Modulhandbuch

Bachelor

Mechatronik

Kohorte: Wintersemester 2016

Stand: 28. September 2018

Studiengangsbeschreibung

Inhalt

Die Absolventen des Bachelorstudiengangs Mechatronik können in den Gebieten der Werkstoffwissenschaften, Fertigungstechnik, Thermodynamik, Konstruktionslehre und Informatik einen Überblick über das Grundlagenwissen geben. Sie können Ansätze in den Gebieten der Mathematik, Mechanik und Elektrotechnik detailliert erklären und  Mess-, Steuer- und Regelungstechnik in den Grundzügen erläutern, sowie das für die Mechatronik typische Zusammenspiel der Teildisziplinen beschreiben. Dieses Wissen und die erlernten Methoden befähigen sie, die in der Mechatronik, derer Teildisziplinen und den angrenzenden Disziplinen auftretenden Probleme zu untersuchen.




Berufliche Perspektiven

Die Absolventinnen und Absolventen des Studiengangs sind in der Lage, verantwortlich und fachkundig als Mechatronik-Ingenieurin oder -Ingenieur zu arbeiten. Sie dürfen gemäß den Ingenieurgesetzen der Länder der Bundesrepublik Deutschland die Berufsbezeichnung Ingenieurin oder Ingenieur führen.
Mögliche Arbeitgeber sind beispielsweise produzierende Unternehmen des Maschinenbaus und der Elektrotechnik, Ingenieur- und Planungsbüros.
Der Abschluss ermöglicht den Übergang in einen Master-Studiengang, z.B. den konsekutiven internationalen Master Mechatronics.


Lernziele

Die Absolventen sind in der Lage,

  • fachliche Probleme grundlagenorientiert zu identifizieren, zu abstrahieren, zu formulieren und ganzheitlich zu lösen;
  • passende Analyse-, Modellierungs-, Simulations-und Optimierungsmethoden auszuwählen, zu kombinieren und interdisziplinär anzuwenden;
  • Produkte und Methoden der Mechatronik und derer Teildisziplinen auf systemtechnischer Basis zu durchdringen, zu analysieren und zu bewerten;
  • Entwurfsmethoden der Mechatronik anzuwenden;
  • Experimente zu planen, durchzuführen und die Ergebnisse zu interpretieren;
  • sowie die Grenzen von Techniken und Methoden einzuschätzen.

Die Absolventen können

  • ihr Wissen interdisziplinär innerhalb der Teilgebiete der Mechatronik unter Berücksichtigung wirtschaftlicher Erfordernisse verantwortungsbewusst anwenden und eigenverantwortlich vertiefen;
  • mechatronische Problemstellungen in einem größeren gesellschaftlichen Kontext zu bewerten und die nicht-technischen Auswirkungen der Ingenieurtätigkeit einschätzen;
  • mit Fachleuten anderer Disziplinen und Laien zusammenarbeiten und in deutscher und englischer Sprache kommunizieren;
  • Literaturrecherchen durchführen sowie Datenbanken und andere Informationsquellen für ihre Arbeit nutzen und die Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darstellen;
  • die erworbenen Kenntnisse lebenslang  erweitern und vertiefen.

Studiengangsstruktur

Das Studium ist untergliedert in die Kernqualifikation und die Abschlussarbeit.

Im sechsten Semester ist die interdisziplinäre Abschlussarbeit vorgesehen.

An der TU Hamburg-Harburg haben die Absolventinnen und Absolventen unter anderem die Möglichkeit, im Anschluss an den Bachelor Mechatronik den Masterstudiengang "International Master Mechatronics"  zu belegen.


Fachmodule der Kernqualifikation

Modul M0575: Prozedurale Programmierung

Lehrveranstaltungen
Titel Typ SWS LP
Prozedurale Programmierung (L0197) Vorlesung 1 2
Prozedurale Programmierung (L0201) Hörsaalübung 1 1
Prozedurale Programmierung (L0202) Laborpraktikum 2 3
Modulverantwortlicher Prof. Siegfried Rump
Zulassungsvoraussetzungen

Keine

Empfohlene Vorkenntnisse

Elementare Handhabung eines PC

Elementare Mathematikkenntnisse

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden erwerben folgendes Wissen:

  • Sie kennen elementare Sprachelemente der Programmiersprache C. Sie kennen die grundlegenden Datentypen und wissen um ihre Einsatzgebiete.

  • Sie haben ein Verständnis davon, was die Aufgaben eines Compilers, des Präprozessors und der Entwicklungsumgebung sind und wie diese interagieren.

  • Sie beherrschen die Einbindung und Verwendung externer Programm-Bibliotheken zur Erweiterung des Funktionsumfangs.

  • Sie wissen, wie man Header-Dateien verwendet und Funktionsschnittstellen festlegt, um größere Programmierprojekte kreieren zu können.

  • Sie haben ein Verständnis dafür, wie das implementierte Programm mit dem Betriebssystem interagiert. Dies befähigt Sie dazu, Programme zu entwickeln, welche Eingaben des Benutzers, Betriebseingaben oder auch entsprechende Dateien verarbeiten und gewünschte Ausgaben erzeugen.

  • Sie haben mehrere Herangehensweisen zur Implementierung häufig verwendeter Algorithmen gelernt.

Fertigkeiten
  • Die Studierenden sind in der Lage, die Komplexität eines Algorithmus zu bewerten und eine effiziente Implementierung vorzunehmen.

  • Die Studierenden können Algorithmen für eine Vielzahl von Funktionalitäten modellieren und programmieren. Zudem können Sie die Implementierung an eine vorgegebene API anpassen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden erwerben folgende Kompetenzen:

  • Sie können in Kleingruppen Aufgaben gemeinsam lösen, Programmfehler analysieren und beheben und ihr erzieltes Ergebnis gemeinsam präsentieren.

  • Sie können sich Sachverhalte direkt am Rechner durch einfaches Ausprobieren gegenseitig klar machen.

  • Sie können in Kleingruppen gemeinsam eine Projektidee und -planung erarbeiten.

  • Sie müssen den betreuenden Tutoren ihre eigenen Lösungsansätze verständlich kommunizieren und ihre Programme präsentieren.

Selbstständigkeit
  • Die Studierenden müssen in Einzeltestaten sowie einer abschließenden Prüfung ihre Programmierfertigkeiten unter Beweis stellen und selbständig ihr erlerntes Wissen zur Lösung neuer Aufgabenstellungen anwenden.

  • Die Studierenden haben die Möglichkeit, ihre erlernten Fähigkeiten beim Lösen einer Vielzahl von Präsenzaufgaben zu überprüfen.

  • Zur effizienten Bearbeitung der Aufgaben des Praktikums teilen die Studierenden innerhalb ihrer Gruppen die Übungsaufgaben auf. Jeder Studierende muss zunächst selbständig eine Teilaufgabe lösen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Kernqualifikation: Pflicht
Lehrveranstaltung L0197: Prozedurale Programmierung
Typ Vorlesung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Siegfried Rump
Sprachen DE
Zeitraum WiSe
Inhalt
  • elementare Datentypen (Integer, Gleitpunktformat, ASCII-Zeichen) und ihre Abhängigkeiten von der Architektur
  • höhere Datentypen (Zeiger, Arrays, Strings, Strukturen, Listen)

  • Operatoren (arithmetische Operationen, logische Operationen, Bit-Operationen)

  • Kontrollflussstrukturen (bedingte Verzweigung, Schleifen, Sprünge)

  • Präprozessor-Direktiven (Makros, bedingte Kompilierung, modulares Design)

  • Funktionen (Funktionsdefinition/-interface, Rekursion, "call by value" versus "call by reference", Funktionszeiger)

  • essentielle Standard-Bibliotheken und -Funktionen (stdio.h, stdlib.h, math.h, string.h, time.h)

  • Dateikonzept, Streams

  • einfache Algorithmen (Sortierfunktionen, Reihenentwicklung, gleichverteilte Permutation)

  • Übungsprogramme zur Vertiefung der Programmierkenntnisse

Literatur

Kernighan, Brian W (Ritchie, Dennis M.;)
The C programming language
ISBN: 9780131103702
Upper Saddle River, NJ [u.a.] : Prentice Hall PTR, 2009

Sedgewick, Robert 
Algorithms in C
ISBN: 0201316633
Reading, Mass. [u.a.] : Addison-Wesley, 2007 

Kaiser, Ulrich (Kecher, Christoph.;)
C/C++: Von den Grundlagen zur professionellen Programmierung
ISBN: 9783898428392
Bonn : Galileo Press, 2010

Wolf, Jürgen 
C von A bis Z : das umfassende Handbuch
ISBN: 3836214113
Bonn : Galileo Press, 2009

Lehrveranstaltung L0201: Prozedurale Programmierung
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Siegfried Rump
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0202: Prozedurale Programmierung
Typ Laborpraktikum
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Siegfried Rump
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0577: Nichttechnische Ergänzungskurse im Bachelor

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Nichttechnischen Angebote (NTA) 

vermitteln die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im Nichttechnischen Bereich gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und  stellt dazu Orientierungswissen zu thematischen Schwerpunkten  von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewählte Spezialgebiete innerhalb der jeweiligen nichttechnischen Mutterdisziplinen verorten,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im nichttechnischen Bereich ist).


Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist) .


Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0743: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder

Lehrveranstaltungen
Titel Typ SWS LP
Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder (L0675) Vorlesung 3 5
Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder (L0676) Gruppenübung 2 1
Modulverantwortlicher Prof. Manfred Kasper
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen die grundlegenden Theorien, Zusammenhänge und Methoden der Gleichstromnetzwerke, sowie elektrischer und magnetischer Felder. Hierzu gehören insbesondere:  

  • die Kirchhoffschen Regeln,
  • das Ohmsche Gesetz,
  • Methoden zur Vereinfachung und Analyse von Gleichstromnetzwerken,
  • die Beschreibung elektrischer und magnetischer Felder mit vektoriellen Feldgrößen,
  • grundlegende Materialbeziehungen,
  • das Gauss'sche Gesetz,
  • das Ampère'sche Gesetz,
  • das Induktionsgesetz,
  • die Maxwell'schen Gleichungen in Integralform,
  • die Begriffe und Definition des Widerstands, der Kapazität und der Induktivität.
Fertigkeiten

Die Studierenden können die Beziehungen zwischen Strömen und Spannungen in einfachen Gleichstromnetzwerken aufstellen, die Größen berechnen und Schaltungen dimensionieren. Sie können die Grundgesetze des elektrischen und magnetischen Felds anwenden und die Beziehung zwischen Feldgrößen aufstellen und auswerten. Widerstände, Kapazitäten und Induktivitäten einfacher Anordnungen können berechnet werden.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten. Sie können Konzepte erklären und anhand von Beispielen das eigene oder das Verständnis anderer überprüfen und vertiefen.

Selbstständigkeit

Die Studierenden sind in der Lage, sich Teilbereiche des Fachgebietes anhand der Grundlagenliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. Die Studierenden entwickeln die Ausdauer, um auch schwierigere Problemstellungen zu bearbeiten.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang zweistündig
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Lehrveranstaltung L0675: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Manfred Kasper
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Grundlagen der Widerstandsnetzwerke
  2. Vereinfachung von Widerstandsnetzwerken
  3. Netzwerkanalyse
  4. Elektrostatisches Feld in isolierenden Medien
  5. Das elektrostatische Feld
  6. Stationäre Ströme in leitfähigen Medien
  7. Statisches magnetisches Feld
  8. Induktion und zeitabhängige Felder
Literatur
  1. M. Kasper, Skript zur Vorlesung Elektrotechnik 1, 2013
  2. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
  3. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
  4. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008
Lehrveranstaltung L0676: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Manfred Kasper
Sprachen DE
Zeitraum WiSe
Inhalt
  1. Spannungs- und Stromquellen
  2. Ohmsches Gesetz
  3. Kirchhoff'sche Regeln, Strom- und Spannungsteiler
  4. Ersatzquellen
  5. Netzwerkanalyse
  6. Superpositionsprinzip
  7. Elektrisches Feld, Coulomb'sches Gesetz
  8. Stationäre Ströme, Widerstandsberechnung
  9. Elektrische Flussdichte, Kapazitätsberechnung
  10. Stetigkeitsbedingungen, Spannung am Kondensator
  11. Ampèresches Gesetz, Magnetischer Kreis
  12. Kräfte im Magnetfeld
  13. Induktion, Selbst- und Gegeninduktivität
Literatur
  1. Übungsaufgaben zur Elektrotechnik 1, TUHH, 2013
  2. Ch. Kautz: Tutorien zur Elektrotechnik, Pearson Studium, 2010

Modul M0850: Mathematik I

Lehrveranstaltungen
Titel Typ SWS LP
Analysis I (L1010) Vorlesung 2 2
Analysis I (L1012) Gruppenübung 1 1
Analysis I (L1013) Hörsaalübung 1 1
Lineare Algebra I (L0912) Vorlesung 2 2
Lineare Algebra I (L0913) Gruppenübung 1 1
Lineare Algebra I (L0914) Hörsaalübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Schulmathematik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die grundlegenden Begriffe der Analysis und Linearen Algebra benennen und anhand von Beispielen erklären.
  • Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
  • Sie kennen Beweisstrategien und können diese wiedergeben.



Fertigkeiten
  • Studierende können Aufgabenstellungen aus der Analysis und Linearen Algebra 
    mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen.
  • Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
  • Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.


Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
  • Sie können dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verständnis der Mitstudierenden überprüfen und vertiefen.


Selbstständigkeit
  • Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
  • Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.


Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Prüfung Klausur
Prüfungsdauer und -umfang 60 min (Analysis I) + 60 min (Lineare Algebra I)
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Logistik und Mobilität: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L1010: Analysis I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt

Grundzüge der Differential- und Integralrechnung einer Variablen:

  • Aussagen, Mengen und Funktionen
  • natürliche und reelle Zahlen
  • Konvergenz von Folgen und Reihen
  • Stetigkeit und Differenzierbarkeit
  • Mittelwertsätze
  • Satz von Taylor
  • Kurvendiskussion
  • Fehlerrechnung
  • Fixpunkt-Iterationen
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

     

     


Lehrveranstaltung L1012: Analysis I
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1013: Analysis I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0912: Lineare Algebra I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner
Sprachen DE
Zeitraum WiSe
Inhalt
  • Vektoren im Anschauungsraum: Rechenregeln, inneres Produkt, Kreuzprodukt, Geraden und Ebenen
  • Allgemeine Vektorräume: Teilräume, Euklidische Vektorräume
  • Lineare Gleichungssysteme: Gaußelimination, Matrizenprodukt, lineare Systeme, inverse Matrizen, Kongruenztransformationen, LR-Zerlegung, Block-Matrizen, Determinanten
Literatur
  • T. Arens u.a. : Mathematik, Spektrum Akademischer Verlag, Heidelberg 2009
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Lehrveranstaltung L0913: Lineare Algebra I
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0914: Lineare Algebra I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0889: Mechanik I (Stereostatik)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik I (Stereostatik) (L1001) Vorlesung 2 3
Mechanik I (Stereostatik) (L1002) Gruppenübung 2 2
Mechanik I (Stereostatik) (L1003) Hörsaalübung 1 1
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse

Gefestigte und tiefgehende Schulkentnisse in Mathematik und Physik. Als gute Auffrischung der Mathematikkenntnisse  ist der Mathematikvorkurs empfehlenswert. Parallel zum Modul Mechanik I sollte das Modul Mathematik I besucht werden.



Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • die axiomatische Vorgehensweise bei der Erarbeitung der mechanischen Zusammenhänge beschreiben;
  • wesentliche Schritte der Modellbildung erkläutern;
  • Fachwissen aus dem Bereich der Stereostatik präsentieren.
Fertigkeiten

Die Studierenden können

  • die wesentlichen Elemente der mathematischen / mechanischen Analyse und Modellbildung anwenden und im Kontext eigener Fragestellung umsetzen;
  • grundlegende Methoden der Statik auf Probleme des Ingenieurwesens anwenden;
  • Tragweite und Grenzen der eingeführten Methoden der Statik abschätzen, beurteilen und sich weiterführende Ansätze erarbeiten.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen.

Selbstständigkeit

Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L1001: Mechanik I (Stereostatik)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt Kräftesysteme und Gleichgewicht
Lagerung von Körpern
Fachwerke
Gewichtskraft und Schwerpunkt
Reibung
Innere Kräfte und Momente am Balken
Literatur K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Lehrveranstaltung L1002: Mechanik I (Stereostatik)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt Kräftesysteme und Gleichgewicht
Lagerung von Körpern
Fachwerke
Gewichtskraft und Schwerpunkt
Reibung
Innere Kräfte und Momente am Balken
Literatur K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).
Lehrveranstaltung L1003: Mechanik I (Stereostatik)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt Kräftesysteme und Gleichgewicht
Lagerung von Körpern
Fachwerke
Gewichtskraft und Schwerpunkt
Reibung
Innere Kräfte und Momente am Balken
Literatur K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1. 11. Auflage, Springer (2011).

Modul M0933: Grundlagen der Werkstoffwissenschaften

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Werkstoffwissenschaft I (L1085) Vorlesung 2 2
Grundlagen der Werkstoffwissenschaft II (Keramische Hochleistungswerkstoffe, Kunststoffe und Verbundwerkstoffe) (L0506) Vorlesung 2 2
Physikalische und Chemische Grundlagen der Werkstoffwissenschaften (L1095) Vorlesung 2 2
Modulverantwortlicher Prof. Jörg Weißmüller
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Physik, Chemie und Mathematik der gymnasialen Oberstufe.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studenten verfügen über grundlegende Kenntnisse zu Metallen, Keramiken und Polymeren und können diese verständlich wiedergeben. Grundlegende Kenntnisse betreffen dabei insbesondere die Fragen nach atomarem Aufbau, Gefüge, Phasendiagrammen, Phasenumwandlungen, Korrosion und mechanischen Eigenschaften. Die Studenten kennen die wichtigsten Aspekte der Methodik bei der Untersuchung von Werkstoffen und können methodische Zugänge zu gegebene Eigenschaften benennen.


Fertigkeiten

Die Studenten sind in der Lage, Materialphänomene auf die zu Grunde liegenden physikalisch-chemischen Naturgesetze zurückführen. Mit Materialphänomenen sind hier mechanische Eigenschaften wie Festigkeit, Duktilität und Steifigkeit gemeint, sowie chemische Eigenschaften wie Korrosionsbeständigkeit und Phasenumwandlungen wie Erstarrung, Ausscheidung, oder Schmelzen. Die Studenten können die Beziehung zwischen den Verarbeitungsbedingungen und dem Gefüge erklären und sie können die Auswirkungen des Gefüges auf das Materialverhalten darstellen.


Personale Kompetenzen
Sozialkompetenz

-

Selbstständigkeit

-

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science: Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L1085: Grundlagen der Werkstoffwissenschaft I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Jörg Weißmüller
Sprachen DE
Zeitraum WiSe
Inhalt

Grundlegende Kenntnisse zu Metallen: Atomarer Aufbau, Gefüge, Phasen diagramme, Phasenumwandlungen, Mechanische Prüfung, Mechanische Eigenschaften, Konstruktionswerkstoffe

Literatur

Vorlesungsskript

W.D. Callister: Materials Science and Engineering - An Introduction. 5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7


Lehrveranstaltung L0506: Grundlagen der Werkstoffwissenschaft II (Keramische Hochleistungswerkstoffe, Kunststoffe und Verbundwerkstoffe)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Bodo Fiedler, Prof. Gerold Schneider
Sprachen DE
Zeitraum SoSe
Inhalt

Grundlegende Kenntnisse zu Keramiken, Kunststoffen und Verbundwerkstoffen: Herstellung, Verarbeitung, Struktur und Eigenschaften

Vermittlung von grundlegenden Kenntnissen und Methoden; Grundkenntnisse zum Aufbau und Eigenschaften von Keramiken, Kunststoffen und Verbundwerkstoffen; Vermittlung von Methodik bei der Untersuchung von Werkstoffen.

Literatur

Vorlesungsskript

W.D. Callister: Materials Science and Engineering -An Introduction-5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7

Lehrveranstaltung L1095: Physikalische und Chemische Grundlagen der Werkstoffwissenschaften
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Stefan Müller
Sprachen DE
Zeitraum WiSe
Inhalt
  • Motivation: „Atome im Maschinenbau?“
  • Grundbegriffe: Kraft und Energie
  • Die elektromagnetische Wechselwirkung
  • „Detour“: Mathematische Grundlagen (komplexe e-Funktion etc.)
  • Das Atom: Bohrsches Atommodell
  • Chemische Bindung
  • Das Vielteilchenproblem: Lösungsansätze und Strategien
  • Beschreibung von Nahordnungsphänomene mittels statistischer Thermodynamik
  • Elastizitätstheorie auf atomarer Basis
  • Konsequenzen des atomaren Verhaltens auf makroskopische Eigenschaften: Diskussion von Beispielen (Metalllegierungen, Halbleiter, Hybridsysteme)
Literatur

Für den Elektromagnetismus:

  • Bergmann-Schäfer: „Lehrbuch der Experimentalphysik“, Band 2: „Elektromagnetismus“, de Gruyter

Für die Atomphysik:

  • Haken, Wolf: „Atom- und Quantenphysik“, Springer

Für die Materialphysik und Elastizität:

  • Hornbogen, Warlimont: „Metallkunde“, Springer


Modul M0547: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente

Lehrveranstaltungen
Titel Typ SWS LP
Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente (L0178) Vorlesung 3 5
Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente (L0179) Gruppenübung 2 1
Modulverantwortlicher Prof. Christian Becker
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Elektrotechnik I

Mathematik I

Gleichstromnetzwerke, komplexe Zahlen


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegende Theorien, Zusammenhänge und Methoden der Wechselstromlehre erklären. Sie können das Verhalten von linearen Netzwerken mit Hilfe der  komplexen Notation von Spannungen und Strömen beschreiben.  Sie können einen Überblick über die Anwendungen der Wechselstromlehre im Bereich der elektrischen Energietechnik geben. Sie können das Verhalten einfacher passiver und aktiver Bauelemente sowie deren Anwendung in einfachen Schaltungen erläutern.


Fertigkeiten

Die Studierenden können einfache Wechselstrom-Netzwerke mit Hilfe der komplexen Notation von Spannungen und Strömen berechnen. Sie können einschätzen, welche prinzipiellen Effekte in einem Wechselstrom-Netzwerk auftauchen können. Sie können einfache Schaltkreise wie Schwingkreise, Filter und Anpassnetzwerke quantitativ analysieren und dimensionieren. Sie können die wesentlichen Elemente eines elektrischen Energieversorgungssystems (Übertrager, Leitung, Blindleistungskompensation, Mehrphasensystem) in ihrer Sinnhaftigkeit begründen und in ihren Grundzügen planen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Projektwoche).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Online-Tests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 - 150 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Lehrveranstaltung L0178: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum SoSe
Inhalt

- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten

- Darstellung und Eigenschaften von Sinussignalen

- RLC-Elemente bei Wechselstrom/Wechselspannung

- RLC-Elemente in komplexer Darstellung

- Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation

- Ortskurven und Bode-Diagramme

- Wechselstrommesstechnik

- Schwingkreise, Filter, elektrische Leitungen

- Übertrager, Drehstrom, Energiewandler

- Einfache nichtlineare und aktive Bauelemente


Literatur

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Lehrveranstaltung L0179: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Christian Becker
Sprachen DE
Zeitraum SoSe
Inhalt

- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten

- Darstellung und Eigenschaften von Sinussignalen

- RLC-Elemente bei Wechselstrom/Wechselspannung

- RLC-Elemente in komplexer Darstellung

- Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation

- Ortskurven und Bode-Diagramme

- Wechselstrommesstechnik

- Schwingkreise, Filter, elektrische Leitungen

- Übertrager, Drehstrom, Energiewandler

- Einfache nichtlineare und aktive Bauelemente


Literatur

- M. Albach, "Elektrotechnik", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013)  

- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010)

- C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009)

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013)

- R. Dorf, "The Electrical Engineering Handbook", CRC (2006)


Modul M0594: Grundlagen der Konstruktionslehre

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Konstruktionslehre (L0258) Vorlesung 2 3
Grundlagen der Konstruktionslehre (L0259) Hörsaalübung 2 3
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Grundkenntnisse der Mechanik und Fertigungstechnik
  • Grundpraktikum
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • grundlegende Wirkprinzipien und Funktionsweisen von Maschinenelementen zu erklären,
  • Anforderungen, Auswahlkriterien, Einsatzszenarien und Praxisbeispiele von einfachen Maschinenelementen zu erläutern,
  • Berechnungsgrundlagen anzugeben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Auslegungsberechnungen behandelter Maschinenelemente durchzuführen,
  • im Modul erlerntes Wissens auf neue Anforderungen und Aufgabenstellungen zu übertragen (Problemlösungskompetenz),
  • technischer Zeichnungen und Prinzipskizzen zu erschließen,
  • einfache Konstruktionen technisch zu bewerten.
Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage sich über fachliche Inhalte im Rahmen von aktivierenden Methoden in der Vorlesung auszutauschen.
Selbstständigkeit
  • Studierende können erlerntes Wissen in Übungen eigenständig vertiefen.
  • Studierende sind in der Lage z.B. mithilfe der Vorlesungsaufzeichnung noch nicht verstandene Inhalte zu erarbeiten und zu wiederholen.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Logistik und Mobilität: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0258: Grundlagen der Konstruktionslehre
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesung

  • Einführung in das Fach Konstruktionslehre
  • Einführung in das Konstruieren
  • Einführung in folgende Maschinenelemente
    • Lösbare Verbindungen (Schrauben)
    • Welle-Nabe-Verbindungen
    • Wälzlager
    • Schweiß-/Klebe-/Lötverbindungen
    • Federn
    • Achsen & Wellen
  • Darstellung technischer Gegenstände (Technisches Zeichnen)

Hörsaalübung:

  • Berechnungsverfahren zur Auslegung folgender Maschinenelemente:
    • Lösbare Verbindungen (Schrauben)
    • Welle-Nabe-Verbindungen
    • Wälzlager
    • Schweiß-/Klebe-/Lötverbindungen
    • Federn
    • Achsen & Wellen
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
  • Sowie weitere Bücher zu speziellen Themen
Lehrveranstaltung L0259: Grundlagen der Konstruktionslehre
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0696: Mechanik II: Elastostatik

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik II (L0493) Vorlesung 2 2
Mechanik II (L0494) Gruppenübung 2 2
Mechanik II (L1691) Hörsaalübung 2 2
Modulverantwortlicher Prof. Swantje Bargmann
Zulassungsvoraussetzungen keine
Empfohlene Vorkenntnisse Grundkenntnisse der Statik (Mechanik I)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können die grundlegenden Begriffe und Gesetze der Elastostatik, wie z.B. Spannungen, Verzerrungen, lineares Hookesches Materialgesetz benennen.
 
Fertigkeiten

Nach dem erfolgreichen Absolvieren dieses Kurses sind die Studierenden in der Lage, 

• die wesentlichen Elemente der mathematisch / mechanischen Analyse und Modellbildung im Kontext eigener Fragestellungen umzusetzen.
• Grundlegende Methoden der Elastostatik auf Probleme des Ingenieurwesens
anzuwenden.
• Tragweite und Grenzen der eingeführten Methoden der Elastostatik abzuschätzen, zu beurteilen und

sich hieran anschließend weiterführende Ansätze zu erarbeiten.

Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit -
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0493: Mechanik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt Spannungen und Dehnungen
Stoffgesetze
Zug und Druck
Torsion
Biegung
Festigkeit
Knickung
Energiemethoden
Literatur

K. Magnus, H.H. Müller -Slany, Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2005)

D. Gross, W. Hauger, W. Schnell, J. Schröder, Technische Mechanik 1&2. 8. Auflage, Springer
(2004).
R.C. Hibbeler, Technische Mechanik
1&2. Pearson (2005)

Lehrveranstaltung L0494: Mechanik II
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1691: Mechanik II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0851: Mathematik II

Lehrveranstaltungen
Titel Typ SWS LP
Analysis II (L1025) Vorlesung 2 2
Analysis II (L1026) Hörsaalübung 1 1
Analysis II (L1027) Gruppenübung 1 1
Lineare Algebra II (L0915) Vorlesung 2 2
Lineare Algebra II (L0916) Gruppenübung 1 1
Lineare Algebra II (L0917) Hörsaalübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Mathematik I
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können weitere Begriffe der Analysis und Linearen Algebra benennen und anhand von Beispielen erklären.

  • Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
  • Sie kennen Beweisstrategien und können diese wiedergeben.
Fertigkeiten
  • Studierende können Aufgabenstellungen aus der Analysis und Linearen Algebra mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen.
  • Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
  • Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.
Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.

  • Sie können dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verständnis der Mitstudierenden überprüfen und vertiefen.
Selbstständigkeit
  • Studierende können eigenständig ihr Verständnis mathematischer Konzepte überprüfen, noch offene Fragen formulieren und sich gegebenenfalls gezielt Hilfe holen.
  • Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume an schwierigen Problemstellungen zu arbeiten.
Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Prüfung Klausur
Prüfungsdauer und -umfang 60 min (Analysis II) + 60 min (Lineare Algebra II)
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Logistik und Mobilität: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L1025: Analysis II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt
  • Potenzreihen und elementare Funktionen
  • Interpolation
  • Integration (bestimmte Integrale, Hauptsatz, Integrationsregeln, uneigentliche Integrale, parameterabhängige Integrale)
  • Anwendungen der Integralrechnung (Volumen und Mantelfläche von Rotationskörpern, Kurven und Bogenlänge, Kurvenintegrale
  • numerische Quadratur
  • periodische Funktionen und Fourier-Reihen
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html



Lehrveranstaltung L1026: Analysis II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1027: Analysis II
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0915: Lineare Algebra II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner
Sprachen DE
Zeitraum SoSe
Inhalt
  • Lineare Abbildungen: Basiswechsel, orthogonale Projektion, orthogonale Matrizen, Householder Matrizen
  • Lineare Ausgleichsprobleme: QR-Zerlegung, Normalgleichungen, lineare diskrete Approximation
  • Eigenwertaufgaben: Diagonalisierbarkeit von Matrizen, normale Matrizen, symmetrische und hermitische Matrizen, Jordansche Normalform, Singulärwertzerlegung
  • Systeme linearer Differentialgleichungen
Literatur
  • W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
  • W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994
Lehrveranstaltung L0916: Lineare Algebra II
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0917: Lineare Algebra II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0725: Fertigungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Fertigungstechnik I (L0608) Vorlesung 2 2
Fertigungstechnik I (L0612) Hörsaalübung 1 1
Fertigungstechnik II (L0610) Vorlesung 2 2
Fertigungstechnik II (L0611) Hörsaalübung 1 1
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine Leistungsnachweise erforderlich

Grundpraktikum empfohlen

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können …

  • die Grundkriterien zur Auswahl von Fertigungsverfahren wiedergeben.
  • die Hauptgruppen der Fertigungstechnik wiedergeben.
  • die Anwendungsbereiche verschiedener Fertigungsverfahren wiedergeben.
  • über Grenzen, Vor- und nachteile von den verschiedenen Fertigungsverfahren einen Überblick geben.
  • Bestandteile, geometrische Eigenschaften und kinematische Größen und Anforderungen an Werkzeuge,  Werkstück und Prozess erklären.
  • die wesentlichen Modelle der Fertigungstechnik wiedergeben.


Fertigkeiten

Studierende sind in der Lage …

  • Fertigungsverfahren entsprechend der Anforderungen auszuwählen.
  • Prozesse für einfache Bearbeitungsaufgaben auszulegen um die geforderten Toleranzen an das zu fertigende Bauteil einzuhalten.
  • Bauteile hinsichtlich ihrer fertigungsgerechten Konstruktion zu beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können …

  • im Produktionsumfeld mit Fachpersonal auf fachlicher Ebene Lösungen entwickeln und Entscheidungen vertreten.


Selbstständigkeit

Studierende sind fähig, …

  • mit Hilfe von Hinweisen eigenständig Fertigungsverfahren auszulegen.
  • eigene Stärken und Schwächen allgemein Einzuschätzen.
  • ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.
  • mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Lehrveranstaltung L0608: Fertigungstechnik I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fertigungsgenauigkeit
  • Fertigungsmesstechnik
  • Messfehler und Messunsicherheit
  • Grundlagen der Umformtechnik
  • Massiv- und Blechumformung
  • Grundlagen der Zerspantechnik
  • Spanen mit geometrisch bestimmter Schneide (Drehen, Bohren, Fräsen, Hobeln/ Stoßen)
Literatur

Dubbel, Heinrich (Grote, Karl-Heinrich.; Feldhusen, Jörg.; Dietz, Peter,; Ziegmann, Gerhard,;)  Taschenbuch für den Maschinenbau : mit Tabellen. Berlin [u.a.] : Springer, 2007

Fritz, Alfred Herbert: Fertigungstechnik : mit 62 Tabellen. Berlin [u.a.] : Springer, 2004

Keferstein, Claus P (Dutschke, Wolfgang,;): Fertigungsmesstechnik : praxisorientierte Grundlagen, moderne Messverfahren. Wiesbaden : Teubner, 2008

Mohr, Richard: Statistik für Ingenieure und Naturwissenschaftler : Grundlagen und Anwendung statistischer Verfahren. Renningen : expert-Verl, 2008

Klocke, F., König, W.: Fertigungsverfahren Bd. 1 Drehen, Fäsen, Bohren. 8. Aufl., Springer (2008)

Klocke, Fritz (König, Wilfried,;): Umformen. Berlin [u.a.] : Springer, 2006

Paucksch, E.: Zerspantechnik, Vieweg-Verlag, 1996

Tönshoff, H.K.; Denkena, B., Spanen. Grundlagen, Springer-Verlag (2004)

Lehrveranstaltung L0612: Fertigungstechnik I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0610: Fertigungstechnik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Spanen mit geometrisch unbestimmter Schneide (Schleifen, Honen, Läppen)
  • Einführung in die Abtragtechnik
  • Einführung in die Strahlverfahren
  • Einführung in das Urformen (Gießen, Pulvermetallurgie, Faserverbundherstellung)
  • Einführung in die Lasertechnik
  • Verfahrensvarianten und Grundlagen der Laserfügetechnik
Literatur

Klocke, F., König, W.: Fertigungsverfahren Bd. 2 Schleifen, Honen, Läppen, 4. Aufl., Springer (2005)

Klocke, F., König, W.: Fertigungsverfahren Bd. 3 Abtragen, Generieren und Lasermaterialbearbeitung. 4. Aufl., Springer (2007)

Spur, Günter (Stöferle, Theodor.;): Urformen. München [u.a.] : Hanser, 1981

Schatt, Werner (Wieters, Klaus-Peter,; Kieback, Bernd,;): Pulvermetallurgie : Technologien und Werkstoffe. Berlin [u.a.] : Springer, 2007


Lehrveranstaltung L0611: Fertigungstechnik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0959: Mechanik III (Hydrostatik, Kinematik, Kinetik I)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik III (Hydrostatik, Kinematik, Kinetik I) (L1134) Vorlesung 3 3
Mechanik III (Hydrostatik, Kinematik, Kinetik I) (L1135) Gruppenübung 2 2
Mechanik III (Hydrostatik, Kinematik, Kinetik I) (L1136) Hörsaalübung 1 1
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Module Mathematik I, II, Mechanik I (Stereostatik). Parallel zum Modul Mechanik III sollte das Modul Mathematik III besucht werden.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • die axiomatische Vorgehensweise bei der Erarbeitung der mechanischen Zusammenhänge beschreiben;
  • wesentliche Schritte der Modellbildung erkläutern;
  • Fachwissen aus der Hydrostatik, der Kinematik und der Kinetik präsentieren.
Fertigkeiten

Die Studierenden können

  • die wesentlichen Elemente der mathematischen / mechanischen Analyse und Modellbildung anwenden und im Kontext eigener Fragestellung umsetzen;
  • grundlegende Methoden der Hydrostatik, der Kinematik und der Kinetik auf Probleme des Ingenieurwesens anwenden;
  • Tragweite und Grenzen der eingeführten Methoden der Statik abschätzen, beurteilen und sich weiterführende Ansätze erarbeiten.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. 

Selbstständigkeit

Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L1134: Mechanik III (Hydrostatik, Kinematik, Kinetik I)
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt

Hydrostatik

Kinematik

  • Punktbewegungen, Relativbewegungen
  • Bewegungen von Punktsytemen, Kinematik des starren Körpers

Kinetik

  • Grundbegriffe
  • Grundgleichungen der Kinetik
  • Kinetik des starren Körpers
  • Kreiseltheorie
Literatur K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009).
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 3 und 4. 11. Auflage, Springer (2011).
Lehrveranstaltung L1135: Mechanik III (Hydrostatik, Kinematik, Kinetik I)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1136: Mechanik III (Hydrostatik, Kinematik, Kinetik I)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0598: Konstruktionslehre Gestalten

Lehrveranstaltungen
Titel Typ SWS LP
Gestalten von Bauteilen und 3D-CAD (L0268) Vorlesung 2 1
Konstruktionsprojekt I (L0695) Testat 3 2
Konstruktionsprojekt II (L0592) Testat 3 2
Teamprojekt Konstruktionsmethodik (L0267) Projekt-/problembasierte LehrveranstaltungLehrveranstaltung 2 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mechanik
  • Grundlagen der Konstruktionslehre
  • Grundlagen der Werkstoffwissenschaft
  • Grundoperationen der Fertigungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Gestaltungsrichtlinien von Maschinenteilen zum beanspruchungsgerechten, werkstoffgerechten und fertigungsgerechten Konstruieren zu erläutern,
  • Grundlagen von 3D-CAD wiederzugeben,
  • Grundlagen des methodischen Konstruierens zu erklären.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Prinzipskizzen, technischen Zeichnungen und Dokumentationen auch im 3D-CAD selbstständiges zu erstellen,
  • Bauteile selbstständig auf Basis von Konstruktionsrichtlinien zu gestalten,
  • verwendete Komponenten zu dimensionieren (berechnen),
  • methodisch zu konstruieren und dadurch zielgerichtet konstruktive Aufgabenstellungen zu lösen,
  • Kreativitätstechniken im Team anzuwenden.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage

  • in Gruppen Lösungen zu entwickeln, zu bewerten, Entscheidungen zu treffen und zu dokumentieren,
  • den Einsatz von wissenschaftlichen Methoden zu moderieren,
  • Lösungen und Technische Zeichnungen innerhalb von Gruppen zu präsentieren und zu diskutieren,
  • eigene Ergebnisse in der Testatgruppe zu reflektieren.
Selbstständigkeit

Studierende sind in der Lage

  • ihren Lernstand auf Basis der aktivierenden Methoden (u.a. mit Clickern) einzuschätzen,
  • konstruktive Aufgabenstellungen systematisch zu lösen.
Arbeitsaufwand in Stunden Eigenstudium 40, Präsenzstudium 140
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 180
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0268: Gestalten von Bauteilen und 3D-CAD
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlagen der 3D-CAD Technik
  • Praktikum zur Anwendung eines 3D-CAD Systems
    • Einführung in Bedienung des Systems
    • Skizzieren und Bauteilerstellung
    • Erzeugen von Baugruppen
    • Ableiten von technischen Zeichnungen
Literatur
  • CAx für Ingenieure eine praxisbezogene Einführung; Vajna, S., Weber, C., Bley, H., Zeman, K.; Springer-Verlag, aktuelle Auflage.
  • Handbuch Konstruktion; Rieg, F., Steinhilper, R.; Hanser; aktuelle Auflage.
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Technisches Zeichnen: Grundlagen, Normen, Beispiele, Darstellende Geometrie, Hoischen, H; Hesser, W; Cornelsen, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  • Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  • Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  • Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Lehrveranstaltung L0695: Konstruktionsprojekt I
Typ Testat
SWS 3
LP 2
Arbeitsaufwand in Stunden Eigenstudium 18, Präsenzstudium 42
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt
  • Erstellen einer technischen Dokumentation eines vorhandenen mechanischen Modells
  • Vertiefung folgender Aspekte des Technischen Zeichnens:
    • Darstellung technischer Gegenstände und Normteile
      (Wälzlager, Dichtungen, Welle-Nabe-Verbindungen, lösbare Verbindungen, Federn, Achsen und Wellen)
    • Schnittansichten
    • Maßeintragung
    • Toleranzen und Oberflächenangaben
    • Erstellen einer Stückliste


Literatur
  1. Hoischen, H.; Hesser, W.: Technisches Zeichnen. Grundlagen, Normen, Beispiele, darstellende Geometrie, 33. Auflage. Berlin 2011.
  2. Labisch, S.; Weber, C.: Technisches Zeichnen. Selbstständig lernen und effektiv üben, 4. Auflage. Wiesbaden 2008.
  3. Fischer, U.: Tabellenbuch Metall, 43. Auflage. Haan-Gruiten 2005.


Lehrveranstaltung L0592: Konstruktionsprojekt II
Typ Testat
SWS 3
LP 2
Arbeitsaufwand in Stunden Eigenstudium 18, Präsenzstudium 42
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum SoSe
Inhalt
  • Erstellen von Lösungsvarianten (Prinzipskizzen) für die Einzel- und Gesamtfunktionen
  • Überschlägige Dimensionierung von Wellen
  • Auslegung von Wälzlagern, Schraubenverbindungen, Schweißnähten
  • Anfertigen technischer Zeichnungen (Zusammenbauzeichnungen u. Fertigungszeichnungen)
Literatur

Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag.

Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag.

Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag.

Einführung in die DIN-Normen, Klein, M., Teubner-Verlag.

Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag.

Lehrveranstaltung L0267: Teamprojekt Konstruktionsmethodik
Typ Projekt-/problembasierte LehrveranstaltungLehrveranstaltung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung in die Grundlagen des methodischen Konstruierens
  • Konstruktionsmethodische Teamarbeit zur Lösungsfindung
    • Erstellen von Anforderungslisten
    • Problemformulierung
    • Erstellen von Funktionsstrukturen
    • Lösungsfindung
    • Bewertung der gefundenen Konzepte
    • Dokumentation des Vorgehens und der Konzepte in Präsentationsfolien
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
  • Sowie weitere Bücher zu speziellen Themen

Modul M0708: Elektrotechnik III: Netzwerktheorie und Transienten

Lehrveranstaltungen
Titel Typ SWS LP
Netzwerktheorie (L0566) Vorlesung 3 4
Netzwerktheorie (L0567) Gruppenübung 2 2
Modulverantwortlicher Prof. Arne Jacob
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Elektrotechnik I und II, Mathematik I und II


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Berechnungsverfahren von elektrischen Netzwerken erklären. Sie kennen die Analyse linearer, mit periodischen Signalen angeregter Netzwerke, mittels Fourier-Reihenentwicklung. Sie kennen die Berechnungsmethoden von Einschaltvorgängen in linearen Netzwerken sowohl im Zeit- als auch im Frequenzbereich. Sie können das Frequenzverhalten und die Synthese einfacher passiver Zweipol-Netzwerke erläutern.


Fertigkeiten

Die Studierenden können Spannungen und Ströme in elektrischen Netzwerken, auch bei periodischer Anregung, mit Hilfe von grundlegenden Berechnungsverfahren bestimmen. Sie können sowohl im Zeit- als auch im Frequenzbereich Einschaltvorgänge in elektrischen Netzwerken berechnen und deren Einschaltverhalten beschreiben. Sie können das Frequenzverhalten passiver Zweipol-Netzwerke analysieren und synthetisieren.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Übungsgruppen vorlesungsrelevante Aufgaben gemeinsam bearbeiten und die selbst erarbeiteten Lösungen innerhalb der Übungsgruppe präsentieren.


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Berechnungsverfahren für die zu lösenden Probleme zu erkennen und anzuwenden. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Kurzfragentests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 150 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0566: Netzwerktheorie
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Arne Jacob
Sprachen DE
Zeitraum WiSe
Inhalt

- Systematische Berechnung linearer, elektrischer Netzwerke

- Berechnung von N-Tor-Netzwerken

- Periodische Anregung von linearen Netzwerken

- Einschaltvorgänge im Zeitbereich

- Einschaltvorgänge im Frequenzbereich; Laplace-Transformation

- Frequenzverhalten passiver Zweipol-Netzwerke


Literatur

- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011)

- M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011)

- L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011)

- T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) 

- A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)

- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006)

- L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005)


Lehrveranstaltung L0567: Netzwerktheorie
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Arne Jacob
Sprachen DE
Zeitraum WiSe
Inhalt siehe korrespondierende Lehrveranstaltung
Literatur

siehe korrespondierende Lehrveranstaltung

see interlocking course

Modul M0730: Technische Informatik

Lehrveranstaltungen
Titel Typ SWS LP
Technische Informatik (L0321) Vorlesung 3 4
Technische Informatik (L0324) Gruppenübung 1 2
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse der Elektrotechnik

Bei erfolgreicher Teilnahme an den Übungen wird diese erbrachte Vorleistung bei der Bewertung der Klausur gemäß folgender Regeln mitberücksichtigt:

  1. Bei bestandener Modulprüfung wird dem Studierenden aufgrund der erfolgreichen Teilnahme an den Übungen ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe von 0,3 bzw. 0,4 gewährt.
  2. Eine Notenverbesserung von 5,0 auf 4,3 oder von 4,3 auf 4,0 ist nicht möglich.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Dieses Modul vermittelt Grundkenntnisse der Funktionsweise von Rechensystemen. Abgedeckt werden die Ebenen von der Assemblerprogrammierung bis zur Gatterebene. Das Modul behandelt folgende Inhalte:

  • Einführung
  • Kombinatorische Logik: Gatter, Boolesche Algebra, Schaltfunktionen, Synthese von Schaltungen, Schaltnetze
  • Sequentielle Logik: Flip-Flops, Schaltwerke, systematischer Schaltwerkentwurf
  • Technologische Grundlagen
  • Rechnerarithmetik: Ganzzahlige Addition, Subtraktion, Multiplikation und Division
  • Grundlagen der Rechnerarchitektur: Programmiermodelle, MIPS-Einzelzyklusmaschine, Pipelining
  • Speicher-Hardware: Speicherhierarchien, SRAM, DRAM, Caches
  • Ein-/Ausgabe: I/O aus Sicht der CPU, Prinzipien der Datenübergabe, Point-to-Point Verbindungen, Busse
Fertigkeiten

Die Studierenden fassen ein Rechensystem aus der Perspektive des Architekten auf, d.h. sie erkennen die interne Struktur und den physischen Aufbau von Rechensystemen. Die Studierenden können analysieren, wie hochspezifische und individuelle Rechner aus einer Sammlung gängiger Einzelkompenenten zusammengesetzt werden. Sie sind in der Lage, die unterschiedlichen Abstraktionsebenen heutiger Rechensysteme - von Gattern und Schaltungen bis hin zu Prozessoren - zu unterscheiden und zu erklären.

Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage, die Wechselwirkungen zwischen einem physischen Rechensystem und der darauf ausgeführten Software beurteilen zu können. Insbesondere sollen sie die Konsequenzen der Ausführung von Software in den hardwarenahen Schichten von der Assemblersprache bis zu Gattern erkennen können. Sie sollen so in die Lage versetzt werden, Auswirkungen unterer Schichten auf die Leistung des Gesamtsystems abzuschätzen und geeignete Optionen vorzuschlagen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren.

Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten, Inhalte der Vorlesung und Übungen
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht
General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Lehrveranstaltung L0321: Technische Informatik
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Heiko Falk
Sprachen DE
Zeitraum WiSe
Inhalt
  • Einführung
  • Kombinatorische Logik
  • Sequentielle Logik
  • Technologische Grundlagen
  • Zahlendarstellungen und Rechnerarithmetik
  • Grundlagen der Rechnerarchitektur
  • Speicher-Hardware
  • Ein-/Ausgabe
Literatur
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
Lehrveranstaltung L0324: Technische Informatik
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0853: Mathematik III

Lehrveranstaltungen
Titel Typ SWS LP
Analysis III (L1028) Vorlesung 2 2
Analysis III (L1029) Gruppenübung 1 1
Analysis III (L1030) Hörsaalübung 1 1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (L1031) Vorlesung 2 2
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (L1032) Gruppenübung 1 1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (L1033) Hörsaalübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematik I + II

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die grundlegenden Begriffe aus dem Gebiet der Analysis und Differentialgleichungen benennen und anhand von Beispielen erklären.
  • Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
  • Sie kennen Beweisstrategien und können diese wiedergeben.
Fertigkeiten
  • Studierende können Aufgabenstellungen aus dem Gebiet der Analysis und Differentialgleichungen 
    mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen.
  • Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
  • Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.
Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.

  • Sie können dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verständnis der Mitstudierenden überprüfen und vertiefen.
Selbstständigkeit
  • Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.

  • Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.
Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Prüfung Klausur
Prüfungsdauer und -umfang 60 min (Analysis III) + 60 min (Differentialgleichungen 1)
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L1028: Analysis III
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt

Grundzüge der Differential- und Integralrechnung mehrerer Variablen:

  • Differentialrechnung mehrerer Veränderlichen
  • Mittelwertsätze und Taylorscher Satz
  • Extremwertbestimmung
  • Implizit definierte Funktionen
  • Extremwertbestimmung bei Gleichungsnebenbedinungen
  • Newton-Verfahren für mehrere Variablen
  • Bereichsintegrale
  • Kurven- und Flächenintegrale
  • Integralsätze von Gauß und Stokes
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Lehrveranstaltung L1029: Analysis III
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1030: Analysis III
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt

Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen

  • Einführung und elementare Methoden
  • Existenz und Eindeutigkeit bei Anfangswertaufgaben
  • Lineare Differentialgleichungen
  • Stabilität und qualitatives Lösungsverhalten
  • Randwertaufgaben und Grundbegriffe der Variationsrechnung
  • Eigenwertaufgaben
  • Numerische Verfahren zur Integration von Anfangs- und Randwertaufgaben
  • Grundtypen bei partiellen Differentialgleichungen
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0960: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) (L1137) Vorlesung 3 3
Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) (L1138) Gruppenübung 2 2
Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme) (L1139) Hörsaalübung 1 1
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Module Mathematik I-III, Mechanik I-III

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können

  • die axiomatische Vorgehensweise bei der Erarbeitung der mechanischen Zusammenhänge beschreiben;
  • wesentliche Schritte der Modellbildung erkläutern;
  • Fachwissen aus der Thematik präsentieren.
Fertigkeiten

Die Studierenden können

  • die wesentlichen Elemente der mathematischen / mechanischen Analyse und Modellbildung anwenden und im Kontext eigener Fragestellung umsetzen;
  • grundlegende Methoden der Schwingungslehre auf Probleme des Ingenieurwesens anwenden;
  • Tragweite und Grenzen der eingeführten Methoden der Schwingungslehre abschätzen, beurteilen und sich weiterführende Ansätze erarbeiten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen.

 
Selbstständigkeit

Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science: Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Lehrveranstaltung L1137: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme)
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum SoSe
Inhalt

- Einfache Stoßprobleme
- Methoden der analytischen Mechanik
- Grundlagen der Schwingungslehre
- Koppelschwingungen

- Mehrkörpersystemen

Literatur

K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). 
D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 1-4. 11. Auflage, Springer (2011).

W. Schiehlen, P. Eberhard: Technische Dynamik, Springer (2012).


Lehrveranstaltung L1138: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1139: Mechanik IV (Kinetik II, Schwingungen, Analytische Mechanik, Mehrkörpersysteme)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Robert Seifried
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0671: Technische Thermodynamik I

Lehrveranstaltungen
Titel Typ SWS LP
Technische Thermodynamik I (L0437) Vorlesung 2 4
Technische Thermodynamik I (L0439) Hörsaalübung 1 1
Technische Thermodynamik I (L0441) Gruppenübung 1 1
Modulverantwortlicher Prof. Gerhard Schmitz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundkenntnisse in Mathematik und Mechanik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende sind mit den Hauptsätzen der Thermodynamik vertraut. Sie wissen über  die gegenseitige Verknüpfung der einzelnen Energieformen  untereinander entsprechend dem 1. Hauptsatz der Thermodynamik und kennen die Grenzen einer Wandlung der verschiedenen Energieformen bei natürlichen und technischen Vorgängen entsprechend dem 2. Hauptsatz der Thermodynamik.

Sie sind in der Lage, Zustandsgrößen von Prozessgrößen zu unterscheiden und kennen die Bedeutung der einzelnen Zustandsgrößen wie z. B. Temperatur, Enthalpie oder Entropie sowie der damit verbundenen Begriffe Exergie und Anergie. Sie können den Carnotprozess in den in der Technischen Thermodynamik üblichen Diagrammen darstellen.

Sie können den Unterschied zwischen einem idealen und einem realem Gas physikalisch beschreiben und kennen die entsprechenden thermischen Zustandsgleichungen. Sie wissen, was eine Fundamentalgleichung ist und sind mit grundlegenden Zusammenhängen der Zweiphasenthermodynamik vertraut.




Fertigkeiten

Studierende sind in der Lage, die Inneren Energie, die Enthalpie, die Kinetische und Potenzielle Energie sowie Arbeit und Wärme für einfache Zustandsänderungen zu berechnen und diese Berechnungsmöglichkeiten auch auf den Carnotprozess anzuwenden. Darüber hinaus können sie Zustandsgrößen für ideale und reale Gase aus messbaren thermischen Zustandsgrößen berechnen.



Personale Kompetenzen
Sozialkompetenz Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.
Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0437: Technische Thermodynamik I
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt
  1. Einführung
  2. Grundbegriffe
  3. Thermisches Gleichgewicht und Temperatur
    3.1 Thermische Zustandsgleichung
  4. Der erste Hauptsatz
    4.1 Arbeit und Wärme
    4.2 erster Hauptsatz für geschlossene Systeme
    4.3 erster Hauptsatz für offene Systeme
    4.4 Anwendungsbeispiele
  5. Zustandsgleichungen & Zustandsänderungen
    5.1 Zustandsänderungen
    5.2 Kreisprozess
  6. Der zweite Hauptsatz
    6.1 Verallgemeinerung des Carnotprozesses
    6.2 Entropie
    6.3 Anwendungsbeispiele zum 2. Hauptsatz
    6.4 Entropie- und Energiebilanzen; Exergie
  7. Thermodynamische Eigenschaften reiner Fluide
    7.1 Hauptgleichungen der Thermodynamik
    7.2 Thermodynamische Potentiale
    7.3 Kalorische Zustandsgrößen für beliebige Stoffe
    7.4 Zustandsgleichungen (van der Waals u.a.)

In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes.

Literatur
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993



Lehrveranstaltung L0439: Technische Thermodynamik I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0441: Technische Thermodynamik I
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0672: Signale und Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Signale und Systeme (L0432) Vorlesung 3 4
Signale und Systeme (L0433) Hörsaalübung 1 2
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematik 1-3

Das Modul führt in das Thema der Signal- und Systemtheorie ein. Sicherer Umgang mit grundlegenden  mathematschen Methoden, wie sie in den Modulen Mathematik 1-3 vermittelt werden, wird erwartet. Darüber hinaus sind  Vorkenntnisse in Grundlagen von Spektraltransformationen (Fourier-Reihe, Fourier-Transformation, Laplace-Transformation) zwar nützlich, aber keine Voraussetzung.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Signale und lineare zeitinvariante (LTI) Systeme im Sinne der Signal- und Systemtheorie klassifizieren und beschreiben. Sie beherrschen die grundlegenden Integraltransformationen zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systeme. Sie können deterministische Signale und Systeme in Zeit- und Bildbereich mathematisch beschreiben und analysieren. Sie verstehen elementare Operationen und Konzepte der Signalverarbeitung und können diese in Zeit- und Bildbereich beschreiben. Insbesondere verstehen Sie die mit dem Übergang vom zeitkontinuierlichen zum zeitdiskreten Signal bzw. System einhergehenden Effekte in Zeit- und Bildbereich.

Fertigkeiten

Die Studierenden können deterministische Signale und lineare zeitinvariante Systeme mit den Methoden der Signal- und Systemtheorie beschreiben und analysieren. Sie können einfache Systeme hinsichtlich wichtiger Eigenschaften wie Betrags- und Phasenfrequenzgang, Stabilität, Linearität etc. analysieren und entwerfen. Sie können den Einfluß von LTI-Systemen auf die Signaleigenschaften in Zeit- und Frequenzbereich beurteilen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten.

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht
General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science: Vertiefung Informatik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht
General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0432: Signale und Systeme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Elementare Klassifizierung und Beschreibung zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systemen

  • Faltung

  • Leistung und Energie von Signalen

  • Korrelationsfunktionen deterministischer Signale

  • Lineare zeitinvariante (LTI) Systeme

  • Signaltransformationen:

    • Fourier-Reihe

    • Fourier Transformation

    • Laplace Transformation

    • Zeitdiskrete Fouriertranformation

    • Diskrete Fouriertransformation (DFT), Fast Fourier Transform (FFT)

    • Z-Transformation

  • Analyse und Entwurf von LTI-Systemen in Zeit- und Frequenzbereich

  • Grundlegende Filtertypen

  • Abtastung, Abtasttheorem

  • Grundlagen rekursiver und nicht-rekursiver zeitdiskreter Filter

Literatur
  • T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004

  • K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.

  • B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997

  • J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002

  • S. Haykin, B. van Veen: Signals and systems. Wiley.

  • Oppenheim, A.S. Willsky: Signals and Systems. Pearson.

  • Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Lehrveranstaltung L0433: Signale und Systeme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Gerhard Bauch
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0854: Mathematik IV

Lehrveranstaltungen
Titel Typ SWS LP
Differentialgleichungen 2 (Partielle Differentialgleichungen) (L1043) Vorlesung 2 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (L1044) Gruppenübung 1 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (L1045) Hörsaalübung 1 1
Komplexe Funktionen (L1038) Vorlesung 2 1
Komplexe Funktionen (L1041) Gruppenübung 1 1
Komplexe Funktionen (L1042) Hörsaalübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematik I - III

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die grundlegenden Begriffe der Mathematik IV benennen und anhand von Beispielen erklären.
  • Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern.
  • Sie kennen Beweisstrategien und können diese wiedergeben.


Fertigkeiten
  • Studierende können Aufgabenstellungen aus der Mathematik IV mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen.
  • Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren.
  • Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten.


Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache.
  • Sie können dabei insbesondere neue Konzepte adressatengerecht kommunizieren und anhand von Beispielen das Verständnis der Mitstudierenden überprüfen und vertiefen.


Selbstständigkeit
  • Studierende können eigenständig ihr Verständnis komplexer Konzepte überprüfen, noch offene Fragen auf den Punkt bringen und sich gegebenenfalls gezielt Hilfe holen.
  • Studierende haben eine genügend hohe Ausdauer entwickelt, um auch über längere Zeiträume zielgerichtet an schwierigen Problemstellungen zu arbeiten.


Arbeitsaufwand in Stunden Eigenstudium 68, Präsenzstudium 112
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 60 min (Komplexe Funktionen) + 60 min (Differentialgleichungen 2)
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht
Elektrotechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science: Vertiefung Schiffbau: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht
Maschinenbau: Vertiefung Mechatronik: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Lehrveranstaltung L1043: Differentialgleichungen 2 (Partielle Differentialgleichungen)
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt

Grundzüge der Theorie und Numerik partieller Differentialgleichungen

  • Beispiele für partielle Differentialgleichungen
  • quasilineare Differentialgleichungen erster Ordnung
  • Normalformen linearer Differentialgleichungen zweiter Ordnung
  • harmonische Funktionen und Maximumprinzip
  • Maximumprinzip für die Wärmeleitungsgleichung
  • Wellengleichung
  • Lösungsformel nach Liouville
  • spezielle Funktionen
  • Differenzenverfahren
  • finite Elemente 
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Lehrveranstaltung L1044: Differentialgleichungen 2 (Partielle Differentialgleichungen)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1045: Differentialgleichungen 2 (Partielle Differentialgleichungen)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1038: Komplexe Funktionen
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt

Grundzüge der Funktionentheorie

  • Funktionen einer komplexen Variable
  • Komplexe Differentiation
  • Konforme Abbildungen
  • Komplexe Integration
  • Cauchyscher Hauptsatz
  • Cauchysche Integralformel
  • Taylor- und Laurent-Reihenentwicklung
  • Singularitäten und Residuen
  • Integraltransformationen: Fourier und Laplace-Transformation
Literatur
  • http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html


Lehrveranstaltung L1041: Komplexe Funktionen
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1042: Komplexe Funktionen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0956: Messtechnik für Maschinenbau- und Verfahrensingenieure

Lehrveranstaltungen
Titel Typ SWS LP
Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik (L1119) Laborpraktikum 2 2
Messtechnik für Maschinenbau- und Verfahrensingenieure (L1116) Vorlesung 2 3
Messtechnik für Maschinenbau- und Verfahrensingenieure (L1118) Hörsaalübung 1 1
Modulverantwortlicher Dr. Sven Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik, Chemie und Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die wesentlichen Grundlagen der Messtechnik (Größen und Einheiten, Messunsicherheit, Kalibrierung, Statisches und dynamisches Verhalten von Messsystemen) benennen.

Sie können die wesentlichen Messverfahren zu Messung verschiedenartiger Messgrößen (elektrische Größen, Temperatur, mechanische Größen, Menge, Durchfluss,  Zeit, Frequenz) skizzieren.

Sie können die Funktionsweise wichtiger Analyseverfahren (Gas-Sensoren, Spektroskopie,  Gaschromatographie) beschreiben.

Fertigkeiten

Studierende können zu gegebenen Problemen geeignete Messverfahren auswählen und entsprechende Messgeräte praktisch anwenden. 
Die Studierenden sind in der Lage, Fragestellungen aus dem Fachgebiet der Messtechnik und Ansätze zu deren Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang und Einsatzbereich einzuordnen.


Personale Kompetenzen
Sozialkompetenz Studierende können in Gruppen gemeinsam zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen.
Selbstständigkeit

Studierende sind fähig, sich selbstständig in neuartige Messverfahren einzuarbeiten.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 105 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L1119: Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten NN
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Messverfahren zur Bestimmung unterschiedlicher gasförmiger Schadstoffe in Autoabgasen kennengelernt und angewandt werden.

Versuch 1: Emissions- und Immissionsmessung gasförmiger Schadstoffe: Im Rahmen dieses Versuches sollen verschiedene

Versuch 2: Simulation und Messung von Asynchronmaschine und Kreiselpumpe: Das dynamische Verhalten eines Drehstromasynchronomoters in einem Pumpenantrieb wird untersucht. Der Anlaufvorgang wird auf einem Rechner simuliert und mit Messungen an einem Versuchsstand verglichen.

Versuch 3: Michelson-Interferometer und Faseroptik: Dieser Versuch soll dem Verständnis grundlegender optischer Phänomene dienen und deren Anwendung am Michelson-Interferometer und an Lichtleitfasern demonstrieren. 


Versuch 4: Identifikation der Parameter einer Regelstrecke und optimale Einstellung eines Reglers

Literatur

Versuch 1:

  • Leith, W.: Die Analyse der Luft und ihrer Verunreinigung in der freien Atmosphäre und am Arbeitsplatz. 2. Aufl., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1974
  • Birkle, M.: Meßtechnik für den Immissionsschutz, Messen der gas- und partikelförmigen Luftverunreinigungen. R. Oldenburg Verlag, München-Wien, 1979
  • Luftbericht 83/84, Freie und Hansestadt Hamburg, Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung
  • Gebrauchs- und Bedienungsanweisungen
  • VDI-Handbuch Reinhaltung der Luft, Band 5: VDI-Richtlinien 2450 Bl.1, 2451 Bl.4, 2453 Bl.5, 2455 Bl.1
Versuch 2:
  • Grundlagen über elektrische Maschinen, speziell: Asynchronmotoren
  • Simulationsmethoden, speziell: Verwendung von Blockschaltbildern
  • Betriebsverhalten von Kreispumpen, speziell: Kennlinien, Ähnlichkeitsgesetze
Versuch 3:
  • Unger, H.-G.: Optische Nachrichtentechnik, Teil 1: Optische Wellenleiter. Hüthing Verlag, Heidelberg, 1984
  • Dakin, J., Cushaw, B.: Optical Fibre Sensors: Principles and Components. Artech House Boston, 1988
  • Culshaw, B., Dakin, J.: Optical Fibre Sensors: Systems and Application. Artech House Boston, 1989
Versuch 4: 
  • Leonhard: Einführung in die Regelungstechnik. Vieweg Verlag, Braunschweig-Wiesbaden
  • Jan Lunze: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen



Lehrveranstaltung L1116: Messtechnik für Maschinenbau- und Verfahrensingenieure
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Sven Krause
Sprachen DE
Zeitraum WiSe
Inhalt

1 Grundlagen

1.1 Größen und Einheiten

1.2 Messunsicherheit

1.3 Kalibrierung

1.4 Statisches und dynamisches Verhalten von Messsystemen

2 Messung elektrischer Größen

2.1 Strom und Spannung

2.2 Impedanz

2.3 Messverstärker

2.4 Darstellung des Zeitverlaufs elektrischer Signale

2.5 Analog-Digital-Wandlung

2.6 Datenübertragung

3 Messung nichtelektrischer Größen

3.1 Temperatur

3.2 Länge, Weg, Winkel

3.3 Dehnung, Kraft, Druck

3.4 Menge, Durchfluss

3.5 Zeit, Frequenz

4 Analyseverfahren

4.1 Gas-Sensoren

4.2 Spektroskopie

4.3 Gaschromatographie

Am Ende jeder Vorlesungsstunde stellen Studierende einzelne spezielle Messtechniken und Messergebnisse mündlich vor.

