesse und die Notwendigkeit des Technologiemanagements beschreiben
• den Flugzeug-Entwicklungsprozess und den Vorgang der Musterzulassung bei Flugzeugen erläutern
• den System-Entwicklungsprozess inklusive der Anforderungen an die Zuverlässigkeit von Systemen erklären
• die Umgebungs- und Einsatzbedingungen von Luftfahrtausrüstung mit den entsprechenden Testanforderungen benennen
• die Methodik des Requirements-Based Engineering (RBE) und des Model-Based Requirements Engineering (MBRE) einschätzen

Fertigkeiten

Studierende können:
• das Vorgehen zur Entwicklung eines komplexen Systems planen
• die Entwicklungsphasen und Entwicklungsaufgaben organisieren
• erforderliche Geschäfts- und Technikprozesse zuordnen
• Werkzeuge und Methoden des Systems Engineering anwenden

Personale Kompetenzen
Sozialkompetenz

Studierende können:
• ihre Aufgaben innerhalb eines Entwicklungsteams verstehen und sich mit ihrer Rolle in den Gesamtprozess einordnen

Selbstständigkeit

Studierende können:
• in einem Entwicklungsteam mit Aufgabenteilung interagieren und kommunizieren

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L1547: Systems Engineering
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt

Ziel der Vorlesung mit der zugehörigen Übung ist die Schaffung von Voraussetzungen für die Entwicklung und Integration von komplexen Systemen am Beispiel von Verkehrsflugzeugen und  Kabinensystemen. Es soll Prozess-, Werkzeug- und Methodenkompetenz erreicht werden. Vorschriften, Richtlinien und Zulassungsaspekte sollen bekannt sein.

Schwerpunkte der Vorlesung bilden die Prozesse beim Innovations- und Technologiemanagement, der Systementwicklung, Systemintegration und der Zulassung sowie Werkzeuge und Methoden für das Systems Engineering:
• Innovationsprozesse
• IP-Schutz
• Technologiemanagement
• Systems Engineering
• Flugzeug-Entwicklungsprozess
• Themen der Zulassung
• System-Entwicklungsprozess
• Sicherheitsziele und Fehlertoleranz
• Umgebungs- und Einsatzbedingungen
• Werkzeuge und Methoden für das Systems Engineering
• Requirements-Based Engineering (RBE)
• Model-Based Requirements Engineering (MBRE)

Literatur

- Skript zur Vorlesung
- diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE)
- Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010
- NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007
- Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010
- De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010
- Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008

Lehrveranstaltung L1548: Systems Engineering
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Ralf God
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1404: Projektarbeit Flugzeug-Systemtechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD M
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Bachelor Maschinenbau
  • Flugzeugsysteme I+II
  • Kabinensysteme
  • Flugzeugentwurf
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können ihre Detailkenntnisse im Gebiet der Flugzeugsystemtechnik demonstrieren. Sie können zum Stand von Entwicklung und Anwendung Beispiele geben und diese kritisch unter Berücksichtigung aktueller Probleme und Rahmenbedingungen in Wissenschaft und Gesellschaft diskutieren.

Die Studierenden sind in der Lage, für eine grundlagenorientierte, praktische Fragestellung aus dem Bereich der Flugzeugsystemtechnik eigenständig eine Lösungsstrategie zu definieren und einzelne Lösungsansätze zu skizzieren. Dabei können sie theorieorientiert vorgehen und aktuelle sicherheitstechnische, ökologische, ethische und wirtschaftliche Gesichtspunkte nach dem Stand der Wissenschaft und zugehöriger gesellschaftlicher Diskussionen einbeziehen.

Wissenschaftliche Arbeitstechniken, die sie zur eigenen Projektbearbeitung gewählt haben, können sie detailliert darlegen und kritisch erörtern.
Fertigkeiten

Die Studierenden sind in der Lage, zur Projektbearbeitung selbständig Methoden auszuwählen und diese Auswahl zu begründen. Sie können darlegen, wie sie die Methoden auf das spezifische Anwendungsfeld beziehen und hierfür an den Anwendungskontext anpassen. Über das Projekt hinaus weisende Ergebnisse sowie Weiterentwicklungen können sie in Grundzügen skizzieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können die Relevanz und den Zuschnitt ihrer Projektaufgabe, die Arbeitsschritte und Teilprobleme für die Diskussion und Erörterung in größeren Gruppen aufbereiten, die Diskussionen anleiten und Kolleginnen und Kollegen Rückmeldung zu ihren Projekten geben.

Selbstständigkeit

Die Studierenden sind fähig, die zur Bearbeitung der Projektarbeit notwendigen Arbeitsschritte und Abläufe selbständig unter Berücksichtigung vorgegebener Fristen zu planen und zu dokumentieren. Hierzu gehört, dass sie sich aktuelle wissenschaftliche Informationen zielorientiert beschaffen können. Ferner sind sie in der Lage, bei Fachexperten Rückmeldungen zum Arbeitsfortschritt einzuholen, um hochwertige, auf den Stand von Wissenschaft und Technik bezogene Arbeitsergebnisse zu erreichen.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang ca. 60 - 150 Seiten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht

Modul M1399: Systemtechnisches Entwicklungsprojekt (Projektarbeit)

Lehrveranstaltungen
Titel Typ SWS LP
Systemtechnisches Entwicklungsprojekt I+II (Blockveranstaltung) (L1993) Projekt-/problembasierte Lehrveranstaltung 12 12
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Elektrotechnik
  • Regelungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können …

  • Die einzelnen Phasen eines Systementwicklungsprozesses benennen und erläutern (V-Prozess)
  • Werkzeuge der Systementwicklung beschreiben
Fertigkeiten

Studierende können…

  • Anforderungen für ein zu entwickelndes System definieren
  • Den Projektverlauf mit Hilfe geeigneter Werkezeuge dokumentieren und evaluieren
  • Ein System entwerfen
  • Systemtest planen, durchführen und auswerten
Personale Kompetenzen
Sozialkompetenz

Studierende können…

  • In kleinen Gruppen gemeinsam eine vollständige Systementwicklung durchführen
  • In kleinen Gruppen technische Lösungen erarbeiten, diskutieren und aufbereiten sowie diese einem größeren Plenum präsentieren
  • Teamsitzungen und Gruppenarbeitsprozesse anleiten
Selbstständigkeit

Studierende können…

  • Sich selbständig Aufgaben definieren und zur Lösung erforderliches Wissen erschließen
  • geeignete Methoden zur Problemlösung auswählen
Arbeitsaufwand in Stunden Eigenstudium 192, Präsenzstudium 168
Leistungspunkte 12
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang ca. 60 - 200 Seiten
Zuordnung zu folgenden Curricula Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1993: Systemtechnisches Entwicklungsprojekt I+II (Blockveranstaltung)
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 12
LP 12
Arbeitsaufwand in Stunden Eigenstudium 192, Präsenzstudium 168
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt

Wird in der Veranstaltung bekannt gegeben.

Literatur

Wird in der Veranstaltung bekannt gegeben

.

Thesis

In der Masterarbeit bearbeiten die Studierenden selbstständig forschungsorientierte Problemstellungen, strukturieren dabei die Aufgabe in verschiedene Teilaspekte und wenden die im Studium erlangten fachlichen Kompetenzen systematisch an. 

Dabei wird besonderer Wert auf eine wissenschaftliche Bearbeitung der Problemstellung gelegt, die neben einer Literaturübersicht, Einordnung in aktuelle Fragestellungen und Beschreibung theoretischer Grundlagen eine kritische Analyse und Bewertung der Ergebnisse umfasst. 

Modul M-002: Masterarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 21 (1):

    Es müssen mindestens 60 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.


Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches sicher zur Bearbeitung fachlicher Fragestellungen einsetzen.
  • Die Studierenden können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • Die Studierenden können eine eigene Forschungsaufgabe in ihrem Fachgebiet verorten, den Forschungsstand erheben und kritisch einschätzen.


Fertigkeiten
  • Die Studierenden sind in der Lage, für die jeweilige fachliche Problemstellung geeignete Methoden auszuwählen, anzuwenden und ggf. weiterzuentwickeln.
  • Die Studierenden sind in der Lage, im Studium erworbenes Wissen und erlernte Methoden auch auf komplexe und/oder unvollständig definierte Problemstellungen lösungsorientiert anzuwenden.
  • Die Studierenden können in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse erarbeiten und diese kritisch beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können

  • eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht beantworten und dabei eigene Einschätzungen überzeugend vertreten.


Selbstständigkeit

Studierende sind fähig,

  • ein eigenes Projekt in Arbeitspakete zu strukturieren und abzuarbeiten.
  • sich in ein teilweise unbekanntes Arbeitsgebiet des Studiengangs vertieft einzuarbeiten und dafür benötigte Informationen zu erschließen.
  • Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit anzuwenden.


Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energie- und Umwelttechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Global Innovation Management: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
Interdisciplinary Mathematics: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Ship and Offshore Technology: Abschlussarbeit: Pflicht
Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht
Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht