Information regarding the lectures are available in the TUHH modul manuals as well as in the course catalogue.

Module
Exami­nation
Course Work
Re­com. Term Module Name (German / English) Language Module­Responsability Institute C/EC (1) CM/
OM (2)
CP (4) Grade Exami­nation Form(3)
Compulsory Course Work Type Bonus (in %)
 
Core Qualification   Compulsory Courses: 168 LP    Optional Courses: 0 LP   
1 Diskrete Algebraische Strukturen / Discrete Algebraic Structures DE / EN Prof. Zimmermann E-13 C CM
6 Y KL
1 Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder / Electrical Engineering I: Direct Current Networks and Electromagnetic Fields DE Prof. Kuhl E-9 C CM
6 Y KL
1 Mathematik I / Mathematics I DE Prof. Taraz E-10 C CM
8 Y KL
Y ÜA 10
1 Praxismodul 1 im dualen Bachelor / Practical module 1 (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
1 Prozedurale Programmierung für Informatiker / Procedural Programming for Computer Engineers DE / EN Prof. Renner E-24 C CM
6 Y KL
2 Automatentheorie und Formale Sprachen / Automata Theory and Formal Languages EN Prof. Mnich E-11 C CM
6 Y KL
2 Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente / Electrical Engineering II: Alternating Current Networks and Basic Devices DE Prof. Becker E-6 C CM
6 Y KL
N MT 10
2 Grundlagen der Betriebswirtschaftslehre / Foundations of Management DE Prof. Ihl W-11 C CM
6 Y FFA
2 Mathematik II / Mathematics II DE Prof. Taraz E-10 C CM
8 Y KL
Y ÜA 10
2 Praxismodul 2 im dualen Bachelor / Practical module 2 (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
2 Programmierparadigmen / Programming Paradigms DE / EN NN SD-E C CM
6 Y KL
3 Algorithmen und Datenstrukturen / Algorithms and Data Structures DE / EN Prof. Mnich E-11 C CM
6 Y KL
N ÜA 20
3 Mathematik III / Mathematics III DE Prof. Lindner 0-UNIHH-M C CM
8 Y KL
3 Numerische Mathematik I / Numerical Mathematics I EN Prof. Le Borne E-10 C CM
6 Y KL
3 Praxismodul 3 im dualen Bachelor / Practical module 3 (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
3 Rechnernetze und Internet-Sicherheit / Computernetworks and Internet Security EN Prof. Timm-Giel E-4 C CM
6 Y KL
3 Technische Informatik / Computer Engineering DE / EN Prof. Falk E-13 C CM
6 Y KL
Y ÜA 10
4 Eingebettete Systeme / Embedded Systems EN Prof. Falk E-13 C CM
6 Y KL
Y FFST 10
4 Praxismodul 4 im dualen Bachelor / Practical module 4 (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
4 Seminare Informatik / Seminars Computer Science DE / EN Dozenten des SD E SD-E C CM
6 N RE
4 Signale und Systeme / Signals and Systems DE / EN Prof. Bauch E-8 C CM
6 Y KL
4 Stochastik / Stochastics DE / EN Prof. Schulte E-10 C CM
6 Y KL
5 Einführung in die Nachrichtentechnik und ihre stochastischen Methoden / Introduction to Communications and Random Processes DE / EN Prof. Bauch E-8 C CM
6 Y KL
5 Grundlagen der Regelungstechnik / Introduction to Control Systems DE Prof. Faulwasser E-14 C CM
6 Y KL
5 IIW Praktikum / Practical Course IIW DE / EN Prof. Fey E-13 C CM
6 Y FFA
5 Praxismodul 5 im dualen Bachelor / Practical module 5 (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
1-6 Theorie-Praxis-Verzahnung im dualen Bachelor / Linking theory and practice (dual study program, Bachelor's degree) DE Dr. Haschke 0-A3 C CM
6 N SA
 
Specialisation I. Computer Science   Compulsory Courses: 0 LP    Optional Courses: 12 LP   
5 Datenbanken / Databases EN Prof. Schulte E-19 EC CM
6 Y KL
5 Funktionales Programmieren / Functional Programming EN Prof. Schupp E-16 EC CM
6 Y KL
Y ÜA 15
5 Introduction to Quantum Computing / Introduction to Quantum Computing EN Prof. Kliesch E-25 EC CM
6 Y KL
N ÜA 15
5 Rechnerarchitektur / Computer Architecture EN Prof. Falk E-13 EC CM
6 Y KL
N FFST 15
6 Compilerbau / Compiler Construction EN Prof. Schupp E-16 EC CM
6 Y FFA
6 Computability and Complexity Theory / Computability and Complexity Theory (lt. letzter PO Berechenbarkeit und Komplexität) EN Prof. Kliesch E-25 EC CM
6 Y KL
Y ÜA 15
6 Logic in Computer Science / Logic in Computer Science EN Prof. Mottet E-EXK6 EC CM
6 Y MP
6 Maschinelles Lernen I / Machine Learning I DE / EN Prof. Ay E-21 EC CM
6 Y KL
N ÜA 20
6 Software-Engineering / Software Engineering EN Prof. Schupp E-16 EC CM
6 Y KL
Y ÜA 15
6 Softwareentwicklung / Software Development EN Prof. Schupp E-16 EC CM
6 Y FFA
 
Specialisation II. Mathematics & Engineering Science   Compulsory Courses: 0 LP    Optional Courses: 6 LP   
4 Graphentheorie und Optimierung / Graph Theory and Optimization DE / EN Prof. Taraz E-10 EC CM
6 Y KL
4 Grundlagen Raumfahrtelektronik und Primärmission / Basics space electronics and primary mission DE / EN Prof. Kulau E-EXK3 EC CM
6 Y SA
5 Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme / Electrical Power Systems I: Introduction to Electrical Power Systems DE Prof. Becker E-6 EC CM
6 Y KL
5 Elektronische Bauelemente / Electronic Devices DE Prof. Trieu E-7 EC CM
6 Y KL
Y FFST 10
5 Elektrotechnik III: Netzwerktheorie und Transienten / Electrical Engineering III: Circuit Theory and Transients DE Prof. Kölpin E-3 EC CM
6 Y KL
N TE 10
5 Kombinatorische Strukturen und Algorithmen / Combinatorial Structures and Algorithms DE / EN Prof. Taraz E-10 EC CM
6 Y MP
5 Messtechnik und Messdatenverarbeitung / Measurements: Methods and Data Processing DE Prof. Schlaefer E-1 EC CM
6 Y KL
Y ÜA 10
5 Technische Mechanik I (Stereostatik) / Engineering Mechanics I (Stereostatics) DE Prof. Kriegesmann M-24 EC CM
6 Y KL
5-6 Green Technologies II / Green Technologies II DE Dr. Scherzinger V-9 EC CM
6 Y KL
Y FFST 0
6 Einführung in Medizintechnische Systeme / Introduction into Medical Technology and Systems DE Prof. Schlaefer E-1 EC CM
6 Y KL
Y SA 10
Y RE 10
6 Elektrische Maschinen und Antriebe / Electrical Machines and Actuators DE Prof. Kern M-4 EC CM
6 Y FFA
6 Halbleiterschaltungstechnik / Semiconductor Circuit Design DE NN E-9 EC CM
6 Y KL
6 Labor Cyber-Physical Systems / Lab Cyber-Physical Systems EN Prof. Falk E-13 EC CM
6 Y SA
6 Löser für schwachbesetzte lineare Gleichungssysteme / Solvers for Sparse Linear Systems EN Prof. Le Borne E-10 EC CM
6 Y MP
6 Mathematik IV / Mathematics IV DE Prof. Lindner 0-UNIHH-M EC CM
6 Y KL
6 Theoretische Elektrotechnik I: Zeitunabhängige Felder / Theoretical Electrical Engineering I: Time-Independent Fields DE Prof. Schuster E-18 EC CM
6 Y KL
 
Specialisation III. Subject Specific Focus   Compulsory Courses: 0 LP    Optional Courses: 12 LP   
6 Technischer Ergänzungskurs für IIWBS / Technical Complementary Course for Computational Science and Engineering Bachelor Prof. Fey SD-E EC OM
12 according to Subject Specific Regulations
 
Thesis   Compulsory Courses: 12 LP    Optional Courses: 0 LP   
6 Bachelorarbeit im dualen Studium / Bachelor thesis (dual study program) Professoren der TUHH 0-TUHH C CM
12 Y AB
Explanation:

1C=Compulsory, EC=Elective Compulsory

2CM=Compulsory Defined Module, OM=Optional Defined Module

3MT=Midterm, KL=Written exam, SA=Written elaboration, FFA=Subject theoretical and practical work, FFST=Subject theoretical and practical work, MP=Oral exam, RE=Presentation, ÜA=Excercises, AB=Thesis, TE=Attestation

4CP=Credit Points

5VL=Lecture, SE=Seminar, GÜ=Recitation Section (small), PBL=Project-/problem-based Learning, PR=Practical Course, PS=Project Seminar, HÜ=Recitation Section (large)

6DE=German, EN=English, DE/EN=German and English

7SWS=Contact hours