Literatur

Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3.

 Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940.

Lehrveranstaltung L1118: Messtechnik für Maschinenbau- und Verfahrensingenieure
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Sven Krause
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1320: Simulation und Entwurf mechatronischer Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Simulation und Entwurf mechatronischer Systeme (L1822) Vorlesung 2 2
Simulation und Entwurf mechatronischer Systeme (L1823) Hörsaalübung 1 2
Simulation und Entwurf mechatronischer Systeme (L1824) Laborpraktikum 1 2
Modulverantwortlicher Prof. Uwe Weltin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen der Mechanik, Regelungstechnik und Elektrotechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können Methoden und Berechnungen zum Entwerfen, Modellieren, Simulieren und Optimieren mechatronischer Systeme beschreiben.
Fertigkeiten Die Studierenden sind in der Lage moderne Algorithmen zur Modellierung mechatronischer Systeme anzuwenden. Sie können einfache Systeme identifizieren, simulieren, entwerfen und im Labor praktisch umsetzen.
Personale Kompetenzen
Sozialkompetenz Die Studierenden können lösungsorientiert in heterogenen Kleingruppen arbeiten und zielgruppengerecht Arbeitsergebnisse darstellen.
Selbstständigkeit Die Studierenden sind in der Lage Lücken in ihrem Vorwissen zu erkennen und eigenständig zu schließen. Sie können angeleitet durch Lehrende ihren jeweiligen Lernstand beurteilen und auf dieser Basis weitere Arbeitsschritte definieren.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht
Maschinenbau: Vertiefung Mechatronik: Pflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Lehrveranstaltung L1822: Simulation und Entwurf mechatronischer Systeme
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Uwe Weltin
Sprachen DE
Zeitraum WiSe
Inhalt

Mechatronischer Entwurf

Modellbildung

Modellidentifikation

Numerische Methoden zur Simulation

Anwendungen und Beispiele in Matlab® und Simulink®


Literatur

Skript zur Veranstaltung

Weitere Literatur in der Veranstaltung

Lehrveranstaltung L1823: Simulation und Entwurf mechatronischer Systeme
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Uwe Weltin
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1824: Simulation und Entwurf mechatronischer Systeme
Typ Laborpraktikum
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Uwe Weltin
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0688: Technische Thermodynamik II

Lehrveranstaltungen
Titel Typ SWS LP
Technische Thermodynamik II (L0449) Vorlesung 2 4
Technische Thermodynamik II (L0450) Hörsaalübung 1 1
Technische Thermodynamik II (L0451) Gruppenübung 1 1
Modulverantwortlicher Prof. Gerhard Schmitz
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist.


Fertigkeiten

Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden.  Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten.

Selbstständigkeit

Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen.



Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0449: Technische Thermodynamik II
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt

8. Kreisprozesse

9. Gas-Dampf-Gemische

10. Stationäre Fließprozesse

11. Verbrennungsprozesse

12. Sondergebiete

In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes.

Literatur
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993
Lehrveranstaltung L0450: Technische Thermodynamik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0451: Technische Thermodynamik II
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Schmitz
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0829: Grundlagen der Betriebswirtschaftslehre

Lehrveranstaltungen
Titel Typ SWS LP
Betriebswirtschaftliche Übung (L0882) Hörsaalübung 2 3
Grundlagen der Betriebswirtschaftslehre (L0880) Vorlesung 3 3
Modulverantwortlicher Prof. Christoph Ihl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Schulkenntnisse in Mathematik und Wirtschaft
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können...

  • grundlegende Begriffe und Kategorien aus dem Bereich Wirtschaft und Management benennen und erklären
  • grundlegende Aspekte wettbewerblichen Unternehmertums beschreiben (Betrieb und Unternehmung, betrieblicher Zielbildungsprozess)
  • wesentliche betriebliche Funktionen erläutern, insb. Funktionen der Wertschöpfungskette (z.B. Produktion und Beschaffung, Innovationsmanagement, Absatz und Marketing) sowie Querschnittsfunktionen (z.B. Organisation, Personalmanagement, Supply Chain Management, Informationsmanagement) und die wesentlichen Aspekte von Entrepreneurship-Projekten benennen
  • Grundlagen der Unternehmensplanung (Entscheidungstheorie, Planung und Kontrolle) wie auch spezielle Planungsaufgaben (z.B. Projektplanung, Investition und Finanzierung) erläutern
  • Grundlagen des Rechnungswesens erklären (Buchführung, Bilanzierung, Kostenrechnung, Controlling)

Fertigkeiten

Die Studierenden können

  • Unternehmensziele definieren und in ein Zielsystem einordnen sowie Zielsysteme strukturieren
  • Organisations- und Personalstrukturen von Unternehmen analysieren
  • Methoden für Entscheidungsprobleme unter mehrfacher Zielsetzung, unter Ungewissheit sowie unter Risiko zur Lösung von entsprechenden Problemen anwenden
  • Produktions- und Beschaffungssysteme sowie betriebliche Informationssysteme analysieren und einordnen
  • Einfache preispolitische und weitere Instrumente des Marketing analysieren und anwenden
  • Grundlegende Methoden der Finanzmathematik auf Invesititions- und Finanzierungsprobleme anwenden
  • Die Grundlagen der Buchhaltung, Bilanzierung, Kostenrechnung und des Controlling erläutern und Methoden aus diesen Bereichen auf einfache Problemstellungen anwenden.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind in der Lage

  • sich im Team zu organisieren und ein Projekt aus dem Bereich Entrepreneurship gemeinsam zu bearbeiten und einen Projektbericht zu erstellen
  • erfolgreich problemlösungsorientiert zu kommunizieren
  • respektvoll und erfolgreich zusammenzuarbeiten
Selbstständigkeit

Die Studierenden sind in der Lage

  • Ein Projekt in einem Team zu bearbeiten und einer Lösung zuzuführen
  • unter Anleitung einen Projektbericht  zu verfassen
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang mehrere schriftliche Leistungen über das Semester verteilt
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht
General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science: Vertiefung Informatik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science: Vertiefung Schiffbau: Pflicht
General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht
General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Kernqualifikation: Pflicht
Logistik und Mobilität: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Technomathematik: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Christoph Ihl, Katharina Roedelius, Tobias Vlcek
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft.

Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors.

Literatur Relevante Literatur aus der korrespondierenden Vorlesung.
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
  • Die Abgrenzung der BWL von der VWL und die Gliederungsmöglichkeiten der BWL
  • Wichtige Definitionen aus dem Bereich Management und Wirtschaft
  • Die wichtigsten Unternehmensziele und ihre Einordnung sowie (Kern-) Funktionen der Unternehmung
  • Die Bereiche Produktion und Beschaffungsmanagement, der Begriff des Supply Chain Management und die Bestandteile einer Supply Chain
  • Die Definition des Begriffs Information, die Organisation des Informations- und Kommunikations (IuK)-Systems und Aspekte der Datensicherheit; Unternehmensstrategie und strategische Informationssysteme
  • Der Begriff und die Bedeutung von Innovationen, insbesondere Innovationschancen, -risiken und prozesse
  • Die Bedeutung des Marketing, seine Aufgaben, die Abgrenzung von B2B- und B2C-Marketing
  • Aspekte der Marketingforschung (Marktportfolio, Szenario-Technik) sowie Aspekte der strategischen und der operativen Planung und Aspekte der Preispolitik
  • Die grundlegenden Organisationsstrukturen in Unternehmen und einige Organisationsformen
  • Grundzüge des Personalmanagements
  • Die Bedeutung der Planung in Unternehmen und die wesentlichen Schritte eines Planungsprozesses
  • Die wesentlichen Bestandteile einer Entscheidungssituation sowie Methoden für Entscheidungsprobleme unter mehrfacher Zielsetzung, unter Ungewissheit sowie unter Risiko
  • Grundlegende Methoden der Finanzmathematik
  • Die Grundlagen der Buchhaltung, der Bilanzierung und der Kostenrechnung
  • Die Bedeutung des Controlling im Unternehmen und ausgewählte Methoden des Controlling
  • Die wesentlichen Aspekte von Entrepreneurship-Projekten

Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt.

Literatur

Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008

Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003

Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006.

Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001.

Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008.

Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005.

Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008.

Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. 


Modul M0833: Grundlagen der Regelungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Regelungstechnik (L0654) Vorlesung 2 4
Grundlagen der Regelungstechnik (L0655) Gruppenübung 2 2
Modulverantwortlicher Prof. Herbert Werner
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können das Verhalten dynamischer Systeme in Zeit- und Frequenzbereich darstellen und interpretieren, und insbesondere die Eigenschaften Systeme 1. und 2. Ordnung erläutern.
  • Sie können die Dynamik einfacher Regelkreise erklären und anhand von Frequenzgang und Wurzelortskurve interpretieren.
  • Sie können das Nyquist-Stabilitätskriterium sowie die daraus abgeleiteten Stabilitätsreserven erklären.
  • Sie können erklären, welche Rolle die Phasenreserve in der Analyse und Synthese von Regelkreisen spielt.
  • Sie können die Wirkungsweise eines PID-Reglers anhand des Frequenzgangs interpretieren.
  • Sie können erklären, welche Aspekte bei der digitalen Implementierung zeitkontinuierlich entworfener Regelkreise berücksichtigt werden müssen.
Fertigkeiten
  • Studierende können Modelle linearer dynamischer Systeme vom Zeitbereich in den Frequenzbereich transformieren und umgekehrt. 
  • Sie können das Verhalten von Systemen und Regelkreisen simulieren und bewerten.
  • Sie können PID-Regler mithilfe heuristischer Einstellregeln (Ziegler-Nichols) entwerfen.
  • Sie können anhand von Wurzelortskurve und Frequenzgang einfache Regelkreise entwerfen und analysieren.
  • Sie können zeitkontinuierliche Modelle  dynamischer Regler für die digitale Implementierung zeitdiskret approximieren.
  • Sie beherrschen die einschlägigen Software-Werkzeuge (Matlab Control Toolbox, Simulink) für die Durchführung all dieser Aufgaben.
Personale Kompetenzen
Sozialkompetenz Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe  experimentell testen und bewerten
Selbstständigkeit Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden.

Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern

 
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht
General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Kernqualifikation: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0654: Grundlagen der Regelungstechnik
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen DE
Zeitraum WiSe
Inhalt

Signale und Systeme

  • Lineare Systeme, Differentialgleichungen und Übertragungsfunktionen
  • Systeme 1. und 2. Ordnung, Pole und Nullstellen, Impulsantwort und Sprungantwort
  • Stabilität

Regelkreise

  • Prinzip der Rückkopplung: Steuerung oder Regelung
  • Folgeregelung und Störunterdrückung
  • Arten der Rückführung, PID-Regelung
  • System-Typ und bleibende Regelabweichung
  • Inneres-Modell-Prinzip

Wurzelortskurven

  • Konstruktion und Interpretation von Wurzelortskurven
  • Wurzelortskurven von PID-Regelkreisen

Frequenzgang-Verfahren

  • Frequenzgang, Bode-Diagramm
  • Minimalphasige und nichtminimalphasige Systeme
  • Nyquist-Diagramm, Nyquist-Stabilitätskriterium, Phasenreserve und Amplitudenreserve
  • Loop shaping, Lead-Lag-Kompensatoren
  • Frequenzgang von PID-Regelkreisen

Totzeitsysteme

  • Wurzelortskurve und Frequenzgang von Totzeitsystemen
  • Smith-Prädiktor

Digitale Regelung

  • Abtastsysteme, Differenzengleichungen
  • Tustin-Approximation, digitale PID-Regler

Software-Werkzeuge

  • Einführung in Matlab, Simulink, Control Toolbox
  • Rechnergestützte Aufgaben zu allen Themen der Vorlesung
Literatur
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010
Lehrveranstaltung L0655: Grundlagen der Regelungstechnik
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Herbert Werner
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0610: Elektrische Maschinen

Lehrveranstaltungen
Titel Typ SWS LP
Elektrische Maschinen (L0293) Vorlesung 3 4
Elektrische Maschinen (L0294) Hörsaalübung 2 2
Modulverantwortlicher Prof. Thanh Trung Do
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse Mathematik, insbesondere komplexe Zahlen, Integrale, Differenziale

Grundlage der Elektrotechnik und Mechanik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die grundlegenden Zusammenhänge bei elektrischen und magnetischen Feldern skizzieren und erläutern. Sie können die Funktion der Grundtypen elektrischer Maschinen beschreiben und die zugehörigen Gleichungen und Kennlinien darstellen. Für praktisch vorkommende Antriebskonfigurationen können sie die wesentlichen Parameter für die Energieeffizienz des Gesamtsystems von der Versorgung bis zur Arbeitsmaschine erläutern.

Fertigkeiten

Studierende sind fähig, zweidimensionale elektrische  Felder und magnetische Felder insbesondere in Eisenkreisen mit Luftspalt zu berechnen. Sie wenden dabei die üblichen Methoden des Elektromaschinenbaus an.

Sie können das Betriebsverhalten elektrischer Maschinen aus gegebenen Grunddaten analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. Dabei wenden sie die üblichen Ersatzschaltbilder und grafische Verfahren an.

Personale Kompetenzen
Sozialkompetenz keine
Selbstständigkeit

Studierende sind fähig, eigenständig anwendungsnahe elektrische und magnetische Felder zu berechnen. Sie können eigenständig das Betriebsverhalten elektrischer Maschinen aus deren Grunddaten zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Wahlpflicht
Mechatronik: Kernqualifikation: Pflicht
Lehrveranstaltung L0293: Elektrische Maschinen
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Thanh Trung Do
Sprachen DE
Zeitraum SoSe
Inhalt

Elektrisches Feld: Coulomb´sches Gesetz, Potenzial, Kondensator, Kraft und Energie

Magnetisches Feld: Kraft, Fluss, Durchflutungssatz, Feld an Grenzflächen, elektrisches Ersatzschaltbild, Hysterese, Induktion, Transformator

Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung,

Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers,

Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm

Drehzahlvariable Antrieb mit Frequenzumrichtern, Sonderbauformen elektrischer Maschinen, Schrittmotoren

Literatur

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Lehrveranstaltung L0294: Elektrische Maschinen
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thanh Trung Do, Weitere Mitarbeiter
Sprachen DE
Zeitraum SoSe
Inhalt

Bearbeiten von Übungsaufgaben zur Anwendung elektrischer und magnetischer Felder

Bearbeiten von Übungsaufgaben zum Betriebsverhalten elektrischer Maschinen

Literatur

Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313

Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122

"Grundlagen der Elektrotechnik" - anderer Autoren

Fachbücher "Elektrische Maschinen"

Modul M0777: Halbleiterschaltungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Halbleiterschaltungstechnik (L0763) Vorlesung 3 4
Halbleiterschaltungstechnik (L0864) Gruppenübung 1 2
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Elementare Grundlagen der Physik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die Funktionsweisen von verschiedenen MOS-Bauelementen in unterschiedlichen Schaltungen erklären.
  • Studierende sind in der Lage, grundlegende digitale Logik-Schaltungen zu benennen und ihre Vor- und Nachteile zu diskutieren.
  • Studierende können aktuelle Speichertypen benennen, deren Funktionsweise erklären und Kenngrößen angeben.
  • Studierende können die Funktionsweise von Analogschaltungen und deren Anwendungen erklären.
  • Studierende können geeignete Anwendungsbereiche von Bipolartransistoren benennen.


Fertigkeiten
  • Studierende können Kenngrößen von verschiedenen MOS-Bauelementen berechnen und Schaltungen dimensionieren.
  • Studierende können logische Schaltungen mit unterschiedlichen Schaltungstypen entwerfen und  dimensionieren.
  • Studierende können MOS-Bauelemente und Operationsverstärker sowie bipolare Transistoren in speziellen Anwendungsbereichen einsetzen.


Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in heterogen (aus unterschiedlichen  Studiengängen) zusammengestellten Teams zusammenzuarbeiten.
  • Studierende können in kleinen Gruppen Rechenaufgaben lösen und Fachfragen beantworten.


Selbstständigkeit
  • Studierende sind in der Lage, ihren eigenen Lernstand einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
General Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Mathematik & Ingenieurwissenschaften: Wahlpflicht
Maschinenbau: Vertiefung Mechatronik: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0763: Halbleiterschaltungstechnik
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Matthias Kuhl
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Grundschaltungen mit MOS-Transistoren für Logikgatter und Verstärker
  • Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
  • Realisierung logischer Funktionen
  • Schaltungen für die Speicherung von binären Daten
  • Strukturverkleinerung von CMOS-Schaltkreisen und weitere Leistungssteigerung
  • Operationsverstärker und ihre Anwendungen
  • Grundschaltungen mit bipolaren Transistoren
  • Dimensionierung beispielhafter Schaltungen
  • Elektrisches Verhalten von BICMOS-Schaltungen

In der Veranstaltung werden Clicker und Peer-Instruction eingesetzt, um die Studierenden zu aktivieren und dem Lehrenden Feedback zum Lernstand der Studierenden zu geben.

Im Sommersemester 2017 wird am 16.05., 13.06. und 04.07.2017 ein Test mit jeweils 10 Fragen (Bearbeitungsdauer: 20 min.) zum Vorlesungsstoff angeboten, mit dem sich ein Bonus von 0,3 oder 0,7 auf eine bestandene Klausur erwerben lässt.

Literatur

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Lehrveranstaltung L0864: Halbleiterschaltungstechnik
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Matthias Kuhl
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Grundschaltungen mit MOS-Transistoren für Logikgatter und Verstärker
  • Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
  • Realisierung logischer Funktionen
  • Schaltungen für die Speicherung von binären Daten
  • Strukturverkleinerung von CMOS-Schaltkreisen und weitere Leistungssteigerung
  • Operationsverstärker und ihre Anwendungen
  • Grundschaltungen mit bipolaren Transistoren
  • Dimensionierung beispielhafter Schaltungen
  • Elektrisches Verhalten von BICMOS-Schaltungen

Es werden Lerngruppen mit Studierenden aus verschiedenen Studiengängen gebildet, um verschiedene Blickwinkel beim Lösen von Aufgaben zu berücksichtigen. Zu einigen zentralen Punkten stehen erklärende Screencasts zur Verfügung.

Literatur

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Thesis

Modul M-001: Bachelorarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 21 (1):

    Es müssen mindestens 126 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.

Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die wichtigsten wissenschaftlichen Grundlagen ihres Studienfaches (Fakten, Theorien und Methoden) problembezogen auswählen, darstellen und nötigenfalls kritisch diskutieren.
  • Die Studierenden können ausgehend von ihrem fachlichen Grundlagenwissen anlassbezogen auch weiterführendes fachliches Wissen erschließen und verknüpfen.
  • Die Studierenden können zu einem ausgewählten Thema ihres Faches einen Forschungsstand darstellen.
Fertigkeiten
  • Die Studierenden können das im Studium vermittelte Grundwissen ihres Studienfaches zielgerichtet zur Lösung fachlicher Probleme einsetzen.
  • Die Studierenden können mit Hilfe der im Studium erlernten Methoden Fragestellungen analysieren, fachliche Sachverhalte entscheiden und Lösungen entwickeln.
  • Die Studierenden können zu den Ergebnissen ihrer eigenen Forschungsarbeit kritisch aus einer Fachperspektive Stellung beziehen.
Personale Kompetenzen
Sozialkompetenz
  • Studierende können eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • Studierende können in einer Fachdiskussion auf Fragen eingehen und sie in adressatengerechter Weise beantworten. Sie können dabei eigene Einschätzungen und Standpunkte überzeugend vertreten.
Selbstständigkeit
  • Studierende können einen umfangreichen Arbeitsprozess zeitlich strukturieren und eine Fragestellung in vorgegebener Frist bearbeiten.
  • Studierende können notwendiges Wissen und Material zur Bearbeitung eines wissenschaftlichen Problems identifizieren, erschließen und verknüpfen.
  • Studierende können die wesentlichen Techniken des wissenschaftlichen Arbeitens in einer eigenen Forschungsarbeit anwenden.


Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht
Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energie- und Umwelttechnik: Abschlussarbeit: Pflicht
General Engineering Science: Abschlussarbeit: Pflicht
General Engineering Science (7 Semester): Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen (Weiterentwicklung): Abschlussarbeit: Pflicht
Logistik und Mobilität: Abschlussarbeit: Pflicht
Maschinenbau: Abschlussarbeit: Pflicht
Mechatronik: Abschlussarbeit: Pflicht
Schiffbau: Abschlussarbeit: Pflicht
Technomathematik: Abschlussarbeit: Pflicht
Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht