Program description
Content
The graduate students of the Bachelor program Mechatronics are able to demonstrate an overview of fundamental knowledge in the fields of material science, production, thermodynamics, mechanical design and computer science. They are able to express in detail basic approaches in the fields of mathematics, mechanics and electrical engineering, to explain the basics of metrology and control theory and to describe the interdisciplinary aspects of Mechatronics. This knowledge and the methods learned enable them to examine problems in Mechatronics, the sub-disciplines of Mechatronics and the adjacent disciplines.
In addition to the foundational curriculum taught at TUHH, seminars on developing personal skills are integrated into the dual study programme, in the context of transfer between theory and practice. These seminars correspond to the modern professional requirements expected of an engineer, as well as promoting the link between the two places of learning.
The intensive dual courses at TUHH integrating practical experience consist of an academic-oriented and a practice-oriented element, which are completed at two places of learning. The academic-oriented element comprises study at TUHH. The practice-oriented element is coordinated with the study programme in terms of content and time, and consists of practical modules and phases spent in an affiliate company during periods when there are no lectures.
Career prospects
The graduates of the Bachelor program Mechatronics are directly able to enter a career in the field of Mechatronics and work responsibly as Engineer. They are entitled to use the professional title Ingenieurin or Ingenieur (Engineer) pursuant to the Engineers Acts (Ingenieurgesetzen) of the states in Germany.
Possible employers include manufacturing companies in mechanical and electrical engineering as well as engineering firms.
The degree allows access to a Master program, for example the consecutive International Master in Mechantronics.
In addition, students acquire basic professional and personal skills as part of the dual study programme that enable them to enter professional practice at an early stage and to go on to further study. Students also gain practical work experience through the integrated practical modules. Graduates of the dual course have broad foundational knowledge, fundamental skills for academic work and relevant personal competences.
Learning target
Graduates are able
- to identify, abstract, formulate and solve technical problems on basic research;
- to select, combine and interdisciplinary apply suitable methods for analysis, modeling, simulation and optimization;
- to understand, analyze and evaluate products and methods in Mechatronics and its sub-disciplines in a systematic manner;
- to apply design methods in Mechatronics;
- to plan and carry out experiments and to interpret their results;
- and to estimate the boundaries of methods and techniques
Graduates can
- interdisciplinarily and responsibly apply and independently expand their knowledge within the sub-disciplines of Mechatronics accounting for economic requirements;
- evaluate Mechatronic problems in a wider societal context and assess the non-technical effects of their engineering work;
- cooperate with experts of other disciplines and laypersons and to communicate in German and English;
- conduct literary research and use databases and other information sources for their work and can express the results of their work understandably both in written and oral presentation;
- expand and deepen their acquired knowledge throughout their lives.
By continually switching places of learnings throughout the dual study programme, it is possible for theory and practice to be interlinked. Students reflect theoretically on their individual professional practical experience, and apply the results of their reflection to new forms of practice. They also test theoretical elements of the course in a practical setting, and use their findings as a stimulus for theoretical debate.
Program structure
The program is split into the core qualifications and Bachelor thesis.
The interdisciplinary final thesis is scheduled for the sixth semester.
At the Hamburg University of Technology the graduates can continue their studies with, among others, the Master program "International Master Mechatronics".
The structural model of the dual study programme follows a module-differentiating approach. Given the practice-oriented element, the curriculum of the dual study programme is different compared to a standard Bachelor’s course. Five practical modules are completed at the dual students’ partner company as part of corresponding practical terms during lecture-free periods.
Core Qualification
The study of mechatronics enables you to understand interdisciplinary technical issues and to coordinate their solution in project teams and to take on subtasks of each individual technical discipline. This function is often referred to as systems engineering. The core qualifications of the bachelor's degree in mechanical engineering correspond exactly to this requirement and convey the basics from all relevant disciplines (computer science, electrical engineering, mechanics, systems technology) as well as the necessary basics of mathematics.
In addition to the foundational curriculum taught at TUHH, seminars on developing personal skills are integrated into the dual study programme, in the context of transfer between theory and practice. These seminars correspond to the modern professional requirements expected of an engineer, as well as promoting the link between the two places of learning.
The intensive dual courses at TUHH integrating practical experience consist of an academic-oriented and a practice-oriented element, which are completed at two places of learning. The academic-oriented element comprises study at TUHH. The practice-oriented element is coordinated with the study programme in terms of content and time, and consists of practical modules and phases spent in an affiliate company during periods when there are no lectures.
Module M0743: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 100 Minutes |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory |
Course L0675: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Kuhl |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
|
Course L0676: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
|
Module M0850: Mathematics I |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
School mathematics |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 | ||||||||
Credit points | 8 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2970: Mathematics I |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | WiSe |
Content |
Mathematical Foundations: sets, statements, induction, mappings, trigonometry Analysis: Foundations of differential calculus in one variable
Linear Algebra: Foundations of linear algebra in Rn
|
Literature |
|
Course L2971: Mathematics I |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz, Dr. Dennis Clemens, Dr. Simon Campese |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2972: Mathematics I |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1692: Computer Science for Engineers - Introduction and Overview |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Görschwin Fey | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | |||||||||
Skills | |||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2685: Computer Science for Engineers - Introduction and Overview |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | WiSe |
Content | |
Literature |
|
Course L2686: Computer Science for Engineers - Introduction and Overview |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0933: Fundamentals of Materials Science |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Jörg Weißmüller |
Admission Requirements | None |
Recommended Previous Knowledge |
Highschool-level physics, chemistry und mathematics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students have acquired a fundamental knowledge on metals, ceramics and polymers and can describe this knowledge comprehensively. Fundamental knowledge here means specifically the issues of atomic structure, microstructure, phase diagrams, phase transformations, corrosion and mechanical properties. The students know about the key aspects of characterization methods for materials and can identify relevant approaches for characterizing specific properties. They are able to trace materials phenomena back to the underlying physical and chemical laws of nature. |
Skills |
The students are able to trace materials phenomena back to the underlying physical and chemical laws of nature. Materials phenomena here refers to mechanical properties such as strength, ductility, and stiffness, chemical properties such as corrosion resistance, and to phase transformations such as solidification, precipitation, or melting. The students can explain the relation between processing conditions and the materials microstructure, and they can account for the impact of microstructure on the material’s behavior. |
Personal Competence | |
Social Competence | - |
Autonomy | - |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 180 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Compulsory Data Science: Specialisation II. Application: Elective Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory |
Course L1085: Fundamentals of Materials Science I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jörg Weißmüller |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Vorlesungsskript W.D. Callister: Materials Science and Engineering - An Introduction. 5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 P. Haasen: Physikalische Metallkunde. Springer 1994 |
Course L0506: Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Bodo Fiedler, Prof. Gerold Schneider |
Language | DE |
Cycle | SoSe |
Content | Chemische Bindungen und Aufbau von Festkörpern; Kristallaufbau; Werkstoffprüfung; Schweißbarkeit; Herstellung von Keramiken; Aufbau und Eigenschaften der Keramik; Herstellung, Aufbau und Eigenschaften von Gläsern; Polymerwerkstoffe, Makromolekularer Aufbau; Struktur und Eigenschaften der Polymere; Polymerverarbeitung; Verbundwerkstoffe |
Literature |
Vorlesungsskript W.D. Callister: Materials Science and Engineering -An Introduction-5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 |
Course L1095: Physical and Chemical Basics of Materials Science |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Gregor Vonbun-Feldbauer |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Für den Elektromagnetismus:
Für die Atomphysik:
Für die Materialphysik und Elastizität:
|
Module M1802: Engineering Mechanics I (Stereostatics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Benedikt Kriegesmann |
Admission Requirements | None |
Recommended Previous Knowledge |
Solid school knowledge in mathematics and physics. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students can
|
Skills |
The students can
|
Personal Competence | |
Social Competence |
The students can work in groups and support each other to overcome difficulties. |
Autonomy |
Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L1001: Engineering Mechanics I (Statics) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | NN |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1003: Engineering Mechanics I (Statics) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | NN |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Course L1002: Engineering Mechanics I (Statics) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | NN |
Language | DE |
Cycle | WiSe |
Content |
Forces and equilibrium Constraints and reactions Frames Center of mass Friction Internal forces and moments for beams |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011). |
Module M1755: Linking theory and practice (dual study program, Bachelor's degree) |
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge | none |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students… … can describe and classify selected classic and modern theories, concepts and methods
... and apply them to specific situations, projects and plans in a personal and professional context. |
Skills |
Dual students…
|
Personal Competence | |
Social Competence |
Dual students…
|
Autonomy |
Dual students…
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz. |
Course L2885: Self-Competence for Professional Success in Engineering (for Dual Study Program) |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Henning Haschke, Heiko Sieben |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature | Seminarapparat |
Course L2884: Self-Management, Organising Work and Learning in Engineering (for Dual Study Program) |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Henning Haschke, Heiko Sieben |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature | Seminarapparat |
Course L2886: Social-Competence: Team Development and Communication in Engineering (for Dual Study Program) |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Henning Haschke, Heiko Sieben |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature | Seminarapparat |
Module M1750: Practical module 1 (dual study program, Bachelor's degree) |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge |
A: Self-management, organising work and learning in engineering (for dual study program) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students…
|
Skills |
Dual students…
|
Personal Competence | |
Social Competence |
Dual students…
|
Autonomy |
Dual students…
|
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase. |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2879: Practical term 1 (dual study program, Bachelor's degree) |
Typ | |
Hrs/wk | 0 |
CP | 6 |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Lecturer | Dr. Henning Haschke |
Language | DE |
Cycle | WiSe |
Content |
Company onboarding process
Operational knowledge and skills
Sharing/reflecting on learning
|
Literature |
|
Module M0547: Electrical Engineering II: Alternating Current Networks and Basic Devices |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Becker | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Electrical Engineering I Mathematics I Direct current networks, complex numbers |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to reproduce and explain fundamental theories, principles, and methods related to the theory of alternating currents. They can describe networks of linear elements using a complex notation for voltages and currents. They can reproduce an overview of applications for the theory of alternating currents in the area of electrical engineering. Students are capable of explaining the behavior of fundamental passive and active devices as well as their impact on simple circuits. |
||||||||
Skills |
Students are capable of calculating parameters within simple electrical networks at alternating currents by means of a complex notation for voltages and currents. They can appraise the fundamental effects that may occur within electrical networks at alternating currents. Students are able to analyze simple circuits such as oscillating circuits, filter, and matching networks quantitatively and dimension elements by means of a design. They can motivate and justify the fundamental elements of an electrical power supply (transformer, transmission line, compensation of reactive power, multiphase system) and are qualified to dimension their main features. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively. |
||||||||
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as online-tests and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis). |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 - 150 minutes | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory |
Course L0178: Electrical Engineering II: Alternating Current Networks and Basic Devices |
Typ | Lecture |
Hrs/wk | 3 |
CP | 5 |
Workload in Hours | Independent Study Time 108, Study Time in Lecture 42 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | SoSe |
Content |
- General time-dependency of electrical networks - Representation and properties of harmonic signals - RLC-elements at alternating currents/voltages - Complex notation for the representation of RLC-elements - Power in electrical networks at alternating currents, compensation of reactive power - Frequency response locus (Nyquist plot) and Bode-diagrams - Measurement instrumentation for assessing alternating currents - Oscillating circuits, filters, electrical transmission lines - Transformers, three-phase current, energy converters - Simple non-linear and active electrical devices |
Literature |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Course L0179: Electrical Engineering II: Alternating Current Networks and Basic Devices |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Christian Becker |
Language | DE |
Cycle | SoSe |
Content |
- General time-dependency of electrical networks - Representation and properties of harmonic signals - RLC-elements at alternating currents/voltages - Complex notation for the representation of RLC-elements - Power in electrical networks at alternating currents, compensation of reactive power - Frequency response locus (Nyquist plot) and Bode-diagrams - Measurement instrumentation for assessing alternating currents - Oscillating circuits, filters, electrical transmission lines - Transformers, three-phase current, energy converters - Simple non-linear and active electrical devices |
Literature |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Module M0594: Fundamentals of Mechanical Engineering Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Dieter Krause |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After passing the module, students are able to:
|
Skills |
After passing the module, students are able to:
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0258: Fundamentals of Mechanical Engineering Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause, Prof. Nikola Bursac, Prof. Sören Ehlers |
Language | DE |
Cycle | SoSe |
Content |
Lecture
Exercise
|
Literature |
|
Course L0259: Fundamentals of Mechanical Engineering Design |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause, Prof. Nikola Bursac, Prof. Sören Ehlers |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0851: Mathematics II |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Anusch Taraz | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Mathematics I | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 | ||||||||
Credit points | 8 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2976: Mathematics II |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L2977: Mathematics II |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L2978: Mathematics II |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Anusch Taraz |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1693: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Sibylle Fröschle | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | |||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | |||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence | |||||||||
Autonomy | |||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Green Technologies, Focus Renewable Energy: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechatronics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L2689: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
John V. Guttag: Introduction to Computation and Programming Using Python. |
Course L2690: Computer Science for Engineers - Programming Concepts, Data Handling & Communication |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Sibylle Fröschle |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1803: Engineering Mechanics II (Elastostatics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Christian Cyron |
Admission Requirements | None |
Recommended Previous Knowledge |
Engineering Mechanics I, Mathematics I (basic knowledge of rigid body mechanics such as balance of linear and angular momentum, basic knowledge of linear algebra like vector-matrix calculus, basic knowledge of analysis such as differential and integral calculus) |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Having accomplished this module, the students know and understand the basic concepts of continuum mechanics and elastostatics, in particular stress, strain, constitutive laws, stretching, bending, torsion, failure analysis, energy methods and stability of structures. |
Skills |
Having accomplished this module, the students are able to |
Personal Competence | |
Social Competence | Ability to communicate complex problems in elastostatics, to work out solution to these problems together with others, and to communicate these solutions |
Autonomy | self-discipline and endurance in tackling independently complex challenges in elastostatics; ability to learn also very abstract knowledge |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0493: Engineering Mechanics II (Elastostatics) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content |
The lecture Engineering Mechanics II introduces the fundamental concepts of stress and strain and explains how these can be used to characterize and compute elastic deformations of mechanical bodies under loading. The focus of the lecture lies on:
|
Literature |
|
Course L1691: Engineering Mechanics II (Elastostatics) |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron, Dr. Konrad Schneider |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0494: Engineering Mechanics II (Elastostatics) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1751: Practical module 2 (dual study program, Bachelor's degree) |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students …
|
Skills |
Dual students …
|
Personal Competence | |
Social Competence |
Dual students …
|
Autonomy |
Dual students …
|
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase. |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2880: Practical term 2 (dual study program, Bachelor's degree) |
Typ | |
Hrs/wk | 0 |
CP | 6 |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Lecturer | Dr. Henning Haschke |
Language | DE |
Cycle | SoSe |
Content |
Company onboarding process
Operational knowledge and skills
Sharing/reflecting on learning
|
Literature |
|
Module M1804: Engineering Mechanics III (Dynamics) |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Robert Seifried | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Mathematics I, II, Engineering Mechanics I (Statics). Parallel to Engineering Mechanik III the module Mathematics III should be attended. |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students can
|
||||||||
Skills |
The students can
|
||||||||
Personal Competence | |||||||||
Social Competence |
The students can work in groups and support each other to overcome difficulties. |
||||||||
Autonomy |
Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 120 min | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Data Science: Core Qualification: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Maritime Technologies: Elective Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Medical Engineering: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L1134: Engineering Mechanics III (Dynamics) |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content |
Kinematics 2 Kinetics 2.3 Kinetics of rigid bodies 3 Vibrations 4. Impact problems 5 Kinetics of gyroscopes |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 3 und 4. 11. Auflage, Springer (2011). |
Course L1136: Engineering Mechanics III (Dynamics) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1135: Engineering Mechanics III (Dynamics) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0598: Mechanical Engineering: Design |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Dieter Krause | ||||||||||||||||||||
Admission Requirements | None | ||||||||||||||||||||
Recommended Previous Knowledge |
|
||||||||||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||||||||||
Professional Competence | |||||||||||||||||||||
Knowledge |
After passing the module, students are able to:
|
||||||||||||||||||||
Skills |
After passing the module, students are able to:
|
||||||||||||||||||||
Personal Competence | |||||||||||||||||||||
Social Competence |
After passing the module, students are able to:
|
||||||||||||||||||||
Autonomy |
Students are able
|
||||||||||||||||||||
Workload in Hours | Independent Study Time 40, Study Time in Lecture 140 | ||||||||||||||||||||
Credit points | 6 | ||||||||||||||||||||
Course achievement |
|
||||||||||||||||||||
Examination | Written exam | ||||||||||||||||||||
Examination duration and scale | 180 | ||||||||||||||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Mechatronics: Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory Engineering Science: Specialisation Biomedical Engineering: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory |
Course L0268: Embodiment Design and 3D-CAD Introduction and Practical Training |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0695: Mechanical Design Project I |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Schüppstuhl |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0592: Mechanical Design Project II |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 2 |
Workload in Hours | Independent Study Time 18, Study Time in Lecture 42 |
Lecturer | Prof. Jan Hendrik Dege |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag. Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag. Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag. Einführung in die DIN-Normen, Klein, M., Teubner-Verlag. Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag. |
Course L0267: Team Project Design Methodology |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Prof. Dieter Krause |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Module M0853: Mathematics III |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Marko Lindner |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I + II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 128, Study Time in Lecture 112 |
Credit points | 8 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Analysis III) + 60 min (Differential Equations 1) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Logistics and Mobility: Specialisation Information Technology: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Information Technology: Compulsory |
Course L1028: Analysis III |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of differential and integrational calculus of several variables
|
Literature |
|
Course L1029: Analysis III |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1030: Analysis III |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1031: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content |
Main features of the theory and numerical treatment of ordinary differential equations
|
Literature |
|
Course L1032: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1033: Differential Equations 1 (Ordinary Differential Equations) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1752: Practical module 3 (dual study program, Bachelor's degree) |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students …
|
Skills |
Dual students …
|
Personal Competence | |
Social Competence |
Dual students …
|
Autonomy |
Dual students …
|
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase. |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2881: Practical term 3 (dual study program, Bachelor's degree) |
Typ | |
Hrs/wk | 0 |
CP | 6 |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Lecturer | Dr. Henning Haschke |
Language | DE |
Cycle | WiSe |
Content |
Company onboarding process
Operational knowledge and skills
Sharing/reflecting on learning
|
Literature |
|
Module M0708: Electrical Engineering III: Circuit Theory and Transients |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Alexander Kölpin |
Admission Requirements | None |
Recommended Previous Knowledge |
Electrical Engineering I and II, Mathematics I and II |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to explain the basic methods for calculating electrical circuits. They know the Fourier series analysis of linear networks driven by periodic signals. They know the methods for transient analysis of linear networks in time and in frequency domain, and they are able to explain the frequency behaviour and the synthesis of passive two-terminal-circuits. |
Skills |
The students are able to calculate currents and voltages in linear networks by means of basic methods, also when driven by periodic signals. They are able to calculate transients in electrical circuits in time and frequency domain and are able to explain the respective transient behaviour. They are able to analyse and to synthesize the frequency behaviour of passive two-terminal-circuits. |
Personal Competence | |
Social Competence |
Students work on exercise tasks in small guided groups. They are encouraged to present and discuss their results within the group. |
Autonomy |
The students are able to find out the required methods for solving the given practice problems. Possibilities are given to test their knowledge during the lectures continuously by means of short-time tests. This allows them to control independently their educational objectives. They can link their gained knowledge to other courses like Electrical Engineering I and Mathematics I. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 150 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0566: Circuit Theory |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Language | DE |
Cycle | WiSe |
Content |
- Circuit theorems - N-port circuits - Periodic excitation of linear circuits - Transient analysis in time domain - Transient analysis in frequency domain; Laplace Transform - Frequency behaviour of passive one-ports |
Literature |
- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011) - M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011) - L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006) - L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005) |
Course L0567: Circuit Theory |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Language | DE |
Cycle | WiSe |
Content | see interlocking course |
Literature |
siehe korrespondierende Lehrveranstaltung |
Module M1805: Computational Mechanics |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Robert Seifried | ||||||||||||
Admission Requirements | None | ||||||||||||
Recommended Previous Knowledge |
Mathematics I-III and Engineering Mechanics I-III |
||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||
Professional Competence | |||||||||||||
Knowledge |
The students can
|
||||||||||||
Skills |
The students can
|
||||||||||||
Personal Competence | |||||||||||||
Social Competence |
The students can work in groups and support each other to overcome difficulties. |
||||||||||||
Autonomy |
Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those. |
||||||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||||||
Credit points | 6 | ||||||||||||
Course achievement |
|
||||||||||||
Examination | Written exam | ||||||||||||
Examination duration and scale | 120 min | ||||||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory Energy Systems: Technical Complementary Course Core Studies: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Medical Engineering: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory |
Course L1138: Computational Mechanics (Exercises) |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried, Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1-4. 11. Auflage, Springer (2011). |
Course L1137: Computational Multibody Dynamics |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). W. Schiehlen, P. Eberhard: Technische Dynamik, Springer (2012). |
Course L2475: Computational Stuctural Mechanics |
Typ | Integrated Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Christian Cyron |
Language | DE |
Cycle | SoSe |
Content |
The lecture Computational Structural Mechanics extends the content of the lecture Engineering Mechanic II. It bridges the gap between the manual calculation of mechanical stress and deformation in systems with a particularly simple geometry and the efficent computer-based computation of general mechanical systems:
|
Literature | Gross, Hauger, Wriggers, "Technische Mechanik 4", Springer |
Module M0672: Signals and Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Bauch |
Admission Requirements | None |
Recommended Previous Knowledge |
Mathematics 1-3 The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Skills | The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain. |
Personal Competence | |
Social Competence | The students can jointly solve specific problems. |
Autonomy | The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Computer Science: Specialisation II. Mathematics and Engineering Science: Elective Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0432: Signals and Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0433: Signals and Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0854: Mathematics IV |
||||||||||||||||||||||||||||
Courses | ||||||||||||||||||||||||||||
|
Module Responsible | Prof. Marko Lindner |
Admission Requirements | None |
Recommended Previous Knowledge | Mathematics I - III |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 68, Study Time in Lecture 112 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min (Complex Functions) + 60 min (Differential Equations 2) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechanical Engineering: Specialisation Mechatronics: Compulsory Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Elective Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory |
Course L1043: Differential Equations 2 (Partial Differential Equations) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content |
Main features of the theory and numerical treatment of partial differential equations
|
Literature |
|
Course L1044: Differential Equations 2 (Partial Differential Equations) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1045: Differential Equations 2 (Partial Differential Equations) |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1038: Complex Functions |
Typ | Lecture |
Hrs/wk | 2 |
CP | 1 |
Workload in Hours | Independent Study Time 2, Study Time in Lecture 28 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content |
Main features of complex analysis
|
Literature |
|
Course L1041: Complex Functions |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1042: Complex Functions |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dozenten des Fachbereiches Mathematik der UHH |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1753: Practical module 4 (dual study program, Bachelor's degree) |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students …
|
Skills |
Dual students …
|
Personal Competence | |
Social Competence |
Dual students …
|
Autonomy |
Dual students …
|
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase. |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2882: Practical term 4 (dual study program, Bachelor's degree) |
Typ | |
Hrs/wk | 0 |
CP | 6 |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Lecturer | Dr. Henning Haschke |
Language | DE |
Cycle | SoSe |
Content |
Company onboarding process
Operational knowledge and skills
Sharing/reflecting on learning
|
Literature |
|
Module M0671: Technical Thermodynamics I |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge | Elementary knowledge in Mathematics and Mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are familiar with the laws of Thermodynamics. They know the relation of the kinds of energy according to 1st law of Thermodynamics and are aware about the limits of energy conversions according to 2nd law of Thermodynamics. They are able to distinguish between state variables and process variables and know the meaning of different state variables like temperature, enthalpy, entropy and also the meaning of exergy and anergy. They are able to draw the Carnot cycle in a Thermodynamics related diagram. They know the physical difference between an ideal and a real gas and are able to use the related equations of state. They know the meaning of a fundamental state of equation and know the basics of two phase Thermodynamics. |
Skills |
Students are able to calculate the internal energy, the enthalpy, the kinetic and the potential energy as well as work and heat for simple change of states and to use this calculations for the Carnot cycle. They are able to calculate state variables for an ideal and for a real gas from measured thermal state variables. |
Personal Competence | |
Social Competence |
The students can discuss in small groups and work out a solution. You can answer comprehension questions about the content that are provided in the lecture with the ClickerOnline tool "TurningPoint" after discussions with other students. |
Autonomy |
Students can understand the problems posed in tasks physically. They are able to select the methods taught in the lecture and exercise to solve problems and apply them independently to different types of tasks. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory Engineering Science: Specialisation Biomedical Engineering: Compulsory Engineering Science: Specialisation Advanced Materials: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Integrated Building Technology: Core Qualification: Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Core Qualification: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory |
Course L0437: Technical Thermodynamics I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0439: Technical Thermodynamics I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0441: Technical Thermodynamics I |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0725: Production Engineering |
||||||||||||||||||||
Courses | ||||||||||||||||||||
|
Module Responsible | Prof. Jan Hendrik Dege |
Admission Requirements | None |
Recommended Previous Knowledge |
no course assessments required internship recommended |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to ...
|
Skills |
Students are able to...
|
Personal Competence | |
Social Competence |
Students are able to ...
|
Autonomy |
Students are able to ..
|
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory Digital Mechanical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Elective Compulsory Mechatronics: Specialisation Medical Engineering: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation Production Management and Processes: Compulsory |
Course L0608: Production Engineering I |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jan Hendrik Dege |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Dubbel, Heinrich (Grote, Karl-Heinrich.; Feldhusen, Jörg.; Dietz, Peter,; Ziegmann, Gerhard,;) Taschenbuch für den Maschinenbau : mit Tabellen. Berlin [u.a.] : Springer, 2007 Fritz, Alfred Herbert: Fertigungstechnik : mit 62 Tabellen. Berlin [u.a.] : Springer, 2004 Keferstein, Claus P (Dutschke, Wolfgang,;): Fertigungsmesstechnik : praxisorientierte Grundlagen, moderne Messverfahren. Wiesbaden : Teubner, 2008 Mohr, Richard: Statistik für Ingenieure und Naturwissenschaftler : Grundlagen und Anwendung statistischer Verfahren. Renningen : expert-Verl, 2008 Klocke, F., König, W.: Fertigungsverfahren Bd. 1 Drehen, Fäsen, Bohren. 8. Aufl., Springer (2008) Klocke, Fritz (König, Wilfried,;): Umformen. Berlin [u.a.] : Springer, 2006 Paucksch, E.: Zerspantechnik, Vieweg-Verlag, 1996 Tönshoff, H.K.; Denkena, B., Spanen. Grundlagen, Springer-Verlag (2004) |
Course L0612: Production Engineering I |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Jan Hendrik Dege |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0610: Production Engineering II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Jan Hendrik Dege, Prof. Claus Emmelmann |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
Klocke, F., König, W.: Fertigungsverfahren Bd. 2 Schleifen, Honen, Läppen, 4. Aufl., Springer (2005) Klocke, F., König, W.: Fertigungsverfahren Bd. 3 Abtragen, Generieren und Lasermaterialbearbeitung. 4. Aufl., Springer (2007) Spur, Günter (Stöferle, Theodor.;): Urformen. München [u.a.] : Hanser, 1981 Schatt, Werner (Wieters, Klaus-Peter,; Kieback, Bernd,;): Pulvermetallurgie : Technologien und Werkstoffe. Berlin [u.a.] : Springer, 2007 |
Course L0611: Production Engineering II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Jan Hendrik Dege, Prof. Claus Emmelmann |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0956: Measurement Technology for Mechanical Engineers |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Thorsten Kern | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basic knowledge of physics, chemistry and electrical engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to name the most important fundmentals of the Measurement Technology (Quantities and Units, Uncertainty, Calibration, Static and Dynamic Properties of Sensors and Systems). They can outline the most important measuring methods for different kinds of quantities to be maesured (Electrical Quantities, Temperature, mechanical quantities, Flow, Time, Frequency). They can describe important methods of chemical Analysis (Gas Sensors, Spectroscopy, Gas Chromatography) |
||||||||
Skills |
Students can select suitable measuring methods to given problems and can use refering measurement devices in practice. The students are able to orally explain issues in the subject area of measurement technology and solution approaches as well as place the issues into the right context and application area. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students can arrive at work results in groups and document them in a common report. |
||||||||
Autonomy |
Students are able to familiarize themselves with new measurement technologies. |
||||||||
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Subject theoretical and practical work | ||||||||
Examination duration and scale | Successfull execution of up to 12 short experiments on measurements technology and sucessfull participation in the practical course of "Practical Course: Measurement and Control Systems" | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory General Engineering Science (German program, 7 semester): Specialisation Advanced Materials: Elective Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory Engineering Science: Specialisation Biomedical Engineering: Elective Compulsory Engineering Science: Specialisation Mechatronics: Compulsory Engineering Science: Specialisation Mechatronics: Compulsory Engineering Science: Specialisation Mechanical Engineering and Management: Compulsory Engineering Science: Specialisation Advanced Materials: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Medical Engineering: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Production Management and Processes: Elective Compulsory |
Course L1119: Practical Course: Measurement and Control Systems |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern |
Language | DE |
Cycle |
WiSe/ |
Content |
The content of experiment 1: Accuracy testing of a delta robot: In the course of the experiment, the accuracy of a delta robot is tested through 3 tasks. The first task focuses on the online/offline programming of the robot. The second task deals with sensor calibration. In the third task, the radius of a sphere is determined using three different measurement methods (manual measurement, manual measurement with a sensor, automatic data acquisition and data processing). The content of experiment 3: The aim of the task is to enable the parallel kinematics to find objects, grasp them and place them on a static target position For this purpose, the end effector of the kinematics is equipped with an optical sensor (camera), whose characteristics are to be defined. The measuring range of the sensor is to be identified and, based on this, a movement strategy for finding the objects is to be developed and implemented. Once the objects have been found, they are to be picked up with a magnetic gripper and transported to their destination. The content of experiment 4: The aim of the task is to enable the parallel kinematics to find objects, grab them and deposit them on a moving platform. For this purpose, the end effector of the kinematics is equipped with an optical sensor (camera), the properties of which were worked out in experiment 3. Based on this, the parallel kinematics should now be able to follow the moving platform. For this purpose, a position control must be developed and implemented. Once the controller has been appropriately configured, the objects can be placed on the moving platform. |
Literature |
Versuch 1:
Versuch 3:
Versuch 4:
Bibliography: Experiment 1
Experiment 3:
Experiment 4:
|
Course L1116: Measurement Technology for Mechanical Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern, Dennis Kähler |
Language | EN |
Cycle | WiSe |
Content |
1 Fundamentals 1.1 Quantities and Units 1.2 Uncertainty 1.3 Calibration 1.4 Static and Dynamic Properties of Sensors and Systems 2 Measurement of Electrical Quantities 2.1 Current and Voltage 2.2 Impedance 2.3 Amplification 2.4 Oscilloscope 2.5 Analog-to-Digital Conversion 2.6 Data Transmission 3 Measurement of Nonelectric Quantities 3.1 Temperature 3.2 Length, Displacement, Angle 3.3 Strain, Force, Pressure 3.4 Flow 3.5 Time, Frequency |
Literature |
Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3. Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940. |
Course L1118: Measurement Technology for Mechanical Engineering |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern |
Language | EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M1320: Simulation and Design of Mechatronic Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Robert Seifried |
Admission Requirements | None |
Recommended Previous Knowledge | Fundatmentals of mechanics, control theory and electrical engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe methods and calculations for design, modeling, simulation and optimization of mechatronic systems. |
Skills |
Students are able to apply modern algorithms for modeling of mechatronic systems. They can identify, simulate and design simple systems and implement those in laboratory conditions. |
Personal Competence | |
Social Competence |
Students are able to work goal-oriented in small mixed groups and present results to target groups. |
Autonomy |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Mechanical Engineering: Specialisation Mechatronics: Elective Compulsory Mechatronics: Core Qualification: Compulsory |
Course L1822: Simulation and Design of Mechatronic Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Robert Seifried, Daniel-André Dücker |
Language | DE |
Cycle | WiSe |
Content |
Mechatronic Design Modeling Model Identifikation Numerical Methods in simulation Applications and examples in Matlab® and Simulink® |
Literature |
Skript zur Veranstaltung Weitere Literatur in der Veranstaltung |
Course L1823: Simulation and Design of Mechatronic Systems |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1824: Simulation and Design of Mechatronic Systems |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Robert Seifried |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0833: Introduction to Control Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Timm Faulwasser |
Admission Requirements | None |
Recommended Previous Knowledge |
Representation of signals and systems in time and frequency domain, Laplace transform |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence | Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs |
Autonomy |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Data Science: Specialisation II. Application: Elective Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Logistics and Mobility: Specialisation Information Technology: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Information Technology: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Production Management and Processes: Elective Compulsory |
Course L0654: Introduction to Control Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Timm Faulwasser |
Language | DE |
Cycle | WiSe |
Content |
Signals and systems
Feedback systems
Root locus techniques
Frequency response techniques
Time delay systems
Digital control
Software tools
|
Literature |
|
Course L0655: Introduction to Control Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Timm Faulwasser |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1754: Practical module 5 (dual study program, Bachelor's degree) |
||||||||
Courses | ||||||||
|
Module Responsible | Dr. Henning Haschke |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students …
|
Skills |
Dual students …
|
Personal Competence | |
Social Competence |
Dual students …
|
Autonomy |
Dual students …
|
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Written elaboration |
Examination duration and scale | Documentation accompanying studies and across semesters: Module credit points are earned by completing a digital learning and development report (e-portfolio). This documents and reflects individual learning experiences and skills development relating to interlinking theory and practice, as well as professional practice. In addition, the partner company provides proof to the dual@TUHH Coordination Office that the dual student has completed the practical phase. |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Computer Science: Core Qualification: Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Computer Science in Engineering: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L2883: Practical term 5 (dual study program, Bachelor's degree) |
Typ | |
Hrs/wk | 0 |
CP | 6 |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Lecturer | Dr. Henning Haschke |
Language | DE |
Cycle | WiSe |
Content |
Company onboarding process
Operational knowledge and skills
Sharing/reflecting on learning
|
Literature |
|
Module M0829: Foundations of Management |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Christian Lüthje |
Admission Requirements | None |
Recommended Previous Knowledge | Basic Knowledge of Mathematics and Business |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to
|
Skills |
Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to
|
Personal Competence | |
Social Competence |
Students are able to
|
Autonomy |
Students are able to
|
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | several written exams during the semester plus final test (90 minutes) |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Civil- and Environmental Engineering: Specialisation Civil Engineering: Elective Compulsory Civil- and Environmental Engineering: Specialisation Water and Environment: Elective Compulsory Civil- and Environmental Engineering: Specialisation Traffic and Mobility: Elective Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Specialisation Bio Engineering: Elective Compulsory Chemical and Bioprocess Engineering: Specialisation Chemical Engineering: Elective Compulsory Data Science: Core Qualification: Compulsory Electrical Engineering: Core Qualification: Compulsory Green Technologies: Energy, Water, Climate: Specialisation Biotechnologies: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Systems / Renewable Energies: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Maritime Technologies: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Water Technologies: Elective Compulsory Computer Science in Engineering: Core Qualification: Compulsory Logistics and Mobility: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechanical Engineering: Specialisation Biomechanics: Compulsory Mechanical Engineering: Specialisation Energy Systems: Compulsory Mechanical Engineering: Specialisation Materials in Engineering Sciences: Compulsory Mechanical Engineering: Specialisation Product Development and Production: Compulsory Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory Mechanical Engineering: Specialisation Aircraft Systems Engineering: Compulsory Mechanical Engineering: Specialisation Mechatronics: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Specialisation Dynamic Systems and AI: Compulsory Mechatronics: Specialisation Medical Engineering: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Orientation Studies: Core Qualification: Elective Compulsory Orientation Studies: Core Qualification: Elective Compulsory Naval Architecture: Core Qualification: Compulsory Technomathematics: Core Qualification: Compulsory Process Engineering: Core Qualification: Compulsory Engineering and Management - Major in Logistics and Mobility: Core Qualification: Compulsory |
Course L0882: Management Tutorial |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Christian Lüthje |
Language | DE |
Cycle |
WiSe/ |
Content |
In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools. If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor. |
Literature | Relevante Literatur aus der korrespondierenden Vorlesung. |
Course L0880: Introduction to Management |
Typ | Lecture |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Meyer, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Christian Thies, Prof. Christoph Ihl, Prof. Kathrin Fischer, Prof. Moritz Göldner, Prof. Thomas Wrona, Prof. Thorsten Blecker, Prof. Tim Schweisfurth, Prof. Wolfgang Kersten |
Language | DE |
Cycle |
WiSe/ |
Content |
|
Literature |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Module M0688: Technical Thermodynamics II |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Arne Speerforck |
Admission Requirements | None |
Recommended Previous Knowledge |
Elementary knowledge in Mathematics, Mechanics and Technical Thermodynamics I |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are familiar with different cycle processes like Joule, Otto, Diesel, Stirling, Seiliger and Clausius-Rankine. They are able to derive energetic and exergetic efficiencies and know the influence different factors. They know the difference between anti clockwise and clockwise cycles (heat-power cycle, cooling cycle). They have increased knowledge of steam cycles and are able to draw the different cycles in Thermodynamics related diagrams. They know the laws of gas mixtures, especially of humid air processes and are able to perform simple combustion calculations. They are provided with basic knowledge in gas dynamics and know the definition of the speed of sound and know about a Laval nozzle. |
Skills |
Students are able to use thermodynamic laws for the design of technical processes. Especially they are able to formulate energy, exergy- and entropy balances and by this to optimise technical processes. They are able to perform simple safety calculations in regard to an outflowing gas from a tank. They are able to transform a verbal formulated message into an abstract formal procedure. |
Personal Competence | |
Social Competence |
The students are able to discuss in small groups and develop an approach. You can answer comprehension questions about the content that are
provided in the lecture with the ClickerOnline tool "TurningPoint" after
discussions with other students. |
Autonomy |
Students can physically understand and explain the complex problems (cycle processes, air conditioning processes, combustion processes) set in tasks. They are able to select the methods taught in the lecture and exercise to solve complex problems and apply them independently to different types of tasks. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Core Qualification: Compulsory Bioprocess Engineering: Core Qualification: Compulsory Chemical and Bioprocess Engineering: Core Qualification: Compulsory Energy Systems: Technical Complementary Course Core Studies: Elective Compulsory Engineering Science: Specialisation Mechanical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Core Qualification: Compulsory Mechanical Engineering: Core Qualification: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Process Engineering: Core Qualification: Compulsory |
Course L0449: Technical Thermodynamics II |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content |
8. Cycle processes 7. Gas - vapor - mixtures 10. Open sytems with constant flow rates 11. Combustion processes 12. Special fields of Thermodynamics |
Literature |
|
Course L0450: Technical Thermodynamics II |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0451: Technical Thermodynamics II |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Speerforck |
Language | DE |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0610: Electrical Machines and Actuators |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Thorsten Kern |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics of mathematics, in particular complexe numbers, integrals, differentials Basics of electrical engineering and mechanical engineering |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can to draw and explain the basic principles of electric and magnetic fields. They can describe the function of the standard types of electric machines and present the corresponding equations and characteristic curves. For typically used drives they can explain the major parameters of the energy efficiency of the whole system from the power grid to the driven engine. |
Skills |
Students are able to calculate two-dimensional electric and magnetic fields in particular ferromagnetic circuits with air gap. For this they apply the usual methods of the design auf electric machines. They can calulate the operational performance of electric machines from their given characteristic data and selected quantities and characteristic curves. They apply the usual equivalent circuits and graphical methods. |
Personal Competence | |
Social Competence | none |
Autonomy |
Students are able independently to calculate electric and magnatic fields for applications. They are able to analyse independently the operational performance of electric machines from the charactersitic data and theycan calculate thereof selected quantities and characteristic curves. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | Design of four machines and actuators, review of design files |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Electrical Engineering: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Energy Technology: Elective Compulsory Green Technologies: Energy, Water, Climate: Specialisation Maritime Technologies: Elective Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Logistics and Mobility: Specialisation Traffic Planning and Systems: Elective Compulsory Logistics and Mobility: Specialisation Production Management and Processes: Elective Compulsory Mechanical Engineering: Core Qualification: Elective Compulsory Mechatronics: Specialisation Naval Engineering: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Compulsory Mechatronics: Specialisation Electrical Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Information Technology: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Traffic Planning and Systems: Elective Compulsory Engineering and Management - Major in Logistics and Mobility: Specialisation II. Production Management and Processes: Elective Compulsory |
Course L0293: Electrical Machines and Actuators |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Thorsten Kern, Dennis Kähler |
Language | DE |
Cycle | SoSe |
Content |
Electric field: Coulomb´s law, flux (field) line, work, potential, capacitor, energy, force, capacitive actuators Magnetic field: force, flux line, Ampere´s law, field at bounderies, flux, magnetic circuit, hysteresis, induction, self-induction, mutual inductance, transformer, electromagnetic actuators Synchronous machines, construction and layout, equivalent single line diagrams, no-load and short-cuircuit characteristics, vector diagrams, motor and generator operation, stepper motors DC-Machines: Construction and layout, torque generation mechanismen, torque vs speed characteristics, commutation, Asynchronous Machines. Magnetic field, construction and layout, equivalent single line diagram, complex stator current diagram (Heylands´diagram), torque vs. speed characteristics, rotor layout (squirrel-cage vs. sliprings), Drives with variable speed, inverter fed operation, special drives |
Literature |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Course L0294: Electrical Machines and Actuators |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Thorsten Kern, Dennis Kähler |
Language | DE |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0777: Semiconductor Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | NN |
Admission Requirements | None |
Recommended Previous Knowledge |
Fundamentals of electrical engineering Basics of physics, especially semiconductor physics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 120 min |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory Electrical Engineering: Core Qualification: Compulsory Engineering Science: Specialisation Electrical Engineering: Compulsory Engineering Science: Specialisation Mechatronics: Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Compulsory Computer Science in Engineering: Specialisation II. Mathematics & Engineering Science: Elective Compulsory Mechanical Engineering: Specialisation Mechatronics: Compulsory Mechatronics: Specialisation Electrical Systems: Compulsory Mechatronics: Core Qualification: Compulsory Mechatronics: Specialisation Robot- and Machine-Systems: Elective Compulsory Technomathematics: Specialisation III. Engineering Science: Elective Compulsory |
Course L0763: Semiconductor Circuit Design |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | NN |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Course L0864: Semiconductor Circuit Design |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | NN, Weitere Mitarbeiter |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Thesis
Module M1800: Bachelor thesis (dual study program) |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Dual students…
|
Skills |
Dual students…
|
Personal Competence | |
Social Competence |
Dual students…
|
Autonomy |
Dual students…
|
Workload in Hours | Independent Study Time 360, Study Time in Lecture 0 |
Credit points | 12 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Thesis: Compulsory Civil- and Environmental Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Data Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Engineering Science: Thesis: Compulsory Green Technologies: Energy, Water, Climate: Thesis: Compulsory Computer Science in Engineering: Thesis: Compulsory Mechanical Engineering: Thesis: Compulsory Mechatronics: Thesis: Compulsory Naval Architecture: Thesis: Compulsory Technomathematics: Thesis: Compulsory Engineering and Management - Major in Logistics and Mobility: Thesis: Compulsory |