Studiengangsbeschreibung
Inhalt
Mit der exponentiellen Zunahme der Erdbevölkerung, den weltweit steigenden Lebensansprüchen und dem damit verbundenen stetig wachsenden Bedarf an Rohstoffen, Flächen und Energie ist der nachhaltige Umgang mit den natürlichen Ressourcen, inklusive der Verringerung von Emissionen und der Vermeidung von Umweltauswirkungen, unabdingbar geworden. Ein Beispiel von zunehmender Bedeutung ist die Verringerung der für den Treibhauseffekt verantwortlichen CO2-Emissionen. Dazu werden Möglichkeiten zur Energieeinsparung verfolgt und vermehrt regenerative Energien eingesetzt. Bei einer weitergehenden Nutzung von fossilen Brennstoffen wird die CO2-Emissionsminderung durch die Steigerung der Wirkungsgrade und auch durch Abtrennung des bei der Nutzung entstehenden CO2 und seiner unterirdischen Lagerung verfolgt. Gerade letztere Verfahren machen ein enges Zusammenwirken von Energietechnik und Umwelttechnik notwendig.
Der konsekutive Studiengang Energie- und Umwelttechnik wurde bereits Anfang des neuen Jahrtausends in der Form eines entsprechenden Diplomstudiengangs etabliert. Motivation dafür waren zum einen die zunehmende Bedeutung des Umweltschutzes in Form der CO2-Abtrennung in der Großkraftwerkstechnik und zum anderen die zunehmende Stromerzeugung aus Regenerativen Energien. Diese beiden neuen Hauptstoßrichtungen bei der Stromerzeugung werden insbesondere im Bachelor verfolgt. Sowohl für die CO2-Abtrennungstechnologien als auch für andere Umweltschutz-Technologien, wie z. B. Luftreinhaltung, wird im Gegensatz zum klassischen Kraftwerksstudiengang ein breites Spektrum an Chemie-Lehrveranstaltungen angeboten. Die regenerative Stromerzeugung wird im Bachelor generalistisch behandelt. Erst im Masterstudiengang Energie- und Umwelttechnik werden dann neben der konventionellen Energietechnik spezielle regenerative Energietechniken und auf der umwelttechnischen Seite neben der Reinhaltung der Luft insbesondere auch die Reinhaltung von Wasser und Erdreich verfolgt.
Im Bachelorstudiengang Energie- und Umwelttechnik wird ein breites und fundiertes interdisziplinäres Grundlagenwissen in den Bereichen Energietechnik und Umwelttechnik vermittelt. Des Weiteren wird ein fundiertes Verständnis für grundlegende Methoden des Ingenieurswesens (Mathematik, Mechanik, Thermodynamik, Strömungsmechanik, Chemie, Verfahrenstechnik, Werkstoffwissenschaften und Konstruktionslehre) erlangt. Ferner werden Grundkenntnisse in der Umweltbewertung, der Umwelttechnik und der Partikeltechnologie sowie in nichttechnischen Fächern erworben, womit sich die Kompetenzen für das Beherrschen der Unterstützungsprozesse in der Systementwicklung erhöhen. Der Bachelorstudiengang bereitet auf der Kompetenzebene auch auf ein Masterstudium und letztlich auf die Promotion vor, sodass durch den Bachelor auch Berufsqualifikationen für einen möglichen künftigen Forschungsberuf gewonnen werden.
Berufliche Perspektiven
Die Absolventinnen und Absolventen verfügen nach erfolgreichem Abschluss des Studiums über ein breites Grundlagenwissen in den Bereichen Energietechnik und Umwelttechnik und sind deshalb in der Lage, die grundlegenden Prinzipien zur Modellierung und Simulation von Energieumwandlungs- und Energie-, Stoff- und Impulstransportprozessen unter besonderer Berücksichtigung der Nachhaltigkeit zu erklären. Sie sind qualifiziert, Energieprozesse zu analysieren, die Herausforderungen des energetisch und ökonomisch optimierten Betriebs von Energieanlagen einzuschätzen, Energiesysteme zu bilanzieren und technische sowie wirtschaftliche Zusammenhänge zwischen konventionellen und erneuerbaren Energietechnologien zu identifizieren. Die Absolventinnen und Absolventen können den Aufbau, den Betrieb und die Organisation von Kraftwerken, die konstruktiven Merkmale von Energieanlagen und deren Komponenten beschreiben und zusätzlich die dabei eingesetzten Regelungskonzepte erklären. Sie können Umweltauswirkungen im Allgemeinen identifizieren und Kontrollstrategien der Umweltbelastung aus Industrieanlagen entwickeln. Die Studierenden haben geübt, ein Problem aus ihrem Fachgebiet kritisch zu überprüfen, Lösungsansätze mündlich zu erläutern und in den Zusammenhang ihres Fachgebietes einzuordnen.
Die Absolventinnen und Absolventen können eine Ingenieurtätigkeit in verschiedenen Tätigkeitsfeldern der Energie- und Umwelttechnik verantwortungsvoll und kompetent ausüben. Sie sind berechtigt, die Berufsbezeichnung „Ingenieur/Ingenieurin“ im Sinne der Ingenieurgesetze (IngG) der Bundesländer zu führen. Darüber hinaus erlangen Sie die notwendigen wissenschaftlichen Kenntnisse für ein anschließendes, vertiefendes Masterstudium.
Durch laufende Interaktion mit der Industrie im Rahmen gemeinsamer Forschungsvorhaben oder weiterer Kontaktmöglichkeiten werden die zunehmend rapiden Entwicklungen am Anforderungsprofil des Arbeitsmarktes aus der Nähe verfolgt, sodass an den Inhalten des Lehrangebots des Bachelorstudiums Energie- und Umwelttechnik zeitnah Anpassungen vorgenommen werden können.
Lernziele
Durch die Mitwirkung von Berufsingenieuren aus der Industrie bei Lehrveranstaltungen, durch die Nutzung von in der Praxis etablierten Softwaretools für einfache Übungsaufgaben oder durch Exkursionen sind die Studierenden in der Lage, während des Studiums einen realitätsnahen Bezug zu dem vielfältigen Berufsfeld der Energie- und Umwelttechnik zu entwickeln. Dies steigert die späteren Berufschancen der Absolventinnen und Absolventen erheblich. Die Möglichkeit für die Durchführung von externen Bachelorarbeiten stellt einen zusätzlichen Bezug zur beruflichen Praxis während der Ausbildung dar.
Die Absolventinnen und Absolventen können eine Ingenieurtätigkeit in verschiedenen Tätigkeitsfeldern der Energie- und Umwelttechnik verantwortungsvoll und kompetent ausüben. Darüber hinaus erlangen sie die notwendigen wissenschaftlichen Kenntnisse für ein anschließendes, vertiefendes Masterstudium.
Wissen
Das während des Studiums erworbene Wissen befähigt die Absolventinnen und Absolventen, die in der Energietechnik, Umwelttechnik und angrenzenden Disziplinen auftretenden Phänomene zu verstehen. Sie haben die grundlegenden Prinzipien der Energie- und Umwelttechnik zur Modellierung und Simulation von Energieumwandlungs- und Energie-, Stoff- und Impulstransportprozessen unter besonderer Berücksichtigung der Nachhaltigkeit und des Umweltschutzes verstanden. Wissen konstituiert sich aus Fakten, Grundsätzen und Theorien und wird im Bachelor-Studiengang Energie- und Umwelttechnik auf folgenden Gebieten erworben:
- Die Absolventinnen und Absolventen sind in der Lage, Grundlagenwissen in den natur- und ingenieurwissenschaftlichen Gebieten der Mathematik, Chemie, Mechanik, Thermodynamik, Strömungsmechanik, Informatik, Werkstoffwissenschaften, Elektrotechnik und Konstruktionslehre wiederzugeben.
- Die Absolventinnen und Absolventen sind in der Lage, fundamentale Methoden und Verfahren zur Lösung oder Approximation von iterativen Entscheidungs- und Optimierungsproblemen, wie etwa Differentiation, Gradienten-basierte Verfahren, Testen von Hypothesen, sowie deren Analyse hinsichtlich Komplexität, Konvergenz und Güte zu skizzieren und zu diskutieren.
- Durch weitere spezialisierte Kenntnisse des Fachgebietes (Verfahrenstechnik, Energietechnik und Umwelttechnologie) können sie die Gestaltung von energetischen Prozessen beschreiben und vergleichen. Dies beinhaltet sowohl konventionelle als auch erneuerbare Energieanlagen. Sie können die Umweltauswirkungen aus diesen Energieanlagen bewerten.
- Die Absolventinnen und Absolventen können den Aufbau, den Betrieb und die Organisation von konventionellen und regenerativen Energieanlagen und deren Komponenten, inklusive der dabei eingesetzten Regelungskonzepte, beschreiben. Sie sind in der Lage, die Herausforderungen des energetisch und ökonomisch optimierten Betriebs von Energieanlagen, unter Beachtung der zusätzlichen Kriterien von Ressourcenschonung, Nachhaltigkeit, Umweltverträglichkeit und Wirtschaftlichkeit zu erkennen.
- Die Absolventinnen und Absolventen werden in die Lage versetzt, im Berufsleben geeignete technische Alternativen zu untersuchen, um den umwelttechnischen und sozialen Fußabdruck ihres Ingenieurswirkens zu minimieren und die Energiewende effektiv zu unterstützen.
- Die Absolventinnen und Absolventen sind in der Lage, durch nichttechnische Veranstaltungen über die Technik hinausgehende Kenntnisse und Kompetenzen für ihren Beruf zu gewinnen.
Fertigkeiten
Die Fähigkeit, erlerntes Wissen anzuwenden, um spezifische Probleme zu lösen, wird im Bachelorstudiengang Energie- und Umwelttechnik auf vielfältige Weise unterstützt:
- Die Absolventinnen und Absolventen sind im Stande, einschlägige, fachrelevante Methoden und Werkzeuge zu beherrschen, ihre Berechenbarkeit und Komplexität einzuschätzen und sie anhand geeigneter Programmierwerkzeuge aus der aktuellen Praxis umzusetzen.
- Die Absolventinnen und Absolventen sind in der Lage, eine allgemeine Problemstellung auf Teilprobleme des eigenen Faches oder anderer relevanter Fachgebiete abzubilden und eine Auswahl der geeigneten Methoden zur Problemlösung zu treffen.
- Die Absolventinnen und Absolventen sind in der Lage, Energieprozesse zu verstehen und weiter zu analysieren, Energieanlagen zu beschreiben, Energiesysteme zu bilanzieren und technische sowie wirtschaftliche Zusammenhänge zwischen konventionellen und erneuerbaren Energietechnologien zu identifizieren.
- Die Absolventinnen und Absolventen können Umweltauswirkungen im Allgemeinen identifizieren und beschreiben und Kontrollstrategien der Umweltbelastung aus Industrieanlagen entwickeln. Dies basiert auch auf Erfahrungen von angrenzenden Fachgebieten der Messtechnik und der Verfahrens- und Umwelttechnik.
- Die Absolventinnen und Absolventen haben die Befähigung, die Ziele eines energietechnischen Projektes, eines energieerzeugenden Betriebes oder der Gesellschaft für eine ausgewogene und nachhaltige Abdeckung des Energiebedarfs zu erkennen und verantwortungsvoll Prioritäten bei der Suche des optimalen Lösungsansatzes zu setzen.
- Die Absolventinnen und Absolventen sind in der Lage, Vorgehensweise und Ergebnisse Ihrer Arbeit schriftlich darzustellen und mündlich zu erläutern. Sie beherrschen Präsentationstechniken und haben technische Kommunikation praktiziert.
- Die Absolventinnen und Absolventen sind in der Lage, selbstständig Experimente zu planen, durchzuführen und die Ergebnisse zu interpretieren.
- Die Absolventinnen und Absolventen können Mess-, Steuer- und Regelungstechnik oder konstruktive Methoden anwenden.
- Die Absolventinnen und Absolventen haben die Fähigkeit, Entwürfe für Prozesse, Maschinen und Apparate nach spezifizierten Anforderungen zu erarbeiten.
Sozialkompetenz
Sozialkompetenz umfasst die individuelle Fähigkeit und den Willen, zielorientiert mit anderen zusammen zu arbeiten, die Interessen der anderen zu erfassen, sich zu verständigen und die Arbeits- und Lebenswelt mitzugestalten.
- Die Absolventinnen und Absolventen können sich in einem fachlich homogenen Team organisieren, einen Lösungsweg erarbeiten, spezifische Teilaufgaben übernehmen und verantwortungsvoll Teilergebnisse liefern, und den eigenen Beitrag reflektieren.
- Die Absolventinnen und Absolventen sind in der Lage, ihre wissenschaftlichen Arbeitsergebnisse interaktiv und fachübergreifend zu diskutieren, vor dem Plenum zu präsentieren und zu verteidigen.
- Die Absolventinnen und Absolventen können über Inhalte und Probleme der Energie- und Umwelttechnik mit Fachleuten und Laien kommunizieren.
Selbstständigkeit
Personale Kompetenzen umfasst neben der Kompetenz zum selbständigen Handeln auch, die eigene Handlungsfähigkeit weiterzuentwickeln.
- Die Absolventinnen und Absolventen können sich selbständig ein eng umrissenes Teilgebiet der Energie- und Umwelttechnik erschließen und die Ergebnisse im Rahmen eines Vortrages mit gängigen Präsentationstechniken oder eines mehrseitigen Aufsatzes detailliert zusammenfassen. Dabei wird kritisches Analysieren und nicht bloßes Auswendiglernen verlangt.
- Die Absolventinnen und Absolventen sind in der Lage, ihre vorhandenen Kompetenzen realistisch einzuschätzen und Defizite selbständig aufzuarbeiten.
- Die Absolventinnen und Absolventen können eigenständig Projekte organisieren und durchführen.
- Die Absolventinnen und Absolventen sind in der Lage, fachlich eingegrenzte Teilprojekte unter Verwendung des im Studium Erlernten in einer Bachelorarbeit eigenverantwortlich zu bearbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, notwendige Informationen aus geeigneten Literaturquellen selbstständig zu beschaffen und deren Qualität zu beurteilen.
- Die Absolventinnen und Absolventen sind fähig, technische Problemstellungen in einem größeren gesellschaftlichen Kontext zu bewerten und die nicht-technischen Auswirkungen der Ingenieurtätigkeit einzuschätzen.
Studiengangsstruktur
Aufbau des Studiengangs:
- Mathematisch-naturwissenschaftliche Grundlagen (sechs Module)
- Ingenieurwissenschaftliche Grundlagen (elf Module)
- Energie- und Umwelttechnische Fächer (fünf Module)
- Ingenieuranwendungen (drei Module).
Ergänzend kommen folgende Inhalte aus dem nichttechnischen Bereich hinzu:
- Ein Modul zur Betriebswirtschaftslehre
- Weitere Ergänzungskurse aus dem nicht-technischen Wahlpflichtkatalog (ein Modul)
- Bachelorarbeit im 6. Semester.
Der Lehrumfang des Bachelorstudiengangs Energie- und Umwelttechnik umfasst somit 28 Module. Diese sind aufgeteilt in 26 Fachmodule und zwei nichttechnische Ergänzungsmodule. Der Studiengang basiert auf einem breiten mathematisch-physikalischen und naturwissenschaftlichen Fundament. Weiter wird dafür gesorgt, dass das theoretische Grundlagenwissen in den energie- und umwelttechnischen Fächern und in den Ingenieursanwendungen vertieft und angewendet wird. Darüber hinaus stellt die Bachelorarbeit das das Studium abschließende Modul dar.
Fachmodule der Kernqualifikation
Die Absolventen haben ein Grundlagenwissen auf den natur- und ingenieurwissenschaftlichen Gebieten der Mathematik, Physik, Chemie, Mechanik, Thermodynamik und Werkstoffwissenschaften erworben. Es befähigt sie, die in der Energietechnik, Umwelttechnik und angrenzenden Disziplinen auftretenden Phänomene zu verstehen. Sie haben die grundlegenden Prinzipien der Energie- und Umwelttechnik zur Modellierung und Simulation von Energieumwandlungs- und Energie-, Stoff- und Impulstransportprozessen unter besonderer Berücksichtigung der Nachhaltigkeit verstanden. Sie sind mit der Mess-, Steuer- und Regelungstechnik und mit konstruktiven Methoden vertraut. Die Absolventen sind in der Lage, • fachliche Probleme grundlagenorientiert zu identifizieren, zu abstrahieren, zu formulieren und ganzheitlich zu lösen; • Prozesse und Methoden ihrer Disziplin auf systemtechnischer Basis zu durchdringen, zu analysieren und zu bewerten; • passende Analyse-, Modellierungs-, Simulations- und Optimierungsmethoden auszuwählen und anzuwenden; • Literaturrecherchen durchzuführen sowie Datenbanken und andere Informationsquellen für ihre Arbeit zu nutzen; • selbstständig Experimente zu planen, durchzuführen und die Ergebnisse zu interpretieren; • ein Masterstudium mit Bezug zur Energie- und Umwelttechnik erfolgreich zu absolvieren. Die Absolventen können eine Ingenieurtätigkeit in verschiedenen Tätigkeitsfeldern der Energie- und Umwelttechnik verantwortungsvoll und kompetent ausüben und sind berechtigt, die Berufsbezeichnung „Ingenieur" im Sinne der Ingenieurgesetze (IngG) der Länder zu führen. |
Modul M0569: Technische Mechanik I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Mathematik und Physik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik benennen. |
Fertigkeiten |
Der Studierende kann Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen. |
Selbstständigkeit |
Der Studierende ist fähig eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht Logistik und Mobilität: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0187: Technische Mechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper
Grundlagen der Elastizitätslehre
|
Literatur |
|
Lehrveranstaltung L0190: Technische Mechanik I |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0577: Nichttechnische Angebote im Bachelor |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermitteln die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im Nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0850: Mathematik I |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulmathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis I) + 60 min (Lineare Algebra I) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1010: Analysis I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung einer Variablen:
|
Literatur |
|
Lehrveranstaltung L1012: Analysis I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1013: Analysis I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0912: Lineare Algebra I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik I" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. |
Literatur |
|
Lehrveranstaltung L0913: Lineare Algebra I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik I" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. Zusätzlich zu den Präsenzübungen werden Online-Tests eingesetzt, die sowohl den Studierenden als auch den Lehrenden Feedback zum Lernstand geben. |
Literatur |
|
Lehrveranstaltung L0914: Lineare Algebra I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Christian Seifert |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0883: Allgemeine und Anorganische Chemie |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerrit A. Luinstra | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Gymnasiale Kurse in Chemie | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Nach Abschluss des Moduls sind die Studierenden in der Lage, den Aufbau von Molekülen (Orbitaltheorie, VSPER, Oktaedrisches Ligandfeld) sowie deren Interaktionen in der Gasphase, in Flüssigkeiten und Festkörpern zu beschreiben. Sie können chemische Reaktionen im Sinne von Massen und Energiebilanzierung unter Berücksichtigung von Enthalpie und Entropiekonzepten, dem Massewirkungsgesetz aufstellen. Sie können das Konzept von Aktivierungsbarrieren in Kombination mit Kinetik erläutern. Sie haben vertiefte Kenntnisse in den Bereichen des Konzeptes von Säuren und Basen, der Beschreibung von Säure-Base-Reaktionen in Wasser, pH-Wertberechnungen, der quantitativen Analyse mittels Titration, von Redoxprozessen in Wasser, Redoxpotentialen, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen (Batterie, Accu, Brennstoffzellen), Überspannung als Aktivierungsenergie, Korrosion als Lokalelement. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Allgemeinen und Anorganischen Chemie auf technische Prozesse anzuwenden. Insbesondere können Sie Massen- und Energiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache pH-Wertberechnungen hinsichtlich des Einsatzes von Säuren und Basen bzw. einefache Betrachtungen über Redoxpotentialen durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. Die Studierenden können ihre wissenschaftlichen Arbeitsergebnisse vor dem Plenum präsentieren und verteidigen. Die Studierenden sind in der Lage, Versuchsergebnisse wissenschaftlich zu dokumentieren. Sie sind in der Lage, Quellen in ihren Protokollen wissenschaftlich korrekt zu zitieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können vorgegebene Aufgabenstellungen in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Die Studierenden können in Kleingruppen unter Anleitung Experimente an labortechnischen Anlagen durchführen und dabei die einzelnen Aufgaben innerhalb der Gruppe selbstständig verteilen. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. Die Studierenden können selbstständig Experimente planen, vorbereiten und durchführen. Sie können ihren Wissensstand selbstständig einschätzen und sich Quellen beschaffen, um fehlendes Wissen zur Erfüllung ihrer Aufgaben zu ergänzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0824: Allgemeine und Anorganische Chemie |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Gerrit A. Luinstra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Dieser Kurs setzt sich aus 4 Themenbereichen zusammen, i) Beschreibung von Molekülen entlang der Orbitaltheorie für s-,p-,d-Blockelementen (Oktaedrisches Feld), Beschreibung von Interaktionen in der Gasphase, in Flüssigkeiten und Festkörpern, (Halb)Leitung ii) chemische Reaktionen im Sinne von Massen und Energiebilanzierung, Enthalpie und Entropiekonzepte, Massewirkungsgesetz, Konzept von Aktivierungsbarrieren in Kombination mit Kinetik, iii) Konzept von Säuren und Basen, Beschreibung von Säure-Base-Reaktionen in Wasser, pH-Wertberechnungen, Quantitative Analyse mittels Titration, iv) Redoxprozessen in Wasser, Redoxpotentialen, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen (Batterie, Accu, Brennstoffzellen), Überspannung als Aktivierungsenergie, Korrosion als Lokalelement. |
Literatur |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) http://www.chemgapedia.de |
Lehrveranstaltung L0996: Allgemeine und Anorganische Chemie |
Typ | Laborpraktikum |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Prof. Gerrit A. Luinstra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Das Erlernen von Arbeitstechniken und der Umgang mit chemischen Substanzen sind Gegenstand des Laborpraktikums. Die Versuche setzen sich aus 4 Themenbereichen zusammen, i) Atomaufbau durch spektroskopische Methoden, Einblick in Teile der analytischen Chemie ii) Chemische Reaktionen via Nachweisreaktionen, Bindungsarten und Reaktionstypen, beinhaltet die Aufstellung von Reaktionsgleichungen iii) Konzept von Säuren und Basen, Beschreibung von Säure-Base-Reaktionen in Wasser, Pufferlösungen, Quantitative Analyse mittels Titration iv) Redoxprozesse in Wasser, Redoxpotentiale, Beschreibung der Konzentrationsabhängigkeiten entlang dem Gesetz von Nernst von Redoxpotentialen, Funktionsweise von galvanischen Elementen und Elektrolysezellen. Es wird in kleinen Gruppen (12-15 Studenten) vor jedem Versuch ein Seminar abgehalten, in dem sich die Studenten mündlich beteiligen. Teamarbeit und Kooperation werden gefördert, da die Versuche im Labor sowie das Schreiben der Protokolle in 3er/4er Gruppen durchgeführt werden. Zudem wird wissenschaftliches Arbeiten vermittelt (Dokumentation der Versuchsergebnisse im Laborjournal, Zitieren von Literatur im Protokoll).
|
Literatur |
Chemie für Ingenieure, Guido Kickelbick, ISBN 978-3-8273-7267-3 Chemie, Charles Mortimer (Deutsch und Englisch verfügbar) Analytische und anorganische Chemie, Jander/Blasius Maßanalyse, Jander/Jahr |
Lehrveranstaltung L1941: Allgemeine und anorganische Chemie |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerrit A. Luinstra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0957: Einführung in die Energie- und Umwelttechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alfons Kather | ||||||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||||||
Empfohlene Vorkenntnisse |
Keine |
||||||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||||||
Fachkompetenz | |||||||||||||||||
Wissen |
Die
Studierenden können die verschiedenen Optionen zur Strom- und Wärmeerzeugung bzw.
zur Umwelttechnik skizzieren sowie die Hauptkomponenten dieser Anlagen benennen. Unter Einbeziehung von Erfahrungen und eigenen Beobachtungen können die Studierenden in Präsentationen fachangrenzende
Kontexte aus der Praxis erläutern. Die Studierenden können grundlegend die technischen und umwelttechnischen Vor- und Nachteile (Spagat zwischen der bezahlbaren Energienutzung und der Minimierung der Umweltauswirkungen) der unterschiedlichen Alternativen darstellen und diskutieren. Sie haben ein Bewusstsein für die Dimension der Verantwortlichkeit ihres Handelns und wissen um den Bedarf für eine ausgewogene Kompromissfindung zwischen Energieerzeugung und Umweltschutz. Die Studierenden gewinnen durch ein Physik-Praktikum einen Überblick fachrelevanter Aspekte der Physik. |
||||||||||||||||
Fertigkeiten |
Die Studierenden beherrschen die Grundlagen der technischen schriftlichen und mündlichen Kommunikation. Studierende sind in der Lage, mündlich fachliche Aspekte zu erläutern und zu diskutieren. Durch vergleichende Betrachtungen von Literaturquellen sind Studierende in der Lage, in vereinfachter Form wissenschaftlich zu arbeiten und eine kritische Betrachtung durchzuführen. Die Studierenden sind in der Lage, ihr vertieftes schulisches Physikwissen zusätzlich auf schriftlicher Basis technisch zu kommunizieren. |
||||||||||||||||
Personale Kompetenzen | |||||||||||||||||
Sozialkompetenz |
Die Sozialkompetenzen der Studierenden sind sowohl innerhalb der Gruppe als auch in Verbindung mit den zu besuchenden Unternehmen gefordert. Durch die Vorbereitung des Seminarvortrags werden die Studierenden in die Lage versetzt, mit Kommunikation umzugehen. Auch die Durchführung des Physik-Praktikums sowie die Anfertigung der Versuchsprotokolle erfolgen in Gruppen. Damit können die Studierenden in Gruppen zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen. |
||||||||||||||||
Selbstständigkeit |
Studierende sind fähig, eigenständig anwendungsnahe Erkenntnisse aus der Praxis in Seminarvorträgen zu formulieren. Die Studierenden können sich selbstständig in bestimmte technische Themengebiete einarbeiten und diese vor der Gruppe darstellen. Studierende sind fähig, sich selbstständig in experimentellen Demonstrationen einzuarbeiten und selbstständig einen Kurzvortrag anzufertigen und zu präsentieren. |
||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 | ||||||||||||||||
Leistungspunkte | 6 | ||||||||||||||||
Studienleistung |
|
||||||||||||||||
Prüfung | Klausur | ||||||||||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||||||||||
Zuordnung zu folgenden Curricula |
Energie- und Umwelttechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0212: Einführung in die Energie- und Umwelttechnik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 34, Präsenzstudium 56 |
Dozenten | Prof. Alfons Kather |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Veranstaltung beinhaltet drei Komponenten: Vorträge externer Referenten, Exkursionen und Einzelvorträge der Studierenden. Die Vorträge externer Referenten beziehen sich auf die Unternehmen, in denen die Exkursionen stattfinden. Aus den Exkursionen bearbeiten die Studierenden mit Anweisungen von Betreuern den jeweiligen Einzelvortrag. Die Letzteren werden in der Gruppe vorbereitet und vor dem Plenum diskutiert. Die Benotung ist auf eine gewichtete Bewertung von der Gruppenarbeit, dem Vortrag und der Diskussion basiert. Themen sind beispielsweise:
|
Literatur |
Keine erforderlich |
Lehrveranstaltung L0947: Physik-Praktikum für EUT |
Typ | Laborpraktikum |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hansen |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Im Physikpraktikum wird eine Reihe von Experimenten zu physikalischen Phänomenen aus der Mechanik, dem Gebiet der Schwingungen und Wellen, der Thermodynamik, der Elektrizitätslehre und der Optik unter Anleitung einer Lehrperson durchgeführt. Die Experimente sind Teil der Physikausbildung im Rahmen der Vorlesung "Physik für TUHH-VT Ingenieure". Über die Vermittlung grundlegender physikalischer Zusammenhänge hinaus sollen Fertigkeiten zur Vorbereitung und Durchführung von Messungen physikalischer Größen, der Gebrauch von physikalischen Messgeräten, die Analyse der Resultate und die Erstellung eines Berichts über die Messergebnisse erworben werden. Die Studierenden erhalten Anleitung zu wissenschaftlichem Protokollieren und Schreiben sowie Feedback zu ihrer Umsetzung in den eigenen Protokollen. Zu jedem der sechs Versuche gibt es ein Eingangskolloquium, in dem die Studierenden die theoretischen Grundlagen sowie deren Umsetzung im entsprechenden Versuch erläutern und diskutieren. |
Literatur |
Zu den Versuchen gibt es individuelle Versuchsanleitungen, die vor der Versuchsdurchführung ausgegeben werden. Zum Teil müssen die zur Versuchsdurchführung notwendigen physikalischen Hintergründe selbstständig erarbeitet werden, wozu die zur Vorlesung "Physik für TUHH-VT Ingenieure" angegebene Literatur gut geeignet ist. |
Modul M0570: Technische Mechanik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Mechanik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D benennen. |
Fertigkeiten |
Der Studierende kann Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen. |
Selbstständigkeit |
Der Studierende ist fähig, mit Hilfe von Hinweisen eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0191: Technische Mechanik II |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Methoden zur Berechnung von Kräften und der Bewegung von starren Körpern in 3D
|
Literatur |
|
Lehrveranstaltung L0192: Technische Mechanik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0594: Grundlagen der Konstruktionslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0258: Grundlagen der Konstruktionslehre |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Vorlesung
In Grundlagen der Konstruktionslehre werden in bestimmten Vorlesungseinheiten Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen. Des Weiteren steht den Studierenden eine e-Learning-Plattform mit Tutorial-Videos und Videos zu Konstruktionselementen und Praxisbeispielen zur Verfügung. Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0259: Grundlagen der Konstruktionslehre |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Josef Schlattmann, Prof. Otto von Estorff, Prof. Sören Ehlers |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0888: Organische Chemie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Axel Thomas Neffe | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Gymnasiale Kurse in Chemie und/oder Vorlesung "Allgemeine und Anorganische Chemie" |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende sind mit den Grundkenntnissen der organischen Chemie vertraut. Sie können verschiedene organische Moleküle zuordnen und funktionelle Gruppen identifizieren und die jeweiligen grundlegenden Syntheserouten beschreiben. Grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution können Sie detailliert erläutern. Die Studierenden sind in der Lage, moderne Reaktionsmechanismen allgemein zu beschreiben. |
||||||||
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Organischen Chemie auf technische Prozesse anzuwenden. Insbesondere können sie grundlegende Syntheserouten zu kleinen organischen Molekülen aufstellen, um damit technische Prozesse der Verfahrenstechnik und Umwelttechnik zu optimieren. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. Die Studierenden sind in der Lage, ihre Versuchsdurchführung und ihre Ergebnisse auf wissenschaftliche Art und Weise zu protokollieren und zu interpretieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg für vorgegebene Aufgaben erarbeiten. |
||||||||
Selbstständigkeit |
Studierende sind in der Lage Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 82, Präsenzstudium 98 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0831: Organische Chemie |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Ralph Holl, Prof. Pierre Stallforth |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Die Veranstaltung vermittelt die Grundkentnisse der organischen Chemie. Dies umfasst einfache Verbindungen des Kohlenstoffs, Alkane, Alkene, Aromatische Kohlenwasserstoffe, Alkohole, Phenole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Amine, Amide sowie Aminosäuren. Weiterhin werden grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution vermittelt. Weitere moderne Reaktionsmechanismen werden ebenso besprochen. |
Literatur | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Lehrveranstaltung L0832: Organische Chemie |
Typ | Laborpraktikum |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Prof. Ralph Holl, Prof. Pierre Stallforth |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung vermittelt die Grundkentnisse der organischen Chemie. Dies umfasst einfache Verbindungen des Kohlenstoffs, Alkane, Alkene, Aromatische Kohlenwasserstoffe, Alkohole, Phenole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Amine, Amide sowie Aminosäuren. Weiterhin werden grundlegende Reaktionsmechanismen der nucleophile Substitution, Eliminierungsreaktionen, Additionsreaktionen und aromatischen Substitution vermittelt. Weitere moderne Reaktionsmechanismen werden ebenso besprochen. Vor der praktischen Durchführung der Versuche gibt es jeweils ein mündliches Kolloquium in Kleingruppen. Darin werden sicherheitsrelevante Aspekte besprochen, inhaltliche Fragen diskutiert und Lösungswege für vorgegebene Aufgaben diskutiert. In den Vorkollloquia erwerben die Studierenden die Möglichkeit sich wissenschaftlich korrekt mündlich ausdrücken und theoretische Grundlagen zu beschreiben. Die Studierenden verfassen zu jedem Versuch ein Protokoll. Sie erhalten Feedback zur Wissenschaftlichkeit ihrer Texte sowie wissenschaftlichen Standards (Zitierweise, Bildbeschriftung, etc.), sodass sie ihre Fertigkeiten diesbezüglich über den Verlauf des Praktikums kontinuierlich verbessern können. |
Literatur | gängige einführende Werke zur Organischen Chemie. Z.B. „Organische Chemie“ von K.P.C.Vollhart & N.E.Schore, Wiley VCH |
Modul M0671: Technische Thermodynamik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Mathematik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit den Hauptsätzen der Thermodynamik vertraut. Sie wissen über die gegenseitige Verknüpfung der einzelnen Energieformen untereinander entsprechend dem 1. Hauptsatz der Thermodynamik und kennen die Grenzen einer Wandlung der verschiedenen Energieformen bei natürlichen und technischen Vorgängen entsprechend dem 2. Hauptsatz der Thermodynamik. Sie sind in der Lage, Zustandsgrößen von Prozessgrößen zu unterscheiden und kennen die Bedeutung der einzelnen Zustandsgrößen wie z. B. Temperatur, Enthalpie oder Entropie sowie der damit verbundenen Begriffe Exergie und Anergie. Sie können den Carnotprozess in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie können den Unterschied zwischen einem idealen und einem realem Gas physikalisch beschreiben und kennen die entsprechenden thermischen Zustandsgleichungen. Sie wissen, was eine Fundamentalgleichung ist und sind mit grundlegenden Zusammenhängen der Zweiphasenthermodynamik vertraut. |
Fertigkeiten |
Studierende sind in der Lage, die Inneren Energie, die Enthalpie, die Kinetische und Potenzielle Energie sowie Arbeit und Wärme für einfache Zustandsänderungen zu berechnen und diese Berechnungsmöglichkeiten auch auf den Carnotprozess anzuwenden. Darüber hinaus können sie Zustandsgrößen für ideale und reale Gase aus messbaren thermischen Zustandsgrößen berechnen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0437: Technische Thermodynamik I |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes. |
Literatur |
|
Lehrveranstaltung L0439: Technische Thermodynamik I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0441: Technische Thermodynamik I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0851: Mathematik II |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis II) + 60 min (Lineare Algebra II) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1025: Analysis II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1026: Analysis II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1027: Analysis II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0915: Lineare Algebra II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik II" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. |
Literatur |
|
Lehrveranstaltung L0916: Lineare Algebra II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Die Veranstaltung ist inhaltlich mit dem Modul "Mechanik II" so verzahnt, dass die Lineare Algebra die Verfahren rechtzeitig vermittelt, die für die Mechanik gebraucht werden. Umgekehrt, liefert die Mechanik regelmäßig den Anwendungsbezug für die Mathematik. Es werden Matlab-Demonstratoren in der Vorlesung und zum Download bereitgestellt, um die Vorlesungsinhalte besser zu visualisieren und praktisch ausprobieren zu können. Zusätzlich zu den Präsenzübungen werden Online-Tests eingesetzt, die sowohl den Studierenden als auch den Lehrenden Feedback zum Lernstand geben. |
Literatur |
|
Lehrveranstaltung L0917: Lineare Algebra II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz, Prof. Marko Lindner, Dr. Christian Seifert, Dr. Julian Großmann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0608: Grundlagen der Elektrotechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Kern |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können Stromlaufpläne für elektrische und elektronische Schaltungen bestehend aus einer geringen Anzahl von Komponenten skizzieren und erläutern. Sie können die Funktion der grundlegenden elektrischen und elektronischen Bauelemente beschreiben und zugehörige Gleichungen darstellen. Sie können die üblichen Berechnungsmethoden demonstrieren. |
Fertigkeiten |
Studierende sind fähig, elektrische und elektronische Schaltungen bestehend aus eine geringen Anzahl von Komponenten für Gleich- und Wechselstrom zu analysieren und ausgewählte Größen daraus zu berechnen. Sie wenden dabei die üblichen Methoden der Elektrotechnik an. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit |
Studierende sind fähig, eigenständig elektrische und elektronische Schaltungen für Gleich- und Wechselstrom zu analysieren und ausgewählte Größen daraus zu berechnen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 135 Minuten |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0290: Grundlagen der Elektrotechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Thorsten Kern |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Netze bei Gleichstrom: Strom, Spannung, Widerstand, Leistung, Kirchhoff ́sche Regeln, Ersatzquellen, Netzwerkberechnung Wechselstrom: Kenngrößen, Effektivwert, Komplexe Rechnung, Zeigerbilder, Leistung Elektronik: Wirkungsweise, Betriebsverhalten und Anwendung elektronischer Bauelemente wie Diode, Zener-Diode, Thyristor, Transistor, Operationsverstärker |
Literatur |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 Ralf Kories, Heinz Schmitt - Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - andere Autoren |
Lehrveranstaltung L0292: Grundlagen der Elektrotechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Kern, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Bearbeiten von Übungsaufgaben, die die Analyse von Schaltungen und die Berechnung von elektrischen Größen beinhalten zu den Themen: Netze bei Gleichstrom: Strom, Spannung, Widerstand, Leistung, Kirchhoff ́sche Regeln, Ersatzquellen, Wechselstrom: Kenngrößen, Effektivwert, Komplexe Rechnung, Zeigerbilder, Leistung |
Literatur |
Alexander von Weiss, Manfred Krause: "Allgemeine Elektrotechnik"; Viweg-Verlag, Signatur der Bibliothek der TUHH: ETB 309 |
Modul M0598: Konstruktionslehre Gestalten |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause | ||||||||||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||||||||||
Fachkompetenz | |||||||||||||||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
||||||||||||||||||||
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
||||||||||||||||||||
Personale Kompetenzen | |||||||||||||||||||||
Sozialkompetenz |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage
|
||||||||||||||||||||
Selbstständigkeit |
Studierende sind in der Lage
|
||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 40, Präsenzstudium 140 | ||||||||||||||||||||
Leistungspunkte | 6 | ||||||||||||||||||||
Studienleistung |
|
||||||||||||||||||||
Prüfung | Klausur | ||||||||||||||||||||
Prüfungsdauer und -umfang | 180 | ||||||||||||||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0268: Gestalten von Bauteilen und 3D-CAD |
Typ | Vorlesung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0695: Konstruktionsprojekt I |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Prof. Thorsten Schüppstuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0592: Konstruktionsprojekt II |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 18, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Hintze |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag. Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag. Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag. Einführung in die DIN-Normen, Klein, M., Teubner-Verlag. Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag. |
Lehrveranstaltung L0267: Teamprojekt Konstruktionsmethodik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0688: Technische Thermodynamik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist. |
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden. Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Engineering Science: Kernqualifikation: Pflicht Engineering Science: Vertiefung Maschinenbau: Wahlpflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0449: Technische Thermodynamik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
8. Kreisprozesse 9. Gas-Dampf-Gemische 10. Stationäre Fließprozesse 11. Verbrennungsprozesse 12. Sondergebiete In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes. |
Literatur |
|
Lehrveranstaltung L0450: Technische Thermodynamik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0451: Technische Thermodynamik II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0933: Grundlagen der Werkstoffwissenschaften |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Jörg Weißmüller |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Physik, Chemie und Mathematik der gymnasialen Oberstufe. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten verfügen über grundlegende Kenntnisse zu Metallen, Keramiken und Polymeren und können diese verständlich wiedergeben. Grundlegende Kenntnisse betreffen dabei insbesondere die Fragen nach atomarem Aufbau, Gefüge, Phasendiagrammen, Phasenumwandlungen, Korrosion und mechanischen Eigenschaften. Die Studenten kennen die wichtigsten Aspekte der Methodik bei der Untersuchung von Werkstoffen und können methodische Zugänge zu gegebene Eigenschaften benennen. |
Fertigkeiten |
Die Studenten sind in der Lage, Materialphänomene auf die zu Grunde liegenden physikalisch-chemischen Naturgesetze zurückführen. Mit Materialphänomenen sind hier mechanische Eigenschaften wie Festigkeit, Duktilität und Steifigkeit gemeint, sowie chemische Eigenschaften wie Korrosionsbeständigkeit und Phasenumwandlungen wie Erstarrung, Ausscheidung, oder Schmelzen. Die Studenten können die Beziehung zwischen den Verarbeitungsbedingungen und dem Gefüge erklären und sie können die Auswirkungen des Gefüges auf das Materialverhalten darstellen. |
Personale Kompetenzen | |
Sozialkompetenz |
- |
Selbstständigkeit |
- |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Data Science: Vertiefung Materialwissenschaft: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1085: Grundlagen der Werkstoffwissenschaft I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Jörg Weißmüller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundlegende Kenntnisse zu Metallen: Atomarer Aufbau, Gefüge, Phasendiagramme, Phasenumwandlungen, Erholungsvorgänge, Mechanische Prüfung, Mechanische Eigenschaften, Konstruktionswerkstoffe 1. Einleitung a. Materialwissenschaften - was ist das? b. Relevanz für den Ingenieur 2. Aufbau von Werkstoffen a. Gefüge b. Kristallaufbau c. Kristallsymmetrie und anisotrope Materialeigenschaften d. Gitterfehlordnung e. Atomare Bindungen und Bauprinzipien für Kristalle 3. Phasendiagramme und Kinetik a. Phasendiagramme b. Phasenumwandlungen c. Keimbildung und Kristallisation d. Zeit-Temperatur-Umwandlungsdiagramme; Ausscheidungshärtung e. Diffusion f. Erholung, Rekristallisation und Kornwachstum; Kalt- und Warmumformung 4. Mechanische Eigenschaften a. Phänomenologie des Zugversuchs b. Prüfverfahren c. Grundlagen der Versetzungsplastizität d. Härtungsmechanismen 5. Konstruktionswerkstoffe: Stahl und Gusseisen a. Phasendiagramm Fe-C b. Härtbarkeit von Stählen c. Martensitumwandlung d. Unlegierte (Kohlenstoff-) und legierte Stähle e. Rostfreie Stähle f. Gusseisen g. Wie macht man Stahl? In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt, um die Studierenden aktiv an der Vorlesung teilhaben zu lassen. Außerdem können die Studierenden mit Hilfe von Anschauungsmaterial (Bauteile, Formen usw.) die theoretischen Vorlesungsinhalte unmittelbar nachvollziehen. |
Literatur |
Vorlesungsskript W.D. Callister: Materials Science and Engineering - An Introduction. 5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 P. Haasen: Physikalische Metallkunde. Springer 1994 |
Lehrveranstaltung L0506: Grundlagen der Werkstoffwissenschaft II (Keramische Hochleistungswerkstoffe, Kunststoffe und Verbundwerkstoffe) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bodo Fiedler, Prof. Gerold Schneider |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Grundlegende Kenntnisse zu Keramiken, Kunststoffen und Verbundwerkstoffen: Herstellung, Verarbeitung, Struktur und Eigenschaften Vermittlung von grundlegenden Kenntnissen und Methoden; Grundkenntnisse zum Aufbau und Eigenschaften von Keramiken, Kunststoffen und Verbundwerkstoffen; Vermittlung von Methodik bei der Untersuchung von Werkstoffen. |
Literatur |
Vorlesungsskript W.D. Callister: Materials Science and Engineering -An Introduction-5th ed., John Wiley & Sons, Inc., New York, 2000, ISBN 0-471-32013-7 |
Lehrveranstaltung L1095: Physikalische und Chemische Grundlagen der Werkstoffwissenschaften |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Fritz Müller |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Für den Elektromagnetismus:
Für die Atomphysik:
Für die Materialphysik und Elastizität:
|
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christoph Ihl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | mehrere schriftliche Leistungen über das Semester verteilt |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Orientierungsstudium: Kernqualifikation: Wahlpflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0882: Betriebswirtschaftliche Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christoph Ihl, Katharina Roedelius |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
In der betriebswirtschaftlichen Horsaalübung werden die Inhalte der Vorlesung durch praktische Beispiele und die Anwendung der diskutierten Werkzeuge vertieft. Bei angemessener Nachfrage wird parallel auch eine Problemorientierte Lehrveranstaltung angeboten, die Studierende alternativ wählen können. Hier bearbeiten die Studierenden in Gruppen ein selbstgewähltes Projekt, das sich thematisch mit der Ausarbeitung einer innovativen Geschäftsidee aus Sicht eines etablierten Unternehmens oder Startups befasst. Auch hier sollen die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung zum praktischen Einsatz kommen. Die Gruppenarbeit erfolgt unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Neben der Vorlesung, die die Fachinhalte vermittelt, erarbeiten die Studierenden selbstständig in Gruppen einen Business-Plan für ein Gründungsprojekt. Dafür wird auch das wissenschaftliche Arbeiten und Schreiben gezielt unterstützt. |
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Modul M0610: Elektrische Maschinen und Antriebe |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Kern |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse Mathematik, insbesondere komplexe Zahlen, Integrale, Differenziale Grundlage der Elektrotechnik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die grundlegenden Zusammenhänge bei elektrischen und magnetischen Feldern skizzieren und erläutern. Sie können die Funktion der Grundtypen elektrischer Maschinen beschreiben und die zugehörigen Gleichungen und Kennlinien darstellen. Für praktisch vorkommende Antriebskonfigurationen können sie die wesentlichen Parameter für die Energieeffizienz des Gesamtsystems von der Versorgung bis zur Arbeitsmaschine erläutern. |
Fertigkeiten |
Studierende sind fähig, zweidimensionale elektrische Felder und magnetische Felder insbesondere in Eisenkreisen mit Luftspalt zu berechnen. Sie wenden dabei die üblichen Methoden des Elektromaschinenbaus an. Sie können das Betriebsverhalten elektrischer Maschinen aus gegebenen Grunddaten analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. Dabei wenden sie die üblichen Ersatzschaltbilder und grafische Verfahren an. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit |
Studierende sind fähig, eigenständig anwendungsnahe elektrische und magnetische Felder zu berechnen. Sie können eigenständig das Betriebsverhalten elektrischer Maschinen aus deren Grunddaten zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Ausarbeitung von vier Antriebs- und Aktorvarianten, Bewertung der Entwurfsdateien |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Maschinenbau: Kernqualifikation: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0293: Elektrische Maschinen und Antriebe |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Thorsten Kern, Dennis Kähler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Elektrisches Feld: Coulomb´sches Gesetz, Potenzial, Kondensator, Kraft und Energie, Kapazitiven Antriebe Magnetisches Feld: Kraft, Fluss, Durchflutungssatz, Feld an Grenzflächen, elektrisches Ersatzschaltbild, Hysterese, Induktion, Transformator, Magnetische Antriebe Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm, Schrittantriebe Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung, Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers, Drehzahlvariable Antrieb mit Frequenzumrichtern, Sonderbauformen elektrischer Maschinen |
Literatur |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Lehrveranstaltung L0294: Elektrische Maschinen und Antriebe |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Kern, Dennis Kähler |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0891: Informatik für Verfahrensingenieure |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Dr. Marcus Venzke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Fähigkeiten im Umgang mit MS Windows. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können prozedurale und objektorientierte Konzepte beschreiben. |
Fertigkeiten |
Studierende sind in der Lage in der Programmiersprache Java objektorientiert zu programmieren sowie mathematische Fragestellungen durch den Einsatz von Matlab zu lösen. Studierende sind in der Lage Konzepte (einfache Algorithmen) zur Lösung technischer Fragestellungen zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in kleinen Gruppen gemeinsam Lösungen erarbeiten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, erreichte Fähigkeiten einzuschätzen, indem sie diese praktisch anwenden. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0836: Informatik für Verfahrensingenieure |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Marcus Venzke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Einführung in objektorientierte Modellbildung und Programmierung am Beispiel von Java
|
Literatur |
Campione, Mary; Walrath, Kathy: The Java Tutorial - A practical guide for programmers. Addison-Wesley, Reading, Massachusets, 1998. Krüger, Guido; Hansen, Heiko: Handbuch der Java-Programmierung. 3. Auflage Addison-Wesley, 2002. Krüger, Guido: Go to Java 2. Addison-Wesley Verlag, Bonn, 1999. Cowell, John: Essential Java 2 fast. Springer Verlag, London, 1999. Java SE 7 Documentation Java Platform, Standard Edition 7 API Specification |
Lehrveranstaltung L0837: Informatik für Verfahrensingenieure |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Marcus Venzke |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Übung werden die Lehrinhalte der Vorlesung mit praktischen Aufgaben geübt und vertieft. Pro Woche werden ein bis zwei Programmieraufgaben gestellt. Diese werden von den Studierenden am Computer selbständig, betreut von einer Tutorin / einem Tutor, bearbeitet. |
Literatur |
Campione, Mary; Walrath, Kathy: The Java Tutorial - A practical guide for programmers. Addison-Wesley, Reading, Massachusets, 1998. Krüger, Guido; Hansen, Heiko: Handbuch der Java-Programmierung. 3. Auflage Addison-Wesley, 2002. Krüger, Guido: Go to Java 2. Addison-Wesley Verlag, Bonn, 1999. Cowell, John: Essential Java 2 fast. Springer Verlag, London, 1999. Java SE 7 Documentation Java Platform, Standard Edition 7 API Specification |
Lehrveranstaltung L0125: Numerik und Matlab |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump, Weitere Mitarbeiter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Literatur (Software-Teil):
|
Modul M0536: Grundlagen der Strömungsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Michael Schlüter | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können:
|
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden
|
||||||||
Selbstständigkeit |
Die Studierenden
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 3 Stunden | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0091: Grundlagen der Strömungsmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0092: Strömungsmechanik für die Verfahrenstechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Michael Schlüter |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
In der Hörsaalübung werden die Inhalte der Vorlesung weiter vertieft und in die praktische Anwendung überführt. Dies geschieht anhand von Beispielsaufgaben aus der Praxis, die den Studierenden nach der Vorlesung zum Download bereitgestellt werden. Die Studierenden sollen diese Aufgaben mit Hilfe des Vorlesungsstoffes eigenständig oder in Gruppen lösen. Die Lösung wird dann mit Studierenden unter wissenschaftlicher Anleitung diskutiert, wobei Aufgabenteile an der Tafel präsentiert werden. Am Ende der Hörsaalübung wird die Aufgabe an der Tafel korrekt vorgerechnet. Parallel zur Hörsaalübung finden Tutorien statt, bei denen die Studierenden in Kleingruppen Klausuraufgaben unter Zeitvorgabe rechnen und die Lösung anschließend diskutieren |
Literatur |
|
Modul M0956: Messtechnik für Maschinenbau |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Thorsten Kern | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Physik, Chemie und Elektrotechnik |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können die wesentlichen Grundlagen der Messtechnik (Größen und Einheiten, Messunsicherheit, Kalibrierung, Statisches und dynamisches Verhalten von Messsystemen) benennen. Sie können die wesentlichen Messverfahren zu Messung verschiedenartiger Messgrößen (elektrische Größen, Temperatur, mechanische Größen, Menge, Durchfluss, Zeit, Frequenz) skizzieren. Sie können die Funktionsweise wichtiger Analyseverfahren (Gas-Sensoren, Spektroskopie, Gaschromatographie) beschreiben. |
||||||||
Fertigkeiten |
Studierende können zu gegebenen Problemen geeignete Messverfahren auswählen und entsprechende Messgeräte praktisch anwenden. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | Studierende können in Gruppen gemeinsam zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen. | ||||||||
Selbstständigkeit |
Studierende sind fähig, sich selbstständig in neuartige Messverfahren einzuarbeiten. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Fachtheoretisch-fachpraktische Arbeit | ||||||||
Prüfungsdauer und -umfang | 105 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Engineering Science: Vertiefung Mechatronics: Pflicht Engineering Science: Vertiefung Maschinenbau: Pflicht Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht |
Lehrveranstaltung L1119: Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Kern |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Messverfahren zur Bestimmung unterschiedlicher gasförmiger Schadstoffe in Autoabgasen kennengelernt und angewandt werden. Versuch 1: Emissions- und Immissionsmessung gasförmiger Schadstoffe: Im Rahmen dieses Versuches sollen verschiedene Versuch 2: Simulation und Messung von Asynchronmaschine und Kreiselpumpe: Das dynamische Verhalten eines Drehstromasynchronomoters in einem Pumpenantrieb wird untersucht. Der Anlaufvorgang wird auf einem Rechner simuliert und mit Messungen an einem Versuchsstand verglichen. Versuch 3: Michelson-Interferometer und Faseroptik: Dieser Versuch soll dem Verständnis grundlegender optischer Phänomene dienen und deren Anwendung am Michelson-Interferometer und an Lichtleitfasern demonstrieren.
|
Literatur |
Versuch 1:
|
Lehrveranstaltung L1116: Measurement Technology for Mechanical Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thorsten Kern, Dennis Kähler |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
1 Fundamentals 1.1 Quantities and Units 1.2 Uncertainty 1.3 Calibration 1.4 Static and Dynamic Properties of Sensors and Systems 2 Measurement of Electrical Quantities 2.1 Current and Voltage 2.2 Impedance 2.3 Amplification 2.4 Oscilloscope 2.5 Analog-to-Digital Conversion 2.6 Data Transmission 3 Measurement of Nonelectric Quantities 3.1 Temperature 3.2 Length, Displacement, Angle 3.3 Strain, Force, Pressure 3.4 Flow 3.5 Time, Frequency |
Literatur |
Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3. Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940. |
Lehrveranstaltung L1118: Measurement Technology for Mechanical Engineering |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Thorsten Kern |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1275: Umwelttechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der anorganischen und organischen Chemie sowie Biologie |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Mit Abschluss dieses Moduls erlangen die Studierenden vertieftes Wissen über Umwelttechnik. Sie sind in der Lage das Verhalten von Stoffen in der Umwelt grundlegend zu beschreiben. Die Studierenden können einen Überblick über die beteiligten wissenschaftlichen Disziplinen geben. Sie können Fachausdrücke erklären und den entsprechenden Methoden zuordnen. |
||||||||
Fertigkeiten |
Die Studierenden sind fähig, geeignete Maßnahmen zum Management und zur Schadensminderung von Umweltproblemen vorzuschlagen. Sie können geochemische Parameter bestimmen und das Potential zur Verlagerung und zum Umbau toxischer Stoffe in der Umwelt einschätzen. Die Studierenden sind in der Lage, sich selbständig begründete Meinungen dazu zu erarbeiten, wie Umwelttechnik zur nachhaltigen Entwicklung beiträgt, und diese Meinung vor der Gruppe zu präsentieren und zu verteidigen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden sind in der Lage, technisch-wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend zu diskutieren. Sie sind in der Lage, gemeinsam verschiedene Lösungsansätze zu entwickeln und über deren theoretische und praktische Umsetzung zu beraten. |
||||||||
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, sich das darin enthaltene Wissen aneignen und auf neue Fragestellungen übertragen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 | ||||||||
Leistungspunkte | 3 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 1 Stunde | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1387: Laborpraktikum Umwelttechnik |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Dr. Isabel Höfer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Das Praktikum Umwelttechnik besteht derzeit aus 6 Versuchen, welche die unterschiedlichen Schwerpunkte der Umwelttechnik in den Bereichen Luft, Wasser, Boden, Umwelt, Biomasse und Lärm behandeln. Dazu werden die folgenden Versuche durchgeführt: Heizwertbestimmung von Biomasse, Bodenreinhaltung, Abwasseraufbereitung, Lärmemissionen, Kunststoffabfälle, Bioabfälle.
Innerhalb des Laborpraktikums diskutieren die Studierenden verschiedene technisch-wissenschaftliche Aufgabenstellungen, sowohl fachspezifisch und fachübergreifend. Sie sprechen verschiedene Lösungsansätze der Aufgabenstellung durch und beraten über die theoretische oder praktische Umsetzung. |
Literatur |
Lehrveranstaltung L0326: Umwelttechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt, Dr. Isabel Höfer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Förster, U.: Umweltschutztechnik; 2012; Springer Berlin (Verlag) 8., Aufl. 2012; 978-3-642-22972-5 (ISBN) |
Modul M0959: Mechanik III (Dynamik) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Robert Seifried |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Module Mathematik I, II, Mechanik I (Stereostatik). Parallel zum Modul Mechanik III sollte das Modul Mathematik III besucht werden. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen zu Arbeitsergebnissen kommen und sich gegenseitig bei der Lösungsfindung unterstützen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, ihre eigenen Stärken und Schwächen einzuschätzen und darauf basierend ihr Zeit- und Lernmanagement zu organisieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Data Science: Kernqualifikation: Wahlpflicht Digitaler Maschinenbau: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1134: Mechanik III (Dynamik) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Kinematik
Kinetik
Schwingungen |
Literatur |
K. Magnus, H.H. Müller-Slany: Grundlagen der Technischen Mechanik. 7. Auflage, Teubner (2009). D. Gross, W. Hauger, J. Schröder, W. Wall: Technische Mechanik 3 und 4. 11. Auflage, Springer (2011). |
Lehrveranstaltung L1135: Mechanik III (Dynamik) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1136: Mechanik III (Dynamik) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Robert Seifried |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0597: Vertiefte Konstruktionslehre |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Dieter Krause |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Fertigkeiten |
Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 68, Präsenzstudium 112 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0264: Vertiefte Konstruktionslehre II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalte Vertiefte Konstruktionslehre I & II
Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0265: Vertiefte Konstruktionslehre II |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0262: Vertiefte Konstruktionslehre I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Vertiefte Konstruktionslehre I & II
Hörsaalübung:
|
Literatur |
|
Lehrveranstaltung L0263: Vertiefte Konstruktionslehre I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Dieter Krause, Prof. Otto von Estorff |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0538: Wärme- und Stoffübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse: Technische Thermodynamik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0101: Wärme- und Stoffübertragung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Für die Verbesserung der Anschaulichkeit in der Vorlesung wurden für die Studierenden Videos ausgesucht, die in die Vorlesungen eingebunden waren. Zur Gestaltung der Selbstlernzeit wurden semesterbegleitenden Aufgaben entwickelt, mit denen die Studierenden sich während des Semesters vertieft auf den Lehrinhalt vorbereiten. |
Literatur |
|
Lehrveranstaltung L0102: Wärme- und Stoffübertragung |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1868: Wärme- und Stoffübertragung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0833: Grundlagen der Regelungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe experimentell testen und bewerten |
Selbstständigkeit |
Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden. Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Vertiefung Computermathematik: Wahlpflicht Data Science: Kernqualifikation: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Verkehrsplanung und -systeme: Wahlpflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht |
Lehrveranstaltung L0654: Grundlagen der Regelungstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Signale und Systeme
Regelkreise
Wurzelortskurven
Frequenzgang-Verfahren
Totzeitsysteme
Digitale Regelung
Software-Werkzeuge
|
Literatur |
|
Lehrveranstaltung L0655: Grundlagen der Regelungstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1022: Kolbenmaschinen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Christopher Friedrich Wirz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Technische Thermodynamik, Technische Mechanik, Maschinenelemente, Motore |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Als Ergebnis des Modulteils „Grundlagen der Kolbenmaschinen“ können die Studierenden grundlegende Zusammenhänge über Kraft- und Arbeitsmaschinen wiedergeben und insbesondere die qualitativen und quantitativen Zusammenhänge von Arbeitsverfahren und Wirkungsgraden verschiedener Motor-, Verdichter- und Pumpenarten darstellen. Sie können sicher mit motorischen Fachbegriffen und Kenngrößen umgehen, Ansätze zur Weiterentwicklung von Leistungsdichte und Wirkungsgrad erläutern und außerdem einen Überblick über Aufladesysteme, Kraftstoffe und Abgasemissionen geben. Die Studierenden können zudem Anlagen anwendungsbezogen auswählen und konstruktive sowie betriebliche Probleme bewerten. Als Ergebnis des Modulteils „Verbrennungsmotoren I“ können die Studierenden den Stand der Technik bezüglich Wirkungsgradgrenzen von Kreisprozessen wiedergeben und bei Weiterentwicklungen anwenden. Ergänzend können sie Wissen über die Auslegung, das mechanische und thermodynamische Betriebsverhalten und Ähnlichkeitsbeziehungen anwenden, um ausgeführte Motoren zu erläutern, zu bewerten und im beruflichen Umfeld mit zu entwickeln. Sie sind außerdem in der Lage, verschiedene Aufladekonzepte zu differenzieren, zu bewerten und anwendungsbezogen auszuwählen. Die Studierenden haben Detailkenntnisse über die reale Kreisprozessrechnung und Grundkenntnisse über fachspezifische Software. |
Fertigkeiten |
Die Studierenden haben die Fähigkeit, grundlegende sowie detaillierte Kenntnisse über Kolbenmaschinen anzuwenden in Bezug auf die Auswahl und den zweckdienlichen Einsatz. Des Weiteren können sie bestehende Maschinen bewerten und Probleme ggf. analysieren und lösen. Außerdem haben sie Fertigkeiten, die für die Auslegung und Konstruktion von Verbrennungsmotoren erforderlich sind. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, im Beruf sowohl im Bereich der Anwendungstechnik als auch im Bereich der herstellenden Industrie im kollegialen Umfeld effizient fachlich zusammenzuarbeiten. |
Selbstständigkeit |
Durch den umfassenden Überblick über die Konstruktion und die Anwendung können die Studierenden sicher, selbstständig und selbstbewusst Situationen bei Einsatz und Problemen bewerten und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Maschinenbau: Vertiefung Energietechnik: Pflicht |
Lehrveranstaltung L0633: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0634: Grundlagen der Kraft- und Arbeitsmaschinen - Teil Kolbenmaschinen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christopher Friedrich Wirz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0059: Verbrennungsmotoren I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0639: Verbrennungsmotoren I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Wolfgang Thiemann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0639: Wärmekraftwerke |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Kristin Abel-Günther | ||||||||||||
Zulassungsvoraussetzungen | Keine | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
Studierende können Aussagen über die Entwicklung des Strombedarfs und die thermodynamische Energieumwandlung in dem Kraftwerk treffen, die unterschiedlichen Kraftwerkstypen und den Aufbau des Kraftwerkblockes beschreiben und die Kenndaten von Kraftwerken definieren. Darüber hinaus können sie die erforderlichen Rauchgasreinigungsanlagen beschreiben und die Kombinationsmöglichkeiten zwischen konventionellen fossilen Kraftwerken und Kraftwerken mit Solarthermie und Geothermie oder Kraftwerken mit Carbon Capture and Storage bewerten. Die Studierenden haben Grundlagenkenntnisse in den Bereichen Funktion, Betrieb und Auslegung thermischer und hydraulischer Strömungsmaschinen. |
||||||||||||
Fertigkeiten |
Die Studierenden werden in der Lage sein, anhand von Theorien und Methoden der Energiegewinnung aus fossilen Brennstoffen sowie vertieften Kenntnissen zum Aufbau von Wärmekraftwerken, grundlegende Zusammenhänge bei der Strom- und Wärmeerzeugung zu erkennen und konzeptionelle Lösungen zu entwickeln. Durch Gliedern von Problemen, Beherrschen der Schnittstellenproblematik und der Lösungsmethodik bei der Strom- und Wärmeerzeugung, wird die Entwicklungsmethodik von realisierbaren, optimierten Konzepten erlernt. Aus der Darstellung des technischen Inhalts wird den Studierenden möglich, Überlegungen bezüglich des Strommixes im energiepolitischen Dreieck (Wirtschaftlichkeit, Versorgungssicherheit und Umweltschutz) zu verfolgen. Im Rahmen der Übung lernen die Studierenden die Nutzung der spezialisierten Software EBSILON ProfessionalTM kennen. Dabei werden kleine Aufgaben selbstständig am PC gelöst, um Aspekte der Auslegung von Kraftwerkskreisläufen zu veranschaulichen. Die Studierenden sind in der Lage vereinfachte Berechnungen von Strömungsmaschinen sowohl im Kontext der Gesamtanlage als auch von einzelnen Stufen durchzuführen. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
Es wird angestrebt interessierten Studierenden eine Exkursion im Rahmen der Vorlesung anzubieten. In dieser kommen die Studierenden in direkten Kontakt mit einem modernen Kraftwerk in der Region. Die Studierenden werden dadurch an die Praxis der Kraftwerkstechnik und den Konflikten zwischen technischen und politischen Interessen herangeführt. |
||||||||||||
Selbstständigkeit |
Studierende sind fähig mit Hilfe von Hinweisen eigenständig simple Simulationsmodelle zu entwickeln und Szenarienanalysen durchzuführen. Dabei werden die theoretischen und praktischen Kenntnisse aus der Vorlesung fundiert und mögliche Auswirkungen von unterschiedlichen Gestaltungszusammenhängen und Randbedingungen veranschaulicht. Studierende sind fähig, eigenständig das Betriebsverhalten von Wärmekraftwerken zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | Klausur 120 min | ||||||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht Maschinenbau: Vertiefung Energietechnik: Wahlpflicht |
Lehrveranstaltung L0206: Wärmekraftwerke |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Dr. Kristin Abel-Günther |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im 1. Teil der Veranstaltung es geht um speziellere Themen der Wärmekraftwerkstechnik:
Im 2. Teil wird eine Übersicht über Strömungsmaschinen gegeben. Dies beinhaltet die Themen:
|
Literatur |
|
Lehrveranstaltung L0210: Wärmekraftwerke |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Kristin Abel-Günther |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Im 1. Teil der Veranstaltung wird ein Übersicht über Strömungsmaschinen und Wärmekraftanlagen angeboten. Dies beinhaltet die Themen:
und mündet im 2. Teil in die spezialisierten Themen der Wärmekraftwerkstechnik:
Auf Umweltauswirkungen wegen Versauerung, Feinstaub- oder CO2-emissionen ebenso wie auf den klimatischen Einfluss wird insbesondere eingegangen. Die Anforderungen auf den Betrieb aus der Kombination konventioneller Wärmkraftwerke mit fluktuierenden erneuerbaren Energiequellen werden diskutiert und technische Lösungen zur Sicherstellung der Versorgungssicherheit und der Netzstabilität präsentiert, unter Betrachtung auch von Wirtschaftlichkeitskriterien. Dabei wird auch insbesondere der Blick auf die Umwelt- und Klimaverträglichkeit der einzelnen Optionen gelenkt, sodass ein Bewusstsein für die Verantwortung des eigenen Handelns entstehen und das potenzielle Ausmaß aus unterschiedlichen Lösungsansätzen ersichtlich werden kann. Im Rahmen der Übung lernen die Studierenden die Nutzung der spezialisierten Software EBSILON ProfessionalTM kennen. Dabei werden Aufgaben selbstständig in Kleingruppen am PC gelöst, um Aspekte der Auslegung von Kraftwerkskreisläufen zu veranschaulichen. Die Studierenden präsentieren ihre Lösungen mündlich und können im Anschluss Fragen stellen und Feedback erhalten. Die Erbringung der studienbegleitenden Leistung wirkt sich positiv auf die Endnote der Studierenden aus. |
Literatur |
|
Modul M0546: Thermische Grundoperationen |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Irina Smirnova |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Empfohlene Vorkenntnisse: Thermodynamik III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden sind in der Lage, ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen und dieses gebündelt zur Lösung konkreter technischer Probleme einzusetzen. Hierzu zählen insbesondere die Lehrveranstaltungen Thermodynamik, Prozess und Anlagentechnik sowie auch Strömungsmechanik und Chemische Verfahrenstechnik. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 minuten; Theorie und Rechenaufgaben (schriftlich) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Regenerative Energien: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Energiesysteme: Wahlpflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Bioressourcentechnologie: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0118: Thermische Grundoperationen |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0119: Thermische Grundoperationen |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben in Kleingruppen und stellen die Ergebnisse in der Übungsgruppe vor |
Literatur |
|
Lehrveranstaltung L0141: Thermische Grundoperationen |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1159: Thermische Grundoperationen |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Irina Smirnova |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden absolvieren in diesem Praktikum acht Versuche. Zu jedem der acht Versuche gibt es ein Kolloquium. In diesem reflektieren die Studierenden ihr Wissen und diskutieren es anschließend auf Fachebene mit dem Lehrpersonal und den Mitstudierenden. Die Studierenden arbeiten stark arbeitsteilig in kleinen Gruppen. Über alle Versuche wird ein Abschlussprotokoll verfasst. Die Studierenden erhalten eine Rückmeldung zu den Standards des wissenschaftlichen Schreibens, sodass sie über die Dauer des Praktikums ihre Kompetenzen in diesem Bereich ausbauen können. Themen des Praktikums:
|
Literatur |
|
Modul M1274: Umweltbewertung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der anorganischen und organischen Chemie sowie Biologie |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls erlangen die Studierenden vertieftes Wissen über wichtige Ursache-Wirkungs-Zusammenhänge für potentielle Umweltprobleme, die durch Produktionsprozesse, Projekte oder bauliche Maßnahmen entstehen können. Sie besitzen Kenntnisse über die Methodenvielfalt und sind kompetent im Umgang mit verschiedenen Methoden und Instrumenten zur Bewertung von Umweltauswirkungen bzw. Umweltschäden. Des Weiteren sind die Studierenden in der Lage, die Komplexität dieser Umweltprozesse sowie Unsicherheiten und Schwierigkeiten bei deren Messung und Beurteilung einzuschätzen. |
Fertigkeiten |
Die Studenten können aus der Vielfalt der Bewertungsmethoden eine für den jeweiligen Anwendungsfall geeignete Methode auswählen und können dadurch geeignete Maßnahmen zum Management und zur Schadensminderung für reale unternehmerische oder planerische Probleme in Bezug auf die Umwelt entwickeln. Sie sind in der Lage eine Ökobilanz selbständig durchzuführen und können außerdem die Software-Programme OpenLCA sowie die Datenbank EcoInvent anwenden. Die Studierenden besitzen nach Abschluss der Veranstaltung aufgrund ihres umfangreichen Wissens außerdem die Fähigkeit, sich kritisch mit Ergebnissen zum Thema Umweltauswirkungen auseinanderzusetzen. Sie können Forschungsergebnisse oder sonstige Veröffentlichungen verschiedener Medien zur Bewertung von Umweltauswirkungen besser beurteilen und sich selbst eine Meinung bilden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, technisch-wissenschaftliche Aufgabenstellungen fachspezifisch und fachübergreifend zu diskutieren. Sie sind in der Lage, gemeinsam verschiedene Lösungsansätze zu entwickeln und über deren theoretische und praktische Umsetzung zu beraten. Durch die Vermittlung der Themen im Rahmen der gesamten Vorlesungsreihe erhalten die Studierenden Einblick in die vielschichtigen Belange des Umweltschutzes sowie der Nachhaltigkeitsidee. Ihre Sensibilität und ihr Bewusstsein gegenüber diesen Themen werden geschärft und tragen dazu bei, sich ihrer späteren gesellschaftlichen Verantwortung als Ingenieure bewusst zu werden.
|
Selbstständigkeit |
Die Studierenden lernen, ein Problem eigenständig zu recherchieren, aufzubereiten und einem Publikum vorzustellen. Durch die selbständige Bearbeitung der Aufgaben werden die Studierenden in die Lage versetzt, eigenständig wissenschaftlich zu arbeiten, d.h. zu recherchieren, Ergebnisse aufzubereiten und zu referieren. Des Weiteren können sie ein reales planerisches oder unternehmerisches Problem selbständig lösen. Sie besitzen ein besseres Urteilsvermögen über Ergebnisse ähnlicher Studien, da sie z.B. Einflussmöglichkeiten durch bestimmte Parameterannahmen am eigenen Beispiel kennengelernt haben.
|
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Leistungspunkte | 3 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 1 Stunde Klausur |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Verfahrenstechnik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0860: Umweltbewertung |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Anne Rödl, Dr. Christoph Hagen Balzer |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
Schadstoffe: Belastungs- und Risikoanalyse Umweltschäden & Vorsorgeprinzip: Umweltverträglichkeitsprüfung (UVP), Strategische Umweltprüfung (SUP) Rohstoff- und Wasserverbrauch: Stoffflussanalyse Energieverbrauch: Kumulierter Energieaufwand (KEA), Kostenanalysen Lebenszykluskonzept: Ökobilanz Nachhaltigkeit-: Produktlinienanalyse, SEE-Balance Management: Umwelt- und Nachhaltigkeitsmanagementsysteme (EMAS) Komplexe Systeme: MCDA und Szenariomethode |
Literatur |
Foliensätze der Vorlesung Studie: Instrumente zur Nachhaltigkeitsbewertung - Eine Synopse (Forschungszentrum Jülich GmbH) |
Lehrveranstaltung L1054: Umweltbewertung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Dr. Anne Rödl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Präsentation und Anwendung von frei erhältlichen Softwareprogrammen zum besseren Verständnis der Umweltbewertungsmethoden. Innerhalb der Gruppenübung diskutieren die Studierenden verschiedene technisch-wissenschaftliche Aufgabenstellungen, sowohl fachspezifisch und fachübergreifend. Sie sprechen verschiedene Lösungsansätze der Aufgabenstellung durch und beraten über die theoretische oder praktische Umsetzung. |
Literatur |
Power point Präsentationen |
Modul M0670: Partikeltechnologie und Feststoffverfahrenstechnik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Stefan Heinrich | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | keine | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind nach erfolgreichem Abschluss des Moduls in der Lage, die grundlegenden Prozesse und Verfahren der Feststoffverfahrenstechnik zu benennen und im Kontext mit ihrer Anwendung in verfahrenstechnischen und umwelttechnischen Prozessen zu erklären. Außerdem sind sie in der Lage, Partikel und Partikelverteilungen zu beschreiben und ihre Schüttguteigenschaften zu erläutern. |
||||||||
Fertigkeiten |
Studenten sind in der Lage, Apparate und Verfahren der Feststoffverfahrenstechnik zur Erzielung von gewünschten Feststoffeigenschaften bzw. zur Emissionsminderung und zur Abscheidung aus Luft und Wasser auszuwählen und auszulegen. Insbesondere können sie diese Auswahl nicht nur für isolierte Einzelapparate treffen, sondern auch genseitige Abhängigkeiten in komplexen Prozessketten zu berücksichtigen. Außerdem sind sie befähigt, Partikel hinsichtlich der Prozessierbarkeit und ihrer umwelttechnischen Auswirkungen zu beurteilen. Die Studierenden können ihre Arbeit wissenschaftlich dokumentieren. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studenten sind in der Lage, fachliche Fragen mit Fachleuten mündlich zu diskutieren und in Gruppen gemeinsam Lösungen für technisch-wissenschaftliche Fragestellungen zu erarbeiten. |
||||||||
Selbstständigkeit |
Studierende sind dazu in der Lage grundlegende Fragestellungen in der Partikeltechnologie selbstständig zu analysieren und zu lösen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Green Technologies, Schwerpunkt Wasser- und Umweltingenieurwesen: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Green Technologies: Energie, Wasser, Klima: Vertiefung Wasser: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0434: Partikeltechnologie I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Ein Schwerpunkt bei der Vorlesung ist es, nicht nur Grundlagen und Auslegung der Verfahren und Apparate darzustellen, sondern insbesondere auch die Einbindung in Herstellungsprozesse und Verfahren zum Beispiel der Luft- und Wasserreinhaltung zu behandeln. |
Literatur |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Lehrveranstaltung L0435: Partikeltechnologie I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0440: Partikeltechnologie I |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Stefan Heinrich |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Versuche werden in Gruppen von ca. 4 Studenten durchgeführt. Hierbei lernen die Studenten nicht nur die Apparate und Verfahren der Feststoffverfahrenstechnik kennen, sondern üben gleichzeitig während der Eingangskolloquia und den Endberichten zu den einzelnen Versuchen die Präsentation und Diskussion von fachlichen Fragestellungen und Ergebnissen. Sie erhalten Anleitung zur wissenschaftlichen Arbeitsweise und Feedback zu ihrer eigenen Umsetzung, sodass sie über den Verlauf des Praktikums ihre Kompetenzen in diesem Bereich ausbauen können. |
Literatur |
Schubert, H.; Heidenreich, E.; Liepe, F.; Neeße, T.: Mechanische Verfahrenstechnik. Deutscher Verlag für die Grundstoffindustrie, Leipzig, 1990. Stieß, M.: Mechanische Verfahrenstechnik I und II. Springer Verlag, Berlin, 1992. |
Modul M0618: Regenerative Energiesysteme |
||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||
|
Modulverantwortlicher | Prof. Martin Kaltschmitt |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Mit Abschluss dieses Moduls können die Studierenden einen Überblick über Charakteristiken von Energiesysteme und deren Wirtschaftlichkeitsbetrachtung geben. Dabei können sie die darin auftretenden Fragestellungen erläutern. Des Weiteren können sie Kenntnisse zur Stromerzeugung, Stromverteilung und Stromhandel unter Einbeziehung fachangrenzender Kontexte in diesem Zusammenhang erläutern. Die Studierenden können diese auf viele Energiesysteme anwendbaren Kenntnisse besonders detailliert für erneuerbare Energiesysteme erläutern und kritisch Stellung dazu beziehen. Ferner können sie die Umweltauswirkungen durch die Nutzung von Regenerativen Energiesystemen erläutern. |
Fertigkeiten |
Die Studierenden sind in der Lage Methodiken zur detaillierten Bestimmung von Energienachfrage oder Energieerzeugung auf verschiedene Arten von Energiesystemen anzuwenden. Des Weiteren können sie Energiesysteme technisch, ökologisch und wirtschaftlich bewerten und unter bestimmten gegebenen Voraussetzungen auch auslegen. Die dafür nötigen Berechnungsvorschriften können sie fachspezifisch, vor allem durch nicht standardisierte Lösungen eines Problems, auswählen. Die Studierenden sind in der Lage Fragestellungen aus dem Fachgebiet und Ansätze zu dessen Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang einzuordnen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, geeignete technische Alternativen zu untersuchen und letztlich auch anhand technischer, ökonomischer und ökologischer Kriterien - und damit unter Nachhaltigkeitsgesichtspunkten zu bewerten, um so einen wirksamen Beitrag zu einer nachhaltigeren und zukunftsfähigeren Energieversorgung leisten zu können. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über das Fachgebiet erschließen, Wissen aneignen und auf neue Fragestellungen transformieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 3 Stunden schriftliche Klausur |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Bauingenieurwesen: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Verkehr und Mobilität: Wahlpflicht Bau- und Umweltingenieurwesen: Vertiefung Wasser und Umwelt: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0316: Elektrizitätswirtschaft |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt, Prof. Andreas Wiese |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Folien der Vorlesung |
Lehrveranstaltung L0315: Energiesysteme und Energiewirtschaft |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0313: Regenerative Energien |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1434: Regenerative Energien |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Martin Kaltschmitt |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Die Studierenden bearbeiten Aufgaben im Bereich der erneuerbaren Energien. Ihre Lösungsansätze präsentieren sie in der Übungsgruppe und diskutieren mit den Mitstudierenden und dem Lehrpersonal im Anschluss darüber. Mögliche Themen der Aufgaben sind:
|
Literatur |
|
Thesis
Modul M-001: Bachelorarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Digitaler Maschinenbau: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Engineering Science: Abschlussarbeit: Pflicht General Engineering Science: Abschlussarbeit: Pflicht General Engineering Science (7 Semester): Abschlussarbeit: Pflicht Green Technologies: Energie, Wasser, Klima: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Logistik und Mobilität: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Elektrotechnik-Informationstechnik: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Abschlussarbeit: Pflicht |