Course of Study General Engineering Science (German program, 7 semester) (Study Cohort w16)

Sample course plan A Bachelor General Engineering Science (German program, 7 semester) (AIWBS(7)) Specialisation Process Engineering

Core qualification Compulsory Specialisation Compulsory Focus Compulsory Thesis Compulsory

Core qualification Elective
Core qualification Elective
Compulsory Specialisation Elective
Compulsory Focus Elective Compulsory

Interdisciplinary complement

LP	Semester 1 Formers	s/wSwemester 2 Formelrs	/wSkemester 3 Formilis	/wSkemester 4 Formilirs	s/wSemester 5 Formers	s/w&mester 6 Formilis	/wSwemester7 Formidrs/wk
1 2 3 4 5 6	Chemistry I VL 2 Chemistry II VL 2 Chemistry II VL 2 Chemistry II HÜ 1 Chemistry II HÜ 1	Electrical Engineering II: Alternating Current Networks and Basic Devices Electrical Engineering II: VL 3 Alternating Current Networks and Basic Devices Electrical Engineering II: UE 2 Alternating Current Networks and Basic Devices	Technical Thermodynamics II Technical VL 2 Thermodynamics II Technical HÜ 1 Thermodynamics II Technical UE 1 Thermodynamics II	Fundamentals of Fluid Mechanics Fundamentals of Fluid VL 2 Mechanics Fluid Mechanics for HÜ 2 Process Engineering	Introduction to Control Systems Introduction to Control VL 2 Systems Introduction to Control UE 2 Systems	Foundations of Management Introduction to VL 3 Management Management Tutorial HÜ 2	Advanced Internship GES
7 8 9	Electrical Engineering I: Direct Current Networks and Electromagnetic Fields Electrical Engineering I: VL 3 Direct Current Networks and Electromagnetic Fields Electrical Engineering I: UE 2 Direct Current Networks and Electromagnetic Fields	Fundamentals of Mechanical Engineering Design Fundamentals of VL 2 Mechanical Engineering Design Fundamentals of HÜ 2 Mechanical Engineering Design	Mathematics III Analysis III VL 2 Analysis III UE 1 Analysis III HÜ 1 Differential Equations 1 VL 2 Differential Equations 1 UE 1 Differential Equations 1 HÜ 1	Phase Equilibria Thermodynamics Phase Equilibria Thermodynamics Phase Equilibria Thermodynamics Phase Equilibria Thermodynamics HÜ 1 Thermodynamics	Heat and Mass Transfer Heat and Mass Transfer VL 2 Heat and Mass Transfer UE 1 Heat and Mass Transfer HÜ 1	Thermal Separation Processes (part 2) Separation Processes PR 1 Chemical Reaction Engineering (part 2) Experimental Course Chemical Engineering Process and Plant Engineering I	
13 14 15 16 17	Mathematics I Linear Algebra I VL 2 Linear Algebra I UE 1 Linear Algebra I HÜ 1 Analysis I VL 2 Analysis I UE 1 Analysis I HÜ 1	Technical Thermodynamics I Technical VL 2 Thermodynamics I Technical HÜ 1 Thermodynamics I Technical UE 1 Thermodynamics I	Mechanics III (Hydrostatics, Kinematics, Kinetics I) Mechanics III VL 3 Mechanics III UE 2 Mechanics III HÜ 1	Signals and Systems Signals and Systems VL 3 Signals and Systems HÜ 1	Thermal Separation Processes (part 1) Thermal Separation VL 2 Processes Thermal Separation UE 2 Processes Thermal Separation HÜ 1 Processes Chemical Reaction	Process and Plant VL 2 Engineering I Process and Plant HÜ 1 Engineering I Process and Plant UE 1 Engineering I Particle Technology and Solids Process Engineering Particle Technology I VL 2 Particle Technology I UE 1	
19 20 21 22 23 24 25 26	Mechanics I (Statics) Mechanics I VL 2 Mechanics I UE 2 Mechanics I HÜ 1	Mechanics II: Mechanics of Materials Mechanics II VL 2 Mechanics II UE 2 Mechanics II HÜ 2 Mathematics II	Computer Engineering Computer Engineering VL 3 Computer Engineering UE 1	Bioprocess Engineering - Fundamentals Bioprocess Engineering VL 2 - Fundamentals Bioprocess Engineering HÜ 2 Fundamentals Bioprocess Engineering PR 2 - Fundamental Practical Course	Engineering (part 1) Chemical Reaction VL 2 Engineering Chemical Reaction HÜ 2 Engineering Measurement Technology for Mechanical and Process Engineers Measurement VL 2 Technology for	Particle Technology I PR 2 Informatics for Process Engineers Numeric and Matlab PR 2 Informatics for Process VL 2 Engineers	Bachelor Thesis

	Programming in C Programming in C VL 1 Programming in C PR 1	Linear Algebra II VL 2 Linear Algebra II UE 1 Linear Algebra II HÜ 1 Analysis II VL 2 Analysis II HÜ 1 Analysis II UE 1	Fundamentals of Process Engineering Introduction into VL 2 Process Engineering/Bioprocess Engineering Fundamentals of VL 2 material engineering	Mechanical and Process Engineers Measurement HÜ 1 Technology for Mechanical and Process Engineers Practical Course: PR 2 Measurement and Control Systems	Informatics for Process UE 2 Engineers
30 31 32	Physics for Engineers (AIW) Physics for Engineers VL 2 Physics for Engineers UE 1 Nontechnical Complementary Cou		Physical Chemistry Physical Chemistry VL 2 Physical Chemistry PR 2		

The choice of courses from the catalogue is flexible (depends on the semestral work load), provided the necessary number of required credits is reached.