Studiengangsbeschreibung

Inhalt

Das Bachelor-Programm Allgemeine Ingenieurwissenschaften (AIW) und General Engineering Science (GES) sieht ein breit angelegtes, für alle Studierenden verbind­liches ingenieurwissenschaftliches Grundlagenstudium vor. Ab dem 3. Studiensemester nehmen die Studierenden Lehrveranstaltungen in einer der von ihnen gewählten 9 Studienvertiefungen wahr (Bauingenieurwesen, Bioverfahrenstechnik, Elektrotechnik, Energie- und Umwelttechnik, Informatik, Maschinenbau, Mediziningenieurwesen, Schiffbau, Verfahrenstechnik), die teilweise noch weitere Studienschwerpunkte aufweisen. Die Studiengänge AIW und GES haben mit 210 Leistungspunkten eine höhere Arbeitsbelastung als vergleichbare, spezialisierte Bachelor-Studiengänge und sind daher auf 7 Semester angelegt.


Berufliche Perspektiven

Die Absolventinnen und Absolventen des Studiengangs sind in der Lage, verantwortlich und fachkundig als Ingenieurin oder -Ingenieur zu arbeiten. Sie dürfen gemäß den Ingenieurgesetzen der Länder der Bundesrepublik Deutschland die Berufsbezeichnung Ingenieurin oder Ingenieur führen.
Mögliche Arbeitgeber sind beispielsweise Unternehmen des Baugewerbes, des Maschinen- und Fahrzeugbaus, der Elektrotechnik, der Verfahrenstechnik, der Computertechnik, der Medizintechnik oder des Schiffbau. Es sind aber auch Tätigkeiten in Ingenieur- und Planungsbüros möglich.
Der Abschluss in einer der Vertiefungen ermöglicht einen konsekutiven Übergang in den entsprechenden Masterstudiengang, in ein anderes ingenieurwissenschaftliches oder in ein wirtschaftswissenschaftlich orientiertes Masterstudium. Der parallele Studiengang GES wird in den ersten beiden Semestern größtenteils in englischer Sprache durchgeführt.


Lernziele

Wissen


Die Studierenden können

•     die mathematisch‐naturwissenschaftlichen Grundlagen und Methoden der

Ingenieurwissenschaften benennen und beschreiben;

•     Grundlagen und Methoden der Ingenieurwissenschaften erläutern und einen

Überblick über ihr Fach geben;

•     Grundlagen, Methoden und Anwendungsgebiete ihrer Vertiefung ggfs. inkl

Schwerpunktwahl im Detail erklären;


Fertigkeiten

Die Absolventen sind in der Lage,

•     passende Analyse-, Modellierungs-, Simulations-und Optimierungsmethoden auszuwählen, zu kombinieren und interdisziplinär anzuwenden;

•    Basis zu durchdringen, zu analysieren und zu bewerten;

•     Entwurfsmethoden verschiedener Ingenieurrichtungen anzuwenden;

•     Experimente zu planen, durchzuführen und die Ergebnisse zu interpretieren;

•     sowie die Grenzen von Techniken und Methoden einzuschätzen;

•     ihr Wissen interdisziplinär unter Berücksichtigung wirtschaftlicher Erfordernisse verantwortungsbewusst anwenden;

•     technische Problemstellungen in einem größeren gesellschaftlichen Kontext bewerten und die nicht-technischen Auswirkungen der Ingenieurtätigkeit einschätzen.


Sozialkompetenz

Die Absolventen sind in der Lage,

•     Vorgehensweise und Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darzustellen;

•     über Inhalte und Probleme der Ingenieurwissenschaften mit Fachleuten und Laien zu kommunizieren;

•     auf Nachfragen, Ergänzungen und Kommentare geeignet zu reagieren;

•     in Gruppen zu arbeiten, Teilaufgaben zu definieren, verteilen und integrieren sowie zeitliche Vereinbarungen zu treffen und sozial zu interagieren.


Selbstständigkeit

Die Absolventen sind in der Lage

•     Literaturrecherchen durchführen sowie Datenbanken und andere Informationsquellen für ihre Arbeit nutzen und die Ergebnisse ihrer Arbeit schriftlich und mündlich verständlich darstellen;

•     ihre vorhandenen Kompetenzen realistisch einzuschätzen und Defizite selbstständig aufzuarbeiten;

•     selbstorganisiert und ‐motiviert Themenkomplexe zu erlernen und Problemstellungen zu bearbeiten;

•     die erworbenen Kenntnisse lebenslang  zu erweitern und zu vertiefen.



Studiengangsstruktur

Das Studium ist untergliedert in die Kernqualifikation, die Vertiefungsqualifikation und die Abschlussarbeit.

Im siebten Semester ist das Fachpraktikum und die interdisziplinäre Abschlussarbeit vorgesehen.

Fachmodule der Kernqualifikation

Modul M0745: Electrical Engineering I (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Elektrotechnik I (L0677) Vorlesung 3 5
Elektrotechnik I (L0679) Gruppenübung 2 1
Modulverantwortlicher Prof. Manfred Kasper
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know the basic theory, relations and methods of direct current networks and of electric and magnetic fields.  This includes especially: 

  • Kirchhoff's voltage and current laws,
  • Ohm's law,
  • methods to simplify and analyze direct current networks,
  • description of electric and magnetic fields by use of vectorial field quantities,
  • Basic material relations,
  • Gauss's law,
  • Ampère's law,
  • induction law,
  • Maxwell's equation in the integral form,
  • concept and definition of resistance, capacitance and inductance.
Fertigkeiten

The students are able to establish relations between currents and voltages in simple direct current networks and to apply these to calculate and dimension networks. Student know to apply the fundamental laws of electric and magnetic fields and are able to derive and evaluate relations between field quantities. Students know to calculate resistance, capacitance and inductance of simple geometric arrangements.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can explain concepts and on the basis of examples verify and deepen their understanding.

Selbstständigkeit

Students are able to acquire particular knowledge using textbook in a self-learning process, to integrate, present and associate this knowledge with other fields. The students develop perseverance to also solve more complicated problems.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Übungsaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0677: Electrical Engineering I
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt
  1. Basics of Resistive Circuits
  2. Simplifying Resistive Circuits
  3. Network Analysis
  4. The Electrostatic Field
  5. Stationary Currents in Conductive Media
  6. Electrostatic Field in Non-Conductive Media
  7. Static Magnetic Field
  8. Induction and Time-Dependent Fields
Literatur
  1. M. Kasper, Lecture Notes Electrical Engineering Fundamentals 1, 2013
  2. A. R. Hambley: Electrical Engineering, Principles and Applications, Pearson Education, 2008
  3. P. M. Fishbane: Physics for Scientists and Engineers, Prentice Hall, 1996
  4. M. Albach: Grundlagen der Elektrotechnik 1, Pearson Education, 2004
  5. F. Moeller, H. Frohne, K.H. Löcherer, H. Müller: Grundlagen der Elektrotechnik, Teubner, 2005
Lehrveranstaltung L0679: Electrical Engineering I
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0736: Linear Algebra

Lehrveranstaltungen
Titel Typ SWS LP
Lineare Algebra (L0642) Vorlesung 4 4
Lineare Algebra (L0643) Hörsaalübung 2 2
Lineare Algebra (L0645) Gruppenübung 2 2
Modulverantwortlicher Prof. Daniel Ruprecht
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can name the basic concepts in linear algebra. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Fertigkeiten
  • Students can model problems in linear algebra with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personale Kompetenzen
Sozialkompetenz

- Students are able to work together (e.g. on their regular home work) in heterogeneously composed teams (i.e., teams from different study programs and background knowledge)  and to present their results appropriately (e.g. during exercise class).

Selbstständigkeit

- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.

- Students can put their knowledge in relation to the contents of other lectures.

- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.

Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120
Zuordnung zu folgenden Curricula Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0642: Linear Algebra
Typ Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Dr. Julian Großmann
Sprachen EN
Zeitraum WiSe
Inhalt

Preliminaries

Vector spaces

Matrices and linear systems of equations

Scalar products and orthogonality

Basis transformation

Determinants

Eigen values


Literatur

Strang: Linear Algebra

Beutelsbacher: Lineare Algebra

Lehrveranstaltung L0643: Linear Algebra
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Julian Großmann, Dr. Sebastian Götschel, Jan Meichsner
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0645: Linear Algebra
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Julian Großmann
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1572: GES 101

Lehrveranstaltungen
Titel Typ SWS LP
GES 101 (L2402) Seminar 2 2
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse non
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

An introduction to engineering science in a modern society - overcoming technical, economic, social and environmental challenges in Germany, Europe and worldwide.

Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Leistungspunkte 2
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 6 x 10min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2402: GES 101
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Alexander Held
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur

Modul M1081: Engineering Mechanics I (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik I (GES) (L1373) Vorlesung 2 3
Mechanik I (GES) (L1374) Hörsaalübung 3 3
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen  The primary purpose of the study of Statics is to develop the capacity to predict the effects of forces on rigid bodies, structural elements and simple structures, which are at rest (in equilibrium). Such a capacity is critical to the design of many structural or engineering systems. The particular objectives of this course are to:
  1. Introduce the student to the basic principles required to analyse the effects of forces applied to rigid bodies, structural elements and simple structures in equilibrium;
  2. Demonstrate sound techniques of constructing and solving idealised mathematical models of real engineering systems;
  3. Promote the analytical and problem-solving skills required to solve a wide variety of real engineering problems effectively.
Fertigkeiten

 At the end of this course the student is able to:

  1. Apply the properties of two- and three-dimensional force systems to the analysis of structural elements and simple structures in equilibrium.
  2. Isolate a body in equilibrium by drawing its free-body diagram on which all forces acting on the body are represented.
  3. Analyse the external effects of forces acting on a single body or a system of bodies in two- and three-dimensional equilibrium using the free-body diagram of the body or system.
  4. Analyse the internal forces in  trusses and  beams.  
  5. Solve problems of equilibrium with account for dry friction.
  6. Determine mass centres and centroids of lines, areas and volumes.
Personale Kompetenzen
Sozialkompetenz Students can: - work in groups and report on the findings, - develop joint solutions in  mixed teams and present them to others, - assess the team collaboration and their own share in it.
Selbstständigkeit Students are able to: - solve the problems independently with the help of hints, - assess their own strengths and weaknesses, e.g. with the aid of the mid-term test.
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 1,5 Stunden
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L1373: Mechanics I (GES)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum WiSe
Inhalt
  1. Two-dimensional (2D) force systems.: moment of a force about a point, reduction of a system of forces, resultant.
  2. Three-dimensional (3D) force systems; moment of a force about a point and about an axis, reduction of a system of forces, resultant, wrench.
  3. Supports and bearings, constraints, reactive forces, mechanical system isolation, free-body diagram. Systems with complete and incomplete fixity.
  4. Equilibrium in two and three dimensions. Equations of equilibrium.
  5. Plane trusses: forces in members, the method of joints and the method of sections. Space trusses.
  6. Simple structures: frames and machines.
  7. Mass centers and centroids of lines, areas and volumes.
  8. Friction: dry friction, types of friction problems.
  9. Beams: internal effects- internal forces. Internal forces in curved-in-plane members.
  10. * Flexible cables.
  11. * Virtual work principle.

* Denotes an additional topic.

Literatur

1.  J.L. Meriam and L.G, Kraige, Engineering Mechanics, Vol. 1, Statics, John Wiley & Sons, SI Version, 4th Edition.

2.  R.C. Hibbeler, Engineering Mechanics, Statics, Pearson, Prentice Hall, SI, 3rd Edition.

Lehrveranstaltung L1374: Mechanics I (GES)
Typ Hörsaalübung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum WiSe
Inhalt
  1. Two-dimensional (2D) force systems.: moment of a force about a point, reduction of a system of forces, resultant.
  2. Three-dimensional (3D) force systems; moment of a force about a point and about an axis, reduction of a system of forces, resultant, wrench.
  3. Supports and bearings, constraints, reactive forces, mechanical system isolation, free-body diagram. Systems with complete and incomplete fixity.
  4. Equilibrium in two and three dimensions. Equations of equilibrium.
  5. Plane trusses: forces in members, the method of joints and the method of sections. Space trusses.
  6. Simple structures: frames and machines.
  7. Mass centers and centroids of lines, areas and volumes.
  8. Friction: dry friction, types of friction problems.
  9. Beams: internal effects- internal forces. Internal forces in curved-in-plane members.
  10. * Flexible cables.
  11. * Virtual work principle.

* Denotes an additional topic.

Literatur

1.  J.L. Meriam and L.G, Kraige, Engineering Mechanics, Vol. 1, Statics, John Wiley & Sons, SI Version, 4th Edition.

2.  R.C. Hibbeler, Engineering Mechanics, Statics, Pearson, Prentice Hall, SI, 3rd Edition.

Modul M1139: Physics for Engineers (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Physik für Ingenieure (GES) (L0557) Vorlesung 2 3
Physik für Ingenieure (GES) (L0560) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Calculus and linear algebra on high school level
  • Physics on high school level
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain fundamental topics and laws of physics such as in the areas of mechanics, oscillations,
waves, and optics.

Students can relate physics topics to technical problems.
Fertigkeiten

Students can describe physical problems mathematically and solve such problems within the framework of
their acquired mathematical expertise.

Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively
within the framework of the problem solving courses.

Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.

Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten, 10 Aufgaben mit Teilen a) und b)
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0557: Physics for Engineers (GES)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction
  • Kinematics and dynamics
  • Work, Energy, momentum
  • Rotatory Motion, moments of inertia
  • Gravitation
  • Special Theory of Relativity
  • Oscillations
  • Waves
  • Geometrical optics
  • Wave optics
  • Matter waves
  • Fundamentals of quantum mechanics


Literatur
  • D. Halliday, R. Resnick and J. Walker (“HRW-7”), Fundamentals of Physics - Extended Edition, 7th ed., (Wiley 2005);  available in the TUHH Library ‘Lehrbuchsammlung’.
  • K. Cummings, P. Laws, E. Redish, and P. Cooney (“CLRC”), Understanding Physics, (Wiley 2004);  available in the TUHH Library ‘Lehrbuchsammlung’.
  • Other books that cover similar topics are, e.g., Physics by Fishbane, Gasiorowicz and Thornton and Physics by Tipler and Mosca.
Lehrveranstaltung L0560: Physics for Engineers (GES)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0577: Nichttechnische Angebote im Bachelor

Modulverantwortlicher Dagmar Richter
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Nichttechnischen Angebote (NTA) 

vermitteln die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. 

Die Lehrarchitektur

besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im Nichttechnischen Bereich gewährleistet.

Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und  stellt dazu Orientierungswissen zu thematischen Schwerpunkten  von Veranstaltungen bereit.

Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen.

Die Lehr-Lern-Arrangements

sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert.

Die Lehrbereiche

basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert.

Das Kompetenzniveau

der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen.

Fachkompetenz (Wissen)

Die Studierenden können

  • ausgewählte Spezialgebiete innerhalb der jeweiligen nichttechnischen Mutterdisziplinen verorten,
  • in den im Lehrbereich vertretenen Disziplinen grundlegende Theorien, Kategorien, Begrifflichkeiten, Modelle,  Konzepte oder künstlerischen Techniken skizzieren,
  • diese fremden Fachdisziplinen systematisch auf die eigene Disziplin beziehen, d.h. sowohl abgrenzen als auch Anschlüsse benennen,
  • in Grundzügen skizzieren, inwiefern wissenschaftliche Disziplinen, Paradigmen, Modelle, Instrumente, Verfahrensweisen und Repräsentationsformen der Fachwissenschaften einer individuellen und soziokulturellen Interpretation und Historizität unterliegen,              
  • können Gegenstandsangemessen in einer Fremdsprache kommunizieren (sofern dies der gewählte Schwerpunkt im nichttechnischen Bereich ist).


Fertigkeiten

Die Studierenden können in ausgewählten Teilbereichen

  • grundlegende Methoden der genannten Wissenschaftsdisziplinen anwenden.
  • technische Phänomene, Modelle, Theorien usw. aus der Perspektive einer anderen, oben erwähnten Fachdisziplin befragen.
  • einfache Problemstellungen aus den behandelten Wissenschaftsdisziplinen erfolgreich bearbeiten,
  • bei praktischen Fragestellungen in Kontexten, die den technischen Sach- und Fachbezug übersteigen, ihre Entscheidungen zu Organisations- und Anwendungsformen der Technik begründen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig ,

  • in unterschiedlichem Ausmaß kooperativ zu lernen
  • eigene Aufgabenstellungen in den o.g. Bereichen in adressatengerechter Weise in einer Partner- oder Gruppensituation zu präsentieren und zu analysieren,
  • nichttechnische Fragestellungen einer Zuhörerschaft mit technischem Hintergrund verständlich darzustellen
  • sich landessprachlich kompetent, kulturell angemessen und geschlechtersensibel auszudrücken (sofern dies der gewählte Schwerpunkt im NTW-Bereich ist) .


Selbstständigkeit

Die Studierenden sind in ausgewählten Bereichen in der Lage,

  • die eigene Profession und Professionalität im Kontext der lebensweltlichen Anwendungsgebiete zu reflektieren,
  • sich selbst und die eigenen Lernprozesse zu organisieren,
  • Fragestellungen vor einem breiten Bildungshorizont zu reflektieren und verantwortlich zu entscheiden,
  • sich in Bezug auf ein nichttechnisches Sachthema mündlich oder schriftlich kompetent auszudrücken.
  • sich als unternehmerisches Subjekt zu organisieren,   (sofern dies ein gewählter Schwerpunkt im NTW-Bereich ist).


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltungen
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls.

Modul M0701: Chemistry (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Chemie (GES) I+II (L0467) Vorlesung 4 4
Chemie (GES) I+II (L0478) Hörsaalübung 2 2
Modulverantwortlicher Dr. Dorothea Rechtenbach
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to name and to describe basic principles and applications of general chemistry (structure of matter, periodic table, chemical bonds), physical chemistry (aggregate states, separating processes, thermodynamics, kinetics), inorganic chemistry (acid/base, pH-value, salts, solubility, redox, metals) and organic chemistry (aliphatic hydrocarbons, functional groups, carbonyl compounds, aromates, reaction mechanisms, natural products, synthetic polymers). Furthermore students are able to explain basic chemical terms.

Fertigkeiten

After successful completion of this module students are able to describe substance groups and chemical compounds. On this basis, they are capable of explaining, choosing and applying specific methods and various reaction mechanisms.

Personale Kompetenzen
Sozialkompetenz

Students are able to take part in discussions on chemical issues and problems as a member of an interdisciplinary team. They can contribute to those discussion by their own statements.

Selbstständigkeit

After successful completion of this module students are able to solve chemical problems independently by defending proposed approaches with arguments. They can also document their approaches.

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0467: Chemistry (GES) I+II
Typ Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Dr. Holger Gulyas
Sprachen EN
Zeitraum WiSe
Inhalt

Chemistry I:

- Structure of matter

- Periodic table

- Electronegativity

- Chemical bonds

- Solid compounds and solutions

- Chemistry of water

- Chemical reactions and equilibria

- Acid-base reactions

- Redox reactions

Chemistry II:

- Simple compounds of carbon, aliphatic hydrocarbons, aromatic hydrocarbons,

- Alkohols, phenols, ether, aldehydes, ketones, carbonic acids, ester, amines, amino acids, fats, sugars

- Reaction mechanisms, radical reactions, nucleophilic substitution, elimination reactions, addition reaction

- Practical apllications and examples

Literatur

- Gallagher, Ingram: Complete Chemistry (Oxford University Press)

- Corwin: Introductory Chemistry (Pearson)
- Burrows, Parsons, Price,Holman: Chemistry3 (Oxford University Press)
Lehrveranstaltung L0478: Chemistry (GES) I+II
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Holger Gulyas
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1575: Technical Thermodynamics I (GES)

Lehrveranstaltungen
Titel Typ SWS LP
*** Technische Thermodynamik I (GES) (L2400) Integrierte Vorlesung 3 5
*** Technische Thermodynamik I (GES) (L2401) Gruppenübung 1 1
Modulverantwortlicher NN
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2400: *** Technical Thermodynamics I (GES)
Typ Integrierte Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt



Literatur
Lehrveranstaltung L2401: *** Technical Thermodynamics I (GES)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0772: Electrical Engineering II (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Elektrotechnik II (L0747) Vorlesung 3 5
Elektrotechnik II (L0748) Gruppenübung 2 1
Modulverantwortlicher Prof. Manfred Kasper
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Content of the Lecture "Electrical Engineering I (Elektrotechnik I)"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know the basic theory, relations and methods of time dependent network theory and basic nonlinear circuit elements.  This includes, in particular: 

  • transients,
  • the use of complex numbers and phasors,
  • the concept of impedance,
  • steady state sinusoidal circuit analysis,
  • complex power and 3-phase systems,
  • transformers,
  • transfer function and filters,
  • the concept  of resonance,
  • diodes and rectifiers,
  • bipolar transistors and operational amplifiers
Fertigkeiten

The students are able to establish relations between time dependent currents and voltages in linear networks. The students know how to apply network theory to analyze 3-phase systems, transformers, filter-like structures, and resonating networks. The students know to include basic nonlinear circuit elements, such as diodes, bipolar transistors, and operational amplifiers, into the network analysis.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems, alone or in a group, and to present the results accordingly. Students can explain concepts and, on the basis of examples and exercises, verify and deepen their understanding.

Selbstständigkeit

Students are able to acquire particular knowledge using textbooks in a self-learning process, to integrate, present, and associate this knowledge with other fields. The students develop persistency to also solve more complicated problems.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0747: Electrical Engineering II
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Manfred Kasper
Sprachen EN
Zeitraum SoSe
Inhalt
  • Transients
  • Periodic and sinusoidal signals
  • Power in AC circuits
  • Three-phase systems
  • Transformers
  • Harmonic analysis, transfer functions, filters, locus curve, and Bode plot
  • Resonant circuits
  • Diodes and nonlinear circuits
  • Bipolar transistor and operational amplifier
Literatur
  • A.R. Hambley: "Electrical Engineering", 5th ed., (Pearson, 2011)
  • M. Albach: "Elektrotechnik", (Pearson, 2011).
Lehrveranstaltung L0748: Electrical Engineering II
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Manfred Kasper
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0737: Mathematical Analysis

Lehrveranstaltungen
Titel Typ SWS LP
Mathematische Analysis (L0647) Vorlesung 4 4
Mathematische Analysis (L0648) Hörsaalübung 2 2
Mathematische Analysis (L0649) Gruppenübung 2 2
Modulverantwortlicher Prof. Daniel Ruprecht
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can name the basic concepts in analysis. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.


Fertigkeiten
  • Students can model problems in analysis with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.


Personale Kompetenzen
Sozialkompetenz

- Students are able to work together (e.g. on their regular home work) in heterogeneously composed teams (i.e., teams from different study programs and background knowledge)  and to present their results appropriately (e.g. during exercise class).

Selbstständigkeit

- Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.

- Students can put their knowledge in relation to the contents of other lectures.

- Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.

Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 Minuten
Zuordnung zu folgenden Curricula Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0647: Mathematical Analysis
Typ Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Dr. Julian Großmann
Sprachen EN
Zeitraum SoSe
Inhalt

Convergence, sequences, and series

Continuity

Elementary functions

Differential calculus

Integral calculus

Sequences of functions

Literatur

Königsberger: Analysis

Forster: Analysis


Lehrveranstaltung L0648: Mathematical Analysis
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Julian Großmann
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0649: Mathematical Analysis
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Julian Großmann
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1103: Engineering Mechanics II (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik II (GES) (L1417) Vorlesung 2 3
Mechanik II (GES) (L1418) Hörsaalübung 2 3
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

   The primary purpose of the study of Mechanics of Materials/Solids is to develop the capacity to predict the effects of forces on elastic bodies, structural elements and simple structures, which are at rest (in equilibrium). Such a capacity is critical to the design of many structural or engineering systems. The particular objectives of this course are to:

  1. Introduce the student to the basic principles required to analyse the effects of forces applied to elastic bodies, structural elements and simple structures in equilibrium;
  2. Demonstrate sound techniques of constructing and solving idealised mathematical models of real engineering systems;
  3. Promote the analytical and problem-solving skills required to solve a wide variety of real engineering problems effectively.
Fertigkeiten  At the end of this course the student should be able to:
  1. Determine average normal and shear stresses.
  2. Determine shear stresses and the angle of twist due to torsion of a circular shaft.
  3. Determine  thermal stresses in rods.
  4. Analyse statically indeterminate rods and shafts..
  5. Determine area moments of inertia as well as principal axes and moments of inertia.
  6. Determine normal and shear stresses as well as deflections due to bending.
  7. Analyse plane state of stress (stress transformation).
  8. Analyse stability of equilibrium of simple systems and buckling of elastic columns.
  9. Determine displacements and solve statically indeterminate problems with the aid of energy (Castigliano's) method.
Personale Kompetenzen
Sozialkompetenz Students can: -work in groups and report on the findings, - develop joint solutions in mixed teams and present them to others, - assess the team collaboration and their own share in it.
Selbstständigkeit Students are able to; - solve the problems independently  with the help of hints, - assess their own strengths and weaknesses, e.g. with the help of the mid-term test.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 1,5 Stunden
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L1417: Mechanics II (GES)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum SoSe
Inhalt

COURSE  CONTENTS:

  1. Normal and shear stress, average normal and shear stress.
  2. Normal and shear strain.
  3. Axial loading: elastic deformation and statically indeterminate problems. Thermal stresses. Statically indeterminate axially loaded rods.
  4. Area moments of inertia.
  5. Torsion of a circular shaft: shear strain and stress, the angle of twist.
  6. Bending. Pure and symmetric bending: normal strain and stress. Deflection of beams: elastic curve.  Statically indeterminate beams.
  7. Un-symmetric bending.
  8. Bending with a transverse shear: shear stresses in beams. Shear flow in thin-walled members, shear center.
  9. Plane-stress transformation.
  10. Stability of equilibrium and buckling of elastic columns.
  11. Elastic strain energy and energy methods: Castigliano’s  theorem - determination of displacements and  statically indeterminate problems.
  12. *Membrane theory of rotational shells: thin-walled pressure vessels.*

(*) denotes an additional topic.

Literatur

1. R.C. Hibbeler, Mechanics of Materials, Pearson, Prentice Hall, SI  2nd Edition

2. R.C. Hibbeler, Engineering Mechanics,  Statics, Pearson, Prentice Hall, SI 3rd Edition

3. J.L. Meriam and L.G, Kraige, Engineering Mechanics,  Vol. 1, Statics, John Wiley & Sons, SI Version, 4th Edition

Lehrveranstaltung L1418: Mechanics II (GES)
Typ Hörsaalübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1348: Fundamentals of Mechanical Engineering Design (GES)

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Konstruktionslehre (GES) (L1898) Vorlesung 2 3
Grundlagen der Konstruktionslehre (GES) (L1899) Gruppenübung 2 3
Modulverantwortlicher Dr. Arthur Seibel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Basic knowledge about mechanics and production engineering
  • Internship (Stage I Practical)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

After passing the module, students are able to:

  • explain basic working principles and functions of machine elements,
  • explain requirements, selection criteria, application scenarios and practical examples of basic machine elements, indicate the background of dimensioning calculations.
Fertigkeiten

After passing the module, students are able to:

  • accomplish dimensioning calculations of covered machine elements,
  • transfer knowledge learned in the module to new requirements and tasks (problem solving skills),
  • recognize the content of technical drawings and schematic sketches,
  • technically evaluate basic designs.
Personale Kompetenzen
Sozialkompetenz

Students are able to discuss technical information in the lecture supported by activating methods.

Selbstständigkeit
  • Students are able to independently deepen their acquired knowledge in exercises.
  • Students are able to acquire additional knowledge and to recapitulate poorly understood content e.g. by using the video recordings of the lectures.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L1898: Fundamentals of Mechanical Engineering (GES)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt

Lecture

  • Introduction to design
  • Introduction to the following machine elements
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axes & shafts
  • Presentation of technical objects (technical drawing)

Exercise

  • Calculation methods for dimensioning the following machine elements:
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axis & shafts 

Literatur
Lehrveranstaltung L1899: Fundamentals of Mechanical Engineering (GES)
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1574: Fundamentals of Materials Science (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Werkstoffwissenschaft I (EN) (L2357) Vorlesung 2 2
Grundlagen der Werkstoffwissenschaft II (Keramische Hochleistungswerkstoffe, Kunststoffe und Verbundwerkstoffe) (EN) (L2358) Vorlesung 2 2
Physikalische und Chemische Grundlagen der Werkstoffwissenschaften (EN) (L2359) Vorlesung 2 2
Modulverantwortlicher Prof. Robert Meißner
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2357: Fundamentals of Materials Science I (GES)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L2358: Fundamentals of Materials Science II (Advanced Ceramic Materials, Polymers and Composites) (GES)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Robert Meißner, Prof. Kaline Pagnan Furlan
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2359: Physical and Chemical Basics of Materials Science (GES)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur

Modul M1732: Mathematics III (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Analysis III (EN) (L2790) Vorlesung 2 2
Analysis III (EN) (L2791) Hörsaalübung 1 1
Analysis III (EN) (L2792) Gruppenübung 1 1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (EN) (L2793) Vorlesung 2 2
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (EN) (L2794) Hörsaalübung 1 1
Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) (EN) (L2795) Gruppenübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 128, Präsenzstudium 112
Leistungspunkte 8
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Lehrveranstaltung L2790: Analysis III (English)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L2791: Analysis III (English)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2792: Analysis III (English)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2793: Differential Equations 1 (Ordinary Differential Equations)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L2794: Differential Equations 1 (Ordinary Differential Equations)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2795: Differential Equations 1 (Ordinary Differential Equations)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1105: Engineering Mechanics III (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Mechanik III (EN) (L1421) Vorlesung 3 3
Mechanik III (EN) (L1420) Gruppenübung 2 2
Mechanik III (EN) (L1419) Hörsaalübung 1 1
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen  The primary purpose of the study of Mechanics III (Fluid Statics, Kinematics and Kinetics)  is to develop the capacity to predict the effects of forces and motions, necessary for the analysis and design of moving machine parts, different machinery, vehicles, aircraft, spacecraft, automatic control systems, etc.The particular objectives of this course are to:
  1. Determine the hydrostatic forces acting on different objects.
  2. Analyse stability of floating bodies.
  3. Analyse the  kinematics and kinetics of a  particle  in different  reference systems,
  4. Analyse the motion of the system of  particles and forces acting on it,
  5. Analyse the plane motion of a rigid body (simple mechanism) and forces acting on it.  
  6. Analyse the three-dimensional motion of a rigid body and forces acting on it.
Fertigkeiten  At the end of this course the student should be able to:
  1. Solve the equilibrium problems with account for hydrostatic pressure forces.
  2. Analyse stability of  simple floating bodies.

3. Calculate the velocity and acceleration of a particle in different reference systems.

  • 4. Derive and solve the equation of motion of a particle in different reference systems.

5. Analyse the motion of the system of  particles and forces acting on it with the aid of work-energy and impulse-momentum relationships,

6. Calculate the instantaneous  linear and angular velocities and accelerations of the planar mechanisms.

7. Derive and solve the equations of a plane motion of a  rigid body and find forces acting on it,

8. Apply work-energy and impulse-momentum relationships to analyse plane kinetics of a rigid body.

9. Calculate the instantaneous  linear and angular velocities and accelerations of  the three-dimensional motion of a rigid body.

10. Derive the equations of a motion of a  three-dimensional motion  of a rigid body.

11. Apply in three-dimensional kinematics and  kinetics of rigid body  both methods of vector algebra and matrix methods.

Personale Kompetenzen
Sozialkompetenz Students can: - work in groups and report on the findings, - develop joint solutions in mixed teams and present them to others, - assess the team collaboration and their share in it.
Selbstständigkeit Students are able to: -solve the problems independently with the help of hints, - assess their own strengths and weaknesses, e.g. with the aid of the mid-term test.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 2 Stunden
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L1421: Mechanics III (EN)
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1420: Mechanics III (EN)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1419: Mechanics III (EN)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Radoslaw Iwankiewicz
Sprachen EN
Zeitraum WiSe
Inhalt

FLUID  STATICS

  1. Fluid pressure, hydrostatic pressure  on flat and cylindrical surfaces.
  2. Buoyancy force, buoyancy center, metacenter, stability of floating objects.

KINEMATICS

  1. Kinematics of a particle. Plane curvilinear motion: rectangular coordinates, normal and tangential coordinates, polar coordinates. Space curvilinear motion.
  2. Constrained motion of connected particles.
  3. Plane kinematics of a rigid body.
  4. Relative (compound) motion.
  5. Three-dimensional kinematics of a rigid body.

KINETICS

  1. Kinetics of  a particle and of a system of particles.
  2. Plane  kinetics of a rigid body.
  3. Three-dimensional kinetics of a rigid body.
Literatur

1.  J.L. Meriam and L.G, Kraige, Engineering Mechanics,  Vol. 2, Dynamics, John Wiley & Sons, SI Version, 4th Edition

2 . R.C. Hibbeler, Engineering Mechanics,  Dynamics, Pearson, Prentice Hall, SI 3rd Edition

Modul M1583: Computer Science for Engineers (EN)

Lehrveranstaltungen
Titel Typ SWS LP
**** Informatik für Ingenieure (EN) (L2388) Vorlesung 0 3
**** Informatik für Ingenieure (EN) (L2389) Gruppenübung 3 3
Modulverantwortlicher Prof. Görschwin Fey
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 138, Präsenzstudium 42
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2388: **** Computer Science for Engineers (GES)
Typ Vorlesung
SWS 0
LP 3
Arbeitsaufwand in Stunden Eigenstudium 90, Präsenzstudium 0
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt

You are a student of engineering and want a solid introduction to computer science particularly tailored to suit your needs? Well, here it is. All you have to do is to start learning German right now because this is an introductory course being taught in German.

Literatur Bjarne Stroustrup: Die C++-Programmiersprache: Aktuell zu C++11. Carl Hanser Verlag GmbH & Co. KG (7. April 2015).

Helmut Herold, Bruno Lurz, Jürgen Wohlrab, Matthias Hopf: Grundlagen der Informatik, 3. Auflage, 816 Seiten, Pearson Studium, 2017.

Bjarne Stroustrup, Einführung in die Programmierung mit C++, 479 Seiten, Pearson Studium, 2010.


Jürgen Wolf : Grundkurs C++: C++-Programmierung verständlich erklärt, Rheinwerk Computing, 3. Auflage, 2016.
Lehrveranstaltung L2389: **** Computer Science for Engineers (GES)
Typ Gruppenübung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0598: Konstruktionslehre Gestalten

Lehrveranstaltungen
Titel Typ SWS LP
Gestalten von Bauteilen und 3D-CAD (L0268) Vorlesung 2 1
Konstruktionsprojekt I (L0695) Projekt-/problembasierte Lehrveranstaltung 3 2
Konstruktionsprojekt II (L0592) Projekt-/problembasierte Lehrveranstaltung 3 2
Teamprojekt Konstruktionsmethodik (L0267) Projekt-/problembasierte Lehrveranstaltung 2 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mechanik
  • Grundlagen der Konstruktionslehre
  • Grundlagen der Werkstoffwissenschaft
  • Grundoperationen der Fertigungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Gestaltungsrichtlinien von Maschinenteilen zum beanspruchungsgerechten, werkstoffgerechten und fertigungsgerechten Konstruieren zu erläutern,
  • Grundlagen von 3D-CAD wiederzugeben,
  • Grundlagen des methodischen Konstruierens zu erklären.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Prinzipskizzen, technischen Zeichnungen und Dokumentationen auch im 3D-CAD selbstständiges zu erstellen,
  • Bauteile selbstständig auf Basis von Konstruktionsrichtlinien zu gestalten,
  • verwendete Komponenten zu dimensionieren (berechnen),
  • methodisch zu konstruieren und dadurch zielgerichtet konstruktive Aufgabenstellungen zu lösen,
  • Kreativitätstechniken im Team anzuwenden.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage

  • in Gruppen Lösungen zu entwickeln, zu bewerten, Entscheidungen zu treffen und zu dokumentieren,
  • den Einsatz von wissenschaftlichen Methoden zu moderieren,
  • Lösungen und Technische Zeichnungen innerhalb von Gruppen zu präsentieren und zu diskutieren,
  • eigene Ergebnisse in der Testatgruppe zu reflektieren.
Selbstständigkeit

Studierende sind in der Lage

  • ihren Lernstand auf Basis der aktivierenden Methoden (u.a. mit Clickern) einzuschätzen,
  • konstruktive Aufgabenstellungen systematisch zu lösen.
Arbeitsaufwand in Stunden Eigenstudium 40, Präsenzstudium 140
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung Teamprojekt Konstruktionsmethodik
Ja Keiner Schriftliche Ausarbeitung Konstruktionsprojekt 1
Ja Keiner Schriftliche Ausarbeitung Konstruktionsprojekt 2
Ja Keiner Schriftliche Ausarbeitung 3D-CAD-Praktikum
Prüfung Klausur
Prüfungsdauer und -umfang 180
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Digitaler Maschinenbau: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0268: Gestalten von Bauteilen und 3D-CAD
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum WiSe
Inhalt
  • Grundlagen der 3D-CAD Technik
  • Praktikum zur Anwendung eines 3D-CAD Systems
    • Einführung in Bedienung des Systems
    • Skizzieren und Bauteilerstellung
    • Erzeugen von Baugruppen
    • Ableiten von technischen Zeichnungen
Literatur
  • CAx für Ingenieure eine praxisbezogene Einführung; Vajna, S., Weber, C., Bley, H., Zeman, K.; Springer-Verlag, aktuelle Auflage.
  • Handbuch Konstruktion; Rieg, F., Steinhilper, R.; Hanser; aktuelle Auflage.
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Technisches Zeichnen: Grundlagen, Normen, Beispiele, Darstellende Geometrie, Hoischen, H; Hesser, W; Cornelsen, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  • Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  • Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  • Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Lehrveranstaltung L0695: Konstruktionsprojekt I
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 2
Arbeitsaufwand in Stunden Eigenstudium 18, Präsenzstudium 42
Dozenten Prof. Thorsten Schüppstuhl
Sprachen DE
Zeitraum WiSe
Inhalt
  • Erstellen einer technischen Dokumentation eines vorhandenen mechanischen Modells
  • Vertiefung folgender Aspekte des Technischen Zeichnens:
    • Darstellung technischer Gegenstände und Normteile
      (Wälzlager, Dichtungen, Welle-Nabe-Verbindungen, lösbare Verbindungen, Federn, Achsen und Wellen)
    • Schnittansichten
    • Maßeintragung
    • Toleranzen und Oberflächenangaben
    • Erstellen einer Stückliste


Literatur
  1. Hoischen, H.; Hesser, W.: Technisches Zeichnen. Grundlagen, Normen, Beispiele, darstellende Geometrie, 33. Auflage. Berlin 2011.
  2. Labisch, S.; Weber, C.: Technisches Zeichnen. Selbstständig lernen und effektiv üben, 4. Auflage. Wiesbaden 2008.
  3. Fischer, U.: Tabellenbuch Metall, 43. Auflage. Haan-Gruiten 2005.


Lehrveranstaltung L0592: Konstruktionsprojekt II
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 2
Arbeitsaufwand in Stunden Eigenstudium 18, Präsenzstudium 42
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum SoSe
Inhalt
  • Erstellen von Lösungsvarianten (Prinzipskizzen) für die Einzel- und Gesamtfunktionen
  • Überschlägige Dimensionierung von Wellen
  • Auslegung von Wälzlagern, Schraubenverbindungen, Schweißnähten
  • Anfertigen technischer Zeichnungen (Zusammenbauzeichnungen u. Fertigungszeichnungen)
Literatur

Dubbel, Taschenbuch für Maschinenbau, Beitz, W., Küttner, K.-H, Springer-Verlag.

Maschinenelemente, Band I - III, Niemann, G., Springer-Verlag.

Maschinen- und Konstruktionselemente, Steinhilper, W., Röper, R., Springer-Verlag.

Einführung in die DIN-Normen, Klein, M., Teubner-Verlag.

Konstruktionslehre, Pahl, G., Beitz, W., Springer-Verlag.

Lehrveranstaltung L0267: Teamprojekt Konstruktionsmethodik
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung in die Grundlagen des methodischen Konstruierens
  • Konstruktionsmethodische Teamarbeit zur Lösungsfindung
    • Erstellen von Anforderungslisten
    • Problemformulierung
    • Erstellen von Funktionsstrukturen
    • Lösungsfindung
    • Bewertung der gefundenen Konzepte
    • Dokumentation des Vorgehens und der Konzepte in Präsentationsfolien
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
  • Sowie weitere Bücher zu speziellen Themen

Modul M1571: Computational Mechanics (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Numerische Mechanik (EN) (L2398) Integrierte Vorlesung 4 4
Numerische Mechanik (EN) (L2399) Gruppenübung 2 2
Modulverantwortlicher Dr. Alexander Held
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2398: Computational Mechanics (ES)
Typ Integrierte Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Dr. Alexander Held
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2399: Computational Mechanics (ES)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Alexander Held
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1501: Electromagnetics for Engineers I: Time-Independent Fields

Lehrveranstaltungen
Titel Typ SWS LP
Elektromagnetik für Ingenieure I: Zeitunabhängige Felder (L2281) Vorlesung 3 5
Elektromagnetik für Ingenieure I: Zeitunabhängige Felder (L2282) Gruppenübung 2 1
Modulverantwortlicher Dr. Cheng Yang
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrical engineering and advanced mathematics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental formulas, relations, and methods of the theory of time-independent electromagnetic fields. They can explicate the principal behavior of electrostatic, magnetostatic, and current density fields with regard to respective sources. They can describe the properties of complex electromagnetic fields by means of superposition of solutions for simple fields. The students are aware of applications for the theory of time-independent electromagnetic fields and are able to explicate these.

Fertigkeiten

Students can apply Maxwell’s Equations in integral notation in order to solve highly symmetrical, time-independent, electromagnetic field problems. Furthermore, they are capable of applying a variety of methods that require solving Maxwell’s Equations for more general problems. The students can assess the principal effects of given time-independent sources of fields and analyze these quantitatively. They can deduce meaningful quantities for the characterization of electrostatic, magnetostatic, and electrical flow fields (capacitances, inductances, resistances, etc.) from given fields and dimension them for practical applications.

Personale Kompetenzen
Sozialkompetenz

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively (e.g. during exercise sessions).

Selbstständigkeit

Students are capable to gather necessary information from provided references and relate this information to the lecture. They are able to continually reflect their knowledge by means of activities that accompany the lecture, such as short oral quizzes during the lectures and exercises that are related to the exam. Based on respective feedback, students are expected to adjust their individual learning process. They are able to draw connections between their knowledge obtained in this lecture and the content of other lectures (e.g. Electrical Engineering I, Linear Algebra, and Analysis).

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L2281: Electromagnetics for Engineers I: Time-Independent Fields
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Dr. Cheng Yang, Prof. Christian Schuster
Sprachen EN
Zeitraum SoSe
Inhalt

- Maxwell’s Equations in integral and differential notation

- Boundary conditions

- Laws of conservation for energy and charge

- Classification of electromagnetic field properties

- Integral characteristics of time-independent fields (R, L, C)

- Generic approaches to solving Poisson’s Equation

- Electrostatic fields and specific methods of solving

- Magnetostatic fields and specific methods of solving

- Fields of electrical current density and specific methods of solving

- Action of force within time-independent fields

- Numerical methods for solving time-independent problems

The practical application of numerical methods will be trained within specifically prepared lectures in an interactive manner using small MATLAB programs.

Literatur

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)

Lehrveranstaltung L2282: Electromagnetics for Engineers I: Time-Independent Fields
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dr. Cheng Yang, Prof. Christian Schuster
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1581: Signale und Systeme (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Signale und Systeme (L0433) Gruppenübung 2 2
Signale und Systeme (EN) (L2385) Vorlesung 3 4
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Mathematics 1-3

The modul is an introduction to the theory of signals and systems. Good knowledge in maths as covered by the moduls Mathematik 1-3 is expected. Further experience with spectral transformations (Fourier series, Fourier transform, Laplace transform) is useful but not required.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to classify and describe signals and linear time-invariant (LTI) systems using methods of signal and system theory. They are able to apply the fundamental transformations of continuous-time and discrete-time signals and systems. They can describe and analyse deterministic signals and systems mathematically in both time and image domain. In particular, they understand the effects in time domain and image domain which are caused by the transition of a continuous-time signal to a discrete-time signal.

Fertigkeiten

The students are able to describe and analyse deterministic signals and linear time-invariant systems using methods of signal and system theory. They can analyse and design basic systems regarding important properties such as magnitude and phase response, stability, linearity etc.. They can assess the impact of LTI systems on the signal properties in time and frequency domain.

Personale Kompetenzen
Sozialkompetenz

he students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
General Engineering Science (7 Semester): Kernqualifikation: Pflicht
Lehrveranstaltung L0433: Signale und Systeme
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Elementare Klassifizierung und Beschreibung zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systemen

  • Faltung

  • Leistung und Energie von Signalen

  • Korrelationsfunktionen deterministischer Signale

  • Lineare zeitinvariante (LTI) Systeme

  • Signaltransformationen:

    • Fourier-Reihe

    • Fourier Transformation

    • Laplace Transformation

    • Zeitdiskrete Fouriertranformation

    • Diskrete Fouriertransformation (DFT), Fast Fourier Transform (FFT)

    • Z-Transformation

  • Analyse und Entwurf von LTI-Systemen in Zeit- und Frequenzbereich

  • Grundlegende Filtertypen

  • Abtastung, Abtasttheorem

  • Grundlagen rekursiver und nicht-rekursiver zeitdiskreter Filter

Literatur
  • T. Frey , M. Bossert , Signal- und Systemtheorie, B.G. Teubner Verlag 2004

  • K. Kammeyer, K. Kroschel, Digitale Signalverarbeitung, Teubner Verlag.

  • B. Girod ,R. Rabensteiner , A. Stenger , Einführung in die Systemtheorie, B.G. Teubner, Stuttgart, 1997

  • J.R. Ohm, H.D. Lüke , Signalübertragung, Springer-Verlag 8. Auflage, 2002

  • S. Haykin, B. van Veen: Signals and systems. Wiley.

  • Oppenheim, A.S. Willsky: Signals and Systems. Pearson.

  • Oppenheim, R. W. Schafer: Discrete-time signal processing. Pearson.

Lehrveranstaltung L2385: Signals and Systems (GES)
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur

Modul M1580: Introduction to Control Systems (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Regelungstechnik (EN) (L2382) Vorlesung 2 4
Grundlagen der Regelungstechnik (EN) (L3011) Gruppenübung 2 2
Modulverantwortlicher Prof. Dr. Annika Eichler
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Representation of signals and systems in time and frequency domain, Laplace transform


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can represent dynamic system behavior in time and frequency domain, and can in particular explain properties of first and second order systems
  • They can explain the dynamics of simple control loops and interpret dynamic properties in terms of frequency response and root locus
  • They can explain the Nyquist stability criterion and the stability margins derived from it.
  • They can explain the role of the phase margin in analysis and synthesis of control loops
  • They can explain the way a PID controller affects a control loop in terms of its frequency response
  • They can explain issues arising when controllers designed in continuous time domain are implemented digitally


Fertigkeiten
  • Students can transform models of linear dynamic systems from time to frequency domain and vice versa
  • They can simulate and assess the behavior of systems and control loops
  • They can design PID controllers with the help of heuristic (Ziegler-Nichols) tuning rules
  • They can analyze and synthesize simple control loops with the help of root locus and frequency response techniques
  • They can calculate discrete-time approximations of controllers designed in continuous-time and use it for digital implementation
  • They can use standard software tools (Matlab Control Toolbox, Simulink) for carrying out these tasks


Personale Kompetenzen
Sozialkompetenz

Students can work in small groups to jointly solve technical problems, and experimentally validate their controller designs

Selbstständigkeit

Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems.

They can assess their knowledge in weekly on-line tests and thereby control their learning progress.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
Lehrveranstaltung L2382: Introduction to Control Systems (EN)
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Dr. Annika Eichler
Sprachen EN
Zeitraum WiSe
Inhalt

Signals and systems

  • Linear systems, differential equations and transfer functions
  • First and second order systems, poles and zeros, impulse and step response
  • Stability

Feedback systems

  • Principle of feedback, open-loop versus closed-loop control
  • Reference tracking and disturbance rejection
  • Types of feedback, PID control
  • System type and steady-state error, error constants
  • Internal model principle

Root locus techniques

  • Root locus plots
  • Root locus design of PID controllers

Frequency response techniques

  • Bode diagram
  • Minimum and non-minimum phase systems
  • Nyquist plot, Nyquist stability criterion, phase and gain margin
  • Loop shaping, lead lag compensation
  • Frequency response interpretation of PID control

Time delay systems

  • Root locus and frequency response of time delay systems
  • Smith predictor

Digital control

  • Sampled-data systems, difference equations
  • Tustin approximation, digital implementation of PID controllers

Software tools

  • Introduction to Matlab, Simulink, Control toolbox
  • Computer-based exercises throughout the course


Literatur
  • Werner, H., Lecture Notes „Introduction to Control Systems“
  • G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2009
  • K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2010
  • R.C. Dorf and R.H. Bishop, "Modern Control Systems", Addison Wesley, Reading, MA 2010


Lehrveranstaltung L3011: Introduction to Control Systems (EN)
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dr. Annika Eichler
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1579: Fluid Mechanics (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Strömungsmechanik (EN) (L2383) Vorlesung 3 4
Strömungsmechanik (EN) (L2384) Hörsaalübung 2 2
Modulverantwortlicher Prof. Thomas Rung
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Sound knowledge of engineering mathematics, engineering mechanics and thermodynamics.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students will have the required sound knowledge to explain the general principles of fluid engineering and physics of fluids. Students can scientifically outline the rationale of flow physics using mathematical models and are familiar with methods for the performance analysis and the prediciton of fluid engineering devices.

Fertigkeiten

Students are able to apply fluid-engineering principles and flow-physics models for the analysis of technical systems. The lecture enables the student to carry out all necessary theoretical calculations for the fluid dynamic design of engineering devices on a scientific level.

Personale Kompetenzen
Sozialkompetenz

The students are able to discuss problems and jointly develop solution strategies.


Selbstständigkeit

The students are able to develop solution strategies for complex problems self-consistent and crtically analyse results.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Lehrveranstaltung L2383: Fluid Mechanics (EN)
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt
  • continuum physics definition of fluids, difference to solids/structures and material properties of fluids
  • dimensional analysis and similitude
  • fluid forces and fluid statics
  • transport and conservation of mass, momentum & energy 
  • fluid kinematics
  • technically relevant flow models for incompressible fluids
    • control volume & stream tube analysis
    • vortical flow models
    • potential flows
    • boundary layer flows
    • different types of conservation equations and their realm
      (Navier-Stokes/Euler/Bernoulli equations)
    • analytical solutions for Navier-Stokes systems
  • Analysis of internal flows (channels, pipes, open channels) and external flows, fundamentals of wing aerodynamics
  • turbulent flows
  • fundamentals of gas dynamics (1D compressible flows)


Literatur





Lehrveranstaltung L2384: Fluid Mechanics (EN)
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0662: Numerical Mathematics I

Lehrveranstaltungen
Titel Typ SWS LP
Numerische Mathematik I (L0417) Vorlesung 2 3
Numerische Mathematik I (L0418) Gruppenübung 2 3
Modulverantwortlicher Prof. Sabine Le Borne
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Mathematik I + II for Engineering Students (german or english) or Analysis & Linear Algebra I + II for Technomathematicians
  • basic MATLAB/Python knowledge
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to

  • name numerical methods for interpolation, integration, least squares problems, eigenvalue problems, nonlinear root finding problems and to explain their core ideas,
  • repeat convergence statements for the numerical methods,
  • explain aspects for the practical execution of numerical methods with respect to computational and storage complexitx.


Fertigkeiten

Students are able to

  • implement, apply and compare numerical methods using MATLAB/Python,
  • justify the convergence behaviour of numerical methods with respect to the problem and solution algorithm,
  • select and execute a suitable solution approach for a given problem.
Personale Kompetenzen
Sozialkompetenz

Students are able to

  • work together in heterogeneously composed teams (i.e., teams from different study programs and background knowledge), explain theoretical foundations and support each other with practical aspects regarding the implementation of algorithms.
Selbstständigkeit

Students are capable

  • to assess whether the supporting theoretical and practical excercises are better solved individually or in a team,
  • to assess their individual progess and, if necessary, to ask questions and seek help.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Wahlpflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht
Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht
Data Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht
Maschinenbau: Vertiefung Energietechnik: Wahlpflicht
Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht
Lehrveranstaltung L0417: Numerical Mathematics I
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Sabine Le Borne
Sprachen EN
Zeitraum WiSe
Inhalt
  1. Finite precision arithmetic, error analysis, conditioning and stability
  2. Linear systems of equations: LU and Cholesky factorization, condition
  3. Interpolation: polynomial, spline and trigonometric interpolation
  4. Nonlinear equations: fixed point iteration, root finding algorithms, Newton's method
  5. Linear and nonlinear least squares problems: normal equations, Gram Schmidt and Householder orthogonalization, singular value decomposition, regularizatio, Gauss-Newton and Levenberg-Marquardt methods
  6. Eigenvalue problems: power iteration, inverse iteration, QR algorithm
  7. Numerical differentiation
  8. Numerical integration: Newton-Cotes rules, error estimates, Gauss quadrature, adaptive quadrature
Literatur
  • Gander/Gander/Kwok: Scientific Computing: An introduction using Maple and MATLAB, Springer (2014)
  • Stoer/Bulirsch: Numerische Mathematik 1, Springer
  • Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer


Lehrveranstaltung L0418: Numerical Mathematics I
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Sabine Le Borne, Dr. Jens-Peter Zemke
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0865: Fundamentals of Production and Quality Management

Lehrveranstaltungen
Titel Typ SWS LP
Organisation des Produktionsprozesses (L0925) Vorlesung 2 3
Qualitätsmanagement (L0926) Vorlesung 2 3
Modulverantwortlicher Prof. Hermann Lödding
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse None
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Students are able to explain the contents of the lecture of the module.
Fertigkeiten Students are able to apply the methods and models in the module to industrial problems.
Personale Kompetenzen
Sozialkompetenz -
Selbstständigkeit -
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 180 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Wahlpflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Wahlpflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Pflicht
Lehrveranstaltung L0925: Production Process Organization
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Hermann Lödding
Sprachen EN
Zeitraum SoSe
Inhalt

(A)        Introduction

(B)        Product planning

(C)        Process planning

(D)        Procurement

(E)         Manufacturing

(F)         Production planning and control (PPC)

(G)        Distribution

(H)        Cooperation

Literatur

Wiendahl, H.-P.: Betriebsorganisation für Ingenieure

Vorlesungsskript

Lehrveranstaltung L0926: Quality Management
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Hermann Lödding
Sprachen EN
Zeitraum SoSe
Inhalt
  • Definition and Relevance of Quality
  • Continuous Quality Improvement
  • Quality Management in Product Development
  • Quality Management in Production Processes
  • Design of Experiments
Literatur
  • Pfeifer, Tilo: Quality Management. Strategies, Methods, Techniques; Hanser-Verlag, München 2002
  • Pfeifer, Tilo: Qualitätsmanagement. Strategien, Methoden, Techniken; Hanser-Verlag, München, 3. Aufl. 2001
  • Mitra, Amitava: Fundamentals of Quality Control and Improvement; Wiley; Macmillan, 2008
  • Kleppmann, W.: Taschenbuch Versuchsplanung. Produkte und Prozesse optimieren; Hanser-Verlag, München, 6. Aufl. 2009

Modul M1573: Modeling, Simulation and Optimization (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Modellierung, Simulation und Optimierung (EN) (L2446) Integrierte Vorlesung 4 6
Modulverantwortlicher Prof. Benedikt Kriegesmann
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Sound knowledge of engineering mathematics, engineering mechanics and fluid mechanics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students will have an overview of various technical problems and the differential equations, which describe them. Students will gave an overview of different solution approaches and for which kind of problems they can be used for.

Fertigkeiten

Students are able to solve different technical problems with the introduced discretization methods.

Personale Kompetenzen
Sozialkompetenz

The students are able to discuss problems and jointly develop solution strategies.

Selbstständigkeit

The students are able to develop solution strategies for complex problems self-consistent and critically analyse results.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Wahlpflicht
Engineering Science: Kernqualifikation: Pflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L2446: Modeling, Simulation and Optimization (EN)
Typ Integrierte Vorlesung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Benedikt Kriegesmann, Prof. Alexander Düster, Prof. Robert Seifried, Prof. Thomas Rung
Sprachen EN
Zeitraum SoSe
Inhalt
  • Partial Differential Equations in technical problems
  • Overview of modelling approaches
  • Finite Approximation Methods - Finite Differences / Elements / Volumes
  • Introduction to the Discrete Element Method
  • Numerical methods for time dependent problems
  • Gradient-based optimization
Literatur

Michael Schäfer, Computational Engineering - Introduction to Numerical Methods, Springer.

Modul M1585: Foundations of Management (EN)

Lehrveranstaltungen
Titel Typ SWS LP
*** Grundlagen der Betriebswirtschaftslehre (EN) (L2403) Vorlesung 3 3
*** Grundlagen der Betriebswirtschaftslehre (EN) (L2404) Gruppenübung 3 3
Modulverantwortlicher Prof. Tim Schweisfurth
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic Knowledge of Mathematics and Business

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

After taking this module, students know the important basics of many different areas in Business and Management, from Planning and Organisation to Marketing and Innovation, and also to Investment and Controlling. In particular they are able to

  • explain the differences between Economics and Management and the sub-disciplines in Management and to name important definitions from the field of Management
  • explain the most important aspects of and goals in Management and name the most important aspects of entreprneurial projects 
  • describe and explain basic business functions as production, procurement and sourcing, supply chain management, organization and human ressource management, information management, innovation management and marketing 
  • explain the relevance of planning and decision making in Business, esp. in situations under multiple objectives and uncertainty, and explain some basic methods from mathematical Finance 
  • state basics from accounting and costing and selected controlling methods.


Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang mehrere schriftliche Leistungen über das Semester verteilt
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
Lehrveranstaltung L2403: *** Introduction to Management (EN)
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Tim Schweisfurth
Sprachen EN
Zeitraum SoSe
Inhalt



Literatur
Lehrveranstaltung L2404: *** Introduction to Management (EN)
Typ Gruppenübung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Tim Schweisfurth
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1273: Fachpraktikum AIW/ ES

Lehrveranstaltungen
Titel Typ SWS LP
Fachpraktikum AIW/ ES: Praktikumsbegleitung (L2687) Seminar 1 0
Fachpraktikum AIW/ ES: Vorbereitung (L2682) Seminar 1 0
Modulverantwortlicher Prof. Robert Seifried
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

150 Leistungspunkte Studium der Allgemeinen Ingenieurwissenschaften / General Engineering Science

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende erwerben Erfahrungen in der beruflichen Praxis für typische Tätigkeitsbereiche der jeweiligen Vertiefung, wie Entwicklung, Planung oder Management. Das Fachpraktikum ist gekennzeichnet durch die Eingliederung der Praktikantinnen und Praktikanten in ein Arbeitsumfeld von Personen mit einer Ingenieurtätigkeit oder einer entsprechenden Qualifikation. In diesem Umfeld kann das bisher erworbene Wissen zum erste Mal im beruflichen Alltag angewendet werden.

Fertigkeiten

Studierende sollen im Fachpraktikum möglichst in die typische „Tagesarbeit“ ihres jeweiligen Arbeitsumfeldes integriert werden. Dadurch lernen sie die für ihre Vertiefung typischen Aufgaben und Arbeitsweisen der im Beruf stehenden Ingenieurinnen und Ingenieure kennen. Sie sind in der Lage einen Arbeitsalltag zu strukturieren und Aufgaben in einer vorgegeben Zeit zu bearbeiten.

Personale Kompetenzen
Sozialkompetenz

Studierende sind in der Lage in einem Unternehmen mit Mitarbeiterinnen und Mitarbeitern zu kooperieren und die Sprache von Ingenieurinnen und Ingenieuren im Arbeitsalltag zu verstehen. 

Selbstständigkeit

Studierende können selbstständig eigene Aufgaben erledigen.

Arbeitsaufwand in Stunden Eigenstudium 512, Präsenzstudium 28
Leistungspunkte 18
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung (laut FPrO)
Prüfungsdauer und -umfang laut Praktikumsordnung
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Lehrveranstaltung L2687: Fachpraktikum AIW/ ES: Praktikumsbegleitung
Typ Seminar
SWS 1
LP 0
Arbeitsaufwand in Stunden Eigenstudium -14, Präsenzstudium 14
Dozenten Prof. Robert Seifried, Eilika Schwenke
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt

Ziel der Praktikumsbegleitung ist der Erwerb und die Konsolidierung von Kompetenzen, die für eine erfolgreiche Durchführung des Fachpraktikums im 7. Semester relevant sind. Zielgruppe sind Studierende, die bereits einen Praktikumsplatz haben. Schwerpunkt ist die Stärkung der personalen Kompetenzen zur Unterstützung des erfolgreichen Ausbaus fachlicher Kompetenzen.

Im Seminar reflektieren die Studierenden aktuelle Herausforderungen in Bezug auf das Praktikum. Sie besprechen aktuelle Themen mit Kommiliton*innen und den Lehrkräften im Sinne einer kollegialen Beratung (peer-to-peer Ansatz); so gewinnen sie (zusätzliches) Selbstbewusstsein und erhöhen ihre Chancen, sich im Praktikum erfolgreich einzubringen, eigene Wünsche und Bedürfnisse zu erkennen und zu äußern, um so das Praktikum optimal zum eigenen Theorie-Praxis-Transfer zu nutzen.

Die Themenauswahl erfolgt prozessorientiert gesteuert durch die Gruppe, die Lehrenden geben Impulse zur Reflektion bestimmter Themen. Themen, die beispielsweise behandelt werden, sind: Verhandlung des Arbeitsvertrages, Erfolgreicher Start ins Praktikum - wie verhalte ich mich in den ersten Tagen?, Wie bekomme ich interessante(re) Aufgaben?, Wie gehe ich mit schwierigen Situationen um (bspw. Konflikte, Sexismus, Rassismus)?, Wie notiere ich meinen Fortschritt/schreibe ich den Praktikumsbericht?.

Durch den intensiven Austausch mit Kommiliton*innen bekommen die Studierenden außerdem Einblicke in die Praktika ihrer Kommiliton*innen. Weit über das eigene Praktikum hinaus entsteht so  ein Eindruck ihrer beruflichen Möglichkeiten.  Am konkreten Anwendungsbeispiel Fachpraktikum  werden so Erwerb und Konsolidierung von Kompetenzen der berufsbiographischen Gestaltung gefördert, die auf spätere Karriereschritte übertragbar sind.

Literatur
Lehrveranstaltung L2682: Fachpraktikum AIW/ ES: Vorbereitung
Typ Seminar
SWS 1
LP 0
Arbeitsaufwand in Stunden Eigenstudium -14, Präsenzstudium 14
Dozenten Prof. Robert Seifried, Eilika Schwenke
Sprachen DE/EN
Zeitraum WiSe/SoSe
Inhalt

Ziel der Praktikumsvorbereitung (empfohlen im 5. Semester) ist der Erwerb von Kompetenzen, die für eine erfolgreiche Suche und Durchführung des Fachpraktikums im 7. Semester relevant sind. Eine Teilnahme erhöht die Chancen der Studierenden, zum festgelegten Zeitpunkt ein mindestens dreimonatiges und ggf. englischsprachiges Praktikum zu finden und dient außerdem der  Vernetzung der AIW/ES-Studierenden. Für eine rechtzeitige Praktikumsbewerbung wird eine Teilnahme im 5. Semester empfohlen.

Inhaltliche Schwerpunkte des Seminars sind die Themen Praktikumssuche, Bewerbung und Transferkompetenz. Die Studierenden reflektieren ihre bereits vorhandenen Kompetenzen, Fähigkeiten und Interessen und erfahren, welche verschiedenen Arbeitgeber für den Ingenieurberuf zur Verfügung stehen und wie sie diese finden. Sie reflektieren weiterhin, welche Themen des Studiums sie im praktischen Transfer in Tätigkeiten erproben möchten (Theorie-Praxis-Transfer) und suchen sich (bei Bedarf unter Anleitung) passende Arbeitgeber. Es wird Kontakt zu Unternehmen und weiteren Arbeitgebern der Metropolregion Hamburg hergestellt, die potentielle Arbeitgeber für TUHH-Absolvent*innen sind. Die Studierenden werden unterstützt, einen ansprechenden Lebenslauf und ein Anschreiben zu erstellen. Sie üben die Selbstpräsentation im Bewerbungsgespräch und absolvieren ein Probeinterview (mock interview).  Dazu erhalten sie Feedback von ihren Kommiliton*innen und den Lehrkräften. Sie  Selbstbewusstsein und erhöhen die Chancen, einen für sich gut passenden Praktikumsplatz zu finden.  

Das Seminar stärkt die Selbstständigkeit der Studierenden. Am konkreten Anwendungsbeispiel Fachpraktikum werden so Erwerb und Konsolidierung  von Kompetenzen der berufsbiographischen Gestaltung gefördert, die auf spätere Karriereschritte übertragbar sind. Es trägt weiterhin dazu bei, dass eine Verzahnung von Theorie und Praxis stattfindet. Transfer ist dabei „die erfolgreiche Anwendung des zuvor angeeigneten Wissens bzw. der erworbenen Fertigkeiten im Rahmen einer neuen, in der Situation der Wissens- bzw. Fertigkeitsaneignung noch nicht ersichtlichen Anforderung.“ Hasselhorn/Gold 2017

Literatur

Fachmodule der Vertiefung Advanced Materials

Modul M1348: Fundamentals of Mechanical Engineering Design (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Grundlagen der Konstruktionslehre (GES) (L1898) Vorlesung 2 3
Grundlagen der Konstruktionslehre (GES) (L1899) Gruppenübung 2 3
Modulverantwortlicher Dr. Arthur Seibel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Basic knowledge about mechanics and production engineering
  • Internship (Stage I Practical)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

After passing the module, students are able to:

  • explain basic working principles and functions of machine elements,
  • explain requirements, selection criteria, application scenarios and practical examples of basic machine elements, indicate the background of dimensioning calculations.
Fertigkeiten

After passing the module, students are able to:

  • accomplish dimensioning calculations of covered machine elements,
  • transfer knowledge learned in the module to new requirements and tasks (problem solving skills),
  • recognize the content of technical drawings and schematic sketches,
  • technically evaluate basic designs.
Personale Kompetenzen
Sozialkompetenz

Students are able to discuss technical information in the lecture supported by activating methods.

Selbstständigkeit
  • Students are able to independently deepen their acquired knowledge in exercises.
  • Students are able to acquire additional knowledge and to recapitulate poorly understood content e.g. by using the video recordings of the lectures.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
Lehrveranstaltung L1898: Fundamentals of Mechanical Engineering (GES)
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt

Lecture

  • Introduction to design
  • Introduction to the following machine elements
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axes & shafts
  • Presentation of technical objects (technical drawing)

Exercise

  • Calculation methods for dimensioning the following machine elements:
    • Screws
    • Shaft-hub joints
    • Rolling contact bearings
    • Welding / adhesive / solder joints
    • Springs
    • Axis & shafts 

Literatur
Lehrveranstaltung L1899: Fundamentals of Mechanical Engineering (GES)
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten NN
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Elektrotechnik

Das Ausbildungsziel der Vertiefung Elektrotechnik im Bachelorprogramm Allgemeine Ingenieurwissenschaften ist es, die Fähigkeit zu entwickeln, grundlegende Methoden und Verfahren auszuwählen und miteinander zu verbinden um technische Aufgaben in den Ingenieurwissenschaften und speziell in der gewählten Vertiefungsrichtung zu lösen.


Absolventinnen und Absolventen haben

1 ) fundierte Kenntnisse in den Fachgebieten Mathematik, Physik, Elektrotechnik und Informatik.

2) grundlegende Kenntnisse in den Bereichen Systemtheorie, Regelungstechnik und Energietechnik oder Messtechnik.

3) vertiefte Kenntnisse in Anwendungsfeldern der Ingenieurwissenschaften, vor allem in dem die Vertiefungsrichtung bestimmten Gebiet (Werkstoffe und Bauelemente der Elektrotechnik, Halbleiterschaltungstechnik, Nachrichtentechnik, Theoretische Elektrotechnik). Sie haben insbesondere die nötigen methodischen Kenntnisse, um ihr Wissen zur Lösung technischer Probleme  anzuwenden, wobei sie sowohl die technischen als auch die wirtschaftlichen und sozialen Anforderungen berücksichtigen.

4) die Fähigkeit, wissenschaftlich zu arbeiten und selbstständig ihr Wissen zu erweitern. Sie sind in der Lage, verantwortlich und fachkundig als Ingenieurin oder Ingenieur zu arbeiten, speziell in Berufen mit Bezug zu der gewählten Vertiefungsrichtung Elektrotechnik."


Modul M0760: Elektronische Bauelemente

Lehrveranstaltungen
Titel Typ SWS LP
Elektronische Bauelemente (L0720) Vorlesung 3 4
Elektronische Bauelemente (L0721) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Aufbau der Atome und Quantentheorie, elektrische Ströme in Festkörpern, Grundlagen der Festkörperphysik

Erfolgreiche Teilnahme an Physik für Ingenieure und Werkstoffe der Elektrotechnik oder Veranstaltungen mit äquivalentem Inhalt

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen


Die Studierenden können

  • die Grundlagen der Halbleiterphysik darstellen,

  • die Wirkprinzipien wichtiger Halbleiterbauelemente erklären,

  • Bauelementfunktionen und Ersatzschaltbilder angeben sowie ihre Herleitung erläutern und

  • die Grenzen der Modelle diskutieren.


Fertigkeiten


Die Studierenden sind in der Lage

  • Bauelemente im jeweiligen Grundbetrieb anzuwenden,

  • eigenständig physikalische Zusammenhänge zu erkennen und Lösungen für komplexe Aufgabenstellungen zu finden.


Personale Kompetenzen
Sozialkompetenz

Studierende können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten.

Selbstständigkeit


Studierende sind fähig sich eigenständig das für die Versuche notwendige Wissen mit Literatur zu erschließen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Fachtheoretisch-fachpraktische Studienleistung Studierenden erarbeiten in Kleingruppen Wissen zu einem bestimmten Thema, demonstrieren dieses in Form eines Versuches mit Präsentation und Diskussion. Darüber hinaus betreut jede Gruppe eine Übungsaufgabe, die inhaltlich zu dem jeweiligen Versuch gehört.
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0720: Elektronische Bauelemente
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE
Zeitraum WiSe
Inhalt
  • dotierte Halbleiter (Halbleiter, Kristalstruktur, Bändermodell, Dotierung, effektive Masse, Zustandsdichte, Besetzungswahrscheinlichkeiten, Massenwirkungsgesetz, Übergänge zwischen Energieniveaus, Ladungsträgerlebensdauer, Leitungsmechanismen: Feldstrom- und Diffusionsstrom; Gleichgewicht in Halbleitern, Halbleitergleichungen)
  • Der pn-Übergang (Stromloser Zustand, Bandverlauf der Sperrschicht im stromlosen Zustand, Gleichstromverhalten, Herleitung der Kennlinie, Berücksichtigung der Sperrschichtrekombination, Wechselstrom- und Schaltverhalten, Durchbruchmechanismen, verschiedene Diodentypen: Zener-Diode, Tunnel-Diode, Rückwärtsdiode, Photodiode, LED, Laserdioden)
  • Der Bipolartransistor (Funktionsprinzip, statisches Verhalten: Berechnung von Basis-, Kollektor- und Emitterstrom, Betriebsmodi; Nichtidealitäten: reale Dotierung, Earlyeffekt, Durchbruch, Generation-Rekombinationsstrom und Hochstromeffekt; Ebers-Moll-Modell: Kennlinienfeld, Ersatzschaltbild; Frequenzantwort, Schaltverhalten, Transistor mit Heteroübergang)
  • Unipolare Bauelemente (Halbleiter-Randschichten: Oberflächenzustände, Austrittsarbeit, Bändermodell; Metall-Halbleiter-Kontakte: Schottky-Kontakt, Strom-Spannung-Abhängigkeit, Ohmscher Kontakt; Sperrschicht-Feldeffekt-Transistor: Funktionsprinzip, Strom-Spannungs-Kennlinie, Kleinsignal-Verhalten, Durchbruchsverhalten; MESFET: Funktionsprinzip,  selbstleitender und selbstsperrender MESFET; MIS-Struktur: Akkumulation, Verarmung, Inversion, starke Inversion, Flachband-Spannung, Oxidladungen, Schwellenspannung, Kapazität-Spannungs-Verhalten; MOSFET: Aufbau, Funktionsprinzip, Strom-Spannungs-Kennlinie, Frequenzverhalten, Subthreshold-Verhalten, Schwellenspannung, Bauelement-Skalierung; CMOS)

 

Literatur

S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011)

T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004)

B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005)

D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011)

M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996)

S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007)

H. Schaumburg: Halbleiter, B.G. Teubner (1991)

A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992)

H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985)
Lehrveranstaltung L0721: Elektronische Bauelemente
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0568: Theoretische Elektrotechnik II: Zeitabhängige Felder

Lehrveranstaltungen
Titel Typ SWS LP
Theoretische Elektrotechnik II: Zeitabhängige Felder (L0182) Vorlesung 3 5
Theoretische Elektrotechnik II: Zeitabhängige Felder (L0183) Gruppenübung 2 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Elektrotechnik I, Elektrotechnik II, Theoretische Elektrotechnik I

Mathematik I, Mathematik II, Mathematik III, Mathematik IV



Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von quasistationären und voll dynamischen Feldern in Abhängigkeit von ihren Quellen erläutern.  Sie können die Eigenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben.


Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Lösung der Diffusions- und der Wellengleichung für allgemeine zeitabhängige Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung voll dynamischer Felder (Wellenimpedanz, Skintiefe, Poynting-Vektor, Strahlungswiderstand usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis deuten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen in Bezug zu aktuellen Forschungsthemen an der TUHH setzen (z.B. im Bereich der Hochfrequenztechnik und Optik).


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90-150 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0182: Theoretische Elektrotechnik II: Zeitabhängige Felder
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE
Zeitraum WiSe
Inhalt

- Theorie und prinzipielles Verhalten quasistationärer Felder

- Induktion und Induktionsgesetz

- Skin Effekt und Wirbelströme

- Abschirmung zeitlich veränderlicher magnetischer Felder

- Theorie und prinzipielles Verhalten voll dynamischer Felder

- Wellen-Gleichung und Eigenschaften ebener Wellen

- Polarisation und Superposition ebener Wellen

- Reflexion und Brechung ebener Wellen an Grenzflächen

- Theorie der Wellenleiter

- Rechteckhohlleiter, planarer optischer Wellenleiter

- elektrische und magnetische Dipolstrahlung

- Einfache Antennen-Arrays

Der praktische Umgang mit numerischen Methoden wird durch interaktives Bearbeiten von MATLAB-Programmen in besonders vorbereiteten Vorlesungen geübt.

Literatur

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Lehrveranstaltung L0183: Theoretische Elektrotechnik II: Zeitabhängige Felder
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Christian Schuster
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1730: Mathematics IV (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2783) Vorlesung 2 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2784) Hörsaalübung 1 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2785) Gruppenübung 1 1
Komplexe Funktionen (EN) (L2786) Vorlesung 2 1
Komplexe Funktionen (EN) (L2787) Hörsaalübung 1 1
Komplexe Funktionen (EN) (L2788) Gruppenübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mathematics I - III (EN or DE)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.
Fertigkeiten
  • Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.
Personale Kompetenzen
Sozialkompetenz
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.
Selbstständigkeit
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Arbeitsaufwand in Stunden Eigenstudium 68, Präsenzstudium 112
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht
Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Lehrveranstaltung L2783: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt

Main features of the theory and numerical treatment of partial differential equations 

  • Examples of partial differential equations
  • First order quasilinear differential equations
  • Normal forms of second order differential equations
  • Harmonic functions and maximum principle
  • Maximum principle for the heat equation
  • Wave equation
  • Liouville's formula
  • Special functions
  • Difference methods
  • Finite elements
Literatur

http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

Lehrveranstaltung L2784: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2785: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2786: Complex Functions (EN)
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt

Main features of complex analysis 

  • Functions of one complex variable
  • Complex differentiation
  • Conformal mappings
  • Complex integration
  • Cauchy's integral theorem
  • Cauchy's integral formula
  • Taylor and Laurent series expansion
  • Singularities and residuals
  • Integral transformations: Fourier and Laplace transformation
Literatur

http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

Lehrveranstaltung L2787: Complex Functions (EN)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2788: Complex Functions (EN)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0777: Halbleiterschaltungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Halbleiterschaltungstechnik (L0763) Vorlesung 3 4
Halbleiterschaltungstechnik (L0864) Gruppenübung 1 2
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Elementare Grundlagen der Physik, besonders Halbleiterphysik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die Funktionsweisen von verschiedenen MOS-Bauelementen in unterschiedlichen Schaltungen erklären.
  • Studierende können die Funktionsweise von Analogschaltungen und deren Anwendungen erklären.
  • Studierende können die Funktionsweise grundlegender Operationsverstärker erklären und Kenngrößen angeben.
  • Studierende sind in der Lage, grundlegende digitale Logik-Schaltungen zu benennen und ihre Vor- und Nachteile zu diskutieren.
  • Studierende sind in der Lage Speichertypen zu benennen, deren Funktionsweise zu erklären und Kenngrößen anzugeben.
  • Studierende können geeignete Anwendungsbereiche von Bipolartransistoren benennen.


Fertigkeiten
  • Studierende können Kenngrößen von verschiedenen MOS-Bauelementen berechnen und Schaltungen dimensionieren.
  • Studierende können logische Schaltungen mit unterschiedlichen Schaltungstypen entwerfen und  dimensionieren.
  • Studierende können MOS-Bauelemente und Operationsverstärker sowie bipolare Transistoren in speziellen Anwendungsbereichen einsetzen.


Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in heterogen (aus unterschiedlichen  Studiengängen) zusammengestellten Teams zusammenzuarbeiten.
  • Studierende können in kleinen Gruppen Rechenaufgaben lösen und Fachfragen beantworten.


Selbstständigkeit
  • Studierende sind in der Lage, ihren eigenen Lernstand einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Data Science: Kernqualifikation: Wahlpflicht
Elektrotechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht
Maschinenbau: Vertiefung Mechatronik: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0763: Halbleiterschaltungstechnik
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Matthias Kuhl
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Wiederholung Halbleiterphysik und Dioden
  • Funktionsweise und Kennlinien von bipolaren Transistoren
  • Grundschaltungen mit bipolaren Transistoren
  • Funktionsweise und Kennlinien von MOS-Transistoren
  • Grundschaltungen mit MOS-Transistoren für Verstärker
  • Operationsverstärker und ihre Anwendungen
  • Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
  • Realisierung logischer Funktionen
  • Grundschaltungen mit MOS-Transistoren für kombinatorische Logikgatter
  • Schaltungen für die Speicherung von binären Daten
  • Grundschaltungen mit MOS-Transistoren für sequentielle Logikgatter
  • Grundkonzepte von Analog-Digital- sowie Digital-Analog-Wandlern
Literatur

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Lehrveranstaltung L0864: Halbleiterschaltungstechnik
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Grundschaltungen und Kennlinien von bipolaren Transistoren
  • Grundschaltungen und Kennlinien von MOS-Transistoren für Verstärker
  • Realisierung und Dimensionierung von Operationsverstärkern 
  • Realisierung logischer Funktionen
  • Grundschaltungen mit MOS-Transistoren für kombinatorische und sequentielle Logikgatter
  • Schaltungen für die Speicherung von binären Daten
  • Schaltungen für Analog-Digital- sowie Digital-Analog-Wandler
  • Dimensionierung beispielhafter Schaltungen


Literatur

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Fachmodule der Vertiefung Maschinenbau

Das Ausbildungsziel der Vertiefung Maschinenbau im Bachelorprogramm Allgemeine Ingenieurwissenschaften ist es, die Fähigkeit zu entwickeln, grundlegende Methoden und Verfahren auszuwählen und miteinander zu verbinden um technische Aufgaben in den Ingenieurwissenschaften und speziell in der gewählten Vertiefungsrichtung zu lösen.

Absolventinnen und Absolventen haben

1 ) fundierte Kenntnisse in den Fachgebieten Mathematik, Thermodynamik, Mechanik, Elektrotecnik und Informatik.

2) grundlegende Kenntnisse in den Bereichen Regelungstechnik, Strömungsmechanik und Werkstoffe.

3) vertiefte Kenntnisse in Anwendungsfeldern der Ingenieurwissenschaften, vor allem in dem den Schwerpunkt bestimmenden Gebiet (Produktentwicklung und Fertigungstechnik, Werkstoffe, Flugzeuge, Energietechnik, Mechatronik, Medizintechnik, Theoretischer Maschinenbau). Sie haben insbesondere die nötigen methodischen Kenntnisse, um ihr Wissen zur Lösung technischer Probleme  anzuwenden, wobei sie sowohl die technischen als auch die wirtschaftlichen und sozialen Anforderungen berücksichtigen.

4) die Fähigkeit wissenschaftlich zu arbeiten und selbstständig ihr Wissen zu erweitern. Sie sind in der Lage, verantwortlich und fachkundig als Maschinenbau-Ingenieurin oder -Ingenieur zu arbeiten, speziell in Berufen mit Bezug zum gewählten Schwerpunkt.


Modul M0725: Fertigungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Fertigungstechnik I (L0608) Vorlesung 2 2
Fertigungstechnik I (L0612) Hörsaalübung 1 1
Fertigungstechnik II (L0610) Vorlesung 2 2
Fertigungstechnik II (L0611) Hörsaalübung 1 1
Modulverantwortlicher Prof. Wolfgang Hintze
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

keine Leistungsnachweise erforderlich

Grundpraktikum empfohlen

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können …

  • die Grundkriterien zur Auswahl von Fertigungsverfahren wiedergeben.
  • die Hauptgruppen der Fertigungstechnik wiedergeben.
  • die Anwendungsbereiche verschiedener Fertigungsverfahren wiedergeben.
  • über Grenzen, Vor- und nachteile von den verschiedenen Fertigungsverfahren einen Überblick geben.
  • Bestandteile, geometrische Eigenschaften und kinematische Größen und Anforderungen an Werkzeuge,  Werkstück und Prozess erklären.
  • die wesentlichen Modelle der Fertigungstechnik wiedergeben.


Fertigkeiten

Studierende sind in der Lage …

  • Fertigungsverfahren entsprechend der Anforderungen auszuwählen.
  • Prozesse für einfache Bearbeitungsaufgaben auszulegen um die geforderten Toleranzen an das zu fertigende Bauteil einzuhalten.
  • Bauteile hinsichtlich ihrer fertigungsgerechten Konstruktion zu beurteilen.


Personale Kompetenzen
Sozialkompetenz

Studierende können …

  • im Produktionsumfeld mit Fachpersonal auf fachlicher Ebene Lösungen entwickeln und Entscheidungen vertreten.


Selbstständigkeit

Studierende sind fähig, …

  • mit Hilfe von Hinweisen eigenständig Fertigungsverfahren auszulegen.
  • eigene Stärken und Schwächen allgemein Einzuschätzen.
  • ihren jeweiligen Lernstand konkret zu beurteilen und auf dieser Basis weitere Arbeitsschritte zu definieren.
  • mögliche Konsequenzen ihres beruflichen Handelns einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
Digitaler Maschinenbau: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
Green Technologies: Energie, Wasser, Klima: Vertiefung Energietechnik: Wahlpflicht
Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Pflicht
Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Pflicht
Lehrveranstaltung L0608: Fertigungstechnik I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt
  • Fertigungsgenauigkeit
  • Fertigungsmesstechnik
  • Messfehler und Messunsicherheit
  • Grundlagen der Umformtechnik
  • Massiv- und Blechumformung
  • Grundlagen der Zerspantechnik
  • Spanen mit geometrisch bestimmter Schneide (Drehen, Bohren, Fräsen, Hobeln/ Stoßen)
Literatur

Dubbel, Heinrich (Grote, Karl-Heinrich.; Feldhusen, Jörg.; Dietz, Peter,; Ziegmann, Gerhard,;)  Taschenbuch für den Maschinenbau : mit Tabellen. Berlin [u.a.] : Springer, 2007

Fritz, Alfred Herbert: Fertigungstechnik : mit 62 Tabellen. Berlin [u.a.] : Springer, 2004

Keferstein, Claus P (Dutschke, Wolfgang,;): Fertigungsmesstechnik : praxisorientierte Grundlagen, moderne Messverfahren. Wiesbaden : Teubner, 2008

Mohr, Richard: Statistik für Ingenieure und Naturwissenschaftler : Grundlagen und Anwendung statistischer Verfahren. Renningen : expert-Verl, 2008

Klocke, F., König, W.: Fertigungsverfahren Bd. 1 Drehen, Fäsen, Bohren. 8. Aufl., Springer (2008)

Klocke, Fritz (König, Wilfried,;): Umformen. Berlin [u.a.] : Springer, 2006

Paucksch, E.: Zerspantechnik, Vieweg-Verlag, 1996

Tönshoff, H.K.; Denkena, B., Spanen. Grundlagen, Springer-Verlag (2004)

Lehrveranstaltung L0612: Fertigungstechnik I
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Wolfgang Hintze
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0610: Fertigungstechnik II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Spanen mit geometrisch unbestimmter Schneide (Schleifen, Honen, Läppen)
  • Einführung in die Abtragtechnik
  • Einführung in die Strahlverfahren
  • Einführung in das Urformen (Gießen, Pulvermetallurgie, Faserverbundherstellung)
  • Einführung in die Lasertechnik
  • Verfahrensvarianten und Grundlagen der Laserfügetechnik
Literatur

Klocke, F., König, W.: Fertigungsverfahren Bd. 2 Schleifen, Honen, Läppen, 4. Aufl., Springer (2005)

Klocke, F., König, W.: Fertigungsverfahren Bd. 3 Abtragen, Generieren und Lasermaterialbearbeitung. 4. Aufl., Springer (2007)

Spur, Günter (Stöferle, Theodor.;): Urformen. München [u.a.] : Hanser, 1981

Schatt, Werner (Wieters, Klaus-Peter,; Kieback, Bernd,;): Pulvermetallurgie : Technologien und Werkstoffe. Berlin [u.a.] : Springer, 2007


Lehrveranstaltung L0611: Fertigungstechnik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Wolfgang Hintze, Prof. Claus Emmelmann
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0597: Vertiefte Konstruktionslehre

Lehrveranstaltungen
Titel Typ SWS LP
Vertiefte Konstruktionslehre II (L0264) Vorlesung 2 2
Vertiefte Konstruktionslehre II (L0265) Hörsaalübung 2 1
Vertiefte Konstruktionslehre I (L0262) Vorlesung 2 2
Vertiefte Konstruktionslehre I (L0263) Hörsaalübung 2 1
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Grundlagen der Konstruktionslehre
  • Mechanik
  • Grundlagen der Werkstoffwissenschaft
  • Fertigungstechnik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • komplexe Wirkprinzipien und Funktionsweisen von Maschinenelementen und  grundlegender Elemente der Fluidtechnik zu erklären,
  • Anforderungen, Auswahlkriterien, Einsatzszenarien, und Praxisbeispiele von komplexen Maschinenelementen zu erläutern,
  • Berechnungsgrundlagen anzugeben.
Fertigkeiten

Die Studierenden sind nach erfolgreichem Bestehen des Moduls in der Lage:

  • Auslegungsberechnungen behandelter komplexer Maschinenelemente und technischer Systeme durchzuführen,
  • im Modul erlerntes Wissens auf neue Anforderungen und Aufgabenstellungen zu übertragen (Problemlösungskompetenz),
  • komplexe technische Zeichnungen und Prinzipskizzen zu erschließen,
  • komplexe Konstruktionen technisch zu bewerten.
Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage sich über fachliche Inhalte im Rahmen von aktivierenden Methoden in der Vorlesung auszutauschen.
Selbstständigkeit
  • Die Studierenden können erlerntes Wissen in Übungen eigenständig vertiefen.
  • Studierende sind in der Lage z.B. mithilfe der Vorlesungsaufzeichnung noch nicht verstandene Inhalte zu erarbeiten und zu wiederholen.
Arbeitsaufwand in Stunden Eigenstudium 68, Präsenzstudium 112
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Wahlpflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Schiffbau: Kernqualifikation: Pflicht
Lehrveranstaltung L0264: Vertiefte Konstruktionslehre II
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalte Vertiefte Konstruktionslehre I & II

  • Grundlagen folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Dichtungen
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Elemente der Fluidtechnik

Hörsaalübung:

  • Berechnungsverfahren zur Auslegung folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Berechnung von hydrostatischen Systemen (Fluidtechnik)
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Sowie weitere Bücher zu speziellen Themen
Lehrveranstaltung L0265: Vertiefte Konstruktionslehre II
Typ Hörsaalübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Dr. Nikola Bursac
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0262: Vertiefte Konstruktionslehre I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Otto von Estorff
Sprachen DE
Zeitraum WiSe
Inhalt

Vertiefte Konstruktionslehre I & II

  • Grundlagen folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Dichtungen
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Elemente der Fluidtechnik


Hörsaalübung:

  • Berechnungsverfahren zur Auslegung folgender Maschinenelemente:
    • Wälzführungen (Vertiefung)
    • Achsen & Wellen (Vertiefung)
    • Kupplungen & Bremsen
    • Zugmittelgetriebe
    • Zahnradgetriebe
    • Umlaufrädergetriebe
    • Kurbelgetriebe
    • Gleitlager
  • Berechnung von hydrostatischen Systemen (Fluidtechnik)
Literatur
  • Dubbel, Taschenbuch für den Maschinenbau; Grote, K.-H., Feldhusen, J.(Hrsg.); Springer-Verlag, aktuelle Auflage.
  • Maschinenelemente, Band I-III; Niemann, G., Springer-Verlag, aktuelle Auflage.
  •  Maschinen- und Konstruktionselemente; Steinhilper, W., Röper, R., Springer Verlag, aktuelle Auflage.
  •  Einführung in die DIN-Normen; Klein, M., Teubner-Verlag.
  •  Konstruktionslehre, Pahl, G.; Beitz, W., Springer-Verlag, aktuelle Auflage.
  •  Maschinenelemente 1-2; Schlecht, B., Pearson Verlag, aktuelle Auflage.
  •  Maschinenelemente - Gestaltung, Berechnung, Anwendung; Haberhauer, H., Bodenstein, F., Springer-Verlag, aktuelle Auflage.
  • Roloff/Matek Maschinenelemente; Wittel, H., Muhs, D., Jannasch, D., Voßiek, J., Springer Vieweg, aktuelle Auflage.
Sowie weitere Bücher zu speziellen Themen
Lehrveranstaltung L0263: Vertiefte Konstruktionslehre I
Typ Hörsaalübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Otto von Estorff
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0956: Messtechnik für Maschinenbau

Lehrveranstaltungen
Titel Typ SWS LP
Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik (L1119) Laborpraktikum 2 2
Messtechnik für Maschinenbau (L1116) Vorlesung 2 3
Messtechnik für Maschinenbau (L1118) Hörsaalübung 1 1
Modulverantwortlicher Prof. Thorsten Kern
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik, Chemie und Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die wesentlichen Grundlagen der Messtechnik (Größen und Einheiten, Messunsicherheit, Kalibrierung, Statisches und dynamisches Verhalten von Messsystemen) benennen.

Sie können die wesentlichen Messverfahren zu Messung verschiedenartiger Messgrößen (elektrische Größen, Temperatur, mechanische Größen, Menge, Durchfluss,  Zeit, Frequenz) skizzieren.

Sie können die Funktionsweise wichtiger Analyseverfahren (Gas-Sensoren, Spektroskopie,  Gaschromatographie) beschreiben.

Fertigkeiten

Studierende können zu gegebenen Problemen geeignete Messverfahren auswählen und entsprechende Messgeräte praktisch anwenden. 
Die Studierenden sind in der Lage, Fragestellungen aus dem Fachgebiet der Messtechnik und Ansätze zu deren Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang und Einsatzbereich einzuordnen.


Personale Kompetenzen
Sozialkompetenz Studierende können in Gruppen gemeinsam zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen.
Selbstständigkeit

Studierende sind fähig, sich selbstständig in neuartige Messverfahren einzuarbeiten.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 105 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Wahlpflicht
Digitaler Maschinenbau: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Lehrveranstaltung L1119: Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Kern
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Messverfahren zur Bestimmung unterschiedlicher gasförmiger Schadstoffe in Autoabgasen kennengelernt und angewandt werden.

Versuch 1: Emissions- und Immissionsmessung gasförmiger Schadstoffe: Im Rahmen dieses Versuches sollen verschiedene

Versuch 2: Simulation und Messung von Asynchronmaschine und Kreiselpumpe: Das dynamische Verhalten eines Drehstromasynchronomoters in einem Pumpenantrieb wird untersucht. Der Anlaufvorgang wird auf einem Rechner simuliert und mit Messungen an einem Versuchsstand verglichen.

Versuch 3: Michelson-Interferometer und Faseroptik: Dieser Versuch soll dem Verständnis grundlegender optischer Phänomene dienen und deren Anwendung am Michelson-Interferometer und an Lichtleitfasern demonstrieren. 


Versuch 4: Identifikation der Parameter einer Regelstrecke und optimale Einstellung eines Reglers

Literatur

Versuch 1:

  • Leith, W.: Die Analyse der Luft und ihrer Verunreinigung in der freien Atmosphäre und am Arbeitsplatz. 2. Aufl., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1974
  • Birkle, M.: Meßtechnik für den Immissionsschutz, Messen der gas- und partikelförmigen Luftverunreinigungen. R. Oldenburg Verlag, München-Wien, 1979
  • Luftbericht 83/84, Freie und Hansestadt Hamburg, Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung
  • Gebrauchs- und Bedienungsanweisungen
  • VDI-Handbuch Reinhaltung der Luft, Band 5: VDI-Richtlinien 2450 Bl.1, 2451 Bl.4, 2453 Bl.5, 2455 Bl.1
Versuch 2:
  • Grundlagen über elektrische Maschinen, speziell: Asynchronmotoren
  • Simulationsmethoden, speziell: Verwendung von Blockschaltbildern
  • Betriebsverhalten von Kreispumpen, speziell: Kennlinien, Ähnlichkeitsgesetze
Versuch 3:
  • Unger, H.-G.: Optische Nachrichtentechnik, Teil 1: Optische Wellenleiter. Hüthing Verlag, Heidelberg, 1984
  • Dakin, J., Cushaw, B.: Optical Fibre Sensors: Principles and Components. Artech House Boston, 1988
  • Culshaw, B., Dakin, J.: Optical Fibre Sensors: Systems and Application. Artech House Boston, 1989
Versuch 4: 
  • Leonhard: Einführung in die Regelungstechnik. Vieweg Verlag, Braunschweig-Wiesbaden
  • Jan Lunze: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen



Lehrveranstaltung L1116: Measurement Technology for Mechanical Engineering
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thorsten Kern, Dennis Kähler
Sprachen EN
Zeitraum WiSe
Inhalt

1 Fundamentals

1.1 Quantities and Units

1.2 Uncertainty

1.3 Calibration

1.4 Static and Dynamic Properties of Sensors and Systems

2 Measurement of Electrical Quantities

2.1 Current and Voltage

2.2 Impedance

2.3 Amplification

2.4 Oscilloscope

2.5 Analog-to-Digital Conversion

2.6 Data Transmission

3 Measurement of Nonelectric Quantities

3.1 Temperature

3.2 Length, Displacement, Angle

3.3 Strain, Force, Pressure

3.4 Flow

3.5 Time, Frequency

Literatur

Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3.

 Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940.

Lehrveranstaltung L1118: Measurement Technology for Mechanical Engineering
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Kern
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0688: Technische Thermodynamik II

Lehrveranstaltungen
Titel Typ SWS LP
Technische Thermodynamik II (L0449) Vorlesung 2 4
Technische Thermodynamik II (L0450) Hörsaalübung 1 1
Technische Thermodynamik II (L0451) Gruppenübung 1 1
Modulverantwortlicher Prof. Arne Speerforck
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist.


Fertigkeiten

Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden.  Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen.



Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. Sie können Verständnisfragen zum Inhalt, die mit dem ClickerOnline Tool "TurningPoint" in der Vorlesung bereit gestellt werden, nach Diskussionen mit anderen Studierenden beantworten.


Selbstständigkeit

Studierende können die in Aufgaben gestellten komplexen Problemstellungen (Kreisprozesse, Klimatisierungsprozesse, Verbrennungsprozesse) physikalisch verstehen und erläutern. Sie sind in der Lage, die in der Vorlesung und Übung vermittelten Methoden zur Lösung von komplexen Problemstellungen geeignet auszuwählen und eigenständig auf unterschiedliche Aufgabentypen anzuwenden.






Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemie- und Bioingenieurwesen: Kernqualifikation: Pflicht
Energietechnik: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht
Green Technologies: Energie, Wasser, Klima: Kernqualifikation: Pflicht
Integrierte Gebäudetechnik: Kernqualifikation: Pflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Lehrveranstaltung L0449: Technische Thermodynamik II
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt

8. Kreisprozesse

9. Gas-Dampf-Gemische

10. Stationäre Fließprozesse

11. Verbrennungsprozesse

12. Sondergebiete

In der Vorlesung werden Funk-Abstimmungsgeräte („Clicker“) eingesetzt. Die Studierenden können hierdurch das Verständnis des Vorlesungsstoffes direkt überprüfen und dadurch gezielte Fragen an den Dozenten richten. Außerdem erhält der Dozent ein unmittelbares Feedback zum Kenntnisstand der Studierenden und zu Schwächen der eigenen Darstellung des Vorlesungsstoffes.

Literatur
  • Schmitz, G.: Technische Thermodynamik, TuTech Verlag, Hamburg, 2009
  • Baehr, H.D.; Kabelac, S.: Thermodynamik, 15. Auflage, Springer Verlag, Berlin 2012

  • Potter, M.; Somerton, C.: Thermodynamics for Engineers, Mc GrawHill, 1993
Lehrveranstaltung L0450: Technische Thermodynamik II
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0451: Technische Thermodynamik II
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Arne Speerforck
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0599: Integrierte Produktentwicklung und Leichtbau

Lehrveranstaltungen
Titel Typ SWS LP
CAE-Teamprojekt (L0271) Projekt-/problembasierte Lehrveranstaltung 2 2
Entwicklung von Leichtbau-Produkten (L0270) Vorlesung 2 2
Integrierte Produktentwicklung I (L0269) Vorlesung 2 2
Modulverantwortlicher Prof. Dieter Krause
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Vertiefte Kenntnisse der Konstruktion: Grundlagen der Konstruktionslehre, Konstruktionslehre Gestalten, Vertiefte Konstruktionslehre

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können nach Abschluss des Moduls:

  • die Funktionsweise von 3D-CAD-Systemen, PDM- und FEM-Systemen und deren nachgeschalteten Möglichkeiten erklären
  • das Zusammenspiel der verschiedenen CAE-Systeme in der Produktentwicklung zu beschreiben


Fertigkeiten

Die Studierenden sind in der Lage:

  • unterschiedliche CAD- und PDM-Systeme vor dem Hintergrund der erforderlichen Rahmenbedingungen wie z.B. Klassifikationsschemata und Produktstrukturierung zu bewerten
  • ein beispielhaftes Produkt mit CAD-, PDM- und/oder FEM-Systemen arbeitsteilig zu entwickeln
  • Leichtbauwerkstoffe anforderungsgerecht auszuwählen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind fähig:

  • in Gruppendiskussion einen Projektplan zu erstellen und Aufgaben zu verteilen
  • Arbeitsergebnisse in Gruppen, u.a. auch als Präsentation zu vertreten
Selbstständigkeit

Die Studierenden können:

  • sich eigenständig in ein CAE-Tool einarbeiten und ihren Aufgabenteil zu erfüllen
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Fachtheoretisch-fachpraktische Studienleistung CAE-Teamprojekt inkl. Vortrag und Ausarbeitung
Prüfung Klausur
Prüfungsdauer und -umfang 90
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht
Maschinenbau: Vertiefung Produktentwicklung und Produktion: Pflicht
Maschinenbau: Vertiefung Flugzeug-Systemtechnik: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Technischer Ergänzungskurs Kernfächer: Wahlpflicht
Lehrveranstaltung L0271: CAE-Teamprojekt
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum SoSe
Inhalt
  • Praktische Einführung in die verwendeten Softwaresysteme (Creo, Windchill, Hyperworks)
  • Teambildung, Aufgabenversteilung und Erstellung eines Projektplans
  • Gemeinsame Erstellung eines Produktes aus CAD-Modellen unterstützt durch FEM-Berechnungen und PDM-System
  • Realisierung ausgewählter Bauteile durch 3D-Drucker
  • Präsentation der Ergebnisse

Beschreibung

Bestandteil des Moduls ist ein projektbasiertes, teamorientiertes CAE-Praktikum nach der PBL-Methode, im Rahmen dessen die Studierenden den Umgang mit modernen CAD-, PDM- und FEM-Systemen (Creo, Windchill und Hyperworks) vertiefen sollen. Nach einer kurzen Einführung in die verwendeten Softwaresysteme werden die Studierenden semesterbegleitend in Teamarbeit eine Aufgabenstellung bearbeiten. Ziel ist die gemeinsame Entwicklung eines Produktes in einer PDM-Umgebung aus mehreren CAD-Bauteil-Modellen unter Einbeziehung von FEM-Berechnungen ausgewählter Bauteile, inklusive des 3D-Druckens von Teilen. Die entwickelte Produktkonstruktion muss in Form einer Präsentation gemeinsam vorgestellt werden. 
Literatur -
Lehrveranstaltung L0270: Entwicklung von Leichtbau-Produkten
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause, Prof. Benedikt Kriegesmann
Sprachen DE
Zeitraum SoSe
Inhalt
  • Leichtbauwerkstoffe
  • Leichtbau-Produktentwicklungsprozess
  • Auslegung von Leichtbaustrukturen
Literatur
  • Schürmann, H., „Konstruieren mit Faser-Kunststoff-Verbunden“, Springer, Berlin, 2005.
  • Klein, B., „Leichtbau-Konstruktion", Vieweg & Sohn, Braunschweig, 1989.
  • Krause, D., „Leichtbau”,  In: Handbuch Konstruktion, Hrsg.: Rieg, F., Steinhilper, R., München, Carl Hanser Verlag, 2012.
  • Schulte, K., Fiedler, B., „Structure and Properties of Composite Materials”, Hamburg, TUHH - TuTech Innovation GmbH, 2005.
  • Wiedemann, J., „Leichtbau Band 1: Elemente“, Springer, Berlin, Heidelberg, 1986.
Lehrveranstaltung L0269: Integrierte Produktentwicklung I
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Dieter Krause
Sprachen DE
Zeitraum SoSe
Inhalt
  • Einführung in die Integrierte Produktentwicklung
  • 3D-CAD-Systeme und CAD-Schnittstellen
  • Teile- und Stücklistenverwaltung / PDM-Systeme
  • PDM in unterschiedlichen Branchen
  • CAD- / PDM-Systemauswahl
  • Simulation
  • Bauweisen
  • Design for X
Literatur
  • Ehrlenspiel, K.: Integrierte Produktentwicklung, München, Carl Hanser Verlag
  • Lee, K.: Principles of CAD / CAM / CAE Systems, Addison Wesles
  • Schichtel, M.: Produktdatenmodellierung in der Praxis, München, Carl Hanser Verlag
  • Anderl, R.: CAD Schnittstellen, München, Carl Hanser Verlag
  • Spur, G., Krause, F.: Das virtuelle Produkt, München, Carl Hanser Verlag

Modul M1595: Maschinelles Lernen I

Lehrveranstaltungen
Titel Typ SWS LP
Maschinelles Lernen I (L2432) Vorlesung 2 3
Maschinelles Lernen I (L2433) Gruppenübung 2 3
Modulverantwortlicher Prof. Nihat Ay
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Lineare Algebra, Analysis, Grundlagen der Programmierung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen

  • Grundlegende Prinzipien maschineller Lernverfahren: überwachtes/unüberwachtes Lernen, generative/deskriptives Lernen, parametrischer/nicht-parametrisches Lernen
  • verschiedeneLernmethoden: Neuronale Netze, Support-Vektor-Maschinen, Clusterung, Dimensionsreduzierung, Kernel-Methoden
  • Grundlagen der statistischen Lerntheorie
  • Fortgeschrittene Techniken wie Transfer Learning, Bestärkendes Lernen, Generative Adversarial Networks und Adaptive Control
Fertigkeiten

Die Studierenden können

  • maschinelle Lernverfahren auf konkrete Probleme anwenden
  • für konkrete Problemstellungen geeignete Verfahren auswählen und bewerten
  • die Güte eines trainierten datengetriebenen Modells evaluieren
  • mit bekannten Softwareframeworks für das maschinelle Lernen umgehen
  • bei neuronalen Netzen die Architektur und Kostenfunktion an konkrete Problemstellungen anpassen
  • die Grenzen maschineller Lernverfahren aufzeigen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 20 % Übungsaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht
Lehrveranstaltung L2432: Maschinelles Lernen I
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Nihat Ay
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Geschichte der Neurowissenschaften und des maschinellen Lernens (insbesondere des tiefen Lernens) 
  • McCulloch-Pitts-Neuronen und binäre neuronale Netze
  • Boolesche Funktionen und Schellwert-Funktionen 
  • Universalität von neuronalen McCulloch-Pitts-Netzwerken
  • Lernen und das Perzeptron-Konvergenz-Theorem
  • Support-Vektor-Maschinen
  • Harmonische Analyse von Booleschen Funktionen
  • Kontinuierliche künstliche neuronale Netze 
  • Kolmogorovsches Superpositions-Theorem
  • Universelle Approximation mit kontinuierlichen neuronalen Netzen
  • Approximationsfehler und die Gradienten-Abstiegs-Methode: die allgemeine Idee
  • Die stochastische Gradienten-Abstiegs-Methode (Robbins-Monro- und Kiefer-Wolfowitz-Fälle)
  • Mehrschichtige Netzwerke und der Backpropagation-Algorithmus
  • Statistische Lerntheorie
Literatur
  • Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999.
  • Martin Anthony. Discrete Mathematics of Neural Networks: Selected Topics. SIAM Monographs on Discrete Mathematics & Applications, 1987.
  • Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar. Foundations of Machine Learning, Second Edition. MIT Press, 2018.  
  • Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2008.
  • Bernhard Schölkopf, Alexander Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning series. MIT Press, Cambridge, MA, 2002.
  • Luc Devroye, László Györfi, Gábor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
  • Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag: New York, Berlin, Heidelberg, 1995.




 

Lehrveranstaltung L2433: Maschinelles Lernen I
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Nihat Ay
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1746: Materials Engineering: Materials Selection, Processing and Modelling

Lehrveranstaltungen
Titel Typ SWS LP
Werkstoff- und Prozessmodellierung (L2862) Vorlesung 3 3
Werkstoffauswahl und Verarbeitung (L2861) Vorlesung 3 3
Modulverantwortlicher Prof. Norbert Huber
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Fundamentals of mathematics (differential equations, integration), materials science (classes of materials, structure, properties, tensile test) and engineering mechanics (stress, strain, elasticity, deformation).
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The module deals with the production and properties of engineering materials. Particular attention is paid to material selection, material processing, the associated microstructure and the achievable mechanical properties. In conjunction with the costs, these are decisive for the applicability and economic efficiency. Metallic materials are in the foreground. Ceramics and polymers are also covered in the sense of a broad range of available materials.

In parallel to the material-technological consideration, the modeling of material behavior by means of phenomenological material laws for plasticity under monotonic and cyclic loading is worked out. In addition to the evaluation of component behavior, plasticity also plays a major role in manufacturing processes and thus provides the basis for process simulation. Process models and simulation methods for selected manufacturing processes, such as rolling or forming, are presented for this topic area.

Fertigkeiten

Students are able to

  • analyze the material behavior of metallic materials for general load histories with respect to elasticity and plasticity as well as the associated velocity-dependent material behavior and describe it with corresponding material laws
  • to relate the deformation behavior to the underlying microstructural mechanisms
  • to assess how processing procedures affect the chain microstructure - process - properties
  • understand how the mechanical properties of metallic materials can be tailored by the processing due to microstructural design
Personale Kompetenzen
Sozialkompetenz

Students are able to

  • actively enrich and shape the course by contributing to the discussion.
  • develop solutions to given problems and explain them in English in the plenum and discuss them with their fellow students.
Selbstständigkeit

Students are able to,

  • assess their own strengths and weaknesses
  • concretely assess their respective learning status and define further work steps on this basis
  • abstract given tasks and then apply them to new problems by transferring the taught material.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 20 % Übungsaufgaben Wir stellen Übungsaufgaben (ÜA), die während des Semesters erbracht und in den wöchentlichen Übungen vorgestellt werden. Diese können im Umfang von bis zu 20% bei der Prüfung berücksichtigt werden.
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
Engineering Science: Vertiefung Advanced Materials: Pflicht
Engineering Science: Vertiefung Advanced Materials: Pflicht
Maschinenbau: Vertiefung Materialien in den Ingenieurwissenschaften: Pflicht
Lehrveranstaltung L2862: Materials and Process Modeling
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Norbert Huber
Sprachen EN
Zeitraum SoSe
Inhalt
  1. Relevance of plasticity in materials processing and operation
  2. Fundamentals of plasticity in metals and alloys
  3. Modellierung von Materialverhalten
  4. Plasticity in cyclic loading
  5. Rate dependency, recristallization
  6. Rolling, forming, and solid state joining processes
  7. Residual stress design
Literatur
  • Hull and Bacon: Introduction to Dislocations (1984)
  • G. Gottstein: Physik. Grundlagen der Materialk. (2001)
  • P. Haupt: Cont. Mechanics and Theory of Materials (2002)
  • N. Huber: Vorlesungsskript „Grundlagen der mechanischen Eigenschaften von Werkstoffen“, TUHH
Lehrveranstaltung L2861: Materials Selection and Processing
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Kaline Pagnan Furlan
Sprachen EN
Zeitraum SoSe
Inhalt
  1. Introduction
  2. Overview of fabrication processes
  3. Shape considerations: macrostructural aspects
  4. Material properties: microstructural aspects
  5. Materials engineering: microstructure, shape and processing relation
  6. Materials engineering: function and costs relation
Literatur
  • M.F. Ashby,Materials Selection in Mechanical Design, 4thedition,Butterworth-Heinemann(2011)
  • W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book, 8thedition, Butterworth-Heinemann(2004)
  • J. Beddoes and M. Bibby, Principles of Metal Manufacturing Processes,  Butterworth-Heinemann(1999)

Fachmodule der Vertiefung Mechatronics

Modul M0956: Messtechnik für Maschinenbau

Lehrveranstaltungen
Titel Typ SWS LP
Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik (L1119) Laborpraktikum 2 2
Messtechnik für Maschinenbau (L1116) Vorlesung 2 3
Messtechnik für Maschinenbau (L1118) Hörsaalübung 1 1
Modulverantwortlicher Prof. Thorsten Kern
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik, Chemie und Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die wesentlichen Grundlagen der Messtechnik (Größen und Einheiten, Messunsicherheit, Kalibrierung, Statisches und dynamisches Verhalten von Messsystemen) benennen.

Sie können die wesentlichen Messverfahren zu Messung verschiedenartiger Messgrößen (elektrische Größen, Temperatur, mechanische Größen, Menge, Durchfluss,  Zeit, Frequenz) skizzieren.

Sie können die Funktionsweise wichtiger Analyseverfahren (Gas-Sensoren, Spektroskopie,  Gaschromatographie) beschreiben.

Fertigkeiten

Studierende können zu gegebenen Problemen geeignete Messverfahren auswählen und entsprechende Messgeräte praktisch anwenden. 
Die Studierenden sind in der Lage, Fragestellungen aus dem Fachgebiet der Messtechnik und Ansätze zu deren Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang und Einsatzbereich einzuordnen.


Personale Kompetenzen
Sozialkompetenz Studierende können in Gruppen gemeinsam zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen.
Selbstständigkeit

Studierende sind fähig, sich selbstständig in neuartige Messverfahren einzuarbeiten.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 105 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Wahlpflicht
Digitaler Maschinenbau: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Lehrveranstaltung L1119: Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Kern
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Messverfahren zur Bestimmung unterschiedlicher gasförmiger Schadstoffe in Autoabgasen kennengelernt und angewandt werden.

Versuch 1: Emissions- und Immissionsmessung gasförmiger Schadstoffe: Im Rahmen dieses Versuches sollen verschiedene

Versuch 2: Simulation und Messung von Asynchronmaschine und Kreiselpumpe: Das dynamische Verhalten eines Drehstromasynchronomoters in einem Pumpenantrieb wird untersucht. Der Anlaufvorgang wird auf einem Rechner simuliert und mit Messungen an einem Versuchsstand verglichen.

Versuch 3: Michelson-Interferometer und Faseroptik: Dieser Versuch soll dem Verständnis grundlegender optischer Phänomene dienen und deren Anwendung am Michelson-Interferometer und an Lichtleitfasern demonstrieren. 


Versuch 4: Identifikation der Parameter einer Regelstrecke und optimale Einstellung eines Reglers

Literatur

Versuch 1:

  • Leith, W.: Die Analyse der Luft und ihrer Verunreinigung in der freien Atmosphäre und am Arbeitsplatz. 2. Aufl., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1974
  • Birkle, M.: Meßtechnik für den Immissionsschutz, Messen der gas- und partikelförmigen Luftverunreinigungen. R. Oldenburg Verlag, München-Wien, 1979
  • Luftbericht 83/84, Freie und Hansestadt Hamburg, Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung
  • Gebrauchs- und Bedienungsanweisungen
  • VDI-Handbuch Reinhaltung der Luft, Band 5: VDI-Richtlinien 2450 Bl.1, 2451 Bl.4, 2453 Bl.5, 2455 Bl.1
Versuch 2:
  • Grundlagen über elektrische Maschinen, speziell: Asynchronmotoren
  • Simulationsmethoden, speziell: Verwendung von Blockschaltbildern
  • Betriebsverhalten von Kreispumpen, speziell: Kennlinien, Ähnlichkeitsgesetze
Versuch 3:
  • Unger, H.-G.: Optische Nachrichtentechnik, Teil 1: Optische Wellenleiter. Hüthing Verlag, Heidelberg, 1984
  • Dakin, J., Cushaw, B.: Optical Fibre Sensors: Principles and Components. Artech House Boston, 1988
  • Culshaw, B., Dakin, J.: Optical Fibre Sensors: Systems and Application. Artech House Boston, 1989
Versuch 4: 
  • Leonhard: Einführung in die Regelungstechnik. Vieweg Verlag, Braunschweig-Wiesbaden
  • Jan Lunze: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen



Lehrveranstaltung L1116: Measurement Technology for Mechanical Engineering
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thorsten Kern, Dennis Kähler
Sprachen EN
Zeitraum WiSe
Inhalt

1 Fundamentals

1.1 Quantities and Units

1.2 Uncertainty

1.3 Calibration

1.4 Static and Dynamic Properties of Sensors and Systems

2 Measurement of Electrical Quantities

2.1 Current and Voltage

2.2 Impedance

2.3 Amplification

2.4 Oscilloscope

2.5 Analog-to-Digital Conversion

2.6 Data Transmission

3 Measurement of Nonelectric Quantities

3.1 Temperature

3.2 Length, Displacement, Angle

3.3 Strain, Force, Pressure

3.4 Flow

3.5 Time, Frequency

Literatur

Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3.

 Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940.

Lehrveranstaltung L1118: Measurement Technology for Mechanical Engineering
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Kern
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0731: Functional Programming

Lehrveranstaltungen
Titel Typ SWS LP
Funktionales Programmieren (L0624) Vorlesung 2 2
Funktionales Programmieren (L0625) Hörsaalübung 2 2
Funktionales Programmieren (L0626) Gruppenübung 2 2
Modulverantwortlicher Prof. Sibylle Schupp
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Discrete mathematics at high-school level 
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students apply the principles, constructs, and simple design techniques of functional programming. They demonstrate their ability to read Haskell programs and to explain Haskell syntax as well as Haskell's read-eval-print loop. They interpret warnings and find errors in programs. They apply the fundamental data structures, data types, and type constructors. They employ strategies for unit tests of functions and simple proof techniques for partial and total correctness. They distinguish laziness from other evaluation strategies. 

Fertigkeiten

Students break a natural-language description down in parts amenable to a formal specification and develop a functional program in a structured way. They assess different language constructs, make conscious selections both at specification and implementations level, and justify their choice. They analyze given programs and rewrite them in a controlled way. They design and implement unit tests and can assess the quality of their tests. They argue for the correctness of their program.

Personale Kompetenzen
Sozialkompetenz

Students practice peer programming with varying peers. They explain problems and solutions to their peer. They defend their programs orally. They communicate in English.

Selbstständigkeit

In programming labs, students learn  under supervision (a.k.a. "Betreutes Programmieren") the mechanics of programming. In exercises, they develop solutions individually and independently, and receive feedback. 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 15 % Übungsaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht
Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Lehrveranstaltung L0624: Functional Programming
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Sibylle Schupp
Sprachen EN
Zeitraum WiSe
Inhalt
  • Functions, Currying, Recursive Functions, Polymorphic Functions, Higher-Order Functions
  • Conditional Expressions, Guarded Expressions, Pattern Matching, Lambda Expressions
  • Types (simple, composite), Type Classes, Recursive Types, Algebraic Data Type
  • Type Constructors: Tuples, Lists, Trees, Associative Lists (Dictionaries, Maps)
  • Modules
  • Interactive Programming
  • Lazy Evaluation, Call-by-Value, Strictness
  • Design Recipes
  • Testing (axiom-based, invariant-based, against reference implementation)
  • Reasoning about Programs (equation-based, inductive)
  • Idioms of Functional Programming
  • Haskell Syntax and Semantics
Literatur

Graham Hutton, Programming in Haskell, Cambridge University Press 2007.

Lehrveranstaltung L0625: Functional Programming
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Sibylle Schupp
Sprachen EN
Zeitraum WiSe
Inhalt
  • Functions, Currying, Recursive Functions, Polymorphic Functions, Higher-Order Functions
  • Conditional Expressions, Guarded Expressions, Pattern Matching, Lambda Expressions

  • Types (simple, composite), Type Classes, Recursive Types, Algebraic Data Type
  • Type Constructors: Tuples, Lists, Trees, Associative Lists (Dictionaries, Maps)
  • Modules
  • Interactive Programming
  • Lazy Evaluation, Call-by-Value, Strictness
  • Design Recipes
  • Testing (axiom-based, invariant-based, against reference implementation)
  • Reasoning about Programs (equation-based, inductive)
  • Idioms of Functional Programming
  • Haskell Syntax and Semantics

Literatur

Graham Hutton, Programming in Haskell, Cambridge University Press 2007.

Lehrveranstaltung L0626: Functional Programming
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Sibylle Schupp
Sprachen EN
Zeitraum WiSe
Inhalt
  • Functions, Currying, Recursive Functions, Polymorphic Functions, Higher-Order Functions
  • Conditional Expressions, Guarded Expressions, Pattern Matching, Lambda Expressions

  • Types (simple, composite), Type Classes, Recursive Types, Algebraic Data Type
  • Type Constructors: Tuples, Lists, Trees, Associative Lists (Dictionaries, Maps)
  • Modules
  • Interactive Programming
  • Lazy Evaluation, Call-by-Value, Strictness
  • Design Recipes
  • Testing (axiom-based, invariant-based, against reference implementation)
  • Reasoning about Programs (equation-based, inductive)
  • Idioms of Functional Programming
  • Haskell Syntax and Semantics

Literatur

Graham Hutton, Programming in Haskell, Cambridge University Press 2007.

Modul M0834: Computernetworks and Internet Security

Lehrveranstaltungen
Titel Typ SWS LP
Rechnernetze und Internet-Sicherheit (L1098) Vorlesung 3 5
Rechnernetze und Internet-Sicherheit (L1099) Gruppenübung 1 1
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics of Computer Science

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to explain important and common Internet protocols in detail and classify them, in order to be able to analyse and develop networked systems in further studies and job.

Fertigkeiten

Students are able to analyse common Internet protocols and evaluate the use of them in different domains.

Personale Kompetenzen
Sozialkompetenz


Selbstständigkeit

Students can select relevant parts out of high amount of professional knowledge and can independently learn and understand it.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht
Computer Science: Kernqualifikation: Pflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Data Science: Kernqualifikation: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Lehrveranstaltung L1098: Computer Networks and Internet Security
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Andreas Timm-Giel, Dr.-Ing. Koojana Kuladinithi, Prof. Dieter Gollmann
Sprachen EN
Zeitraum WiSe
Inhalt

In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and (virtual) labs.

In the second part of the lecture an introduction to Internet security is given.

This class comprises:

  • Application layer protocols (HTTP, FTP, DNS)
  • Transport layer protocols (TCP, UDP)
  • Network Layer (Internet Protocol, routing in the Internet)
  • Data link layer with media access at the example of Ethernet
  • Multimedia applications in the Internet
  • Network management
  • Internet security: IPSec
  • Internet security: Firewalls
Literatur


  • Kurose, Ross, Computer Networking - A Top-Down Approach, 6th Edition, Addison-Wesley
  • Kurose, Ross, Computernetzwerke - Der Top-Down-Ansatz, Pearson Studium; Auflage: 6. Auflage
  • W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition



Further literature is announced at the beginning of the lecture.


Lehrveranstaltung L1099: Computer Networks and Internet Security
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Andreas Timm-Giel, Prof. Dieter Gollmann
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0568: Theoretische Elektrotechnik II: Zeitabhängige Felder

Lehrveranstaltungen
Titel Typ SWS LP
Theoretische Elektrotechnik II: Zeitabhängige Felder (L0182) Vorlesung 3 5
Theoretische Elektrotechnik II: Zeitabhängige Felder (L0183) Gruppenübung 2 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Elektrotechnik I, Elektrotechnik II, Theoretische Elektrotechnik I

Mathematik I, Mathematik II, Mathematik III, Mathematik IV



Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von quasistationären und voll dynamischen Feldern in Abhängigkeit von ihren Quellen erläutern.  Sie können die Eigenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben.


Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Lösung der Diffusions- und der Wellengleichung für allgemeine zeitabhängige Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung voll dynamischer Felder (Wellenimpedanz, Skintiefe, Poynting-Vektor, Strahlungswiderstand usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis deuten.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen in Bezug zu aktuellen Forschungsthemen an der TUHH setzen (z.B. im Bereich der Hochfrequenztechnik und Optik).


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90-150 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0182: Theoretische Elektrotechnik II: Zeitabhängige Felder
Typ Vorlesung
SWS 3
LP 5
Arbeitsaufwand in Stunden Eigenstudium 108, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE
Zeitraum WiSe
Inhalt

- Theorie und prinzipielles Verhalten quasistationärer Felder

- Induktion und Induktionsgesetz

- Skin Effekt und Wirbelströme

- Abschirmung zeitlich veränderlicher magnetischer Felder

- Theorie und prinzipielles Verhalten voll dynamischer Felder

- Wellen-Gleichung und Eigenschaften ebener Wellen

- Polarisation und Superposition ebener Wellen

- Reflexion und Brechung ebener Wellen an Grenzflächen

- Theorie der Wellenleiter

- Rechteckhohlleiter, planarer optischer Wellenleiter

- elektrische und magnetische Dipolstrahlung

- Einfache Antennen-Arrays

Der praktische Umgang mit numerischen Methoden wird durch interaktives Bearbeiten von MATLAB-Programmen in besonders vorbereiteten Vorlesungen geübt.

Literatur

- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010)

- H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011)

- W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011)

- D. Griffiths, "Introduction to Electrodynamics", Pearson (2012)

- J. Edminister, "Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013)

- Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011)


Lehrveranstaltung L0183: Theoretische Elektrotechnik II: Zeitabhängige Felder
Typ Gruppenübung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Prof. Christian Schuster
Sprachen DE
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0777: Halbleiterschaltungstechnik

Lehrveranstaltungen
Titel Typ SWS LP
Halbleiterschaltungstechnik (L0763) Vorlesung 3 4
Halbleiterschaltungstechnik (L0864) Gruppenübung 1 2
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Elementare Grundlagen der Physik, besonders Halbleiterphysik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die Funktionsweisen von verschiedenen MOS-Bauelementen in unterschiedlichen Schaltungen erklären.
  • Studierende können die Funktionsweise von Analogschaltungen und deren Anwendungen erklären.
  • Studierende können die Funktionsweise grundlegender Operationsverstärker erklären und Kenngrößen angeben.
  • Studierende sind in der Lage, grundlegende digitale Logik-Schaltungen zu benennen und ihre Vor- und Nachteile zu diskutieren.
  • Studierende sind in der Lage Speichertypen zu benennen, deren Funktionsweise zu erklären und Kenngrößen anzugeben.
  • Studierende können geeignete Anwendungsbereiche von Bipolartransistoren benennen.


Fertigkeiten
  • Studierende können Kenngrößen von verschiedenen MOS-Bauelementen berechnen und Schaltungen dimensionieren.
  • Studierende können logische Schaltungen mit unterschiedlichen Schaltungstypen entwerfen und  dimensionieren.
  • Studierende können MOS-Bauelemente und Operationsverstärker sowie bipolare Transistoren in speziellen Anwendungsbereichen einsetzen.


Personale Kompetenzen
Sozialkompetenz
  • Studierende sind in der Lage, in heterogen (aus unterschiedlichen  Studiengängen) zusammengestellten Teams zusammenzuarbeiten.
  • Studierende können in kleinen Gruppen Rechenaufgaben lösen und Fachfragen beantworten.


Selbstständigkeit
  • Studierende sind in der Lage, ihren eigenen Lernstand einzuschätzen.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht
Data Science: Kernqualifikation: Wahlpflicht
Elektrotechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht
Maschinenbau: Vertiefung Mechatronik: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0763: Halbleiterschaltungstechnik
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Matthias Kuhl
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Wiederholung Halbleiterphysik und Dioden
  • Funktionsweise und Kennlinien von bipolaren Transistoren
  • Grundschaltungen mit bipolaren Transistoren
  • Funktionsweise und Kennlinien von MOS-Transistoren
  • Grundschaltungen mit MOS-Transistoren für Verstärker
  • Operationsverstärker und ihre Anwendungen
  • Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
  • Realisierung logischer Funktionen
  • Grundschaltungen mit MOS-Transistoren für kombinatorische Logikgatter
  • Schaltungen für die Speicherung von binären Daten
  • Grundschaltungen mit MOS-Transistoren für sequentielle Logikgatter
  • Grundkonzepte von Analog-Digital- sowie Digital-Analog-Wandlern
Literatur

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Lehrveranstaltung L0864: Halbleiterschaltungstechnik
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen DE
Zeitraum SoSe
Inhalt

Inhalt:

  • Grundschaltungen und Kennlinien von bipolaren Transistoren
  • Grundschaltungen und Kennlinien von MOS-Transistoren für Verstärker
  • Realisierung und Dimensionierung von Operationsverstärkern 
  • Realisierung logischer Funktionen
  • Grundschaltungen mit MOS-Transistoren für kombinatorische und sequentielle Logikgatter
  • Schaltungen für die Speicherung von binären Daten
  • Schaltungen für Analog-Digital- sowie Digital-Analog-Wandler
  • Dimensionierung beispielhafter Schaltungen


Literatur

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S

H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867

URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499

URL: http://dx.doi.org/10.1007/978-3-642-20887-4

URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955

URL: http://www.ciando.com/img/bo


Modul M0803: Embedded Systems

Lehrveranstaltungen
Titel Typ SWS LP
Eingebettete Systeme (L0805) Vorlesung 3 3
Eingebettete Systeme (L2938) Projekt-/problembasierte Lehrveranstaltung 1 1
Eingebettete Systeme (L0806) Gruppenübung 1 2
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Computer Engineering
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models).

Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered.

Fertigkeiten After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist.
Personale Kompetenzen
Sozialkompetenz

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Selbstständigkeit

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten, Inhalte der Vorlesung und Übungen
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0805: Embedded Systems
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literatur
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Lehrveranstaltung L2938: Embedded Systems
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literatur
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Lehrveranstaltung L0806: Embedded Systems
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1595: Maschinelles Lernen I

Lehrveranstaltungen
Titel Typ SWS LP
Maschinelles Lernen I (L2432) Vorlesung 2 3
Maschinelles Lernen I (L2433) Gruppenübung 2 3
Modulverantwortlicher Prof. Nihat Ay
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Lineare Algebra, Analysis, Grundlagen der Programmierung
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen

  • Grundlegende Prinzipien maschineller Lernverfahren: überwachtes/unüberwachtes Lernen, generative/deskriptives Lernen, parametrischer/nicht-parametrisches Lernen
  • verschiedeneLernmethoden: Neuronale Netze, Support-Vektor-Maschinen, Clusterung, Dimensionsreduzierung, Kernel-Methoden
  • Grundlagen der statistischen Lerntheorie
  • Fortgeschrittene Techniken wie Transfer Learning, Bestärkendes Lernen, Generative Adversarial Networks und Adaptive Control
Fertigkeiten

Die Studierenden können

  • maschinelle Lernverfahren auf konkrete Probleme anwenden
  • für konkrete Problemstellungen geeignete Verfahren auswählen und bewerten
  • die Güte eines trainierten datengetriebenen Modells evaluieren
  • mit bekannten Softwareframeworks für das maschinelle Lernen umgehen
  • bei neuronalen Netzen die Architektur und Kostenfunktion an konkrete Problemstellungen anpassen
  • die Grenzen maschineller Lernverfahren aufzeigen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 20 % Übungsaufgaben
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Wahlpflicht
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
Engineering Science: Vertiefung Maschinenbau: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht
Maschinenbau: Vertiefung Theoretischer Maschinenbau: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Informationstechnologie: Wahlpflicht
Lehrveranstaltung L2432: Maschinelles Lernen I
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Nihat Ay
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Geschichte der Neurowissenschaften und des maschinellen Lernens (insbesondere des tiefen Lernens) 
  • McCulloch-Pitts-Neuronen und binäre neuronale Netze
  • Boolesche Funktionen und Schellwert-Funktionen 
  • Universalität von neuronalen McCulloch-Pitts-Netzwerken
  • Lernen und das Perzeptron-Konvergenz-Theorem
  • Support-Vektor-Maschinen
  • Harmonische Analyse von Booleschen Funktionen
  • Kontinuierliche künstliche neuronale Netze 
  • Kolmogorovsches Superpositions-Theorem
  • Universelle Approximation mit kontinuierlichen neuronalen Netzen
  • Approximationsfehler und die Gradienten-Abstiegs-Methode: die allgemeine Idee
  • Die stochastische Gradienten-Abstiegs-Methode (Robbins-Monro- und Kiefer-Wolfowitz-Fälle)
  • Mehrschichtige Netzwerke und der Backpropagation-Algorithmus
  • Statistische Lerntheorie
Literatur
  • Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999.
  • Martin Anthony. Discrete Mathematics of Neural Networks: Selected Topics. SIAM Monographs on Discrete Mathematics & Applications, 1987.
  • Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar. Foundations of Machine Learning, Second Edition. MIT Press, 2018.  
  • Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2008.
  • Bernhard Schölkopf, Alexander Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning series. MIT Press, Cambridge, MA, 2002.
  • Luc Devroye, László Györfi, Gábor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
  • Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag: New York, Berlin, Heidelberg, 1995.




 

Lehrveranstaltung L2433: Maschinelles Lernen I
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Nihat Ay
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1730: Mathematics IV (EN)

Lehrveranstaltungen
Titel Typ SWS LP
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2783) Vorlesung 2 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2784) Hörsaalübung 1 1
Differentialgleichungen 2 (Partielle Differentialgleichungen) (EN) (L2785) Gruppenübung 1 1
Komplexe Funktionen (EN) (L2786) Vorlesung 2 1
Komplexe Funktionen (EN) (L2787) Hörsaalübung 1 1
Komplexe Funktionen (EN) (L2788) Gruppenübung 1 1
Modulverantwortlicher Prof. Anusch Taraz
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mathematics I - III (EN or DE)

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can name the basic concepts in Mathematics IV. They are able to explain them using appropriate examples.
  • Students can discuss logical connections between these concepts.  They are capable of illustrating these connections with the help of examples.
  • They know proof strategies and can reproduce them.
Fertigkeiten
  • Students can model problems in Mathematics IV with the help of the concepts studied in this course. Moreover, they are capable of solving them by applying established methods.
  • Students are able to discover and verify further logical connections between the concepts studied in the course.
  • For a given problem, the students can develop and execute a suitable approach, and are able to critically evaluate the results.
Personale Kompetenzen
Sozialkompetenz
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.
Selbstständigkeit
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Arbeitsaufwand in Stunden Eigenstudium 68, Präsenzstudium 112
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 120 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Pflicht
Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht
Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Lehrveranstaltung L2783: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt

Main features of the theory and numerical treatment of partial differential equations 

  • Examples of partial differential equations
  • First order quasilinear differential equations
  • Normal forms of second order differential equations
  • Harmonic functions and maximum principle
  • Maximum principle for the heat equation
  • Wave equation
  • Liouville's formula
  • Special functions
  • Difference methods
  • Finite elements
Literatur

http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

Lehrveranstaltung L2784: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2785: Differential Equations 2 (Partial Differential Equations) (EN)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2786: Complex Functions (EN)
Typ Vorlesung
SWS 2
LP 1
Arbeitsaufwand in Stunden Eigenstudium 2, Präsenzstudium 28
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt

Main features of complex analysis 

  • Functions of one complex variable
  • Complex differentiation
  • Conformal mappings
  • Complex integration
  • Cauchy's integral theorem
  • Cauchy's integral formula
  • Taylor and Laurent series expansion
  • Singularities and residuals
  • Integral transformations: Fourier and Laplace transformation
Literatur

http://www.math.uni-hamburg.de/teaching/export/tuhh/index.html

Lehrveranstaltung L2787: Complex Functions (EN)
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L2788: Complex Functions (EN)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dozenten des Fachbereiches Mathematik der UHH
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0624: Automata Theory and Formal Languages

Lehrveranstaltungen
Titel Typ SWS LP
Automatentheorie und Formale Sprachen (L0332) Vorlesung 2 4
Automatentheorie und Formale Sprachen (L0507) Gruppenübung 2 2
Modulverantwortlicher Prof. Matthias Mnich
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Participating students should be able to

- specify algorithms for simple data structures (such as, e.g., arrays) to solve computational problems 

- apply propositional logic and predicate logic for specifying and understanding mathematical proofs

- apply the knowledge and skills taught in the module Discrete Algebraic Structures

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain syntax, semantics, and decision problems of propositional logic, and they are able to give algorithms for solving decision problems. Students can show correspondences to Boolean algebra. Students can describe which application problems are hard to represent with propositional logic, and therefore, the students can motivate predicate logic, and define syntax, semantics, and decision problems for this representation formalism. Students can explain unification and resolution for solving the predicate logic SAT decision problem. Students can also describe syntax, semantics, and decision problems for various kinds of temporal logic, and identify their application areas. The participants of the course can define various kinds of finite automata and can identify relationships to logic and formal grammars. The spectrum that students can explain ranges from deterministic and nondeterministic finite automata and pushdown automata to Turing machines. Students can name those formalism for which nondeterminism is more expressive than determinism. They are also able to demonstrate which decision problems require which expressivity, and, in addition, students can transform decision problems w.r.t. one formalism into decision problems w.r.t. other formalisms. They understand that some formalisms easily induce algorithms whereas others are best suited for specifying systems and their properties. Students can describe the relationships between formalisms such as logic, automata, or grammars.



Fertigkeiten

Students can apply propositional logic as well as predicate logic resolution to a given set of formulas. Students analyze application problems in order to derive propositional logic, predicate logic, or temporal logic formulas to represent them. They can evaluate which formalism is best suited for a particular application problem, and they can demonstrate the application of algorithms for decision problems to specific formulas. Students can also transform nondeterministic automata into deterministic ones, or derive grammars from automata and vice versa. They can show how parsers work, and they can apply algorithms for the language emptiness problem in case of infinite words.

Personale Kompetenzen
Sozialkompetenz
  • Students are able to work together in teams. They are capable to use mathematics as a common language.
  • In doing so, they can communicate new concepts according to the needs of their cooperating partners. Moreover, they can design examples to check and deepen the understanding of their peers.
Selbstständigkeit
  • Students are capable of checking their understanding of complex concepts on their own. They can specify open questions precisely and know where to get help in solving them.
  • Students have developed sufficient persistence to be able to work for longer periods in a goal-oriented manner on hard problems.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Computer Science: Kernqualifikation: Pflicht
Data Science: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Orientierungsstudium: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung II. Informatik: Wahlpflicht
Lehrveranstaltung L0332: Automata Theory and Formal Languages
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Matthias Mnich
Sprachen EN
Zeitraum SoSe
Inhalt
  1. Propositional logic, Boolean algebra, propositional resolution, SAT-2KNF
  2. Predicate logic, unification, predicate logic resolution
  3. Temporal Logics (LTL, CTL)
  4. Deterministic finite automata, definition and construction
  5. Regular languages, closure properties, word problem, string matching
  6. Nondeterministic automata: 
    Rabin-Scott transformation of nondeterministic into deterministic automata
  7. Epsilon automata, minimization of automata,
    elimination of e-edges, uniqueness of the minimal automaton (modulo renaming of states)
  8. Myhill-Nerode Theorem: 
    Correctness of the minimization procedure, equivalence classes of strings induced by automata
  9. Pumping Lemma for regular languages:
    provision of a tool which, in some cases, can be used to show that a finite automaton principally cannot be expressive enough to solve a word problem for some given language
  10. Regular expressions vs. finite automata:
    Equivalence of formalisms, systematic transformation of representations, reductions
  11. Pushdown automata and context-free grammars:
    Definition of pushdown automata, definition of context-free grammars, derivations, parse trees, ambiguities, pumping lemma for context-free grammars, transformation of formalisms (from pushdown automata to context-free grammars and back)
  12. Chomsky normal form
  13. CYK algorithm for deciding the word problem for context-free grammrs
  14. Deterministic pushdown automata
  15. Deterministic vs. nondeterministic pushdown automata:
    Application for parsing, LL(k) or LR(k) grammars and parsers vs. deterministic pushdown automata, compiler compiler
  16. Regular grammars
  17. Outlook: Turing machines and linear bounded automata vs general and context-sensitive grammars
  18. Chomsky hierarchy
  19. Mealy- and Moore automata:
    Automata with output (w/o accepting states), infinite state sequences, automata networks
  20. Omega automata: Automata for infinite input words, Büchi automata, representation of state transition systems, verification w.r.t. temporal logic specifications (in particular LTL)
  21. LTL safety conditions and model checking with Büchi automata, relationships between automata and logic
  22. Fixed points, propositional mu-calculus
  23. Characterization of regular languages by monadic second-order logic (MSO)
Literatur
  1. Logik für Informatiker Uwe Schöning, Spektrum, 5. Aufl.
  2. Logik für Informatiker Martin Kreuzer, Stefan Kühling, Pearson Studium, 2006
  3. Grundkurs Theoretische Informatik, Gottfried Vossen, Kurt-Ulrich Witt, Vieweg-Verlag, 2010.
  4. Principles of Model Checking, Christel Baier, Joost-Pieter Katoen, The MIT Press, 2007

Lehrveranstaltung L0507: Automata Theory and Formal Languages
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Matthias Mnich
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Fachmodule der Vertiefung Mediziningenieurwesen

Die Anforderungen an das Gesundheitswesen steigen kontinuierlich bedingt durch die Alterung und die gestiegenen Erwartungen der Bevölkerung an die Lebensqualität. Hierbei kommt der Technisierung eine große Bedeutung zu. Diese bezieht sich sowohl auf individuelle Implantate und Hilfsmittel als auch auf Großgeräte zur Diagnostik und Therapie. Medizinisches und ingenieurwissenschaftliches Fachpersonal werden in Zukunft immer enger zusammenarbeiten müssen, um den neuen Anforderungen gerecht zu werden. Dies bedeutet jedoch auch, dass diese grundsätzlich verschiedenen Fachrichtungen in der Lage sein müssen, die Probleme der "anderen" Fachdisziplin in Grundzügen zu verstehen. Für die Ingenieurinnen und Ingenieure bedeutet dies, dass die neben den im Zentrum der erlernten Fertigkeiten stehenden ingenieurspezifischen Grundlagen auch medizinische und betriebswirtschaftliche Aspekte der Patientenversorgung, Projektsteuerung sowie Entwicklung und Forschung verstehen und beeinflussen können müssen. Genau diese Qualifikationen haben die Absolventinnen und Absolventen im Verlauf des Studiums erworben. 

Modul M1279: MED II: Einführung in die Biochemie und Molekularbiologie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Biochemie und Molekularbiologie (L0386) Vorlesung 2 3
Modulverantwortlicher Prof. Hans-Jürgen Kreienkamp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine. Das Modul deckt fachspezifische Lehrinhalte des Mediziningenieurwesens ab und erlaubt Studenten, die nicht Mediziningenieurwesen im Bachelor vertieft haben, den Master Mediziningenieurwesen zu belegen.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können
  • grundlegende Biomoleküle beschreiben;
  • erklären wie genetische Information in DNA kodiert wird; 
  • den Zusammenhang zwischen DNA und Protein erläutern.
Fertigkeiten Die Studierenden können
  • die Bedeutung molekularer Parameter für ein Krankheitsgeschehen erkennen;
  • ausgewählte molekular-diagnostische Verfahren beschreiben; 
  • die Bedeutung dieser Verfahren für einige Krankheiten erläutern
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können aktuelle Diskussionen in Forschung und Medizin auf fachlicher Ebene führen.

Die Studierenden können aktuelle medizinische Probleme (z.B. Corona-Epidemie) besser verstehen, einordnen und anderen erklären. 


Selbstständigkeit

Die Studierenden können Themengebiete der LVs eigenständig aus der Fachliteratur erarbeiten.

Die Studierenden können Falschdarstellungen in den Medien zu Themen der medizinischen Forschung besser erkennen.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0386: Einführung in die Biochemie und Molekularbiologie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Hans-Jürgen Kreienkamp
Sprachen DE
Zeitraum WiSe
Inhalt
  • Proteine - Struktur und Funktion
  • Enzyme
  • Nukleinsäuren: Struktur und Bedeutung
  • DNA; Replikation
  • RNA; Proteinbiosynthese
  • Gentechnologie; PCR; Klonierung
  • Hormone; Signaltransduktion
  • Energie-Stoffwechsel: Kohlehydrate; Fette
  • Stoffwechselregulation
  • Krebs; molekulare Ursachen
  • Genetische Erkrankungen
  • Immunologie; Viren (HIV)


Literatur

Müller-Esterl, Biochemie, Spektrum Verlag, 2010; 2. Auflage

Löffler, Basiswissen Biochemie, 7. Auflage, Springer, 2008




Modul M1333: BIO I: Implantate und Frakturheilung

Lehrveranstaltungen
Titel Typ SWS LP
Implantate und Frakturheilung (L0376) Vorlesung 2 3
Modulverantwortlicher Prof. Michael Morlock
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Es ist für das Verständnis besser, wenn zuerst die Lehrveranstaltung "Einführung in die Anatomie“ belegt wird.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die unterschiedlichen Knochenheilungsarten beschreiben und die Voraussetzungen, unter denen sie auftreten, erklären. Die Studierenden sind in der Lage, bei gegebener Frakturmorphologie entsprechende Versorgungen für die Wirbelsäule und die Röhrenknochen, zu benennen. 

Fertigkeiten

Studierende können die im menschlichen Körper wirkenden Kräfte für quasistatische Lastsituation unter gewissen Annahmen berechnen. 

Personale Kompetenzen
Sozialkompetenz

Studenten können in der Gruppe gemeinsam einfache Aufgaben zur Erstellung von Modellen zur Berechnung der wirkenden Kräfte lösen.

Selbstständigkeit

Studenten können in der Gruppe gemeinsam einfache Aufgaben zur Erstellung von Modellen zur Berechnung der wirkenden Kräfte lösen.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Orientierungsstudium: Kernqualifikation: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0376: Implantate und Frakturheilung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Michael Morlock
Sprachen DE
Zeitraum WiSe
Inhalt

0.      EINLEITUNG

1.      GESCHICHTE

2.      KNOCHEN

2.1     Femur

2.2     Tibia

2.3     Fibula

2.4     Humerus

2.5     Radius

2.6     Ulna

2.7     Der Fuß

3.      WIRBELSÄULE

3.1     Die Wirbelsäule als Ganzes

3.2     Erkrankungen und Verletzungen der Wirbelsäule

3.3     Belastung der WS

3.4     Die Lendenwirbelsäule

3.5     Die Brustwirbelsäule

3.6     Die Halswirbelsäule

4.      BECKEN

5.      FRAKTURHEILUNG

5.1     Grundlagen und Biologie der Frakturheilung

5.2     Klinische Prinzipien und Begriffe der Frakturbehandlung:

5.3     Biomechanik der Frakturbehandlung

5.3.1 Die Schraube

5.3.2 Die Platte

5.3.3 Der Marknagel

5.3.4 Der Fixateur Externe

5.3.5 Die Implantate der Wirbelsäule

6.      Neue Implantate


Literatur

Cochran V.B.: Orthopädische Biomechanik

Mow V.C., Hayes W.C.: Basic Orthopaedic Biomechanics

White A.A., Panjabi M.M.: Clinical biomechanics of the spine

Nigg, B.: Biomechanics of the musculo-skeletal system

Schiebler T.H., Schmidt W.: Anatomie

Platzer: dtv-Atlas der Anatomie, Band 1 Bewegungsapparat



Modul M0956: Messtechnik für Maschinenbau

Lehrveranstaltungen
Titel Typ SWS LP
Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik (L1119) Laborpraktikum 2 2
Messtechnik für Maschinenbau (L1116) Vorlesung 2 3
Messtechnik für Maschinenbau (L1118) Hörsaalübung 1 1
Modulverantwortlicher Prof. Thorsten Kern
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Physik, Chemie und Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die wesentlichen Grundlagen der Messtechnik (Größen und Einheiten, Messunsicherheit, Kalibrierung, Statisches und dynamisches Verhalten von Messsystemen) benennen.

Sie können die wesentlichen Messverfahren zu Messung verschiedenartiger Messgrößen (elektrische Größen, Temperatur, mechanische Größen, Menge, Durchfluss,  Zeit, Frequenz) skizzieren.

Sie können die Funktionsweise wichtiger Analyseverfahren (Gas-Sensoren, Spektroskopie,  Gaschromatographie) beschreiben.

Fertigkeiten

Studierende können zu gegebenen Problemen geeignete Messverfahren auswählen und entsprechende Messgeräte praktisch anwenden. 
Die Studierenden sind in der Lage, Fragestellungen aus dem Fachgebiet der Messtechnik und Ansätze zu deren Bearbeitung mündlich zu erläutern und in den jeweiligen Zusammenhang und Einsatzbereich einzuordnen.


Personale Kompetenzen
Sozialkompetenz Studierende können in Gruppen gemeinsam zu Arbeitsergebnissen kommen und diese gemeinsam in Protokollen zusammenfassen.
Selbstständigkeit

Studierende sind fähig, sich selbstständig in neuartige Messverfahren einzuarbeiten.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 105 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Advanced Materials: Wahlpflicht
Digitaler Maschinenbau: Kernqualifikation: Pflicht
Energie- und Umwelttechnik: Kernqualifikation: Pflicht
Engineering Science: Vertiefung Mechatronics: Pflicht
Engineering Science: Vertiefung Maschinenbau: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
Engineering Science: Vertiefung Advanced Materials: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Pflicht
General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Maschinenbau: Kernqualifikation: Pflicht
Mechatronik: Kernqualifikation: Pflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Vertiefung Produktionsmanagement und Prozesse: Wahlpflicht
Lehrveranstaltung L1119: Laborpraktikum: Labor-, Mess-, Steuer- und Regelungstechnik
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Thorsten Kern
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Messverfahren zur Bestimmung unterschiedlicher gasförmiger Schadstoffe in Autoabgasen kennengelernt und angewandt werden.

Versuch 1: Emissions- und Immissionsmessung gasförmiger Schadstoffe: Im Rahmen dieses Versuches sollen verschiedene

Versuch 2: Simulation und Messung von Asynchronmaschine und Kreiselpumpe: Das dynamische Verhalten eines Drehstromasynchronomoters in einem Pumpenantrieb wird untersucht. Der Anlaufvorgang wird auf einem Rechner simuliert und mit Messungen an einem Versuchsstand verglichen.

Versuch 3: Michelson-Interferometer und Faseroptik: Dieser Versuch soll dem Verständnis grundlegender optischer Phänomene dienen und deren Anwendung am Michelson-Interferometer und an Lichtleitfasern demonstrieren. 


Versuch 4: Identifikation der Parameter einer Regelstrecke und optimale Einstellung eines Reglers

Literatur

Versuch 1:

  • Leith, W.: Die Analyse der Luft und ihrer Verunreinigung in der freien Atmosphäre und am Arbeitsplatz. 2. Aufl., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1974
  • Birkle, M.: Meßtechnik für den Immissionsschutz, Messen der gas- und partikelförmigen Luftverunreinigungen. R. Oldenburg Verlag, München-Wien, 1979
  • Luftbericht 83/84, Freie und Hansestadt Hamburg, Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung
  • Gebrauchs- und Bedienungsanweisungen
  • VDI-Handbuch Reinhaltung der Luft, Band 5: VDI-Richtlinien 2450 Bl.1, 2451 Bl.4, 2453 Bl.5, 2455 Bl.1
Versuch 2:
  • Grundlagen über elektrische Maschinen, speziell: Asynchronmotoren
  • Simulationsmethoden, speziell: Verwendung von Blockschaltbildern
  • Betriebsverhalten von Kreispumpen, speziell: Kennlinien, Ähnlichkeitsgesetze
Versuch 3:
  • Unger, H.-G.: Optische Nachrichtentechnik, Teil 1: Optische Wellenleiter. Hüthing Verlag, Heidelberg, 1984
  • Dakin, J., Cushaw, B.: Optical Fibre Sensors: Principles and Components. Artech House Boston, 1988
  • Culshaw, B., Dakin, J.: Optical Fibre Sensors: Systems and Application. Artech House Boston, 1989
Versuch 4: 
  • Leonhard: Einführung in die Regelungstechnik. Vieweg Verlag, Braunschweig-Wiesbaden
  • Jan Lunze: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen



Lehrveranstaltung L1116: Measurement Technology for Mechanical Engineering
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Thorsten Kern, Dennis Kähler
Sprachen EN
Zeitraum WiSe
Inhalt

1 Fundamentals

1.1 Quantities and Units

1.2 Uncertainty

1.3 Calibration

1.4 Static and Dynamic Properties of Sensors and Systems

2 Measurement of Electrical Quantities

2.1 Current and Voltage

2.2 Impedance

2.3 Amplification

2.4 Oscilloscope

2.5 Analog-to-Digital Conversion

2.6 Data Transmission

3 Measurement of Nonelectric Quantities

3.1 Temperature

3.2 Length, Displacement, Angle

3.3 Strain, Force, Pressure

3.4 Flow

3.5 Time, Frequency

Literatur

Lerch, R.: „Elektrische Messtechnik; Analoge, digitale und computergestützte Verfahren“, Springer, 2006, ISBN: 978-3-540-34055-3.

 Profos, P. Pfeifer, T.: „Handbuch der industriellen Messtechnik“, Oldenbourg, 2002, ISBN: 978-3486217940.

Lehrveranstaltung L1118: Measurement Technology for Mechanical Engineering
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Thorsten Kern
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0634: Einführung in Medizintechnische Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in Medizintechnische Systeme (L0342) Vorlesung 2 3
Einführung in Medizintechnische Systeme (L0343) Projektseminar 2 2
Einführung in Medizintechnische Systeme (L1876) Hörsaalübung 1 1
Modulverantwortlicher Prof. Alexander Schlaefer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen Mathematik (Algebra, Analysis)
Grundlagen Stochastik
Grundlagen Programmierung, R/Matlab

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Funktionsprinzipien ausgewählter medizintechnischer Systeme (beispielsweise bildgebende Systeme, Assistenzsysteme im OP, medizintechnische Informationssysteme) erklären. Sie können einen Überblick über regulatorische Rahmenbedingungen und Standards in der Medizintechnik geben.

Fertigkeiten

Die Studierenden sind in der Lage, die Funktion eines medizintechnischen Systems im Anwendungskontext zu bewerten.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in Gruppen ein medizintechnisches Thema als Projekt beschreiben, in Teilaufgaben untergliedern und gemeinsam bearbeiten.
Die Studierenden können die Ergebnisse anderer Gruppen kritisch reflektieren und konstruktive Verbesserungsvorschläge unterbreiten.

Selbstständigkeit

Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren.  Sie können die erzielten Ergebnisse kritisch bewerten und in geeigneter Weise präsentieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Schriftliche Ausarbeitung
Ja 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Computer Science: Vertiefung II. Mathematik und Ingenieurwissenschaften: Wahlpflicht
Data Science: Vertiefung II. Anwendung: Wahlpflicht
Data Science: Kernqualifikation: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Mathematik & Ingenieurwissenschaften: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0342: Einführung in Medizintechnische Systeme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen DE
Zeitraum SoSe
Inhalt

- Bildgebende Systeme
- Assistenzsysteme im OP
- Medizintechnische Sensorsysteme
- Medizintechnische Informationssysteme
- Regulatorische Rahmenbedingungen
- Standards in der Medizintechnik
Durch problembasiertes Lernen erfolgt die Vertiefung der Methoden aus der Vorlesung. Dies erfolgt in Form von Gruppenarbeit. 

Literatur

Bernhard Priem, "Visual Computing for Medicine", 2014
Heinz Handels, "Medizinische Bildverarbeitung", 2009 (https://katalog.tub.tuhh.de/Record/745558097)
Valery Tuchin, "Tissue Optics - Light Scattering Methods and Instruments for Medical Diagnosis", 2015
Olaf Drössel, "Biomedizinische Technik - Medizinische Bildgebung", 2014
H. Gross, "Handbook of Optical Systems", 2008 (https://katalog.tub.tuhh.de/Record/856571687)
Wolfgang Drexler, "Optical Coherence Tomography", 2008
Kramme, "Medizintechnik", 2011
Thorsten M. Buzug, "Computed Tomography", 2008
Otmar Scherzer, "Handbook of Mathematical Methods in Imaging", 2015
Weishaupt, "Wie funktioniert MRI?", 2014
Paul Suetens, "Fundamentals of Medical Imaging", 2009
Vorlesungsunterlagen

Lehrveranstaltung L0343: Einführung in Medizintechnische Systeme
Typ Projektseminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Schlaefer
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1876: Einführung in Medizintechnische Systeme
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Schlaefer
Sprachen DE
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1280: MED II: Einführung in die Physiologie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Physiology (L0385) Vorlesung 2 3
Modulverantwortlicher Dr. Roger Zimmermann
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Keine. Das Modul deckt fachspezifische Lehrinhalte des Mediziningenieurwesens ab und erlaubt Studenten, die nicht Mediziningenieurwesen im Bachelor vertieft haben, den Master Mediziningenieurwesen zu belegen.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studierenden können
  • Physiologische Zusammenhänge in ausgewählten Kernfeldern von Muskel-, Herz/Kreislauf- sowie Neuro- & Sinnesphysiologie darstellen.
  • Grundzüge des Energiestoffwechsels beschreiben;
Fertigkeiten Die Studierenden können die Wirkprinzipien grundlegender Körperfunktionen (Sinnesleistungen, Informationsweiterleitung und Verarbeitung, Kraftentwicklung und Vitalfunktionen) darstellen und sie in Relation zu ähnlichen technischen Systemen setzen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können Diskussionen in Forschung und Medizin auf fachlicher Ebene führen.

Die Studierenden können in Kleingruppen Probleme im Bereich physiologischer Fragestellungen analysieren und messtechnische Lösungen finden.

Selbstständigkeit

Die Studierenden können Fragen zu Themengebieten der Vorlesung oder weitergehende physiologische Themen eigenständig aus der Fachliteratur erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung Medizin: Pflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0385: Einführung in die Physiology
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Gerhard Engler
Sprachen DE
Zeitraum SoSe
Inhalt

Beginnend bei den Mechanismen zur elektrischen oder biochemischen Übertragung von Information wird eingegangen auf die Funktion von Rezeptoren für die verschiedenen Sinneseindrücke sowie der spezifischen Weiterleitung und Verarbeitung dieser afferenten Reize. Efferente Signale steuern den Körper in einer sich dynamisch verändernden Umgebung: Dazu werden Informationen aus dem körpereigenen System der Selbstwahrnehmung mit aktuellen afferenten Reizen verbunden um über Gehirn und Rückenmark gezielt Kraft auf die betreffenden Muskeln zu dosieren. Der unmittelbar zur Erhaltung dieser Funktionen notwendige Stoffwechsel wird durch das System: Herz, Lunge und Blutgefäße bereitgestellt. Auch dieses System paßt sich an wechselnden Bedarf bzw. sich ändernde Lastverhältnisse anhand biochemisch und bioelektrisch gesteuerter Regelmechanismen an. Neben den physiologischen Grundlagen wird anhand von Beipielen auch das Versagen dieser Systeme im Falle von Erkrankungen mit einigen typischen Erscheinungsbildern dargestellt.

Literatur

Taschenatlas der Physiologie, Silbernagl Despopoulos, ISBN 978-3-135-67707-1, Thieme

Repetitorium Physiologie, Speckmann, ISBN 978-3-437-42321-5, Elsevier

Modul M1278: MED I: Einführung in die Radiologie und Strahlentherapie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Radiologie und Strahlentherapie (L0383) Vorlesung 2 3
Modulverantwortlicher Prof. Ulrich Carl
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Diagnose

Die Studierenden können die Geräte, die derzeitig in der Strahlentherapie verwendet werden bezüglich ihrer Einsatzgebiete unterscheiden.

Die Studierenden können die Therapieabläufe in der Strahlentherapie erklären. Die Studierenden können die Interdisziplinarität mit anderen Fachgruppen (z. B. Chirurgie/Innere Medizin) nachvollziehen.

Die Studierenden können den Durchlauf der Patienten vom Aufnahmetag bis zur Nachsorge skizzieren.

Diagnostik

Die Studierenden können die technische Basiskonzeption der Projektionsradiographie einschließlich Angiographie und Mammographie sowie der Schnittbildverfahren (CT, MRT, US) darstellen.

Der Student kann den diagnostischen sowie den therapeutisch interventionellen Einsatz der bildgebenden Verfahren erklären sowie das technische Prinzip der bildgebenden Verfahren erläutern.

Patientenbezogen kann der Student in Abhängigkeit von der klinischen Fragestellung das richtige Verfahren auswählen.

Gerätebezogenene technische Fehler sowie bildgebenden Resultate kann der Student erklären.

Basierend auf den bildgebenden Befunden bzw. dem Fehlerprotokoll kann der Student die richtigen Schlussfolgerungen ziehen.

Fertigkeiten Therapie

Der Student kann kurative und palliative Situationen abgrenzen und außerdem begründen, warum er sich für diese Einschätzung der Situation entschieden hat.

Der Student kann Therapiekonzepte entwickeln, die der Situation angemessen sind und dabei strahlenbiologische Aspekte sauber zuordnen.

Der Student kann das therapeutische Prinzip anwenden (Wirkung vs. Nebenwirkung)

Der Student kann die Strahlenarten für die verschiedenen Situationen (Tumorsitz) unterscheiden, auswählen und dann die entsprechende Energie wählen, die in der Situation angezeigt ist (Bestrahlungsplan).

Der Student kann einschätzen, wie ein psychosoziales Hilfsangebot individuell aussehen sollte [ z. B. Anschlussheilbehandlung (AHB), Sport, Sozialhilfegruppen, Selbsthilfegruppen, Sozialdienst, Psychoonkologie]

Diagnostik

Nach entsprechender Fehleranalyse kann der Student Lösungsvorschläge zur Reparatur von bildgebenden Einheiten unterbreiten. Aufgrund seiner Kenntnisse der Anatomie, Pathologie und Pathophysiologie kann er bildgebende Befunde in die zugehörigen Krankheitsgruppen einordnen.

Personale Kompetenzen
Sozialkompetenz Die Studierenden können die besondere soziale Situation vom Tumorpatienten erfassen und ihnen professionell begegnen.

Die Studierenden sind sich dem speziellen häufig angstdominierten Verhalten von kranken Menschen im Rahmen von diagnostischen und therapeutischen Eingriffen bewusst und können darauf angemessen reagieren.

Selbstständigkeit Die Studierenden können erlerntes Wissen und Fertigkeiten auf einen konkreten Therapiefall anwenden.

Die Studierenden können am Ende ihrer Ausbildung jüngere Studierende ihres Fachgebiets an den klinischen Alltag heranführen.

Die Studierenden können in diesem Bereich kompetent eine fachliche Konversation führen und sich das dafür benötigte Wissen selbstständig erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten - 20 offene Fragen
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung II. Anwendung: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0383: Einführung in die Radiologie und Strahlentherapie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Ulrich Carl, Prof. Thomas Vestring
Sprachen DE
Zeitraum SoSe
Inhalt

Den Studenten sollen die technischen Möglichkeiten im Bereich der bildgebenden Diagnostik, interventionelle Radiologie und Strahlentherapie/Radioonkologie nahe gebracht werden. Es wird davon ausgegangen, dass der Student zu Beginn der Veranstaltung bestenfalls das Wort "Röntgenstrahlen" gehört hat. Es wird zwischen zwei Armen: - die diagnostische (Prof. Dr. med. Thomas Vestring) und die therapeutische (Prof. Dr. med. Ulrich M. Carl) Anwendung von Röntgenstrahlen differenziert.

Beide Arme sind auf spezielle Großgeräte angewiesen, die einen vorgegebenen Ablauf in den jeweiligen Abteilungen bedingen.

  

Literatur
  • "Technik der medizinischen Radiologie"  von T. + J. Laubenberg –

    7. Auflage – Deutscher Ärzteverlag –  erschienen 1999

  • "Klinische Strahlenbiologie" von Th. Herrmann, M. Baumann und W. Dörr –

    4. Auflage - Verlag Urban & Fischer –  erschienen 02.03.2006

    ISBN: 978-3-437-23960-1

  • "Strahlentherapie und Onkologie für MTA-R" von R. Sauer –

             5. Auflage 2003 - Verlag Urban & Schwarzenberg – erschienen 08.12.2009

             ISBN: 978-3-437-47501-6

  • "Taschenatlas der Physiologie" von S. Silbernagel und A. Despopoulus‑                

    8. Auflage – Georg Thieme Verlag - erschienen 19.09.2012

    ISBN: 978-3-13-567708-8

  • "Der Körper des Menschen " von A. Faller  u. M. Schünke -

    16. Auflage 2004 – Georg Thieme Verlag –  erschienen 18.07.2012

    ISBN: 978-3-13-329716-5

  • „Praxismanual Strahlentherapie“ von Stöver / Feyer –

    1. Auflage - Springer-Verlag GmbH –  erschienen 02.06.2000



Modul M1332: BIO I: Experimentelle Methoden der Biomechanik

Lehrveranstaltungen
Titel Typ SWS LP
Experimentelle Methoden der Biomechanik (L0377) Vorlesung 2 3
Modulverantwortlicher Prof. Michael Morlock
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Es ist für das Verständnis besser, wenn zuerst die Lehrveranstaltung "Implantate und Frakturheilung" und im Semester danach die Veranstaltung "Experimentelle Methoden" belegt werden.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Veranstaltung führt in die gängigen in der Biomechanik eingesetzten experimentellen Testverfahren ein. Hierbei wird ein Überblick und grundlegende Kenntnisse vermittelt.

1. Tribologische Verfahren
2. Optische Analyseverfahren
3. Bewegungsanalyse
4. Druckverteilungsmessung
5. Dehnmessstreifen
6. Prä-klinische Implantatestung
7. Präparation / Aufbewahrung

Studierende können die unterschiedlichen Messverfahren zur Messung von Kräften und Bewegungen beschreiben und für definierte Aufgaben das passende Verfahren auswählen.

Fertigkeiten

Studierende kennen die grundlegende Handhabung der verschiedenen in der Biomechanik eingesetzten experimentellen Verfahren.

Personale Kompetenzen
Sozialkompetenz

Studierende sind in der Lage sich als Gruppe zu organisieren um gemeinsam einfache experimentelle Aufgaben zu lösen. Einerseits muss dabei die Aufgabenteilung sowohl während des Experiments, als auch bei der kurzen schriftlichen Ausarbeitung organisiert werden, aber anderseits muss das dabei erarbeitete Wissen im Anschluss auch allen Teilnehmern der Gruppe zur Verfügung stehen. Die Herausforderung besteht dabei, dass sich die Themen schnell wechseln, weil grundlegend unterschiedliche Messprinzipien vermittelt werden. Zudem wird ein strenges Zeitmanagment erwartet.

Selbstständigkeit

Studierende führen in Kleingruppen einfache experimentelle Aufgaben durch oder erstellen einfache Sensoren (z.B. DMS). Als Grundlage für diese Experimente dient die jeweils vorangegangene Vorlesung. Als Vor- oder Nachbereitung muss das theoretische Wissen aufgearbeitet und dieses in Bezug zum experimentellen Ergebnis gesetzt werden. Hierbei sind insbesondere selbständige Transferleistung notwendig um zu klären weshalb experimentelle Beobachtungen Abweichungen von den theoretischen Werten aufweisen können und wie diese Abweichungen kompensiert werden können.

Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Wahlpflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0377: Experimentelle Methoden der Biomechanik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Michael Morlock, Dr. Gerd Huber
Sprachen DE
Zeitraum SoSe
Inhalt

Die Veranstaltung führt in die gängigen in der Biomechanik eingesetzten experimentellen Testverfahren ein. Hierbei wird ein Überblick und grundlegende Kenntnisse vermittelt.

1. Tribologische Verfahren
2. Optische Analyseverfahren
3. Bewegungsanalyse
4. Druckverteilungsmessung
5. Dehnmessstreifen
6. Prä-klinische Implantatestung
7. Präparation / Aufbewahrung






Literatur

Hoffmann K., Eine Einführung in die Technik des Messens mit Dehnmessstreifen

White A.A., Panjabi M.M.: Clinical biomechanics of the spine

Nigg, B.: Biomechanics of the musculo-skeletal system

Online Hilfe von Mathworks: https://de.mathworks.com/help/matlab/

Modul M1277: MED I: Einführung in die Anatomie

Lehrveranstaltungen
Titel Typ SWS LP
Einführung in die Anatomie (L0384) Vorlesung 2 3
Modulverantwortlicher Prof. Udo Schumacher
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Die Vorlesung kann auch ohne Vorkenntnisse besucht werden. Hilfreich ist das Schulwissen in den Fächern Biologie, Chemie/Biochemie, Physik und Latein.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Vorlesung gliedert sich in die mikroskopische Anatomie, welche den Feinaufbau von Geweben und Organen beschreibt, sowie die makroskopische Anatomie, welche sich mit Organen und Organsystemen beschäftigt. Zudem erfolgt eine Einführung zur Zellbiologie, menschlichen Entwicklung und zum Zentralnervensystem. Ebenso werden die Grundlagen der bildgebenden radiologischen Diagnostik vermittelt, welche die Anatomie mit Röntgen-Projektionsaufnahmen und Schnittbildern darstellt. Es werden dabei auch die lateinischen Fachbegriffe vermittelt.


Fertigkeiten

Am Ende der Vorlesung können die Studierenden den mikroskopischen und makroskopischen Aufbau und die Funktionsweise des menschlichen Körpers beschreiben. Durch eine Vermittlung der lateinischen Fachbegriffe sind sie in der Lage, medizinische Texte zu verstehen. Dies ist die grundlegende Voraussetzung, um später medizinische Apparate verstehen und weiterentwickeln zu können.

Ebenso ist ein Verständnis der Anatomie die Voraussetzung, um die Bedeutung von Struktur und Funktion bei einigen Volkskrankheiten erläutern und deren Auswirkungen auf den Körper einordnen zu können.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden werden in die Lage versetzt, aktuelle Diskussionen in Forschung und Medizin auf fachlicher Ebene zu verfolgen. Die lateinischen Termini sind die Voraussetzung für eine fachliche Kommunikation mit Ärztinnen und Ärzten.


Selbstständigkeit

Die Vorlesung dient als Einführung in die Anatomie und soll dazu anregen, das Fachwissen auf diesem Gebiet selbstständig weiter zu vertiefen. Es werden Hinweise gegeben, welche weiterführende Literatur dafür geeignet ist. Ebenso wird angeregt, biomedizinische Probleme zu erkennen und zu durchdenken.


Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht
Data Science: Vertiefung II. Anwendung: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht
General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht
Maschinenbau: Vertiefung Biomechanik: Pflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht
Lehrveranstaltung L0384: Einführung in die Anatomie
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Lange, PD Thorsten Frenzel
Sprachen DE
Zeitraum SoSe
Inhalt

Allgemeine Anatomie

  1.     Woche: Die eukaryote Zelle
  2.     Woche: Die Gewebe
  3.     Woche: Zellteilung, Grundzüge der Entwicklung
  4.     Woche: Bewegungsapparat
  5.     Woche: Herz-Kreislaufsystem
  6.     Woche: Atmungssystem
  7.     Woche: Harnorgane, Geschlechtsorgane
  8.     Woche: Immunsystem
  9.     Woche: Verdauungsapparat I
  10. Woche: Verdauungsapparat II
  11. Woche: Endokrines System
  12. Woche: Nervensystem
  13. Woche: Abschlussprüfung



Literatur

Adolf Faller/Michael Schünke, Der Körper des Menschen, 17. Auflage, Thieme Verlag Stuttgart, 2016

Thesis

Modul M-001: Bachelorarbeit

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen
  • Laut ASPO § 21 (1):

    Es müssen mindestens 126 Leistungspunkte im Studiengang erworben worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss.

Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Studierende können die wichtigsten wissenschaftlichen Grundlagen ihres Studienfaches (Fakten, Theorien und Methoden) problembezogen auswählen, darstellen und nötigenfalls kritisch diskutieren.
  • Die Studierenden können ausgehend von ihrem fachlichen Grundlagenwissen anlassbezogen auch weiterführendes fachliches Wissen erschließen und verknüpfen.
  • Die Studierenden können zu einem ausgewählten Thema ihres Faches einen Forschungsstand darstellen.
Fertigkeiten
  • Die Studierenden können das im Studium vermittelte Grundwissen ihres Studienfaches zielgerichtet zur Lösung fachlicher Probleme einsetzen.
  • Die Studierenden können mit Hilfe der im Studium erlernten Methoden Fragestellungen analysieren, fachliche Sachverhalte entscheiden und Lösungen entwickeln.
  • Die Studierenden können zu den Ergebnissen ihrer eigenen Forschungsarbeit kritisch aus einer Fachperspektive Stellung beziehen.
Personale Kompetenzen
Sozialkompetenz
  • Studierende können eine wissenschaftliche Fragestellung für ein Fachpublikum sowohl schriftlich als auch mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • Studierende können in einer Fachdiskussion auf Fragen eingehen und sie in adressatengerechter Weise beantworten. Sie können dabei eigene Einschätzungen und Standpunkte überzeugend vertreten.
Selbstständigkeit
  • Studierende können einen umfangreichen Arbeitsprozess zeitlich strukturieren und eine Fragestellung in vorgegebener Frist bearbeiten.
  • Studierende können notwendiges Wissen und Material zur Bearbeitung eines wissenschaftlichen Problems identifizieren, erschließen und verknüpfen.
  • Studierende können die wesentlichen Techniken des wissenschaftlichen Arbeitens in einer eigenen Forschungsarbeit anwenden.


Arbeitsaufwand in Stunden Eigenstudium 360, Präsenzstudium 0
Leistungspunkte 12
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht
Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht
Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemie- und Bioingenieurwesen: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Data Science: Abschlussarbeit: Pflicht
Digitaler Maschinenbau: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Engineering Science: Abschlussarbeit: Pflicht
General Engineering Science: Abschlussarbeit: Pflicht
General Engineering Science (7 Semester): Abschlussarbeit: Pflicht
Green Technologies: Energie, Wasser, Klima: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Integrierte Gebäudetechnik: Abschlussarbeit: Pflicht
Logistik und Mobilität: Abschlussarbeit: Pflicht
Maschinenbau: Abschlussarbeit: Pflicht
Mechatronik: Abschlussarbeit: Pflicht
Schiffbau: Abschlussarbeit: Pflicht
Technomathematik: Abschlussarbeit: Pflicht
Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wirtschaftsingenieurwesen - Fachrichtung Logistik und Mobilität: Abschlussarbeit: Pflicht