Module Manual

Bachelor

Mechatronics

Cohort: Winter Term 2018

Updated: 28th September 2018

Program description

Content

The graduate students of the Bachelor program Mechatronics are able to demonstrate an overview of fundamental knowledge in the fields of material science, production, thermodynamics, mechanical design and computer science. They are able to express in detail basic approaches in the fields of mathematics, mechanics and electrical engineering, to explain the basics of metrology and control theory and to describe the interdisciplinary aspects of Mechatronics. This knowledge and the methods learned enable them to examine problems in Mechatronics, the sub-disciplines of Mechatronics and the adjacent disciplines.




Career prospects

The graduates of the Bachelor program Mechatronics are directly able to enter a career in the field of Mechatronics and work responsibly as Engineer. They are entitled to use the professional title Ingenieurin or Ingenieur  (Engineer) pursuant to the Engineers Acts (Ingenieurgesetzen) of the states in Germany.

Possible employers include manufacturing companies in mechanical and electrical engineering as well as engineering firms.

The degree allows access to a Master program, for example the consecutive International Master in Mechantronics.



Learning target

Graduates are able

  • to identify, abstract, formulate and solve technical problems on basic research;
  • to select, combine and interdisciplinary apply suitable methods for analysis, modeling, simulation and optimization;
  • to understand, analyze and evaluate products and methods in Mechatronics and its sub-disciplines in a systematic manner;
  • to apply design methods in Mechatronics;
  • to plan and carry out experiments and to interpret their results;
  • and to estimate the boundaries of methods and techniques

Graduates can

  • interdisciplinarily and responsibly apply and independently expand their knowledge within the sub-disciplines of Mechatronics accounting for economic requirements;
  • evaluate Mechatronic problems in a wider societal context and assess the non-technical effects of their engineering work;
  • cooperate with experts of other disciplines and laypersons and to communicate in German and English;
  • conduct literary research and use databases and other information sources for their work and can express the results of their work understandably both in written and oral presentation;
  • expand and deepen their acquired knowledge throughout their lives.

Program structure

The program is split into the core qualifications and Bachelor thesis.

The interdisciplinary final thesis is scheduled for the sixth semester.

At the Hamburg University of Technology the graduates can continue their studies with, among others, the Master program "International Master Mechatronics".

Core qualification

Module M0575: Procedural Programming

Courses
Title Typ Hrs/wk CP
Procedural Programming (L0197) Lecture 1 2
Procedural Programming (L0201) Recitation Section (large) 1 1
Procedural Programming (L0202) Practical Course 2 3
Module Responsible Prof. Siegfried Rump
Admission Requirements None
Recommended Previous Knowledge

Elementary PC handling skills

Elementary mathematical skills

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students acquire the following knowledge:

  • They know basic elements of the programming language C. They know the basic data types and know how to use them.

  • They have an understanding of elementary compiler tasks, of the preprocessor and programming environment and know how those interact.

  • They know how to bind programs and how to include external libraries to enhance software packages.

  • They know how to use header files and how to declare function interfaces to create larger programming projects.

  • The acquire some knowledge how the program interacts with the operating system. This allows them to develop programs interacting with the programming environment as well.

  • They learnt several possibilities how to model and implement frequently occurring standard algorithms.

Skills
  • The students know how to judge the complexity of an algorithms and how to program algorithms efficiently.

  • The students are able to model and implement algorithms for a number of standard functionalities. Moreover, they are able to adapt a given API.

Personal Competence
Social Competence

The students acquire the following skills:

  • They are able to work in small teams to solve given weekly tasks, to identify and analyze programming errors and to present their results.

  • They are able to explain simple phenomena to each other directly at the PC.

  • They are able to plan and to work out a project in small teams.

  • They communicate final results and present programs to their tutor.

Autonomy
  • The students take individual examinations as well as a final written examn to prove their programming skills and ability to solve new tasks.

  • The students have many possibilities to check their abilities when solving several given programming exercises.

  • In order to solve the given tasks efficiently, the students have to split those appropriately within their group, where every student solves his or her part individually.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 minutes
Assignment for the Following Curricula Computer Science: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Core qualification: Compulsory
Course L0197: Procedural Programming
Typ Lecture
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content
  • basic data types (integers, floating point format, ASCII-characters) and their dependencies on the CPU architecture
  • advanced data types (pointers, arrays, strings, structs, lists)

  • operators (arithmetical operations, logical operations, bit operations)

  • control flow (choice, loops, jumps)

  • preprocessor directives (macros, conditional compilation, modular design)

  • functions (function definitions/interface, recursive functions, "call by value" versus "call by reference", function pointers)

  • essential standard libraries and functions (stdio.h, stdlib.h, math.h, string.h, time.h)

  • file concept, streams

  • basic algorithms (sorting functions, series expansion, uniformly distributed permutation)

  • exercise programs to deepen the programming skills



Literature

Kernighan, Brian W (Ritchie, Dennis M.;)
The C programming language
ISBN: 9780131103702
Upper Saddle River, NJ [u.a.] : Prentice Hall PTR, 2009

Sedgewick, Robert 
Algorithms in C
ISBN: 0201316633
Reading, Mass. [u.a.] : Addison-Wesley, 2007 

Kaiser, Ulrich (Kecher, Christoph.;)
C/C++: Von den Grundlagen zur professionellen Programmierung
ISBN: 9783898428392
Bonn : Galileo Press, 2010

Wolf, Jürgen 
C von A bis Z : das umfassende Handbuch
ISBN: 3836214113
Bonn : Galileo Press, 2009

Course L0201: Procedural Programming
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0202: Procedural Programming
Typ Practical Course
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Siegfried Rump
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0577: Nontechnical Complementary Courses for Bachelors

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Non-technical Academic Programms (NTA)

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, migration studies, communication studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • locate selected specialized areas with the relevant non-technical mother discipline,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic methods of the said scientific disciplines,
  • auestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.
Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.


Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)      
Workload in Hours Depends on choice of courses
Credit points 6
Courses
Information regarding lectures and courses can be found in the corresponding module handbook published separately.

Module M0743: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields

Courses
Title Typ Hrs/wk CP
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0675) Lecture 3 5
Electrical Engineering I: Direct Current Networks and Electromagnetic Fields (L0676) Recitation Section (small) 2 1
Module Responsible Prof. Manfred Kasper
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung
Compulsory Bonus Form Description
No 10 % Excercises
Examination Written exam
Examination duration and scale zweistündig
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Course L0675: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Manfred Kasper
Language DE
Cycle WiSe
Content
Literature
  1. M. Kasper, Skript zur Vorlesung Elektrotechnik 1, 2013
  2. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
  3. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
  4. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008
Course L0676: Electrical Engineering I: Direct Current Networks and Electromagnetic Fields
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Manfred Kasper
Language DE
Cycle WiSe
Content
Literature
  1. Übungsaufgaben zur Elektrotechnik 1, TUHH, 2013
  2. Ch. Kautz: Tutorien zur Elektrotechnik, Pearson Studium, 2010

Module M0889: Mechanics I (Statics)

Courses
Title Typ Hrs/wk CP
Mechanics I (Statics) (L1001) Lecture 2 3
Mechanics I (Statics) (L1002) Recitation Section (small) 2 2
Mechanics I (Statics) (L1003) Recitation Section (large) 1 1
Module Responsible Prof. Robert Seifried
Admission Requirements None
Recommended Previous Knowledge

Solid school knowledge in mathematics and physics.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge in stereostatics.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic statical methods to engineering problems;
  • estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.
Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung
Compulsory Bonus Form Description
No 20 % Midterm Wird nur im WiSe angeboten
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Course L1001: Mechanics I (Statics)
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content
  • Tasks in Mechanics
  • Modelling and model elements
  • Vector calculus for forces and torques
  • Forces and equilibrium in space
  • Constraints and reactions, characterization of constraint systems
  • Planar and spatial truss structures
  • Internal forces and moments for beams and frames
  • Center of mass, volumn, area and line
  • Computation of center of mass by intergals, joint bodies
  • Friction (sliding and sticking)
  • Friction of ropes
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1002: Mechanics I (Statics)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Course L1003: Mechanics I (Statics)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content Forces and equilibrium
Constraints and reactions
Frames
Center of mass
Friction
Internal forces and moments for beams
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).

Module M0850: Mathematics I

Courses
Title Typ Hrs/wk CP
Analysis I (L1010) Lecture 2 2
Analysis I (L1012) Recitation Section (small) 1 1
Analysis I (L1013) Recitation Section (large) 1 1
Linear Algebra I (L0912) Lecture 2 2
Linear Algebra I (L0913) Recitation Section (small) 1 1
Linear Algebra I (L0914) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge

School mathematics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Studienleistung None
Examination Written exam
Examination duration and scale 60 min (Analysis I) + 60 min (Linear Algebra I)
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory
Course L1010: Analysis I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Foundations of differential and integrational calculus of one variable

  • statements, sets and functions
  • natural and real numbers
  • convergence of sequences and series
  • continuous and differentiable functions
  • mean value theorems
  • Taylor series
  • calculus
  • error analysis
  • fixpoint iteration
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

     

     


Course L1012: Analysis I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1013: Analysis I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0912: Linear Algebra I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle WiSe
Content
  • vectors: intuition, rules, inner and cross product, lines and planes
  • systems of linear equations: Gauß elimination, matrix product, inverse matrices, transformations, block matrices, determinants 
  • orthogonal projection in R^n, Gram-Schmidt-Orthonormalization
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013
Course L0913: Linear Algebra I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle WiSe
Content
  • vectors: intuition, rules, inner and cross product, lines and planes
  • general vector spaces: subspaces, Euclidean vector spaces
  • systems of linear equations: Gauß-elimination, matrix product, inverse matrices, transformations, LR-decomposition, block matrices, determinants 
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Course L0914: Linear Algebra I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Christian Seifert
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0933: Fundamentals of Materials Science

Courses
Title Typ Hrs/wk CP
Fundamentals of Materials Science I (L1085) Lecture 2 2
Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites) (L0506) Lecture 2 2
Physical and Chemical Basics of Materials Science (L1095) Lecture 2 2
Module Responsible Prof. Jörg Weißmüller
Admission Requirements None
Recommended Previous Knowledge

Highschool-level physics, chemistry und mathematics


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students have acquired a fundamental knowledge on metals, ceramics and polymers and can describe this knowledge comprehensively. Fundamental knowledge here means specifically the issues of atomic structure, microstructure, phase diagrams, phase transformations, corrosion and mechanical properties. The students know about the key aspects of characterization methods for materials and can identify relevant approaches for characterizing specific properties. They are able to trace materials phenomena back to the underlying physical and chemical laws of nature.



Skills

The students are able to trace materials phenomena back to the underlying physical and chemical laws of nature. Materials phenomena here refers to mechanical properties such as strength, ductility, and stiffness, chemical properties such as corrosion resistance, and to phase transformations such as solidification, precipitation, or melting. The students can explain the relation between processing conditions and the materials microstructure, and they can account for the impact of microstructure on the material’s behavior.


Personal Competence
Social Competence -
Autonomy -
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 180 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L1085: Fundamentals of Materials Science I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Jörg Weißmüller
Language DE
Cycle WiSe
Content
Literature

Vorlesungsskript

W.D. Callister: Materials Science and Engineering - An Introduction. 5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7


Course L0506: Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Bodo Fiedler, Prof. Gerold Schneider
Language DE
Cycle SoSe
Content Chemische Bindungen und Aufbau von Festkörpern; Kristallaufbau; Werkstoffprüfung; Schweißbarkeit; Herstellung von Keramiken; Aufbau und Eigenschaften der Keramik; Herstellung, Aufbau und Eigenschaften von Gläsern; Polymerwerkstoffe, Makromolekularer Aufbau; Struktur und Eigenschaften der Polymere; Polymerverarbeitung; Verbundwerkstoffe     
Literature

Vorlesungsskript

W.D. Callister: Materials Science and Engineering -An Introduction-5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7

Course L1095: Physical and Chemical Basics of Materials Science
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Stefan Müller
Language DE
Cycle WiSe
Content
  • Motivation: „Atoms in Mechanical Engineering?“
  • Basics: Force and Energy
  • The electromagnetic Interaction
  • „Detour“: Mathematics (complex e-funktion etc.)
  • The atom: Bohr's model of the atom
  • Chemical bounds
  • The multi part problem: Solutions and strategies
  • Descriptions of using statistical thermodynamics
  • Elastic theory of atoms
  • Consequences of atomar properties on makroskopic Properties: Discussion of examples (metals, semiconductors, hybrid systems)
Literature

Für den Elektromagnetismus:

  • Bergmann-Schäfer: „Lehrbuch der Experimentalphysik“, Band 2: „Elektromagnetismus“, de Gruyter

Für die Atomphysik:

  • Haken, Wolf: „Atom- und Quantenphysik“, Springer

Für die Materialphysik und Elastizität:

  • Hornbogen, Warlimont: „Metallkunde“, Springer


Module M0547: Electrical Engineering II: Alternating Current Networks and Basic Devices

Courses
Title Typ Hrs/wk CP
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0178) Lecture 3 5
Electrical Engineering II: Alternating Current Networks and Basic Devices (L0179) Recitation Section (small) 2 1
Module Responsible Prof. Christian Becker
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I

Mathematics I

Direct current networks, complex numbers


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to reproduce and explain fundamental theories, principles, and methods related to the theory of alternating currents. They can describe networks of linear elements using a complex notation for voltages and currents. They can reproduce an overview of applications for the theory of alternating currents in the area of electrical engineering. Students are capable of explaining the behavior of fundamental passive and active devices as well as their impact on simple circuits.


Skills

Students are capable of calculating parameters within simple electrical networks at alternating currents by means of a complex notation for voltages and currents. They can appraise the fundamental effects that may occur within electrical networks at alternating currents. Students are able to analyze simple circuits such as oscillating circuits, filter, and matching networks quantitatively and dimension elements by means of a design. They can motivate and justify the fundamental elements of an electrical power supply (transformer, transmission line, compensation of reactive power, multiphase system) and are qualified to dimension their main features.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively.


Autonomy

Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as online-tests and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung
Compulsory Bonus Form Description
No 10 % Midterm
Examination Written exam
Examination duration and scale 90 - 150 minutes
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Course L0178: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Lecture
Hrs/wk 3
CP 5
Workload in Hours Independent Study Time 108, Study Time in Lecture 42
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Course L0179: Electrical Engineering II: Alternating Current Networks and Basic Devices
Typ Recitation Section (small)
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Christian Becker
Language DE
Cycle SoSe
Content

- General time-dependency of electrical networks

- Representation and properties of harmonic signals

- RLC-elements at alternating currents/voltages

- Complex notation for the representation of RLC-elements

- Power in electrical networks at alternating currents, compensation of reactive power

- Frequency response locus (Nyquist plot) and Bode-diagrams

- Measurement instrumentation for assessing alternating currents

- Oscillating circuits, filters, electrical transmission lines

- Transformers, three-phase current, energy converters

- Simple non-linear and active electrical devices


Literature

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Module M0594: Fundamentals of Mechanical Engineering Design

Courses
Title Typ Hrs/wk CP
Fundamentals of Mechanical Engineering Design (L0258) Lecture 2 3
Fundamentals of Mechanical Engineering Design (L0259) Recitation Section (large) 2 3
Module Responsible Prof. Dieter Krause
Admission Requirements None
Recommended Previous Knowledge
  • Basic knowledge about mechanics and production engineering
  • Internship (Stage I Practical)
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After passing the module, students are able to:

  • explain basic working principles and functions of machine elements,
  • explain requirements, selection criteria, application scenarios and practical examples of basic machine elements, indicate the background of dimensioning calculations.
Skills

After passing the module, students are able to:

  • accomplish dimensioning calculations of covered machine elements,
  • transfer knowledge learned in the module to new requirements and tasks (problem solving skills),
  • recognize the content of technical drawings and schematic sketches,
  • technically evaluate basic designs.
Personal Competence
Social Competence
  • Students are able to discuss technical information in the lecture supported by activating methods.
Autonomy
  • Students are able to independently deepen their acquired knowledge in exercises.
  • Students are able to acquire additional knowledge and to recapitulate poorly understood content e.g. by using the video recordings of the lectures.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 120
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
Logistics and Mobility: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Core qualification: Elective Compulsory
Course L0258: Fundamentals of Mechanical Engineering Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers
Language DE
Cycle SoSe
Content

Lecture

  • Introduction to design
  • Introduction to the following machine elements
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axes & shafts


  • Presentation of technical objects (technical drawing)


Exercise

  • Calculation methods for dimensioning the following machine elements:
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axis & shafts 
Literature
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
  • Sowie weitere Bücher zu speziellen Themen
Course L0259: Fundamentals of Mechanical Engineering Design
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0696: Mechanics II: Mechanics of Materials

Courses
Title Typ Hrs/wk CP
Mechanics II (L0493) Lecture 2 2
Mechanics II (L0494) Recitation Section (small) 2 2
Mechanics II (L1691) Recitation Section (large) 2 2
Module Responsible Prof. Christian Cyron
Admission Requirements None
Recommended Previous Knowledge Mechanics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students name the fundamental concepts and laws of statics such as stresses, strains, Hooke's linear law.
Skills

The students apply the mathematical/mechanical analysis and modeling.

The students apply the fundamental methods of elasto statics to simply engineering problems.

The students estimate the validity and limitations of the introduced methods.


Personal Competence
Social Competence -
Autonomy -
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Course L0493: Mechanics II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content

stresses and strains
Hooke's law
tension and compression
torsion
bending
stability
buckling
energy methods

Literature
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 1, Springer
  • Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik 2 Elastostatik, Springer


Course L0494: Mechanics II
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1691: Mechanics II
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Christian Cyron
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0851: Mathematics II

Courses
Title Typ Hrs/wk CP
Analysis II (L1025) Lecture 2 2
Analysis II (L1026) Recitation Section (large) 1 1
Analysis II (L1027) Recitation Section (small) 1 1
Linear Algebra II (L0915) Lecture 2 2
Linear Algebra II (L0916) Recitation Section (small) 1 1
Linear Algebra II (L0917) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name further concepts in analysis and linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in analysis and linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Studienleistung None
Examination Written exam
Examination duration and scale 60 min (Analysis II) + 60 min (Linear Algebra II)
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory
Course L1025: Analysis II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content
  • power series and elementary functions
  • interpolation
  • integration (proper integrals, fundamental theorem, integration rules, improper integrals, parameter dependent integrals
  • applications of integration (volume and surface of bodies of revolution, lines and arc length, line integrals
  • numerical quadrature
  • periodic functions

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html



Course L1026: Analysis II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1027: Analysis II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0915: Linear Algebra II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle SoSe
Content
  • general vector spaces: subspaces, Euclidean vector spaces
  • linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
  • linear regression: normal equations, linear discrete approximation
  • eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices
  • system of linear differential equations 
  • matrix factorizations: LR-decomposition, QR-decomposition, Schur decomposition, Jordan normal form, singular value decomposition
Literature
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • G. Strang: Lineare Algebra, Springer-Verlag, 2003 
  • G. und S. Teschl: Mathematik für Informatiker, Band 1, Springer-Verlag, 2013

Course L0916: Linear Algebra II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner
Language DE
Cycle SoSe
Content
  • linear mappings: basis transformation, orthogonal projection, orthogonal matrices, householder matrices
  • linear regression: QR-decomposition, normal equations, linear discrete approximation
  • eigenvalues: diagonalising matrices, normal matrices, symmetric and Hermite matrices, Jordan normal form, singular value decomposition
  • system of linear differential equations 
Literature
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Course L0917: Linear Algebra II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0598: Mechanical Engineering: Design

Courses
Title Typ Hrs/wk CP
Embodiment Design and 3D-CAD (L0268) Lecture 2 1
Mechanical Design Project I (L0695) Project-/problem-based Learning 3 2
Mechanical Design Project II (L0592) Project-/problem-based Learning 3 2
Team Project Design Methodology (L0267) Project-/problem-based Learning 2 1
Module Responsible Prof. Dieter Krause
Admission Requirements None
Recommended Previous Knowledge
  • Fundamentals of Mechanical Engineering Design
  • Mechanics
  • Fundamentals of Materials Science
  • Production Engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After passing the module, students are able to:

  • explain design guidelines for machinery parts e.g. considering load situation, materials and manufacturing requirements,
  • describe basics of 3D CAD,
  • explain basics methods of engineering designing.
Skills

After passing the module, students are able to:

  • independently create sketches, technical drawings and documentations e.g. using 3D CAD,
  • design components based on design guidelines autonomously,
  • dimension (calculate) used components,
  • use methods to design and solve engineering design tasks systamtically and solution-oriented,
  • apply creativity techniques in teams.
Personal Competence
Social Competence

After passing the module, students are able to:

  • develop and evaluate solutions in groups including making and documenting decisions,
  • moderate the use of scientific methods,
  • present and discuss solutions and technical drawings within groups,
  • reflect the own results in the work groups of the course.
Autonomy

Students are able

  •  to estimate their level of knowledge using  activating methods within the lectures (e.g. with clickers),
  • To solve engineering design tasks systematically.
Workload in Hours Independent Study Time 40, Study Time in Lecture 140
Credit points 6
Studienleistung
Compulsory Bonus Form Description
Yes None Written elaboration
Yes None Written elaboration
Yes None Written elaboration
Yes None Written elaboration
Examination Written exam
Examination duration and scale 180
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Course L0268: Embodiment Design and 3D-CAD
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Dieter Krause
Language DE
Cycle WiSe
Content
  • Basics of 3D CAD technology
  • Practical course to apply a 3D CAD system
    • Introduction to the system
    • Sketching and creation of components
    • Creation of assemblies
    • Deriving technical drawings
Literature
  • CAx für Ingenieure eine praxisbezogene Einführung; Vajna, S., Weber, C., Bley, H., Zeman, K.; Springer-Verlag, aktuelle Auflage.
  • Handbuch Konstruktion; Rieg, F., Steinhilper, R.; Hanser; aktuelle Auflage.
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Technisches Zeichnen: Grundlagen, Normen, Beispiele, Darstellende Geometrie, Hoischen, H; Hesser, W; Cornelsen, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  • Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  • Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  • Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Course L0695: Mechanical Design Project I
Typ Project-/problem-based Learning
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Prof. Thorsten Schüppstuhl
Language DE
Cycle WiSe
Content
  • Create a technical documentation of an existing mechanical model
  • Consolidation of the following aspects of technical drawings:
    • Presentation of technical objects and standardized parts
      (bearings, seals, shaft-hub joints, detachable connections, springs, axes and shafts)
    • Sectional views
    • Dimensioning
    • Tolerances and surface specifications
    • Creating a tally sheet


Literature
  1. Hoischen, H.; Hesser, W.: Technisches Zeichnen. Grundlagen, Normen, Beispiele, darstellende Geometrie, 33. Auflage. Berlin 2011.
  2. Labisch, S.; Weber, C.: Technisches Zeichnen. Selbstständig lernen und effektiv üben, 4. Auflage. Wiesbaden 2008.
  3. Fischer, U.: Tabellenbuch Metall, 43. Auflage. Haan-Gruiten 2005.


Course L0592: Mechanical Design Project II
Typ Project-/problem-based Learning
Hrs/wk 3
CP 2
Workload in Hours Independent Study Time 18, Study Time in Lecture 42
Lecturer Prof. Wolfgang Hintze
Language DE
Cycle SoSe
Content
  • Generation of sketches for functions and sub-functions
  • Approximately calculation of shafts
  • Dimension of bearings, screw connections and weld
  • Generation of engineering drawings (assembly drawings, manufacturing drawing)
Literature

Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag.

Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag.

Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag.

Einführung in die DIN-Normen, Klein, M., Teubner-Verlag.

Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag.

Course L0267: Team Project Design Methodology
Typ Project-/problem-based Learning
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Prof. Dieter Krause
Language DE
Cycle SoSe
Content
  • Introduction to engineering designing methodology
  • Team Project Design Methodology
    • Creating requirement lists
    • Problem formulation
    • Creating functional structures
    • Finding solutions
    • Evaluation of the found concepts
    • Documentation of the taken methodological steps and the concepts using presentation slides
Literature
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
  • Sowie weitere Bücher zu speziellen Themen

Module M0725: Production Engineering

Courses
Title Typ Hrs/wk CP
Production Engineering I (L0608) Lecture 2 2
Production Engineering I (L0612) Recitation Section (large) 1 1
Production Engineering II (L0610) Lecture 2 2
Production Engineering II (L0611) Recitation Section (large) 1 1
Module Responsible Prof. Wolfgang Hintze
Admission Requirements None
Recommended Previous Knowledge

no course assessments required

internship recommended

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to ...

  • name basic criteria for the selection of manufacturing processes.
  • name the main groups of Manufacturing Technology.
  • name the application areas of different manufacturing processes.
  • name boundaries, advantages and disadvantages of the different manufacturing process.
  • describe elements, geometric properties and kinematic variables and requirements for tools, workpiece and process.
  • explain the essential models of manufacturing technology.


Skills

Students are able to...

  • select manufacturing processes in accordance with the requirements.
  • design manufacturing processes for simple tasks to meet the required tolerances of the component to be produced.
  • assess components in terms of their production-oriented construction.


Personal Competence
Social Competence

Students are able to ...

  • develop solutions in a production environment with qualified personnel at technical level and represent decisions.


Autonomy

Students are able to  ..

  • interpret independently the manufacturing process.
  • assess own strengths and weaknesses in general.
  • assess  their learning progress and define gaps to be improved.
  • assess possible consequences of their  actions.


Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Course L0608: Production Engineering I
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Wolfgang Hintze
Language DE
Cycle WiSe
Content
  • Manufacturing Accuracy
  • Manufacturing Metrology
  • Measurement Errors and Uncertainties
  • Introduction to Forming
  • Massiv forming and Sheet Metal Forming
  • Introduction to Machining Technology
  • Geometrically defined machining (Turning, milling, drilling, broaching, planning)


Literature

Dubbel, Heinrich (Grote, Karl-Heinrich.; Feldhusen, Jörg.; Dietz, Peter,; Ziegmann, Gerhard,;)  Taschenbuch für den Maschinenbau : mit Tabellen. Berlin [u.a.] : Springer, 2007

Fritz, Alfred Herbert: Fertigungstechnik : mit 62 Tabellen. Berlin [u.a.] : Springer, 2004

Keferstein, Claus P (Dutschke, Wolfgang,;): Fertigungsmesstechnik : praxisorientierte Grundlagen, moderne Messverfahren. Wiesbaden : Teubner, 2008

Mohr, Richard: Statistik für Ingenieure und Naturwissenschaftler : Grundlagen und Anwendung statistischer Verfahren. Renningen : expert-Verl, 2008

Klocke, F., König, W.: Fertigungsverfahren Bd. 1 Drehen, Fäsen, Bohren. 8. Aufl., Springer (2008)

Klocke, Fritz (König, Wilfried,;): Umformen. Berlin [u.a.] : Springer, 2006

Paucksch, E.: Zerspantechnik, Vieweg-Verlag, 1996

Tönshoff, H.K.; Denkena, B., Spanen. Grundlagen, Springer-Verlag (2004)

Course L0612: Production Engineering I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Wolfgang Hintze
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0610: Production Engineering II
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Language DE
Cycle SoSe
Content
  • Geometrically undefined machining (grinding, lapping, honing)
  • Introduction into erosion technology
  • Introduction into blastig processes
  • Introduction to the manufacturing process forming (Casting, Powder Metallurgy, Composites)
  • Fundamentals of Laser Technology
  • Process versions and Fundamentals of Laser Joining Technology
Literature

Klocke, F., König, W.: Fertigungsverfahren Bd. 2 Schleifen, Honen, Läppen, 4. Aufl., Springer (2005)

Klocke, F., König, W.: Fertigungsverfahren Bd. 3 Abtragen, Generieren und Lasermaterialbearbeitung. 4. Aufl., Springer (2007)

Spur, Günter (Stöferle, Theodor.;): Urformen. München [u.a.] : Hanser, 1981

Schatt, Werner (Wieters, Klaus-Peter,; Kieback, Bernd,;): Pulvermetallurgie : Technologien und Werkstoffe. Berlin [u.a.] : Springer, 2007


Course L0611: Production Engineering II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0708: Electrical Engineering III: Circuit Theory and Transients

Courses
Title Typ Hrs/wk CP
Circuit Theory (L0566) Lecture 3 4
Circuit Theory (L0567) Recitation Section (small) 2 2
Module Responsible Prof. Arne Jacob
Admission Requirements None
Recommended Previous Knowledge

Electrical Engineering I and II, Mathematics I and II


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain the basic methods for calculating electrical circuits. They know the Fourier series analysis of linear networks driven by periodic signals. They know the methods for transient analysis of linear networks in time and in frequency domain, and they are able to explain the frequency behaviour and the synthesis of passive two-terminal-circuits.


Skills

The students are able to calculate currents and voltages in linear networks by means of basic methods, also when driven by periodic signals. They are able to calculate transients in electrical circuits in time and frequency domain and are able to explain the respective transient behaviour. They are able to analyse and to synthesize the frequency behaviour of passive two-terminal-circuits.


Personal Competence
Social Competence

Students work on exercise tasks in small guided groups. They are encouraged to present and discuss their results within the group.


Autonomy

The students are able to find out the required methods for solving the given practice problems. Possibilities are given to test their knowledge during the lectures continuously by means of short-time tests. This allows them to control independently their educational objectives. They can link their gained knowledge to other courses like Electrical Engineering I and Mathematics I.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 150 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
Electrical Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Computational Science and Engineering: Specialisation Mathematics & Engineering Science: Elective Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0566: Circuit Theory
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Arne Jacob
Language DE
Cycle WiSe
Content

- Circuit theorems

- N-port circuits

- Periodic excitation of linear circuits

- Transient analysis in time domain

- Transient analysis in frequency domain; Laplace Transform

- Frequency behaviour of passive one-ports


Literature

- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011)

- M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011)

- L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) 

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)

- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006)

- L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005)


Course L0567: Circuit Theory
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Arne Jacob
Language DE
Cycle WiSe
Content see interlocking course
Literature

siehe korrespondierende Lehrveranstaltung

see interlocking course

Module M0730: Computer Engineering

Courses
Title Typ Hrs/wk CP
Computer Engineering (L0321) Lecture 3 4
Computer Engineering (L0324) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in electrical engineering

The successful completion of the labs will be honored during the evaluation of the module's examination according to the following rules:

  1. Upon a passed module examination, the student is granted a bonus on the examination's marks due to the successful labs, such that the examination's marks are lifted by 0,3 or 0,4, respectively, up to the next-better grade.
  2. The improvement of the grade 5,0 up to 4,3 and of 4,3 up to 4,0 is not possible.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module deals with the foundations of the functionality of computing systems. It covers the layers from the assembly-level programming down to gates. The module includes the following topics:

  • Introduction
  • Combinational logic: Gates, Boolean algebra, Boolean functions, hardware synthesis, combinational networks
  • Sequential logic: Flip-flops, automata, systematic hardware design
  • Technological foundations
  • Computer arithmetic: Integer addition, subtraction, multiplication and division
  • Basics of computer architecture: Programming models, MIPS single-cycle architecture, pipelining
  • Memories: Memory hierarchies, SRAM, DRAM, caches
  • Input/output: I/O from the perspective of the CPU, principles of passing data, point-to-point connections, busses
Skills

The students perceive computer systems from the architect's perspective, i.e., they identify the internal structure and the physical composition of computer systems. The students can analyze, how highly specific and individual computers can be built based on a collection of few and simple components. They are able to distinguish between and to explain the different abstraction layers of today's computing systems - from gates and circuits up to complete processors.

After successful completion of the module, the students are able to judge the interdependencies between a physical computer system and the software executed on it. In particular, they shall understand the consequences that the execution of software has on the hardware-centric abstraction layers from the assembly language down to gates. This way, they will be enabled to evaluate the impact that these low abstraction levels have on an entire system's performance and to propose feasible options.

Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung
Compulsory Bonus Form Description
Yes 10 % Excercises
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computer Science: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Specialisation II. Informatics: Elective Compulsory
Course L0321: Computer Engineering
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language DE
Cycle WiSe
Content
  • Introduction
  • Combinational Logic
  • Sequential Logic
  • Technological Foundations
  • Representations of Numbers, Computer Arithmetics
  • Foundations of Computer Architecture
  • Memories
  • Input/Output
Literature
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
Course L0324: Computer Engineering
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0959: Mechanics III (Hydrostatics, Kinematics, Kinetics I)

Courses
Title Typ Hrs/wk CP
Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1134) Lecture 3 3
Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1135) Recitation Section (small) 2 2
Mechanics III (Hydrostatics, Kinematics, Kinetics I) (L1136) Recitation Section (large) 1 1
Module Responsible Prof. Robert Seifried
Admission Requirements None
Recommended Previous Knowledge

Mathematics I, II, Mechanics I (Statics)

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge in stereostatics.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic hydrostatical, kinematic and kinetic methods to engineering problems;
  • estimate the reach and boundaries of statical methods and extend them to be applicable to wider problem sets.
Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Studienleistung
Compulsory Bonus Form Description
No 20 % Midterm Wird nur im WiSe angeboten
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L1134: Mechanics III (Hydrostatics, Kinematics, Kinetics I)
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content

Hydrostatics

Kinematics

  • Kinematics of points and relative motion
  • Planar and spatial motion of point systems and rigid bodies 

Dynamics

  • Terms
  • Fundamental equations
  • Motion of the rigid body in 3D-space
  • Dynamics of gyroscopes, rotors
  • Realtive kinetics
  • Systems with non-constant mass
Literature K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 3 und 4. 11. Auflage, Springer (2011).
Course L1135: Mechanics III (Hydrostatics, Kinematics, Kinetics I)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1136: Mechanics III (Hydrostatics, Kinematics, Kinetics I)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Robert Seifried
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0853: Mathematics III

Courses
Title Typ Hrs/wk CP
Analysis III (L1028) Lecture 2 2
Analysis III (L1029) Recitation Section (small) 1 1
Analysis III (L1030) Recitation Section (large) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1031) Lecture 2 2
Differential Equations 1 (Ordinary Differential Equations) (L1032) Recitation Section (small) 1 1
Differential Equations 1 (Ordinary Differential Equations) (L1033) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics I + II
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in the area of analysis and differential equations. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in the area of analysis and differential equations with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 128, Study Time in Lecture 112
Credit points 8
Studienleistung None
Examination Written exam
Examination duration and scale 60 min (Analysis III) + 60 min (Differential Equations 1)
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Computer Science: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
General Engineering Science (English program, 7 semester): Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory
Course L1028: Analysis III
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of differential and integrational calculus of several variables 

  • Differential calculus for several variables
  • Mean value theorems and Taylor's theorem
  • Maximum and minimum values
  • Implicit functions
  • Minimization under equality constraints
  • Newton's method for multiple variables
  • Double integrals over general regions
  • Line and surface integrals
  • Theorems of Gauß and Stokes
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1029: Analysis III
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1030: Analysis III
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1031: Differential Equations 1 (Ordinary Differential Equations)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content

Main features of the theory and numerical treatment of ordinary differential equations 

  • Introduction and elementary methods
  • Exsitence and uniqueness of initial value problems
  • Linear differential equations
  • Stability and qualitative behaviour of the solution
  • Boundary value problems and basic concepts of calculus of variations
  • Eigenvalue problems
  • Numerical methods for the integration of initial and boundary value problems
  • Classification of partial differential equations

Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1032: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1033: Differential Equations 1 (Ordinary Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0671: Technical Thermodynamics I

Courses
Title Typ Hrs/wk CP
Technical Thermodynamics I (L0437) Lecture 2 4
Technical Thermodynamics I (L0439) Recitation Section (large) 1 1
Technical Thermodynamics I (L0441) Recitation Section (small) 1 1
Module Responsible Prof. Gerhard Schmitz
Admission Requirements None
Recommended Previous Knowledge Elementary knowledge in Mathematics and Mechanics
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are familiar with the laws of Thermodynamics. They know the relation of the kinds of energy according to 1st law of Thermodynamics and are aware about the limits of energy conversions according to 2nd law of Thermodynamics. They are able to distinguish between state variables and process variables and know the meaning of different state variables like temperature, enthalpy, entropy and also the meaning of exergy and anergy. They are able to draw the Carnot cycle in a Thermodynamics related diagram. They know the physical difference between an ideal and a real gas and are able to use the related equations of state. They know the meaning of a fundamental state of equation and know the basics of two phase Thermodynamics.


Skills

Students are able to calculate the internal energy, the enthalpy, the kinetic and the potential energy as well as work and heat for simple change of states and to use this calculations for the Carnot cycle. They are able to calculate state variables for an ideal and for a real gas from measured thermal state variables.


Personal Competence
Social Competence The students are able to discuss in small groups and develop an approach.
Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
General Engineering Science (English program, 7 semester): Core qualification: Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Process Engineering: Core qualification: Compulsory
Course L0437: Technical Thermodynamics I
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle SoSe
Content
  1. Introduction
  2. Fundamental terms
  3. Thermal Equilibrium and temperature
    3.1 Thermal equation of state
  4. First law
    4.1 Heat and work
    4.2 First law for closed systems
    4.3 First law for open systems
    4.4 Examples
  5. Equations of state and changes of state
    5.1 Changes of state
    5.2 Cycle processes
  6. Second law
    6.1 Carnot process
    6.2 Entropy
    6.3 Examples
    6.4 Exergy
  7. Thermodynamic properties of pure fluids
    7.1 Fundamental equations of Thermodynamics
    7.2 Thermodynamic potentials
    7.3 Calorific state variables for arbritary fluids
    7.4 state equations (van der Waals u.a.)

Literature
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993



Course L0439: Technical Thermodynamics I
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L0441: Technical Thermodynamics I
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0672: Signals and Systems

Courses
Title Typ Hrs/wk CP
Signals and Systems (L0432) Lecture 3 4
Signals and Systems (L0433) Recitation Section (small) 2 2
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge

Mathematics 1-3

The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal.
Skills The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain.
Personal Competence
Social Competence The students can jointly solve specific problems.
Autonomy The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. 
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program): Specialisation Computer Science: Compulsory
General Engineering Science (German program): Specialisation Process Engineering: Compulsory
General Engineering Science (German program): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program): Specialisation Civil- and Enviromental Engeneering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
Computer Science: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Civil- and Enviromental Engeneering: Compulsory
General Engineering Science (English program): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program): Specialisation Computer Science: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0432: Signals and Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content
  • Basic classification and description of continuous-time and discrete-time signals and systems

  • Concvolution

  • Power and energy of signals

  • Correlation functions of deterministic signals

  • Linear time-invariant (LTI) systems

  • Signal transformations:

    • Fourier-Series

    • Fourier Transform

    • Laplace Transform

    • Discrete-time Fourier Transform

    • Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT)

    • Z-Transform

  • Analysis and design of LTI systems in time and frequency domain

  • Basic filter types

  • Sampling, sampling theorem

  • Fundamentals of recursive and non-recursive discrete-time filters

Literature
  • T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004

  • K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.

  • B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997

  • J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002

  • S. Haykin, B. van Veen: Signals and systems. Wiley.

  • Oppenheim, A.S. Willsky: Signals and Systems. Pearson.

  • Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Course L0433: Signals and Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0960: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)

Courses
Title Typ Hrs/wk CP
Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1137) Lecture 3 3
Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1138) Recitation Section (small) 2 2
Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems) (L1139) Recitation Section (large) 1 1
Module Responsible Prof. Robert Seifried
Admission Requirements None
Recommended Previous Knowledge

Mathematics I-III and Mechanics I-III

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students can

  • describe the axiomatic procedure used in mechanical contexts;
  • explain important steps in model design;
  • present technical knowledge.
Skills

The students can

  • explain the important elements of mathematical / mechanical analysis and model formation, and apply it to the context of their own problems;
  • apply basic methods to engineering problems;
  • estimate the reach and boundaries of the methods and extend them to be applicable to wider problem sets.


Personal Competence
Social Competence

The students can work in groups and support each other to overcome difficulties.

Autonomy

Students are capable of determining their own strengths and weaknesses and to organize their time and learning based on those.

Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Studienleistung
Compulsory Bonus Form Description
No 20 % Midterm Wird nur im SoSe angeboten
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Core qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Course L1137: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Robert Seifried
Language DE
Cycle SoSe
Content
  • Simple impact problems
  • Principles of analytical mechanics
  • Elements of vibration theory
  • Vibration of Multi-degree of freedom systems
  • Multibody Systems
  • Numerical methods for time integration
  • Introduction to Matlab
Literature

K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). 
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1-4. 11. Auflage, Springer (2011).

W. Schiehlen, P. Eberhard: Technische Dynamik, Springer (2012).


Course L1138: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Robert Seifried
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1139: Mechanics IV (Kinetics II, Oscillations, Analytical Mechanics, Multibody Systems)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Robert Seifried
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0854: Mathematics IV

Courses
Title Typ Hrs/wk CP
Differential Equations 2 (Partial Differential Equations) (L1043) Lecture 2 1
Differential Equations 2 (Partial Differential Equations) (L1044) Recitation Section (small) 1 1
Differential Equations 2 (Partial Differential Equations) (L1045) Recitation Section (large) 1 1
Complex Functions (L1038) Lecture 2 1
Complex Functions (L1041) Recitation Section (small) 1 1
Complex Functions (L1042) Recitation Section (large) 1 1
Module Responsible Prof. Anusch Taraz
Admission Requirements None
Recommended Previous Knowledge Mathematics 1 - III
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Skills
  • Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personal Competence
Social Competence
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.


Autonomy
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.


Workload in Hours Independent Study Time 68, Study Time in Lecture 112
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 60 min (Complex Functions) + 60 min (Differential Equations 2)
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Electrical Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Computational Science and Engineering: Specialisation Computer Science: Elective Compulsory
Computational Science and Engineering: Specialisation Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Course L1043: Differential Equations 2 (Partial Differential Equations)
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of the theory and numerical treatment of partial differential equations 

  • Examples of partial differential equations
  • First order quasilinear differential equations
  • Normal forms of second order differential equations
  • Harmonic functions and maximum principle
  • Maximum principle for the heat equation
  • Wave equation
  • Liouville's formula
  • Special functions
  • Difference methods
  • Finite elements
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1044: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1045: Differential Equations 2 (Partial Differential Equations)
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1038: Complex Functions
Typ Lecture
Hrs/wk 2
CP 1
Workload in Hours Independent Study Time 2, Study Time in Lecture 28
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content

Main features of complex analysis 

  • Functions of one complex variable
  • Complex differentiation
  • Conformal mappings
  • Complex integration
  • Cauchy's integral theorem
  • Cauchy's integral formula
  • Taylor and Laurent series expansion
  • Singularities and residuals
  • Integral transformations: Fourier and Laplace transformation
Literature
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Course L1041: Complex Functions
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course
Course L1042: Complex Functions
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dozenten des Fachbereiches Mathematik der UHH
Language DE
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0688: Technical Thermodynamics II

Courses
Title Typ Hrs/wk CP
Technical Thermodynamics II (L0449) Lecture 2 4
Technical Thermodynamics II (L0450) Recitation Section (large) 1 1
Technical Thermodynamics II (L0451) Recitation Section (small) 1 1
Module Responsible Prof. Gerhard Schmitz
Admission Requirements None
Recommended Previous Knowledge

Elementary knowledge in Mathematics, Mechanics and Technical Thermodynamics I

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are familiar with different cycle processes like Joule, Otto, Diesel, Stirling, Seiliger and Clausius-Rankine. They are able to derive energetic and exergetic efficiencies and know the influence different factors. They know the difference between anti clockwise and clockwise cycles (heat-power cycle, cooling cycle). They have increased knowledge of steam cycles and are able to draw the different cycles in Thermodynamics related diagrams. They know the laws of gas mixtures, especially of humid air processes and are able to perform simple combustion calculations. They are provided with basic knowledge in gas dynamics and know the definition of the speed of sound and know about a Laval nozzle.


Skills

Students are able to use thermodynamic laws for the design of technical processes. Especially they are able to formulate energy, exergy- and entropy balances and by this to optimise technical processes. They are able to perform simple safety calculations in regard to an outflowing gas from a tank. They are able to transform a verbal formulated message into an abstract formal procedure.



Personal Competence
Social Competence

The students are able to discuss in small groups and develop an approach.

Autonomy

Students are able to define independently tasks, to get new knowledge from existing knowledge as well as to find ways to use the knowledge in practice.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
General Engineering Science (English program, 7 semester): Core qualification: Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Technomathematics: Core qualification: Elective Compulsory
Process Engineering: Core qualification: Compulsory
Course L0449: Technical Thermodynamics II
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle WiSe
Content

8. Cycle processes

7. Gas - vapor - mixtures

10. Open sytems with constant flow rates

11. Combustion processes

12. Special fields of Thermodynamics

Literature
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993
Course L0450: Technical Thermodynamics II
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0451: Technical Thermodynamics II
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Schmitz
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0956: Measurement Technology for Mechanical and Process Engineers

Courses
Title Typ Hrs/wk CP
Practical Course: Measurement and Control Systems (L1119) Practical Course 2 2
Measurement Technology for Mechanical and Process Engineers (L1116) Lecture 2 3
Measurement Technology for Mechanical and Process Engineers (L1118) Recitation Section (large) 1 1
Module Responsible Dr. Sven Krause
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of physics, chemistry and electrical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to name the most important fundmentals of the Measurement Technology (Quantities and Units, Uncertainty, Calibration,  Static and Dynamic Properties of Sensors and Systems).

They can outline the most important measuring methods for different kinds of quantities to be maesured (Electrical Quantities, Temperature, mechanical quantities,  Flow, Time, Frequency).

They can describe important methods of chemical Analysis (Gas Sensors, Spectroscopy, Gas Chromatography)


Skills

Students can select suitable measuring methods to given problems and can use refering measurement devices in practice.

The students are able to orally explain issues in the subject area of measurement technology and solution approaches as well as place the issues into the right context and application area.

Personal Competence
Social Competence

Students can arrive at work results in groups and document them in a common report.


Autonomy

Students are able to familiarize themselves with new measurement technologies.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 105 minutes
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory
Course L1119: Practical Course: Measurement and Control Systems
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer NN
Language DE
Cycle WiSe/SoSe
Content

Experiment 1: Emission and immission measurement of gaseous pollutants: different technologies to determine different gaseous pollutants in automotive exhaust are used.

Experiment 2: Simulation and measurement of asynchrone engine and rotary pump: the dynamic behaviour of e pump engine will be investigated. The starting will be simulated on a PC and compared with measurement.

Experiment 3: Michelson interferometer and fiber optic: fundamental optical phenonema will be understood and applications with Michelson interferometer and optical fibers demonstrated.

Experiment 4:Identification of the parameters of a control system and optimal control parameters

Literature

Versuch 1:

  • Leith, W.: Die Analyse der Luft und ihrer Verunreinigung in der freien Atmosphäre und am Arbeitsplatz. 2. Aufl., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1974
  • Birkle, M.: Meßtechnik für den Immissionsschutz, Messen der gas- und partikelförmigen Luftverunreinigungen. R. Oldenburg Verlag, München-Wien, 1979
  • Luftbericht 83/84, Freie und Hansestadt Hamburg, Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung
  • Gebrauchs- und Bedienungsanweisungen
  • VDI-Handbuch Reinhaltung der Luft, Band 5: VDI-Richtlinien 2450 Bl.1, 2451 Bl.4, 2453 Bl.5, 2455 Bl.1
Versuch 2:
  • Grundlagen über elektrische Maschinen, speziell: Asynchronmotoren
  • Simulationsmethoden, speziell: Verwendung von Blockschaltbildern
  • Betriebsverhalten von Kreispumpen, speziell: Kennlinien, Ähnlichkeitsgesetze
Versuch 3:
  • Unger, H.-G.: Optische Nachrichtentechnik, Teil 1: Optische Wellenleiter. Hüthing Verlag, Heidelberg, 1984
  • Dakin, J., Cushaw, B.: Optical Fibre Sensors: Principles and Components. Artech House Boston, 1988
  • Culshaw, B., Dakin, J.: Optical Fibre Sensors: Systems and Application. Artech House Boston, 1989
Versuch 4: 
  • Leonhard: Einführung in die Regelungstechnik. Vieweg Verlag, Braunschweig-Wiesbaden
  • Jan Lunze: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen



Course L1116: Measurement Technology for Mechanical and Process Engineers
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Sven Krause
Language DE
Cycle WiSe
Content

1 Fundamentals

1.1 Quantities and Units

1.2 Uncertainty

1.3 Calibration

1.4 Static and Dynamic Properties of Sensors and Systems

2 Measurement of Electrical Quantities

2.1 Current and Voltage

2.2 Impedance

2.3 Amplification

2.4 Oscilloscope

2.5 Analog-to-Digital Conversion

2.6 Data Transmission

3 Measurement of Nonelectric Quantities

3.1 Temperature

3.2 Length, Displacement, Angle

3.3 Strain, Force, Pressure

3.4 Flow

3.5 Time, Frequency

4 Chemical Analysis

4.1 Gas Sensors

4.2 Spectroscopy

4.3 Gas Chromatography

At the end of each lecture students present single measuring techniques and results orally in front of the class.

Literature

Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3.

 Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940.

Course L1118: Measurement Technology for Mechanical and Process Engineers
Typ Recitation Section (large)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Sven Krause
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0829: Foundations of Management

Courses
Title Typ Hrs/wk CP
Management Tutorial (L0882) Recitation Section (large) 2 3
Introduction to Management (L0880) Lecture 3 3
Module Responsible Prof. Christoph Ihl
Admission Requirements None
Recommended Previous Knowledge Basic Knowledge of Mathematics and Business
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to

  • explain the differences between Economics and Management and the sub-disciplines in Management and to name important definitions from the field of Management
  • explain the most important aspects of and goals in Management and name the most important aspects of entreprneurial projects 
  • describe and explain basic business functions as production, procurement and sourcing, supply chain management, organization and human ressource management, information management, innovation management and marketing 
  • explain the relevance of planning and decision making in Business, esp. in situations under multiple objectives and uncertainty, and explain some basic methods from mathematical Finance 
  • state basics from accounting and costing and selected controlling methods.
Skills

Students are able to analyse business units with respect to different criteria (organization, objectives, strategies etc.) and to carry out an Entrepreneurship project in a team. In particular, they are able to

  • analyse Management goals and structure them appropriately
  • analyse organisational and staff structures of companies
  • apply methods for decision making under multiple objectives, under uncertainty and under risk
  • analyse production and procurement systems and Business information systems
  • analyse and apply basic methods of marketing
  • select and apply basic methods from mathematical finance to predefined problems
  • apply basic methods from accounting, costing and controlling to predefined problems

Personal Competence
Social Competence

Students are able to

  • work successfully in a team of students
  • to apply their knowledge from the lecture to an entrepreneurship project and write a coherent report on the project
  • to communicate appropriately and
  • to cooperate respectfully with their fellow students. 
Autonomy

Students are able to

  • work in a team and to organize the team themselves
  • to write a report on their project.
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung None
Examination Subject theoretical and practical work
Examination duration and scale several written exams during the semester
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program): Specialisation Computer Science: Compulsory
General Engineering Science (German program): Specialisation Process Engineering: Compulsory
General Engineering Science (German program): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program): Specialisation Civil- and Enviromental Engeneering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (German program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Civil- and Environmental Engineering: Core qualification: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Computer Science: Core qualification: Compulsory
Electrical Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Civil- and Enviromental Engeneering: Compulsory
General Engineering Science (English program): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program): Specialisation Computer Science: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Compulsory
General Engineering Science (English program): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Core qualification: Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Naval Architecture: Core qualification: Compulsory
Technomathematics: Core qualification: Compulsory
Process Engineering: Core qualification: Compulsory
Course L0882: Management Tutorial
Typ Recitation Section (large)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Christoph Ihl, Katharina Roedelius, Tobias Vlcek
Language DE
Cycle WiSe/SoSe
Content

In the management tutorial, the contents of the lecture will be deepened by practical examples and the application of the discussed tools.

If there is adequate demand, a problem-oriented tutorial will be offered in parallel, which students can choose alternatively. Here, students work in groups on self-selected projects that focus on the elaboration of an innovative business idea from the point of view of an established company or a startup. Again, the business knowledge from the lecture should come to practical use. The group projects are guided by a mentor.


Literature Relevante Literatur aus der korrespondierenden Vorlesung.
Course L0880: Introduction to Management
Typ Lecture
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona
Language DE
Cycle WiSe/SoSe
Content
  • Introduction to Business and Management, Business versus Economics, relevant areas in Business and Management
  • Important definitions from Management, 
  • Developing Objectives for Business, and their relation to important Business functions
  • Business Functions: Functions of the Value Chain, e.g. Production and Procurement, Supply Chain Management, Innovation Management, Marketing and Sales
    Cross-sectional Functions, e.g. Organisation, Human Ressource Management, Supply Chain Management, Information Management
  • Definitions as information, information systems, aspects of data security and strategic information systems
  • Definition and Relevance of innovations, e.g. innovation opporunities, risks etc.
  • Relevance of marketing, B2B vs. B2C-Marketing
  • different techniques from the field of marketing (e.g. scenario technique), pricing strategies
  • important organizational structures
  • basics of human ressource management
  • Introduction to Business Planning and the steps of a planning process
  • Decision Analysis: Elements of decision problems and methods for solving decision problems
  • Selected Planning Tasks, e.g. Investment and Financial Decisions
  • Introduction to Accounting: Accounting, Balance-Sheets, Costing
  • Relevance of Controlling and selected Controlling methods
  • Important aspects of Entrepreneurship projects



Literature

Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008

Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003

Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006.

Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001.

Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008.

Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005.

Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008.

Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. 


Module M0833: Introduction to Control Systems

Courses
Title Typ Hrs/wk CP
Introduction to Control Systems (L0654) Lecture 2 4
Introduction to Control Systems (L0655) Recitation Section (small) 2 2
Module Responsible Prof. Herbert Werner
Admission Requirements None
Recommended Previous Knowledge

Representation of signals and systems in time and frequency domain, Laplace transform


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can represent dynamic system behavior in time and frequency domain, and can in particular explain properties of first and second order systems
  • They can explain the dynamics of simple control loops and interpret dynamic properties in terms of frequency response and root locus
  • They can explain the Nyquist stability criterion and the stability margins derived from it.
  • They can explain the role of the phase margin in analysis and synthesis of control loops
  • They can explain the way a PID controller affects a control loop in terms of its frequency response
  • They can explain issues arising when controllers designed in continuous time domain are implemented digitally
Skills
  • Students can transform models of linear dynamic systems from time to frequency domain and vice versa
  • They can simulate and assess the behavior of systems and control loops
  • They can design PID controllers with the help of heuristic (Ziegler-Nichols) tuning rules
  • They can analyze and synthesize simple control loops with the help of root locus and frequency response techniques
  • They can calculate discrete-time approximations of controllers designed in continuous-time and use it for digital implementation
  • They can use standard software tools (Matlab Control Toolbox, Simulink) for carrying out these tasks
Personal Competence
Social Competence Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs
Autonomy

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.



Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program): Core qualification: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Bioprocess Engineering: Core qualification: Compulsory
Computer Science: Specialisation Computational Mathematics: Elective Compulsory
Electrical Engineering: Core qualification: Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Core qualification: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Bioprocess Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Naval Architecture: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Civil Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Biomedical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Process Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Biomechanics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Materials in Engineering Sciences: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Product Development and Production: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Energy Systems: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Computational Science and Engineering: Core qualification: Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechanical Engineering: Core qualification: Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course Core Studies: Elective Compulsory
Process Engineering: Core qualification: Compulsory
Course L0654: Introduction to Control Systems
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content

Signals and systems

  • Linear systems, differential equations and transfer functions
  • First and second order systems, poles and zeros, impulse and step response
  • Stability

Feedback systems

  • Principle of feedback, open-loop versus closed-loop control
  • Reference tracking and disturbance rejection
  • Types of feedback, PID control
  • System type and steady-state error, error constants
  • Internal model principle

Root locus techniques

  • Root locus plots
  • Root locus design of PID controllers

Frequency response techniques

  • Bode diagram
  • Minimum and non-minimum phase systems
  • Nyquist plot, Nyquist stability criterion, phase and gain margin
  • Loop shaping, lead lag compensation
  • Frequency response interpretation of PID control

Time delay systems

  • Root locus and frequency response of time delay systems
  • Smith predictor

Digital control

  • Sampled-data systems, difference equations
  • Tustin approximation, digital implementation of PID controllers

Software tools

  • Introduction to Matlab, Simulink, Control toolbox
  • Computer-based exercises throughout the course
Literature
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010
Course L0655: Introduction to Control Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Herbert Werner
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1320: Simulation and Design of Mechatronic Systems

Courses
Title Typ Hrs/wk CP
Simulation and Design of Mechatronic Systems (L1822) Lecture 2 2
Simulation and Design of Mechatronic Systems (L1823) Recitation Section (large) 1 2
Simulation and Design of Mechatronic Systems (L1824) Practical Course 1 2
Module Responsible Prof. Uwe Weltin
Admission Requirements None
Recommended Previous Knowledge Fundatmentals of mechanics, control theory and electrical engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe methods and calculations for design, modeling, simulation and optimization of mechatronic systems.

Skills

Students are able to apply modern algorithms for modeling of mechatronic systems. They can identify, simulate and design simple systems and implement those in laboratory conditions.

Personal Competence
Social Competence

Students are able to work goal-oriented in small mixed groups and present results to target groups.

Autonomy

Students are able to recognize and improve knowledge deficits independently.

With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Aircraft Systems Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Theoretical Mechanical Engineering: Elective Compulsory
Mechanical Engineering: Specialisation Aircraft Systems Engineering: Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechanical Engineering: Specialisation Theoretical Mechanical Engineering: Compulsory
Mechatronics: Core qualification: Compulsory
Course L1822: Simulation and Design of Mechatronic Systems
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Uwe Weltin
Language DE
Cycle WiSe
Content

Mechatronic Design

Modeling

Model Identifikation

Numerical Methods in simulation

Applications and examples in Matlab® and Simulink®

Literature

Skript zur Veranstaltung

Weitere Literatur in der Veranstaltung

Course L1823: Simulation and Design of Mechatronic Systems
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Uwe Weltin
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1824: Simulation and Design of Mechatronic Systems
Typ Practical Course
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Uwe Weltin
Language DE
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0610: Electrical Machines

Courses
Title Typ Hrs/wk CP
Electrical Machines (L0293) Lecture 3 4
Electrical Machines (L0294) Recitation Section (large) 2 2
Module Responsible Prof. Thanh Trung Do
Admission Requirements None
Recommended Previous Knowledge

Basics of mathematics, in particular complexe numbers, integrals, differentials

Basics of electrical engineering and mechanical engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can to draw and  explain the basic principles of electric and magnetic fields. 

They can describe the function of the standard types of electric machines and present the corresponding equations and characteristic curves. For typically used drives they can explain the major parameters of the energy efficiency of the whole system from the power grid to the driven engine.

Skills

Students arw able to calculate two-dimensional electric and magnetic fields in particular ferromagnetic circuits with air gap. For this they apply the usual methods of the design auf electric machines.

They can calulate the operational performance of electric machines from their given characteristic data and selected quantities and characteristic curves. They apply the usual equivalent circuits and graphical methods.


Personal Competence
Social Competence none
Autonomy

Students are able independently to calculate electric and magnatic fields for applications. They are able to analyse independently the operational performance of electric machines from the charactersitic data and theycan calculate thereof selected quantities and characteristic curves.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 120 Minuten
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory
Electrical Engineering: Core qualification: Elective Compulsory
Energy and Environmental Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Energy and Enviromental Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering: Elective Compulsory
Computational Science and Engineering: Specialisation Engineering Sciences: Elective Compulsory
Logistics and Mobility: Specialisation Engineering Science: Elective Compulsory
Mechanical Engineering: Core qualification: Elective Compulsory
Mechatronics: Core qualification: Compulsory
Course L0293: Electrical Machines
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Thanh Trung Do
Language DE
Cycle SoSe
Content

Electric field: Coulomb´s law, flux (field) line, work, potential, capacitor, energy, force

Magnetic field: force, flux line, Ampere´s law, field at bounderies, flux, magnetic circuit, hysteresis, induction, self-induction, mutual inductance, transformer

DC-Machines: Construction and layout, torque generation mechanismen, torque vs speed characteristics, commutation,

Asynchronous Machines. Magnetic field, construction and layout, equivalent single line diagram, complex stator current diagram (Heylands´diagram), torque vs. speed characteristics, rotor layout (Squirrelcage vs. sliprings),

Synchronous machines, construction and layout, equivalent single line diagrams, no-load and short-cuircuit characteristics, vector diagrams, motor and generator operation

drives with variable speed, inverter fed operation, special drives, step motors,



Literature

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Course L0294: Electrical Machines
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Thanh Trung Do, Weitere Mitarbeiter
Language DE
Cycle SoSe
Content

Exercises to the application of electric and magnetic fields.

Excercises to the operational performance of eletric machines.

Literature

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Module M0777: Semiconductor Circuit Design

Courses
Title Typ Hrs/wk CP
Semiconductor Circuit Design (L0763) Lecture 3 4
Semiconductor Circuit Design (L0864) Recitation Section (small) 1 2
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of electrical engineering

Basics of physics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to explain the functionality of different MOS devices in electronic circuits.
  • Students know the fundamental digital logic circuits and can discuss their advantages and disadvantages.
  • Students have solid knowledge about memory circuits and can explain their functionality and specifications.
  • Students are able to explain how analog circuits functions and where they are applied.
  • Students know the appropriate fields for the use of bipolar transistors.


Skills
  • Students can calculate the specifications of different MOS devices and can define the parameters of electronic circuits.
  • Students are able to develop different logic circuits and can design different types of logic circuits.
  • Students can use MOS devices, operational amplifiers and bipolar transistors for specific applications.


Personal Competence
Social Competence
  • Students are able work efficiently in heterogeneous teams.
  • Students working together in small groups can solve problems and answer professional  questions.


Autonomy
  • Students are able to assess their level of knowledge.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Studienleistung None
Examination Written exam
Examination duration and scale 120 min
Assignment for the Following Curricula General Engineering Science (German program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (German program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
Electrical Engineering: Core qualification: Compulsory
General Engineering Science (English program): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Electrical Engineering: Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechanical Engineering, Focus Mechatronics: Compulsory
Computational Science and Engineering: Specialisation Mathematics & Engineering Science: Elective Compulsory
Mechanical Engineering: Specialisation Mechatronics: Compulsory
Mechatronics: Core qualification: Compulsory
Technomathematics: Core qualification: Elective Compulsory
Technomathematics: Specialisation III. Engineering Science: Elective Compulsory
Course L0763: Semiconductor Circuit Design
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language DE
Cycle SoSe
Content
  • Basic circuits with MOS transistors for logic gates and amplifiers
  • Typical applications for analog and digital circuits
  • Realization of logical functions
  • Memory circuits
  • Scaling-down of CMOS circuits and further perfomance improvements
  • Operational amplifiers and their applications
  • Basic circuits with bipolar transistors
  • Design of exemplary circuits
  • Electrical behavoir of BiCMOS circuits

From the summer semester 2017 onwards, students have the possibility to get a bonus of 0,3 to 0,7 for improving the (passed) exam by writing a test on either the 16.05., 13.06. or the 04.07.2017. The test includes 10 questions (time limit: 20 min.).

Literature

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Course L0864: Semiconductor Circuit Design
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl
Language DE
Cycle SoSe
Content
  • Basic circuits with MOS transistors for logic gates and amplifiers
  • Typical applications for analog and digital circuits
  • Realization of logical functions
  • Memory circuits
  • Scaling-down of CMOS circuits and further perfomance improvements
  • Operational amplifiers and their applications
  • Basic circuits with bipolar transistors
  • Design of exemplary circuits
  • Electrical behavoir of BiCMOS circuits
Literature

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Thesis

Module M-001: Bachelor Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §21 (1):

    At least 126 ECTS credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can select, outline and, if need be, critically discuss the most important scientific fundamentals of their course of study (facts, theories, and methods).
  • On the basis of their fundamental knowledge of their subject the students are capable in relation to a specific issue of opening up and establishing links with extended specialized expertise.
  • The students are able to outline the state of research on a selected issue in their subject area.
Skills
  • The students can make targeted use of the basic knowledge of their subject that they have acquired in their studies to solve subject-related problems.
  • With the aid of the methods they have learnt during their studies the students can analyze problems, make decisions on technical issues, and develop solutions.
  • The students can take up a critical position on the findings of their own research work from a specialized perspective.


Personal Competence
Social Competence
  • Both in writing and orally the students can outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • The students can deal with issues in an expert discussion and answer them in a manner that is appropriate to the addressees. In doing so they can uphold their own assessments and viewpoints convincingly.


Autonomy
  • The students are capable of structuring an extensive work process in terms of time and of dealing with an issue within a specified time frame.
  • The students are able to identify, open up, and connect knowledge and material necessary for working on a scientific problem.
  • The students can apply the essential techniques of scientific work to research of their own.
Workload in Hours Independent Study Time 360, Study Time in Lecture 0
Credit points 12
Studienleistung None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula General Engineering Science (German program): Thesis: Compulsory
General Engineering Science (German program, 7 semester): Thesis: Compulsory
Civil- and Environmental Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory
General Engineering Science (English program): Thesis: Compulsory
General Engineering Science (English program, 7 semester): Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Logistics and Mobility: Thesis: Compulsory
Mechanical Engineering: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Naval Architecture: Thesis: Compulsory
Technomathematics: Thesis: Compulsory
xx: Thesis: Compulsory
Process Engineering: Thesis: Compulsory