Studiengangsbeschreibung

Inhalt

Der forschungsorientierte Master-Studiengang Energietechnik baut konsekutiv auf den Bachelor-Studiengang Maschinenbau, Vertiefung Energietechnik, bzw. den Bachelor-Studiengang AIW, Vertiefung Maschinenbau, Schwerpunkt Energietechnik,  auf. Das Studium vertieft die mathematisch/naturwissenschaftlichen sowie die ingenieurwissenschaftlichen Inhalte des Bachelor-Studiums und vermittelt weitere Methoden zur systematischen und wissenschaftlichen Lösung von komplexen Problemstellungen im Bereich der Energietechnik.

Innerhalb dieses Master-Studienganges muss entweder die Vertiefung "Energiesysteme" oder die Vertiefung "Schiffsmaschinenbau" gewählt werden. Der Maschinenraum eines Schiffes stellt eine komplexe schwimmende Energieanlage dar. Die TUHH bietet als einzige deutsche Universität eine Ausbildung im Studiengang Energietechnik an, die auch den Schiffsmaschinenbau einschließt.

Inhaltlich werden grundlagen- und methodenorientierte Kenntnisse zur physikalischen Beschreibung von Systemen der klassischen Energietechnik, der regenerativen Energietechnik und des Schiffsmaschinenbaus vermittelt. 


Berufliche Perspektiven

Der Studiengang ist inhaltlich durch das umfangreiche Angebot an mathematisch/physikalischen Grundlagen breit angelegt und bereitet die Studierenden in ausgewählten Modulen aus dem Bereich der Energietechnik und/oder des Schiffsmaschinenbaus auf leitende Aufgaben in Industrie und Wissenschaft vor.

Durch die breite Ausrichtung des Studienganges ist eine anspruchsvolle, wissenschaftliche Tätigkeit in sehr unterschiedlichen Bereichen der Energietechnik, des Schiffsmaschinenbaus, aber auch im Bereich des Allgemeinen Maschinenbaus und der Fahrzeug- und Flugzeugtechnik möglich.



Lernziele

Ziel des Master-Studienganges Energietechnik ist es, die Studierenden mit unterschiedlichen Technologien zur Energiewandlung, Energieverteilung und Energieanwendung vertraut zu machen. Dabei muss berücksichtigt werden, dass Energietechnik ein Querschnittsfach ist, das praktisch alle Bereiche der Technik berührt. In der Ausbildung zum Master of Science soll daher auch die Fähigkeit vermittelt werden, Zusammenhänge in komplexen Systemen zu erkennen.

Die Absolventinnen und Absolventen des Master-Studienganges Energietechnik können das erworbene Fachwissen auf komplexe energietechnische Problemstellungen übertragen. Sie sind in der Lage, sich selbstständig in neue Fragestellungen einzuarbeiten. Prozesse können mit wissenschaftlichen Methoden analysiert, abstrahiert und modelliert und auch dokumentiert werden. Sie können Daten und Ergebnisse beurteilen und daraus Strategien zur Entwicklung innovativer Lösungen entwickeln. Sie sind in der Lage, die Problemstellungen im Team zu diskutieren und ggf. zu optimieren.





Studiengangsstruktur

Der Master-Studiengang Energietechnik ist in die Bereiche Kernqualifikation, eine zu wählende Vertiefungsrichtung ("Energiesysteme" oder "Schiffsmaschinenbau") und die Abschlussarbeit strukturiert.

Innerhalb der Kernqualifikation müssen neben den Pflichtmodulen "Betrieb und Management" und "Nichttechnische Ergänzungsmodule" die beiden Module "Fachlabor Energietechnik" und "Projektarbeit Energietechnik" belegt werden. Darüber hinaus können aus einem Angebot von 14 Modulen 3 ausgewählt werden.

Innerhalb der Vertiefungsrichtung "Energiesysteme" sind 2 Pflichtmodule ("Thermische Energiesysteme" und "Auslegung und Bewertung regenerativer Energiesysteme") sowie 5 Wahlpflichtmodule (aus 16 angebotenen) zu belegen. Im Wahlpflichtkatalog sind auch zwei Offene Module "Ausgewählte Themen der Energiesysteme, Option A (bzw. Option B)" enthalten, aus dem Lehrveranstaltungen mit 6 LP (bzw. 12 LP) aus einem Angebot von 27 LP gewählt werden können.

Innerhalb der Vertiefungsrichtung "Schiffsmaschinenbau" müssen die Studierenden 2 Pflichtmodule ("Energietechnik auf Schiffen", "Schiffsmotorenanlagen") sowie 5 Wahlpflichtmodule (aus 11 angebotenen) belegen. Im Wahlpflichtkatalog sind auch zwei Offene Module "Ausgewählte Themen des Schiffsmaschinenbaus, Option A (bzw. Option B)" enthalten, aus dem Lehrveranstaltungen mit 6 LP (bzw. 12 LP) aus einem Angebot von 26 LP belegt werden können.

In der Masterarbeit bearbeiten die Studierenden selbstständig forschungsorientierte Problemstellungen, strukturieren dabei die Aufgabe in verschiedene Teilaspekte und wenden die im Studium erlangten fachlichen Kompetenzen systematisch an. 

Die Inhalte der Pflichtmodule innerhalb der Kernqualifikation sowie die Inhalte der Module innerhalb der Vertiefungsrichtungen und auch die Aufgabenstellung der Masterarbeit sind eng mit den Forschungsgebieten der energietechnisch-orientierten Institute verknüpft.


Fachmodule der Kernqualifikation

Im Bereich der Kernqualifikation werden vertiefende physikalisch/mathematische und ingenieurwissenschaftliche Inhalte der Energietechnik und des Schiffsmaschinenbaus vermittelt. Zusätzlich werden in den Pflichtmodulen "Praktikum Energietechnik", forschungs- und anwendungsorientierte Versuche durchgeführt sowie in der "Studienarbeit Energietechnik" forschungsorientierte Problemstellungen behandelt. 

Die Studierenden sind in der Lage, energietechnische Systeme physikalisch/mathematisch zu modellieren und zu analysieren. Zusätzlich werden im Rahmen des Fachlabors Kompetenzen zur kritischen Analyse und Auswertung von Messdaten und Versuchsergebnissen vermittelt. Im Rahmen der Projektarbeit wird das selbstständige Bearbeiten von Problemstellungen, die Strukturierung von Lösungsansätzen und die schriftliche Dokumentation gefördert. Das Praktikum wird in Kleingruppen durchgeführt, die Projektarbeit kann als Gruppenarbeit durchgeführt werden. Damit soll die Fähigkeit zur Teamarbeit gestärkt werden.



Modul M0508: Strömungsmechanik und Meeresenergie

Lehrveranstaltungen
Titel Typ SWS LP
Energie aus dem Meer (L0002) Vorlesung 2 2
Strömungsmechanik II (L0001) Vorlesung 2 4
Modulverantwortlicher Prof. Michael Schlüter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematik I-III
Grundlagen der Strömungsmechanik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können verschiedene Anwendungen der Strömungsmechanik in der Vertiefungsrichtungsrichtung Regenerative Energien beschreiben. Sie können die Grundlagen der Strömungsmechanik der Anwendung in der Meeresenergie zuordnen und für konkrete Berechnungen abwandeln. Die Studierenden können einschätzen, welche strömungsmechanischen Probleme mit analytischen Lösungen berechnet werden können und welche alternativen Möglichkeiten (z.B. Selbstähnlichkeit, empirische Lösungen, numerische Methoden) zur Verfügung stehen. 

Fertigkeiten

Studierende sind in der Lage, die Grundlagen der Strömungsmechanik auf technische Prozesse anzuwenden. Insbesondere können sie Impuls- und Massenbilanzen aufstellen, um damit technische Prozesse hydrodynamisch zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können die vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten. Sie sind in der Lage, eine Aufgabenstellung aus dem Fachgebiet im Team zu bearbeiten, die Ergebnisse in Form eines Posters darzustellen und im Rahmen einer Posterpräsentation zu präsentieren.

Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben für strömungsmechanische Problemstellungen zu definieren und sich das zur Lösung dieser Aufgaben notwendige Wissen, aufbauend auf dem vermittelten Wissen, selbst zu erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Gruppendiskussion
Prüfung Klausur
Prüfungsdauer und -umfang 3h
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L0002: Energie aus dem Meer
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Einführung in die Umwandlung von Energie aus dem Meer
  2. Welleneigenschaften
    • Lineare Wellentheorie
    • Nichtlineare Wellentheorie
    • Irreguläre Wellen
    • Wellenenergie
    • Refraktion, Reflexion und Diffraktion von Wellen
  3. Wellenkraftwerke
    • Übersicht der verschiedenen Technologien
    • Auslegungs- und Berechnungsverfahren
  4. Meeresströmungskraftwerke


Literatur
  • Cruz, J., Ocean wave energy, Springer Series in Green Energy and Technology, UK, 2008.
  • Brooke, J., Wave energy conversion, Elsevier, 2003.
  • McCormick, M.E., Ocean wave energy conversion, Courier Dover Publications, USA, 2013.
  • Falnes, J., Ocean waves and oscillating systems, Cambridge University Press,UK, 2002.
  • Charlier, R. H., Charles, W. F., Ocean energy. Tide and tidal Power. Berlin, Heidelberg, 2009.
  • Clauss, G. F., Lehmann, E., Östergaard, C., Offshore Structures. Volume 1, Conceptual Design. Springer-Verlag, Berlin 1992


Lehrveranstaltung L0001: Strömungsmechanik II
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Michael Schlüter
Sprachen DE
Zeitraum WiSe
Inhalt
  • Differenzialgleichungen zum Impuls-, Wärme- und Stoffaustausch   
  • Beispiele für Vereinfachungen der Navier-Stokes Gleichungen  
  • Instationärer Impulsaustausch
  • Freie Scherschichten, Turbulenz und Freistrahl 
  • Partikelumströmungen – Feststoffverfahrenstechnik
  • Kopplung Impuls- und Wärmetransport - Thermische VT
  • Kopplung Impuls- und Wärmetransport - Thermische VT
  • Rheologie – Bioverfahrenstechnik
  • Kopplung Impuls- und Stofftransport – Reaktives Mischen, Chemische VT
  • Strömung in porösen Medien – heterogene Katalyse
  • Pumpen und Turbinen - Energie- und Umwelttechnik 
  • Wind- und Wellenkraftanlagen - Regenerative Energien
  • Einführung in die numerische Strömungssimulation
Literatur
  1. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, Frankfurt (M), 1971.
  2. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion. Frankfurt: Sauerländer 1972.
  3. Crowe, C. T.: Engineering fluid mechanics. Wiley, New York, 2009.
  4. Durst, F.: Strömungsmechanik: Einführung in die Theorie der Strömungen von Fluiden. Springer-Verlag, Berlin, Heidelberg, 2006.
  5. Fox, R.W.; et al.: Introduction to Fluid Mechanics. J. Wiley & Sons, 1994.
  6. Herwig, H.: Strömungsmechanik: Eine Einführung in die Physik und die mathematische Modellierung von Strömungen. Springer Verlag, Berlin, Heidelberg, New York, 2006.
  7. Herwig, H.: Strömungsmechanik: Einführung in die Physik von technischen Strömungen: Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2008.
  8. Kuhlmann, H.C.:  Strömungsmechanik. München, Pearson Studium, 2007
  9. Oertl, H.: Strömungsmechanik: Grundlagen, Grundgleichungen, Lösungsmethoden, Softwarebeispiele. Vieweg+ Teubner / GWV Fachverlage GmbH, Wiesbaden, 2009.
  10. Schade, H.; Kunz, E.: Strömungslehre. Verlag de Gruyter, Berlin, New York, 2007.
  11. Truckenbrodt, E.: Fluidmechanik 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. Schlichting, H. : Grenzschicht-Theorie. Springer-Verlag, Berlin, 2006.
  13. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California, 1882.  

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden sind in der Lage, in interdisziplinären Kleingruppen zu kommunizieren und gemeinsam Lösungen für komplexe Problemstellungen zu erarbeiten.


Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0524: Nichttechnische Angebote im Master

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Nichttechnischen Angebote  (NTA)

vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewähltes Spezialgebiete des jeweiligen nichttechnischen Bereiches erläutern,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist).



Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende und teils auch spezielle Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache und teils auch fortgeschrittene Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.




Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist)



Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).




Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M1909: Systemsimulation

Lehrveranstaltungen
Titel Typ SWS LP
Systemsimulation Modul (L3150) Vorlesung 2 3
Systemsimulation Modul (L3151) Hörsaalübung 2 3
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematik I-III, Informatik, Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung, Regelungstechnik



Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L3150: Systemsimulation Modul
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Arne Speerforck, Dr. Johannes Brunnemann
Sprachen DE
Zeitraum WiSe
Inhalt

Vorlesung zur gleichungsbasierten, physikalischen Modellierung unter Verwendung der Modellierungssprache Modelica und der kostenfreien Simulationsplattform OpenModelica 1.17.0.

  • Einführung in die physikalische Modellierung
  • Frage der Modellierung und der Grenzen der Modellierung
  • Frage der Zeitkonstanten, Steifigkeit, Stabilität, Schrittweitenwahl
  • Begriffe der objektorientierten Programmierung
  • Differenzialgleichungen einfacher Systeme
  • Einführung in Modelica
  • Einführung in das Simulationswerkzeug
  • Beispiele: Hydraulische Systeme und Wärmeleitung
  • Systembeispiel


Literatur

[1]    Modelica Association: "Modelica Language Specification - Version 3.5", Linköping,  Sweden, 2021.

[2]    OpenModelica: OpenModelica 1.17.0, https://www.openmodelica.org (siehe Download), 2021.

[3]    M. Tiller:  “Modelica by Example", https://book.xogeny.com, 2014.

[4]    M. Otter, H. Elmqvist, et al.: "Objektorientierte Modellierung Physikalischer Systeme",  at- Automatisierungstechnik (german), Teil 1 - 17, Oldenbourg Verlag, 1999 - 2000.

[5]    P. Fritzson: "Principles of Object-Oriented Modeling and Simulation with Modelica 3.3", Wiley-IEEE Press, New York, 2015.

[6]    P. Fritzson: “Introduction to Modeling and Simulation of Technical and Physical  Systems with Modelica”, Wiley, New York, 2011.

Lehrveranstaltung L3151: Systemsimulation Modul
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Arne Speerforck, Dr. Johannes Brunnemann
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0808: Finite Elements Methods

Lehrveranstaltungen
Titel Typ SWS LP
Finite-Elemente-Methoden (L0291) Vorlesung 2 3
Finite-Elemente-Methoden (L0804) Hörsaalübung 2 3
Modulverantwortlicher Prof. Benedikt Kriegesmann
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics)
Mathematics I, II, III (in particular differential equations)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method.



Fertigkeiten

The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations.



Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions.

Selbstständigkeit

The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 20 % Midterm
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0291: Finite Element Methods
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen EN
Zeitraum WiSe
Inhalt

- General overview on modern engineering
- Displacement method
- Hybrid formulation
- Isoparametric elements
- Numerical integration
- Solving systems of equations (statics, dynamics)
- Eigenvalue problems
- Non-linear systems
- Applications

- Programming of elements (Matlab, hands-on sessions)
- Applications

Literatur

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Lehrveranstaltung L0804: Finite Element Methods
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0846: Control Systems Theory and Design

Lehrveranstaltungen
Titel Typ SWS LP
Theorie und Entwurf regelungstechnischer Systeme (L0656) Vorlesung 2 4
Theorie und Entwurf regelungstechnischer Systeme (L0657) Gruppenübung 2 2
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Introduction to Control Systems
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain how linear dynamic systems are represented as state space models; they can interpret the system response to initial states or external excitation as trajectories in state space
  • They can explain the system properties controllability and observability, and their relationship to state feedback and state estimation, respectively
  • They can explain the significance of a minimal realisation
  • They can explain observer-based state feedback and how it can be used to achieve tracking and disturbance rejection
  • They can extend all of the above to multi-input multi-output systems
  • They can explain the z-transform and its relationship with the Laplace Transform
  • They can explain state space models and transfer function models of discrete-time systems
  • They can explain the experimental identification of ARX models of dynamic systems, and how the identification problem can be solved by solving a normal equation
  • They can explain how a state space model can be constructed from a discrete-time impulse response

Fertigkeiten
  • Students can transform transfer function models into state space models and vice versa
  • They can assess controllability and observability and construct minimal realisations
  • They can design LQG controllers for multivariable plants
  •  They can carry out a controller design both in continuous-time and discrete-time domain, and decide which is  appropriate for a given sampling rate
  • They can identify transfer function models and state space models of dynamic systems from experimental data
  • They can carry out all these tasks using standard software tools (Matlab Control Toolbox, System Identification Toolbox, Simulink)

Personale Kompetenzen
Sozialkompetenz

Students can work in small groups on specific problems to arrive at joint solutions. 

Selbstständigkeit

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0656: Control Systems Theory and Design
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt

State space methods (single-input single-output)

• State space models and transfer functions, state feedback 
• Coordinate basis, similarity transformations 
• Solutions of state equations, matrix exponentials, Caley-Hamilton Theorem
• Controllability and pole placement 
• State estimation, observability, Kalman decomposition 
• Observer-based state feedback control, reference tracking 
• Transmission zeros
• Optimal pole placement, symmetric root locus 
Multi-input multi-output systems
• Transfer function matrices, state space models of multivariable systems, Gilbert realization 
• Poles and zeros of multivariable systems, minimal realization 
• Closed-loop stability
• Pole placement for multivariable systems, LQR design, Kalman filter 

Digital Control
• Discrete-time systems: difference equations and z-transform 
• Discrete-time state space models, sampled data systems, poles and zeros 
• Frequency response of sampled data systems, choice of sampling rate 

System identification and model order reduction 
• Least squares estimation, ARX models, persistent excitation 
• Identification of state space models, subspace identification 
• Balanced realization and model order reduction 

Case study
• Modelling and multivariable control of a process evaporator using Matlab and Simulink 
Software tools
• Matlab/Simulink

Literatur
  • Werner, H., Lecture Notes „Control Systems Theory and Design“
  • T. Kailath "Linear Systems", Prentice Hall, 1980
  • K.J. Astrom, B. Wittenmark "Computer Controlled Systems" Prentice Hall, 1997
  • L. Ljung "System Identification - Theory for the User", Prentice Hall, 1999
Lehrveranstaltung L0657: Control Systems Theory and Design
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1503: Technischer Ergänzungskurs Kernfächer für ENTMS (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht

Modul M1504: Technischer Ergänzungskurs für ENTMS, Option B (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht

Modul M0751: Technische Schwingungslehre

Lehrveranstaltungen
Titel Typ SWS LP
Technische Schwingungslehre (L0701) Integrierte Vorlesung 4 6
Modulverantwortlicher Prof. Norbert Hoffmann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Analysis
  • Lineare Algebra
  • Technische Mechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können Begriffe und Zusammenhänge der Technischen Schwingungslehre wiedergeben und weiterentwickeln.
  • Die Studierenden kennen Methoden der Modellierung und Berechnung bei freien, fremderregten, selbsterregten und parametererregten Schwingungen.
  • Die Studierenden kennen Zusammenhänge bei linearen und nichtlinearen Schwingungsproblemen.
  • Die Studierenden kennen Grundproblematiken von Schwingungsproblemen bei diskreten und kontinuierlichen Systemen.
Fertigkeiten
  • Studierende können allgemeine Methoden der Technischen Schwingungslehre benennen, anwenden und weiterentwickeln.
  • Studierende können Methoden der Modellierung und Berechnung bei freien, erzwungenen, selbsterregten und parametererregten Schwingungen anwenden und weiterentwickeln.
  • Studierende können lineare und nichtlineare Schwingungsprobleme bei diskreten und kontinuierlichen Systemen lösen.
Personale Kompetenzen
Sozialkompetenz
  • Studierende können auch in Arbeitsgruppen Schwingungsprobleme analysieren, bearbeiten, und zu Arbeitsergebnissen kommen.
  • Studierende können in Arbeitsgruppen Ergebnisse von Schwingungsuntersuchungen schriftlich dokumentieren.
Selbstständigkeit
  • Studierende können eigenständig Schwingungsprobleme analysieren und bearbeiten.
  • Studierende können sich eigenständig Forschungsaufgaben der Technischen Schwingungslehre erschließen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0701: Technische Schwingungslehre
Typ Integrierte Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Norbert Hoffmann
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen

  • Freie Schwingungen
  • Selbsterregte Schwingungen
  • Parametererregte Schwingungen
  • Erzwungene Schwingungen
  • Mehrfreiheitsgradschwingungen
  • Kontinuumsschwingungen
  • Irreguläre Schwingungen
Literatur

German - K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen.

English - K. Magnus: Vibrations. 

Modul M0657: Numerische Methoden der Thermofluiddynamik II

Lehrveranstaltungen
Titel Typ SWS LP
Numerische Methoden der Thermofluiddynamik II (L0237) Vorlesung 2 3
Numerische Methoden der Thermofluiddynamik II (L0421) Hörsaalübung 2 3
Modulverantwortlicher Prof. Thomas Rung
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Studierende sollten über profunde Kenntnisse der höheren Mathematik (Reihenentwicklung, Integral- & Vektorrechnung) verfügen und die Grundlagen partieller und gewöhnlicher Differentialgleichungen kennen. Darüber hinaus sollten die Studierenden gute Kenntnisse der Strömungmechnaik und der Thermodynamik besitzen. Grundkenntnisse der numerischen Thermofluiddynamik sind von Vorteil aber nicht notwendig.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können aufgrund ihrer vertieften Kenntnisse in Numerischer Thermofluiddynamik (CFD) allgemeine strömungstechnische und strömungsphysikalische Prinzipien in diskrete Algorithmen der Finite-Volumen-Methode übersetzen. Sie kennen die Zusammenhänge und Abgrenzungen unterschiedlicher Diskretisierungs- und Approximationstechniken zur Untersuchung gekoppelter Systeme, konvektiver, nichtlinearer partieller Differentialgleichungen auf strukturierten und strukturierten Rechengittern. Studierende verfügen über das notwendige Hintergrundwissen, um numerische Modelle zur Approximation von Turbulenz und Mehrphasenströmungen zu konzipieren, programmieren und einzusetzen oder diese wissenschaftlich zu erläutern. Sie besitzen ein detailliertes Verständnis der theoretischen Hintergründe komplexer CFD-Simulationssoftware und der Parameter zur Steuerung von CFD Prozeduren.

Fertigkeiten

Die Studierenden sind in der Lage, geeignete Finite-Volumen-Verfahren und Modelle zur Integration komplexer thermofluiddynamischer Bilanzgleichungen in Raum und Zeit auszuwählen und anzuwenden. Die Studierenden können die Finite-Volumen-Approximation für Anwendungen der Thermofluiddynamik methodisch umsetzen und zur optimalen Reproduktion strömungsphysikalischer Prozessen adaptieren. Sie erwerben die notwendigen Fähigkeiten, numerische Lösungsalgorithmen für unstrukturierte Gitter zu programmieren, die Programme parametergestützt einzusetzen und Datenschnittstellen zu kodieren, die eine Auswertung und Analyse unterstützen. Studierende sind in der Lage, unterschiedlicher Lösungsansätze zu bewerten.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind befähigt Lösungen für Musterprobleme in Gruppenarbeit entwickeln, implementieren und die gemeinsamen Arbeitsergebnisse zu dokumentieren.

Selbstständigkeit

Die Studierenden sind fähig, selbstständig numerische Methoden zur Lösung strömungstechnischer Problem zu analysieren. Sie sind in der Lage, die eignen Ergebnisse und die Daten anderer kritisch in Bezug auf deren Plausibilität und Belastbarkeit zu analysieren.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 0.5h-0.75h
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0237: Numerische Methoden der Thermofluiddynamik II
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Numerische Modellierung komplexer turbulenter Ein- und Mehrphasenströmungen mit höherwertigen Ansätzen für unstrukturierte und netzfreie Approximationstechniken

Literatur

1)
Vorlesungsmanuskript und Übungsunterlagen

2)
J.H. Ferziger, M. Peric:
Computational Methods for Fluid Dynamics,
Springer

Lehrveranstaltung L0421: Numerische Methoden der Thermofluiddynamik II
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0840: Optimal and Robust Control

Lehrveranstaltungen
Titel Typ SWS LP
Optimale und robuste Regelung (L0658) Vorlesung 2 3
Optimale und robuste Regelung (L0659) Gruppenübung 2 3
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Classical control (frequency response, root locus)
  • State space methods
  • Linear algebra, singular value decomposition
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the significance of the matrix Riccati equation for the solution of LQ problems.
  • They can explain the duality between optimal state feedback and optimal state estimation.
  • They can explain how the H2 and H-infinity norms are used to represent stability and performance constraints.
  • They can explain how an LQG design problem can be formulated as special case of an H2 design problem.
  • They  can explain how model uncertainty can be represented in a way that lends itself to robust controller design
  • They can explain how - based on the small gain theorem - a robust controller can guarantee stability and performance for an uncertain plant.
  • They understand how analysis and synthesis conditions on feedback loops can be represented as linear matrix inequalities.
Fertigkeiten
  • Students are capable of designing and tuning LQG controllers for multivariable plant models.
  • They are capable of representing a H2 or H-infinity design problem in the form of a generalized plant, and of using standard software tools for solving it.
  • They are capable of translating time and frequency domain specifications for control loops into constraints on closed-loop sensitivity functions, and of carrying out a mixed-sensitivity design.
  • They are capable of constructing an LFT uncertainty model for an uncertain system, and of designing a mixed-objective robust controller.
  • They are capable of formulating analysis and synthesis conditions as linear matrix inequalities (LMI), and of using standard LMI-solvers for solving them.
  • They can carry out all of the above using standard software tools (Matlab robust control toolbox).
Personale Kompetenzen
Sozialkompetenz Students can work in small groups on specific problems to arrive at joint solutions. 
Selbstständigkeit

Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. 


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0658: Optimal and Robust Control
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt
  • Optimal regulator problem with finite time horizon, Riccati differential equation
  • Time-varying and steady state solutions, algebraic Riccati equation, Hamiltonian system
  • Kalman’s identity, phase margin of LQR controllers, spectral factorization
  • Optimal state estimation, Kalman filter, LQG control
  • Generalized plant, review of LQG control
  • Signal and system norms, computing H2 and H∞ norms
  • Singular value plots, input and output directions
  • Mixed sensitivity design, H∞ loop shaping, choice of weighting filters
  • Case study: design example flight control
  • Linear matrix inequalities, design specifications as LMI constraints (H2, H∞ and pole region)
  • Controller synthesis by solving LMI problems, multi-objective design
  • Robust control of uncertain systems, small gain theorem, representation of parameter uncertainty
Literatur
  • Werner, H., Lecture Notes: "Optimale und Robuste Regelung"
  • Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994
  • Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996
  • Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988
  • Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998
Lehrveranstaltung L0659: Optimal and Robust Control
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1201: Praktikum Energietechnik

Lehrveranstaltungen
Titel Typ SWS LP
Praktikum Energietechnik (L1629) Laborpraktikum 6 6
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Wärmeübertragung, Wärmekraftwerke, Kolbenmaschinen
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die teilnehmenden Studierenden können

  • komplexe energietechnische Anlagen erklären,
  • die Funktionsweise von modernen Messgeräten der Energietechnik beschreiben,
  • kritisch Stellung zur gesamten Messkette (Sensor, Einbausituation, Verarbeitung, Darstellung) nehmen.

Fertigkeiten

Studierende sind in der Lage,

  • Messsensoren an relevanten Stellen einzusetzen,
  • Versuche zu planen und dabei die relevanten Parameter zu identifizieren,
  • Messprotokolle anzufertigen,
  • einen Versuchsbericht mit Fehlerbetrachtung und Literaturvergleich zu erstellen,
  • sich kritisch mit dem Versuch und dem Versuchsablauf auseinanderzusetzen.

Personale Kompetenzen
Sozialkompetenz

Studierende könnnen

  • in kleinen Teams Versuche aufbauen und durchführen,
  • in Teams Lösungen entwickeln und diese vor anderen vertreten,
  • in Teams zusammenarbeiten und den eigenen Beitrag einschätzen,
  • die Aufgaben anderer Teams koordinieren,
  • in Teams Versuchsberichte erstellen die Diskussionen zu den Versuchen leiten.
Selbstständigkeit

Die Studierenden sind fähig,

  • sich in Versuchsdokumentationen einzuarbeiten,
  • Versuchsmethoden anzuwenden,
  • selbstständig Versuchsabläufe zu planen und Versuche durchzuführen,
  • Kurzpräsentationen zu ausgewählten Themen zu halten,
  • eigene Stärken und Schwächen einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L1629: Praktikum Energietechnik
Typ Laborpraktikum
SWS 6
LP 6
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Dozenten Prof. Arne Speerforck, Dr. Kristin Abel-Günther
Sprachen DE
Zeitraum SoSe
Inhalt

Im Praktikum Energietechnik sollen an ausgewählten Anlagen Experimente geplant und durchgeführt werden. Dabei sollen Messverfahren angewandt und die Ergebisse in einem Versuchsbericht zusammengestellt und kritisch diskutiert werden. 

Folgende Versuche werden angeboten:

  • Untersuchung des Betriebsverhaltens an einem Dieselmotor
  • Kraft-Wärme-Kälte-Kopplung im TUHH-BHKW
  • Abnahmemessungen an einer Dampfkraftanlage
  • Wärmeübertragung an radialen Prallströmungen
  • Versuch an einer sorptionsgestützten Klimaanlage
  • Energiebilanz an einem Brennwertkessel.


Literatur

Versuchsmanuskripte werden zu den einzelnen Versuchen zur Verfügung gestellt.

Pfeifer, T.; Profos, P.: Handbuch der industriellen Messtechnik, 6. Auflage, 1994, Oldenbourg Verlag München

Modul M0714: Numerik gewöhnlicher Differentialgleichungen

Lehrveranstaltungen
Titel Typ SWS LP
Numerik gewöhnlicher Differentialgleichungen (L0576) Vorlesung 2 3
Numerik gewöhnlicher Differentialgleichungen (L0582) Gruppenübung 2 3
Modulverantwortlicher Prof. Daniel Ruprecht
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mathematik I, II, III für Ingenieurstudierende (deutsch oder englisch) oder Analysis & Lineare Algebra I + II sowie Analysis III für Technomathematiker.
  • Grundkenntnisse in MATLAB, Python oder einer vergleichbaren Programmiersprache.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können

  • numerische Verfahren zur Lösung gewöhnlicher Differentialgleichungen benennen und deren Kernideen erläutern,
  • Aussagen zur Konvergenz (inklusive der an das zugrundeliegende Problem gestellten Voraussetzungen) zu den behandelten numerischen Verfahren wiedergeben,

  • Aspekte der praktischen Durchführung numerischer Verfahren erklären,
  • passende numerische Methoden für konkrete Probleme auswählen, implementieren und die numerischen Ergebnisse interpretieren.


Fertigkeiten

Studierende sind in der Lage,

  • numerische Methoden zur Lösung gewöhnlicher Differentialgleichungen zu implementieren, anzuwenden und zu vergleichen,
  • das Konvergenzverhalten numerischer Methoden in Abhängigkeit vom gestellten Problem und des verwendeten Lösungsalgorithmus zu begründen,
  • zu gegebener Problemstellung einen geeigneten Lösungsansatz zu entwickeln, gegebenenfalls durch Zusammensetzen mehrerer Algorithmen, diesen durchzuführen und die Ergebnisse kritisch auszuwerten.
Personale Kompetenzen
Sozialkompetenz

Studierende können

  • in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten, sich gegenseitig theoretische Grundlagen erklären sowie einander bei der praktischen Implementierung der Algorithmen unterstützen.
Selbstständigkeit

Studierende sind fähig,

  • selbst einzuschätzen, ob sie die begleitenden theoretischen und praktischen Übungsaufgaben besser allein oder im Team lösen und
  • ihren Lernstand konkret zu beurteilen und gegebenenfalls gezielt Fragen zu stellen und Hilfe zu suchen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Computer Science: Vertiefung III. Mathematik: Wahlpflicht
Data Science: Vertiefung I. Mathematics: Wahlpflicht
Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Interdisciplinary Mathematics: Vertiefung II. Numerical - Modelling Training: Pflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Mechatronics: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung I. Mathematik: Wahlpflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Daniel Ruprecht
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Numerische Verfahren für Anfangswertprobleme

  • Einschrittverfahren
  • Mehrschrittverfahren
  • Steife Probleme
  • Differentiell-algebraische Gleichungen vom Index 1

Numerische Verfahren für Randwertaufgaben

  • Mehrzielmethode
  • Differenzenverfahren
Literatur
  • E. Hairer, S. Noersett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems.
  • E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.
  • D. Griffiths, D. Higham: Numerical Methods for Ordinary Differential Equations.
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Daniel Ruprecht
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1208: Studienarbeit Energietechnik

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können das ausgewählte Forschungsprojekt

  • erläutern und zu aktuellen Themen der Energie- und Schiffstechnik in Beziehung setzen,
  • mit wissenschaftlichen Methoden bearbeiten,
  • in schriftlicher Form dokumentiern,
  • in einem Kurzvortrag zusammenfassen.
Fertigkeiten

Die Studierenden sind in der Lage,

  • ein Teilprojekt aus einem aktuellen Forschungsprojekt zu bearbeiten,
  • die Vorgehensweise zur Lösung der Aufgabenstellung zu strukturieren und zu begründen,
  • alternative Lösungskonzepte in die Bearbeitung einzubeziehen,
  • die Ergebnisse kritisch zu analysieren und Schlussfolgerungen zu ziehen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • ausgewählte Aspekte der Arbeit mit technischem und wissenschaftlichem Personal diskutieren,
  • Zwischenstände und Endergebnisse adressatengerecht vortragen.
Selbstständigkeit

Studierende sind in der Lage,

  • auf Basis ihrer bisherigen im Studium erworbenen Fachkenntnisse selbstständig sinnvolle Aufgaben zu definieren,
  • geeignete Lösungsmethoden auszuwählen,
  • sich notwendiges zusätzliches Wissen zur Bearbeitung der Aufgabenstellung anzueignen,
  • Experimente und Simulationen zu planen und die Durchführung zu organisieren.

Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang abhängig von der Aufgabenstellung
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Pflicht

Modul M1159: Seminar Energietechnik

Lehrveranstaltungen
Titel Typ SWS LP
Seminar Energietechnik (L1560) Seminar 6 6
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • ein neues Thema der Energie- und/oder Schiffstechnik erklären,
  • komplexe Sachverhalte beschreiben,
  • unterschiedliche Standpunkte darlegen und kritisch bewerten.

Fertigkeiten

Die Studierenden können

  • sich in einer begrenzten Zeit in ein neues Thema der Energie- und/oder Schiffstechnik einarbeiten,
  • eine Literaturrecherche durchführen und die Quellen richtig zitieren und angeben,
  • selbstständig einen Vortrag ausarbeiten und vor ausgewählten Publikum halten,
  • den Vortrag in 10-15 Zeilen zusammenfassen,
  • sich in einer Gruppe abstimmen und gemeinsame Thesen vertreten,
  • im Rahmen der Diskussion Fachfragen stellen bzw. beantworten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • ein Thema für eine bestimmte Zielgruppe aufarbeiten und darstellen,
  • mit dem Betreuer / mit der Betreuerin das Thema sowie Inhalt und Aufbau des Vortrages diskutieren,
  • mit anderen Studierenden innerhalb der Gruppe diskutieren und Lösungsansätze formulieren und vertreten,
  • einzelne Aspekte aus dem Themengebiet mit den Zuhörern und Zuhörerinnen diskutieren,
  • als Vortragende auf die Fragen der Zuhörer und Zuhörerinnen eingehen,
  • als Zuhörer und Zuhörerinnen Fragen an die Vortragenden stellen.

Selbstständigkeit

Die Studierenden können

  • eigenständig Aufgaben definieren,
  • notwendiges Wissen erschließen,
  • geeignete Mittel einsetzen,
  • sich mit anderen Studierenden abstimmen,
  • unter Anleitung eines Betreuers / einer Betreuerin den Arbeitsstand kritisch überprüfen.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L1560: Seminar Energietechnik
Typ Seminar
SWS 6
LP 6
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt

Beim Seminar Energietechnik handelt es sich um ein Modul, bei dem sich die Studierenden in einer Gruppe (3 bis 4 Studierende) mit einem aktuellen Thema der Energietechnik intensiv auseinandersetzen. In der Einführungsveranstaltung (--> Pflichtveranstaltung) zu Beginn des Semesters werden die Bedingungen erläutert, ein Rhetorik-Vortrag präsentiert und die Generalthemen vergeben. Die Studierenden sollen in Abstimmung mit den betreuenden wissenschaftlichen Mitarbeiterinnen und Mitarbeitern zunächst das Generalthema in einzelne Individualthemen aufteilen und dann bearbeiten. 

Nach einer angemessenen Vorbereitungszeit sollen die Studierenden der jeweiligen Gruppe die Individualthemen in einem 30minütigen Vortrag präsentieren. Anschließend vergeben die betreuenden wissenschaftlichen Mitarbeiterinnen und Mitarbeitern eine Aufgabenstellung zum Generalthema, die innerhalb einer Woche von der Gruppe bearbeitet und dann ebenfalls präsentiert werden muss. Nach dieser Präsentation folgt eine Podiumsdiskussion, in der einzelne Fragestellungen thematisiert werden.



Literatur Allg. Literatur zu Rhetorik und Präsentationstechniken

Modul M0658: Innovative Methoden der Numerischen Thermofluiddynamik

Lehrveranstaltungen
Titel Typ SWS LP
Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis (L0239) Vorlesung 2 3
Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis (L1685) Gruppenübung 2 3
Modulverantwortlicher Prof. Thomas Rung
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Studierende sollten über profunde Kenntnisse der höheren Mathematik (Reihenentwicklung, Integral- & Vektorrechnung) verfügen und die Grundlagen partieller und gewöhnlicher Differentialgleichungen kennen. Darüber hinaus werden gute Kenntnisse der Strömungmechnaik vorausgesetzt. Grundkenntnisse der numerischen Thermofluiddynamik, z.B. durch Teilnahme and den entsprechenden Lehrveranstaltungen "Numerische Thermofluiddynamik 1/2 (CFD1/CFD2)" sind von Vorteil aber nicht notwendig.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende besitzen vertiefte Kenntnisse über innovative (neuere) Verfahren der Numerischen Thermofluiddynamik (CFD), d.h. Finite-Volumen-, Smoothed-Particle-Hydrodynamics- und Gitter-Boltzmann-Verfahren, und können diese mit aktuelle Herausforderungen zur numerischen Thermofluiddynamik verbinden. Sie kennen die Zusammenhänge und Abgrenzungen unterschiedlicher Lagranger und Eulerscher Diskretisierungs- und Approximationstechniken auf der Grundlage kontinuumsmechanischer und kinetischer Theorien. Studierende besitzen die Kenntnisse um numerische Modelle zur Approximation Mehrphasenproblemen bzw. Mehrfeldproblemen mit gittergestützten- bzw. partikelgestützten Verfahren zu konzipieren, programmieren und einzusetzen und diese wissenschaftlich zu erläutern. Studierende kennen die Grundzüge der simulationsbasierten Optimierung mit partiellen Differentialgleichungen.

Fertigkeiten

Die Studierenden sind in der Lage, geeignete Strategien zur numerischen Modellierung komplexer Fragestellungen auszuwählen und anzuwenden. Sie erwerben die notwendigen Fähigkeiten, numerische Algorithmen für Finite-Volumen-Verfahren auf unstrukturierten Gittern & Partikelkonzepte & Gitter-Boltzmann-Konzepte zu programmieren, die Programme parametergestützt einzusetzen und Datenschnittstellen zu kodieren, die eine Auswertung und Analyse unterstützen. Studierende sind in der Lage, unterschiedlicher Lösungsansätze sehr differenziert zu bewerten.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind befähigt Lösungen für Musterprobleme in Gruppenarbeit entwickeln, implementieren und die gemeinsamen Arbeitsergebnisse zu dokumentieren. Sie ein Team zu organisieren, ihre Arbeitsergebnisse vor Experten darzustellen.

Selbstständigkeit

Die Studierenden sind fähig, selbstständig innovative Methoden zur Lösung strömungstechnischer Problem zu analysieren. Sie sind in der Lage, die eignen Ergebnisse und die Daten anderer kritisch in Bezug auf deren Plausibilität und Belastbarkeit zu analysieren. Studierende können selbstständig numerische Untersuchungen organisieren und durchführen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Schriftliche Ausarbeitung
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Energietechnik: Kernqualifikation: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Ship and Offshore Technology: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0239: Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Einsatz von CFD zur (Form-) Optimierung, Parallelerechnen auf Hochleistungscomputern, Effiziente CFD-Verfahren für Grafikkarten & Echtzeitsimulation, Alternative Approximationen (Lattice-Boltzmann Verfahren, Partikelsimulationen), Struktur-Strömungskopplung, Modellierung hybrider Kontinua

Literatur Vorlesungsmaterialien /lecture notes
Lehrveranstaltung L1685: Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Energiesysteme

Die Vertiefung Energiesysteme deckt den Maschinenbau-orientierten Bereich der Energietechnik ab. Dabei wurde darauf geachtet, dass so weit wie möglich die gesamte Energiekette exemplarisch betrachtet wird, von kleinen energiewandelnden Einheiten ("Wärmetechnik") bis zu Großanlagen ("Dampferzeuger"). Es werden sowohl Module zur klassischen Energietechnik („Strömungsmaschinen“), als auch zur regenerativen Energietechnik ("Windenergieanlagen") angeboten. Eine Reihe von Modulen behandelt energietechnische Anlagen im mobilen Bereich, also für Kraftfahrzeuge, Flugzeuge und Schiffe („Klimaanlagen“). Der Schwerpunkt liegt dabei auf der Vermittlung des Systemgedankens, denn erst die Betrachtung eines ganzen Systems ermöglicht die effiziente Bereitstellung von Nutzenergie durch Wandlung aus konventionellen und erneuerbaren Energieträgern.

Die Studierenden erlernen, komplexe energietechnische Systeme zu verstehen, physikalisch zu beschreiben und mathematisch zu modellieren. Sie sind in der Lage, komplexe energietechnische Sachverhalte zu analysieren und zu bewerten und in den Kontext aktueller Energiepolitik zu stellen. Diese Fähigkeiten können praktisch in allen Bereichen des Maschinenbaus genutzt werden.




Modul M0742: Thermische Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Thermische Energiesysteme (L0023) Vorlesung 3 5
Thermische Energiesysteme (L0024) Hörsaalübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in  der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut.


Fertigkeiten

Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. 


Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.  In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.




  


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Pflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0023: Thermische Energiesysteme
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einleitung

2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion

3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen

4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme

5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Lehrveranstaltung L0024: Thermische Energiesysteme
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0763: Flugzeug-Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Flugzeug-Energiesysteme (L0735) Vorlesung 3 4
Flugzeug-Energiesysteme (L0739) Hörsaalübung 2 2
Modulverantwortlicher Prof. Frank Thielecke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in:

  • Mathematik
  • Mechanik
  • Thermodynamik
  • Elektrotechnik
  • Strömungsmechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können:

  • die Schwierigkeiten bei der Auslegung von Energiesystemen von Flugzeugen richtig einschätzen
  • die wichtigsten Komponenten und Auslegungspunkte von hydraulischen und elektrischen Versorgungssystemen beschreiben
  • einen Überblick über Wirkprinzipien von Klimaanlagen geben
  • verschiedene Systemkonzepte zur Enteisung beschreiben
  • Randbedingungen zur Elektrifizierung von Flugzeugsystemen identifizieren, sowie mögliche Konzepte und Einschränkungen kritisch bewerten
  • Architekturen für Systeme zur Kraftstoffversorgung beschreiben, sowie Designbeispiele darlegen
  • Mögliche Konzepte zur Integration von Brennstoffzellen-Systemen erläutern, sowie allgemeine Ansätze zum emissionsfreien Fliegen bewerten
Fertigkeiten

Studierende können:

  • Hydraulische und elektrische Versorgungssysteme an Bord von Flugzeugen auslegen
  • Thermodynamische Analysen von Klimaanlagen durchführen
  • Eisschutzsysteme auslegen 
  • Mögliche Elektrifizierungskonzepte auf bestehende Flugzeugsysteme anwenden
  • Systeme zur Kraftstoffversorgung auslegen
  • Die Auslegung eines Brennstoffzellensystems durchführen
Personale Kompetenzen
Sozialkompetenz

Studierende können:

  • Systemauslegungen in Gruppen durchführen und Ergebnisse diskutieren
  • Systemtechnische Problemstellungen präsentieren und Lösungen mit Expertinnen und Experten diskutieren
Selbstständigkeit
Studierende können:
  • Vorlesungsinhalte eigenständig aufbereiten
  • Im Rahmen der Übungen erlernte Methoden auf weiterführende Problemstellungen anwenden
  • Komplexe Systemabhängigkeiten selbstständig identifizieren und zu vereinfachten Modellen und Auslegungsprozessen abstrahieren
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 165 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht
Lehrveranstaltung L0735: Flugzeug-Energiesysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Hydraulische Energiesysteme (Flüssigkeiten; Druckverluste in Ventilen und Rohrleitungen; Komponenten hydraulischer Systeme wie Pumpen, Ventile, etc.; Druck/Durchflusscharakteristika; Aktuatoren; Behälter; Leistungs- und Wärmebilanzen; Notenergie)
  • Elektrisches Energiesystem (Generatoren; Konstantdrehzahlgetriebe; DC und AC Konverter; elektrische Energieverteilung; Bus-Systeme; Überwachung; Lastanalyse)
  • Hochauftriebssysteme (Prinzipien; Ermittlung von Lasten und Systemantriebsleistungen; Prinzipien und Auslegung von Antriebs- und Stellsystemen; Sicherheitsforderungen und -einrichtungen)
  • Klimaanlagen (Thermodynamische Analyse; Expansions- und Kompressions-Kältemaschinen; Kontrollmechanismen; Kabinendruck-Kontrollsysteme)


Literatur
  • Moir, Seabridge: Aircraft Systems
  • Green: Aircraft Hydraulic Systems
  • Torenbek: Synthesis of Subsonic Airplane Design
  • SAE1991: ARP; Air Conditioning Systems for Subsonic Airplanes


Lehrveranstaltung L0739: Flugzeug-Energiesysteme
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Frank Thielecke
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1149: Energietechnik auf Schiffen

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Anlagen auf Schiffen (L1531) Vorlesung 2 2
Elektrische Anlagen auf Schiffen (L1532) Hörsaalübung 1 1
Schiffsmaschinenbau (L1569) Vorlesung 2 2
Schiffsmaschinenbau (L1570) Hörsaalübung 1 1
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können den Stand der Technik bezüglich der vielfältigen antriebstechnischen Komponenten an Bord von Schiffen wiedergeben und die Kenntnisse anwenden. Sie sind ferner in der Lage, das Zusammenwirken der einzelnen Komponenten im Gesamtsystem zu analysieren und zu optimieren. Die Studierenden können außerdem das Betriebsverhalten der Verbraucher nennen, spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen beschreiben, Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen erläutern, sowie Anforderungen an Netzschutz, Selektivität und Betriebsüberwachung benennen.

Fertigkeiten

Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz in Schiffsantrieben und Hilfssystemen. Des Weiteren können sie komplexe technische Zusammenhänge von Schiffs-Antriebsanlagen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Antriebskomponenten erforderlich sind und können das gelernte Wissen in einen Kontext zu den weiteren schiffbaulichen Disziplinen bringen. Die Studierenden sind außerdem in der Lage, Kurzschlussstrom, Schaltgeräte und Schaltanlagen zu berechnen, sowie Elektrische Propulsionsantriebe für Schiffe auszulegen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.


Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten plus 20 Minuten mündliche Prüfung
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1531: Elektrische Anlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Günter Ackermann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Betriebsverhalten der Verbraucher
  • Spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen
  • Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen
  • Kurzschlussstrom-Berechnung, Schaltgeräte und Schaltanlagen
  • Netzschutz, Selektivität und Betriebsüberwachung
  • Elektrische Propulsionsantriebe für Schiffe
Literatur

H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag

(engl. Version: "Compendium Marine Engineering")

Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin

Lehrveranstaltung L1532: Elektrische Anlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Günter Ackermann
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1569: Schiffsmaschinenbau
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt Wird in der Veranstaltung bekannt gegeben
Literatur

Wird in der Veranstaltung bekannt gegeben

Lehrveranstaltung L1570: Schiffsmaschinenbau
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1518: Technischer Ergänzungskurs für ENTMS, Option A (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht

Modul M1504: Technischer Ergänzungskurs für ENTMS, Option B (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht

Modul M1235: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme (L1670) Vorlesung 3 4
Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme (L1671) Gruppenübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. 

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. 

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 - 150 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht
Data Science: Kernqualifikation: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme / Regenerative Energien: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht
Integrierte Gebäudetechnik: Kernqualifikation: Pflicht
Mechatronik: Vertiefung Elektrische Systeme: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1670: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aufbau und Entwicklungstendenzen der elektrischen Energieversorgung 
  • Aufgaben und historische Entwicklung
  • symmetrische Drehstromsysteme
  • Grundlagen und Modellierung von Netzen
    • Leitungen
    • Transformatoren
    • Synchronmaschinen
    • Asynchronmaschinen
    • Lasten und Kompensation
    • Netzaufbau und Schaltanlagen
  • Grundlagen der Energieumwandlung
    • Elektromechanische Energiewandlung
    • Thermodynamische Grundlagen
    • Kraftwerkstechnik
    • Regenerative Energieumwandlung
  • Netzberechnung
    • Netzmodellierung
    • Lastflussrechnung
    • Ausfallkriterium
  • Symmetrische Kurzschlussberechnung, Kurzschlussleistung
  • Netz- und Kraftwerksregelung
  • Netzschutz
  • Grundlagen der Netzplanung
  • Grundlagen der elektrischen Energiewirtschaft und -märkte
Literatur

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Lehrveranstaltung L1671: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Aufbau und Entwicklungstendenzen der elektrischen Energieversorgung 
  • Aufgaben und historische Entwicklung
  • symmetrische Drehstromsysteme
  • Grundlagen und Modellierung von Netzen
    • Leitungen
    • Transformatoren
    • Synchronmaschinen
    • Asynchronmaschinen
    • Lasten und Kompensation
    • Netzaufbau und Schaltanlagen
  • Grundlagen der Energieumwandlung
    • Elektromechanische Energiewandlung
    • Thermodynamische Grundlagen
    • Kraftwerkstechnik
    • Regenerative Energieumwandlung
  • Netzberechnung
    • Netzmodellierung
    • Lastflussrechnung
    • Ausfallkriterium
  • Symmetrische Kurzschlussberechnung, Kurzschlussleistung
  • Netz- und Kraftwerksregelung
  • Netzschutz
  • Grundlagen der Netzplanung
  • Grundlagen der elektrischen Energiewirtschaft und -märkte
Literatur

K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2013

A. J. Schwab: "Elektroenergiesysteme", Springer, 5. Auflage, 2017

R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2008

Modul M1309: Auslegung und Bewertung regenerativer Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Erneuerbare Energien im Energiesystem (L0137) Projekt-/problembasierte Lehrveranstaltung 2 2
Stromerzeugung aus regenerativen Energien (L0046) Seminar 2 2
Wärmeerzeugung aus regenerativen Energien (L0045) Seminar 2 2
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können aktuellen Frage- und Problemstellungen aus dem Gebiet der regenerativen Energien beschreiben und Aspekte in Bezug zur Bereitstellung von Wärme oder Strom durch unterschiedliche Erneuerbare Energien Technologien erklären, erläutern und technisch, ökonomisch und ökologisch bewerten.

Fertigkeiten

Die Studierenden sind in der Lage zur Lösung wissenschaftlicher Probleme im Bereich der Strom- und Wärmeerzeugung aus erneuerbaren Energiequellen:

  • Das bereits erlernte Fachwissen modulübergreifend auf verschiedene Anwendungsfälle anzuwenden
  • Auch bei unvollständiger Datenbasis alternative Eingangsdaten zur Lösung der Aufgabenstellung abzuwägen (technische, ökonomische, ökologische Parameter)
  • Die Arbeitsergebnisse durch Ausarbeitung einer schriftlichen Arbeit, durch die Präsentation eines Vortrags und der Verteidigung der Inhalte systematische zu dokumentieren.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • im Team von circa 2-3 Personen zusammenarbeiten, 
  • wissenschaftliche Aufgabenstellungen zur Auslegung und Potentialanalyse von Systemen zur Strom- und Wärmeerzeugung aus erneuerbaren Energien fachspezifische und fachübergreifende diskutieren und gemeinsame Lösungen entwickeln,
  • ihre eigenen Arbeitsergebnisse vor Kommilitonen vertreten und
  • die Leistungen der Kommilitonen im Vergleich zu Ihrer eigenen Leistung einschätzen und mit Rückmeldungen zu ihren eigenen Leistungen umgehen.
Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bearbeitende Fragestellung erschließen, sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und für die Lösung notwendigen Arbeitsschritte zu definieren. 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang je Lehrveranstaltung ca. 20 Minuten Vortrag + schriftliche Ausarbeitung
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Lehrveranstaltung L0137: Erneuerbare Energien im Energiesystem
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt

Die Vorlesung ist aufbauend auf den Vorlesungen "Stromerzeugung aus regenerativen Energien" und "Wärmeerzeugung aus regenerativen Energien".

  • Vorbesprechung mit Diskussion der Spielregeln
  • Ausgabe der Themen aus dem Bereich der erneuerbaren Energietechnik in Form einer Ausschreibung von Ingenieurdienstleistungen an eine Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • "Ausschreibungen" beschäftigen sich mit Aspekten der Auslegung, Kostenberechnung sowie der ökologischen, ökonomischen und technischen Bewertung von verschiedenen Energieerzeugungskonzepten (z. B. Onshore-Windstromerzeugung, groß-technische Photovoltaik-Stromerzeugung, Biogaserzeugung, geothermischer Strom- und Wärmeerzeugung) unter ganz speziellen Gegebenheiten
  • Abgabe eines schriftlichen Lösungsansatz zur Aufgabenstellung und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (20 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Lehrveranstaltung L0046: Stromerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren


Literatur
  • Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.


Lehrveranstaltung L0045: Wärmeerzeugung aus regenerativen Energien
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vorbesprechung mit Diskussion der Seminarspielregeln
  • Ausgabe der Themen aus dem Bereich des Seminarthemas an einzelne Studierende / Gruppen von Studierenden (je nach Anzahl der teilnehmenden Studierenden)
  • Abgabe einer 5-seitigen Zusammenfassung des Seminarthemas und Verteilung an die Teilnehmer durch den Studierenden / die Gruppe von Studierenden
  • Vortrag des bearbeiteten Themas (30 min) mit PPT-Präsentation und anschließende Diskussion (ca. 20 min)
  • Teilnahmepflicht bei allen Seminaren
Literatur

Eigenständiges Literaturstudium in der Bibliothek und aus anderen Quellen.

Modul M0721: Klimaanlagen

Lehrveranstaltungen
Titel Typ SWS LP
Klimaanlagen (L0594) Vorlesung 3 5
Klimaanlagen (L0595) Hörsaalübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Arten von Klimaanlagen und die dazugehörenden Regelungskonzepte für stationäre und mobile Anwendungen. Sie beherrschen die Zustandsänderungen feuchter Luft im h1+x,x-Diagramm. Sie sind in der Lage die aus hygienischen Gründen notwendigen Luftvolumenströme für Aufenthaltsräume von Personen zu bestimmen und können dazu die geeigneten Filterverfahren auswählen. Ihnen sind grundlegende Raumströmungszustände bekannt und sie können einfache Verfahren zur Berechnung einer Strömung in Räumen anwenden. Sie wissen, wie ein Kanalnetz ausgelegt und berechnet wird. Sie sind mit verschiedenen Verfahren zur Erzeugung von Kälte vertraut und können die entsprechenden Prozesse in den geeigneten thermodynamischen Diagrammen darstellen. Sie kennen die verschiedenen Umweltbewertungskriterien für Kältemittel.


Fertigkeiten

Studierende beherrschen die Berechnung von Klimaanlagen für stationäre und mobile Anwendungen. Sie können eine Kanalnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben selbstständig unter Berücksichtigung der Einbindung natürlicher Wärmequellen und -senken durchzuführen. Sie sind in der Lage aktuelle Forschungsergebnisse in die Praxis zu übertragen und wissenschaftliche Arbeiten auf dem Gebiet der Klimatechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. 






Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.  In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.




Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0594: Klimaanlagen
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Arne Speerforck, Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt

1. Überblick über Klimaanlagen 1.1 Einteilung von Klimaanlagen1.2 Lüftung1.3 Aufbau und Funktion von Klimaanlagen2. Thermodynamische Prozesse in Klimaanlagen2.1 Das h,x-Diagramm für feuchte Luft2.2 Mischkammer, Vorwärmer, Nachwärmer2.3 Luftkühler2.4 Luftbefeuchter2.5 Darstellung des konventionellen Klimaanlagenprozesses im h,x-Diagramm2.6 Sorptionsgestützte Klimatisierung3. Berechnung der Heiz- und Kühlleistung3.1 Heizlast und Heizleistung3.2 Kühllasten und Kühlleistung3.3 Berechnung der inneren Kühllast3.4 Berechnung der äußeren Kühllast4. Lufttechnische Anlagen4.1 Frischluftbedarf4.2 Raumluftströmung4.3 Kanalnetzberechnung4.4 Ventilatoren4.5 Filter5. Kälteanlagen5.1. Kaltdampfkompressionskälteanlagen5.2Absorptionskälteanlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013



Lehrveranstaltung L0595: Klimaanlagen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck, Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1021: Schiffsmotorenanlagen

Lehrveranstaltungen
Titel Typ SWS LP
Schiffsmotorenanlagen (L0637) Vorlesung 3 4
Schiffsmotorenanlagen (L0638) Hörsaalübung 1 2
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • unterschiedliche Bauarten Vier- / Zweitaktmotoren erläutern und ausgeführten Motoren zuordnen,
  • Vergleichsprozesse zuordnen,
  • Definitionen, Kenndaten aufzählen, sowie
  • Besonderheiten des Schwerölbetriebs, der Schmierung und der Kühlung wiedergeben.
Fertigkeiten

Die Studierenden können

  • das Zusammenwirken von Schiff, Motor und Propeller bewerten,
  • Zusammenhänge zwischen Gaswechsel, Spülverfahren, Luftbedarf, Aufladung, Einspritzung und Verbrennung zur Auslegung von Anlagen nutzen,
  • Abwärmeverwertung, Anlasssysteme, Regelungen, Automatisierung, Fundamentierung auslegen sowie  Maschinenräume gestalten, sowie
  • Bewertungsmethoden für motorerregte Geräusche und Schwingungen anwenden.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.

Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht
Lehrveranstaltung L0637: Schiffsmotorenanlagen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historischer Überblick
  • Bauarten von Vier- und Zweitaktmotoren als Schiffsmotoren
  • Vergleichsprozesse, Definitionen, Kenndaten
  • Zusammenwirken von Schiff, Motor und Propeller
  • Ausgeführte Schiffsdieselmotoren
  • Gaswechsel, Spülverfahren, Luftbedarf
  • Aufladung von Schiffsdieselmotoren
  • Einspritzung und Verbrennung
  • Schwerölbetrieb
  • Schmierung
  • Kühlung
  • Wärmebilanz
  • Abwärmenutzung
  • Anlassen und Umsteuern
  • Regelung, Automatisierung, Überwachung
  • Motorerregte Geräusche und Schwingungen
  • Fundamentierung
  • Gestaltung von Maschinenräumen

Literatur
  • D. Woodyard: Pounder’s Marine Diesel Engines
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • K. Kuiken: Diesel Engines
  • Mollenhauer, Tschöke: Handbuch Dieselmotoren
  • Projektierungsunterlagen der Motorenhersteller
Lehrveranstaltung L0638: Schiffsmotorenanlagen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1161: Strömungsmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmaschinen (L1562) Vorlesung 3 4
Strömungsmaschinen (L1563) Hörsaalübung 1 2
Modulverantwortlicher Prof. Markus Schatz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die physikalischen Phänomene der Energiewandlung unterscheiden,

- die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen,

- Strömungsmaschinen berechnen und bewerten.

Fertigkeiten

Die Studierenden können

- die Physik der Strömungsmaschinen verstehen,

- Übungsaufgaben selbstständig lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Die Studierenden können

  • eine komplexe Aufgabenstellung eigenständig bearbeiten,
  • die Ergebnisse kritisch analysieren.,
  • sich mit anderen Studierenden qualifiziert austauschen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1562: Strömungsmaschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Strömungsmaschinen der Antriebstechnik
  • Hauptgleichungen
  • Einführung in die Theorie der Stufe
  • Theorie der Schaufelprofile
  • Grenzen
  • Dichtelemente
  • Dampfturbinen
  • Gasturbinen


Literatur
  • Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York
  • Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York
  • Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York
  • Menny: Strömungsmaschinen, Teubner., Stuttgart


Lehrveranstaltung L1563: Strömungsmaschinen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0512: Solarenergienutzung

Lehrveranstaltungen
Titel Typ SWS LP
Energiemeteorologie (L0016) Vorlesung 1 1
Energiemeteorologie (L0017) Gruppenübung 1 1
Kollektortechnik (L0018) Vorlesung 2 2
Solare Stromerzeugung (L0015) Vorlesung 2 2
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Mit Abschluss dieses Moduls können die Studierenden sich fachliche mit Grundlagen und mit aktuellen Fragen und Problemen aus dem Gebiet der Solarenergienutzung auseinandersetzen und diese unter Einbeziehung vorheriger Lehrinhalte und aktueller Problematiken erläutern und kritisch Stellung dazu beziehen. Sie können insbesondere die Prozesse innerhalb einer Solarzelle fachlich beschreiben und die Besonderheiten bei der Anwendung von Solarmodulen erläutern. Des Weiteren können sie einen Überblick über die Kollektortechnik in solarthermischen Anlagen geben.



Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf beispielhafte solarstrahlungnutzende Energiesysteme anwenden und in diesem Zusammenhang unter anderem Potenziale und Grenzen solarer Energieerzeugungsanlagen für verschiedene geografische Bedingungen einschätzen und beurteilen. Sie sind in der Lage unter gegebenen Randbedingungen solare Energieerzeugungsanlagen technische effizient zu dimensionieren und mit der Nutzung modulübergreifendes Wissens ökonomisch und ökologisch zu beurteilen. Dafür notwendige Berechnungsmethoden innerhalb der Strahlungslehre können sie auswählen und aufgabenspezifisch anwenden. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Problemstellungen in den angrenzenden Themengebieten im Bereich erneuerbarer Energien, die innerhalb des Moduls vertieft wurden, diskutieren.

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und Wissen aneignen. Des Weiteren können die Studierenden angeleitet durch Lehrende eigenständig Berechnungsmethoden zur Potenzialanalyse und technischen Auslegung von solaren Energiesystemen durchführen und auf dieser Basis Ihren jeweiligen Lernstand einschätzen und eventuell weitere Arbeitsschritte definieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Schriftliche Ausarbeitung Ausarbeitung Kollektortechnik
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0016: Energiemeteorologie
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Volker Matthias, Dr. Beate Geyer
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung: Strahlungsquelle Sonne, Astronomische Grundlagen, Grundlagen der Strahlung
  • Aufbau der Atmosphäre
  • Eigenschaften und Gesetze von Strahlung
    • Polarisation
    • Strahlungsgrößen
    • Plancksches Strahlungsgesetz
    • Wiensches Verschiebungsgesetz
    • Stefan-Boltzmann Gesetz
    • Das Kirchhoffsche Gesetz
    • Helligkeitstemperatur
    • Absorption, Reflexion, Transmission
  • Strahlungsbilanz, Globalstrahlung, Energiebilanz
  • Atmosphärische Extinktion
  • Mie- und Rayleigh-Streuung
  • Strahlungstransfer
  • Optische Effekte in der Atmosphäre
  • Berechnung Sonnenstand und Berechnung Strahlung auf geneigte Flächen


Literatur
  • Helmut Kraus: Die Atmosphäre der Erde
  • Hans Häckel: Meteorologie
  • Grant W. Petty: A First Course in Atmosheric Radiation
  • Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy
  • Alexander Löw, Volker Matthias: Skript Optik Strahlung Fernerkundung


Lehrveranstaltung L0017: Energiemeteorologie
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Beate Geyer
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0018: Kollektortechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Agis Papadopoulos
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung: Energiebedarf und Anwendung der Sonnenenergie.
  • Wärmeübertragung in der Solarthermie: Wärmeleitung, Konvektion, Wärmestrahlung.
  • Kollektoren: Arten, Aufbau, Wirkungsgrad, Dimensionierung, konzentrierende Systeme.
  • Energiespeicher: Anforderungen, Arten.
  • Passive Sonnenenergienutzung: Komponenten und Systeme.
  • Solarthermische Niedertemperatursysteme: Kollektorvarianten, Aufbau, Berechnung.
  • Solarthermische Hochtemperatursysteme: Klassifizierung von Solarkraftwerke, Aufbau.
  • Solare Klimatisierung.


Literatur
  • Vorlesungsskript.
  • Kaltschmitt, Streicher und Wiese (Hrsg.). Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte, 5. Auflage, Springer, 2013.
  • Stieglitz und Heinzel .Thermische Solarenergie: Grundlagen, Technologie, Anwendungen. Springer, 2012.
  • Von Böckh und Wetzel. Wärmeübertragung: Grundlagen und Praxis, Springer, 2011.
  • Baehr und Stephan. Wärme- und Stoffübertragung. Springer, 2009.
  • de Vos. Thermodynamics of solar energy conversion. Wiley-VCH, 2008.
  • Mohr, Svoboda und Unger. Praxis solarthermischer Kraftwerke. Springer, 1999.


Lehrveranstaltung L0015: Solare Stromerzeugung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Martin Schlecht, Prof. Alf Mews, Roman Fritsches-Baguhl
Sprachen DE
Zeitraum SoSe
Inhalt

Photovoltaik:

  1. Einführung
  2. Primärenergien und Verbrauch, verfügbare Sonnenenergie
  3. Physik der idealen Solarzelle
  4. Lichtabsorption, PN-Übergang, charakteristische Größen der Solarzelle, Wirkungsgrad
  5. Physik der realen Solarzelle
  6. Ladungsträgerrekombination, Kennlinien, Sperrschichtrekombination, Ersatzschaltbild
  7. Erhöhung der Effizienz
  8. Methoden zur Erhöhung der Quantenausbeute und Verringerung der Rekombination
  9. Hetero- und Tandemstrukturen
  10. Hetero-Übergang, Schottky-, elektrochemische, MIS- und SIS-Zelle, Tandem-Zelle
  11. Konzentratorzellen
  12. Konzentrator-Optiken und Nachführsysteme, Konzentratorzellen
  13. Technologie und Eigenschaften: Solarzellentypen, Herstellung, einkristallines Silizium und Galliumarsenid, polykristalline Silizium- und Silizium-Dünnschichtzellen, Dünnschichtzellen auf Trägern (amorphes Silizium, CIS, elektrochemische Zellen)
  14. Module
  15. Schaltungen

Konzentrierende Solarkraftwerke:

  1. Einführung
  2. Punkt-fokussierte Technologien
  3. Linien-fokussierte Technologien
  4. Auslegung CSP-Projekte
Literatur
  • A. Götzberger, B. Voß, J. Knobloch: Sonnenenergie: Photovoltaik, Teubner Studienskripten, Stuttgart, 1995
  • A. Götzberger: Sonnenenergie: Photovoltaik : Physik und Technologie der Solarzelle, Teubner Stuttgart, 1994
  • H.-J. Lewerenz, H. Jungblut: Photovoltaik, Springer, Berlin, Heidelberg, New York, 1995
  • A. Götzberger: Photovoltaic solar energy generation, Springer, Berlin, 2005
  • C. Hu, R. M. White: Solar CelIs, Mc Graw HilI, New York, 1983
  • H.-G. Wagemann: Grundlagen der photovoltaischen Energiewandlung: Solarstrahlung, Halbleitereigenschaften und Solarzellenkonzepte, Teubner, Stuttgart, 1994
  • R. J. van Overstraeten, R.P. Mertens: Physics, technology and use of photovoltaics, Adam Hilger Ltd, Bristol and Boston, 1986
  • B. O. Seraphin: Solar energy conversion Topics of applied physics V 01 31, Springer, Berlin, Heidelberg, New York, 1995
  • P. Würfel: Physics of Solar cells, Principles and new concepts, Wiley-VCH, Weinheim 2005
  • U. Rindelhardt: Photovoltaische Stromversorgung, Teubner-Reihe Umwelt, Stuttgart 2001
  • V. Quaschning: Regenerative Energiesysteme, Hanser, München, 2003
  • G. Schmitz: Regenerative Energien, Ringvorlesung TU Hamburg-Harburg 1994/95, Institut für Energietechnik

Modul M1346: Ausgewählte Themen der Energiesysteme - Option B

Lehrveranstaltungen
Titel Typ SWS LP
Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung (L0021) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1249) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1250) Hörsaalübung 1 1
Nachhaltige industrielle Produktion (L2863) Vorlesung 2 4
Numerische Strömungssimulation - Übung mit OpenFoam (L1375) Gruppenübung 1 1
Numerische Strömungssimulation in der Verfahrenstechnik (L1052) Vorlesung 2 2
Offshore-Windkraftparks (L0072) Vorlesung 2 3
Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik (L0240) Vorlesung 2 3
Turbinen und Turboverdichter (L1564) Vorlesung 2 3
Turbinen und Turboverdichter (L1565) Hörsaalübung 1 1
Wasserstofftechnik (L0060) Vorlesung 2 2
Windenergieanlagen (L0011) Vorlesung 2 3
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind in der Lage

ausgewählte Energiesysteme zu beschreiben und das Zusammenwirken mit anderen Energiesystemen einzuordnen.
Fertigkeiten

Die Studierenden können 

Aufgabenstellungen aus der Energietechnik analysieren und bewerten.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

mit anderen Studierenden und Dozenten unterschiedliche Aspekte von Energiesystemen diskutieren.
Selbstständigkeit

Die Studierenden können

eigenständig Aufgaben definieren und sich notwendiges Wissen aneignen.
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Michael Fröba
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung in die elektrochemische Energiewandlung
  2. Funktion und Aufbau von Elektrolyten
  3. Die Niedertemperatur-Brennstoffzellen
    • Bauformen
    • Thermodynamik der PEM-Brennstoffzelle
    • Kühl- und Befeuchtungsstrategie
  4. Die Hochtemperatur-Brennstoffzelle
    • Die MCFC
    • Die SOFC
    • Integrationsstrategien und Teilreformierung
  5. Brennstoffe
    • Bereitstellung von Brennstoffen
    • Reformierung von Erdgas und Biogas
    • Reformierung von flüssigen Kohlenwasserstoffen
  6. Energetische Integration und Regelung von Brennstoffzellen-Systemen


Literatur
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003


Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vorschriften zur Schiffsausrüstung
  • Ausrüstungsanlagen auf Standard-Schiffen
  • Ausrüstungsanlagen auf Spezial-Schiffen
  • Grundlagen und Systemtechnik der Hydraulik
  • Auslegung und Betrieb von Ausrüstungsanlagen
Literatur
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • H. Watter: Hydraulik und Pneumatik
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt

Siehe korrespondierende Vorlesung 




Literatur

Siehe korrespondierende Vorlesung 




Lehrveranstaltung L2863: Nachhaltige industrielle Produktion
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Simon Markus Kothe
Sprachen DE
Zeitraum SoSe
Inhalt

Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. 

Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet:

- Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen;

- Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte;

- Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz;

- Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3);

- Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA);

- Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments.

Literatur

Literatur:

- Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing.

- Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing.

- Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer.

- Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing.

- Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG.

- Vorlesungsskript.

Lehrveranstaltung L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Michael Schlüter
Sprachen EN
Zeitraum SoSe
Inhalt
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literatur OpenFoam Tutorials (StudIP)
Lehrveranstaltung L1052: Computational Fluid Dynamics in Process Engineering
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Michael Schlüter
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literatur

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Lehrveranstaltung L0072: Offshore-Windkraftparks
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Alexander Mitzlaff
Sprachen DE
Zeitraum WiSe
Inhalt
  • Nichtlineare Wellen: Stabilität, Strukturbildung, solitäre Zustände
  • Bodengrenzschicht: Wellengrenzschichten, Scour, Hangstabilität
  • Wechselwirkung zwischen Meereis und Offshore-Strukturen
  • Wellen- und Strömungsenergiekonversion


Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I&II, Elsevier 2005.
  • Mc Cormick, M.E., Ocean Wave Energy Conversion, Dover 2007.
  • Infeld, E., Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge 2000.
  • Johnson, R.S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge 1997.
  • Lykousis, V. et al., Submarine Mass Movements and Their Consequences, Springer 2007.
  • Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, World Scientific 2005.
  • Research Articles.


Lehrveranstaltung L0240: Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Thomas Rung
Sprachen DE
Zeitraum WiSe
Inhalt

Wird in der Veranstaltung bekannt gegeben. Mögliche Inhalte sind

  1. Methoden und Verfahren der Strömungsmesstechnik 
  2. Rationale Methoden der strömungstechnischen Modellierung
  3. Spezielle Gebiete der theoretischen Numerischen Thermofluiddynamik
  4. Turbulente Strömungen
Literatur

Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.

Lehrveranstaltung L1564: Turbinen und Turboverdichter
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum WiSe
Inhalt

Abgedeckte Themenfelder:

1. Die dreidimensionale Gitterströmung in Axialmaschinen

2. Sekundärströmungen in Turbomaschinen

3. Feldverfahren zur Berechnung der Aerodynamik

4. Numerische Verfahren in der Turbomaschinenauslegung

5. Grundlagen radialer Strömungsmaschinen

6. Der Abgasturbolader

7. Das hydrodynamische Getriebe (Wandler, Kupplung, Retarder)

Literatur

Topics:

1. Three dimensional flows in axial grids

2. secondary flows in axial turbomachines,

3. basics of computational fluid dynamics (CFD)

4. CFD of turbomachinary

5. basics of radial turbomachines

6. exhaust turbo charger

7. hydrodynamic gears


Lehrveranstaltung L1565: Turbinen und Turboverdichter
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0060: Wasserstofftechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Jun.-Prof. Julian Jepsen
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Energiewirtschaft
  2. Wasserstoffwirtschaft
  3. Vorkommen und Eigenschaften von Wasserstoff
  4. Herstellung von Wasserstoff (aus Kohlenwasserstoffen und durch Elektrolyse)
  5. Trennung und Reinigung
  6. Speicherung und Transport von Wasserstoff
  7. Sicherheit
  8. Brennstoffzellen
  9. Projekte


Literatur
  • Skriptum zur Vorlesung
  • Winter, Nitsch: Wasserstoff als Energieträger
  • Ullmann’s Encyclopedia of Industrial Chemistry
  • Kirk, Othmer: Encyclopedia of Chemical Technology
  • Larminie, Dicks: Fuel cell systems explained


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Modul M1709: Angewandte Optimierung in der Energie- und Verfahrenstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Angewandte Optimierung in der Energie- und Verfahrenstechnik (L2693) Integrierte Vorlesung 2 3
Angewandte Optimierung in der Energie- und Verfahrenstechnik (L2695) Gruppenübung 2 3
Modulverantwortlicher Prof. Mirko Skiborowski
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen im Bereich der mathematischen Modellierung und numersichen Mathematik, sowie ein grundlegendes Verständniss verfahrenstechnsicher Prozesse.

Insbesondere die Inhalte des Moduls Prozess- und Anlagentechnik II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Das Modul bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden.

•Einführung in die angewandte Optimierung

• Formulierung von Optimierungsproblemen

• Lineare Optimierung

• Nichtlineare Optimierung

• Gemischt-ganzzahlige (nicht)lineare Optimierung

• Mehrkriterielle Optimierung

• Globale Optimierung

Fertigkeiten Studierende können nach erfolgreicher Teilnahme am Modul "Angeandte Optimierung in der Energie- und Verfahrenstechnik" die unterschiedlichen Arten von Optimierungsproblemen formulieren und in dafür geeigneiter Software wie Matlab und GAMS entsprechende Lösungsverfahren auszuwählen und weiterführende Lösungsstrategien zu entwickeln. Daüber hinaus sind Sie in der Lage die Ergebnisse entsprechend zu interpretieren und kritisch zu prüfen.
Personale Kompetenzen
Sozialkompetenz

Studierende sind in der Lage:

•in heterogenen Kleingruppen gemeinsam Lösungswege zu erarbeiten
Selbstständigkeit

Studierende sind in der Lage:

•sich anhand weiterführender Literatur zum Thema daraus Wissen zu erschließen
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 35 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L2693: Angewandte Optimierung in der Energie- und Verfahrenstechnik
Typ Integrierte Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Mirko Skiborowski
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Vorlesung bietet einen generellen Einstieg in die Grundlagen und Möglichkeiten der angewandten mathematischen Optimierung und behandelt dabei Anwendungsgebiete auf unterschiedlichen Skalen von der Identifikation kinetischer Modelle, über die optimale Auslegung von Grundoperationen bis hin zur Optimierung ganzer (Teil-)prozesse und der Produktionsplanung. Dabei werden neben den Grundlagen der Klassifikation und Formulierung von Optimierungsproblemen, unterschiedliche Lösungsansätze und deren Anwendung diskutiert, wobei neben deterministischen gradientenbasierten Verfahren ebenfalls Metaheuristiken wie evolutionäre und genetische Algorithmen besprochen werden.

- Einführung in die angewandte Optimierung

- Formulierung von Optimierungsproblemen

- Lineare Optimierung

- Nichtlineare Optimierung

- Gemischt-ganzzahlige (nicht)lineare Optimierung

- Mehrkriterielle Optimierung

- Globale Optimierung

Literatur

Weicker, K., Evolutionäre Algortihmen, Springer, 2015

Edgar, T. F., Himmelblau D. M., Lasdon, L. S., Optimization of Chemical Processes, McGraw Hill, 2001

Biegler, L. Nonlinear Programming - Concepts, Algorithms, and Applications to Chemical Processes, 2010

Kallrath, J. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg, 2002

Lehrveranstaltung L2695: Angewandte Optimierung in der Energie- und Verfahrenstechnik
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Mirko Skiborowski
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1162: Ausgewählte Themen der Energiesysteme - Option A

Lehrveranstaltungen
Titel Typ SWS LP
Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung (L0021) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1249) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1250) Hörsaalübung 1 1
Nachhaltige industrielle Produktion (L2863) Vorlesung 2 4
Numerische Strömungssimulation - Übung mit OpenFoam (L1375) Gruppenübung 1 1
Numerische Strömungssimulation in der Verfahrenstechnik (L1052) Vorlesung 2 2
Offshore-Windkraftparks (L0072) Vorlesung 2 3
Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik (L0240) Vorlesung 2 3
Turbinen und Turboverdichter (L1564) Vorlesung 2 3
Turbinen und Turboverdichter (L1565) Hörsaalübung 1 1
Wasserstofftechnik (L0060) Vorlesung 2 2
Windenergieanlagen (L0011) Vorlesung 2 3
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind in der Lage

  • ausgewählte Energiesysteme zu beschreiben und das Zusammenwirken mit anderen Energiesystemen einzuordnen.
Fertigkeiten

Die Studierenden können 

  • Aufgabenstellungen aus der Energietechnik analysieren und bewerten.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • mit anderen Studierenden und Dozenten unterschiedliche Aspekte von Energiesystemen diskutieren.
Selbstständigkeit

Die Studierenden können

  • eigenständig Aufgaben definieren und sich notwendiges Wissen aneignen.

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Michael Fröba
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung in die elektrochemische Energiewandlung
  2. Funktion und Aufbau von Elektrolyten
  3. Die Niedertemperatur-Brennstoffzellen
    • Bauformen
    • Thermodynamik der PEM-Brennstoffzelle
    • Kühl- und Befeuchtungsstrategie
  4. Die Hochtemperatur-Brennstoffzelle
    • Die MCFC
    • Die SOFC
    • Integrationsstrategien und Teilreformierung
  5. Brennstoffe
    • Bereitstellung von Brennstoffen
    • Reformierung von Erdgas und Biogas
    • Reformierung von flüssigen Kohlenwasserstoffen
  6. Energetische Integration und Regelung von Brennstoffzellen-Systemen


Literatur
  • Hamann, C.; Vielstich, W.: Elektrochemie 3. Aufl.; Weinheim: Wiley - VCH, 2003


Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vorschriften zur Schiffsausrüstung
  • Ausrüstungsanlagen auf Standard-Schiffen
  • Ausrüstungsanlagen auf Spezial-Schiffen
  • Grundlagen und Systemtechnik der Hydraulik
  • Auslegung und Betrieb von Ausrüstungsanlagen
Literatur
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • H. Watter: Hydraulik und Pneumatik
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt

Siehe korrespondierende Vorlesung 




Literatur

Siehe korrespondierende Vorlesung 




Lehrveranstaltung L2863: Nachhaltige industrielle Produktion
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Simon Markus Kothe
Sprachen DE
Zeitraum SoSe
Inhalt

Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. 

Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet:

- Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen;

- Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte;

- Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz;

- Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3);

- Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA);

- Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments.

Literatur

Literatur:

- Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing.

- Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing.

- Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer.

- Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing.

- Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG.

- Vorlesungsskript.

Lehrveranstaltung L1375: Computational Fluid Dynamics - Exercises in OpenFoam
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Michael Schlüter
Sprachen EN
Zeitraum SoSe
Inhalt
  • generation of numerical grids with a common grid generator
  • selection of models and boundary conditions
  • basic numerical simulation with OpenFoam within the TUHH CIP-Pool


Literatur OpenFoam Tutorials (StudIP)
Lehrveranstaltung L1052: Computational Fluid Dynamics in Process Engineering
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Michael Schlüter
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction into partial differential equations
  • Basic equations
  • Boundary conditions and grids
  • Numerical methods
  • Finite difference method
  • Finite volume method
  • Time discretisation and stability
  • Population balance
  • Multiphase Systems
  • Modeling of Turbulent Flows
  • Exercises: Stability Analysis 
  • Exercises: Example on CFD - analytically/numerically 
Literatur

Paschedag A.R.: CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen, Wiley-VCH, 2004 ISBN 3-527-30994-2.

Ferziger, J.H.; Peric, M.: Numerische Strömungsmechanik. Springer-Verlag, Berlin, 2008, ISBN: 3540675868.

Ferziger, J.H.; Peric, M.: Computational Methods for Fluid Dynamics. Springer, 2002, ISBN 3-540-42074-6


Lehrveranstaltung L0072: Offshore-Windkraftparks
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Dozenten Dr. Alexander Mitzlaff
Sprachen DE
Zeitraum WiSe
Inhalt
  • Nichtlineare Wellen: Stabilität, Strukturbildung, solitäre Zustände
  • Bodengrenzschicht: Wellengrenzschichten, Scour, Hangstabilität
  • Wechselwirkung zwischen Meereis und Offshore-Strukturen
  • Wellen- und Strömungsenergiekonversion


Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I&II, Elsevier 2005.
  • Mc Cormick, M.E., Ocean Wave Energy Conversion, Dover 2007.
  • Infeld, E., Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge 2000.
  • Johnson, R.S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge 1997.
  • Lykousis, V. et al., Submarine Mass Movements and Their Consequences, Springer 2007.
  • Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, World Scientific 2005.
  • Research Articles.


Lehrveranstaltung L0240: Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Thomas Rung
Sprachen DE
Zeitraum WiSe
Inhalt

Wird in der Veranstaltung bekannt gegeben. Mögliche Inhalte sind

  1. Methoden und Verfahren der Strömungsmesstechnik 
  2. Rationale Methoden der strömungstechnischen Modellierung
  3. Spezielle Gebiete der theoretischen Numerischen Thermofluiddynamik
  4. Turbulente Strömungen
Literatur

Wird in der Veranstaltung bekannt gegeben. To be announced during the lecture.

Lehrveranstaltung L1564: Turbinen und Turboverdichter
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum WiSe
Inhalt

Abgedeckte Themenfelder:

1. Die dreidimensionale Gitterströmung in Axialmaschinen

2. Sekundärströmungen in Turbomaschinen

3. Feldverfahren zur Berechnung der Aerodynamik

4. Numerische Verfahren in der Turbomaschinenauslegung

5. Grundlagen radialer Strömungsmaschinen

6. Der Abgasturbolader

7. Das hydrodynamische Getriebe (Wandler, Kupplung, Retarder)

Literatur

Topics:

1. Three dimensional flows in axial grids

2. secondary flows in axial turbomachines,

3. basics of computational fluid dynamics (CFD)

4. CFD of turbomachinary

5. basics of radial turbomachines

6. exhaust turbo charger

7. hydrodynamic gears


Lehrveranstaltung L1565: Turbinen und Turboverdichter
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0060: Wasserstofftechnik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Jun.-Prof. Julian Jepsen
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Energiewirtschaft
  2. Wasserstoffwirtschaft
  3. Vorkommen und Eigenschaften von Wasserstoff
  4. Herstellung von Wasserstoff (aus Kohlenwasserstoffen und durch Elektrolyse)
  5. Trennung und Reinigung
  6. Speicherung und Transport von Wasserstoff
  7. Sicherheit
  8. Brennstoffzellen
  9. Projekte


Literatur
  • Skriptum zur Vorlesung
  • Winter, Nitsch: Wasserstoff als Energieträger
  • Ullmann’s Encyclopedia of Industrial Chemistry
  • Kirk, Othmer: Encyclopedia of Chemical Technology
  • Larminie, Dicks: Fuel cell systems explained


Lehrveranstaltung L0011: Windenergieanlagen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Rudolf Zellermann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historische Entwicklung
  • Wind: Entstehung, geographische und zeitliche Verteilung, Standorte
  • Leistungsbeiwert, Rotorschub
  • Aerodynamik des Rotors
  • Betriebsverhalten
  • Leistungsbegrenzung, Teillast, Pitch und Stall, Regelung
  • Anlagenauswahl, Ertragsprognose, Wirtschaftlichkeit
  • Exkursion


Literatur

Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005


Modul M1294: Bioenergie

Lehrveranstaltungen
Titel Typ SWS LP
Biokraftstoffverfahrenstechnik (L0061) Vorlesung 1 1
Biokraftstoffverfahrenstechnik (L0062) Gruppenübung 1 1
Globale Märkte für land- und forstwirtschaftliche Rohstoffe (L1769) Vorlesung 1 1
Thermische Biomassenutzung (L1767) Vorlesung 2 2
Thermische Biomassenutzung (L2386) Laborpraktikum 1 1
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die Grundlagen der Energiegewinnung aus Biomasse, über aerobe und anaerobe Abfallbehandlungsverfahren, die dabei gewonnenen Produkte und die Behandlung der jeweils entstehenden Emissionen wiedergeben. 

Fertigkeiten

Die Studierenden können das erlernte Wissen über biomasse-basierte Energiebereitstellungsanlagen anwenden, um für unterschiedliche Fragestellungen, beispielsweise bezüglich der Dimensionierung und Auslegung von Anlagen, die Zusammenhänge zu erläutern. In diesem Zusammenhang sind die Studierenden auch in der Lage Berechnungsaufgaben zur Verbrennung, Vergasung und Biogas-, Biodiesel- und Bioethanolnutzung zu lösen. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen zur Auslegung und Bewertung von Energiesystemen zur Biomassenutzung diskutieren.

Selbstständigkeit

Die Studierenden können sich zur Aufarbeitung der Vorlesungsschwerpunkte selbstständig Quellen über das Fachgebiet erschließen, Wissen auswählen und aneignen. Des Weiteren können die Studierenden, unter Hilfestellung der Lehrenden, eigenständig Berechnungen zu biomasse-nutzenden Energiesysteme erfüllen und so Ihren jeweiligen Lernstand einschätzen und auf dieser Basis weitere Arbeitsschritte definieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Nein 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden Klausur
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie- und Bioprozesstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0061: Biokraftstoffverfahrenstechnik
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Oliver Lüdtke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Allgemeine Einleitung
  • Was sind Biokraftstoffe?
  • Märkte & Entwicklungen
  • Gesetzliche Rahmenbedingungen
  • Treibhausgaseinsparungen
  • Generationen der Biokraftstoffe
    • Bioethanol der ersten Generation
      • Rohstoffe
      • Fermentation
      • Destillation
    • Biobutanol / ETBE
    • Bioethanol der zweiten Generation
      • Bioethanol aus Stroh
    • Biodiesel der ersten Generation
      • Rohstoffe
      • Produktionsprozess
      • Biodiesel & Rohstoffe
    • HVO / HEFA
    • Biodiesel der zweiten Generation
      • Biodiesel aus Algen
  • Biogas als Kraftstoff
    • Biogas der ersten Generation
      • Rohstoffe
      • Fermentation
      • Reinigung zu Biomethan
    • Biogas der zweiten Generation & Vergasungsverfahren
    • Methanol / DME aus Holz und Tall oil©


Literatur
  • Skriptum zur Vorlesung
  • Drapcho, Nhuan, Walker; Biofuels Engineering Process Technology
  • Harwardt; Systematic design of separations for processing of biorenewables
  • Kaltschmitt; Hartmann; Energie aus Biomasse: Grundlagen, Techniken und Verfahren
  • Mousdale; Biofuels - Biotechnology, Chemistry and Sustainable Development
  • VDI Wärmeatlas


Lehrveranstaltung L0062: Biokraftstoffverfahrenstechnik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Oliver Lüdtke
Sprachen DE
Zeitraum WiSe
Inhalt
  • Ökobilanzen
    • Exemplarisches Beispiel zur Bewertung von CO2 Einsparungspotentialen durch alternative Kraftstoffe -- Wahl der Systemgrenzen und Datenbanken
  • Bioethanolherstellung
    • Anwendungsaufgabe in der die Grundlagen der thermischen Trennverfahren (Rektifikation, Extraktion) thematisiert werden. Dabei liegt der Fokus auf einer Kolonnenauslegung, inkl. Wärmebedarf, Stufenanzahl, Rücklaufverhältnis...
  • Biodieselherstellung
    • Verfahrenstechnische Optionen der Fest/Flüssigtrennung, inklusive Grundgleichungen zum Abschätzen von Leistung, Energiebedarf, Trennschärfe und Durchsatz
  • Biomethanproduktion
    • Chemische Reaktionen, die bei der Herstellung von Biokraftstoffen relevant sind, inklusive Gleichgewichte, Aktivierungsenergien, shift-Reaktionen


Literatur

Skriptum zur Vorlesung

Lehrveranstaltung L1769: Globale Märkte für land- und forstwirtschaftliche Rohstoffe
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Michael Köhl, Bernhard Chilla
Sprachen DE
Zeitraum WiSe
Inhalt

1) Markets for Agricultural Commodities
What are the major markets and how are markets functioning
Recent trends in world production and consumption.
World trade is growing fast. Logistics. Bottlenecks.
The major countries with surplus production
Growing net import requirements, primarily of China, India and many other countries.
Tariff and non-tariff market barriers. Government interferences.


2) Closer Analysis of Individual Markets
Thomas Mielke will analyze in more detail the global vegetable oil markets, primarily palm oil, soya oil,
rapeseed oil, sunflower oil. Also the raw material (the oilseed) as well as the by-product (oilmeal) will
be included. The major producers and consumers.
Vegetable oils and oilmeals are extracted from the oilseed. The importance of vegetable oils and
animal fats will be highlighted, primarily in the food industry in Europe and worldwide. But in the past
15 years there have also been rapidly rising global requirements of oils & fats for non-food purposes,
primarily as a feedstock for biodiesel but also in the chemical industry.
Importance of oilmeals as an animal feed for the production of livestock and aquaculture
Oilseed area, yields per hectare as well as production of oilseeds. Analysis of the major oilseeds
worldwide. The focus will be on soybeans, rapeseed, sunflowerseed, groundnuts and cottonseed.
Regional differences in productivity. The winners and losers in global agricultural production.


3) Forecasts: Future Global Demand & Production of Vegetable Oils
Big challenges in the years ahead: Lack of arable land for the production of oilseeds, grains and other
crops. Competition with livestock. Lack of water. What are possible solutions? Need for better
education & management, more mechanization, better seed varieties and better inputs to raise yields.
The importance of prices and changes in relative prices to solve market imbalances (shortage
situations as well as surplus situations). How does it work? Time lags.
Rapidly rising population, primarily the number of people considered “middle class” in the years ahead.
Higher disposable income will trigger changing diets in favour of vegetable oils and livestock products.
Urbanization. Today, food consumption per caput is partly still very low in many developing countries,
primarily in Africa, some regions of Asia and in Central America. What changes are to be expected?
The myth and the realities of palm oil in the world of today and tomorrow.
Labour issues curb production growth: Some examples: 1) Shortage of labour in oil palm plantations in
Malaysia. 2) Structural reforms overdue for the agriculture in India, China and other countries to
become more productive and successful, thus improving the standard of living of smallholders.

Literatur Lecture material
Lehrveranstaltung L1767: Thermische Biomassenutzung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE
Zeitraum WiSe
Inhalt

Ziel dieses Kurses ist es, die physikalischen, chemischen und biologischen als auch die technischen, wirtschaftlichen und ökologischen Grundlagen aller Optionen der Energieerzeugung aus Biomasse aus deutscher und internationaler Sicht zu diskutieren. Zusätzlich unterschiedlichen Systemansätze zur Nutzung von Biomasse für die Energieerzeugung, Aspekte der Bioenergie im Energiesystem zu integrieren, technische und wirtschaftliche Entwicklungspotenziale und die aktuelle und erwartete zukünftige Verwendung innerhalb des Energiesystems vorgestellt.
Der Kurs ist wie folgt aufgebaut:

  • Biomasse als Energieträger im Energiesystem, die Nutzung von Biomasse in Deutschland und weltweit, Übersicht über den Inhalt des Kurses
  • Photosynthese , die Zusammensetzung der organischen Stoffe , Pflanzenproduktion , Energiepflanzen , Reststoffen, organischen Abfällen
  • Biomasse Bereitstellung Ketten für holzige und krautige Biomasse , Ernte und Bereitstellung , Transport, Lagerung, Trocknung
    - Thermo - chemische Umwandlung von biogenen Festbrennstoffen
    • Grundlagen der thermo- chemischen Umwandlung
    • Direkte thermo- chemische Umwandlung durch Verbrennung: Verbrennungstechnologien für kleine und Großanlagen , Strom- Erzeugungstechnologien , Abgasbehandlungstechnologien, Asche und ihre Verwendun
    • Vergasung: Vergasungstechnologien, Gasreinigungstechnologien, Optionen zur Nutzung des gereinigten Gases für die Bereitstellung von Wärme, Strom und/oder Brennstoffe
    • Schnelle und langsame Pyrolyse : Technologien für die Bereitstellung von Bio-Öl und / oder für die Bereitstellung von Kohle -, Öl- Reinigungstechnologien , Optionen um die Pyrolyse- Öl und Kohle als Energieträger als auch als Rohstoff verwenden
  • Physikalisch-chemische Umwandlung von Biomasse , die Öle und / oder Fette : Grundlagen , Ölsaaten und Ölfrüchte, Pflanzenölproduktion , die Produktion von Biokraftstoff mit standardisierten Merkmalen ( Umesterung , Hydrierung, Co-Processing in bestehenden Raffinerien) , Optionen der Nutzung dieser Kraftstoffe, Optionen zur Verwendung der Rückstände (d.h. Mehl, Glycerin)
    • Bio-chemische Umwandlung von Biomasse
    • Grundlagen der bio-chemische Umwandlung
    • Biogas: Prozess- Technologien für Anlagen mit landwirtschaftlichen Rohstoffen , Klärschlamm ( Klärgas ), organische Abfallfraktion (Deponiegas ) , Technologien für die Bereitstellung von Biomethan , die Verwendung des aufgeschlossenen Schlamm
    • Ethanol-Produktion: Prozesstechnologien für Einsatzmaterial, Zucker, Stärke oder Cellulose , die Verwendung von Ethanol als Kraftstoff, Verwendung der Schlempe
Literatur

Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage

Lehrveranstaltung L2386: Thermische Biomassenutzung
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Martin Kaltschmitt, Dr. Marvin Scherzinger
Sprachen DE
Zeitraum WiSe
Inhalt

Die Versuche des Praktikums verdeutlichen die unterschiedlichen Aspekte der Wärmegewinnung aus biogenen Festbrennstoffen. Dazu werden zunächst unterschiedliche Biomassen (wie z.B. Holz, Stroh oder landwirtschaftliche Reststoffe) untersucht; hierbei liegt der Schwerpunkt auf dem Heiz- und Brennwert der Biomasse. Weiterhin wird die verwendete Biomasse pelletiert, die Pelleteigenschaften analysiert und ein Verbrennungsversuch an einer Pellet-Einzelraumfeuerung durchgeführt. Dabei werden die gasförmigen und festen Schadstoffemissionen, besonders der entstehende Feinstaub, gemessen und in einem weiteren Versuch die Zusammensetzung des Feinstaubes untersucht. Ein weiterer Schwerpunkt des Praktikums liegt auf der Betrachtung von Optionen zur Reduzierung des Feinstaubes aus der Biomasseverbrennung. Im Praktikum wird eine Methode zur Feinstaubreduzierung erarbeitet und getestet. Alle Versuche werden ausgewertet und die Ergebnisse vorgestellt.

Innerhalb des Laborpraktikums diskutieren die Studierenden verschiedene technischwissenschaftliche Aufgabenstellungen, sowohl fachspezifisch und fachübergreifend. Sie
sprechen verschiedene Lösungsansätze der Aufgabenstellung durch und beraten über die theoretische oder praktische Umsetzung.

Literatur

- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann: Energie aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Auflage. Berlin Heidelberg: Springer Science & Business Media, 2016. -ISBN 978-3-662-47437-2
- Versuchsskript

Modul M1250: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze (L1696) Vorlesung 3 4
Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze (L1697) Hörsaalübung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik,

Elektrische Energiesysteme I,

Mathematik I, II, III

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Technologien und Informationssysteme der Betriebsführung konventioneller und moderner elektrischer Energieversorgungssysteme sowie Verfahren und Algorithmen der Rechner gestützten stationären Netzberechnung, der Fehlerrechnung, der Netzführung und Systemoptimierung detailliert erläutern und kritisch bewerten.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die erlernten Technologien und Verfahren zur Planung bzw. Analyse realer elektrischer Energiesysteme anzuwenden und die Ergebnisse kritisch zu bewerten. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnisse vor anderen vertreten. 

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen weiterführender Forschungsaktivitäten nutzbar machen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L1696: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt
  • Stationäre Modellierung elektrischer Energiesysteme
    • konventionelle Komponenten
    • leistungselektronische Netzregler (FACTS) und HGÜ
    • Netzmodellierung
  • Netzbetrieb
    • Prozess der elektrischen Energieversorgung
    • Netz-/Systemführung
    • Netzbereitstellung
  • Netzleittechnik und Netzleitsysteme
    • Informations- und Kommunikationstechnik elektrischer Energiesysteme
    • IT-Architekturen der Stations-, Feld- und Netzleitebene
    • IT-Integration (Energiemarkt / Engpassmanagement / Asset Management)
    • Entwicklungstrends in der Leittechnik
    • Smart Grids
  • Funktionen und stationäre Berechnungen für den Netzbetrieb
    • Lastflussberechnungsmethoden
    • Sensitivitätsanalyse und Lastflusssteuerung
    • Sensitivitätsanalyse
    • Betriebsoptimierung
    • Symmetrische Kurzschlussberechnung
    • Unsymmetrische Fehlerstromberechnung
      • symmetrische Komponenten
      • Berechnung unsymmetrischer Fehler
    • Netzzustandsabschätzung
Literatur

E. Handschin: Elektrische Energieübertragungssysteme, Hüthig Verlag

B. R. Oswald: Berechnung von Drehstromnetzen, Springer-Vieweg Verlag

V. Crastan: Elektrische Energieversorgung Bd. 1 & 3, Springer Verlag

E.-G. Tietze: Netzleittechnik Bd. 1 & 2, VDE-Verlag

Lehrveranstaltung L1697: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1710: Smart-Grid-Technologien

Lehrveranstaltungen
Titel Typ SWS LP
Smart-Grid-Technologien (L2706) Vorlesung 3 4
Smart-Grid-Technologien (L2707) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik,

Grundlagen der Regelungstechnik,

Mathematik I, II, III

Elektrische Energiesysteme I

Elektrische Energiesysteme II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Verfahren und Technologien zum Betrieb von Smart Grids (intelligente Verteilernetze) detailliert erläutern und kritisch bewerten.

Fertigkeiten

Mit Abschluss dieses Moduls sind die Studierenden in der Lage, die Auswirkungen neuer Technologien (z. B. erneuerbare Energien, Energiespeicher und Demand-Response) auf das Stromnetz zu analysieren. Sie können Techniken der "Computational Intelligence" verstehen und auf Probleme des Verteilnetzbetriebs anwenden. Sie können auch erklären, welche IKT-Technologien (wie digitale Zwillinge und IoT) für den Betrieb von Verteilernetzen relevant und geeignet sind. 

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten.

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen sowie im Rahmen weiterführender Forschungsaktivitäten nutzbar machen.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L2706: Smart-Grid-Technologien
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt

Vorstellung von Smart Grids

  • Intelligente Verteilnetze
  • Paradigmenwechsel: Digitalisierung & Nachhaltigkeit

Aufstrebende Technologien in Verteilnetzen

  • Dezentrale Energieversorgung (DER)
  • Batterie-Energiespeicher-Technologien (BES)
  • Sektorenkopplung & EV/V2G
  • Microgrids, Wechselrichter-basierte Systeme
  • Modellierung und Steuerung von PV & BESS

Verteilnetzmanagement & Analyse

  • Verteilnetzstruktur (Beispiel Hamburg)
  • Architektur und Funktionen des Verteilnetzmanagements und -betriebs
    • Fehlererkennung, Isolierung & Wiederherstellung
    • Selbstheilung in Verteilnetzen
    • Volt-Var-Optimierung
    • Lastfluss in Verteilnetzen
  • Demand Side Management & Demand Response
  • Laborübung (Smart Grid Betrieb)

Rechnerische Intelligenz und Optimierungstechniken

  • Rechnerische Herausforderungen im Smart Grid
  • Heuristische & analytische Optimierungsmethoden
  • Intelligente Systeme (Expertensysteme, ML/AL)
  • Anwendungen (optimaler Lastfluss, Platzierung reaktiver Kondensatoren)
  • Laborübung (Optimierungsformulierung)

ICT-Technologien für intelligente Stromnetze

  • Fortschrittliche Metering-Technologien: Intelligente Zähler, RTU, PMU 
  • Telekommunikationssysteme in Smart Grids (Netzwerkgrundlagen und -technologien)
  • Interoperabilität in Smart Grids
    • Smart-Grid-Architekturmodell
    • Automatisierungs- und Kommunikationsstandards (IEC 61850, c37.118)
  • Cyber-Sicherheit
  • Laborübung (Grid-Automatisierungsprotokolle)

Praktische Erfahrungen: Stromnetz Hamburg (SNH) Perspektive

  • Definition von Smart Grid und dessen Anforderungen aus Sicht der Industrie
  • Netzdigitalisierung - Beispiele von Industrieprojekten
  • Flexibles Lastmanagement
  • Integration von Elektromobilität & Verkehrssektor

Studienbesuche:

  • Digitales Umspannwerk in Harburg
  • Elektrobus-Ladestation 
  • Stromnetz Hamburg Leitstand
Literatur
  • Buchholz and Styczynski - 2020 - “Smart Grids: Fundamentals and Technologies in Electric Power Systems of the Future”, Springer
  • Bernardon and Garcia - 2018 - “Smart Operation for Power Distribution Systems: Concepts and Applications”, Springer
  • Momoh, 2012; “Smart Grid: Fundamentals of Design and Analysis”, Wiley
Lehrveranstaltung L2707: Smart-Grid-Technologien
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Becker, Dr. Davood Babazadeh
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1354: Advanced Fuels

Lehrveranstaltungen
Titel Typ SWS LP
Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe (L2414) Vorlesung 2 2
Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor (L1926) Vorlesung 1 1
Mobilität und Klimaschutz (L2416) Gruppenübung 2 2
Nachhaltigkeitsaspekte und regulatorischer Rahmen (L2415) Vorlesung 1 1
Modulverantwortlicher Prof. Martin Kaltschmitt
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Bachelorabschluss in Verfahrenstechnik, Bioverfahrenstechnik oder Energie- und Umwelttechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden lernen innerhalb des Moduls verschiedene Bereit­stellungspfade zur Herstellung von Advanced Fuels (Biokraftstoffe wie z. B. Alcohol-to-Jet; Strom-basierte Kraftstoffe wie z. B. Power-to-Liquid) kennen. Dazu werden die verschiedenen Verfahrensketten erläutert und die regulatorischen Rahmenbedingungen für eine nachhaltige Kraftstoff­produktion beleuchtet. Hierzu gehören beispielsweise die Anforde­rungen der Erneuerbare-Energien-Richtlinie II sowie die Voraus­setzungen und Aspekte für einen Markthochlauf dieser Kraftstoffe. Für die ganzheitliche Bewertung der verschiedenen Kraftstoff­optionen werden diese abschließend unter ökologischen und ökonomischen Faktoren betrachtet. 


Fertigkeiten

Die Studierenden sind nach erfolgreicher Teilnahme des Moduls in der Lage zur Lösung von Simulations- und Anwendungsaufgaben der erneuerbaren Energietechnik: 

  • Modulübergreifende Lösungsansätze zur Auslegung und Darstellung von Kraftstoffproduktionsprozessen bzw. den entsprechenden Bereitstellungsketten
  • Umfangreiche Analyse verschiedener Kraftstoffbereit­stellungsoptionen in technischer, ökologischer und ökonomischer Sicht

Durch aktive Diskussionen der verschiedenen Themenschwerpunkte innerhalb der Vorlesungen und Übungen des Moduls verbessern die Studierenden das Verständnis und die Anwendung der theoretischen Grundlagen und sind so in der Lage das Gelernte auf die Praxis zu übertragen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend diskutieren und gemeinsame Lösungen entwickeln.

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen über die zu bear­beitende Fragestellung erschließen und sich das darin enthaltene Wissen aneignen. Sie sind fähig in Rücksprache mit Lehrenden ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Fragestellungen und die für die Lösung notwendigen Arbeitsschritte definieren.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Schriftliche Ausarbeitung Details werden in der ersten Veranstaltung bekannt gegeben.
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht
Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie- und Bioprozesstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Environmental Engineering: Vertiefung Energy and Resources: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Produktion und Logistik: Wahlpflicht
Logistik, Infrastruktur und Mobilität: Vertiefung Infrastruktur und Mobilität: Wahlpflicht
Luftfahrttechnik: Kernqualifikation: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Bioenergiesysteme: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht
Lehrveranstaltung L2414: Biokraftstoffe der 2. Generation und Strombasierte Kraftstoffe
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Martin Kaltschmitt
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Allgemeine Übersicht über verschiedene strombasierte Kraftstoffe und deren Prozesspfade, u.a. Power-to-Liquid Prozess (Fischer-Tropsch-Synthese, Methanol Synthese), Power-to-Gas (Sabatier-Prozess)
  • Herkunft, Herstellung und Verwendung der Kraftstoffe
Literatur
  • Vorlesungsskript
Lehrveranstaltung L1926: Kohlenstoffdioxid als ökonomische Determinante im Mobilitätssektor
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Karsten Wilbrand
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Allgemeine Übersicht über verschiedene Advanced Biofuels und deren Prozesspfade (u.a. Gas-to-Liquid, HEFA und Alcohol-to-Jet Prozesse)
  • Herkunft, Herstellung und Verwendung der Kraftstoffe


Literatur
  • Babu, V.: Biofuels Production. Beverly, Mass: Scrivener [u.a.], 2013
  • Olsson, L.: Biofuels. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007
  • William, L. L.: Distillation Design and Control Using Aspen Simulation; ISBN-10: 0-471-77888-5
  • Perry, R.; Green, R.: Perry's Chemical Engineers' Handbook, 8th Edition, McGraw Hill Professional, 20
  • Sinnot, R. K.: Chemical Engineering Design, Elsevier, 2014
  • Kaltschmitt, M.; Neuling, U. (Ed.): Biokerosene - Status and Prospects; Springer, Berlin, Heidelberg, 2018



Lehrveranstaltung L2416: Mobilität und Klimaschutz
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Benedikt Buchspies, Dr. Karsten Wilbrand
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Anwendung der erlernten theoretischen Kenntnisse aus den jeweiligen Vorlesungen anhand konkreter Aufgaben aus der Praxis

  • Auslegung und Simulation von Teilprozessen der Produktionsprozesse in Aspen Plus ®
  • Ökologische und ökonomische Analyse von Kraftstoffbereitstellungspfaden
  • Einordnung von Fallbeispielen in geltende Regularien
Literatur
  • Skriptum zur Vorlesung
  • Aspen Plus® - Aspen Plus User Guide
Lehrveranstaltung L2415: Nachhaltigkeitsaspekte und regulatorischer Rahmen
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Benedikt Buchspies
Sprachen DE/EN
Zeitraum WiSe
Inhalt

Gesamtheitliche Betrachtung der unterschiedlichen Kraftstoffpfade mit u. a folgenden Themenschwerpunkten:

  • Betrachtung der ökologischen Auswirkungen der verschiedenen Kraftstoffe
  • Ökonomische Betrachtung der verschiedenen alternativen Kraftstoffe
  • Regulatorischer Rahmen alternativer Kraftstoffe
  • Zertifizierung von alternativen Kraftstoffen
  • Markteinführungsmodelle alternativer Kraftstoffe
Literatur
  • European Commission - Joint Research Center (2010): International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Joint Research Center (JRC) Institut for Environment and Sustainability, Luxembourg
  • Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen

Fachmodule der Vertiefung Schiffsmaschinenbau

Die Vertiefung Schiffsmaschinenbau bietet ein breites Spektrum inhaltlicher Aspekte aus der Schiffstechnik wie z.B. "Schiffsmotorenanlagen", "Schiffsvibrationen", "Maritime Technik und Offshore-Windkraftparks", "Schiffspropeller", "Schiffsakustik", "Hilfsanlagen auf Schiffen", aber auch aus der konventionellen Energietechnik wie "Strömungsmaschinen", "Wärmetechnik" oder "Klimaanlagen". Auch hier liegt der Schwerpunkt in der Betrachtung der komplexen schiffstechnischen Systeme sowie der effizienten Bereitstellung von Strom, Wärme und Kälte.

Die Studierenden erlernen, komplexe schiffstechnische Systeme zu verstehen, physikalisch zu beschreiben und mathematisch zu modellieren. Sie sind in der Lage, komplexe schiffstechnische Sachverhalte zu analysieren und zu bewerten und in den Zusammenhang aktueller maritimer Fragestellungen zu setzen.


Modul M0528: Maritime Technik und Offshore-Windkraftparks

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Maritime Technik (L0070) Vorlesung 2 2
Einführung in die Maritime Technik (L1614) Gruppenübung 1 1
Offshore-Windkraftparks (L0072) Vorlesung 2 3
Modulverantwortlicher Prof. Moustafa Abdel-Maksoud
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Qualifizierter Bachelor einer Natur- oder Ingenieurwissenschaft; Solide Kenntnisse Fähigkeiten in Mathematik, Mechanik, Strömungsmechanik.


Grundkenntnisse der Meerestechnik (z.B. aus der einführenden Veranstaltung 'Einführung in die Maritime Technik')

Gute Grundlagenkenntnisse im Bereich Technische Mechanik
Hilfreich aber keine Voraussetzung: Vorkenntnisse in den Bereichen Hydromechanik, Stahlbau, Geotechnik.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Nach dem Erfolgreichen Absolvieren dieses Kurses sollten die Studierenden einen Überblick über Phänomene und Methoden der Meerestechnik und Fähigkeit zu Anwendung und Transfer der Methoden auf neuartige Fragestellungen erworben haben. Im Einzelnen sollten die Studierenden:

  • die verschiedenen Aspekte und Themenfelder der Maritimen Technik einordnen können,
  • bestehende Methoden auf Fragestellungen der Maritimen Technik anwenden können,
  • Grenzen des bestehenden Wissens und zukünftige Entwicklungen diskutieren können.


Anhand ausgewählter Themen sollen die Teilnehmer an aktuelle Forschungsfragen herangeführt und im Rahmen projektorientierter Übungsaufgaben zur Durchführung weitergehender eigenständiger Forschungsaktivitäten befähigt werden.

Lernziele im Einzelnen:

  • Benennen aktueller Forschungsfragestellungen der Meerestechnik
  • Erklären des derzeitigen Forschungsstandes
  • Anwenden gegebener Techniken zur Bearbeitung vorgegebener Fragestellungen
  • Bewerten der Grenzen aktueller Methoden
  • Erkennen von Ansätzen zur Erweiterung bestehender Methoden
  • Abschätzen von weiteren Entwicklungspotenzialen


Ein grundlegendes Verständnis der technischen Aufgabenstellungen im Bereich Offshore Windenergie und der Ansätze für ihre Lösung.
Ein Einblick in die Marktbedingungen und in das Zusammenwirken der verschiedenen Disziplinen (Windenergieanlagentechnik, Gründungsstrukturen, Umspannplattformen, parkinterne Verkabelung und Seekabel, Fertigung, Offshore Installation, Betrieb und Überwachung, Rückbau).

Fertigkeiten



Im Rahmen dieser Vorlesung über ein einziges Semester soll und kann den Studenten vor allem ein Überblickswissen und praxisorientierte Kenntnisse vermittelt werden.

Personale Kompetenzen
Sozialkompetenz


Der Dozent trägt nicht nur vor, sondern skizziert an der Tafel und bindet die Studenten in einem Dialog ein. Die Studierenden sind damit gefordert sich zu artikulieren und einen Beitrag in der Gruppe zu leisten.

Selbstständigkeit


Die Studierenden werden in der Vorlesung immer wieder aufgefordert eigenständig mitzudenken und die grundlegenden Zusammenhänge aufzuzeigen.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Regenerative Energien: Vertiefung Windenergiesysteme: Wahlpflicht
Lehrveranstaltung L0070: Einführung in die Maritime Technik
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Walter Kuehnlein, Dr. Sven Hoog
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einführung

  • Maritime Technik und marine Wissenschaften
  • Potenziale der See
  • Industriestrukturen

2. Küste und Meer: Umweltbedingungen

  • Physikalische und chemische Eigenschaften von Meerwasser und Meereis
  • Strömungen, Seegang, Wind, Eisdynamik
  • Biosphäre

3. Antwortverhalten technischer Strukturen

4. Maritime Systeme und Technologien

  • Konstruktion und Installation von Offshore-Strukturen
  • Geophysikalische und geotechnische Aspekte
  • Verankerte und schwimmende Strukturen
  • Verankerungen, Riser, Pipelines
Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I/II, Elsevier 2005.
  • Gerwick, B.C., Construction of Marine and Offshore Structures, CRC-Press 1999.
  • Wagner, P., Meerestechnik, Ernst&Sohn 1990.
  • Clauss, G., Meerestechnische Konstruktionen, Springer 1988.
  • Knauss, J.A., Introduction to Physical Oceanography, Waveland 2005.
  • Wright, J. et al., Waves, Tides and Shallow-Water Processes, Butterworth 2006.
  • Faltinsen, O.M., Sea Loads on Ships and Offshore Structures, Cambridge 1999.
Lehrveranstaltung L1614: Einführung in die Maritime Technik
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Walter Kuehnlein
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0072: Offshore-Windkraftparks
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Mitzlaff
Sprachen DE
Zeitraum WiSe
Inhalt
  • Nichtlineare Wellen: Stabilität, Strukturbildung, solitäre Zustände
  • Bodengrenzschicht: Wellengrenzschichten, Scour, Hangstabilität
  • Wechselwirkung zwischen Meereis und Offshore-Strukturen
  • Wellen- und Strömungsenergiekonversion


Literatur
  • Chakrabarti, S., Handbook of Offshore Engineering, vol. I&II, Elsevier 2005.
  • Mc Cormick, M.E., Ocean Wave Energy Conversion, Dover 2007.
  • Infeld, E., Rowlands, G., Nonlinear Waves, Solitons and Chaos, Cambridge 2000.
  • Johnson, R.S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge 1997.
  • Lykousis, V. et al., Submarine Mass Movements and Their Consequences, Springer 2007.
  • Nielsen, P., Coastal Bottom Boundary Layers and Sediment Transport, World Scientific 2005.
  • Research Articles.


Modul M1210: Ausgewählte Themen des Schiffsmaschinenbaus - Option A

Lehrveranstaltungen
Titel Typ SWS LP
Hilfsanlagen auf Schiffen (L1249) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1250) Hörsaalübung 1 1
Kavitation (L1596) Vorlesung 2 3
Manövrierfähigkeit von Schiffen (L1597) Vorlesung 2 3
Nachhaltige industrielle Produktion (L2863) Vorlesung 2 4
Schiffsakustik (L1605) Vorlesung 2 3
Schiffspropeller (L1269) Vorlesung 2 2
Schiffspropeller (L1270) Projekt-/problembasierte Lehrveranstaltung 2 1
Spezielle Gebiete der Schiffspropulsion (L1589) Vorlesung 3 3
Verbrennungsmotoren II (L1079) Vorlesung 2 2
Verbrennungsmotoren II (L1080) Hörsaalübung 1 2
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen


Fertigkeiten

Die Studierenden können ihr Grundlagenverständnis auf spezielle maschinenbauliche und schiffbauliche Fachthemen anwenden sowie komplexe schiffbauliche Gesamtsysteme beschreiben und auslegen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.

Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vorschriften zur Schiffsausrüstung
  • Ausrüstungsanlagen auf Standard-Schiffen
  • Ausrüstungsanlagen auf Spezial-Schiffen
  • Grundlagen und Systemtechnik der Hydraulik
  • Auslegung und Betrieb von Ausrüstungsanlagen
Literatur
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • H. Watter: Hydraulik und Pneumatik
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt

Siehe korrespondierende Vorlesung 




Literatur

Siehe korrespondierende Vorlesung 




Lehrveranstaltung L1596: Kavitation
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE
Zeitraum SoSe
Inhalt
  • Phänomen und Arten der Kavitation
  • Versuchsanlagen und Messgeräte
  • Blasendynamik
  • Blasenkavitation
  • Superkavitierende Strömung
  • Belüftete superkavitierende Strömung
  • Wirbelkavitation
  • Schichtkavitation
  • Kavitation an Schiffsantrieben
  • Numerische Kavitationsmodelle I
  • Numerische Kavitationsmodelle II
  • Druckschwankungen
  • Erosion und Geräuschentwicklung






Literatur
  • Lewis, V. E. (Ed.) , Principles of Naval Architecture, Resistance Propulsion, Vibration, Volume II, Controllability, SNAME, New York, 1989.
  • Isay, W. H., Kavitation, Schiffahrt-Verlag Hansa, Hamburg, 1989.
  • Franc, J.-P., Michel, J.-M. Fundamentals of Cavitation, Kluwer Academic Publisher, 2004.
  • Lecoffre, Y., Cavitation Bubble Trackers, Balkema / Rotterdam / Brookfield, 1999.
  • Brennen, C. E., Cavitation and Bubble Dynamics, Oxford University Press, 1995.



Lehrveranstaltung L1597: Manövrierfähigkeit von Schiffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Freiheitsgrade, Koordinatensysteme
  • Bewegungsgleichungen
  • Hydrodynamische Kräfte und Momente am Schiff
  • Ruderkräfte
  • Linearisierte Steuergleichungen (Lösung für Grenzfälle, Gierstabilität)
  • Manövrierversuche (frei fahrend, gefesselt)
  • Theorie Schlanker Körper

Qualifikationsziele:

Erlernung der Grundlagen für die Beurteilung und Vorhersage der Manövrierfähigkeit von Schiffen Fähigkeiten zur Entwicklung von Methoden zur Analyse des Manövrierverhaltens.

Literatur
  • Crane, C. L. H., Eda, A. L., Principles of Naval Architecture, Chapter 9, Controllability, SNAME, New York, 1989
  • Brix, J., Manoeuvring Technical Manual, Seehafen Verlag GmbH, Hamburg 1993 
  • Söding, H., Manövrieren , Vorlesungsmanuskript, Institut für Fluiddynamik und Schiffstheorie, TUHH, Hamburg, 1995
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Simon Markus Kothe
Sprachen DE
Zeitraum SoSe
Inhalt

Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. 

Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet:

- Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen;

- Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte;

- Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz;

- Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3);

- Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA);

- Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments.

Literatur

Literatur:

- Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing.

- Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing.

- Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer.

- Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing.

- Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG.

- Vorlesungsskript.

Lehrveranstaltung L1605: Schiffsakustik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Dr. Dietrich Wittekind
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1269: Schiffspropeller
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Stefan Krüger
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen.

Literatur W.H. Isay, Propellertheorie. Springer Verlag.
Lehrveranstaltung L1270: Schiffspropeller
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Stefan Krüger
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen.

Literatur W.H. Isay, Propellertheorie. Springer Verlag.
Lehrveranstaltung L1589: Spezielle Gebiete der Schiffspropulsion
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  1. Propellergeometrie
  2. Kavitation
  3. Modellversuche, Propeller-Rumpf-Wechselwirkung
  4. Druckschwankung / Vibration
  5. Potentialtheorie
  6. Propellerentwurf
  7. Verstellpropeller
  8. Düsenpropeller
  9. Podantriebe
  10. Wasserstrahlantriebe
  11.  Voith-Schneider-Propeller
Literatur
  • Breslin, J., P., Andersen, P., Hydrodynamics of Ship Propellers, Cambridge Ocean Technology, Series 3,
        Cambridge University Press, 1996.
  • Lewis, V. E., ed., Principles of Naval Architecture, Volume II Resistance, Propulsion and Vibration,
        SNAME,  1988.
  • N. N., International Confrrence Waterjet 4, RINA London, 2004
  • N. N., 1st International Conference on Technological Advances in Podded Propulsion, Newcastle, 2004 
Lehrveranstaltung L1079: Verbrennungsmotoren II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum WiSe
Inhalt

- Ausgeführte Beispiele
- Kolben und Kolbenzubehör
- Pleuelstange und Kurbelwelle
- Triebwerkslagerung und Kurbelgehäuse
- Zylinderkopf und Ventilsteuerung
- Einspritz- und Ladungswechselsysteme
(Näheres siehe Modulbeschreibungen der HSU)

Literatur - Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar)
- Übungsaufgaben mit Lösungsweg
- Literaturliste
Lehrveranstaltung L1080: Verbrennungsmotoren II
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1149: Energietechnik auf Schiffen

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Anlagen auf Schiffen (L1531) Vorlesung 2 2
Elektrische Anlagen auf Schiffen (L1532) Hörsaalübung 1 1
Schiffsmaschinenbau (L1569) Vorlesung 2 2
Schiffsmaschinenbau (L1570) Hörsaalübung 1 1
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können den Stand der Technik bezüglich der vielfältigen antriebstechnischen Komponenten an Bord von Schiffen wiedergeben und die Kenntnisse anwenden. Sie sind ferner in der Lage, das Zusammenwirken der einzelnen Komponenten im Gesamtsystem zu analysieren und zu optimieren. Die Studierenden können außerdem das Betriebsverhalten der Verbraucher nennen, spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen beschreiben, Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen erläutern, sowie Anforderungen an Netzschutz, Selektivität und Betriebsüberwachung benennen.

Fertigkeiten

Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz in Schiffsantrieben und Hilfssystemen. Des Weiteren können sie komplexe technische Zusammenhänge von Schiffs-Antriebsanlagen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Antriebskomponenten erforderlich sind und können das gelernte Wissen in einen Kontext zu den weiteren schiffbaulichen Disziplinen bringen. Die Studierenden sind außerdem in der Lage, Kurzschlussstrom, Schaltgeräte und Schaltanlagen zu berechnen, sowie Elektrische Propulsionsantriebe für Schiffe auszulegen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.


Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten plus 20 Minuten mündliche Prüfung
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1531: Elektrische Anlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Günter Ackermann
Sprachen DE
Zeitraum WiSe
Inhalt
  • Betriebsverhalten der Verbraucher
  • Spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen
  • Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen
  • Kurzschlussstrom-Berechnung, Schaltgeräte und Schaltanlagen
  • Netzschutz, Selektivität und Betriebsüberwachung
  • Elektrische Propulsionsantriebe für Schiffe
Literatur

H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag

(engl. Version: "Compendium Marine Engineering")

Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin

Lehrveranstaltung L1532: Elektrische Anlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Günter Ackermann
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1569: Schiffsmaschinenbau
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt Wird in der Veranstaltung bekannt gegeben
Literatur

Wird in der Veranstaltung bekannt gegeben

Lehrveranstaltung L1570: Schiffsmaschinenbau
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1347: Ausgewählte Themen des Schiffsmaschinenbaus - Option B

Lehrveranstaltungen
Titel Typ SWS LP
Hilfsanlagen auf Schiffen (L1249) Vorlesung 2 2
Hilfsanlagen auf Schiffen (L1250) Hörsaalübung 1 1
Kavitation (L1596) Vorlesung 2 3
Manövrierfähigkeit von Schiffen (L1597) Vorlesung 2 3
Nachhaltige industrielle Produktion (L2863) Vorlesung 2 4
Schiffsakustik (L1605) Vorlesung 2 3
Schiffspropeller (L1269) Vorlesung 2 2
Schiffspropeller (L1270) Projekt-/problembasierte Lehrveranstaltung 2 1
Spezielle Gebiete der Schiffspropulsion (L1589) Vorlesung 3 3
Verbrennungsmotoren II (L1079) Vorlesung 2 2
Verbrennungsmotoren II (L1080) Hörsaalübung 1 2
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten

Die Studierenden können ihr Grundlagenverständnis auf spezielle maschinenbauliche und schiffbauliche Fachthemen anwenden sowie komplexe schiffbauliche Gesamtsysteme beschreiben und auslegen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.

Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Vorschriften zur Schiffsausrüstung
  • Ausrüstungsanlagen auf Standard-Schiffen
  • Ausrüstungsanlagen auf Spezial-Schiffen
  • Grundlagen und Systemtechnik der Hydraulik
  • Auslegung und Betrieb von Ausrüstungsanlagen
Literatur
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • H. Watter: Hydraulik und Pneumatik
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt

Siehe korrespondierende Vorlesung 




Literatur

Siehe korrespondierende Vorlesung 




Lehrveranstaltung L1596: Kavitation
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE
Zeitraum SoSe
Inhalt
  • Phänomen und Arten der Kavitation
  • Versuchsanlagen und Messgeräte
  • Blasendynamik
  • Blasenkavitation
  • Superkavitierende Strömung
  • Belüftete superkavitierende Strömung
  • Wirbelkavitation
  • Schichtkavitation
  • Kavitation an Schiffsantrieben
  • Numerische Kavitationsmodelle I
  • Numerische Kavitationsmodelle II
  • Druckschwankungen
  • Erosion und Geräuschentwicklung






Literatur
  • Lewis, V. E. (Ed.) , Principles of Naval Architecture, Resistance Propulsion, Vibration, Volume II, Controllability, SNAME, New York, 1989.
  • Isay, W. H., Kavitation, Schiffahrt-Verlag Hansa, Hamburg, 1989.
  • Franc, J.-P., Michel, J.-M. Fundamentals of Cavitation, Kluwer Academic Publisher, 2004.
  • Lecoffre, Y., Cavitation Bubble Trackers, Balkema / Rotterdam / Brookfield, 1999.
  • Brennen, C. E., Cavitation and Bubble Dynamics, Oxford University Press, 1995.



Lehrveranstaltung L1597: Manövrierfähigkeit von Schiffen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Freiheitsgrade, Koordinatensysteme
  • Bewegungsgleichungen
  • Hydrodynamische Kräfte und Momente am Schiff
  • Ruderkräfte
  • Linearisierte Steuergleichungen (Lösung für Grenzfälle, Gierstabilität)
  • Manövrierversuche (frei fahrend, gefesselt)
  • Theorie Schlanker Körper

Qualifikationsziele:

Erlernung der Grundlagen für die Beurteilung und Vorhersage der Manövrierfähigkeit von Schiffen Fähigkeiten zur Entwicklung von Methoden zur Analyse des Manövrierverhaltens.

Literatur
  • Crane, C. L. H., Eda, A. L., Principles of Naval Architecture, Chapter 9, Controllability, SNAME, New York, 1989
  • Brix, J., Manoeuvring Technical Manual, Seehafen Verlag GmbH, Hamburg 1993 
  • Söding, H., Manövrieren , Vorlesungsmanuskript, Institut für Fluiddynamik und Schiffstheorie, TUHH, Hamburg, 1995
Lehrveranstaltung L2863: Nachhaltige industrielle Produktion
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Simon Markus Kothe
Sprachen DE
Zeitraum SoSe
Inhalt

Die industrielle Produktion befasst sich mit der Herstellung physischer Produkte zur Befriedigung menschlicher Bedürfnisse unter Einsatz verschiedener Fertigungsprozesse, die die Form und die physikalischen Eigenschaften der Ausgangsmaterialien verändern. Das produzierende Gewerbe ist zentraler Treiber der wirtschaftlichen Entwicklung und hat großen Einfluss auf das Wohlergehen der Menschheit. Das Ausmaß der gegenwärtigen Produktionsaktivitäten führt jedoch zu einem enormen globalen Energie- und Materialbedarf, der sowohl der Umwelt als auch den Menschen schadet. Historisch gesehen orientierten sich industrielle Aktivitäten meist an ökonomischen Randbedingungen, während soziale und ökologische Folgen kaum berücksichtigt wurden. Infolgedessen liegen die heutigen globalen Verbrauchsraten vieler Ressourcen und damit verbundene Emissionen häufig über der natürlichen Regenerationsrate unseres Planeten. Insofern ist ein Großteil der derzeitigen industriellen Produktion als nicht nachhaltig zu bezeichnen. Dies wird jedes Jahr durch den “Earth Overshoot Day” unterstrichen, der den Tag markiert, an dem der ökologische Fußabdruck der Menschheit die jährliche Regenerationsfähigkeit der Erde übersteigt. 

Die vorliegende Vorlesung soll die Motivation, Analysemethoden sowie Ansätze für eine nachhaltige industrielle Produktion vermitteln und verdeutlichen, welchen Einfluss die Produktionsphase im Verhältnis zur Rohstoff-, Nutzungs- und Recyclingphase im gesamten Lebenszyklus von Produkten hat. Hierzu werden die folgenden Themen beleuchtet:

- Motivation für eine nachhaltige Produktion, die 17 Ziele für nachhaltige Entwicklung (SDGs) der Vereinten Nationen und ihre Bedeutung für die Fertigung von morgen;

- Ausgangsstoffe vs. Produktionsphase vs. Nutzungsphase vs. Recycling/End-of-Life-Phase: Bedeutung der Produktionsphase für die Umweltauswirkungen gefertigter Produkte;

- Typische energie- und ressourcenintensive Prozesse in der industriellen Produktion und innovative Ansätze zur Steigerung der Energie- und Ressourceneffizienz;

- Methodik zur Optimierung der Energie- und Ressourceneffizienz von industriellen Fertigungsketten mit den drei Schritten Modellieren (1), Bewerten (2) und Verbessern (3);

- Ressourceneffizienz von Wertschöpfungsketten der industriellen Produktion und ihre Beurteilung mittels Lebenszyklusanalyse (LCA);

- Übung: Ökobilanztechnische Betrachtung eines Fertigungsprozesses (Thermoplastisches Fügen eines Flugzeugrumpfsegments) als Teil eines Produkt-Life-Cycle-Assessments.

Literatur

Literatur:

- Stefan Alexander (2020): Resource efficiency in manufacturing value chains. Cham: Springer International Publishing.

- Hauschild, Michael Z.; Rosenbaum, Ralph K.; Olsen, Stig Irving (Hg.) (2018): Life Cycle Assessment. Theory and Practice. Cham: Springer International Publishing.

- Kishita, Yusuke; Matsumoto, Mitsutaka; Inoue, Masato; Fukushige, Shinichi (2021): EcoDesign and sustainability. Singapore: Springer.

- Schebek, Liselotte; Herrmann, Christoph; Cerdas, Felipe (2019): Progress in Life Cycle Assessment. Cham: Springer International Publishing.

- Thiede, Sebastian; Hermann, Christoph (2019): Eco-factories of the future. Cham: Springer Nature Switzerland AG.

- Vorlesungsskript.

Lehrveranstaltung L1605: Schiffsakustik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Dozenten Dr. Dietrich Wittekind
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1269: Schiffspropeller
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Stefan Krüger
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen.

Literatur W.H. Isay, Propellertheorie. Springer Verlag.
Lehrveranstaltung L1270: Schiffspropeller
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Stefan Krüger
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen.

Literatur W.H. Isay, Propellertheorie. Springer Verlag.
Lehrveranstaltung L1589: Spezielle Gebiete der Schiffspropulsion
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Mündliche Prüfung
Prüfungsdauer und -umfang
Dozenten Prof. Moustafa Abdel-Maksoud
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  1. Propellergeometrie
  2. Kavitation
  3. Modellversuche, Propeller-Rumpf-Wechselwirkung
  4. Druckschwankung / Vibration
  5. Potentialtheorie
  6. Propellerentwurf
  7. Verstellpropeller
  8. Düsenpropeller
  9. Podantriebe
  10. Wasserstrahlantriebe
  11.  Voith-Schneider-Propeller
Literatur
  • Breslin, J., P., Andersen, P., Hydrodynamics of Ship Propellers, Cambridge Ocean Technology, Series 3,
        Cambridge University Press, 1996.
  • Lewis, V. E., ed., Principles of Naval Architecture, Volume II Resistance, Propulsion and Vibration,
        SNAME,  1988.
  • N. N., International Confrrence Waterjet 4, RINA London, 2004
  • N. N., 1st International Conference on Technological Advances in Podded Propulsion, Newcastle, 2004 
Lehrveranstaltung L1079: Verbrennungsmotoren II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum WiSe
Inhalt

- Ausgeführte Beispiele
- Kolben und Kolbenzubehör
- Pleuelstange und Kurbelwelle
- Triebwerkslagerung und Kurbelgehäuse
- Zylinderkopf und Ventilsteuerung
- Einspritz- und Ladungswechselsysteme
(Näheres siehe Modulbeschreibungen der HSU)

Literatur - Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar)
- Übungsaufgaben mit Lösungsweg
- Literaturliste
Lehrveranstaltung L1080: Verbrennungsmotoren II
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 min
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1518: Technischer Ergänzungskurs für ENTMS, Option A (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 12
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht

Modul M1504: Technischer Ergänzungskurs für ENTMS, Option B (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Siehe gewähltes Modul laut FSPO

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Siehe gewähltes Modul laut FSPO

Fertigkeiten

Siehe gewähltes Modul laut FSPO

Personale Kompetenzen
Sozialkompetenz

Siehe gewähltes Modul laut FSPO

Selbstständigkeit

Siehe gewähltes Modul laut FSPO

Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Energietechnik: Kernqualifikation: Wahlpflicht

Modul M1021: Schiffsmotorenanlagen

Lehrveranstaltungen
Titel Typ SWS LP
Schiffsmotorenanlagen (L0637) Vorlesung 3 4
Schiffsmotorenanlagen (L0638) Hörsaalübung 1 2
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • unterschiedliche Bauarten Vier- / Zweitaktmotoren erläutern und ausgeführten Motoren zuordnen,
  • Vergleichsprozesse zuordnen,
  • Definitionen, Kenndaten aufzählen, sowie
  • Besonderheiten des Schwerölbetriebs, der Schmierung und der Kühlung wiedergeben.
Fertigkeiten

Die Studierenden können

  • das Zusammenwirken von Schiff, Motor und Propeller bewerten,
  • Zusammenhänge zwischen Gaswechsel, Spülverfahren, Luftbedarf, Aufladung, Einspritzung und Verbrennung zur Auslegung von Anlagen nutzen,
  • Abwärmeverwertung, Anlasssysteme, Regelungen, Automatisierung, Fundamentierung auslegen sowie  Maschinenräume gestalten, sowie
  • Bewertungsmethoden für motorerregte Geräusche und Schwingungen anwenden.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.

Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 20 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht
Lehrveranstaltung L0637: Schiffsmotorenanlagen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Historischer Überblick
  • Bauarten von Vier- und Zweitaktmotoren als Schiffsmotoren
  • Vergleichsprozesse, Definitionen, Kenndaten
  • Zusammenwirken von Schiff, Motor und Propeller
  • Ausgeführte Schiffsdieselmotoren
  • Gaswechsel, Spülverfahren, Luftbedarf
  • Aufladung von Schiffsdieselmotoren
  • Einspritzung und Verbrennung
  • Schwerölbetrieb
  • Schmierung
  • Kühlung
  • Wärmebilanz
  • Abwärmenutzung
  • Anlassen und Umsteuern
  • Regelung, Automatisierung, Überwachung
  • Motorerregte Geräusche und Schwingungen
  • Fundamentierung
  • Gestaltung von Maschinenräumen

Literatur
  • D. Woodyard: Pounder’s Marine Diesel Engines
  • H. Meyer-Peter, F. Bernhardt: Handbuch der Schiffsbetriebstechnik
  • K. Kuiken: Diesel Engines
  • Mollenhauer, Tschöke: Handbuch Dieselmotoren
  • Projektierungsunterlagen der Motorenhersteller
Lehrveranstaltung L0638: Schiffsmotorenanlagen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0721: Klimaanlagen

Lehrveranstaltungen
Titel Typ SWS LP
Klimaanlagen (L0594) Vorlesung 3 5
Klimaanlagen (L0595) Hörsaalübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Arten von Klimaanlagen und die dazugehörenden Regelungskonzepte für stationäre und mobile Anwendungen. Sie beherrschen die Zustandsänderungen feuchter Luft im h1+x,x-Diagramm. Sie sind in der Lage die aus hygienischen Gründen notwendigen Luftvolumenströme für Aufenthaltsräume von Personen zu bestimmen und können dazu die geeigneten Filterverfahren auswählen. Ihnen sind grundlegende Raumströmungszustände bekannt und sie können einfache Verfahren zur Berechnung einer Strömung in Räumen anwenden. Sie wissen, wie ein Kanalnetz ausgelegt und berechnet wird. Sie sind mit verschiedenen Verfahren zur Erzeugung von Kälte vertraut und können die entsprechenden Prozesse in den geeigneten thermodynamischen Diagrammen darstellen. Sie kennen die verschiedenen Umweltbewertungskriterien für Kältemittel.


Fertigkeiten

Studierende beherrschen die Berechnung von Klimaanlagen für stationäre und mobile Anwendungen. Sie können eine Kanalnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben selbstständig unter Berücksichtigung der Einbindung natürlicher Wärmequellen und -senken durchzuführen. Sie sind in der Lage aktuelle Forschungsergebnisse in die Praxis zu übertragen und wissenschaftliche Arbeiten auf dem Gebiet der Klimatechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. 






Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.  In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.




Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0594: Klimaanlagen
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Arne Speerforck, Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt

1. Überblick über Klimaanlagen 1.1 Einteilung von Klimaanlagen1.2 Lüftung1.3 Aufbau und Funktion von Klimaanlagen2. Thermodynamische Prozesse in Klimaanlagen2.1 Das h,x-Diagramm für feuchte Luft2.2 Mischkammer, Vorwärmer, Nachwärmer2.3 Luftkühler2.4 Luftbefeuchter2.5 Darstellung des konventionellen Klimaanlagenprozesses im h,x-Diagramm2.6 Sorptionsgestützte Klimatisierung3. Berechnung der Heiz- und Kühlleistung3.1 Heizlast und Heizleistung3.2 Kühllasten und Kühlleistung3.3 Berechnung der inneren Kühllast3.4 Berechnung der äußeren Kühllast4. Lufttechnische Anlagen4.1 Frischluftbedarf4.2 Raumluftströmung4.3 Kanalnetzberechnung4.4 Ventilatoren4.5 Filter5. Kälteanlagen5.1. Kaltdampfkompressionskälteanlagen5.2Absorptionskälteanlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013



Lehrveranstaltung L0595: Klimaanlagen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck, Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1161: Strömungsmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmaschinen (L1562) Vorlesung 3 4
Strömungsmaschinen (L1563) Hörsaalübung 1 2
Modulverantwortlicher Prof. Markus Schatz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die physikalischen Phänomene der Energiewandlung unterscheiden,

- die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen,

- Strömungsmaschinen berechnen und bewerten.

Fertigkeiten

Die Studierenden können

- die Physik der Strömungsmaschinen verstehen,

- Übungsaufgaben selbstständig lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können

  • in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Die Studierenden können

  • eine komplexe Aufgabenstellung eigenständig bearbeiten,
  • die Ergebnisse kritisch analysieren.,
  • sich mit anderen Studierenden qualifiziert austauschen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Energiesysteme: Wahlpflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L1562: Strömungsmaschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum SoSe
Inhalt
  • Strömungsmaschinen der Antriebstechnik
  • Hauptgleichungen
  • Einführung in die Theorie der Stufe
  • Theorie der Schaufelprofile
  • Grenzen
  • Dichtelemente
  • Dampfturbinen
  • Gasturbinen


Literatur
  • Traupel: Thermische Turbomaschinen, Springer. Berlin, Heidelberg, New York
  • Bräunling: Flugzeuggasturbinen, Springer., Berlin, Heidelberg, New York
  • Seume: Stationäre Gasturbinen, Springer., Berlin, Heidelberg, New York
  • Menny: Strömungsmaschinen, Teubner., Stuttgart


Lehrveranstaltung L1563: Strömungsmaschinen
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Markus Schatz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1000: Kraft-Wärme-Kopplung und Verbrennungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Kraft-Wärme-Kopplung und Verbrennungstechnik (L0216) Vorlesung 3 5
Kraft-Wärme-Kopplung und Verbrennungstechnik (L0220) Hörsaalübung 1 1
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • "Wärmekraftwerke"
  • "Technische Thermodynamik I und II"
  • "Wärmeübertragung"
  • "Strömungsmechanik"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

VBT

Studierende kennen die thermodynamischen und chemischen Grundlagen von Verbrennungsprozessen und die wesentlichen Eigenschaften unterschiedlicher Brennstoffe. Sie gewinnen Einblick in die wesentlichen Mechanismen der Reaktionskinetik und die Grundlagen der Feuerraumauslegung. Studierende sind ferner in der Lage, die Bildungsmechanismen von Emissionen und deren Reduktion durch primäre Maßnahmen zu skizzieren sowie den Einfluss gesetzlicher Vorschriften und Grenzwerte zu evaluieren.

KWK

Studierende stellen den Aufbau, die Auslegung und die Wirkungsweise von Kraftwerken mit Wärmeauskopplung dar und können Dampfturbinenheizkraftwerke mit Gegendruckturbinen, Entnahmegegendruckturbinen oder Entnahmekondensationsturbinen, Gasturbinenheizkraftwerke, kombinierte Gas- und Dampfturbinenheizkraftwerke sowie Motorenheizkraftwerke kategorisieren und gegenüberstellen. Studierende erläutern und analysieren ferner Kraft-Wärme-Kälte-Kopplung Lösungen und beschreiben den Aufbau der dafür benötigten Hauptkomponenten des Kraftwerks. Durch dieses Fachwissen sind sie in der Lage, die ökologische Bedeutung der Kraft-Wärme-Kopplung sowie ihre Wirtschaftlichkeit zu beurteilen.

Energiespeichertechnologien 

Studierende stellen den Aufbau, die Auslegung und die Wirkungsweise von Strom- und Wärmespeichertechnologien dar und können diese in Bezug auf ihre optimalen Einsatzbereiche in Energieanlagen klassifizieren. Sie sind informiert über die Einbindung der Speicher in Energiesysteme und kennen die wesentlichen Aspekte der Umweltverträglichkeit.

Fertigkeiten

Die Studierenden können die Möglichkeiten erkennen, ein Kraftwerk oder Energiesystem durch den Einsatz von Kraft-Wärme-Kopplung und die optimale kurz-, mittel oder langfristige Speicherung zu optimieren. Durch das Nachvollziehen der gesamten Energiewandlungskette von der Verbrennung eines Primärenergieträgers über die Nutzenergiebereitstellung (Strom und Wärme), Energiespeicherung und Rückgewinnung der Energie aus den Speichern  entwickeln die Studierenden ein Verständnis über die Effizienz und Wirtschaftlichkeit der Systeme und lernen, ganzheitliche Betrachtungen der Energienutzung vorzunehmen. Beispiele aus der Praxis, wie die eigene Energieversorgung der TUHH und das Fernwärmenetz in Hamburg, werden verwendet, um die möglichen Potenziale von Kraftanlagen mit ausgekoppelter Wärme und Energiespeicherung zu veranschaulichen.

Die begleitenden Übungen werden die Erkenntnisse praxisnah vertiefen. 

Personale Kompetenzen
Sozialkompetenz

Insbesondere im Rahmen der Übungen wird auf Kommunikation mit der Lehrperson Wert gelegt. Die Studierenden werden somit angeregt über ihr vorhandenes Fachwissen zu reflektieren sowie gezielte Fragen zu stellen, um den eigenen Wissensstand zu verbessern. 

Selbstständigkeit

Studierende sind fähig mit Hilfe von Hinweisen eigenständig überschlägige Berechnungen durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus den Vorlesungen gefestigt und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammensätzen und Randbedingungen veranschaulicht.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Schriftliche Ausarbeitung Anhand der gelehrten Inhalte werden Kurzfragen gestellt und Projektaufgaben bearbeitet und präsentiert
Nein 10 % Schriftliche Ausarbeitung Am Ende jeder Vorlesung wird schriftlich eine zu auswertende Kurzfrage (5-10 min) zu der Vorlesung der Vorwoche gestellt. In den Kurzfragen werden kleine Rechenaufgaben, Skizzen oder auch kleine Freitexte zur Beantwortung gestellt.
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Lehrveranstaltung L0216: Kraft-Wärme-Kopplung und Verbrennungstechnik
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt 1  Der Themenbereich "Verbrennungstechnik" beinhaltet:
  • Thermodynamische und chemische Grundlagen
  • Brennstoffe
  • Reaktionen, Gleichgewichte
  • Reaktionskinetik
  • Flammen- und Feuerungsarten
  • Feuerraumauslegung
  • Emissions-Minderung


2  Der Themenbereich "Energiespeicherung" beinhaltet:

1       Einleitung: Warum ist die Speicherung von Energie nötig?

2       Stromspeicherung

  • Kondensatoren
  • Akkumulatoren
  • Pumpspeicherkraftwerk
  • Schwungradspeicher
  • Druckluftspeicherkraftwerk
  • Wirtschaftlichkeit von Stromspeichertechnologien

3       Wärmespeicherung

  • Sensible Energiespeicher
  • Latentwärmespeicher, PCM.
  • Thermochemische Wärmespeicher
  • Wirtschaftlichkeit von Wärmespeichertechnologien

4       Stoffliche Speicherung für die Sektorenkopplung

  • Einleitung zur Sektorenkopplung im Rahmen der Energiewende
  • PtG.
  • Power to Liquid - Power to Chemicals inkl. CO2 to Chemicals
  • Nebenthema zur Sektorenkopplung: das Norddeutsche RealLabor

5       Übergeordnetes Thema: Untertagespeicherung


3.  In dem Themenbereich von "Kraft-Wärme-Kopplung" werden die folgenden Themen behandelt:

  • Aufbau, Auslegung und Wirkungsweise von Kraftwerken mit Wärmeauskopplung
  • Dampfturbinenheizkraftwerke mit Gegendruckturbinen, Entnahmegegendruckturbinen und Entnahmekondensationsturbinen
  • Gasturbinenheizkraftwerke
  • Kombinierte Gas- und Dampfturbinenheizkraftwerke
  • Motorenheizkraftwerke
  • Kraft-Wärme-Kälte-Kopplung
  • Aufbau der Hauptkomponenten
  • Gesetzliche Vorschriften und Grenzwerte
  • Ökonomische Bedeutung der KWK und Wirtschaftlichkeitsberechnungen


Literatur

Bezüglich des Themenbereichs "Kraft-Wärme-Kopplung":

  • W. Piller, M. Rudolph: Kraft-Wärme-Kopplung, VWEW Verlag
  • Kehlhofer, Kunze, Lehmann, Schüller: Handbuch Energie, Band 7, Technischer Verlag Resch
  • W. Suttor: Praxis Kraft-Wärme-Kopplung, C.F. Müller Verlag
  • K.W. Schmitz, G. Koch: Kraft-Wärme-Kopplung, VDI Verlag
  • K.-H. Suttor, W. Suttor: Die KWK Fibel, Resch Verlag

und für die Grundlagen der "Verbrennungstechnik":

  • J. Warnatz, U. Maas, R.W. Dibble; Technische Verbrennung: physikalisch-chemische Grundlagen, Modellbildung, Schadstoffentstehung. Springer, Berlin [u. a.], 2001



Lehrveranstaltung L0220: Kraft-Wärme-Kopplung und Verbrennungstechnik
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten NN
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1146: Ship Vibration

Lehrveranstaltungen
Titel Typ SWS LP
Schiffsvibrationen (L1528) Vorlesung 2 3
Schiffsvibrationen (L1529) Gruppenübung 2 3
Modulverantwortlicher Dr. Rüdiger Ulrich Franz von Bock und Polach
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mechanis I - III
Structural Analysis of Ships I
Fundamentals of Ship Structural Design

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can reproduce the acceptance criteria for vibrations on ships; they can explain the methods for the calculation of natural frequencies and forced vibrations of sructural components and the entire hull girder; they understand the effect of exciting forces of the propeller and main engine and methods for their determination

Fertigkeiten

Students are capable to apply methods for the calculation of natural frequencies and exciting forces and resulting vibrations of ship structures including their assessment; they can model structures for the vibration analysis

Personale Kompetenzen
Sozialkompetenz

The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. 

Selbstständigkeit

Students are able to detect vibration-prone components on ships, to model the structure, to select suitable calculation methods and to assess the results

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 3 Stunden
Zuordnung zu folgenden Curricula Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Ship and Offshore Technology: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht
Lehrveranstaltung L1528: Ship Vibration
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rüdiger Ulrich Franz von Bock und Polach
Sprachen EN
Zeitraum WiSe
Inhalt

1. Introduction; assessment of vibrations
2. Basic equations
3. Beams with discrete / distributed masses
4. Complex beam systems
5. Vibration of plates and Grillages
6. Deformation method / practical hints / measurements
7. Hydrodynamic masses
8. Spectral method
9. Hydrodynamic masses acc. to Lewis
10. Damping
11. Shaft systems
12. Propeller excitation
13. Engines

Literatur Siehe Vorlesungsskript
Lehrveranstaltung L1529: Ship Vibration
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Rüdiger Ulrich Franz von Bock und Polach
Sprachen EN
Zeitraum WiSe
Inhalt

1. Introduction; assessment of vibrations
2. Basic equations
3. Beams with discrete / distributed masses
4. Complex beam systems
5. Vibration of plates and Grillages
6. Deformation method / practical hints / measurements
7. Hydrodynamic masses
8. Spectral method
9. Hydrodynamic masses acc. to Lewis
10. Damping
11. Shaft systems
12. Propeller excitation
13. Engines

Literatur Siehe Vorlesungsskript

Modul M0742: Thermische Energiesysteme

Lehrveranstaltungen
Titel Typ SWS LP
Thermische Energiesysteme (L0023) Vorlesung 3 5
Thermische Energiesysteme (L0024) Hörsaalübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in  der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut.


Fertigkeiten

Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. 


Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.  In den Übungen diskutieren die Studierenden die in den Vorlesungen vermittelten Methoden anhand komplexer Aufgabenstellungen und analysieren die Ergebnisse kritisch.




  


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Energietechnik: Vertiefung Energiesysteme: Pflicht
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht
Regenerative Energien: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0023: Thermische Energiesysteme
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt

1. Einleitung

2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion

3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen

4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme

5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen

Literatur
  • Schmitz, G.: Klimaanlagen, Skript zur Vorlesung
  • VDI Wärmeatlas, 11. Auflage, Springer Verlag, Düsseldorf 2013
  • Herwig, H.; Moschallski, A.: Wärmeübertragung, Vieweg+Teubner Verlag, Wiesbaden 2009
  • Recknagel, H.;  Sprenger, E.; Schrammek, E.-R.: Taschenbuch für Heizung- und Klimatechnik 2013/2014, 76. Auflage, Deutscher Industrieverlag, 2013
Lehrveranstaltung L0024: Thermische Energiesysteme
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Ergänzungsmodule Kernfächer

siehe FSPO des Masterstudienganges Energietechnik, §8 Technischer Ergänzungskurs Kernfächer

Modul M1805: Numerische Mechanik

Lehrveranstaltungen
Titel Typ SWS LP
Numerische Mechanik (Gruppenübung) (L1138) Gruppenübung 2 2
Numerische Mehrkörperdynamik (L1137) Integrierte Vorlesung 2 2
Numerische Strukturmechanik (L2475) Integrierte Vorlesung 2 2
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Module Mathematik I-III, Technische Mechanik I-III

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • die axiomatische Vorgehensweise bei der Erarbeitung der mechanischen Zusammenhänge beschreiben;
  • wesentliche Schritte der Modellbildung erkläutern;
  • Fachwissen aus der Thematik präsentieren.
Fertigkeiten

Die Studierenden können

  • die wesentlichen Elemente der mathematischen / mechanischen Analyse und Modellbildung anwenden und im Kontext eigener Fragestellung umsetzen;
  • grundlegende Methoden der Numerischen Mechanik auf Probleme des Ingenieurwesens anwenden;
  • Tragweite und Grenzen der eingeführten Methoden der Numerichen Mechanik abschätzen, beurteilen und sich weiterführende Ansätze erarbeiten.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen.

Selbstständigkeit

Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 15 % Midterm Midterm Mehrkörpersysteme
Nein 5 % Übungsaufgaben Hausaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Mechatronik: Vertiefung Roboter- und Maschinensysteme: Pflicht
Mechatronik: Vertiefung Medizintechnik: Wahlpflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Lehrveranstaltung L1138: Numerische Mechanik (Gruppenübung)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Seifried, Prof. Christian Cyron
Sprachen DE
Zeitraum SoSe
Inhalt

Übungen zu den lehrveranstaltungen "Mehrkörperdynamik" und "Strukturmechanik"

Literatur K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1-4. 11. Auflage, Springer (2011).
Lehrveranstaltung L1137: Numerische Mehrkörperdynamik
Typ Integrierte Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum SoSe
Inhalt
  • Modellbildung
  • Lineare versus nichtlineare Schwingungen
  • Numerische Methoden zur Zeitintegration
  • Koppelschwingungen: frei, gedämpft, zwangserregt, modale Transformation
  • Methoden der analytischen Mechanik
  • Räumliche Mehrkörpersysteme
  • Linearisierung von Mehrkörpersystemen
  • Einführung in Matlab
Literatur

K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). 
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1-4. 11. Auflage, Springer (2011).

W. Schiehlen, P. Eberhard: Technische Dynamik, Springer (2012).


Lehrveranstaltung L2475: Numerische Strukturmechanik
Typ Integrierte Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Christian Cyron
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung Numerische Strukturmechanik erweitert und vertieft Inhalte der Vorlesung Technische Mechanik II und schlägt die Brücke von der manuellen Berechnung von Spannungen und Verformungen in Bauteilen mit besonders einfacher Geometrie hin zu effizienten computergestützten Berechnungen für allgemeine Bauteile:

  • Grundlagen der linearen Kontinuumsmechanik
  • Flächentragwerke: Platte, Membran, Scheibe
  • Linientragwerke: Balken, Seil, Stab
  • Schwache Form und Galerkin-Methode
  • Methode der finiten Elemente: Theorie und Anwendung
  • Prinzipien der Mechanik: Prinzip der virtuellen Arbeit, virtuellen Verrückungen, virtuellen Kräfte
Literatur Gross, Hauger, Wriggers, "Technische Mechanik 4", Springer

Modul M0684: Wärmeübertragung

Lehrveranstaltungen
Titel Typ SWS LP
Wärmeübertragung (L0458) Vorlesung 3 4
Wärmeübertragung (L0459) Hörsaalübung 2 2
Modulverantwortlicher Dr. Andreas Moschallski
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik I, II und Strömungsmechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

- die Fachbegriffe erläutern,

- die verschiedenen physikalischen Vorgänge der Wärmeübertragung im Sinne leitungsbasierter und strahlungsbasierter Mechanismen  einordnen,

- komplexe Wärmeübertragungsvorgänge durch Modelle vereinfachen und kritisch analysieren,

- Lösungen zu Aufgaben methodisch entwickeln.



Fertigkeiten

Die Studierenden können

- die Physik der unterschiedlichen Wärmeübertragungsmechanismen beschreiben,

- komplexe Wärmeübertragungsvorgänge durch Modelle vereinfachen, berechnen und bewerten,

- Aussagen zur Wärmeübertragung kritisch hinterfragen und beantworten,

- Übungsaufgaben selbstständig und in Kleingruppen lösen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Vorlesung und Übung anhand vieler Beispiele und Experimente zielorientiert in Kleingruppen diskutieren, einen Lösungsweg erarbeiten und diesen darstellen. Sie können im Rahmen von Übungsaufgaben eigenständig weitergehende Fragestellungen entwickeln und zielgerechte Lösungen ausarbeiten. 

Selbstständigkeit

Die Studierenden können ihren Wissenstand anhand von Wiederholungsfragen zu Beginn der jeweiligen Vorlesungen überprüfen und im Austausch mit den anderen Studierenden Antworten formulieren und diskutieren. In den Übungen bearbeiten die Studierenden in Kleingruppen die in den Vorlesungen vermittelten Methoden in komplexen Aufgabenstellungen und analysieren im Auditorium die Ergebnisse kritisch.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Integrierte Gebäudetechnik: Kernqualifikation: Pflicht
Maschinenbau: Vertiefung Energietechnik: Pflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Wahlpflicht
Lehrveranstaltung L0458: Wärmeübertragung
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dr. Andreas Moschallski
Sprachen DE
Zeitraum WiSe
Inhalt

Dimensionsanalyse, Wärmeleitung (stationär und instationär), konvektiver Wärmeuebergang (natürliche Konvektion, erzwungene Konvektion) Zweiphasen-Wärmeübergang (Verdampfung, Kondensation), Wärmeübergang durch Strahlung, Wärmeübertragung aus thermodynamischer Sicht, Wärmetechnische Apparate, Messung von Temperaturen und Wärmeströmen

Literatur

- Herwig, H.; Moschallski, A.: Wärmeübertragung, 4. Auflage, Springer Vieweg Verlag, Wiesbaden, 2019

- Herwig, H.: Wärmeübertragung von A-Z, Springer- Verlag, Berlin, Heidelberg, 2000

- Baehr, H.D.; Stephan, K.: Wärme- und Stoffübertragung, 2. Auflage, Springer Verlag, Berlin, Heidelberg, 1996

Lehrveranstaltung L0459: Wärmeübertragung
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Andreas Moschallski
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0597: Vertiefte Konstruktionslehre

Lehrveranstaltungen
Titel Typ SWS LP
Vertiefte Konstruktionslehre II (L0264) Vorlesung 2 2
Vertiefte Konstruktionslehre II (L0265) Hörsaalübung 2 1
Vertiefte Konstruktionslehre I (L0262) Vorlesung 2 2
Vertiefte Konstruktionslehre I (L0263) Hörsaalübung 2 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Grundlagen der Konstruktionslehre
  • Mechanik
  • Grundlagen der Werkstoffwissenschaft
  • Fertigungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • komplexe Wirkprinzipien und Funktionsweisen von Maschinenelementen und  grundlegender Elemente der Fluidtechnik zu erklären,
  • Anforderungen, Auswahlkriterien, Einsatzszenarien, und Praxisbeispiele von komplexen Maschinenelementen zu erläutern,
  • Berechnungsgrundlagen anzugeben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Auslegungsberechnungen behandelter komplexer Maschinenelemente und technischer Systeme durchzuführen,
  • im Modul erlerntes Wissens auf neue Anforderungen und Aufgabenstellungen zu übertragen (Problemlösungskompetenz),
  • komplexe technische Zeichnungen und Prinzipskizzen zu erschließen,
  • komplexe Konstruktionen technisch zu bewerten.
Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage sich über fachliche Inhalte im Rahmen von aktivierenden Methoden in der Vorlesung auszutauschen.
Selbstständigkeit
  • Die Studierenden können erlerntes Wissen in Übungen eigenständig vertiefen.
  • Studierende sind in der Lage z.B. mithilfe der Vorlesungsaufzeichnung noch nicht verstandene Inhalte zu erarbeiten und zu wiederholen.
Arbeitsaufwand in Stunden Eigenstudium 68, Präsenzstudium 112
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0264: Vertiefte Konstruktionslehre II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalte Vertiefte Konstruktionslehre I & II

  • Grundlagen folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Dichtungen
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Elemente der Fluidtechnik

Hörsaalübung:

  • Berechnungsverfahren zur Auslegung folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Berechnung von hydrostatischen Systemen (Fluidtechnik)
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Sowie weitere Bücher zu speziellen Themen
Lehrveranstaltung L0265: Vertiefte Konstruktionslehre II
Typ Hörsaalübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0262: Vertiefte Konstruktionslehre I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum WiSe
Inhalt

Vertiefte Konstruktionslehre I & II

  • Grundlagen folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Dichtungen
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Elemente der Fluidtechnik


Hörsaalübung:

  • Berechnungsverfahren zur Auslegung folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Berechnung von hydrostatischen Systemen (Fluidtechnik)
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Sowie weitere Bücher zu speziellen Themen
Lehrveranstaltung L0263: Vertiefte Konstruktionslehre I
Typ Hörsaalübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1022: Kolbenmaschinen

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen (L0633) Vorlesung 1 1
Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen (L0634) Hörsaalübung 1 1
Verbrennungsmotoren I (L0059) Vorlesung 2 2
Verbrennungsmotoren I (L0639) Hörsaalübung 1 2
Modulverantwortlicher Prof. Christopher Friedrich Wirz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Technische Thermodynamik, Technische Mechanik, Maschinenelemente, Motore
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Als Ergebnis des Modulteils „Grundlagen der Kolbenmaschinen“ können die Studierenden grundlegende Zusammenhänge über Kraft- und Arbeitsmaschinen wiedergeben und insbesondere die qualitativen und quantitativen Zusammenhänge von Arbeitsverfahren und Wirkungsgraden verschiedener Motor-, Verdichter- und Pumpenarten darstellen. Sie können  sicher mit motorischen Fachbegriffen und Kenngrößen umgehen, Ansätze zur Weiterentwicklung von Leistungsdichte und Wirkungsgrad erläutern und außerdem einen Überblick über Aufladesysteme, Kraftstoffe und Abgasemissionen geben. Die Studierenden können zudem Anlagen anwendungsbezogen auswählen und konstruktive sowie betriebliche Probleme bewerten.

Als Ergebnis des Modulteils „Verbrennungsmotoren I“ können die Studierenden den Stand der Technik bezüglich Wirkungsgradgrenzen von Kreisprozessen wiedergeben und bei Weiterentwicklungen anwenden. Ergänzend können sie Wissen über die Auslegung, das mechanische und thermodynamische Betriebsverhalten und Ähnlichkeitsbeziehungen anwenden, um ausgeführte Motoren zu erläutern, zu bewerten und im beruflichen Umfeld mit zu entwickeln. Sie sind außerdem in der Lage, verschiedene Aufladekonzepte zu differenzieren, zu bewerten und anwendungsbezogen auszuwählen. Die Studierenden haben Detailkenntnisse über die reale Kreisprozessrechnung und Grundkenntnisse über fachspezifische Software.


Fertigkeiten

Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz. Des Weiteren können sie bestehende Maschinen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Verbrennungsmotoren erforderlich sind.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, im Beruf sowohl im Bereich der Anwendungstechnik als auch im Bereich der herstellenden Industrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten.



Selbstständigkeit

Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht
Maschinenbau: Vertiefung Energietechnik: Pflicht
Lehrveranstaltung L0633: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen
Typ Vorlesung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt
  • Verbrennungsmotoren
    • Historischer Rückblick
    • Einteilung der Verbrennungsmotoren
    • Arbeitsverfahren
    • Vergleichsprozesse
    • Arbeit, Mitteldrücke, Leistungen
    • Arbeitsprozess des wirklichen Motors
    • Wirkungsgrade
    • Gemischbildung und Verbrennung
    • Motorkennfeld und Betriebskennlinien
    • Abgasentgiftung
    • Gaswechsel
    • Aufladung
    • Kühl- und Schmiersystem
    • Kräfte im Triebwerk
  • Kolbenverdichter
    • Thermodynamik des Kolbenverdichters
    • Einteilung und Verwendung
  • Kolbenpumpen
    • Prinzip der Kolbenpumpen
    • Einteilung und Verwendung
Literatur
  • A. Urlaub: Verbrennungsmotoren
  • W. Kalide: Kraft- und Arbeitsmaschinen
Lehrveranstaltung L0634: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christopher Friedrich Wirz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0059: Verbrennungsmotoren I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Die Anfänge der Motorenentwicklung
  • Auslegung von Motoren
  • Realprozessrechnung
  • Aufladeverfahren
  • Kinematik des Kurbeltriebs
  • Kräfte im Triebwerk

Literatur
  • Vorlesungsskript
  • Übungsaufgaben mit Lösungsweg
  • Literaturliste


Lehrveranstaltung L0639: Verbrennungsmotoren I
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Wolfgang Thiemann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0655: Numerische Methoden der Thermofluiddynamik I

Lehrveranstaltungen
Titel Typ SWS LP
Numerische Methoden der Thermofluiddynamik I (L0235) Vorlesung 2 3
Numerische Methoden der Thermofluiddynamik I (L0419) Hörsaalübung 2 3
Modulverantwortlicher Prof. Thomas Rung
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Studierende sollten über profunde Kenntnisse der höheren Mathematik (Reihenentwicklung, Integral- & Vektorrechnung) verfügen und die Grundlagen partieller und gewöhnlicher Differentialgleichungen kennen. Darüber hinaus sollten die Studierenden gute Kenntnisse der Strömungmechnaik und der Thermodynamik besitzen.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können aufgrund ihrer kombinierten Kenntnisse in Thermofluiddynamik und Numerischer Mathematik allgemeine strömungstechnische und strömungsphysikalische Prinzipien in diskrete Algorithmen auf der Grundlage lokaler (Finite-Differenzen/Volumen) und globaler  (potenzialtheoretischer) Ansatzmethoden übersetzen. Sie kennen die Zusammenhänge und Abgrenzungen  unterschiedlicher Diskretisierungs- und Approximationstechniken zur Untersuchung gekoppelter Systeme, konvektiver, nichtlinearer partieller Differentialgleichungen, und können die physikalische Motivation für deren Einsatz erläutern. Studierende verfügen über das notwendige Hintergrundwissen, um numerische Modelle zur Lösung thermofluiddynamischer Differentialgleichungssysteme zu konzipieren, programmieren und einzusetzen oder diese wissenschaftlich zu erläutern. Sie kennen die Mehrzahl der Berechnungs- und Lösungsprozeduren zur Prognose thermofluiddynamischer Felder, insbesondere deren Grenzen. 

Fertigkeiten

Die Studierenden sind in der Lage, geeignete numerische Verfahren zur Integration thermofluiddynamischer Bilanzgleichungen in Raum und Zeit auszuwählen und anzuwenden. Die Studierenden können die Numerik partieller Differentialgleichungen für Anwendungen der Thermofluiddynamik methodisch umsetzen und zur optimalen Reproduktion strömungsphysikalischer Prozessen adaptieren. Sie sind in der Lage, numerische Lösungsalgorithmen strukturiert zu programmieren, die Programme parametergestützt einzusetzen und Datenschnittstellen zu kodieren, die eine Auswertung und Analyse unterstützen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind befähigt Lösungen für Musterprobleme in Gruppenarbeit entwickeln, implementieren und die gemeinsamen Arbeitsergebnisse zu dokumentieren.

Selbstständigkeit

Die Studierenden sind fähig, selbstständig numerische Methoden zur Lösung strömungstechnischer Problem zu analysieren. Sie sind in der Lage, die eignen Ergebnisse und die Daten anderer kritisch in Bezug auf deren Plausibilität und Belastbarkeit zu analysieren.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 2h
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Maritime Technologien: Wahlpflicht
Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0235: Numerische Methoden der Thermofluiddynamik I
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlagen der Modellierung und Approximation thermofluiddynamischer Bilanzen mit numerischen Methoden. Entwicklung numerischer Algorithmen.

  1. Partielle Differentialgleichungen
  2. Grundlagen der finiten numerischen Approximation
  3. Numerische Berechnung der Potenzialströmung
  4. Einführung in die Finite-Differenzen Methoden
  5. Approximation transienter, konvektiver und diffusiver Transportprozesse
  6. Formulierung von Randbedingungen und Anfangsbedingungen
  7. Aufbau und Lösung algebraischer Gleichungssysteme
  8. Methode der gewichteten Residuen 
  9. Finite Volumen Approximation
  10. Grundlagen der Gittergenerierung
Literatur

Ferziger and Peric: Computational Methods for Fluid Dynamics, Springer

Lehrveranstaltung L0419: Numerische Methoden der Thermofluiddynamik I
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thomas Rung
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0639: Wärmekraftwerke

Lehrveranstaltungen
Titel Typ SWS LP
Wärmekraftwerke (L0206) Vorlesung 3 5
Wärmekraftwerke (L0210) Hörsaalübung 1 1
Modulverantwortlicher NN
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • "Technische Thermodynamik I und II"
  • "Wärmeübertragung"
  • "Strömungsmechanik"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können Aussagen über die Entwicklung des Strombedarfs und die thermodynamische Energieumwandlung in dem Kraftwerk treffen, die unterschiedlichen Kraftwerkstypen und den Aufbau des Kraftwerkblockes beschreiben und die Kenndaten von Kraftwerken definieren. Darüber hinaus können sie die erforderlichen Rauchgasreinigungsanlagen beschreiben und die Kombinationsmöglichkeiten zwischen konventionellen fossilen Kraftwerken und Kraftwerken mit Solarthermie und Geothermie oder Kraftwerken mit Carbon Capture and Storage bewerten.

Die Studierenden haben Grundlagenkenntnisse in den Bereichen Funktion, Betrieb und Auslegung thermischer und hydraulischer Strömungsmaschinen.

Fertigkeiten

Die Studierenden werden in der Lage sein, anhand von Theorien und Methoden der Energiegewinnung aus fossilen Brennstoffen sowie vertieften Kenntnissen zum Aufbau von Wärmekraftwerken, grundlegende Zusammenhänge bei der Strom- und Wärmeerzeugung zu erkennen und konzeptionelle Lösungen zu entwickeln. Durch Gliedern von Problemen, Beherrschen der Schnittstellenproblematik und der Lösungsmethodik bei der Strom- und Wärmeerzeugung, wird die Entwicklungsmethodik von realisierbaren, optimierten Konzepten erlernt. Aus der Darstellung des technischen Inhalts wird den Studierenden möglich, Überlegungen bezüglich des Strommixes im energiepolitischen Dreieck (Wirtschaftlichkeit, Versorgungssicherheit und Umweltschutz) zu verfolgen.

Im Rahmen der Übung lernen die Studierenden die Nutzung der spezialisierten Software EBSILON ProfessionalTM kennen. Dabei werden kleine Aufgaben selbstständig am PC gelöst, um Aspekte der Auslegung von Kraftwerkskreisläufen zu veranschaulichen.

Die Studierenden sind in der Lage vereinfachte Berechnungen von Strömungsmaschinen sowohl im Kontext der Gesamtanlage als auch von einzelnen Stufen durchzuführen.

Personale Kompetenzen
Sozialkompetenz

Es wird angestrebt interessierten Studierenden eine Exkursion im Rahmen der Vorlesung anzubieten. In dieser kommen die Studierenden in direkten Kontakt mit einem modernen Kraftwerk in der Region. Die Studierenden werden dadurch an die Praxis der Kraftwerkstechnik und den Konflikten zwischen technischen und politischen Interessen herangeführt.

Selbstständigkeit

Studierende sind fähig mit Hilfe von Hinweisen eigenständig simple Simulationsmodelle zu entwickeln und Szenarienanalysen durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus der Vorlesung fundiert und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammenhängen und Randbedingungen veranschaulicht. Studierende sind fähig, eigenständig das Betriebsverhalten von Wärmekraftwerken zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 5 % Übungsaufgaben 10 Übungsaufgaben im Laufe der Vorlesungen à 5 Minuten; bis zu 5 % Bonus je nach Anteil richtiger Abgaben
Nein 5 % Gruppendiskussion gemeinsame Erarbeitung von Inhalten
Nein 5 % Schriftliche Ausarbeitung Zusammenfassung von Literatur
Nein 5 % Referat 15-minütiges, unbenotetes Testat über EBSILON Professional; nur bestanden/nicht bestanden (keine anteiligen Punkte)
Prüfung Klausur
Prüfungsdauer und -umfang Klausur 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Lehrveranstaltung L0206: Wärmekraftwerke
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Dr. Kristin Abel-Günther
Sprachen DE
Zeitraum WiSe
Inhalt

Im 1. Teil der Veranstaltung es geht um speziellere Themen der Wärmekraftwerkstechnik:

  • Strombedarf, Prognosen
  • Thermodynamische Grundlagen
  • Energieumwandlungen im Kraftwerk
  • Kraftwerkstypen
  • Aufbau des Kraftwerkblockes
  • Einzelelemente des Kraftwerks
  • Kühlsysteme
  • Rauchgasreinigungsanlagen
  • Kenndaten des Kraftwerks
  • Werkstoffe im Kraftwerk
  • Kraftwerkstandorte
  • Solarthermie/Geothermie/Carbon Capture and Storage.

Im 2. Teil wird eine Übersicht über Strömungsmaschinen gegeben. Dies beinhaltet die Themen:

  • Energiebilanz einer Strömungsmaschine, thermische Turbomaschinen
  • Theorie der Turbinen- und Verdichterstufe
  • Gleich- und Überdruckbeschaufelung
  • Strömungsverluste
  • Kennzahlen
  • axiale und radiale Bauart
  • Konstruktionselemente
  • hydraulische Strömungsmaschinen
  • Pumpen- und Wasserturbinenbauarten
  • Dampfkraftanlagen
  • Gasturbinenanlagen.


Literatur
  • Kalide: Kraft- und Arbeitsmaschinen
  • Thomas, H.J.: Thermische Kraftanlagen. Springer-Verlag, 1985
  • Strauß, K.: Kraftwerkstechnik. Springer-Verlag, 2006
  • Kugeler und Phlippen: Energietechnik. Springer-Verlag, 1990
  • Bohn, T. (Hrsg.): Handbuchreihe Energie, Band 7: Gasturbinenkraftwerke, Kombikraftwerke, Heizkraftwerke und Industriekraftwerke, Technischer Verlag Resch / Verlag TÜV Rheinland
Lehrveranstaltung L0210: Wärmekraftwerke
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Kristin Abel-Günther
Sprachen DE
Zeitraum WiSe
Inhalt

Im 1. Teil der Veranstaltung wird ein Übersicht über Strömungsmaschinen und Wärmekraftanlagen angeboten. Dies beinhaltet die Themen:

  • Energiebilanz einer Strömungsmaschine, thermische Turbomaschinen
  • Theorie der Turbinen- und Verdichterstufe
  • Gleich- und Überdruckbeschaufelung
  • Strömungsverluste
  • Kennzahlen
  • axiale und radiale Bauart
  • Konstruktionselemente
  • hydraulische Strömungsmaschinen
  • Pumpen- und Wasserturbinenbauarten
  • Dampfkraftanlagen
  • Gasturbinenanlagen
  • Dieselmotorenanlagen
  • Abwärmenutzung

und mündet im 2. Teil in die spezialisierten Themen der Wärmekraftwerkstechnik:

  • Strombedarf, Prognosen
  • Thermodynamische Grundlagen
  • Energieumwandlungen im Kraftwerk
  • Kraftwerkstypen
  • Aufbau des Kraftwerkblockes
  • Einzelelemente des Kraftwerks
  • Kühlsysteme
  • Rauchgasreinigungsanlagen
  • Kenndaten des Kraftwerks
  • Werkstoffprobleme
  • Kraftwerkstandorte

Auf Umweltauswirkungen wegen Versauerung, Feinstaub- oder CO2-emissionen ebenso wie auf den klimatischen Einfluss wird insbesondere eingegangen. Die Anforderungen auf den Betrieb aus der Kombination konventioneller Wärmkraftwerke mit fluktuierenden erneuerbaren Energiequellen werden diskutiert und technische Lösungen zur Sicherstellung der Versorgungssicherheit und der Netzstabilität präsentiert, unter Betrachtung auch von Wirtschaftlichkeitskriterien. Dabei wird auch insbesondere der Blick auf die Umwelt- und Klimaverträglichkeit der einzelnen Optionen gelenkt, sodass ein Bewusstsein für die Verantwortung des eigenen Handelns entstehen und das potenzielle Ausmaß aus unterschiedlichen Lösungsansätzen ersichtlich werden kann.

Im Rahmen der Übung lernen die Studierenden die Nutzung der spezialisierten Software EBSILON ProfessionalTM kennen. Dabei werden Aufgaben selbstständig in Kleingruppen am PC gelöst, um Aspekte der Auslegung von Kraftwerkskreisläufen zu veranschaulichen. Die Studierenden präsentieren ihre Lösungen mündlich und können im Anschluss Fragen stellen und Feedback erhalten. Die Erbringung der studienbegleitenden Leistung wirkt sich positiv auf die Endnote der Studierenden aus.

Literatur
  • Skripte
  • Kalide: Kraft- und Arbeitsmaschinen
  • Thomas, H.J.: Thermische Kraftanlagen. Springer-Verlag, 1985
  • Strauß, K.: Kraftwerkstechnik. Springer-Verlag, 2006
  • Kugeler und Phlippen: Energietechnik. Springer-Verlag, 1990
  • T. Bohn (Hrsg.): Handbuchreihe Energie, Band 7: Gasturbinenkraftwerke, Kombikraftwerke, Heizkraftwerke und Industriekraftwerke, Technischer Verlag Resch / Verlag TÜV Rheinland

Modul M0688: Technische Thermodynamik II

Lehrveranstaltungen
Titel Typ SWS LP
Technische Thermodynamik II (L0449) Vorlesung 2 4
Technische Thermodynamik II (L0450) Hörsaalübung 1 1
Technische Thermodynamik II (L0451) Gruppenübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist.


Fertigkeiten

Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden.  Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Sie können Verständnisfragen zum Inhalt, die mit dem ClickerOnline Tool "TurningPoint" in der Vorlesung bereit gestellt werden, nach Diskussionen mit anderen Studierenden beantworten.


Selbstständigkeit

Studierende können die in Aufgaben gestellten komplexen Problemstellungen (Kreisprozesse, Klimatisierungsprozesse, Verbrennungsprozesse) physikalisch verstehen und erläutern. Sie sind in der Lage, die in der Vorlesung und Übung vermittelten Methoden zur Lösung von komplexen Problemstellungen geeignet auszuwählen und eigenständig auf unterschiedliche Aufgabentypen anzuwenden.






Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht
Integrierte Gebäudetechnik: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Mechatronik: Vertiefung Roboter- und Maschinensysteme: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0449: Technische Thermodynamik II
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt

8. Kreisprozesse

9. Gas-Dampf-Gemische

10. Stationäre Fließprozesse

11. Verbrennungsprozesse

12. Sondergebiete

In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes.

Literatur
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993
Lehrveranstaltung L0450: Technische Thermodynamik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0451: Technische Thermodynamik II
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Thesis

In der Masterarbeit bearbeiten die Studierenden selbstständig forschungsorientierte Problemstellungen, strukturieren dabei die Aufgabe in verschiedene Teilaspekte und wenden die im Studium erlangten fachlichen Kompetenzen systematisch an. 

Dabei wird besonderer Wert auf eine wissenschaftliche Bearbeitung der Problemstellung gelegt, die neben einer Literaturübersicht, Einordnung in aktuelle Fragestellungen und Beschreibung theoretischer Grundlagen eine kritische Analyse und Bewertung der Ergebnisse umfasst. 

Modul M-002: Masterarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 21 (1):

    Es müssen mindestens 60 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.


Empfohlene Vorkenntnisse keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden können das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches sicher zur Bearbeitung fachlicher Fragestellungen einsetzen.
  • Die Studierenden können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • Die Studierenden können eine eigene Forschungsaufgabe in ihrem Fachgebiet verorten, den Forschungsstand erheben und kritisch einschätzen.


Fertigkeiten
  • Die Studierenden sind in der Lage, für die jeweilige fachliche Problemstellung geeignete Methoden auszuwählen, anzuwenden und ggf. weiterzuentwickeln.
  • Die Studierenden sind in der Lage, im Studium erworbenes Wissen und erlernte Methoden auch auf komplexe und/oder unvollständig definierte Problemstellungen lösungsorientiert anzuwenden.
  • Die Studierenden können in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse erarbeiten und diese kritisch beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können

  • eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht beantworten und dabei eigene Einschätzungen überzeugend vertreten.


Selbstständigkeit

Studierende sind fähig,

  • ein eigenes Projekt in Arbeitspakete zu strukturieren und abzuarbeiten.
  • sich in ein teilweise unbekanntes Arbeitsgebiet des Studiengangs vertieft einzuarbeiten und dafür benötigte Informationen zu erschließen.
  • Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit anzuwenden.


Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Data Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Global Innovation Management: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
Interdisciplinary Mathematics: Abschlussarbeit: Pflicht
International Production Management: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Luftfahrttechnik: Abschlussarbeit: Pflicht
Materials Science and Engineering: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Ship and Offshore Technology: Abschlussarbeit: Pflicht
Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht
Zulassungs- und Sachverständigenwesen in der Luftfahrt: Abschlussarbeit: Pflicht