Module Manual
Master
Aircraft Systems Engineering
Cohort: Winter Term 2015
Updated: 31st May 2017
Content
Students learn how to use typical methods of systems engineering as well as the application of modern, computer-based techniques for system design, analysis and evaluation. This count among others methods such as model based systems engineering or model based / virtual testing. Furthermore required knowledge from different fields of aviation including aircraft systems, cabin systems, air transportation system, preliminary aircraft design, flight physics and material science is discussed.
Additionally students get insight into current research activities, e.g. in the area of fuel cells and electrical energy supply, actuators, virtual integration and aircraft level evaluation, avionics systems and software, hydraulic energy supply and integrated aircraft design.
Students are specializing in one of three fields of specialization and gaining the competence to work at the interfaces between these fields. According to their individual focuses students can adjust their studies very flexible due to the various numbers of offered elective courses.
Career prospects
Graduates can work at Universities or other research institutes or apply directly for jobs in the industry. There they can start a carrier as a technical expert or qualify, with growing experiences, for technical management jobs such as project, group, team or development manager.
Besides starting their career in the aviation industry the master program allows, due to its system technical character, graduates to apply for jobs in other industries like the automotive or wind energy industry.
Learning target
Graduates are able to:
Program structure
All obligatory modules of the curriculum of key qualification and curricula of specializations are offered in the first two semesters of studies. The third semester only contains elective modules, which ease students to plan a semester abroad.
Module M0523: Business & Management |
Module Responsible | Prof. Matthias Meyer |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | |
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0524: Nontechnical Elective Complementary Courses for Master |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Non-technical Elective Study Area imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the “non-technical department” follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”. The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Courses |
Information regarding lectures and courses can be found in the corresponding module handbook published separately. |
Module M0763: Aircraft Systems I |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to:
|
Skills |
Students are able to:
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 165 Minutes |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0735: Aircraft Systems I |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0739: Aircraft Systems I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0771: Flight Physics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 Minutes (WS) + 90 Minutes (SS) |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0727: Aerodynamics and Flight Mechanics I |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Klaus-Uwe Hahn, Dr. Ralf Heinrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0730: Flight Mechanics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0731: Flight Mechanics II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Klaus-Uwe Hahn, Dr. Gerko Wende |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0812: Aircraft Design |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge |
Bachelor Mech. Eng., Vordiplom Mech. Eng., Module Air Transport Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Understanding and application of design and calculation methods Understanding of interdisciplinary and integrative interdependencies |
Personal Competence | |
Social Competence |
Working in interdisciplinary teams Communication |
Autonomy | Organization of workflows and -strategies |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0820: Aircraft Design I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
Introduction into the aircraft design process
|
Literature |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Course L0834: Aircraft Design I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
Training in applying MatLab Application of design methods for civil aircraft concerning: Fuselage and Cabin sizing and design Calculation of aircraft masses Aerodynamic and geometric wing design TakeOff, landing cruise performance calculation Manoevre and gust load calculation |
Literature |
J. Roskam: "Airplane Design" D.P. Raymer: "Aircraft Design - A Conceptual Approach" J.P. Fielding: "Intorduction to Aircraft Design" Jenkinson, Simpkon, Rhods: "Civil Jet Aircraft Design" |
Course L0844: Aircraft Design II (Detailled Design Methods for Aeroynamics and Aircraft Structures, Multidisciplinary Design) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick, Björn Nagel |
Language | DE/EN |
Cycle | SoSe |
Content | Physical modelling in aircraft design Introduction - Numerical design process Parameterization and data formats Numerical beam models and lifting line Data base driven engine design Coupling (interpolation, time incremental process Aeroelastic effects Optimization methods in aircraft design Light weight design aspects in aircraft design Limits of simple design methodes Numerical wing design |
Literature | Horst Kossira: "Grundlagen des Leichtbaus. Einführung in die Theorie dünnwandiger stabförmiger Tragwerke" Johannes Wiedemann: "Leichtbau - Elemente und Konstruktion" |
Course L0847: Aircraft Design II (Detailled Design Methods for Aeroynamics and Aircraft Structures, Multidisciplinary Design) |
Typ | Project Seminar |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick, Björn Nagel |
Language | DE/EN |
Cycle | SoSe |
Content | Project oriented exercise in detailed aircraft design Setup of numerical models Numerical design optimization Light weight structural design Interdisciplinary model coupling |
Literature | Horst Kossira: "Grundlagen des Leichtbaus. Einführung in die Theorie dünnwandiger stabförmiger Tragwerke" Johannes Wiedemann: "Leichtbau - Elemente und Konstruktion" |
Module M1041: Systems Engineering Development Project I |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to…
|
Skills |
Students are able to…
|
Personal Competence | |
Social Competence |
Students are able to…
|
Autonomy |
Students are able to…
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written elaboration |
Examination duration and scale | approx. 30 - 150 pages |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory |
Course L1307: Systems Engineering Development Project I |
Typ | Problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | WiSe |
Content | |
Literature | Wird in der Veranstaltung bekannt gegeben |
Module M1155: Aircraft Cabin Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in: • Mathematics • Mechanics • Thermodynamics • Electrical Engineering • Control Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: • describe cabin operations, equipment in the cabin and cabin systems • explain the functional and non-functional requirements for cabin systems • elucidate the necessity of cabin operating systems and emergency systems • assess the challenges human factors integration in a cabin environment |
Skills |
Students are able to: • design a cabin layout for a given business model of an airline • design cabin systems for safe operations • design emergency systems for safe man-machine interaction • solve comfort needs and entertainment requirements in the cabin |
Personal Competence | |
Social Competence |
Students are able to: • understand existing system solutions and discuss their ideas with experts |
Autonomy |
Students are able to: • Reflect the contents of lectures and expert presentations self-dependent |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 Minutes |
Assignment for the Following Curricula |
Energy Systems: Specialisation Energy Systems: Elective Compulsory Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1545: Aircraft Cabin Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about aircraft cabin systems and cabin operations. A basic understanding of technological and systems engineering effort to maintain an artificial but comfortable and safe travel and working environment at cruising altitude is to be achieved. The course provides a comprehensive
overview of current technology and cabin systems in modern passenger aircraft. The
Fulfillment of requirements for the cabin as the central system of work are covered
on the basis of the topics comfort, ergonomics, human factors, operational
processes, maintenance and energy supply: |
Literature |
- Skript zur Vorlesung - Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil Jet Aircraft Design. London: Arnold, 1999 - Rossow, C.-C., Wolf, K., Horst, P. (Hrsg.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, 2014 - Moir, I., Seabridge, A.: Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration, Wiley 2008 - Davies, M.: The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003 - Kompendium der Flugmedizin. Verbesserte und ergänzte Neuauflage, Nachdruck April 2006. Fürstenfeldbruck, 2006 - Campbell, F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd., 2006 |
Course L1546: Aircraft Cabin Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0764: Aircraft Systems II |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements | None |
Recommended Previous Knowledge |
basic knowledge of:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are
able to…
|
Skills |
Students are able to…
|
Personal Competence | |
Social Competence |
Students are able to:
|
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 165 Minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0736: Aircraft Systems II |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0740: Aircraft Systems II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1042: Systems Engineering Development Project II |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to…
|
Skills |
Students are able to…
|
Personal Competence | |
Social Competence |
Students are able to…
|
Autonomy |
Students are able to…
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written elaboration |
Examination duration and scale | approx. 30 - 150 pages |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory |
Course L1308: Systems Engineering Development Project II |
Typ | Problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Lecturer | Prof. Frank Thielecke |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Wird in der Veranstaltung bekannt gegeben |
Module M1156: Systems Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in: • Mathematics • Mechanics • Thermodynamics • Electrical Engineering • Control Systems Previous knowledge in: • Aircraft Cabin Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: • understand systems engineering process models, methods and tools for the development of complex systems • describe innovation processes and the need for technology management • explain the aircraft development process and the process of type certification for aircraft • explain the system development process, including requirements for systems reliability • identify environmental conditions and test procedures for airborne equipment • value the methodology of requirements-based engineering (RBE) and model-based requirements engineering (MBRE) |
Skills |
Students are able to: • plan the process for the development of complex systems • organize the development phases and development tasks • assign required business activities and technical tasks • apply systems engineering methods and tools |
Personal Competence | |
Social Competence |
Students are able to: • understand their responsibilities within a development team and integrate themselves with their role in the overall process |
Autonomy |
Students are able to: • interact and communicate in a development team which has distributed tasks |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 Minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Core qualification: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory |
Course L1547: Systems Engineering |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with the corresponding exercise is to accomplish the prerequisites for the development and integration of complex systems using the example of commercial aircraft and cabin systems. Competences in the systems engineering process, tools and methods is to be achieved. Regulations, guidelines and certification issues will be known. Key aspects of the course are
processes for innovation and technology management, system design, system
integration and certification as well as tools and methods for systems
engineering: |
Literature |
- Skript zur Vorlesung - diverse Normen und Richtlinien (EASA, FAA, RTCA, SAE) - Hauschildt, J., Salomo, S.: Innovationsmanagement. Vahlen, 5. Auflage, 2010 - NASA Systems Engineering Handbook, National Aeronautics and Space Administration, 2007 - Hinsch, M.: Industrielles Luftfahrtmanagement: Technik und Organisation luftfahrttechnischer Betriebe. Springer, 2010 - De Florio, P.: Airworthiness: An Introduction to Aircraft Certification. Elsevier Ltd., 2010 - Pohl, K.: Requirements Engineering. Grundlagen, Prinzipien, Techniken. 2. korrigierte Auflage, dpunkt.Verlag, 2008 |
Course L1548: Systems Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0846: Control Systems Theory and Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Herbert Werner |
Admission Requirements | None |
Recommended Previous Knowledge | Introduction to Control Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
Students can work in small groups on specific problems to arrive at joint solutions. |
Autonomy |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Computer Science: Specialisation Intelligence Engineering: Elective Compulsory Electrical Engineering: Core qualification: Compulsory Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Compulsory Computational Science and Engineering: Specialisation Systems Engineering: Elective Compulsory Computational Science and Engineering: Specialisation Systems Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechatronics: Core qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Core qualification: Compulsory |
Course L0656: Control Systems Theory and Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literature |
|
Course L0657: Control Systems Theory and Design |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0565: Mechatronic Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Uwe Weltin |
Admission Requirements | none |
Recommended Previous Knowledge | Fundamentals of mechanics, electromechanics and control theory |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students are able to describe methods and calculations to design, model, simulate and optimize mechatronic systems and can repeat methods to verify and validate models. |
Skills | Students are able to plan and execute mechatronic experiments. Students are able to model mechatronic systems and derive simulations and optimizations. |
Personal Competence | |
Social Competence |
Students are able to work goal-oriented in small mixed groups, learning and broadening teamwork abilities and define task within the team. |
Autonomy |
Students are able to solve individually exercises related to this lecture with instructional direction. Students are able to plan, execute and summarize a mechatronic experiment. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 90 min. |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Mechatronics: Core qualification: Compulsory |
Course L0174: Electro- and Contromechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content |
Introduction to methodical design of mechatronic systems:
|
Literature |
Denny Miu: Mechatronics, Springer 1992 Rolf Isermann: Mechatronic systems : fundamentals, Springer 2003 |
Course L1300: Electro- and Contromechanics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0196: Mechatronics Laboratory |
Typ | Laboratory |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Uwe Weltin |
Language | DE/EN |
Cycle | SoSe |
Content |
Modeling in MATLAB® und Simulink® Controller Design (Linear, Nonlinear, Observer) Parameter identification Control of a real system with a realtimeboard and Simulink® RTW |
Literature |
- Abhängig vom Versuchsaufbau - Depends on the experiment |
Module M0721: Air Conditioning |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Schmitz |
Admission Requirements | none |
Recommended Previous Knowledge | Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students know the different kinds of air conditioning systems for buildings and mobile applications and how these systems are controlled. They are familiar with the change of state of humid air and are able to draw the state changes in a h1+x,x-diagram. They are able to calculate the minimum airflow needed for hygienic conditions in rooms and can choose suitable filters. They know the basic flow pattern in rooms and are able to calculate the air velocity in rooms with the help of simple methods. They know the principles to calculate an air duct network. They know the different possibilities to produce cold and are able to draw these processes into suitable thermodynamic diagrams. They know the criteria for the assessment of refrigerants. |
Skills |
Students are able to configure air condition systems for buildings and mobile applications. They are able to calculate an air duct network and have the ability to perform simple planning tasks, regarding natural heat sources and heat sinks. They can transfer research knowledge into practice. They are able to perform scientific work in the field of air conditioning. |
Personal Competence | |
Social Competence |
The students are able to discuss in small groups and develop an approach.
|
Autonomy |
Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering : Elective Compulsory |
Course L0594: Air Conditioning |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content |
1. Overview 1.1 Kinds of air conditioning systems 1.2 Ventilating 1.3 Function of an air condition system 2. Thermodynamic processes 2.1 Psychrometric chart 2.2 Mixer preheater, heater 2.3 Cooler 2.4 Humidifier 2.5 Air conditioning process in a Psychrometric chart 2.6 Desiccant assisted air conditioning 3. Calculation of heating and cooling loads 3.1 Heating loads 3.2 Cooling loads 3.3 Calculation of inner cooling load 3.4 Calculation of outer cooling load 4. Ventilating systems 4.1 Fresh air demand 4.2 Air flow in rooms 4.3 Calculation of duct systems 4.4 Fans 4.5 Filters 5. Refrigeration systems 5.1. compression chillers 5.2Absorption chillers |
Literature |
|
Course L0595: Air Conditioning |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0752: Nonlinear Dynamics |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Norbert Hoffmann |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students are able to reflect existing terms and concepts in Nonlinear Dynamics and to develop and research new terms and concepts. |
Skills | Students are able to apply existing methods and procesures of Nonlinear Dynamics and to develop novel methods and procedures. |
Personal Competence | |
Social Competence | Students can reach working results also in groups. |
Autonomy | Students are able to approach given research tasks individually and to identify and follow up novel research tasks by themselves. |
Workload in Hours | Independent Study Time 138, Study Time in Lecture 42 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 2 Hours |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Theoretical Mechanical Engineering: Core qualification: Elective Compulsory |
Course L0702: Nonlinear Dynamics |
Typ | Lecture |
Hrs/wk | 3 |
CP | 6 |
Workload in Hours | Independent Study Time 138, Study Time in Lecture 42 |
Lecturer | Prof. Norbert Hoffmann |
Language | EN |
Cycle | SoSe |
Content | Fundamentals of Nonlinear Dynamics. |
Literature | S. Strogatz: Applied Nonlinear Dynamics |
Module M1043: Aircraft Systems Engineering |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of engineering. |
Personal Competence | |
Social Competence | |
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0661: Advanced Topics in Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0662: Advanced Topics in Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1669: Introduction to Electromagnetic Waveguides and Antennas |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
Introduction to the principles and applications of electromagnetic wave propagation, electromagnetic waveguides and antennas for students without background in electrical engineering. |
Literature |
- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - C. A. Balanis, "Antenna Theory: Analysis and Design", Wiley (2005) |
Course L1817: Design Optimization and Probabilistic Approaches in Structural Analysis |
Typ | Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Hausarbeit |
Examination duration and scale | 10 Seiten und Diskussion |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L1514: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1515: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1258: Lightweight Design Practical Course |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L1549: Aviation Security |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L1550: Aviation Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L0514: Metallic Materials for Aircraft Applications |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Joachim Albrecht |
Language | EN |
Cycle | SoSe |
Content |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literature |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Course L0658: Optimal and Robust Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0659: Optimal and Robust Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0908: Turbo Jet Engines |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Burkhard Andrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0855: System Analysis in Air Transportation |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 60 Minuten |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Hand out |
Course L0176: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min. |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems
|
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L1303: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1554: Reliability of avionics assemblies |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L1555: Reliability of avionics assemblies |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1145: Automation and Simulation |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Günter Ackermann |
Admission Requirements | none |
Recommended Previous Knowledge | BSc Mechanical Engineering or similar |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe the structure an the function of process computers, the corresponding components, the data transfer via bus systems an programmable logic computers . They can describe the basich principle of a numeric simulation and the corresponding parameters. Thy can explain the usual method to simulate the dynamic behaviour of three-phase machines. |
Skills |
Students can describe and design simple controllers using established methodes. They are able to assess the basic characterisitcs of a given automation system and to evaluate, if it is adequate for a given plant. They can modell and simulate technical systems with respect to their dynamical behaviour and can use Matlab/Simulink for the simulation. They are able to applay established methods for the caclulation of the dynamical behaviour of three-phase machines. |
Personal Competence | |
Social Competence | Teamwork in small teams. |
Autonomy |
Students are able to identify the need of methocic analysises in the field of automation systems, to do these analysisis in an adequate manner und to evaluate the results critically. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Assignment for the Following Curricula |
Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory |
Course L1525: Automation and Simulation |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | SoSe |
Content |
Structure of automation systsems Aufbau von Automationseinrichtungen Structure and function of process computers and corresponding componentes Data transfer via bus systems Programmable Logic Computers Methods to describe logic sequences Prionciples of the modelling and the simulation of continous technical systems Practical work with an established simulation program (Matlab/Simulink) Simulation of the dynamic behaviour of a three-phase maschine, simulation of a mixed continous/discrete system on base of tansistion flow diagrams. |
Literature |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Course L1527: Automation and Simulation |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0808: Finite Elements Methods |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements | none |
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Skills |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personal Competence | |
Social Competence | - |
Autonomy |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Core qualification: Compulsory Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Core qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Technomathematics: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Core qualification: Compulsory |
Course L0291: Finite Element Methods |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content |
- General overview on modern engineering |
Literature |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Course L0804: Finite Element Methods |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1091: Flight Guidance and Airline Operations |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
Organization of workflows and -strategies |
Workload in Hours | Independent Study Time 82, Study Time in Lecture 98 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory |
Course L1310: Airline Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Dr. Karl Echtermeyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: Buying the big jets, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Course L0848: Introduction to Flight Guidance |
Typ | Lecture |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Navigation Radio navigation Satellite navigation Principles of flight measurement techniques Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Airspace surveillance (radar systems) Commuication systems Avionics architectures (computer systems, bus systems) Cockpit systems and displays (cockpit design, cockpit equipment) |
Literature | Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2012 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2014 |
Course L0854: Introduction to Flight Guidance |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1193: Cabin Systems Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in: Previous knowledge in: |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: |
Skills |
Students are able to: |
Personal Competence | |
Social Competence |
Students are able to: |
Autonomy |
Students are able to: |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory |
Course L1557: Computer and communication technology in cabin electronics and avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1558: Computer and communication technology in cabin electronics and avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
Objectives of the problem-oriented
course are the acquisition of knowledge on system design using the formal
languages SysML/UML, learning about tools for modeling and finally the
implementation of a project with methods and tools of Model-Based Systems
Engineering (MBSE) on a realistic hardware platform (e.g. Arduino®, Raspberry
Pi®): |
Literature |
- Skript zur Vorlesung - Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008 - Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011 |
Module M1204: Modelling and Optimization in Dynamics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Robert Seifried | |
Admission Requirements | None | |
Recommended Previous Knowledge |
|
|
Educational Objectives | After taking part successfully, students have reached the following learning results | |
Professional Competence | ||
Knowledge |
Students demonstrate basic knowledge and understanding of modeling, simulation and analysis of complex rigid and flexible multibody systems and methods for optimizing dynamic systems after successful completion of the module. |
|
Skills |
Students are able + to think holistically + to independently, securly and critically analyze and optimize basic problems of the dynamics of rigid and flexible multibody systems + to describe dynamics problems mathematically + to optimize dynamics problems |
|
Personal Competence | ||
Social Competence |
Students are able to + solve problems in heterogeneous groups and to document the corresponding results. |
|
Autonomy |
|
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | |
Credit points | 6 | |
Examination | Oral exam | |
Examination duration and scale | 30 min | |
Assignment for the Following Curricula |
Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory |
Course L1632: Flexible Multibody Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Course L1633: Optimization of dynamical systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Module M1213: Avionics for safety-critical Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can:
|
Skills |
Students can …
|
Personal Competence | |
Social Competence |
Students can:
|
Autonomy |
Students can:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory |
Course L1640: Avionics of Safty Critical Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Björn Annighöfer |
Language | DE |
Cycle | WiSe |
Content |
Avionics are all kinds off flight electronics. Today there is no aircraft system function without avionics, and avionics are one main source of innovation in aerospace industry. Since many system functions are highly safety critical, the development of avionics hardware and software underlies mandatory constraints, technics, and processes. It is inevitable for system developers and computer engineers in aerospace industry to understand and master these. This lecture teaches the risks and techniques of developing safety critical hardware and software; major avionics components; integration; and test with a practical orientation. A focus is on Integrated Modular Avionics (IMA). The lecture is accompanied by a mandatory and laboratory exercises. Content:
|
Literature |
|
Course L1641: Avionics of Safty Critical Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Martin Halle |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1652: Avionics of Safty Critical Systems |
Typ | Laboratory Course |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dr. Martin Halle |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
In the specialization in cabin systems, students learn to systematically deal with issues related to the development of aircraft cabin systems, the use of these systems and their application in an operational environment. The aircraft cabin with the cabin management system represents the central working system of an airline during passenger transport. The focus of the specialization is the design of electronic cabin and communication systems using the methodology of Model-Based Systems Engineering (MBSE). Environmental control systems, acoustics, design methods related to composite materials and for integrated product development are further important aspects in the specialization for aircraft cabin development. Airport operations and operations of an airline with respective procedures and systems round off the context of the aircraft cabin. Students have broad knowledge on development methods for complex systems. The can draft requirements, functions and architectures for hardware- and software-based systems, and model and simulate solutions. They know about appropriate tools and methods and master the overall system development process from system design via system implementation and system integration, right up to validation and verification.
Module M1032: Airport Planning and Operations |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L1276: Airport Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Axel Christian Husfeldt |
Language | DE |
Cycle | WiSe |
Content | FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground handling Terminal operations |
Literature | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Course L1275: Airport Planning |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003 |
Course L1469: Airport Planning |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1193: Cabin Systems Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in: • Mathematics • Mechanics • Thermodynamics • Electrical Engineering • Control Systems Previous knowledge in: • Systems Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: • describe the structure and operation of computer architectures • explain the structure and operation of digital communication networks • explain architectures of cabin electronics, integrated modular avionics (IMA) and Aircraft Data Communication Network (ADCN) • understand the approach of Model-Based Systems Engineering (MBSE) in the design of hardware and software-based cabin systems |
Skills |
Students are able to: • understand, operate and maintain a minicomputer • build up a network communication and communicate with other network participants • connect a minicomputer with a cabin management system (A380 CIDS) and communicate over a AFDX®-Network • model system functions by means of formal languages SysML/UML and generate software code from the models • execute software code on a minicomputer |
Personal Competence | |
Social Competence |
Students are able to: • elaborate partial results and merge with others to form a complete solution |
Autonomy |
Students are able to: • organize and schedule their practical tasks |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Project |
Examination duration and scale | |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Compulsory |
Course L1557: Computer and communication technology in cabin electronics and avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1558: Computer and communication technology in cabin electronics and avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
Objectives of the problem-oriented
course are the acquisition of knowledge on system design using the formal
languages SysML/UML, learning about tools for modeling and finally the
implementation of a project with methods and tools of Model-Based Systems
Engineering (MBSE) on a realistic hardware platform (e.g. Arduino®, Raspberry
Pi®): |
Literature |
- Skript zur Vorlesung - Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008 - Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011 |
Module M0721: Air Conditioning |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Schmitz |
Admission Requirements | none |
Recommended Previous Knowledge | Technical Thermodynamics I, II, Fluid Dynamics, Heat Transfer |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students know the different kinds of air conditioning systems for buildings and mobile applications and how these systems are controlled. They are familiar with the change of state of humid air and are able to draw the state changes in a h1+x,x-diagram. They are able to calculate the minimum airflow needed for hygienic conditions in rooms and can choose suitable filters. They know the basic flow pattern in rooms and are able to calculate the air velocity in rooms with the help of simple methods. They know the principles to calculate an air duct network. They know the different possibilities to produce cold and are able to draw these processes into suitable thermodynamic diagrams. They know the criteria for the assessment of refrigerants. |
Skills |
Students are able to configure air condition systems for buildings and mobile applications. They are able to calculate an air duct network and have the ability to perform simple planning tasks, regarding natural heat sources and heat sinks. They can transfer research knowledge into practice. They are able to perform scientific work in the field of air conditioning. |
Personal Competence | |
Social Competence |
The students are able to discuss in small groups and develop an approach.
|
Autonomy |
Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Energy and Environmental Engineering: Specialisation Energy and Environmental Engineering: Elective Compulsory Energy Systems: Specialisation Energy Systems: Elective Compulsory Energy Systems: Specialisation Marine Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Energy Systems: Elective Compulsory Process Engineering: Specialisation Process Engineering : Elective Compulsory |
Course L0594: Air Conditioning |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content |
1. Overview 1.1 Kinds of air conditioning systems 1.2 Ventilating 1.3 Function of an air condition system 2. Thermodynamic processes 2.1 Psychrometric chart 2.2 Mixer preheater, heater 2.3 Cooler 2.4 Humidifier 2.5 Air conditioning process in a Psychrometric chart 2.6 Desiccant assisted air conditioning 3. Calculation of heating and cooling loads 3.1 Heating loads 3.2 Cooling loads 3.3 Calculation of inner cooling load 3.4 Calculation of outer cooling load 4. Ventilating systems 4.1 Fresh air demand 4.2 Air flow in rooms 4.3 Calculation of duct systems 4.4 Fans 4.5 Filters 5. Refrigeration systems 5.1. compression chillers 5.2Absorption chillers |
Literature |
|
Course L0595: Air Conditioning |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerhard Schmitz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements |
none |
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personal Competence | |
Social Competence | |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 20-30 Minuten |
Assignment for the Following Curricula |
Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory |
Course L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | SoSe |
Content |
- Introduction and Motivation |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1043: Aircraft Systems Engineering |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of engineering. |
Personal Competence | |
Social Competence | |
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0661: Advanced Topics in Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0662: Advanced Topics in Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1669: Introduction to Electromagnetic Waveguides and Antennas |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
Introduction to the principles and applications of electromagnetic wave propagation, electromagnetic waveguides and antennas for students without background in electrical engineering. |
Literature |
- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - C. A. Balanis, "Antenna Theory: Analysis and Design", Wiley (2005) |
Course L1817: Design Optimization and Probabilistic Approaches in Structural Analysis |
Typ | Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Hausarbeit |
Examination duration and scale | 10 Seiten und Diskussion |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L1514: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1515: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1258: Lightweight Design Practical Course |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L1549: Aviation Security |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L1550: Aviation Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L0514: Metallic Materials for Aircraft Applications |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Joachim Albrecht |
Language | EN |
Cycle | SoSe |
Content |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literature |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Course L0658: Optimal and Robust Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0659: Optimal and Robust Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0908: Turbo Jet Engines |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Burkhard Andrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0855: System Analysis in Air Transportation |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 60 Minuten |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Hand out |
Course L0176: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min. |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems
|
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L1303: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1554: Reliability of avionics assemblies |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L1555: Reliability of avionics assemblies |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1145: Automation and Simulation |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Günter Ackermann |
Admission Requirements | none |
Recommended Previous Knowledge | BSc Mechanical Engineering or similar |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can describe the structure an the function of process computers, the corresponding components, the data transfer via bus systems an programmable logic computers . They can describe the basich principle of a numeric simulation and the corresponding parameters. Thy can explain the usual method to simulate the dynamic behaviour of three-phase machines. |
Skills |
Students can describe and design simple controllers using established methodes. They are able to assess the basic characterisitcs of a given automation system and to evaluate, if it is adequate for a given plant. They can modell and simulate technical systems with respect to their dynamical behaviour and can use Matlab/Simulink for the simulation. They are able to applay established methods for the caclulation of the dynamical behaviour of three-phase machines. |
Personal Competence | |
Social Competence | Teamwork in small teams. |
Autonomy |
Students are able to identify the need of methocic analysises in the field of automation systems, to do these analysisis in an adequate manner und to evaluate the results critically. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Assignment for the Following Curricula |
Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Energy and Environmental Engineering: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Elective Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory |
Course L1525: Automation and Simulation |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | SoSe |
Content |
Structure of automation systsems Aufbau von Automationseinrichtungen Structure and function of process computers and corresponding componentes Data transfer via bus systems Programmable Logic Computers Methods to describe logic sequences Prionciples of the modelling and the simulation of continous technical systems Practical work with an established simulation program (Matlab/Simulink) Simulation of the dynamic behaviour of a three-phase maschine, simulation of a mixed continous/discrete system on base of tansistion flow diagrams. |
Literature |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Course L1527: Automation and Simulation |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Günter Ackermann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0806: Technical Acoustics II (Room Acoustics, Computational Methods) |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements |
none |
Recommended Previous Knowledge |
Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics) Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge in acoustics regarding room acoustics and computational methods and are able to give an overview of the corresponding theoretical and methodical basis. |
Skills |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding computational methods and procedures treated within the module. |
Personal Competence | |
Social Competence | |
Autonomy |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 20-30 Minuten |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory |
Course L0519: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content |
- Room acoustics - Standard computations - Practical applications |
Literature |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Course L0521: Technical Acoustics II (Room Acoustics, Computational Methods) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1024: Methods of Integrated Product Development |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Dieter Krause |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of Integrated product development and applying CAE systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After passing the module students are able to:
|
Skills |
After passing the module students are able to:
|
Personal Competence | |
Social Competence |
After passing the module students are able to:
|
Autonomy |
After passing the module students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 30 Minuten |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory |
Course L1254: Integrated Product Development II |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content |
Lecture The lecture extends and enhances the learned content of the module “Integrated Product Development and lightweight design” and is based on the knowledge and skills acquired there.
Construction management
Exercise (PBL) In the exercise the content presented in the lecture “Integrated Product Development II” and methods of product development and design management will be enhanced. |
Literature |
|
Course L1255: Integrated Product Development II |
Typ | Problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1202: Design with Polymers and Composites |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Bodo Fiedler | ||
Admission Requirements | Non | ||
Recommended Previous Knowledge |
Structure and Properties of Polymers Structure and Properties of Composites |
||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||
Professional Competence | |||
Knowledge |
|
||
Skills |
- In the field of thermoplastic construction elements such as Film hinge to assess snap with manufacturing technologies, costs, performance appropriate. |
||
Personal Competence | |||
Social Competence |
|
||
Autonomy |
|
||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||
Credit points | 6 | ||
Examination | Written exam | ||
Examination duration and scale | 3 h | ||
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Materials Science: Specialisation Engineering Materials: Elective Compulsory |
Course L0500: Joining of Polymer-Metal Lightweight Structures |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Sergio Amancio Filho |
Language | EN |
Cycle | WiSe |
Content |
Recommended Previous Knowledge: Fundamentals of Materials Science and Engineering Basic Knowledge of Science and Technology of Welding and Joining Contents: The lecture and the related laboratory exercises intend to provide an insight on advanced joining technologies for polymer-metal lightweight structures used in engineering applications. A general understanding of the principles of the consolidated and new technologies and its main fields of applications is to be accomplished through theoretical and practical lectures: Theoretical Lectures: - Review of the relevant properties of Lightweight Alloys, Engineering Plastics and Composites in Joining Technology - Introduction to Welding of Lightweight Alloys, Thermoplastics and Fiber Reinforced Plastics - Mechanical Fastening of Polymer-Metal Hybrid Structures - Adhesive Bonding of Polymer-Metal Hybrid Structures - Fusion and Solid State Joining Processes of Polymer-Metal Hybrid Structures - Hybrid Joining Methods and Direct Assembly of Polymer-Metal Hybrid Structures Laboratory Exercises (will be offered at Helmholtz-Zentrum Geesthacht as a 2-3 days compact course) - Joining Processes: Introduction to state-of-the-art friction-based spot welding and joining technologies (Friction Riveting, Friction Spot Joining and Injection Clinching Joining) - Introduction to metallographic specimen preparation, optical microscopy and mechanical testing of polymer-metal joints Learning Outcomes: After successful completion of this unit, students should be able to understand the principles of welding and joining of polymer-metal lightweight structures as well as their application fields. |
Literature |
|
Course L0501: Joining of Polymer-Metal Lightweight Structures |
Typ | Laboratory Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Sergio Amancio Filho |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0057: Design with Polymers and Composites |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler |
Language | DE |
Cycle | WiSe |
Content |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literature |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Module M1231: High Frequency and Communication Theory in Avionics for Aircraft Systems Engineers |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Frank Gronwald |
Admission Requirements | None |
Recommended Previous Knowledge | Electrical Engineering Fundamentals |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain the fundamental principles, inter-dependencies, and methods of avionics and the integration of avionic systems in aircraft. This includes
|
Skills |
Students are able to apply a series of modeling methods to avionic systems. They are able to determine the most important effects that these models are predicting for the application of avionic systems. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in avionic practice. They can evaluate their problem solving strategies against each other. |
Personal Competence | |
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English, during exercises, e.g.. |
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. Theoretical Electrical Engineering and Communication Theory). They can communicate problems and solutions in the field of Avionics in english language. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 2 x (30 to 60 minutes) |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory |
Course L1669: Introduction to Electromagnetic Waveguides and Antennas |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
This course is intended as an introduction into the topics of electromagnetic wave propagation, guiding, sending, and receiving for graduate engineering students that do not have a specific background in electrical engineering. It will be useful for engineers that face the technical challenge of transmitting high frequency / high bandwidth data in e.g. medical, automotive, or avionic applications. Both circuit and field concepts of electromagnetic wave propagation will be introduced and discussed. Topics: - Fundamental properties and phenomena of electrical circuits |
Literature |
- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999) - J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008) |
Course L0750: High Frequency and Communication Engineering in Avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Gronwald |
Language | DE/EN |
Cycle | WiSe |
Content |
In avionics several electrical engineering disciplines are combined within aeronautic systems. In this lecture the concepts of high frequency theory and communication theory in avionics are explained and combined. These concepts also are of importance for the design of other complex systems, such as those of the automotive industry, e.g.. The following topics are discussed in the lecture:
|
Literature |
|
Course L0751: High Frequency and Communication Engineering in Avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Frank Gronwald |
Language | DE/EN |
Cycle | WiSe |
Content | The exercises provide a deeper understanding of the content and concepts of the lecture |
Literature |
|
Module M1091: Flight Guidance and Airline Operations |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
Organization of workflows and -strategies |
Workload in Hours | Independent Study Time 82, Study Time in Lecture 98 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory |
Course L1310: Airline Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Dr. Karl Echtermeyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: Buying the big jets, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Course L0848: Introduction to Flight Guidance |
Typ | Lecture |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Navigation Radio navigation Satellite navigation Principles of flight measurement techniques Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Airspace surveillance (radar systems) Commuication systems Avionics architectures (computer systems, bus systems) Cockpit systems and displays (cockpit design, cockpit equipment) |
Literature | Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2012 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2014 |
Course L0854: Introduction to Flight Guidance |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
The degree programme „Air Transportation Systems and Preliminary Aircraft Design“ provides a comprehensive understanding of operational aspects of air transport. Further students are educated in aircraft design methods based on operational requirements. The programme competences will extend and intensify the basic compentencies of the bachelor studies by specific methods in design and modelling of air transport systems and and aircraft a spart of it.
As a result graduates will be system analysts being able to design, integrate, model and assess complex systems like air transport including the related technologies.
Module M1091: Flight Guidance and Airline Operations |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 82, Study Time in Lecture 98 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Logistics: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Production and Logistics: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory |
Course L1310: Airline Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Dr. Karl Echtermeyer |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Volker Gollnick, Dieter Schmitt: The Air Transport System, Springer Berlin Heidelberg New York, 2014 Paul Clark: Buying the big jets, Ashgate 2008 Mike Hirst: The Air Transport System, AIAA, 2008 |
Course L0848: Introduction to Flight Guidance |
Typ | Lecture |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | Introduction and motivation Flight guidance principles (airspace structures, organization of air navigation services, etc.) Navigation Radio navigation Satellite navigation Principles of flight measurement techniques Measurement of position (geometric methods, distance measurement, direction measurement) Determination of the aircraft attitude (magnetic field- and inertial sensors) Measurement of speed Airspace surveillance (radar systems) Commuication systems Avionics architectures (computer systems, bus systems) Cockpit systems and displays (cockpit design, cockpit equipment) |
Literature | Rudolf Brockhaus, Robert Luckner, Wolfgang Alles: "Flugregelung", Springer Berlin Heidelberg New York, 2012 Holger Flühr: "Avionik und Flugsicherungssysteme", Springer Berlin Heidelberg New York, 2013 Volker Gollnick, Dieter Schmitt "Air Transport Systems", Springer Berlin Heidelberg New York, 2014 |
Course L0854: Introduction to Flight Guidance |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1193: Cabin Systems Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Ralf God |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in: • Mathematics • Mechanics • Thermodynamics • Electrical Engineering • Control Systems Previous knowledge in: • Systems Engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to: • describe the structure and operation of computer architectures • explain the structure and operation of digital communication networks • explain architectures of cabin electronics, integrated modular avionics (IMA) and Aircraft Data Communication Network (ADCN) • understand the approach of Model-Based Systems Engineering (MBSE) in the design of hardware and software-based cabin systems |
Skills |
Students are able to: • understand, operate and maintain a minicomputer • build up a network communication and communicate with other network participants • connect a minicomputer with a cabin management system (A380 CIDS) and communicate over a AFDX®-Network • model system functions by means of formal languages SysML/UML and generate software code from the models • execute software code on a minicomputer |
Personal Competence | |
Social Competence |
Students are able to: • elaborate partial results and merge with others to form a complete solution |
Autonomy |
Students are able to: • organize and schedule their practical tasks |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Project |
Examination duration and scale | |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Compulsory |
Course L1557: Computer and communication technology in cabin electronics and avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1558: Computer and communication technology in cabin electronics and avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge of computer and communication technology in electronic systems in the cabin and in aircraft. For the system engineer the strong interaction of software, mechanical and electronic system components nowadays requires a basic understanding of cabin electronics and avionics. The course
teaches the basics of design and functionality of computers and data networks.
Subsequently it focuses on current principles and applications in integrated
modular avionics (IMA), aircraft data communication networks (ADCN), cabin electronics and cabin networks: |
Literature |
- Skript zur Vorlesung - Schnabel, P.: Computertechnik-Fibel: Grundlagen Computertechnik, Mikroprozessortechnik, Halbleiterspeicher, Schnittstellen und Peripherie. Books on Demand; 1. Auflage, 2003 - Schnabel, P.: Netzwerktechnik-Fibel: Grundlagen, Übertragungstechnik und Protokolle, Anwendungen und Dienste, Sicherheit. Books on Demand; 1. Auflage, 2004 |
Course L1551: Model-Based Systems Engineering (MBSE) with SysML/UML |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
Objectives of the problem-oriented
course are the acquisition of knowledge on system design using the formal
languages SysML/UML, learning about tools for modeling and finally the
implementation of a project with methods and tools of Model-Based Systems
Engineering (MBSE) on a realistic hardware platform (e.g. Arduino®, Raspberry
Pi®): |
Literature |
- Skript zur Vorlesung - Weilkiens, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design. 2. Auflage, dpunkt.Verlag, 2008 - Holt, J., Perry, S.A., Brownsword, M.: Model-Based Requirements Engineering. Institution Engineering & Tech, 2011 |
Module M0982: Transportation Modelling |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | None |
Recommended Previous Knowledge |
some knowledge of transport planning, e.g. through taking the undergraduate class „Transport Planning and Traffic Engineering" |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to understand the operation and potential applications of transport models. |
Skills |
Students are able to:
|
Personal Competence | |
Social Competence | Students are able to independently develop and document solutions. |
Autonomy |
Students are able to:
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Project |
Examination duration and scale | |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Water and Environmental Engineering: Specialisation Cities: Elective Compulsory |
Course L1180: Transportation Modelling |
Typ | Problem-based Learning |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Carsten Gertz |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Lohse, Dieter und Schnabel, Werner (2011): Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung – Band 2. 3. Auflage. Beuth. Ortúzar, Juan de Dios und Willumsen, Luis G. (2011): Modelling Transport. 4. Auflage. John Wiley & Sons. |
Module M0992: Transportation Economics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Carsten Gertz |
Admission Requirements | none |
Recommended Previous Knowledge |
Fundamentals of Transportation Economics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can...
|
Skills |
Students can...
|
Personal Competence | |
Social Competence |
Students can...
|
Autonomy |
Students can...
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Core qualification: Compulsory |
Course L1194: Transportation Economics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Heiner Hautau, Dr. Barbara Hüttmann |
Language | DE |
Cycle | SoSe |
Content |
The course transfers knowledge on the principles of transport policy in the following areas
|
Literature |
Aberle, G. (2009): Transportwirtschaft, 5. Auflage, Oldenbourg Verlag, München. Button, K. (2010): Transport Economics, 3rd Edition, Edw. Elgar Publishing Cheltenham UK. Daehre-Kommission (2012): Zukunft der Verkehrsinfrastruktur-finanzierung, Berlin. Frerich, J. u. Müller, G. (2004): Europäische Verkehrspolitik, Band 1 – 3, München. Grandjot, H.-H. (2002): Verkehrspolitik – Grundlagen, Funktionen und Perspektiven für Wissenschaft und Praxis, Deutscher Verkehrs-Verlag, Hamburg. Kummer, S. (2006): Einführung in die Verkehrswirtschaft. Facultas Verlag, Wien |
Course L1195: Transportation Economics |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Barbara Hüttmann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1043: Aircraft Systems Engineering |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Module Responsible | Prof. Frank Thielecke |
Admission Requirements |
None |
Recommended Previous Knowledge |
Basic knowledge in:
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
Students are able to apply basic methods in selected areas of engineering. |
Personal Competence | |
Social Competence | |
Autonomy |
Students can chose independently, in which fields they want to deepen their knowledge and skills through the election of courses. |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory |
Course L0661: Advanced Topics in Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0662: Advanced Topics in Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1669: Introduction to Electromagnetic Waveguides and Antennas |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
Introduction to the principles and applications of electromagnetic wave propagation, electromagnetic waveguides and antennas for students without background in electrical engineering. |
Literature |
- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - C. A. Balanis, "Antenna Theory: Analysis and Design", Wiley (2005) |
Course L1817: Design Optimization and Probabilistic Approaches in Structural Analysis |
Typ | Seminar |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Hausarbeit |
Examination duration and scale | 10 Seiten und Diskussion |
Lecturer | Prof. Benedikt Kriegesmann |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0310: Fatigue & Damage Tolerance |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Martin Flamm |
Language | EN |
Cycle | WiSe |
Content | Design principles, fatigue strength, crack initiation and crack growth, damage calculation, counting methods, methods to improve fatigue strength, environmental influences |
Literature | Jaap Schijve, Fatigue of Structures and Materials. Kluver Academic Puplisher, Dordrecht, 2001 E. Haibach. Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. VDI-Verlag, Düsseldorf, 1989 |
Course L1514: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1515: Lightweight Construction with Fibre Reinforced Rolymers - Structural Mechanics |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Christian Mittelstedt |
Language | DE |
Cycle | WiSe |
Content |
Fundamentals of Anisotropic Elasticity Displacements, strains and stresses; Equilibrium equations; Kinematics; Hooke’s generalized law Behaviour of a single laminate layer Material law of a single laminate layer; Full anisotropy and coupling effects; Material symmetries; Engineering constants; Plane state of stress; Transformation rules Fundamentals of Micromechanics of a laminate layer Representative unit cell; Determination of effective material constants; Effective stiffness properties of a single layer Classical Laminate Plate Theory Notations and laminate code; Kinematics and displacement field; Strains and stresses, stress resultants; Constitutive equations and coupling effects; Special laminates and their behavior; Effective laminate properties Strength of Laminated Plates Fundamental concept; Phenomenological failure criteria: maximum stresses, maximum strains, Tsai-Hill, Tsai-Wu, Puck, Hashin Bending of Composite Laminated Plates Differential Equations; Boundary Conditions; Navier-type solutions; Lévy-type solutions Stress Concentration Problems Free-edge effects; Stress concentrations at holes, cracks, delaminations; Aspects of failure analysis Stability of Thin-Walled Composite Structures Buckling of anisotropic plates and shells; Influence of loading conditions; Influence of boundary conditions; Exact transcendental solutions and their evaluation; Buckling of stiffened composite plates; Minimum stiffness requirements; Local buckling of stiffener profiles Written exercise (report required) Assessment of a thin-walled composite laminated beam taking several different dimensioning criteria into account |
Literature |
|
Course L1258: Lightweight Design Practical Course |
Typ | Problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 30 min |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | SoSe |
Content |
Development of a sandwich structure made of fibre reinforced plastics
|
Literature |
|
Course L1549: Aviation Security |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L1550: Aviation Security |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | WiSe |
Content |
The objective of the lecture with the corresponding exercise is the acquisition of knowledge about tasks and measures for protection against attacks on the security of the commercial air transport system. Tasks and measures will be elicited in the context of the three system components man, technology and organization. The course
teaches the basics of aviation security. Aviation security is a necessary
prerequisite for an economically successful air transport system. Risk management
for the entire system can only be successful in an integrated approach,
considering man, technology and organization: |
Literature |
- Skript zur Vorlesung - Giemulla, E.M., Rothe B.R. (Hrsg.): Handbuch Luftsicherheit. Universitätsverlag TU Berlin, 2011 - Thomas, A.R. (Ed.): Aviation Security Management. Praeger Security International, 2008 |
Course L0514: Metallic Materials for Aircraft Applications |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Joachim Albrecht |
Language | EN |
Cycle | SoSe |
Content |
Titanium and Titanium alloys: Extraction and melting, phase diagrams, physical properties. CP-Titanium and Alpha alloys: Processing and microstructure, properties and applications. Alpha+Beta alloys: Processing and microstructure, properties and applications. Beta alloys: Processing and microstructure, properties and applications Nickel-base Superalloys: Optimization of creep resistance for gas turbine engines, microstructural constituents and influence of alloying elements, thermomechanical treatment and resulting properties, long time stability at high temperatures |
Literature |
G. Luetjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, Heidelberg, 2007, ISBN 978-3-540-71397 C.T. Sims, W.C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, ISBN 0-471-79207-1 |
Course L0658: Optimal and Robust Control |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0659: Optimal and Robust Control |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | |
Lecturer | Prof. Herbert Werner |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0908: Turbo Jet Engines |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 45 min |
Lecturer | Dr. Burkhard Andrich |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0855: System Analysis in Air Transportation |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Klausur |
Examination duration and scale | 60 Minuten |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
|
Literature | Hand out |
Course L0176: Reliability in Engineering Dynamics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min. |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content |
Method for calculation and testing of reliability of dynamic machine systems
|
Literature |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Course L1303: Reliability in Engineering Dynamics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Prof. Uwe Weltin |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1554: Reliability of avionics assemblies |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L1555: Reliability of avionics assemblies |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Ralf God |
Language | DE |
Cycle | SoSe |
Content |
The objective of the lecture with
the corresponding exercise is the acquisition of knowledge for development, electronic
packaging technology and the production of electronic components for safety-critical
applications. On an item, component and system level it is shown, how the
specified safety objectives for electronics in aircraft can be achieved. Current
challenges, such as availability of components, component counterfeiting and
the use of components off-the-shelf (COTS) will be discussed: |
Literature |
- Skript zur Vorlesung Hanke, H.-J.: Baugruppentechnologie der Elektronik. Leiterplatten. Verlag Technik, 1994 Scheel, W.: Baugruppentechnologie der Elektronik. Montage. Verlag Technik, 1999 |
Course L0749: Reliability of Aircraft Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 Minuten |
Lecturer | Prof. Frank Thielecke, Dr. Andreas Vahl, Dr. Uwe Wieczorek |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Module M1032: Airport Planning and Operations |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Volker Gollnick |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
Organization of workflows and -strategies |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory International Management and Engineering: Specialisation II. Aviation Systems: Elective Compulsory Logistics, Infrastructure and Mobility: Specialisation Infrastructure and Mobility: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Aircraft Systems Engineering: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory |
Course L1276: Airport Operations |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Volker Gollnick, Axel Christian Husfeldt |
Language | DE |
Cycle | WiSe |
Content | FA-F Flight Operations Flight Operations - Production Infrastructures Operations Planning Master plan Airport capacity Ground handling Terminal operations |
Literature | Richard de Neufville, Amedeo Odoni: Airport Systems, McGraw Hill, 2003 |
Course L1275: Airport Planning |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
N. Ashford, Martin Stanton, Clifton Moore: Airport Operations, John Wiley & Sons, 1991 Richard de Neufville, Amedeo Odoni: Airport Systems, Aviation Week Books, MacGraw Hill, 2003 |
Course L1469: Airport Planning |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Volker Gollnick |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1024: Methods of Integrated Product Development |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Dieter Krause |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of Integrated product development and applying CAE systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After passing the module students are able to:
|
Skills |
After passing the module students are able to:
|
Personal Competence | |
Social Competence |
After passing the module students are able to:
|
Autonomy |
After passing the module students are able to:
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 30 Minuten |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Product Development, Materials and Production: Specialisation Product Development: Compulsory Product Development, Materials and Production: Specialisation Production: Elective Compulsory Product Development, Materials and Production: Specialisation Materials: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Product Development and Production: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory |
Course L1254: Integrated Product Development II |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content |
Lecture The lecture extends and enhances the learned content of the module “Integrated Product Development and lightweight design” and is based on the knowledge and skills acquired there.
Construction management
Exercise (PBL) In the exercise the content presented in the lecture “Integrated Product Development II” and methods of product development and design management will be enhanced. |
Literature |
|
Course L1255: Integrated Product Development II |
Typ | Problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1231: High Frequency and Communication Theory in Avionics for Aircraft Systems Engineers |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Frank Gronwald |
Admission Requirements | None |
Recommended Previous Knowledge | Electrical Engineering Fundamentals |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain the fundamental principles, inter-dependencies, and methods of avionics and the integration of avionic systems in aircraft. This includes
|
Skills |
Students are able to apply a series of modeling methods to avionic systems. They are able to determine the most important effects that these models are predicting for the application of avionic systems. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in avionic practice. They can evaluate their problem solving strategies against each other. |
Personal Competence | |
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English, during exercises, e.g.. |
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. Theoretical Electrical Engineering and Communication Theory). They can communicate problems and solutions in the field of Avionics in english language. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Examination | Oral exam |
Examination duration and scale | 2 x (30 to 60 minutes) |
Assignment for the Following Curricula |
Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Cabin Systems: Elective Compulsory |
Course L1669: Introduction to Electromagnetic Waveguides and Antennas |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
This course is intended as an introduction into the topics of electromagnetic wave propagation, guiding, sending, and receiving for graduate engineering students that do not have a specific background in electrical engineering. It will be useful for engineers that face the technical challenge of transmitting high frequency / high bandwidth data in e.g. medical, automotive, or avionic applications. Both circuit and field concepts of electromagnetic wave propagation will be introduced and discussed. Topics: - Fundamental properties and phenomena of electrical circuits |
Literature |
- Zinke, Brunswig, "Hochfrequenztechnik 1", Springer (1999) - J. Detlefsen, U. Siart, "Grundlagen der Hochfrequenztechnik", Oldenbourg (2012) - D. M. Pozar, "Microwave Engineering", Wiley (2011) - Y. Huang, K. Boyle, "Antenna: From Theory to Practice", Wiley (2008) |
Course L0750: High Frequency and Communication Engineering in Avionics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Frank Gronwald |
Language | DE/EN |
Cycle | WiSe |
Content |
In avionics several electrical engineering disciplines are combined within aeronautic systems. In this lecture the concepts of high frequency theory and communication theory in avionics are explained and combined. These concepts also are of importance for the design of other complex systems, such as those of the automotive industry, e.g.. The following topics are discussed in the lecture:
|
Literature |
|
Course L0751: High Frequency and Communication Engineering in Avionics |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Frank Gronwald |
Language | DE/EN |
Cycle | WiSe |
Content | The exercises provide a deeper understanding of the content and concepts of the lecture |
Literature |
|
Module M0808: Finite Elements Methods |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Otto von Estorff |
Admission Requirements | none |
Recommended Previous Knowledge |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Skills |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personal Competence | |
Social Competence | - |
Autonomy |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
Civil Engineering: Core qualification: Compulsory Energy Systems: Core qualification: Elective Compulsory Aircraft Systems Engineering: Specialisation Aircraft Systems: Elective Compulsory Aircraft Systems Engineering: Specialisation Air Transportation Systems: Elective Compulsory Computational Science and Engineering: Specialisation Scientific Computing: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory International Management and Engineering: Specialisation II. Product Development and Production: Elective Compulsory Mechatronics: Core qualification: Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Product Development, Materials and Production: Core qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Technomathematics: Core qualification: Elective Compulsory Theoretical Mechanical Engineering: Core qualification: Compulsory |
Course L0291: Finite Element Methods |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content |
- General overview on modern engineering |
Literature |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Course L0804: Finite Element Methods |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Otto von Estorff |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
In their master’s thesis students work independently on research-oriented problems, structuring the task into different sub-aspects and apply systematically the specialized competences they have acquired in the course of the study program.
Special importance is attached to a scientific approach to the problem including, in addition to an overview of literature on the subject, its classification in relation to current issues, a description of the theoretical foundations, and a critical analysis and assessment of the results.
Module M-002: Master Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
The students are able:
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able:
|
Workload in Hours | Independent Study Time 900, Study Time in Lecture 0 |
Credit points | 30 |
Examination | according to Subject Specific Regulations |
Examination duration and scale | see FSPO |
Assignment for the Following Curricula |
Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory International Production Management: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory Naval Architecture and Ocean Engineering: Thesis: Compulsory Ship and Offshore Technology: Thesis: Compulsory Theoretical Mechanical Engineering: Thesis: Compulsory Process Engineering: Thesis: Compulsory Water and Environmental Engineering: Thesis: Compulsory |