Modulhandbuch
Master
Energietechnik
Kohorte: Wintersemester 2015
Stand: 20. Februar 2017
Inhalt
Der forschungsorientierte Master-Studiengang Energietechnik baut konsekutiv auf den Bachelor-Studiengang Maschinenbau, Vertiefung Energietechnik, auf. Das Studium vertieft die mathematisch/naturwissenschaftlichen sowie die ingenieurwissenschaftlichen Inhalte des Bachelor-Studiums und vermittelt weitere Methoden zur systematischen und wissenschaftlichen Lösung von komplexen Problemstellungen im Bereich der Energietechnik.
Innerhalb dieses Master-Studienganges muss entweder die Vertiefung "Energiesysteme" oder die Vertiefung "Schiffsmaschinenbau" gewählt werden. Der Maschinenraum eines Schiffes stellt eine komplexe schwimmende Energieanlage dar. Die TUHH bietet als einzige deutsche Universität eine Ausbildung im Studiengang Energietechnik an, die auch den Schiffsmaschinenbau einschließt.
Inhaltlich werden grundlagen- und methodenorientierte Kenntnisse zur physikalischen Beschreibung von Systemen der klassischen Energietechnik, der regenerativen Energietechnik und des Schiffsmaschinenbaus vermittelt.
Berufliche Perspektiven
Der Studiengang ist inhaltlich durch das umfangreiche Angebot an mathematisch/physikalischen Grundlagen breit angelegt und bereitet die Studierenden in ausgewählten Modulen aus dem Bereich der Energietechnik und/oder des Schiffsmaschinenbaus auf leitende Aufgaben in Industrie und Wissenschaft vor.
Durch die breite Ausrichtung des Studienganges ist eine anspruchsvolle, wissenschaftliche Tätigkeit in sehr unterschiedlichen Bereichen der Energietechnik, des Schiffsmaschinenbaus, aber auch im Bereich des Allgemeinen Maschinenbaus und der Fahrzeug- und Flugzeugtechnik möglich.
Lernziele
Ziel des Master-Studienganges Energietechnik ist es, die Studierenden mit unterschiedlichen Technologien zur Energiewandlung, Energieverteilung und Energieanwendung vertraut zu machen. Dabei muss berücksichtigt werden, dass Energietechnik ein Querschnittsfach ist, das praktisch alle Bereiche der Technik berührt. In der Ausbildung zum Master of Science soll daher auch die Fähigkeit vermittelt werden, Zusammenhänge in komplexen Systemen zu erkennen.
Die Absolventinnen und Absolventen des Master-Studienganges Energietechnik können das erworbene Fachwissen auf komplexe energietechnische Problemstellungen übertragen. Sie sind in der Lage, sich selbstständig in neue Fragestellungen einzuarbeiten. Prozesse können mit wissenschaftlichen Methoden analysiert, abstrahiert und modelliert und auch dokumentiert werden. Sie können Daten und Ergebnisse beurteilen und daraus Strategien zur Entwicklung innovativer Lösungen entwickeln. Sie sind in der Lage, die Problemstellungen im Team zu diskutieren und ggf. zu optimieren.
Studiengangsstruktur
Der Master-Studiengang Energietechnik ist in die Bereiche Kernqualifikation, eine zu wählende Vertiefungsrichtung ("Energiesysteme" oder "Schiffsmaschinenbau") und die Abschlussarbeit strukturiert.
Innerhalb der Kernqualifikation müssen neben den Pflichtmodulen "Betrieb und Management" und "Nichttechnische Ergänzungsmodule" die beiden Module "Fachlabor Energietechnik" und "Projektarbeit Energietechnik" belegt werden. Darüber hinaus können aus einem Angebot von 14 Modulen 3 ausgewählt werden.
Innerhalb der Vertiefungsrichtung "Energiesysteme" sind 3 Pflichtmodule ("Strömungsmaschinen", "Wärmetechnik", "Kraft-Wärme-Kopplung und Verbrennungstechnik") sowie 4 Wahlpflichtmodule (aus 11 angebotenen) zu belegen. Im Wahlpflichtkatalog ist auch ein Offenes Modul "Ausgewählte Themen der Energiesysteme" enthalten, aus dem Lehrveranstaltungen mit 6 LP aus einem Angebot von 39 LP gewählt werden können.
Innerhalb der Vertiefungsrichtung "Schiffsmaschinenbau" müssen die Studierenden 2 Pflichtmodule ("Energietechnik auf Schiffen", "Schiffsmotorenanlagen") sowie 5 Wahlpflichtmodule (aus 8 angebotenen) belegen. Im Wahlpflichtkatalog ist auch ein Offenes Modul "Ausgewählte Themen des Schiffsmaschinenbaus" enthalten, aus dem Lehrveranstaltungen mit 12 LP aus einem Angebot von 22 LP belegt werden können.
In der Masterarbeit bearbeiten die Studierenden selbstständig forschungsorientierte Problemstellungen, strukturieren dabei die Aufgabe in verschiedene Teilaspekte und wenden die im Studium erlangten fachlichen Kompetenzen systematisch an.
Die Inhalte der Pflichtmodule innerhalb der Kernqualifikation sowie die Inhalte der Module innerhalb der Vertiefungsrichtungen und auch die Aufgabenstellung der Masterarbeit sind eng mit den Forschungsgebieten der energietechnisch-orientierten Institute verknüpft.
Im Bereich der Kernqualifikation werden vertiefende physikalisch/mathematische und ingenieurwissenschaftliche Inhalte der Energietechnik und des Schiffsmaschinenbaus vermittelt. Dazu werden in den Pflichtmodulen "Fachlabor Energietechnik", forschungs- und anwendungsorientierte Versuche durchgeführt sowie in der "Projektarbeit Energietechnik" forschungsorientierte Problemstellungen behandelt.
Die Studierenden sind in der Lage, energietechnische Systeme physikalisch/mathematisch zu modellieren und zu analysieren. Zusätzlich werden im Rahmen des Fachlabors Kompetenzen zur kritischen Analyse und Auswertung von Messdaten und Versuchsergebnissen vermittelt. Im Rahmen der Projektarbeit wird das selbstständige Bearbeiten von Problemstellungen, die Strukturierung von Lösungsansätzen und die schriftliche Dokumentation gefördert. Das Fachlabor wird in Kleingruppen durchgeführt, die Projektarbeit kann als Gruppenarbeit durchgeführt werden. Damit soll die Fähigkeit zur Teamarbeit gestärkt werden.
Modul M0508: Strömungsmechanik und Meeresenergie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können verschiedene Anwendungen der Strömungsmechanik in der Vertiefungsrichtungsrichtung Regenerative Energien beschreiben. Sie können die Grundlagen der Strömungsmechanik der Anwendung in der Meeresenergie zuordnen und für konkrete Berechnungen abwandeln. Die Studierenden können einschätzen, welche strömungsmechanischen Probleme mit analytischen Lösungen berechnet werden können und welche alternativen Möglichkeiten (z.B. Selbstähnlichkeit, empirische Lösungen, numerische Methoden) zur Verfügung stehen. |
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Strömungsmechanik auf technische Prozesse anzuwenden. Insbesondere können sie Impuls- und Massenbilanzen aufstellen, um damit technische Prozesse hydrodynamisch zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können die vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen gemeinsamen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben für strömungsmechanische Problemstellungen zu definieren und sich das zur Lösung dieser Aufgaben notwendige Wissen, aufbauend auf dem vermittelten Wissen, selbst zu erarbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3h |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L0002: Energie aus dem Meer |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0001: Strömungsmechanik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
-- |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Ergänzungskurse im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studienbereich Nichttechnische Wahlpflichtfächer vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im „Nichttechnischen Studienbereich“ gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0751: Technische Schwingungslehre |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können Begriffe und Zusammenhänge der Technischen Schwingungslehre wiedergeben und weiterentwickeln. |
Fertigkeiten | Studierende können Methoden der Technischen Schwingungslehre benennen und weiterentwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können auch in Gruppen zu Arbeitsergebnissen kommen. |
Selbstständigkeit | Studierende können sich eigenständig Forschungsaufgaben der Technischen Schwingungslehre erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0701: Technische Schwingungslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen und Wellen |
Literatur | K. Magnus, K. Popp, W. Sextro: Schwingungen. Eine Einführung in physikalische Grundlagen und die theoretische Behandlung von Schwingungsproblemen. |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0846: Control Systems Theory and Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Introduction to Control Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0656: Control Systems Theory and Design |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literatur |
|
Lehrveranstaltung L0657: Control Systems Theory and Design |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1201: Fachlabor Energietechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Wärmeübertragung, Wärmekraftwerke, Kolbenmaschinen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die teilnehmenden Studierenden können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende könnnen
|
Selbstständigkeit |
Die Studierenden sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 90min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1629: Fachlabor Energietechnik |
Typ | Fachlabor |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im Fachlabor werden die folgenden Versuche angeboten:
|
Literatur |
Pfeifer, T.; Profos, P.: Handbuch der industriellen Messtechnik, 6. Auflage, 1994, Oldenbourg Verlag München |
Modul M1204: Modellierung und Optimierung in der Dynamik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Simulation dynamischer Systeme |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierenden
besitzen nach erfolgreichem Besuch des Moduls grundlegende Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme und Methoden zur Optimierung dynamischer Systeme. |
Fertigkeiten |
Die Studierenden sind in der Lage + ganzheitlich zu Denken +
grundlegende Problemstellungen aus der Dynamik starrer und flexibler Mehrkörpersysteme selbständig, sicher, + dynamische Problem mathematisch zu beschreiben
+ dynamsiche Probleme zu optimieren |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können + in heterogen zusammengesetzten Gruppen Aufgaben lösen und die Arbeitsergebnisse dokumentieren. |
Selbstständigkeit |
Studierende sind fähig + ihren Kenntnisstand mit Hilfe von Übungsaufgaben einzuschätzen. + sich zur Lösung von forschungsorientierten Aufgaben notwendiges Wissen eigenständig zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1632: Flexible Mehrkörpersysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Schwertassek, R. und Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Braunschweig, Vieweg, 1999. Seifried, R.: Dynamics of Underactuated Multibody Systems, Springer, 2014. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge Univ. Press, Cambridge, 2004, 3. Auflage. |
Lehrveranstaltung L1633: Optimierung dynamischer Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994. Nocedal, J. , Wright , S.J. : Numerical Optimization. New York: Springer, 2006. |
Modul M0604: High-Order FEM |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Düster |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
Differential Equations 2 (Partial Differential Equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to |
Fertigkeiten |
Students are able to |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to |
Selbstständigkeit |
Students are able to |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0280: High-Order FEM |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
1. Introduction |
Literatur |
[1] Alexander Düster, High-Order FEM, Lecture Notes, Technische Universität Hamburg-Harburg, 164 pages, 2014 |
Lehrveranstaltung L0281: High-Order FEM |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Alexander Düster |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0657: Numerische Methoden der Thermofluiddynamik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in numerischer und allgemeiner Thermofluiddynamik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Aufbau von vertieften methodischen Kenntnissen in numerischer Thermofluiddynamik, insbesondere Finite-Volumen Techniken. Detailliertes Verständnis der theoretischen Hintergründe komplexer CFD-Simulationssoftware. |
Fertigkeiten |
Erwerb von Schnittstellenverständnis und Ausbau der Programmierkompetenzen. Fähigkeit zur Analyse und Bewertung unterschiedlicher Lösungsansätze. |
Personale Kompetenzen | |
Sozialkompetenz |
Verbesserte Teamfähigkeit durch Gruppenübungen. |
Selbstständigkeit | Selbstständige Analyse von problemspezifischen Lösungsansätzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 0.5h-0.75h |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0237: Numerische Methoden der Thermofluiddynamik II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Numerische Modellierung komplexer turbulenter Ein- und Mehrphasenströmungen mit höherwertigen Ansätzen für unstrukturierte und netzfreie Approximationstechniken |
Literatur |
Lehrveranstaltung L0421: Numerische Methoden der Thermofluiddynamik II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0714: Numerik gewöhnlicher Differentialgleichungen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Blanca Ayuso Dios |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Technomathematik: Vertiefung Mathematik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Numerische Verfahren für Anfangswertprobleme
Numerische Verfahren für Randwertaufgaben
|
Literatur |
|
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Blanca Ayuso Dios |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0805: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen |
none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) Mathematics I, II, III (in particular differential equations) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge in acoustics regarding acoustic waves, noise protection, and psycho acoustics and are able to give an overview of the corresponding theoretical and methodical basis. |
Fertigkeiten |
The students are capable to handle engineering problems in acoustics by theory-based application of the demanding methodologies and measurement procedures treated within the module. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
The students are able to independently solve challenging acoustical problems in the areas treated within the module. Possible conflicting issues and limitations can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20-30 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L0516: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Introduction and Motivation |
Literatur |
Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin |
Lehrveranstaltung L0518: Technical Acoustics I (Acoustic Waves, Noise Protection, Psycho Acoustics ) |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
Personale Kompetenzen | |
Sozialkompetenz | - |
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht International Production Management: Vertiefung Produktionstechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1145: Automation und Simulation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Ackermann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
BSc Maschinenbau oder ähnlich. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können den Aufbau und die Funktion von Prozessrechnern, den zugehörigen Komponenten, die Datenübertragung über Bussysteme und den Aufbau speicherprogrammierbare Steuerungen beschreiben. Sie können das Grundprinzip numerischer Simulationen und die zugehörigen Parameter beschreiben. Sie können die übliche Methode zur Simulation des dynamischen Verhaltens von Drehstrommaschinen erläutern. |
Fertigkeiten |
Studierende können einfache Steuerungen und Regelungen unter Nutzung gängiger Methoden beschreiben und entwerfen. Sie sind in der Lage, die grundsätzlichen Eigenschaften einer gegebenen Automationsanlage zu beurteilen und deren grundsätzliche Eignung für eine gegebene Anlage zu bewerten. Sie können technische Systeme für die Simulation des dynamischen Verhaltens modellieren und Simulationen mittels Matlab/Simulink durchführen. Sie sind in der Lage Methoden zur Berechnung des dynamischen Verhaltens von Drehstrommaschinen anwenden. |
Personale Kompetenzen | |
Sozialkompetenz | Zusammenarbeit in kleinen Teams |
Selbstständigkeit |
Die Studierenden sind fähig,eigenständig die Notwendigkeit methodischer Untersuchungen im Bereich der Automatisierung zu erkennen, angemessen durchzuführen und die Ergebnisse kritisch zu beurteilen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | Vorzugsweise in Dreier-Gruppen, etwa 1 Stunde |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1525: Automation und Simulation |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Aufbau von Automationseinrichtungen Aufbau und Funktion von Prozessrechnern und den zugehörigen Komponenten Datenübertragung über Bussysteme Speicherprogrammierbare Steuerung Verfahren zur Beschreibung logischer Abläufe Prinzip der Modellierung und Simulation von kontinuierlichen technischen Systemen Praktische Arbeit mit einem gängigen Simulationsprogramm (Matlab/Simulink) Simulation des dynamischen Verhaltens einer Drehstrommaschine, Simulation eines gemischt kontinuierlichen/diskreten Systems auf Basis von Zustandsübergangsdiagrammen. |
Literatur |
U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik; Springer Verlag R. Lauber, P. Göhner: Prozessautomatisierung 2, Springer Verlag Färber: Prozessrechentechnik (Grundlagen, Hardware, Echtzeitverhalten), Springer Verlag Einführung/Tutorial Matlab/Simulink - verschiedene Autoren |
Lehrveranstaltung L1527: Automation und Simulation |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0521: Werkstoffe für energietechnische Anlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Schmidt-Döhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in Werkstoffkunde |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können für Bauteile aus Kunststoffen und Faserverbundwerkstoffe Materialien auswählen. Die Grundlagen der Laminattheorie sowie des Bruchverhaltens dieser Werkstoffe können sie erläutern. Die Studierenden können mineralische Baustoffe sowie deren Komponenten und Funktion, Herstellung, Eigenschaften und Anwendungsgebiete darstellen. Stähle des Bauwesens und deren Anwendungsbereiche können sie darstellen. |
Fertigkeiten |
Die Studierenden sind in der Lage einfache Bauteile aus Kunststoffen und Faserverbundwerkstoffen zu konstruieren und zu dimensionieren. Sie können Rezepturen von Betonen und Mörteln erstellen. Die Studierenden sind in der Lage Bauschäden zu erkennen, die Ursachen einzugrenzen, die Grundzüge der Bauwerkserhaltung anzuwenden sowie Instandsetzungs- und Verstärkungsmaßnahmen auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden erwerben die Fähigkeit technische Zusammenhänge in der Gruppe zu diskutieren und Sachverhalte zu beurteilen bzw. in angemessener Form zu vertreten. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 stündige Klausur |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Regenerative Energien: Vertiefung Bioenergie: Wahlpflicht Regenerative Energien: Vertiefung Windenergie: Wahlpflicht |
Lehrveranstaltung L0056: Baustoffe, Bauschäden und Instandsetzung |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Frank Schmidt-Döhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Mineralische Bindemittel und Baustoffe, Beton, Stähle des Bauwesens, andere Baustoffe für energietechnische Anlagen, Metall- und Betonkorrosion, Bauwerkserhaltung und Instandsetzung |
Literatur |
Taylor, H.F.W.: Cement Chemistry Springenschmid, R.: Betontechnologie für die Praxis Blaich, J.: Bauschäden, Analyse und Vermeidung BetonMarketing Deutschland (Hrsg.): Stahlbetonoberflächen - schützen, erhalten, instandsetzen |
Lehrveranstaltung L0057: Konstruieren mit Kunststoffen und Verbundwerkstoffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Designing with Polymers: Materials Selection; Structural Design; Dimensioning Designing with Composites: Laminate Theory; Failure Criteria; Design of Pipes and Shafts; Sandwich Structures; Notches; Joining Techniques; Compression Loading; Examples |
Literatur |
Konstruieren mit Kunststoffen, Gunter Erhard , Hanser Verlag |
Modul M0658: Innovative Methoden der Numerischen Thermofluiddynamik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Teilnahme an einer der Lehrveranstaltungen in Numerischer Thermofluiddynamik (CFD1/CFD2) Gute Kenntnisse der numerischen Mathematik sowie der numerischen und allgemeinen Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können aufgrund ihrer vertieften Kenntnisse der theoretischen Hintergründen unterschiedliche CFD-Methoden (z.B. Gitter-Boltzmann Verfahren, Partikelverfahren, Finite-Volumen-Verfahren) erläutern sowie einen Überblick über simulationsbasierter Optimierung geben. |
Fertigkeiten |
Studierende sind in der Lage, aufgrund ihres Problemverständnisses und ihrer Problemlösungskompetenz im Bereich praxisnaher CFD-Anwendungen eine angemessene Methodik zu wählen. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende sind in der Lage, sich im Team zu organisieren, ihre Arbeitsergbnisse in Gruppenarbeit zu erstellen und zu dokumentieren sowie sich im Team zu organisieren. |
Selbstständigkeit | Hörer üben sich in der im selbständigen Projektorganisation und -Durchführung von simulationsbasierten Projektaufgaben. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | vorlesungsbegleitende Projektarbeit (ca. 25 Seiten) mit Verteidigung (ca. 45 Minuten) |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Ship and Offshore Technology: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0239: Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Einsatz von CFD zur (Form-) Optimierung, Parallelerechnen auf Hochleistungscomputern, Effiziente CFD-Verfahren für Grafikkarten & Echtzeitsimulation, Alternative Approximationen (Lattice-Boltzmann Verfahren, Partikelsimulationen), Struktur-Strömungskopplung, Modellierung hybrider Kontinua |
Literatur | Vorlesungsmaterialien /lecture notes |
Lehrveranstaltung L1685: Anwendung innovativer Methoden der Numerischen Thermofluiddynamik in Forschung und Praxis |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1208: Projektarbeit Energietechnik |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können das ausgewählte Forschungsprojekt
|
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Studierende sind in der Lage,
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Prüfung | Projektarbeit (laut FSPO) |
Prüfungsdauer und -umfang | abhängig von der Aufgabenstellung |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Pflicht |
Modul M1159: Seminar Energietechnik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Referat |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1560: Seminar Energietechnik |
Typ | Seminar |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Einführungsveranstaltung mit Themenvergabe, Terminplanung etc. sowie Einführung in die Gestaltung eines Vortrages - Präsentation (30 Minuten) mit anschließender Diskussion (10 Minuten) Zusatz: wird hier später angegeben
|
Literatur |
Allg. Literatur zu Rhetorik und Präsentationstechniken |
Die
Vertiefung Energiesysteme deckt den Maschinenbau-orientierten
Bereich der Energietechnik ab. Dabei wurde darauf
geachtet, dass so weit wie möglich die
gesamte Energiekette exemplarisch betrachtet
wird, von kleinen
energiewandelnden Einheiten ("Wärmetechnik") bis zu
Großanlagen ("Dampferzeuger"). Es werden sowohl Module zur klassischen Energietechnik
(„Strömungsmaschinen“),
als auch zur regenerativen
Energietechnik ("Windenergieanlagen") angeboten. Eine
Reihe von Modulen behandelt energietechnische Anlagen im mobilen Bereich, also
für Kraftfahrzeuge, Flugzeuge und Schiffe („Klimaanlagen“).
Der Schwerpunkt liegt dabei auf der Vermittlung des Systemgedankens, denn erst
die Betrachtung eines ganzen Systems ermöglicht die effiziente
Bereitstellung von Nutzenergie
durch Wandlung aus konventionellen und
erneuerbaren Energieträgern.
Die Studierenden erlernen, komplexe energietechnische Systeme zu verstehen, physikalisch zu beschreiben und mathematisch zu modellieren. Sie sind in der Lage, komplexe energietechnische Sachverhalte zu analysieren und zu bewerten und in den Kontext aktueller Energiepolitik zu stellen. Diese Fähigkeiten können praktisch in allen Bereichen des Maschinenbaus genutzt werden.
Modul M0763: Flugzeugsysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Frank Thielecke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können:
|
Fertigkeiten |
Studierende können:
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können:
|
Selbstständigkeit |
Studierende können:
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 165 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht |
Lehrveranstaltung L0735: Flugzeugsysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0739: Flugzeugsysteme I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Frank Thielecke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0742: Wärmetechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Wärmetechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Wärmetechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1149: Energietechnik auf Schiffen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können den Stand der Technik bezüglich der vielfältigen antriebstechnischen Komponenten an Bord von Schiffen wiedergeben und die Kenntnisse anwenden. Sie sind ferner in der Lage, das Zusammenwirken der einzelnen Komponenten im Gesamtsystem zu analysieren und zu optimieren. Die Studierenden können außerdem das Betriebsverhalten der Verbraucher nennen, spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen beschreiben, Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen erläutern, sowie Anforderungen an Netzschutz, Selektivität und Betriebsüberwachung benennen. |
Fertigkeiten |
Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz in Schiffsantrieben und Hilfssystemen. Des Weiteren können sie komplexe technische Zusammenhänge von Schiffs-Antriebsanlagen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Antriebskomponenten erforderlich sind und können das gelernte Wissen in einen Kontext zu den weiteren schiffbaulichen Disziplinen bringen. Die Studierenden sind außerdem in der Lage, Kurzschlussstrom, Schaltgeräte und Schaltanlagen zu berechnen, sowie Elektrische Propulsionsantriebe für Schiffe auszulegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten plus 20 Minuten mündliche Prüfung |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht |
Lehrveranstaltung L1531: Elektrische Anlagen auf Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin |
Lehrveranstaltung L1532: Elektrische Anlagen auf Schiffen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1569: Schiffsmaschinenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1570: Schiffsmaschinenbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1200: Elektrische Energieversorgung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der elektrischen Energieerzeugung und -verteilung unterscheiden, - die verschiedenen Energiewandlungsmechanismen verstehen. |
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht |
Lehrveranstaltung L1627: Elektrische Energieversorgung |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Detlef Schulz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Grundlagen der elektrischen Energieerzeugung
Aufbau von Energieversorgungsnetzen
Aufbau und Ersatzschaltbilder der Netzelemente
Auslegung von Netzen im Normalbetrieb
|
Literatur |
|
Lehrveranstaltung L1628: Elektrische Energieversorgung |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Detlef Schulz |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Grundlagen der elektrischen Energieerzeugung
Aufbau von Energieversorgungsnetzen
Aufbau und Ersatzschaltbilder der Netzelemente
Auslegung von Netzen im Normalbetrieb
|
Literatur |
|
Modul M0641: Dampferzeuger |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alfons Kather |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vorkenntnisse in Thermodynamik, Wärmeübertragung, Strömungsmechanik und Wärmekraftwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die thermodynamischen Grundlagen und die Dampferzeugerbauarten. Sie können die technischen Grundlagen des Dampferzeugers wiedergeben und die Feuerungen sowie der Brennstoffaufbereitung für fossil befeuerte Kraftwerke skizzieren. Sie können wärmetechnische Berechnungen und die Auslegung der Wasser-Dampf-Seite durchführen und die konstruktive Gestaltung des Dampferzeugers definieren. Studierende können das Betriebsverhalten von Dampferzeugern beschreiben und evaluieren, und diese unter Einbeziehung fachangrenzender Kontexte erläutern. |
Fertigkeiten |
Studierende werden in der Lage sein, anhand von vertieften Kenntnissen in der Berechnung, Auslegung und Konstruktion von Dampferzeugern, verknüpft mit einem breiten theoretischen und methodischen Fundament, die Auslegungs- und Konstruktionsmerkmale von Dampferzeugern zu erkennen. Durch das Erkennen und Formalisieren von Problemen, Prozessmodellierung und Beherrschen der Lösungsmethodik von Teilproblemen wird eine Übersicht über diesen Kernbestandteil des Kraftwerks gewonnen. Im Rahmen der Übung gewinnen die Studierenden Fähigkeiten für die Bilanzierung und Dimensionierung des Dampferzeugers sowie dessen Komponenten. Dabei werden kleine realitätsannähernde Aufgaben gelöst, um Aspekte der Auslegung von Dampferzeugern zu veranschaulichen. |
Personale Kompetenzen | |
Sozialkompetenz |
Es wird angestrebt, interessierten Studierenden eine Exkursion im Rahmen der Vorlesung anzubieten. In dieser kommen die Studierenden in direkten Kontakt mit dem gesamten Berufsfeld von Dampferzeugern. Durch Rede und Antwort mit den Anlagenbetreuern gewinnen sie einen Überblick über tägliche Betriebsprobleme und deren Lösung. |
Selbstständigkeit |
Studierende sind fähig mit Hilfe von Hinweisen eigenständig Grundberechnungen für Teilaspekte des Dampferzeugers durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus der Vorlesung fundiert und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammensätzen und Randbedingungen veranschaulicht. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht |
Lehrveranstaltung L0213: Dampferzeuger |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0214: Dampferzeuger |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0721: Klimaanlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Arten von Klimaanlagen und die dazugehörenden Regelungskonzepte für stationäre und mobile Anwendungen. Sie beherrschen die Zustandsänderungen feuchter Luft im h1+x,x-Diagramm. Sie sind in der Lage die aus hygienischen Gründen notwendigen Luftvolumenströme für Aufenthaltsräume von Personen zu bestimmen und können dazu die geeigneten Filterverfahren auswählen. Ihnen sind grundlegende Raumströmungszustände bekannt und sie können einfache Verfahren zur Berechnung einer Strömung in Räumen anwenden. Sie wissen, wie ein Kanalnetz ausgelegt und berechnet wird. Sie sind mit verschiedenen Verfahren zur Erzeugung von Kälte vertraut und können die entsprechenden Prozesse in den geeigneten thermodynamischen Diagrammen darstellen. Sie kennen die verschiedenen Umweltbewertungskriterien für Kältemittel. |
Fertigkeiten |
Studierende beherrschen die Berechnung von Klimaanlagen für stationäre und mobile Anwendungen. Sie können eine Kanalnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben selbstständig unter Berücksichtigung der Einbindung natürlicher Wärmequellen und –senken durchzuführen. Sie sind in der Lage aktuelle Forschungsergebnisse in die Praxis zu übertragen und wissenschaftliche Arbeiten auf dem Gebiet der Klimatechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0594: Klimaanlagen |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
1. Überblick über Klimaanlagen 1.1 Einteilung von Klimaanlagen1.2 Lüftung1.3 Aufbau und Funktion von Klimaanlagen2. Thermodynamische Prozesse in Klimaanlagen2.1 Das h,x-Diagramm für feuchte Luft2.2 Mischkammer, Vorwärmer, Nachwärmer2.3 Luftkühler2.4 Luftbefeuchter2.5 Darstellung des konventionellen Klimaanlagenprozesses im h,x-Diagramm2.6 Sorptionsgestützte Klimatisierung3. Berechnung der Heiz- und Kühlleistung3.1 Heizlast und Heizleistung3.2 Kühllasten und Kühlleistung3.3 Berechnung der inneren Kühllast3.4 Berechnung der äußeren Kühllast4. Lufttechnische Anlagen4.1 Frischluftbedarf4.2 Raumluftströmung4.3 Kanalnetzberechnung4.4 Ventilatoren4.5 Filter5. Kälteanlagen5.1. Kaltdampfkompressionskälteanlagen5.2Absorptionskälteanlagen |
Literatur |
|
Lehrveranstaltung L0595: Klimaanlagen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1021: Schiffsmotorenanlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0637: Schiffsmotorenanlagen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0638: Schiffsmotorenanlagen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Franz Joos |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1000: Kraft-Wärme-Kopplung und Verbrennungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alfons Kather |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Vorkenntnisse in Thermodynamik inkl. von Verbrennungsrechnungen, Wärmeübertragung und Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die thermodynamischen und chemischen Grundlagen von Verbrennungsprozessen. Anhand von Kenntnissen über die Eigenschaften unterschiedlicher Brennstoffe und der Reaktionskinetik können sie Merkmale über das Verhalten von Vormischflammen und nicht-vorgemischten Flammen ableiten, um die Grundlagen der Feuerraumauslegung bei Gas-, Öl- und Kohlefeuerungen zu beschreiben. Studierende sind ferner in der Lage die NOx-Bildung und die NOx-Reduktion durch primäre Maßnahmen zu skizzieren sowie gesetzliche Vorschriften und Grenzwerte zu evaluieren. Studierende stellen den Aufbau, die Auslegung und die Wirkungsweise von Kraftwerken mit Wärmeauskopplung dar und können Dampfturbinenheizkraftwerke mit Gegendruckturbinen, Entnahmegegendruckturbinen oder Entnahmekondensationsturbinen, Gasturbinenheizkraftwerke, kombinierte Gas- und Dampfturbinenheizkraftwerke sowie Motorenheizkraftwerke kategorisieren und gegenüberstellen. Studierende erläutern und analysieren ferner Kraft-Wärme-Kälte-Kopplung Lösungen und beschreiben den Aufbau der dafür benötigten Hauptkomponenten des Kraftwerks. Durch dieses Fachwissen sind sie in der Lage die ökonomische und ökologische Bedeutung der KWK sowie die Wirtschaftlichkeit zu beurteilen. |
Fertigkeiten |
Studierende werden in der Lage sein, anhand von thermodynamischen Berechnungen und der Betrachtung der Reaktionskinetik interdisziplinäre Zusammenhänge in thermodynamischen und chemischen Prozessen bei Verbrennungsvorgängen zu erkennen. Damit sind grundlegende Berechnungen der Verbrennung von gasförmigen, flüssigen und festen Brennstoffen möglich, womit die emittierten Abgase in Mengen und Konzentrationen ermittelt werden. Darüber hinaus werden in diesem Modul der erste Schritt zur Nutzung eines Energieträgers (Verbrennung) sowie Möglichkeiten der Nutzenergiebereitstellung (Strom und Wärme) behandelt. Ein Verständnis beider Vorgänge ermöglicht es den Studierenden, ganzheitliche Betrachtungen der Energienutzung vorzunehmen. Beispiele aus der Praxis, wie die Energieversorgung der TUHH und das Fernwärmenetz in Hamburg, werden verwendet, um die möglichen Potenziale von Kraftanlagen mit ausgekoppelter Wärme zu veranschaulichen. Im Rahmen der Übungen wird den Studierenden zunächst die Fähigkeit vermittelt, Verbrennungsprozesse energetisch und stofflich zu bilanzieren. Zudem erlangen die Studierenden ein tieferes Verständnis der Verbrennungsvorgänge durch die Berechnung von Reaktionskinetiken und die Grundlagen der Brennerauslegung. Zwecks weiterer Analysen von Kraft-Wärme-Kopplungskonzepten lernen die Studierenden die Nutzung der spezialisierten Softwaresuite EBSILON ProfessionalTM kennen. Dabei werden kleine realitätsannähernde Aufgaben selbstständig am PC gelöst, um Aspekte der Auslegung und Bilanzierung von Wärmekreisläufen zu veranschaulichen. Darüber hinaus werden KWK-Technologien in wirtschaftlichem und gesellschaftlichem Umfeld eingeordnet. |
Personale Kompetenzen | |
Sozialkompetenz |
Insbesondere im Rahmen der Übungen wird auf Kommunikation mit der Lehrperson Wert gelegt. Die Studierenten werden somit angeregt über ihr vorhandenes Fachwissen zu reflektieren sowie gezielte Fragen zu stellen, um den eigenen Wissenstand zu verbessern. |
Selbstständigkeit |
Studierende sind fähig mit Hilfe von Hinweisen eigenständig Simulationsmodelle zu entwickeln und Szenarioanalysen sowie überschlägige Berechnungen durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus den Vorlesungen gefestigt und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammensätzen und Randbedingungen veranschaulicht. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L0216: Kraft-Wärme-Kopplung und Verbrennungstechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In dem Themenbereich von "Kraft-Wärme-Kopplung" werden die folgenden Themen behandelt:
während der Themenbereich "Verbrennungstechnik" beinhaltet:
|
Literatur |
Bezüglich des Themenbereichs "Kraft-Wärme-Kopplung":
und für die Grundlagen der "Verbrennungstechnik":
|
Lehrveranstaltung L0220: Kraft-Wärme-Kopplung und Verbrennungstechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1162: Ausgewählte Themen der Energiesysteme |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht |
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Michael Fröba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1286: Dampfturbinen in regenerativen und konventionellen Anwendungen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Christian Scharfetter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1287: Dampfturbinen in regenerativen und konventionellen Anwendungen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Christian Scharfetter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1639: Gasnetze |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Bernhard Klocke |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0072: Offshore-Windkraftparks |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1283: Physikalische Grundlagen und Konzepte von Kernkraftwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dr. Uwe Kleen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vertiefung des Vorlesungsstoffes erfolgt anhand von Beispielaufgaben sowie einer Exkursion. |
Literatur |
|
Lehrveranstaltung L1285: Physikalische Grundlagen und Konzepte von Kernkraftwerken |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dr. Uwe Kleen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vertiefung des Vorlesungsstoffes erfolgt anhand von Beispielaufgaben sowie einer Exkursion. |
Literatur |
|
Lehrveranstaltung L0240: Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1820: Systemsimulation |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Stefan Wischhusen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Alle TeilnehmerInnen müssen ein Notebook mitbringen, um OpenModelica zu installieren und dieses Programm in der Lehrveranstaltung zu nutzen.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification -
Version 3.3", Linköping, Sweden,
2012
|
Lehrveranstaltung L1821: Systemsimulation |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Stefan Wischhusen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1564: Turbinen und Turboverdichter |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1565: Turbinen und Turboverdichter |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1788: Turbulent Flows: DNS and Modelling |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Yan Jin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Pope, S. B.: Turbulent flows Cambridge, University press, Cambridge, 2000 |
Lehrveranstaltung L1079: Verbrennungsmotoren II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Ausgeführte Beispiele |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Lehrveranstaltung L1080: Verbrennungsmotoren II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Aufgabenberechnungen zu: - Ausgeführte Motoren |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1162: Ausgewählte Themen der Energiesysteme |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus dem Maschinenbau, der Energietechnik und der Schiffstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind in der Lage
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht |
Lehrveranstaltung L0021: Brennstoffzellen, Batterien und Gasspeicher: Neue Materialien für die Energieerzeugung und -speicherung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Michael Fröba |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1286: Dampfturbinen in regenerativen und konventionellen Anwendungen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Christian Scharfetter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1287: Dampfturbinen in regenerativen und konventionellen Anwendungen |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Dr. Christian Scharfetter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1639: Gasnetze |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Bernhard Klocke |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0072: Offshore-Windkraftparks |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Dozenten | Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1283: Physikalische Grundlagen und Konzepte von Kernkraftwerken |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dr. Uwe Kleen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vertiefung des Vorlesungsstoffes erfolgt anhand von Beispielaufgaben sowie einer Exkursion. |
Literatur |
|
Lehrveranstaltung L1285: Physikalische Grundlagen und Konzepte von Kernkraftwerken |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Dr. Uwe Kleen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Vertiefung des Vorlesungsstoffes erfolgt anhand von Beispielaufgaben sowie einer Exkursion. |
Literatur |
|
Lehrveranstaltung L0240: Spezielle Gebiete der Experimentellen und Theoretischen Fluiddynamik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1820: Systemsimulation |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Stefan Wischhusen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Alle TeilnehmerInnen müssen ein Notebook mitbringen, um OpenModelica zu installieren und dieses Programm in der Lehrveranstaltung zu nutzen.
|
Literatur |
[1] Modelica Association: "Modelica Language Specification -
Version 3.3", Linköping, Sweden,
2012
|
Lehrveranstaltung L1821: Systemsimulation |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Stefan Wischhusen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1564: Turbinen und Turboverdichter |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1565: Turbinen und Turboverdichter |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1788: Turbulent Flows: DNS and Modelling |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Yan Jin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Pope, S. B.: Turbulent flows Cambridge, University press, Cambridge, 2000 |
Lehrveranstaltung L1079: Verbrennungsmotoren II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Ausgeführte Beispiele |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Lehrveranstaltung L1080: Verbrennungsmotoren II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Aufgabenberechnungen zu: - Ausgeführte Motoren |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Lehrveranstaltung L0011: Windenergieanlagen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 60 min |
Dozenten | Dr. Rudolf Zellermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Gasch, R., Windkraftanlagen, 4. Auflage, Teubner-Verlag, 2005 |
Lehrveranstaltung L0176: Reliability in Engineering Dynamics |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Method for calculation and testing of reliability of dynamic machine systems
|
Literatur |
Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, 2008. ISBN: 978-3-540-33969-4 Inman, Daniel J.: Engineering Vibration. Prentice Hall, 3rd Ed., 2007. ISBN-13: 978-0132281737 Dresig, H., Holzweißig, F.: Maschinendynamik, Springer Verlag, 9. Auflage, 2009. ISBN 3540876936. VDA (Hg.): Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. Band 3 Teil 2, 3. überarbeitete Auflage, 2004. ISSN 0943-9412 |
Lehrveranstaltung L1303: Reliability in Engineering Dynamics |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1155: Flugzeug-Kabinensysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Ralf God |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Grundlegende Kenntnisse in: |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können: |
Fertigkeiten |
Studierende können: |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können: |
Selbstständigkeit |
Studierende können: |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Luftfahrtsysteme: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1545: Flugzeug-Kabinensysteme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel der Vorlesung mit der zugehörigen Übung ist der Erwerb von Kenntnissen zu Flugzeug-Kabinensystemen und zu Betriebsabläufen in der Kabine. Es soll ein grundlegendes Verständnis für den systemtechnischen Aufwand zur Aufrechterhaltung eines bei Reiseflughöhe künstlichen, aber angenehmen und sicheren Arbeits- und Aufenthaltsraumes erreicht werden. Weiterhin sollen Kenntnisse zum Betrieb und zur Wartung des Arbeitssystems Kabine erworben werden. Die
Vorlesung vermittelt einen umfassenden Überblick über aktuelle Kabinentechnik
und Kabinensysteme in modernen Verkehrsflugzeugen. Die Erfüllung von Anforderungen
an das zentrale Arbeitssystem Kabine werden anhand der Themengebiete Komfort, Ergonomie,
Faktor Mensch, Betriebsprozesse, Wartung und Energieversorgung behandelt: |
Literatur |
- Skript zur Vorlesung |
Lehrveranstaltung L1546: Flugzeug-Kabinensysteme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Ralf God |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1294: Bioenergie |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen der Energiegewinnung aus Biomasse, über aerobe und anaerobe Abfallbehandlungsverfahren, die dabei gewonnenen Produkte und die Behandlung der jeweils entstehenden Emissionen wiedergeben. |
Fertigkeiten |
Die Studierenden können das erlernte Wissen über biomasse-basierte Energierzeugungsanlagen anwenden, um für unterschiedliche Fragestellungen, beispielsweise bezüglich der Dimensionierung und Auslegung von Anlagen, die Zusammenhänge zu erläutern. In diesem Zusammenhang sind die Studierenden auch in der Lage Berechnungsaufgaben zur Verbrennung, Vergasung und Biogas-, Biodiesel- und Bioethanolnutzung zu lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Die Studierenden können sich zur Aufarbeitung der Vorlesungschwerpunkte selbstständig Quellen über das Fachgebiet erschließen, Wissen auswählen und aneignen. Des Weiteren können die Studierenden, unter Hilfestellung der Lehrenden, eigenständig Berechnungen zu biomasse-nutzenden Energiesysteme erfüllen und so Ihren jeweiligen Lernstand einschätzen und auf dieser Basis weitere Arbeitsschritte definieren. |
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Regenerative Energien: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0061: Biokraftstoffverfahrenstechnik |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0062: Biokraftstoffverfahrenstechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Oliver Lüdtke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Skriptum zur Vorlesung |
Lehrveranstaltung L1767: Thermische Biomassenutzung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Ziel dieses Kurses ist es, die physikalischen, chemischen und
biologischen als auch die technischen, wirtschaftlichen und
ökologischen Grundlagen aller Optionen der Energieerzeugung aus
Biomasse aus deutscher und internationaler Sicht zu diskutieren.
Zusätzlich unterschiedlichen Systemansätze zur Nutzung von Biomasse für
die Energieerzeugung, Aspekte der Bioenergie im Energiesystem zu
integrieren, technische und wirtschaftliche Entwicklungspotenziale und
die aktuelle und erwartete zukünftige Verwendung innerhalb des
Energiesystems vorgestellt.
|
Literatur |
Kaltschmitt, M.; Hartmann, H. (Hrsg.): Energie aus Biomasse; Springer, Berlin, Heidelberg, 2009, 2. Auflage |
Lehrveranstaltung L1769: World Market for Agricultural Commodities |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Thomas Mielke |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0010: Zukunftsfähige Mobilität |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Dr. Karsten Wilbrand |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1235: Elektrische Energiesysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Regenerative Energien: Kernqualifikation: Pflicht |
Lehrveranstaltung L1670: Elektrische Energiesysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014 A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005 |
Lehrveranstaltung L1671: Elektrische Energiesysteme I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014 A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005 |
Die Vertiefung Schiffsmaschinenbau bietet ein breites Spektrum inhaltlicher Aspekte aus der Schiffstechnik wie z.B. "Schiffsmotorenanlagen", "Schiffsvibrationen", "Maritime Technik und Offshore-Windkraftparks", "Schiffspropeller", "Schiffsakustik", "Hilfsanlagen auf Schiffen", aber auch aus der konventionellen Energietechnik wie "Strömungsmaschinen", "Wärmetechnik" oder "Klimaanlagen". Auch hier liegt der Schwerpunkt in der Betrachtung der komplexen schiffstechnischen Systeme sowie der effizienten Bereitstellung von Strom, Wärme und Kälte.
Die Studierenden erlernen, komplexe schiffstechnische Systeme zu verstehen, physikalisch zu beschreiben und mathematisch zu modellieren. Sie sind in der Lage, komplexe schiffstechnische Sachverhalte zu analysieren und zu bewerten und in den Zusammenhang aktueller maritimer Fragestellungen zu setzen.
Modul M0528: Maritime Technik und Offshore-Windkraftparks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Moustafa Abdel-Maksoud |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Qualifizierter Bachelor einer Natur- oder Ingenieurwissenschaft; Solide Kenntnisse Fähigkeiten in Mathematik, Mechanik, Strömungsmechanik. Grundkenntnisse der Meerestechnik (z.B. aus der einführenden Veranstaltung 'Einführung in die Maritime Technik') Gute Grundlagenkenntnisse im Bereich Technische Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach dem Erfolgreichen Absolvieren dieses Kurses sollten die Studierenden einen Überblick über Phänomene und Methoden der Meerestechnik und Fähigkeit zu Anwendung und Transfer der Methoden auf neuartige Fragestellungen erworben haben. Im Einzelnen sollten die Studierenden:
Anhand ausgewählter Themen sollen die Teilnehmer an aktuelle Forschungsfragen herangeführt und im Rahmen projektorientierter Übungsaufgaben zur Durchführung weitergehender eigenständiger Forschungsaktivitäten befähigt werden. Lernziele im Einzelnen:
Ein grundlegendes Verständnis der technischen Aufgabenstellungen im Bereich Offshore Windenergie und der Ansätze für ihre Lösung. |
Fertigkeiten |
Im Rahmen dieser Vorlesung über ein einziges Semester soll und kann den Studenten vor allem ein Überblickswissen und praxisorientierte Kenntnisse vermittelt werden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Dozent trägt nicht nur vor, sondern skizziert an der Tafel und bindet die Studenten in einem Dialog ein. Die Studierenden sind damit gefordert sich zu artikulieren und einen Beitrag in der Gruppe zu leisten. |
Selbstständigkeit |
Die Studierenden werden in der Vorlesung immer wieder aufgefordert eigenständig mitzudenken und die grundlegenden Zusammenhänge aufzuzeigen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Regenerative Energien: Vertiefung Windenergie: Wahlpflicht |
Lehrveranstaltung L0070: Einführung in die Maritime Technik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Sven Hoog |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einführung
2. Küste und Meer: Umweltbedingungen
3. Antwortverhalten technischer Strukturen 4. Maritime Systeme und Technologien
|
Literatur |
|
Lehrveranstaltung L1614: Einführung in die Maritime Technik |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Sven Hoog |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0072: Offshore-Windkraftparks |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Alexander Mitzlaff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M1210: Ausgewählte Themen des Schiffsmaschinenbaus |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden können ihr Grundlagenverständnis auf spezielle maschinenbauliche und schiffbauliche Fachthemen anwenden sowie komplexe schiffbauliche Gesamtsysteme beschreiben und auslegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht |
Lehrveranstaltung L1704: Grundzüge des Schiffbaus für Schiffsmaschinenbauer |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Eike Lehmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1705: Grundzüge des Schiffbaus für Schiffsmaschinenbauer |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Eike Lehmann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1249: Hilfsanlagen auf Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1250: Hilfsanlagen auf Schiffen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Siehe korrespondierende Vorlesung |
Literatur |
Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1596: Kavitation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1597: Manövrierfähigkeit von Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Qualifikationsziele: Erlernung der Grundlagen für die Beurteilung und Vorhersage der Manövrierfähigkeit von Schiffen Fähigkeiten zur Entwicklung von Methoden zur Analyse des Manövrierverhaltens. |
Literatur |
|
Lehrveranstaltung L1605: Schiffsakustik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Dozenten | Dr. Dietrich Wittekind |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1269: Schiffspropeller |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen. |
Literatur | W.H. Isay, Propellertheorie. Springer Verlag. |
Lehrveranstaltung L1270: Schiffspropeller |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Stefan Krüger |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Vorlesung behandelt die geometrischen Kenngroessen des Propellers sowie Gesichtspunkte für deren Auslegung. Die grundsätzliche Wirkungsweise eines Schraubenpropellers wird mit der Strahlteorie erläutert. Einfache Optimierung der Auslegung von Propellern wird mit Hilfe von Seriendiagrammen erklärt. Die theoretische Behandlung von Strömung mit Auftrieb wird anhand der Singularitätenmethode für die einfache Profiltheorie erläutert. Es wird die Skelettlinientheorie sowie die Profiltropfentheorie für technisch relevante Profile behandelt. Die Berechnung von Zirkulation und Propellerstrahl anhand der Traglinientheorie nach der Goldsteinmethode schliesst die theoretische Behandlung der Berechnungsgrundlagen ab. Weiterhin wird das Zusammenwirken des Propellers mit der Hauptantriebsanlage behandelt, für Verstellpropeller werden Regelungskonzepte vorgestellt. Die Vorlesung schliesst mit einem Einblick in auftretende Kavitationsphänomene und Druckimpulsbetrachtungen. |
Literatur | W.H. Isay, Propellertheorie. Springer Verlag. |
Lehrveranstaltung L1589: Spezielle Gebiete der Schiffspropulsion |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Prüfungsform | Mündliche Prüfung |
Prüfungsdauer und -umfang | |
Dozenten | Prof. Moustafa Abdel-Maksoud |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1079: Verbrennungsmotoren II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Ausgeführte Beispiele |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Lehrveranstaltung L1080: Verbrennungsmotoren II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Prüfungsform | Klausur |
Prüfungsdauer und -umfang | 90 min |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Aufgabenberechnungen zu: - Ausgeführte Motoren |
Literatur |
- Vorlesungsskript als Blattsammlung (auch als pdf-download oder CD verfügbar) - Übungsaufgaben mit Lösungsweg - Literaturliste |
Modul M1149: Energietechnik auf Schiffen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können den Stand der Technik bezüglich der vielfältigen antriebstechnischen Komponenten an Bord von Schiffen wiedergeben und die Kenntnisse anwenden. Sie sind ferner in der Lage, das Zusammenwirken der einzelnen Komponenten im Gesamtsystem zu analysieren und zu optimieren. Die Studierenden können außerdem das Betriebsverhalten der Verbraucher nennen, spezielle Anforderungen an die Auslegung von Versorgungsnetzen und an die elektrischen Betriebsmittel in Inselnetzen, z. B. an Bord von Schiffen, von Offshore-Geräten, Fabrikanlagen und Notstrom-Versorgungseinrichtungen beschreiben, Energieerzeugung und Verteilung in Inselnetzen, Wellengeneratoranlagen auf Schiffen erläutern, sowie Anforderungen an Netzschutz, Selektivität und Betriebsüberwachung benennen. |
Fertigkeiten |
Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz in Schiffsantrieben und Hilfssystemen. Des Weiteren können sie komplexe technische Zusammenhänge von Schiffs-Antriebsanlagen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Antriebskomponenten erforderlich sind und können das gelernte Wissen in einen Kontext zu den weiteren schiffbaulichen Disziplinen bringen. Die Studierenden sind außerdem in der Lage, Kurzschlussstrom, Schaltgeräte und Schaltanlagen zu berechnen, sowie Elektrische Propulsionsantriebe für Schiffe auszulegen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten.
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten plus 20 Minuten mündliche Prüfung |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht |
Lehrveranstaltung L1531: Elektrische Anlagen auf Schiffen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
H. Meier-Peter, F. Bernhardt u. a.: Handbuch der Schiffsbetriebstechnik, Seehafen Verlag (engl. Version: "Compendium Marine Engineering") Gleß, Thamm: Schiffselektrotechnik, VEB Verlag Technik Berlin |
Lehrveranstaltung L1532: Elektrische Anlagen auf Schiffen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1569: Schiffsmaschinenbau |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Wird in der Veranstaltung bekannt gegeben |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Lehrveranstaltung L1570: Schiffsmaschinenbau |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1021: Schiffsmotorenanlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich des Schiffsentwurfes als auch im Bereich der Zulieferindustrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht |
Lehrveranstaltung L0637: Schiffsmotorenanlagen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0638: Schiffsmotorenanlagen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0641: Dampferzeuger |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alfons Kather |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Vorkenntnisse in Thermodynamik, Wärmeübertragung, Strömungsmechanik und Wärmekraftwerke |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die thermodynamischen Grundlagen und die Dampferzeugerbauarten. Sie können die technischen Grundlagen des Dampferzeugers wiedergeben und die Feuerungen sowie der Brennstoffaufbereitung für fossil befeuerte Kraftwerke skizzieren. Sie können wärmetechnische Berechnungen und die Auslegung der Wasser-Dampf-Seite durchführen und die konstruktive Gestaltung des Dampferzeugers definieren. Studierende können das Betriebsverhalten von Dampferzeugern beschreiben und evaluieren, und diese unter Einbeziehung fachangrenzender Kontexte erläutern. |
Fertigkeiten |
Studierende werden in der Lage sein, anhand von vertieften Kenntnissen in der Berechnung, Auslegung und Konstruktion von Dampferzeugern, verknüpft mit einem breiten theoretischen und methodischen Fundament, die Auslegungs- und Konstruktionsmerkmale von Dampferzeugern zu erkennen. Durch das Erkennen und Formalisieren von Problemen, Prozessmodellierung und Beherrschen der Lösungsmethodik von Teilproblemen wird eine Übersicht über diesen Kernbestandteil des Kraftwerks gewonnen. Im Rahmen der Übung gewinnen die Studierenden Fähigkeiten für die Bilanzierung und Dimensionierung des Dampferzeugers sowie dessen Komponenten. Dabei werden kleine realitätsannähernde Aufgaben gelöst, um Aspekte der Auslegung von Dampferzeugern zu veranschaulichen. |
Personale Kompetenzen | |
Sozialkompetenz |
Es wird angestrebt, interessierten Studierenden eine Exkursion im Rahmen der Vorlesung anzubieten. In dieser kommen die Studierenden in direkten Kontakt mit dem gesamten Berufsfeld von Dampferzeugern. Durch Rede und Antwort mit den Anlagenbetreuern gewinnen sie einen Überblick über tägliche Betriebsprobleme und deren Lösung. |
Selbstständigkeit |
Studierende sind fähig mit Hilfe von Hinweisen eigenständig Grundberechnungen für Teilaspekte des Dampferzeugers durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus der Vorlesung fundiert und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammensätzen und Randbedingungen veranschaulicht. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht |
Lehrveranstaltung L0213: Dampferzeuger |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0214: Dampferzeuger |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1161: Strömungsmaschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Franz Joos |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können - die physikalischen Phänomene der Energiewandlung unterscheiden, - die verschiedenen mathematischen Modellierungen von Strömungsmaschinen verstehen, - Strömungsmaschinen berechnen und bewerten. |
Fertigkeiten |
Die Studierenden können - die Physik der Strömungsmaschinen verstehen, - Übungsaufgaben selbstständig lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können
|
Selbstständigkeit |
Die Studierenden können
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht |
Lehrveranstaltung L1562: Strömungsmaschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1563: Strömungsmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Franz Joos |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0721: Klimaanlagen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Arten von Klimaanlagen und die dazugehörenden Regelungskonzepte für stationäre und mobile Anwendungen. Sie beherrschen die Zustandsänderungen feuchter Luft im h1+x,x-Diagramm. Sie sind in der Lage die aus hygienischen Gründen notwendigen Luftvolumenströme für Aufenthaltsräume von Personen zu bestimmen und können dazu die geeigneten Filterverfahren auswählen. Ihnen sind grundlegende Raumströmungszustände bekannt und sie können einfache Verfahren zur Berechnung einer Strömung in Räumen anwenden. Sie wissen, wie ein Kanalnetz ausgelegt und berechnet wird. Sie sind mit verschiedenen Verfahren zur Erzeugung von Kälte vertraut und können die entsprechenden Prozesse in den geeigneten thermodynamischen Diagrammen darstellen. Sie kennen die verschiedenen Umweltbewertungskriterien für Kältemittel. |
Fertigkeiten |
Studierende beherrschen die Berechnung von Klimaanlagen für stationäre und mobile Anwendungen. Sie können eine Kanalnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben selbstständig unter Berücksichtigung der Einbindung natürlicher Wärmequellen und –senken durchzuführen. Sie sind in der Lage aktuelle Forschungsergebnisse in die Praxis zu übertragen und wissenschaftliche Arbeiten auf dem Gebiet der Klimatechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energie- und Umwelttechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeug-Systemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0594: Klimaanlagen |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
1. Überblick über Klimaanlagen 1.1 Einteilung von Klimaanlagen1.2 Lüftung1.3 Aufbau und Funktion von Klimaanlagen2. Thermodynamische Prozesse in Klimaanlagen2.1 Das h,x-Diagramm für feuchte Luft2.2 Mischkammer, Vorwärmer, Nachwärmer2.3 Luftkühler2.4 Luftbefeuchter2.5 Darstellung des konventionellen Klimaanlagenprozesses im h,x-Diagramm2.6 Sorptionsgestützte Klimatisierung3. Berechnung der Heiz- und Kühlleistung3.1 Heizlast und Heizleistung3.2 Kühllasten und Kühlleistung3.3 Berechnung der inneren Kühllast3.4 Berechnung der äußeren Kühllast4. Lufttechnische Anlagen4.1 Frischluftbedarf4.2 Raumluftströmung4.3 Kanalnetzberechnung4.4 Ventilatoren4.5 Filter5. Kälteanlagen5.1. Kaltdampfkompressionskälteanlagen5.2Absorptionskälteanlagen |
Literatur |
|
Lehrveranstaltung L0595: Klimaanlagen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1000: Kraft-Wärme-Kopplung und Verbrennungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alfons Kather |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Vorkenntnisse in Thermodynamik inkl. von Verbrennungsrechnungen, Wärmeübertragung und Strömungsmechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die thermodynamischen und chemischen Grundlagen von Verbrennungsprozessen. Anhand von Kenntnissen über die Eigenschaften unterschiedlicher Brennstoffe und der Reaktionskinetik können sie Merkmale über das Verhalten von Vormischflammen und nicht-vorgemischten Flammen ableiten, um die Grundlagen der Feuerraumauslegung bei Gas-, Öl- und Kohlefeuerungen zu beschreiben. Studierende sind ferner in der Lage die NOx-Bildung und die NOx-Reduktion durch primäre Maßnahmen zu skizzieren sowie gesetzliche Vorschriften und Grenzwerte zu evaluieren. Studierende stellen den Aufbau, die Auslegung und die Wirkungsweise von Kraftwerken mit Wärmeauskopplung dar und können Dampfturbinenheizkraftwerke mit Gegendruckturbinen, Entnahmegegendruckturbinen oder Entnahmekondensationsturbinen, Gasturbinenheizkraftwerke, kombinierte Gas- und Dampfturbinenheizkraftwerke sowie Motorenheizkraftwerke kategorisieren und gegenüberstellen. Studierende erläutern und analysieren ferner Kraft-Wärme-Kälte-Kopplung Lösungen und beschreiben den Aufbau der dafür benötigten Hauptkomponenten des Kraftwerks. Durch dieses Fachwissen sind sie in der Lage die ökonomische und ökologische Bedeutung der KWK sowie die Wirtschaftlichkeit zu beurteilen. |
Fertigkeiten |
Studierende werden in der Lage sein, anhand von thermodynamischen Berechnungen und der Betrachtung der Reaktionskinetik interdisziplinäre Zusammenhänge in thermodynamischen und chemischen Prozessen bei Verbrennungsvorgängen zu erkennen. Damit sind grundlegende Berechnungen der Verbrennung von gasförmigen, flüssigen und festen Brennstoffen möglich, womit die emittierten Abgase in Mengen und Konzentrationen ermittelt werden. Darüber hinaus werden in diesem Modul der erste Schritt zur Nutzung eines Energieträgers (Verbrennung) sowie Möglichkeiten der Nutzenergiebereitstellung (Strom und Wärme) behandelt. Ein Verständnis beider Vorgänge ermöglicht es den Studierenden, ganzheitliche Betrachtungen der Energienutzung vorzunehmen. Beispiele aus der Praxis, wie die Energieversorgung der TUHH und das Fernwärmenetz in Hamburg, werden verwendet, um die möglichen Potenziale von Kraftanlagen mit ausgekoppelter Wärme zu veranschaulichen. Im Rahmen der Übungen wird den Studierenden zunächst die Fähigkeit vermittelt, Verbrennungsprozesse energetisch und stofflich zu bilanzieren. Zudem erlangen die Studierenden ein tieferes Verständnis der Verbrennungsvorgänge durch die Berechnung von Reaktionskinetiken und die Grundlagen der Brennerauslegung. Zwecks weiterer Analysen von Kraft-Wärme-Kopplungskonzepten lernen die Studierenden die Nutzung der spezialisierten Softwaresuite EBSILON ProfessionalTM kennen. Dabei werden kleine realitätsannähernde Aufgaben selbstständig am PC gelöst, um Aspekte der Auslegung und Bilanzierung von Wärmekreisläufen zu veranschaulichen. Darüber hinaus werden KWK-Technologien in wirtschaftlichem und gesellschaftlichem Umfeld eingeordnet. |
Personale Kompetenzen | |
Sozialkompetenz |
Insbesondere im Rahmen der Übungen wird auf Kommunikation mit der Lehrperson Wert gelegt. Die Studierenten werden somit angeregt über ihr vorhandenes Fachwissen zu reflektieren sowie gezielte Fragen zu stellen, um den eigenen Wissenstand zu verbessern. |
Selbstständigkeit |
Studierende sind fähig mit Hilfe von Hinweisen eigenständig Simulationsmodelle zu entwickeln und Szenarioanalysen sowie überschlägige Berechnungen durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus den Vorlesungen gefestigt und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammensätzen und Randbedingungen veranschaulicht. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L0216: Kraft-Wärme-Kopplung und Verbrennungstechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In dem Themenbereich von "Kraft-Wärme-Kopplung" werden die folgenden Themen behandelt:
während der Themenbereich "Verbrennungstechnik" beinhaltet:
|
Literatur |
Bezüglich des Themenbereichs "Kraft-Wärme-Kopplung":
und für die Grundlagen der "Verbrennungstechnik":
|
Lehrveranstaltung L0220: Kraft-Wärme-Kopplung und Verbrennungstechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1146: Ship Vibration |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sören Ehlers |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Mechanis I - III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can reproduce the acceptance criteria for vibrations on ships; they can explain the methods for the calculation of natural frequencies and forced vibrations of sructural components and the entire hull girder; they understand the effect of exciting forces of the propeller and main engine and methods for their determination |
Fertigkeiten |
Students are capable to apply methods for the calculation of natural frequencies and exciting forces and resulting vibrations of ship structures including their assessment; they can model structures for the vibration analysis |
Personale Kompetenzen | |
Sozialkompetenz |
The students are able to communicate and cooperate in a professional environment in the shipbuilding and component supply industry. |
Selbstständigkeit |
Students are able to detect vibration-prone components on ships, to model the structure, to select suitable calculation methods and to assess the results |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Pflicht Ship and Offshore Technology: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1528: Ship Vibration |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sören Ehlers, Prof. Moustafa Abdel-Maksoud |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction; assessment of vibrations |
Literatur | Siehe Vorlesungsskript |
Lehrveranstaltung L1529: Ship Vibration |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sören Ehlers, Prof. Moustafa Abdel-Maksoud |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1. Introduction; assessment of vibrations |
Literatur | Siehe Vorlesungsskript |
Modul M0742: Wärmetechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Thermodynamik I, II, Strömungsmechanik, Wärmeübertragung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen die verschiedenen Energiewandlungsstufen und den Unterschied zwischen einem Wirkungsgrad und einem Nutzungsgrad. Sie verfügen über vertiefte Grundkenntnisse in der Wärme- und Stoffübertragung, insbesondere hinsichtlich der Anwendung im Gebäude- und Fahrzeugbau. Sie sind mit dem Aufbau und dem Inhalt der Energiesparverordnung und weiterer Technischer Regeln vertraut. Sie wissen verschiedene Beheizsysteme in den Bereichen Haushalt und Kleinverbraucher, Gewerbe und Industrie zu unterscheiden und wie ein Beheizungssystem geregelt wird. Sie können für einen Feuerraum ein Modell mit den entsprechenden Wärmeströmen aufstellen und damit zeitliche Temperaturverläufe ermitteln. Sie beherrschen die Grundlagen der Schadstoffbildung bei Brennern von Kleinfeuerungen und wissen, wie Abgase gefahrlos abgeführt werden. Darüber hinaus sind sie mit objektorientierten Modellierungsarten von thermodynamischen Systemen vertraut. |
Fertigkeiten |
Studierende sind in der Lage, den Wärmebedarf für unterschiedliche Beheizungsaufgaben zu ermitteln und die entsprechenden Komponenten eines Heizungssystems auszulegen. Sie können eine Rohrnetzberechnung durchführen und sind befähigt, einfache Planungsaufgaben unter Einbeziehung von Solarenergie selbstständig durchzuführen. Sie schreiben zur Lösung dynamischer Probleme selbst einfache Modelica-Programme und sind in der Lage, aktuelle Forschungsergebnisse in die Praxis zu übertragen bzw. wissenschaftliche Arbeiten auf dem Gebiet der Wärmetechnik selbstständig durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Pflicht Energietechnik: Vertiefung Schiffsmaschinenbau: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Energie- und Umwelttechnik: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Vertiefung Energietechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0023: Wärmetechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einleitung 2. Grundlagen der Wärmetechnik 2.1 Wärmeleitung 2.2 Konvektiver Wärmeübergang 2.3. Wärmestrahlung 2.4. Wärmedurchgang 2.5. Verbrennungstechnische Kennzahlen 2.6 Elektrische Erwärmung 2.7 Wassdampfdiffusion 3. Heizungssysteme 3.1. Warmwasserheizungen 3.2 Anlagen zur Warmwasserbereitung 3.3 Rohrnetzberechnung 3.4 Wärmeerzeuger 3.5 Warmluftheizungen 3.6 Strahlungsheizungen 4. Wärme- und Wärmebehandlungssysteme 4.1 Industrieöfen 4.2 Schmelzanlagen 4.3 Trocknungsanlagen 4.4 Schadstoffemissionen 4.5 Schornsteinberechnungsverfahren 4.6 Energiemesssysteme 5. Verordnung und Normen 5.1 Gebäude 5.2 Industrielle und gewerbliche Anlagen |
Literatur |
|
Lehrveranstaltung L0024: Wärmetechnik |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
In der Masterarbeit bearbeiten die Studierenden selbstständig forschungsorientierte Problemstellungen, strukturieren dabei die Aufgabe in verschiedene Teilaspekte und wenden die im Studium erlangten fachlichen Kompetenzen systematisch an.
Dabei wird besonderer Wert auf eine wissenschaftliche Bearbeitung der Problemstellung gelegt, die neben einer Literaturübersicht, Einordnung in aktuelle Fragestellungen und Beschreibung theoretischer Grundlagen eine kritische Analyse und Bewertung der Ergebnisse umfasst.Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Prüfung | laut FSPO |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht International Production Management: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |