Course of Study Computational Science and Engineering (Study Cohort w17) Legend:

Sample course plan M Bachelor Computational Science and Engineering (IIWBS) Specialisation Engineering Sciences

Analysis II

VL 2

Differential Equations 1

I P

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Core gualification Specialisation Compulsory Focus Compulsory Thesis Compulsory Compulsory Core qualification Elective Specialisation Elective Interdisciplinary Focus Elective Compulsory Compulsory Compulsory complement Formirs/webenester 2 Formirs/webenester 3 Formers/webenester 4 Formirs/weemester 5 Formirs/weber 6 Form/rs/wk Semester 1 **Discrete Algebraic Structures** Electrical Engineering II: **Engineering Mechanics I** Engineering Mechanics II Seminars Computer Science Stochastics and Mathematics Alternating Current Networks VL 2 Discrete Algebraic Engineering Mechanics I VL 3 Engineering Mechanics II VL 3 **Stochastics** VL 2 and Basic Devices Structures Seminar Computational SE 2 **Engineering Mechanics I** UE 2 Engineering Mechanics II UE 2 Stochastics UE 2 Electrical Engineering II: VL 3 **Engineering Science** Discrete Algebraic UE 2 Alternating Current Seminar Computational SE 2 Structures Networks and Basic Mathematics/Computer Devices Science Electrical Engineering II: UE 2 Seminar Engineering SE 2 Alternating Current Mathematics/Computer Networks and Basic Science Devices **Procedural Programming Objectoriented Programming** Numerical Mathematics I Signals and Systems Introduction to Control **Electrical Machines and** Actuators **Algorithms and Data** Systems Procedural Programming VL 1 Numerical Mathematics I VL 2 Signals and Systems VL 3 Structures Electrical Machines and VL 3 Introduction to Control VL 2 UE 2 Procedural Programming HÜ 1 Numerical Mathematics I UE 2 Signals and Systems Objectoriented VL 4 Actuators Systems Procedural Programming PR 2 Programming, Algorithms Introduction to Control UE 2 **Electrical Machines and** HÜ 2 and Data Structures Systems Actuators Objectoriented UE 1 Programming, Algorithms and Data Structures Electrical Engineering I: Direct Automata Theory and Formal **Computer Engineering Embedded Systems Technical Thermodynamics II** Fluid Dynamics **Current Networks and** Languages Computer Engineering VL 3 **Embedded Systems** VL 3 Technical VL 2 Fluid Mechanics VL 3 **Electromagnetic Fields** Automata Theory and VL 2 Thermodynamics II **Computer Engineering** UF 1 Fluid Mechanics HÜ 2 UE 1 **Embedded Systems** Electrical Engineering I: VL 3 Formal Languages HÜ 1 Technical **Direct Current Networks** Automata Theory and UE 2 Thermodynamics II and Electromagnetic Fields Formal Languages Technical UE 1 Electrical Engineering I: UE 2 Thermodynamics II **Direct Current Networks** and Electromagnetic Fields Mathematics I Foundations of Management **Computernetworks and Graph Theory and** Mechanics III (GES) **Bachelor Thesis** Optimization Internet Security Linear Algebra I Introduction to VL 3 Mechanics III HÜ 1 VL 2 Management Computer Networks and VL 3 Graph Theory and VL 2 UE 1 Mechanics III UE 2 Linear Algebra I Internet Security Optimization Project Entrepreneurship PBL 2 HÜ 1 Linear Algebra I Mechanics III VL 3 Computer Networks and UE 1 Graph Theory and UE 2 Analysis I VL 2 Internet Security Optimization Analysis I UE 1 Mathematics II Mathematics III **Technical Thermodynamics I** HÜ 1 Analysis I Linear Algebra II VL 2 Analysis III VL 2 Technical VL 2 Thermodynamics I UE 1 Linear Algebra II UE 1 Analysis III HÜ 1 Technical ΗÜ Linear Algebra II HÜ 1 Analysis III

Thermodynamics I

VL 2

30 31 32	Analysis II HÜ Analysis II UE		UE 1 HÜ 1	Technical Thermodynamics I	UE 1	
Nontechnical Complementary Cours	es for Bachelors (from catalogue)	6LP				

The choice of courses from the catalogue is flexible (depends on the semestral work load), provided the necessary number of required credits is reached.