Studiengangsbeschreibung

Inhalt

Die Mikroelektronik, oder besser gesagt Nanoelektronik, da die minimalen Strukturgrößen zahlreicher in Großvolumina produzierten integrierten Schaltungen nur noch im Bereich von 20 Nanometer und darunter liegen, ist die Basis für die Produkte, die als Innovationen der vergangenen Jahre das tägliche Leben der Menschheit stark beeinflussen. Als Beispiele seien nur genannt der Personal Computer und das Smartphone, die beide mit Internetanbindung neue Dimensionen der Kommunikation und Information erschließen. Auch in der Medizin sind diagnostische Verfahren wie Computer- und Kernspintomographie oder intelligente Implantate nur mit moderner Nanoelektronik und Mikrosystemtechnik in der erforderlichen Leistungsfähigkeit realisierbar.

Grundlage für die Mikroelektronik und Mikrosystemtechnik ist die Halbleitertechnologie. Deshalb ist es die Zielsetzung des Internationalen  Masterstudiengangs „Microelectronics and Microsystems“, den Studierenden fundiertes Wissen auf physikalischer Ebene über die  elektronischen Vorgängen in halbleitenden Materialien, vorwiegend Silizium, in Hinblick auf Bauelemente und deren Anwendungen und Herstellungsverfahren zu vermitteln sowie sie in   der Technologie und Funktionsweise der Mikrosystemtechnik auszubilden. Sie sollen nicht  nur die aktuellen Bauelemente und Prozesse in ihrem Aufbau, ihrer Herstellung und Wirkungsweise verstehen, sondern auch in kritischer Weise das Problempotenzial, das mit dem Übergang zu kleineren Strukturen entsteht, erkennen können. Darüber hinaus sollen sie eine Vorstellung entwickeln, in welche Richtung Maßnahmen zielen müssen, um einer Lösung solcher Probleme näher zu kommen. Dadurch werden sie befähigt, die weitere Strukturverkleinerung mit ihrem Potenzial - aber auch ihren Einschränkungen - zu verstehen, um diesen Prozess, der ihr Berufsleben begleiten wird, aktiv auf technologischer oder Anwenderseite mit zu gestalten.

Neben der wichtigen Rolle der physikalischen Grundlagen nimmt eine genaue Kenntnis der prozessabhängigen Herstellungsverfahren eine Schlüsselrolle ein, um den Studierenden sowohl in der Mikroelektronik als auch in der Mikrosystemtechnik das Rüstzeug mitzugeben, mit dem sie in der beruflichen Praxis neue Lösungen konzipieren und diese dann in funktionsfähige Systeme umsetzen können.

Der Internationale Masterstudiengang "Microelectronics and Microsystems" qualifiziert die Studierenden für eine wissenschaftlich ausgerichtete Berufstätigkeit im Bereich der Elektrotechnik und Informationstechnik, wobei sich das Berufsfeld von der Entwicklung über die Herstellung und Anwendung bis zur Qualitätssicherung von komplexen Systemen mit hochintegrierten Schaltkreisen und mikrosystemtechnischen Komponenten erstrecken kann. Beide Gebiete wachsen mehr und mehr zusammen, da eine schnell steigende Anzahl neuer komplexer Anwendungen die Integration von Mikroelektronik und Mikrosystemtechnik in einem System erfordert.

Insbesondere soll der Studiengang dazu befähigen, nicht nur neue komplexe Systeme für innovative Anwendungen zu entwerfen sondern diese auch produktorientiert nutzbar zu machen. Dabei steht die Vermittlung von ingenieurwissenschaftlicher Methodik auf physikalischer Basis sowohl in den theoretischen als auch in den anwendungsorientierten Lehrveranstaltungen im Vordergrund.

Ergänzend zu dem fachlichen Grundlagenkanon an der TUHH sind Seminare zur Personalen Kompetenzentwicklung im Rahmen des Theorie-Praxis-Transfers in das duale Studium integriert, die den modernen Berufsanforderungen an eine Ingenieurin bzw. einen Ingenieur gerecht werden und die Verknüpfung der beiden Lernorte unterstützt.

Die praxisintegrierenden dualen Intensivstudiengänge der TUHH bestehen aus einem wissenschaftsorientierten und einem praxisorientierten Teil, welche an zwei Lernorten durchgeführt werden. Der wissenschaftsorientierte Teil umfasst das Studium an der TUHH. Der praxisorientierte Teil ist mit dem Studium inhaltlich und zeitlich abgestimmt und findet jeweils in der vorlesungsfreien Zeit in einem Kooperationsunternehmen in Form von Praxismodulen und -phasen statt.


Berufliche Perspektiven

Die Absolventinnen und Absolventen des Internationalen Masterstudiengangs „Microelectronics and Microsystems“ finden ein sehr breitgefächertes berufliches Umfeld vor, da sie sowohl fundiertes Wissen für den Entwurf, die Anwendung und auch für die Herstellung hochintegrierter Schaltkreise der Mikroelektronik und von Mikrosystemen in ihrem Studium erworben haben. Potenzielle Arbeitgeber sind deshalb einerseits Großfirmen mit internationalen Standorten für die Produktion von integrierten Schaltungen, aber auch mittelständische und kleinere Firmen im Bereich der Mikrosystemtechnik. 

Ein vielfältiges Angebot an Arbeitsplätzen gibt es auch im Bereich des Entwurfs sowohl von integrierten Schaltungen als auch von Mikrosystemen. Aufgrund des rapiden Preisverfalls für leistungsfähige Computersysteme kann der Entwurf auch von sehr kleinen Firmen am Rechner durchgeführt werden. In einer Arbeitsteilung wird dann die Herstellung von größeren Firmen übernommen, weshalb der Entwurfsbereich auch in Zukunft eine stabile Säule des Arbeitsmarktes für die Absolventen des Internationalen Studiengangs Microelectronics and Microsystems bleiben wird. 

Zudem erlangen die Studentinnen und Studenten grundlegende fachliche und personale Kompetenzen im dualen Studium, die sowohl zu einem frühen Einstieg in die Berufspraxis als auch zu einem wissenschaftlich vertiefenden Studium befähigen. Darüber hinaus werden berufspraktische Erfahrungen durch die integrierten Praxismodule erweitert. Die Absolventinnen und Absolventen des dualen Studiengangs verfügen über ein breites Grundlagenwissen, grundlegende Fähigkeiten des wissenschaftlichen Arbeitens und über anwendungsbezogene personale Kompetenzen.


Lernziele

Wissen

  1. Die Studierenden verstehen die physikalischen Grundprinzipien mikroelektronischer Bauelemente und mikrosystemtechnischer Funktionseinheiten sowie deren Herstellungstechnologie und können diese in voller Breite und Tiefe erläutern. 
  2. Sie haben vertiefte Kenntnisse in ausgewählten Teilgebieten gewonnen zusammen mit einem breiten theoretischen und methodischen Fundament.
  3. Die Studierenden verfügen über vertiefte Kenntnisse der interdisziplinären Zusammenhänge.   
  4. Sie verfügen über die notwendigen Hintergrundkenntnisse, um ihr Fachgebiet in    das wissenschaftliche und gesellschaftliche Umfeld einordnen zu können.

Fertigkeiten

Die Studierenden sind in der Lage

  1. Berechnungsmethoden zur quantitativen Analyse von Designparametern und zur Entwicklung von innovativen Systemen der Mikroelektronik und Mikrosystemtechnik anzuwenden. 
  1. komplexe Probleme und  Aufgabenstellungen durch grundlagenbasierte methodische Ansätze auch außerhalb  der vorgegebenen Lösungsmuster selbständig zu lösen. 
  2. den technologischen Fortschritt und die wissenschaftlichen Weiterentwicklungen sowie technische, ökonomische und ökologische Randbedingungen in die Problemlösungen einzubeziehen.

Sozialkompetenz

Die Studierenden sind fähig, 

  1. in interdisziplinären Teams zu arbeiten und prozessorientiert ihre Arbeit zu organisieren als Vorbereitung auf forschungsorientierte Berufstätigkeit  und Führungsverantwortung. 
  2. ihre Arbeitsergebnisse schriftlich oder mündlich und auch in internationalen Kontexten zielgruppengerecht zu präsentieren.

Selbstständigkeit

  1. Die Studierenden können in effektiv selbstorganisierter Weise sich Teilgebiete ihres Faches mit wissenschaftlicher Methodik erschließen. 
  2. Sie sind in der Lage, ihr erlerntes Wissen in eigenständiger Weise mit geeigneten Präsentationstechniken vorzutragen oder in einem Dokument von angemessenem Umfang darzustellen.
  3. Die Studierenden sind in der Lage, weiteren Informationsbedarf zu erkennen und eine Strategie zu entwickeln, um ihr Wissen selbständig zu erweitern.

Der kontinuierliche Wechsel der Lernorte im dualen Studium ermöglicht es, dass Theorie und Praxis zueinander in Beziehung gesetzt werden können. Die individuellen berufspraktischen Erfahrungen werden von den Studierenden theoretisch reflektiert und in neue Formen der Praxis überführt, wie auch die praktische Erprobung theoretischer Elemente als Anregung für die theoretische Auseinandersetzung genutzt wird.


Studiengangsstruktur

Das Curriculum des Internationalen Masterstudiengangs „Microelectronics and Microsystems“ ist wie folgt gegliedert:

  • Kernqualifikation: 
  • Vertiefung: Die Studierenden wählen eine aus den folgenden zwei Vertiefungen:

In ihrer Vertiefung belegen die Studierenden Module im Umfang von insgesamt 18 Leistungspunkten (1. - 3. Semester).

  • Masterarbeit mit 30 LP (4. Semester)

Damit ergibt sich ein Gesamtaufwand für das gesamte Studienprogramm von 150 LP.

Das Strukturmodell der dualen Studienvariante folgt einem moduldifferenzierenden Ansatz. Aufgrund des praxisorientierten Teils weist das Curriculum der dualen Studienvariante Unterschiede im Vergleich zum regulären Bachelorstudium auf. Die fünf Praxismodule sind in entsprechenden Praxisphasen in der vorlesungsfreien Zeit verortet und finden im Kooperationsunternehmen der dual Studierenden statt.

Fachmodule der Kernqualifikation

Modul M0523: Betrieb & Management

Modulverantwortlicher Prof. Matthias Meyer
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Keine
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Die Studierenden sind in der Lage, ausgewählte betriebswirtschaftliche Spezialgebiete innerhalb der Betriebswirtschaftslehre zu verorten.
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Theorien, Kategorien und Modelle erklären.
  • Die Studierenden können technisches und betriebswirtschaftliches Wissen miteinander in Beziehung setzen.


Fertigkeiten
  • Die Studierenden können in ausgewählten betriebswirtschaftlichen Teilbereichen grundlegende Methoden anwenden.
  • Die Studierenden können für praktische Fragestellungen in betriebswirtschaftlichen Teilbereichen Entscheidungsvorschläge begründen.


Personale Kompetenzen
Sozialkompetenz
  • Die Studierenden sind in der Lage, in interdisziplinären Kleingruppen zu kommunizieren und gemeinsam Lösungen für komplexe Problemstellungen zu erarbeiten.


Selbstständigkeit
  • Die Studierenden sind in der Lage, sich notwendiges Wissen durch Recherchen und Aufbereitungen von Material selbstständig zu erschließen.


Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Lehrveranstaltung L3065: Aktuelle Fragen der Digitalen Ökonomie B&M
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Christina Strobel
Sprachen DE
Zeitraum WiSe
Inhalt

Digitale Ökonomie ist der zielgerichtete Ansatz zur Befriedigung menschlicher Bedürfnisse unter Berücksichtigung von Knappheit durch den Einsatz von digitalen Informations- und Kommunikationstechnologien. Ziel des Seminars ist es, aktuelle digitalökonomische Fragestellungen und deren Bezug zur volkswirtschaftlichen Theorie zu diskutieren. Hierfür werden vorab ein aktuelles populärwissenschaftliches Buch (in Deutsch oder Englisch) sowie zugehörige Fachliteratur (in Englisch) gelesen. Anschließend werden im Seminar einzelne Themen durch die Studierenden vorgestellt und gemeinsam kritisch diskutiert. 

Literatur
Lehrveranstaltung L2993: Current issues in behavioral economics
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Timo Heinrich
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
The goal of the seminar is to discuss current issues in behavioral and to shed light on their relationship to economic theory and our own behavior. Students will first read a current popular science book (in English) as well as the relevant scientific literature. Then the individual topics will be presented and critically discussed during the seminar. Furthermore, students will develop individual research questions.
Literatur Wird noch bekanntgegeben.
Lehrveranstaltung L2860: Behavioral Online Experiments
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 5-seitige Ausarbeitung & 20-minütige Teampräsentation
Dozenten Dr. Christina Strobel
Sprachen EN
Zeitraum SoSe
Inhalt

The course offers an introduction to the methods and techniques of online experiments used in experimental Economics, Psychology, and Business Administration. The course is targeted at participants with no or limited experience. It pursues the agenda of providing the practical, theoretical and tool knowledge to find a research question, deduce hypotheses and design and run an experiment. Hence, the focus will be on general methodological, design and process issues. The course is not surveying the existing experimental evidence but rather pinpoints towards selected well knowns experiments. We will follow a learning-by-doing approach. We will have a short introduction to data evaluation using non-parametric statistics as well as to relevant software tools (oTree). At the end of this course you will have gained not only the know-how needed to develop and implement an experimental research design online but you have also gained the basic skills required to gather, analyze and interpret experimental data.

Literatur

Webster, M., & Sell, J. (Eds.). (2014). Laboratory experiments in the social sciences. Elsevier.

Lehrveranstaltung L2546: Building Business Data Products
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang folgt
Dozenten Prof. Christoph Ihl, Joschka Schwarz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2544: Business Data Science Basics
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang folgt
Dozenten Prof. Christoph Ihl, Joschka Schwarz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2545: Business Decisions with Machine Learning
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang folgt
Dozenten Prof. Christoph Ihl, Joschka Schwarz
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2722: Digitalisierung und die Auswirkungen auf den Menschen
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung (laut FPrO)
Prüfungsdauer und -umfang Ausarbeitung, 5 Seiten
Dozenten Robert Damköhler, Laura Noack
Sprachen DE
Zeitraum SoSe
Inhalt

Digital:
In  diesem Modul verschaffen wir Ihnen in 3 intensiven Phasen - der Konzeption, Implementierung und Etablierung von Projekten - einen praxisorientierten Überblick über digitale Tools & Methoden, neue Geschäftsmodelle & Strategien, technologische Trends sowie rechtliche Aspekte. Das Ganze wird gefestigt mit praxisnahen Übungen, so dass Sie bereits im Laufe des Seminars ein eigenes Geschäftsmodell entwickeln und am Markt mit den richtigen Techniken testen.

Human Factors:
Mit praxisnahen Übungen lernen Sie die methodische Nutzerzentrierung durch den User-Centered Design Prozess kennen und erlernen, in welchen Projektphasen, welche UCD-Methoden sinnvoll anzuwenden sind. Darüber hinaus lernen Sie das Themengebiet „Human Factors“ kennen und verstehen, warum wir auch in der Digitalisierung von soziotechnischen Systemen sprechen, warum diese einen wichtigen Erfolgsfaktor darstellen und welche Phasen zur Integration der Prinzipien in die Organisationsstruktur eines Unternehmen durchlaufen werden müssen.

New Leadership:
Im Modul New Leadership lernen Sie einen neuen Führungsansatz kennen, der Sie dabei unterstützt die Herausforderungen der Digitalisierung zu meistern. Mithilfe der agilen Methodik und interaktiven Übungen erlernen Sie, wie Sie die Prinzipien des neuen Führungsansatzes verankern sowie das Empowerment und die Selbstorganisation des Teams steigern, um den Rahmen für innovatives Arbeiten zu schaffen.

Literatur

Digital:

  • Eine kurze Geschichte der Menschheit, Yuval Noah Harari
  • 21 Lektionen für das 21. Jahrhundert, Yuval Noah Harari
  • Eine kurze Geschichte der Digitalisierung, Martin Burckhardt
  • Digitale Fabrik, Uwe Bracht, Dieter Geckler und Gigrid Wenzel
  • Human Computer Interaction, R. Dix, Verlag: Pearson/Prentice Hall
  • The Mom Test: How to Talk to Customers & Learn if Your Business is a Good Idea When Everyone is Lying to You, Rob Fitzpatrick
  • Digitalisierungsstrategie entwickeln und umsetzen: Ein Praxisratgeber zur Entwicklung und Umsetzung der Digitalisierungsstrategie für die digitale Transformation, David Theil

Human Factors:

  • Ergonomie der Mensch-System-Interaktion, DIN EN ISO 9241, Deutsches Institut für Normung
  • Methoden der Usability Evalution: Wissenschaftliche Grundlagen und praktische Anwendung von Florian Sarodnic , Henning Brau, Verlag: Hogrefe AG
  • Introduction to Human Factors Engineering von Christopher D. Wicken, Verlag: Pearson
  • Sketching User Experiences von Bill Buxton, Verlag:mitp
  • Rapid Contextual Design von Karen Holtzblatt, Verlag: Elsevier Science & Technology
  • Wie User Testing in der Praxis wirklich funktioniert von M. Pirker, S. Rössler, M. Placho, A. Riedmüller, Verlag: Independently published (05.06.2019)
  • Wie User Experience in der Praxis wirklich funktioniert von M. Pirker, S. Rössler, M. Placho, A. Riedmüller, Verlag: Independently published (27.02.2018)
  • Schreckensberger, P., Schilbach, B., & Saier, T. (2015). Design Management: Zwischen Marken- & Produktsystemen (1. Aufl; P. Schreckensberger, Hrsg.). Norderstedt: Books on Demand.
  • Goodwin, K. (2009). Designing for the digital age: How to create human-centered products and services. Wiley Pub.
  • Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., & Dabney, J. (2014). Error Cost Escalation Through the Project Life Cycle. INCOSE International Symposium

New Leadership

  • Pink, D. H. (2011). Drive: The surprising truth about what motivates us. Penguin.
  • Sinek, S. (2009). Start with why: How great leaders inspire everyone to take action. Penguin.
  • Doerr, J. (2018). Measure what matters: OKRs: The simple idea that drives 10x growth. Penguin UK.
  • Darrell, K. R., Sutherland, J., & Takeuchi, H. (2016). Embracing agile. Harvard Business Review, 94(5), 41-50.
  • Sutherland, J. (2015). Die Scrum-Revolution: Management mit der bahnbrechenden Methode der erfolgreichsten Unternehmen. Campus Verlag.
  • Schwaber, K., & Sutherland, J. (2011). The scrum guide. Scrum Alliance, 21(1).
  • Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ... & Thomas, D. (2009). Agile manifesto, 2001. URL http://www. agilemanifesto. org.
  • Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard business review, 64(1), 137-146.
  • Medinilla, Á. (2012). Agile management: Leadership in an agile environment. Springer Science & Business Media.
  • Edmondson, A. C. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350−383.
  • Edmondson, A. C. (2003). Managing the risk of learning: Psychological safety in work teams. In M. West, D. Tjosvold, & K.G. Smith (Eds.), International handbook of organizational teamwork and cooperative working (pp. 255−276). John Wiley & Sons.
  • Harteis, C., Bauer, J., & Gruber, H. (2008). The culture of learning from mistakes: How employees handle mistakes in everyday work. International Journal of Educational Research, 47(4), 223−231.
Lehrveranstaltung L1703: Emotional Design / Benutzerzentrierte Produktentwicklung
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang Teamarbeit und abschließender Vortrag
Dozenten Jörg Heuser
Sprachen DE
Zeitraum SoSe
Inhalt

Vorlesungsteile

  • Objektive und subjektive Wahrnehmung in der  Wertung von Produkteigenschaften
  • Auswirkungen von Material, Farbe, Formgebung und Struktur auf die Akzeptanz eines Produkts
  • Ästhetische Funktion eines Produkts
  • Fallbeispiele, fehlende Akzeptanz eines Produkts und deren möglichen Gründe

Seminarteile

  • Identifizieren nicht-technischer Funktionen eines Produkte
  • Identifizieren der subjektiven Einflüsse in der Produktentwicklung

Projektarbeiten

  • Themen werden mit den Studierenden gemeinsam entwickelt. Die Arbeiten werden in Teams präsentiert, moderiert und bewertet
Beispiele: Ganzheitliche Analyse eines Produkts, Produktoptimierung


Literatur Wird in der Veranstaltung angegeben
Lehrveranstaltung L2348: Erfolgsfaktoren im Projektumfeld
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 0
Dozenten Dr. Alexander Kuhlicke, Stephan Meier
Sprachen DE
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L3123: Organizational Design for Innovation and Collaboration
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Prof. Tim Schweisfurth
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L2600: Green Economy - Entrepreneurship, Innovation & Technology Management
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Ausarbeitung und Gruppenpräsentation
Dozenten Prof. Michael Prange
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt

Topics:

  • Green Economy
  • Business models
  • Business strategy
  • Green Technologies
  • Green Innovation
  • Business planning
  • Business development
  • Green Entrepreneurship

Based on examples and case studies primarily in the field of Green Economy, students learn the basics of Entrepreneurship, Innovation and Technology Management and will be able to develop business models, to evaluate start‐up projects and to describe strategic innovation processes.

Literatur

Präsentationsfolien, Beispiele und Fallstudien aus der Lehrveranstaltung.

Presentation slides, examples, and case studies from the lecture.

Lehrveranstaltung L2347: Human resource management für Ingenieure
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang 0
Dozenten Helge Kochskämper
Sprachen DE
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L1711: Innovation Debates
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes
Dozenten Prof. Daniel Heiner Ehls
Sprachen EN
Zeitraum WiSe
Inhalt

Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow.

The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership.

Literatur

1.       Course notes and materials provided before the lecture

2.       Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional)

Lehrveranstaltung L0940: Innovationsmanagement
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Cornelius Herstatt
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Innovationen sind die wichtigsten Quellen des Wachstums in industrialisierten Ländern. Die Frage, wie Innovationen herbeigeführt und erfolgreich gestaltet werden können, nimmt in der Betriebswirtschaftslehre einen immer größeren Raum ein. In der Lehrveranstaltung Innovationsmanagement behandelt Prof. Herstatt  ausgewählte Aspekte und Themen im Zusammenhang mit strategischen, organisatorischen und Ressourcen-bezogenen Entscheidungen.

Die Veranstaltung Innovationsmanagement findet im üblichen Vorlesungsformat statt, ergänzt durch studentische Präsentationen sowie Gruppen- und Einzelarbeiten.

Themen

  • Die Rolle der Innovation
  • Die Entwicklung einer Innovationsstrategie
  • Ideen: Wie sich Kreativität und Wissen managen lassen
  • Priorisierung: Auswahl und Management des Portfolios
  • Implementierung neuer Produkte, Prozesse und Dienstleistungen
  • Menschen, Organisation und Innovation
  • Wie sich die Innovationsperformance steigern lässt
  • Die Zukunft des Innovationsmanagements
Literatur
  • Goffin, K., Herstatt, C. and Mitchell, R. (2009): Innovationsmanagement: Strategie und effektive Umsetzung von Innovationsprozessen mit dem Pentathlon-Prinzip, München: Finanzbuch Verlag

    Weiterführende Literatur
  • Innovationsmanagement
    Juergen Hauschildt
  • F + E Management
    Specht, G. / Beckmann, Chr.
  • Management der frühen Innovationsphasen
    Cornelius Herstatt, Birgit Verworn
    (im TUHH-Intranet auch als E-Book verfügbar)
  • Bringing Technology and Innovation Into the Boardroom
  • weitere Literaturempfehlungen auf Anfrage
Lehrveranstaltung L3093: Innovation Management (EN)
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang NN
Dozenten Dr. Vytaute Dlugoborskyte
Sprachen EN
Zeitraum SoSe
Inhalt

The course aims to provide students with an understanding of key issues in the management of innovation and development of the relevant skills needed to manage innovation at both strategic and operational levels. It provides evidence of different approaches based on leading research, real world examples and experiences of firms and organizations from around the world. The management of innovation is one of the most important and challenging aspects of modern organization. Innovation is a fundamental driver of competitiveness and it plays a large part in improving quality of life. Innovation, and particularly technological innovation, is inherently difficult, uncertain and risky, and most new technologies fail to be translated into successful products and services. Given this, it is essential that students understand the strategies, tools and techniques for managing innovation, which often requires a different set of management knowledge and skills from those employed in everyday business administration. The course itself draws upon research activities of the Innovation Management Group within TUHH, the Institute for Technology and Innovation Management (TIM, W-7, www.tuhh.de/tim)

Knowledge Objectives:
1. Understand definitions and concepts of innovation,
2. Explore major models and theories of innovation,
3. Use and apply tools for innovation management.

Skill Objectives:
1. Diagnostic and analytical skills,
2. Enhance verbal skills through class and syndicate discussions,
3. Build up critical and interpretation skills,
4. Learn how to evaluate different options,
5. Formulate and develop strategy,
6. Assess and resolve managerial challenges.

Learning Outcomes
At the end of the course students will be able to demonstrate understanding, and make critical assessments of the following:
1. Assess and interpret innovation processes,
2. Develop and formulate managerial strategies to shape innovative performance,
3. Utilize tools of innovation management to map and measure innovative activities,
4. Diagnose different innovation challenges and make recommendations for resolving them.

Course Outline - Lecture Topics:
1. The Management of (Technological) Innovation,
2. Strategy and Organization for Innovation,
3. Innovation of Products, Services and Business Models,
4. Managing the Innovation Process,
5. Networks, Communities of Innovators and Lead User-Innovation,
6. Innovation in the Age of Circular Economy (C2C),
7. Market-Research for Innovation and Design-thinking,
8. Capturing value from R&D, Open Innovation and IP,
9. Creativity and mindfulness in Innovation,
10. Conclusions and Future Challenges.

Literatur

Wir werden wichtige Themen auf der Grundlage wichtiger Forschungsarbeiten im Bereich des Innovationsmanagements diskutieren (wird den Studierenden über StudIP zur Verfügung gestellt). Darüber hinaus umfasst die Grundlagenliteratur die folgenden Themen:
1. Dodgson, M. Gann, D. and Salter A. The management of technological innovation: strategy and practice. Oxford University Press, 2008.
2. Tidd, J., Bessant, J. and Pavitt, K.: Managing Innovation: Integrating technological, market and organizational change. 5th ed., John Wiley and Sons, 2013.
3. Goffin, K., Mitchell, R.: Innovation Management: Effective strategy and implementation. 3rd ed., Macmillan Education, 2016.

Lehrveranstaltung L0161: Internationalization Strategies
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten)
Dozenten Prof. Thomas Wrona
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction
  • Internationalization of markets
  • Measuring internationalization of firms
  • Target market strategies
  • Market entry strategies
  • Timing strategies
  • Allocation strategies
  • Working in small teams on close-to-reality problems based on presented theories
  • Paper writing on developed solution to the given problem/project e.g. market attractiveness analysis; development of market entry strategy for a hypothetical product in a given region
Literatur
  • Bartlett/Ghoshal (2002): Managing Across Borders, The Transnational Solution, 2nd edition, Boston
  • Buckley, P.J./Ghauri, P.N. (1998), The Internationalization of the Firm, 2nd edition
  • Czinkota, Ronkainen, Moffett, Marinova, Marinov (2009), International Business, Hoboken
  • Dunning, J.H. (1993), The Globalization of Business: The Challenge of the 1990s, London
  • Ghoshal, S. (1987), Global Strategy: An Organizing Framework, Strategic Management Journal, p. 425-440
  • Praveen Parboteeah, K.,Cullen, J.B. (2011) , Strategic International Management, International 5th Edition
  • Rugman, A.M./Collinson, S. (2012): International Business, 6th Edition, Essex 2012
Lehrveranstaltung L3060: Causal Data Science for Business Analytics
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Mehrere schriftliche Ausarbeitungen über das Semester hinweg verteilt
Dozenten Oliver Mork
Sprachen EN
Zeitraum WiSe
Inhalt

Most managerial decision problems require answers to questions such as “what happens to Y if we do X?”, or “was it X that caused Y to change?” In other words, practical business decision-making requires knowledge about cause-and-effect. While most data science and machine learning approaches are designed to efficiently detect patterns in high-dimensional data, they are not able to distinguish causal relationships from simple correlations. That means, commonly used approaches to business analytics often fall short to provide decision makers with important causal knowledge. Therefore, many leading companies currently try to develop specific causal data science capabilities. This module will provide an introduction into the topic of causal inference with the help of modern data science and machine learning approaches and with a focus on applications to practical business problems from various management areas. Based on an overarching framework for causal data science, the course will guide students to detect sources of confounding influence factors, understand the problem of selective measurement in data collection, and extrapolate causal knowledge across different business contexts. We also cover several tools for causal inference, such as A/B testing and experiments, difference-in-differences, instrumental variables, matching, regression discontinuity designs, etc. A variety of hands-on examples will be discussed that allow students to apply their newly obtained knowledge and carry out state-of-the-art causal analyses by themselves.

Literatur
Lehrveranstaltung L0863: Marketing
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Christian Lüthje
Sprachen EN
Zeitraum WiSe
Inhalt

Contents

Basics of Marketing

The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling

Strategic Marketing Planning

How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership  strategies?

Market-oriented Design of products and services

How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products?

Pricing

What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)?

Marketing Communication

What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations?

Sales and Distribution

How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets?


Knowledge

Students will gain an introduction and good overview of

  • Specific challenges in the marketing of innovative goods and services
  • Key strategic areas in strategic marketing planning (cooperation, internationalization, timing)
  • Tools for information gathering about future customer needs and requirements
  • Fundamental pricing theories and pricing methods
  • Main communication instruments
  • Marketing channels and main organizational issues in sales management
  • Basic approaches for managing customer relationship

Skills

Based on the acquired knowledge students will be able to:

  • Design market timing decisions
  • Make decisions for marketing-related cooperation and internationalization activities
  • Manage the challenges of market-oriented development of new products and services
  • Translate customer needs into concepts, prototypes and marketable offers
  • Determine the perceived quality of an existing product or service using advanced elicitation and measurement techniques that fit the given situation
  • Analyze the pricing alternatives for products and services
  • Make strategic sales decisions for products and services (i.e. selection of sales channels)
  • Analyze the value of customers and apply customer relationship management tools

Social Competence

The students will be able to

  • have fruitful discussions and exchange arguments
  • present results in a clear and concise way
  • carry out respectful team work

Self-reliance

The students will be able to

  • Acquire knowledge independently in the specific context and to map this knowledge on other new complex problem fields.
  • Consider proposed business actions in the field of marketing and reflect on them.



Literatur

Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431

Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004,  p. 106-110

Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155

Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116


Lehrveranstaltung L3140: Nachhaltige Unternehmensführung in der Praxis
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 60 Minuten
Dozenten Stefan Klebert
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L3125: Open and Collaborative Innovation
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Prof. Tim Schweisfurth
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L2350: Operational Leadership
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Dr. Thomas Kosin
Sprachen DE
Zeitraum WiSe
Inhalt
  • Leadership & its Environment - Führung & Führungsumfeld
  • Motivation
  • Lead Yourself - Selbstführung
  • Leadership Theories & Styles - Führungstheorien und -stile
  • Team Leadership - Team & Führung
  • Lead Change - Wandel herbeiführen
  • Operational Change - Veränderung im Unternehmen umsetzen
  • Develop Leadership - Führungsworkshop
Literatur

Czikszentmihalyi, Mihalyi (2014): Flow im Beruf oder Das Geheimnis des Glücks am Arbeitsplatz,
Klett-Cotta, 1. Auflage

Drucker, Peter F. (1999): Manage Oneself, Harvard Business School, On Managing Yourself, S.13-32

Dweck, Carol (2017): Selbstbild - Wie unser Denken Erfolge oder Niederlagen bewirkt, Piper-Verlag (engl. Original: Mindset - The new psychology of success)

Goleman, Daniel (2000): Leadership that gets results, Harvard Business School, On Managing People, S.1-14

Laloux, Frederic (2015): Reinventing Organizations, Verlag Franz Vahlen

McKee, Annie (2014): A focus on leaders, Pearson Education Ltd., 2. Auflage

Northouse, Peter G. (2019): Leadership - Theory & Practise, Sage Publications, 8. Auflage

Robbins, Stephen P., Coulter, Mary, Fischer, Ingo (2014): Management -  Grundlagen der Unternehmensführung, , Pearson Deutschland GmbH, 12. Auflage (engl. Original: Management, 2007, Pearson Prentice Hall, 9. Auflage)
Lehrveranstaltung L0709: Project Management
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Prof. Carlos Jahn
Sprachen EN
Zeitraum WiSe
Inhalt

The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event.

The following topics will be covered in the lecture:

  • SMART, Work Breakdown Structure, Operationalization, Goals relation matrix
  • Metra-Potential Method (MPM), Critical-Path Method (CPM), Program evaluation and review technique (PERT)
  • Milestone Analysis, Earned Value Analyis (EVA)
  • Progress reporting, Tracing of project goals, deadlines and costs, Project Management Control Loop, Maturity Level Assurance (MLA)
  • Risk Management, Failure Mode and Effects Analysis (FMEA), Risk Matrix

Literatur

Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute.

DeMarco, Tom (1997). The Deadline: A Novel About Project Management.

DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5)

Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management.

Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung

Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach.

Heyworth, Frank (2002). A Guide to Project Management.

ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E))

Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling.

Lock, Dennis (2018). Project Management.

Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager.

Murch, Richard (2011). Project Management: Best Practices for IT Professionals.

Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen.

Lehrveranstaltung L1385: Projektmanagement in der industriellen Praxis
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Gruppenarbeit: Erstellung eines Poster sowie eines Aufgabenblatts (inkl. Lösungen)
Dozenten Dipl.-Ing. Wilhelm Radomsky
Sprachen DE
Zeitraum WiSe
Inhalt

In der Veranstaltung werden aktuelles Wissen und Trends zum Projektmanagement behandelt:

    Projektmanagementkultur mit Lessons Learned, Optimierung von Theorie und Prozess       Projektmanagementtheorie gespiegelt an den Erfahrungen aus der Projektmanagementpraxis
    Entwicklung, Implementierung und Betrieb eines PM-Systems in kleinen und großen Firmen, z.B. Siemens
   Grundlagen des Projektmanagements (Kompetenzen, Methoden, Tools) werden geübt, z.B. EVA, MTA, KTA, FMEA, PDCA, MPM

Ziel ist die Information über aktuelle Herausforderungen im PM.

    Modernes agiles Projektmanagement in dynamischen Märkten
    Herausforderungen in bewegten Zeiten bestehen, Projektmanagement im VUCA- und BANI-Umfeld
    Beherrschen von Änderungen und Veränderungen
    Sicherung der Zukunft durch professionelles Agieren
    Sicherstellen von Gesundheit und Ergebnis in Job und Projekt

Mit den Themenschwerpunkten

    Projektmanagement in Industrie, KMU, Studium und privat
    Project Life Cycle, Prozess und Organisation, agil oder ‘agil‘
    Integrations-, Inhalts- und Umfangsmanagement, Umfeld- und Stakeholder Management
    Vertrags-, Risiko- und Änderungsmanagement
    Termin-, Kosten- und Personalmanagement
    Qualitätsmanagement, Erfolgsfaktoren im Projektumfeld
    Der menschliche Faktor, Unternehmenskultur
    Kommunikationsmanagement, Teamentwicklung, Führungstheorien

Projektmanagement wird als probates Mittel zur Aufgaben- und Problemlösung in privaten und beruflichen Umfeldern präsentiert. Projektmanagement wird immer mehr als agiles zielorientiertes Führungskonzept in Firmen und Betrieben genutzt. Den TeilnehmerInnen werden Kompetenzen und Lösungswege zur besseren Bewältigung ihrer Aufgaben vorgestellt. Die Anwendung des Projektmanagements kann bereits im Studium zur Verbesserung von Struktur, Kommunikation, Ergebnis führen und auf den Berufseinstieg vorbereiten. Die Vorlesung dient als  Basis für eine Projektmanagementzertifizierung bei den entsprechenden Zertifizierungsstellen wie z.B. GPM oder PMI, der Projektmanagementprozess wird gemäß den grundlegenden internationalen Projektmanagementstandards von IPMA und PMI und dem für die Praxis angepasstem Projektmanagementsystem von Siemens vorgestellt.



Literatur
  • PMI - PMBOK-Guide 7th Edition (A Guide to the Project Management Body of Knowledge) 2021
  • GPM - Kompetenzbasiertes Projektmanagement (PM4) 2019
  • Bea/Scheurer/Hesselmann - Projektmanagement 2019
  • Kerzner, Harold - Projektmanagement 2022
Lehrveranstaltung L1897: Projektmanagement und Agile Methoden
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten)
Dozenten Christian Bussler
Sprachen DE
Zeitraum SoSe
Inhalt

Die Veranstaltung vermittelt die Grundlagen des Projektmanagements, wie es sowohl in technischen als auch in kaufmännischen Projekten angewandt wird. Inhaltlich abgerundet wird sie durch einen Exkurs zum Prozessmanagement. Zentrale Fragestellungen sind:

- Was macht ein Projekt aus und vor welche Herausforderungen stellt es die Beteiligten?

- Welche Methoden gibt es, um diesen Herausforderungen zu begegnen?

- Wie wurden die Methoden weiterentwickelt, um immer schnelleren Innovationszyklen gerecht zu werden? Was ist heute "state of the art"?

- Was wird von den einzelnen Projektmitgliedern erwartet? 

- Was unterscheidet Projekte von Prozessen? Wie werden letztere analysiert?

Die Methoden werden in der Veranstaltung nicht nur vermittelt, sondern unmittelbar in Gruppenarbeit angewendet. Damit werden die Teilnehmer befähigt, sich konstruktiv in Projekte einzubringen und später selbst Projekte zu gestalten und zu steuern. Da in Unternehmen immer mehr projektorientiert gearbeitet wird, stellt dies eine Schlüsselqualifikation dar.

Themenschwerpunkte sind dabei:

- Das "magische Dreieck" der Projektziele

- Typische Projektphasen

- Klassische Instrumente und Methoden (Projektstrukturplan, DEMI, Gantt-Diagramm)

- Projektorganisation und -steuerung

- Kommunikation und Arbeit im Team

- Agiles Vorgehen nach Scrum

- Prozessebenen und -kaskadierung

- Grundlagen der Prozessoptimierung

Die Veranstaltung ist so aufgebaut, dass die Teilnehmer mit überschaubarem zusätzlichen Aufwand eine Basiszertifizierung für Projektmanagement bei einer entsprechenden Zertifizierungsstellen (z.B. GPM Basiszertifikat) erwerben können.

Teile der Hausarbeit sind bereits Ergebnis der Gruppenarbeit im Seminar selbst. Sie soll 5-10 Seiten umfassen sowie einen Projektstrukturplan, der z.B. in Excel ausgearbeitet werden kann. Erwünscht ist, dass die Hausarbeit in Arbeitsgruppen erstellt wird. Der erwartete Umfang steigt dann an, jedoch nicht proportional zur Zahl der Arbeitsgruppenmitglieder (bei 4 Teilnehmern z.B. 15-20 Seiten).

Literatur

Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015

Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014

GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014

Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007

Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/

Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010

Lehrveranstaltung L2349: Rechnungswesen und Jahresabschluss
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 60 min
Dozenten Prof. Matthias Meyer
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L1133: Recht für Ingenieure
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Markus A. Meyer-Chory
Sprachen DE
Zeitraum WiSe
Inhalt
  • Auffrischung: Grundlagen des Rechts
  • Fälle rechtlich relevanten Ingenieurshandelns: Vertragsrecht, Haftungsrecht - auch Produkthaftung,  Arbeitsrecht, Patentrecht, Gesellschaftsrecht 
Literatur

Notwendiger Gesetzestext (in Klausur erlaubt):

Bürgerliches Gesetzbuch 72. Auflage , 2013  , dtv Beck-Texte  5001,  ISBN 978-3-406-65707-8

Empfohlene Gesetzestexte:Arbeitsgesetze 83. Auflage, 2013  dtv Beck-Texte  5006   ISBN 978-3-406-65689-7
Handelsgesetzbuch 54. Auflage, 2013   
dtv Beck Texte  5002  ISBN 978-3-406-65083-3
Gesellschaftsrecht, 13. Auflage , 2013  dtv Beck Texte  5585   ISBN 978-3-406-64502-0
Wettbewerbsrecht, Markenrecht und Kartellrecht , 33. Auflage, 2013  dtv Beck Texte    ISBN 978-3-406-65212-7

Empfohlene Literatur: 

Vock, Willi,  
Recht der Ingenieure, 1. Auflage 2012, Boorberg Verlag , ISBN-10:3-415-04535-8  --- EAN:9783415045354

Meurer Rechtshandbuch für Architekten und Ingenieure 1…Auflage  -- erscheint  Anfg 2014      Werner Verlag   ISBN 978-3-8041-4342-5
Eisenberg / Gildeggen / Reuter / Willburger  Produkthaftung 2. Auflage - erscheint Anfg 2014    Oldenbourg Verlag - ISBN 978-3-486-71324-4
ENDERS/HETGER, Grundzüge der betrieblichen Rechtsfragen, 4. Auflage, 2008 Richard Boorberg Verlag - ISBN 978-3-415-04005-2
Müssig, Peter,  Wirtschaftsprivatrecht,  15. Auflage, 2012 ,  C.F. Müller   UTB  - ISBN  978-3-81149476-3
Schade, Friedrich, Wirtschaftsprivatrecht,  2. Auflage 2009,  Kohlhammer - ISBN  978-3-17-021087-5 



Lehrveranstaltung L1389: Schwerpunkte des Patentrechts
Typ Seminar
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang
Dozenten Prof. Christian Rohnke
Sprachen DE
Zeitraum SoSe
Inhalt

Das Seminar behandelt in vertiefter und komprimierter Form fünf wesentliche Schwerpunkte des Patentrechts, nämlich die Patentierungsvoraussetzungen, das Anmeldeverfahren, Fragen der Inhaberschaft unter besonderer Berücksichtigung von Arbeitnehmererfindern, den Verletzungsprozess sowie den Lizenzvertrag und die sonstige wirtschaftliche Verwertung von Patenten.

Einer vorlesungsartigen Einführung in den Themenkreis durch den Referenten folgt eine vertiefte Auseinandersetzung der Teilnehmer mit dem Stoff durch die Anwendung im Rahmen von Gruppenarbeiten, die Vorstellung der Ergebnisse und anschließende Diskussion im Kreis der Seminarteilnehmer.

Literatur wird noch bekannt gegeben
Lehrveranstaltung L2982: Startup Engineering
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang 30 Minuten
Dozenten Prof. Christoph Ihl, Dr. Hannes Lampe
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L2409: Strategic Shared-Value Management
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang 30 Minuten
Dozenten Dr. Jill Küberling-Jost
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2295: Strategische Planung mit Planspielen
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Referat
Prüfungsdauer und -umfang
Dozenten Dr. Jan Spitzner
Sprachen DE
Zeitraum SoSe
Inhalt
Literatur
Lehrveranstaltung L1351: Unternehmensberatung
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang
Dozenten Gerald Schwetje
Sprachen DE
Zeitraum SoSe
Inhalt

Die Vorlesung "Unternehmensberatung" vermittelt dem Studierenden komplementäres Wissen zum technischen und betriebswirtschaftlichen Studium. Die Studierenden lernen die Grundlagen der Beratung sowie das Zusammenwirken der Akteure (Agent-Prinzipal-Theorie) kennen und erhalten einen Überblick zum Beratungsmarkt. Darüber hinaus wird aufgezeigt, wie eine Unternehmensberatung funktioniert und welche methodischen Bausteine (Prozesse) notwendig sind, um ein Anliegen eines Klienten zu bearbeiten und einen Beratungsprozess durchzuführen. Anhand von praxisnahen Anwendungsbeispielen sollen die Studierenden einen Einblick in das breite Leistungsangebot der Managementberatung als auch der funktionalen Beratung erhalten. 

Literatur

Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008

Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008

Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009

Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003

Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992

Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008

Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991

Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996

Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997

Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005

Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013

Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011

Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011

Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011

Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012

Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010

Lehrveranstaltung L2669: Negotiation Management
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Prüfungsart Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang Vorbereitung, Durchführung und Selbstreflektion zu einer simulierten Verhandlungssituation. Die fiktive Verhandlung hat einen Umfang von 4 ½ Präsenzstunden und erfordert ausführliche Vor- und Nachbereitung im Umfang von ca. 3 x 2 Stunden. Zum Abschluss ist ein Reflektionsbericht einzureichen. Weitere Prüfungsleistungen werden im Rahmen von Lernfortschrittsabfragen entlang der Vorlesung erbracht.
Dozenten Prof. Christian Lüthje
Sprachen EN
Zeitraum WiSe
Inhalt

General description of course content and course goals

We negotiaate everday in privat and professional contexts. Leading negotiations successfully has a significant impact on future careers. Yet, we tend to have limited knowledge about the theory and empirical evidence regarding successful negotiating. Many people approach negotiations in a rather intuitive and unplanned way which often results in sub-optimal negotiation outcomes.

The purpose of this interactive and problem-based course is to theortically understand the strategies and process of negotiation as practiced in a variety of business-related settings (e.g. negotiations about working conditions, negotiations with customers and suppliers). The course will highlight the components of an effective negotiation (strategy, perparation, execution, evaluation) and offer the students the opportunity to analyze their own behavior in negotiations in order to improve.

The course structure is experiential and problem-based, combining lectures, class discussion, mini-cases and small erxercises, and more comprehensive negotiation practices in longer sessions. Through participation in negotiation exercises, students will have the opportunity to practice their communication and persuasion skills and to experiment with a variety of negotiating strategies and tactics. Students will apply the lessons learned to ongoing, real-world negotiations.


Content:

The students will find answers to the following fundamental questions of negotiation strategies in theory and practice:

  • How do negotiations influence everyday life and business processes?
  • What are key features of negotiations?
  • What are different forms of negotiations? What kinds of negotiation can be distinguished?
  • Which theoretical approaches to a theory of negotiation can be distinguished?
  • How can game theory be applied to negotiation?
  • What makes an effective negotiator?
  • Which factors should be considered when planning negotiations?
  • What steps must be followed to reach a deal?
  • Are there specific negotiation tactics?
  • What are the typical barriers to an agreement and how to deal with them?
  • What are possible cognitive (mental) errors and how to correct them?

Knowledge

Students know...

  • the theory basics of negotiations (e.g. game theory, behavioral theories)
  • the types and the pros and cons of diffrent negotiation strategies
  • the process of negotiation, inlcuding goal formulation, preparation/planning, execution and evaluation 
  • about some key issues impacting negotiations (e.g. team building and roles, barriers to reaching a deal, cognitive biases, multi-phase negotiations)

Skills

Students are capable of...

  • simultaneously considering multiple factors in negotiation situations and taking reasoned actions when preparing and conducting negotiations.
  • Analyzing and handling the key challenges of uncertainty, risk, intercultural differences, and time pressure in realistic negotiation situations.
  • assessing the typical barriers to an agreement (e.g. lack of trust), dealing with hardball tactics (e.g. good cop, bad cop; lowball, highball; intimidation), and avoiding cognitive traps (e.g. unchecked emotions, overconfidence).
  • reflecting on their decision-making in uncertain negotiation situations and derive actions for future decisions.

Social Competence

Students can...

  • provide appropriate feedback and handle feedback on their own performance constructively.
  • constructively interact with their team members in role playing in negotiations sessions
  • develop joint solutions in mixed teams and present them to others in real-world negotiation situatio

    Self-Reliance

    Students are able to...

    • assess possible consequences of their own negotiation behavior
    • define own positions and tasks in the negotiation preparation process.
    • justify and make elaborated decisions in authentic negotiation situations.




Literatur

R.J. Lewicki / B. Barry / D.M. Saunders: Negotiation. Sixth Edition, McGraw-Hill, Boston, 2010.

H. Raiffa: Negotiation analysis. Belknap Press of Harvard Univ. Press, Cambridge, Mass, 2007.

R. Fisher / W. Ury: Getting to yes. Third edition. Penguin, New York, 2011.

M. Voeth / U. Herbst: Verhandlungsmanagement: Planung, Steuerung und Analyse. Schäffer-Poeschel, Stuttgart, 2009.

Lehrveranstaltung L1132: Wirtschaftsprivatrecht
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 90 Minuten
Dozenten Markus A. Meyer-Chory
Sprachen DE
Zeitraum SoSe
Inhalt

- Grundzüge des Deutschen Rechtssystems

- Grundbegriffe und Systematik des Zivil-, Handels-, Gesellschafts- und Arbeitsrechts mit spezifischen Schwerpunkten z.B. Versicherungsrecht



Literatur folgt im Seminar
Lehrveranstaltung L1381: Öffentliches- und Verfassungsrecht
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Prüfungsart Klausur
Prüfungsdauer und -umfang 2 Stunden
Dozenten Klaus-Ulrich Tempke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt Die Materien des öffentlichen Rechts sowie Verfahrensgang, Instanzenzug und Gerichtsbesetzung der Verwaltungsgerichtsbarkeit.

Unterschiedliche Gewalten, Organe und Handlungsformen der Gewalten

 Grundbegriffe und Grundstrukturen der Grundrechte, grundrechtsgleiche Rechte

Grundrechtsfähigkeit, objektive Funktionen und subjektiver Gewährleistungsgehalt von Grundrechten

Die Menschenwürde als Leitprinzip der Verfassung

Das allgemeine Persönlichkeitsrecht

Die allgemeine Handlungsfreiheit 


Vorrausgesetzt:

Eigene Ausgabe des Grundgesetzes (kostenlos bei der Landeszentrale für politische Bildung erhältlich)


Literatur

Modul M1048: Integrated Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf Integrierter Schaltungen (L0691) Vorlesung 3 4
Entwurf Integrierter Schaltungen (L0998) Gruppenübung 1 2
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic knowledge of (solid-state) physics and mathematics.

Knowledge in fundamentals of electrical engineering and electrical networks.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain basic concepts of electron transport in semiconductor devices (energy bands, generation/recombination, carrier concentrations, drift and diffusion current densities, semiconductor device equations).  
  • Students are able to explain functional principles of pn-diodes, MOS capacitors, and MOSFETs using energy band diagrams.
  • Students can present and discuss current-voltage relationships and small-signal equivalent circuits of these devices.
  • Students can explain the physics and current-voltage behavior transistors based on charged carrier flow.
  • Students are able to explain the basic concepts for static and dynamic logic gates for integrated circuits
  • Students can exemplify approaches for low power consumption on the device and circuit level
  • Students can describe the potential and limitations of analytical expression for device and circuit analysis.
  • Students can explain characterization techniques for MOS devices.


Fertigkeiten
  • Students can qualitatively construct energy band diagrams of the devices for varying applied voltages.
  • Students are able to qualitatively determine electric field, carrier concentrations, and charge flow from energy band diagrams.
  • Students can understand scientific publications from the field of semiconductor devices.
  • Students can calculate the dimensions of MOS devices in dependence of the circuits properties
  • Students can design complex electronic circuits and anticipate possible problems.
  • Students know procedure for optimization regarding high performance and low power consumption


Personale Kompetenzen
Sozialkompetenz
  • Students can team up with other experts in the field to work out innovative solutions.
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.
  • Students have the ability to critically question the value of their contributions to working groups.


Selbstständigkeit
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to define their personal approaches to solve challenging problems


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0691: Integrated Circuit Design
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt
  • Electron transport in semiconductors
  • Electronic operating principles of diodes, MOS capacitors, and MOS field-effect transistors
  • MOS transistor as four terminal device
  • Performace degradation due to short channel effects
  • Scaling-down of MOS technology
  • Digital logic circuits
  • Basic analog circuits
  • Operational amplifiers
  • Bipolar and BiCMOS circuits


Literatur


  • Yuan Taur, Tak H. Ning:  Fundamentals of Modern VLSI Devices, Cambridge University Press 1998
  • R. Jacob Baker: CMOS, Circuit Design, Layout and Simulation,  IEEE Press, Wiley Interscience, 3rd Edition, 2010
  • Neil H.E. Weste and David Money Harris, Integrated Circuit Design, Pearson, 4th International Edition, 2013
  • John E. Ayers, Digital Integrated Circuits: Analysis and Design, CRC Press, 2009
  • Richard C. Jaeger and Travis N. Blalock: Microelectronic Circuit Design, Mc Graw-Hill, 4rd. Edition, 2010


Lehrveranstaltung L0998: Integrated Circuit Design
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0676: Digitale Nachrichtenübertragung

Lehrveranstaltungen
Titel Typ SWS LP
Digitale Nachrichtenübertragung (L0444) Vorlesung 2 3
Digitale Nachrichtenübertragung (L0445) Hörsaalübung 2 2
Praktikum Digitale Nachrichtenübertragung (L0646) Laborpraktikum 1 1
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Mathematik 1-3
  • Signale und Systeme
  • Einführung in die Nachrichtentechnik und ihre stochastischen Methoden
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren.

Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden.


Fertigkeiten

Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten.

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0444: Digital Communications
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt
  • Repetition: Baseband Transmission
    • Pulse shaping: Non-return to zero (NRZ) rectangular pulses, raised-cosine pulses, square-root raised-cosine pulses
    • Power spectral density (psd) of baseband signals
    • Intersymbol interference (ISI)
    • First and second Nyquist criterion
    • AWGN channel
    • Matched filter
    • Matched-filter receiver and correlation receiver
    • Noise whitening matched filter
    • Discrete-time AWGN channel model
  • Representation of bandpass signals and systems in the equivalent baseband
    • Quadrature amplitude modulation (QAM)
    • Equivalent baseband signal and system
    • Analytical signal
    • Equivalent baseband random process, equivalent baseband white Gaussian noise process
    • Equivalent baseband AWGN channel
    • Equivalent baseband channel model with frequency-offset and phase noise
    • Equivalent baseband Rayleigh fading and Rice fading channel models
    • Equivalent baseband frequency-selective channel model
    • Discrete memoryless channels (DMC)
  • Bandpass transmission via carrier modulation
    • Amplitude modulation, frequency modulation, phase modulation
    • Linear digital modulation methods
      • On-off keying, M-ary amplitude shift keying (M-ASK), M-ary phase shift keying (M-PSK), M-ary quadrature amplitude modulation (M-QAM), offset-QPSK
      • Signal space representation of transmit signal constellations and signals
      • Energy of linear digital modulated signals, average energy per symbol
      • Power spectral density of linear digital modulated signals
      • Bandwidth efficiency
      • Correlation coefficient of elementary signals
      • Error probabilities of linear digital modulation methods
        • Error functions
        • Gray mapping and natural mapping
        • Bit error probabilities, symbol error probabilities, pairwise symbol error probabilities
        • Euclidean distance and Hamming distance
        • Exact and approximate computation of error probabilities
        • Performance comparison of modulation schemes in terms of per bit SNR vs. per symbol SNR
      • Hierarchical modulation, multilevel modulation
      • Effects of carrier phase offset and carrier frequency offset
      • Differential modulation
        • M-ary differential phase shift keying (M-PSK)
        • Coherent and non-coherent detection of DPSK
        • p/M-differential phase shift keying (p/M-DPSK)
        • Differential amplitude and phase shift keying (DAPSK)
    • Non-linear digital modulation methods
      • Frequency shift keying (FSK)
      • Modulation index
      • Minimum shift keying (MSK)
        • Offset-QPSK representation of MSK
        • MSK with differential precoding and rotation
        • Bit error probabilities of MSK
        • Gaussian minimum shift keying (GMSK)
        • Power spectral density of MSK and GMSK
      • Continuous phase modulation (CPM)
        • General description of CPM signals
        • Frequency pulses and phase pulses
      • Coherent and non-coherent detection of FSK
    • Performance comparison of linear and non-linear digital modulation methods
  • Frequency-selective channels, ISI channels
    • Intersymbol interference and frequency-selectivity
    • RMS delay spread
    • Narrowband and broadband channels
    • Equivalent baseband transmission model for frequency-selective channels
    • Receive filter design
  • Equalization
    • Symbol-spaced and fractionally-spaced equalizers
    • Inverse system
    • Non-recursive linear equalizers
      • Linear zero-forcing (ZF) equalizer
      • Linear minimum mean squared error (MMSE) equalizer
    • Non-linear equalization:
      • Decision feedback equalizer (DFE)
      • Tomlinson-Harashima precoding
    • Maximum a posteriori probability (MAP) and maximum likelihood equalizer, Viterbi algorithm
  • Single-carrier vs. multi-carrier transmission
  • Multi-carrier transmission
    • General multicarrier transmission
    • Orthogonal frequency division multiplex (OFDM)
      • OFDM implementation using the Fast Fourier Transform (FFT)
      • Cyclic guard interval
      • Power spectral density of OFDM
      • Peak-to-average power ratio (PAPR)
  • Multiple access
    • Principles of time division multiple access (TDMA), frequency division multiple access (FDMA), code division multiple access (CDMA), non-orthogonal multiple access (NOMA), hybrid multiple access
  • Spread spectrum communications
    • Direct sequence spread spectrum communications
    • Frequency hopping
    • Protection against eavesdropping
    • Protection against narrowband jammers
    • Short vs. long spreading codes
    • Direct sequence spread spectrum communications in frequency-selective channels
      • Rake receiver
    • Code division multiple access (CDMA)
      • Design criteria of spreading sequences, autocorrelation function and crosscorrelation function of spreading sequences
      • Intersymbol interference (ISI) and multiple access interference (MAI)
      • Pseudo noise (PN) sequences, maximum length sequences (m-sequences), Gold codes, Walsh-Hadamard codes, orthogonal variable spreading factor (OVSF) codes
      • Multicode transmission   
      • CDMA in uplink and downlink of a wireless communications system
      • Single-user detection vs. multi-user detection


Literatur

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Lehrveranstaltung L0445: Digital Communications
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Gerhard Bauch
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- DSL-Übertragung

- Stochastische Prozesse

- Digitale Datenübertragung

Literatur

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Modul M0746: Microsystem Engineering

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystemtechnik (L0680) Vorlesung 2 4
Mikrosystemtechnik (L0682) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Dr. rer. nat. Thomas Kusserow
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basic courses in physics, mathematics and electric engineering
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators.

Fertigkeiten

Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems alone or in a group and to present the results accordingly.

Selbstständigkeit

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Referat
Prüfung Klausur
Prüfungsdauer und -umfang zweistündig
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L0680: Microsystem Engineering
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt

Object and goal of MEMS

Scaling Rules

Lithography

Film deposition

Structuring and etching

Energy conversion and force generation

Electromagnetic Actuators

Reluctance motors

Piezoelectric actuators, bi-metal-actuator

Transducer principles

Signal detection and signal processing

Mechanical and physical sensors

Acceleration sensor, pressure sensor

Sensor arrays

System integration

Yield, test and reliability

Literatur

M. Kasper: Mikrosystementwurf, Springer (2000)

M. Madou: Fundamentals of Microfabrication, CRC Press (1997)

Lehrveranstaltung L0682: Microsystem Engineering
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum WiSe
Inhalt

Examples of MEMS components

Layout consideration

Electric, thermal and mechanical behaviour

Design aspects

Literatur

Wird in der Veranstaltung bekannt gegeben

Modul M0768: Microsystems Technology in Theory and Practice

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystemtechnologie (L0724) Vorlesung 2 4
Mikrosystemtechnologie (L0725) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in physics, chemistry, mechanics and semiconductor technology

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able

     to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems

     to explain in details operation principles of microsensors and microactuators and

     to discuss the potential and limitation of microsystems in application.


Fertigkeiten

Students are capable

     to analyze the feasibility of microsystems,

     to develop process flows for the fabrication of microstructures and

     to apply them.




Personale Kompetenzen
Sozialkompetenz


Students are able to plan and carry out experiments in groups, as well as present and represent the results in front of others. These social skills are practiced both during the preparation phase, in which the groups work out and present the theory, and during the follow-up phase, in which the groups prepare, document and present their practical experiences.


Selbstständigkeit

The independence of the students is demanded and promoted in that they have to transfer and apply what they have learned to ever new boundary conditions. This requirement is communicated at the beginning of the semester and consistently practiced until the exam. Students are encouraged to work independently by not being given a solution, but by learning to work out the solution step by step by asking specific questions. Students learn to ask questions independently when they are faced with a problem. They learn to independently break down problems into manageable sub-problems. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung Studierenden führen in Kleingruppen ein Laborpraktikum durch. Jede Gruppe präsentiert und diskutiert die Theorie sowie die Ergebniise ihrer Labortätigkeit. vor dem gesamten Kurs.
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0724: Microsystems Technology
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literatur

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Lehrveranstaltung L0725: Microsystems Technology
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1137: Technischer Ergänzungskurs für IMPMM - Bereich ET (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlegende Kenntnisse in Elektrotechnik, Physik, Halbleiterbauelemente und Mathematik auf Bachelor-Niveau.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Da dieses Modul aus dem Modul-Katalog des Dekanats E frei gewählt werden kann, richtet sich die Fachkompetenz nach dem jeweils gewählten Fach.
Fertigkeiten

Da dieses Modul aus dem Modul-Katalog des Dekanats E frei gewählt werden kann, richten sich die zu erwerbenden Fertigkeiten nach dem jeweils gewählten Fach.

Personale Kompetenzen
Sozialkompetenz
  • Studierende können mit einem der mehreren Partnern mit unterschiedlichem fachlichen Hintergrund effektiv zusammenarbeiten.
  • Studierende können selbständig alleine oder in einer kleinen Gruppe fachliche Probleme lösen und Fachfragen beantworten.
Selbstständigkeit
  • Studierende sind in der Lage, ihr erworbenes Wissen realistisch einzuschätzen.
  • Die Studierenden können Szenarien entwickeln, um die Auswirkungen von moderner, mobiler Elektronik auf den zukünftigen Lebensstil der Gesellschaft einzuschätzen. 
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht

Modul M1759: Theorie-Praxis-Verzahnung im dualen Master

Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Modul „Theorie-Praxis-Verzahnung im dualen Bachelor“
  • Praxismodule aus dem dualen Bachelor der TUHH
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

… können ausgewählte klassische und aktuelle Theorien, Konzepte und Methoden ...

  • des Projektmanagements und
  • des Veränderungs- und Transformationsmanagements

... beschreiben, einordnen sowie auf konkrete Situationen, Prozesse und Vorhaben in Ihrem persönlichen beruflichen Kontext anwenden.

Fertigkeiten

Die Studierenden …

  • ... antizipieren typische Schwierigkeiten, positive und negative Auswirkungen sowie Erfolgs- und Misserfolgsfaktoren im Ingenieurbereich, beurteilen diese und wägen aussichtsreiche Strategien und Handlungsoptionen gegeneinander ab.
  • … entwickeln spezialisierte fachliche und konzeptionelle Fertigkeiten zur Lösung komplexer Aufgaben- und Problemstellungen im beruflichen Tätigkeitsfeld/Arbeitsbereich. 
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … sind in der Lage, auch interdisziplinäre Teams im Rahmen komplexer Aufgaben- und Problemstellungen verantwortlich zu leiten.
  • … führen bereichsspezifische und -übergreifende Diskussionen mit Fachexpertinnen und Fachexperten, Stakeholdern sowie Mitarbeiterinnen und Mitarbeitern und vertreten dabei ihre Vorgehensweisen, Standpunkte und Arbeitsergebnisse. 
Selbstständigkeit

Die Studierenden …

  • … definieren, reflektieren und bewerten Ziele und Maßnahmen für komplexe anwendungsorientierte Projekte und Veränderungsprozesse.
  • … gestalten ihren beruflichen Zuständigkeitsbereich eigenständig und nachhaltig.
  • … übernehmen Verantwortung für ihr Handeln und für ihre Arbeitsergebnisse.
Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz.
Lehrveranstaltung L2890: Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante)
Typ Seminar
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Henning Haschke, Heiko Sieben
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
  • Theorien und Methoden des Projektmanagements
  • Innovationsmanagement
  • Agiles Projektmanagement
  • Grundlagen agiler und klassischer Methoden
  • Hybrider Einsatz klassischer und agiler Methoden  
  • Rollen, Perspektiven und Stakeholder im Projektverlauf
  • Initiierung und Koordination von komplexen Projekten im Ingenieurbereich
  • Grundlagen Moderation, Teamsteuerung, Teamführung, Konfliktmanagement
  • Kommunikationsstrukturen: betriebsintern, unternehmensübergreifend
  • Öffentliche Informationspolitik
  • Förderung von Commitment und Empowerment
  • Erfahrungsaustausch mit Fach- und Führungskräften aus dem Ingenieurbereich
  • Dokumentation und Reflexion von Lernerfahrungen
Literatur

Seminarapparat

Lehrveranstaltung L2891: Veränderungs- und Transformationsmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante)
Typ Seminar
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. Henning Haschke, Heiko Sieben
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt
  • Grundkonzepte, Chancen und Grenzen organisationalen Wandels 
  • Modelle und Methoden der Organisationsgestaltung und -entwicklung
  • Strategische Ausrichtung und Veränderung und deren kurz-, mittel- und langfristigen Konsequenzen für Individuum, Organisation und Gesellschaft
  • Rollen, Perspektiven und Stakeholder in Veränderungsprozessen
  • Initiierung und Koordinierung von Veränderungsmaßnahmen im Ingenieurbereich
  • Phasen-Modelle des organisationalen Wandels (Lewin, Kotter etc.) 
  • Veränderungsgerechte Informationspolitik und Umgang mit Widerständen und Unsicherheit 
  • Förderung von Commitment und Empowerment
  • Erfolgreicher Umgang mit Change und Transformation: persönlich, als Mitarbeiterin bzw. Mitarbeiter, als Führungskraft (persönlich, professional, organisational)
  • Unternehmen und Globe (systemisch)
  • Erfahrungsaustausch mit Fach- und Führungskräften aus dem Ingenieurbereich
  • Dokumentation und Reflexion von Lernerfahrungen
Literatur Seminarapparat

Modul M1756: Praxismodul 1 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 1 im dualen Master (L2887) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss eines dualen Bachelors der TU Hamburg bzw. vergleichbare berufspraktische Erfahrungen und Kompetenzen im Bereich der Theorie-Praxis-Verzahnung
  • LV D "Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten" aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihre Kenntnisse von Fakten, Grundsätzen, Theorien und Methoden der bisherigen Studieninhalte mit dem erworbenen Praxiswissen, insbesondere ihrem Wissen um berufspraktische Verfahrens- und Vorgehensmöglichkeiten, im aktuellen Tätigkeitsfeld im Ingenieurbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches. 
Fertigkeiten

Die Studierenden …

  • … wenden fachtheoretisches Wissen auf komplexe, bereichsübergreifende Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten Lösungen sowie Verfahrens- und Vorgehensweisen in ihrem Tätigkeitsfeld und Zuständigkeitsbereich.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in Projektteams ihres Arbeitsbereichs und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … vertreten komplexe ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ. 
Selbstständigkeit

Die Studierenden …

  • … definieren Ziele für die eigenen Lern- und Arbeitsprozesse als Ingenieurin bzw. Ingenieur.
  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … reflektieren die Bedeutung von Fachmodulen, Vertiefungsrichtungen und Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2887: Praxisphase 1 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (B.Sc.) und dazugehöriger Arbeitsbereiche
  • Festlegung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb als Ingenieurin bzw. Ingenieur (B.Sc.)
  • Eigenverantwortliches Arbeiten im Team und ausgewählten Projekten - bereichs- und ggf. unternehmensübergreifend
  • Ablaufplanung des aktuellen Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Verantwortung als Ingenieurin bzw. Ingenieur (B.Sc.) im eigenen Arbeitsbereich, Koordination von Team- und Projektarbeit, Umgang mit komplexen Zusammenhängen und ungelösten Problemstellungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung (korrespondierend mit dem gewählten Studiengang (M.Sc.) im Tätigkeitsfeld
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • Anlegen E-Portfolio
  • Bedeutung der Studieninhalte (M.Sc.) für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Entwicklung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Handlungsempfehlungen zum Theorie-Praxis-Transfer

Modul M0918: Advanced IC Design

Lehrveranstaltungen
Titel Typ SWS LP
Erweiterter IC-Entwurf (L0766) Vorlesung 2 3
Erweiterter IC-Entwurf (L1057) Projekt-/problembasierte Lehrveranstaltung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Fundamentals of electrical engineering, electronic devices and circuits
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the basic structure of the circuit simulator SPICE.
  • Students are able to describe the differences between the MOS transistor models of the circuit simulator SPICE.
  • Students can discuss the different concept for realization the hardware of electronic circuits.
  • Students can exemplify the approaches for “Design for Testability”.
  • Students can specify models for calculation of the reliability of electronic circuits.


Fertigkeiten
  • Students can determine the input parameters for the circuit simulation program SPICE.
  • Students can select the most appropriate MOS modelling approaches for circuit simulations.
  • Students can quantify the trade-off of different design styles.
  • Students can determine the lot sizes and costs for reliability analysis.


Personale Kompetenzen
Sozialkompetenz
  • Students can compile design studies by themselves or together with partners.
  • Students are able to select the most efficient design methodology for a given task.
  • Students are able to define the work packages for design teams.


Selbstständigkeit
  • Students are able to assess the strengths and weaknesses of their design work in a self-contained manner.
  • Students can name and bring together all the tools required for total design flow.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0766: Advanced IC Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum SoSe
Inhalt
  • Circuit-Simulator SPICE 
  • SPICE-Models for MOS transistors
  • IC design
  • Technology of MOS circuits
  • Standard cell design
  • Design of gate arrays
  • CMOS transconductance and transimpedance amplifiers
  • frequency behavior of CMOS circuits
  • Techniques for improved circuit behaviour (e.g. cascodes, gain boosting, folding, ...)
  • Examples for realization of ASICs in the institute of nanoelectronics
  • Reliability of integrated circuits
  • Testing of integrated circuits
Literatur

R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 

B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000


X. Liu, VLSI-Design Methodology Demystified; IEEE, 2009


Lehrveranstaltung L1057: Advanced IC Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0761: Halbleitertechnologie

Lehrveranstaltungen
Titel Typ SWS LP
Halbleitertechnologie (L0722) Vorlesung 4 4
Halbleitertechnologie (L0723) Laborpraktikum 2 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen in Physik, Chemie, Werkstoffen und Halbleiterbauelemente

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen


Die Studierenden können

     die aktuellen Herstellungsmethoden für Si- und GaAs- Substrate beschreiben und erklären,

     die wesentlichen Prozesse, ihre Abfolge und Auswirkungen zur Herstellung von Halbleiterbauelementen und hochintegrierten Schaltungen erläutern und

     integrierte Prozessabläufe darstellen.


Fertigkeiten


Studierenden sind in der Lage,

     eine Analyse der Einflüsse von Prozessparametern auf die Prozessierung durchzuführen,

     Prozesse auszuwählen und zu bewerten sowie

    Prozessfolgen für die Herstellung von Halbleiterbauelementen zu entwerfen.


Personale Kompetenzen
Sozialkompetenz


Studierenden können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten. Das Üben dieser sozialen Kompetenzen erfolgt sowohl während der Vorbereitungsphase, in der die Gruppen die Theorie erarbeiten und präsentieren, als auch in der Nachbereitungsphase, in der die Gruppen ihre praktischen Erfahrungen aufbereiten, dokumentieren und präsentieren. 


Selbstständigkeit

Die Selbständigkeit der Studierenden wird gefordert und gefördert, in dem sie das Erlernte auf immer neue Randbedingungen übertragen und anwenden müssen. Dieser Anspruch wird zum Anfang des Semesters kommuniziert und konsequent bis zur Prüfung praktiziert. Studierenden werden zu dieser Selbständigkeit dadurch gefördert, dass Lösungswege nicht vorgegeben werden, sondern Studierenden lernen über gezielte Fragen Schritt für Schritt die Lösung zu erarbeiten. Studierenden lernen, selbständig Fragen zu stellen, wenn sie vor einem Problem stehen. Sie lernen eigenständig Probleme in überschaubare Teilprobleme herunter zu brechen. 

Arbeitsaufwand in Stunden Eigenstudium 96, Präsenzstudium 84
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht
Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht
Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht
Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0722: Halbleitertechnologie
Typ Vorlesung
SWS 4
LP 4
Arbeitsaufwand in Stunden Eigenstudium 64, Präsenzstudium 56
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einführung (historische Betrachtung und Trends in der Mikroelektronik)
  • Werkstoffgrundlagen (Halbleiter, Kristalle, Miller-Indizes, Kristallfehler)
  • Kristallherstellung (Kristallzucht für Si und GaAs: Verunreinigungen, Reinigung, Czochralski-, Bridgeman- und Zonenschmelz-Verfahren)
  • Waferherstellung (Prozessabfolge, Parameter, SOI)
  • Prozessgrundlagen
  • Dotierung (Bändermodell, Dotierung, Dotierung durch Legieren, Dotierung durch Diffusion: Transportprozesse, Dotierungsprofile, Effekte höherer Ordnung und Prozesstechnik, Ionenimplantation: Theorie, Implantationsprofile, Channeling, Implantationsschäden, Ausheilprozesse und Anlagentechnik)

  • Oxidation (Siliziumdioxid: Struktur, elektrische Eigenschaften und Ladungen im Oxid, thermische Oxidation: Reaktionen, Kinetik, Einflüsse auf Wachstumsrate und Prozess- und Anlagentechnik, anodische Oxidation, Plasmaoxidation, thermische Oxidation von GaAs)

  • Abscheideverfahren (Theorie: Keimbildung, Schichtwachstum und Strukturzonenmodell, Wachstumsprozess, Reaktionskinetik, Temperatureinfluss und Reaktorbau; Epitaxie: Gasphasen-, Flüssigphasen-, Molekularstrahl-Epitaxie; CVD-Verfahren: APCVD, LPCVD, Abscheidung von Metallsiliziden, PECVD und LECVD; Grundlagen des Plasma, Anlagentechnik, PVD-Verfahren: Hochvakuum-Aufdampfen, Kathodenzerstäuben)

  • Strukturierungsverfahren (subtraktive Verfahren, Photolithographie: Lackeigenschaften, Belichtungsverfahren, Kontakt-, Abstand- und Projektionsbelichtung, Auflösungsgrenze, Probleme in der Praxis und Belichtungseinrichtungen, additive Verfahren: Abhebetechnik und galvanische Abscheidung, Auflösungsverbesserung: Excimerlaser-Lichtquelle, Immersions- und Phasenkontrast-Lithographie, Elektronenstrahl-Lithographie, Röntgen-Lithographie, EUV-Lithographie, Ionenstrahl-Lithographie, nasschemisches Ätzen: isotrop und anisotrop, Eckenunterätzung, Kompensationsmasken und Ätzstoppverfahren; Trockenätzen: plasmaunterstütztes Ätzen, Rücksputtern, Ionenätzen, chemisches Trockenätzen, RIE, Seitenwandpassivierung)

  • Prozess-Integration (CMOS-Prozess, Bipolar-Prozess)
  • Aufbau- und Verbindungstechnik (Integrationshierarchien, Gehäuse, Chip-on-Board, Chip-Montagetechnik, Verbindungstechniken: Drahtbonden, TAB und Flipchip-Technik, Waferlevel-Package, 3D-Stacking)

 

Literatur

S.K. Ghandi: VLSI Fabrication principles - Silicon and Gallium Arsenide, John Wiley & Sons

S.M. Sze: Semiconductor Devices - Physics and Technology, John Wiley & Sons

U. Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag

H. Beneking: Halbleitertechnologie - Eine Einführung in die Prozeßtechnik von Silizium und III-V-Verbindungen, Teubner Verlag

K. Schade: Mikroelektroniktechnologie, Verlag Technik Berlin

S. Campbell: The Science and Engineering of Microelectronic Fabrication, Oxford University Press

P. van Zant: Microchip Fabrication - A Practical Guide to Semiconductor Processing, McGraw-Hill

Lehrveranstaltung L0723: Halbleitertechnologie
Typ Laborpraktikum
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0747: Microsystem Design

Lehrveranstaltungen
Titel Typ SWS LP
Mikrosystementwurf (L0683) Vorlesung 2 3
Mikrosystementwurf (L0684) Laborpraktikum 3 3
Modulverantwortlicher Dr. rer. nat. Thomas Kusserow
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Mathematical Calculus, Linear Algebra, Microsystem Engineering

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know about the most important and most common simulation and design methods used in microsystem design. The scientific background of finite element methods and the basic theory of these methods are known.

Fertigkeiten

Students are able to apply simulation methods and commercial simulators in a goal oriented approach to complex design tasks. Students know to apply the theory in order achieve estimates of expected accuracy and can judge and verify the correctness of results. Students are able to develop a design approach even if only incomplete information about material data or constraints are available. Student can make use of approximate and reduced order models in a preliminary design stage or a system simulation.

Personale Kompetenzen
Sozialkompetenz

Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can develop and explain their solution approach and subdivide the design task to subproblems which are solved separately by group members.

Selbstständigkeit

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Schriftliche Ausarbeitung
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht
Lehrveranstaltung L0683: Microsystem Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum SoSe
Inhalt

Finite difference methods

Approximation error

Finite element method

Order of convergence

Error estimation, mesh refinement

Makromodeling

Reduced order modeling

Black-box models

System identification

Multi-physics systems

System simulation

Levels of simulation, network simulation

Transient problems

Non-linear problems

Introduction to Comsol

Application to thermal, electric, electromagnetic, mechanical and fluidic problems

Literatur

M. Kasper: Mikrosystementwurf, Springer (2000)

S. Senturia: Microsystem Design, Kluwer (2001)

Lehrveranstaltung L0684: Microsystem Design
Typ Laborpraktikum
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Dr. rer. nat. Thomas Kusserow
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1131: Technischer Ergänzungskurs für IMPMM - Bereich TUHH (laut FSPO)

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlegende Kenntnisse in Elektrotechnik, Physik, Halbleiterbauelemente, Software und Mathematik auf Bachelor-Niveau.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Da dieses Modul aus dem Modul-Katalog der TUHH frei gewählt werden kann, richtet sich die Fachkompetenz nach dem jeweils gewählten Fach.

Fertigkeiten

Da dieses Modul aus dem Modul-Katalog der TUHH frei gewählt werden kann, richten sich die zu erwerbenden Fertigkeiten nach dem jeweils gewählten Fach.

Personale Kompetenzen
Sozialkompetenz
  • Studierende können mit einem der mehreren Partnern mit unterschiedlichem fachlichen Hintergrund effektiv zusammenarbeiten.
  • Studierende können selbständig alleine oder in einer kleinen Gruppe fachliche Probleme lösen und Fachfragen beantworten.
Selbstständigkeit
Arbeitsaufwand in Stunden Abhängig von der Wahl der Lehrveranstaltungen
Leistungspunkte 6
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht

Modul M1757: Praxismodul 2 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 2 im dualen Master (L2888) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss des Praxismoduls 1 im dualen Master
  • LV D "Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten" aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihre Kenntnisse von Fakten, Grundsätzen, Theorien und Methoden der bisherigen Studieninhalte mit dem erworbenen Praxiswissen, insbesondere ihrem Wissen um berufspraktische Verfahrens- und Vorgehensmöglichkeiten, im aktuellen Tätigkeitsfeld im Ingenieurbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches. 
Fertigkeiten

Die Studierenden …

  • … wenden fachtheoretisches Wissen auf komplexe, bereichsübergreifende Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten (neue) Lösungen sowie Verfahrens- und Vorgehensweisen in ihrem Tätigkeitsfeld und Zuständigkeitsbereich - auch bei sich häufig ändernden Anforderungen (systemische Fertigkeiten).
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in bereichs- und übergreifenden Projektteams und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … vertreten komplexe ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ und entwickeln diese gemeinsam weiter. 
Selbstständigkeit

Die Studierenden …

  • … definieren Ziele für die eigenen Lern- und Arbeitsprozesse als Ingenieurin bzw. Ingenieur.
  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … reflektieren die Bedeutung von Fachmodulen, Vertiefungsrichtungen und Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2888: Praxisphase 2 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (B.Sc.) und dazugehöriger Arbeitsbereiche
  • Festlegung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb als Ingenieurin bzw. Ingenieur (B.Sc.)
  • Eigenverantwortliches Arbeiten im Team und ausgewählten Projekten - im bereichs- und ggf. unternehmensübergreifend
  • Ablaufplanung des aktuellen Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Verantwortung als Ingenieurin bzw. Ingenieur (B.Sc.) im eigenen Arbeitsbereich, Koordination von Team- und Projektarbeit, Umgang mit komplexen Zusammenhängen und ungelösten Problemstellungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung (korrespondierend mit dem gewählten Studiengang (M.Sc.) im Tätigkeitsfeld
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • Fortschreiben E-Portfolio
  • Bedeutung der Studieninhalte (M.Sc.) für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Entwicklung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • Betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Modul M1130: Projektarbeit IMPMM

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Dozenten des SD E
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Gute Kenntnisse in dem Design elektronischer Schaltkreise, im Aufbau von Mikroprozessorsystemen und für Signalverarbeitung sowie in der Handhabung von Softwarepaketen zur Simulation von elektrischen und physkalischen Vorgängen.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Die Studentin oder der Student kann sich in einem wissenschaftliches Teilgebiet selbständig vertiefte Kenntnisse erarbeiten und in diesem Teilgebiet selbständig Lösungswege für wissenschaftliche Fragestellungen benennen.
Fertigkeiten

Die Studentin oder der Student ist in der Lage, wissenschafltiche Problemstellungen zu beschreiben und die selbständig erarbeiteten Lösungswege in einer gut struktierten Form umzusetzen.

Personale Kompetenzen
Sozialkompetenz Die Studentin oder der Student kann sich in kleine Teams von Wissenschaftlern integrieren und die von ihr oder ihm erarbeiteten Lösungsvorschläge im Team diskutieren. Sie oder er ist in der Lage, ihre oder seine Ergebnisse in klarer und gut strukturierter Form zu präsentieren.
Selbstständigkeit

Die Studentin oder der Student kann wissenschaftliche Arbeiten zeitgerecht durchführen und die Ergebnisse in ausführlicher und verständlicher Form dokumentieren. Sie oder er ist in der Lage, mögliche Probleme rechtzeitig zu erkennen und Lösungsvorschläge zu erarbeiten.

Arbeitsaufwand in Stunden Eigenstudium 450, Präsenzstudium 0
Leistungspunkte 15
Studienleistung Keine
Prüfung Studienarbeit
Prüfungsdauer und -umfang laut FSPO
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Kernqualifikation: Pflicht

Modul M1591: Seminar for IMPMM

Lehrveranstaltungen
Titel Typ SWS LP
Seminar für IMPMM (L2428) Seminar 2 3
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basics from the field of the seminar
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Students can explain the most important facts and relationships of a specific topic from the field of the seminar.
Fertigkeiten Students are able to compile a specified topic from the field of the seminar and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject.
Personale Kompetenzen
Sozialkompetenz Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner.
Selbstständigkeit Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation.
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Leistungspunkte 3
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 15 Minuten Vortrag + 5-10 Minuten Diskussion + 2 Seiten schriftliche Zusammenfassung
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Kernqualifikation: Pflicht
Lehrveranstaltung L2428: Seminar for IMPMM
Typ Seminar
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Hoc Khiem Trieu
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt

Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English.

Evaluation Criteria:

  • understanding of subject, discussion, response to questions
  • structure and logic of presentation (clarity, precision)
  • coverage of the topic, selection of subjects presented
  • linguistic presentation (clarity, comprehensibility)
  • visual presentation (clarity, comprehensibility)
  • handout (see below)
  • compliance with timing requirement.

Handout:
A printed handout (short abstract) of your presentation in English language is mandatory. This should not be longer than two pages A4, and include the most important results,
conclusions, explanations and diagrams.

Literatur

Aktuelle Veröffentlichungen zu dem gewählten Thema.

Recent publications of the selected topics.

Modul M1758: Praxismodul 3 im dualen Master

Lehrveranstaltungen
Titel Typ SWS LP
Praxisphase 3 im dualen Master (L2889) 0 10
Modulverantwortlicher Dr. Henning Haschke
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Erfolgreicher Abschluss des Praxismoduls 2 im dualen Master
  • LV E aus dem Modul "Theorie-Praxis-Verzahnung im dualen Master"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden …

  • … verbinden ihr umfassendes und spezialisiertes ingenieurwissenschaftliches Wissen der bisherigen Studieninhalte mit dem erworbenen strategieorientierten Praxiswissen im aktuellen Arbeits- und Verantwortungsbereich. 
  • … verfügen über ein kritisches Verständnis über die praktischen Anwendungsmöglichkeiten ihres ingenieurwissenschaftlichen Faches sowie der angrenzenden Bereiche bei der Realisierung von Innovationen.
Fertigkeiten

Die Studierenden …

  • … wenden spezialisierte und konzeptionelle Fertigkeiten zur Lösung komplexer, mitunter bereichsübergreifender Problemstellungen des Betriebes an und beurteilen die dazugehörigen Arbeitsprozesse und -ergebnisse unter Einbeziehung von Handlungsoptionen.
  • … setzen die mit ihren aktuellen Aufgaben korrespondierenden hochschulseitigen Anwendungsempfehlungen um. 
  • … erarbeiten neue Lösungen sowie Verfahrens- und Vorgehensweisen für die Umsetzung betrieblicher Projekte und Aufträge - auch bei sich häufig ändernden Anforderungen und unvorhersehbaren Veränderungen (systemische Fertigkeiten).
  • … sind in der Lage, mit wissenschaftlichen Methoden neue Ideen und Verfahren für betriebliche Problem- und Fragestellungen zu entwickeln und diese hinsichtlich ihrer Verwendbarkeit zu beurteilen.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden …

  • … arbeiten verantwortlich in bereichs- und unternehmensübergreifenden Projektteams und gehen vorausschauend mit Problemen in der Arbeitsgruppe um. 
  • … sind in der Lage, die fachliche Entwicklung anderer gezielt zu fördern.
  • … vertreten komplexe und interdisziplinäre ingenieurwissenschaftliche Standpunkte, Sachverhalte, Problemstellungen und Lösungsansätze im Gespräch mit internen und externen betrieblichen Stakeholdern argumentativ und entwickeln diese gemeinsam weiter. 
Selbstständigkeit

Die Studierenden …

  • … reflektieren Lern- und Arbeitsprozesse in ihrem Zuständigkeitsbereich.
  • … definieren Ziele für neue anwendungsorientierte Aufgaben, Projekte und Innovationsvorhaben unter Reflexion möglicher Auswirkungen auf Betrieb und Öffentlichkeit. 
  • … reflektieren die Bedeutung von Vertiefungsrichtungen, Spezialisierung und Forschung für die Arbeit als Ingenieurin bzw. Ingenieur sowie die Umsetzung der hochschulseitigen Anwendungsempfehlungen und der damit einhergehenden Herausforderungen eines positiven Theorie-Praxis-Transfers.
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Leistungspunkte 10
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat.
Zuordnung zu folgenden Curricula Bauingenieurwesen: Kernqualifikation: Pflicht
Bioverfahrenstechnik: Kernqualifikation: Pflicht
Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht
Computer Science: Kernqualifikation: Pflicht
Elektrotechnik: Kernqualifikation: Pflicht
Energietechnik: Kernqualifikation: Pflicht
Environmental Engineering: Kernqualifikation: Pflicht
Flugzeug-Systemtechnik: Kernqualifikation: Pflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Information and Communication Systems: Kernqualifikation: Pflicht
Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht
Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht
Materialwissenschaft: Kernqualifikation: Pflicht
Mechanical Engineering and Management: Kernqualifikation: Pflicht
Mechatronics: Kernqualifikation: Pflicht
Mediziningenieurwesen: Kernqualifikation: Pflicht
Microelectronics and Microsystems: Kernqualifikation: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht
Regenerative Energien: Kernqualifikation: Pflicht
Schiffbau und Meerestechnik: Kernqualifikation: Pflicht
Theoretischer Maschinenbau: Kernqualifikation: Pflicht
Verfahrenstechnik: Kernqualifikation: Pflicht
Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht
Lehrveranstaltung L2889: Praxisphase 3 im dualen Master
Typ
SWS 0
LP 10
Arbeitsaufwand in Stunden Eigenstudium 300, Präsenzstudium 0
Dozenten Dr. Henning Haschke
Sprachen DE
Zeitraum WiSe/SoSe
Inhalt

Onboarding Betrieb

  • Zuweisung zukünftiges berufliches Tätigkeitsfeld als Ingenieurin bzw. Ingenieur (M.Sc.) und dazugehöriger Arbeitsbereiche
  • Erweiterung der Zuständigkeiten und Befugnisse des dual Studierenden im Betrieb bis hin zur vorgesehenen Erstverwendung nach dem Studium 
  • Verantwortliches Arbeiten im Team; Projektverantwortung im eigenen Zuständigkeitsbereich ggf. auch bereichs- und unternehmensübergreifend
  • Ablaufplanung des letzten Praxismoduls mit klarer Zuordnung zu den Arbeitsstrukturen 
  • Betriebsinterne Abstimmung über eine potenzielle Problemstellung oder ein Innovationsvorhaben für die Masterarbeit
  • Ablaufplanung der Masterarbeit im Betrieb in der Zusammenarbeit mit der TU Hamburg  
  • Ablaufplanung der Prüfungsphase/nächstes Studiensemester

Betriebliches Wissen und betriebliche Fertigkeiten

  • Unternehmensspezifika: Umgang mit Veränderungen, Projekt- und Teamentwicklung, Verantwortung als Ingenieurin bzw. Ingenieur im zukünftigen Arbeitsbereich (M.Sc.), Umgang mit komplexen Zusammenhängen, häufigen und unvorhersehbaren Veränderungen, Entwicklung und Realisierung von Innovationen
  • Fachliche Spezialisierung in einem Arbeitsbereich (Abschlussarbeit)
  • Systemische Fertigkeiten
  • Umsetzung der hochschulseitigen Anwendungsempfehlungen (Theorie-Praxis-Transfer) in damit korrespondierenden Arbeits- und Aufgabenbereichen des Betriebes 

Lerntransfer/-reflexion

  • E-Portfolio
  • Bedeutung von Studieninhalten und der eigenen Spezialisierung für die Arbeit als Ingenieurin bzw. Ingenieur
  • Bedeutung von Forschung und Innovation für die Arbeit als Ingenieurin bzw. Ingenieur 
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer
Literatur
  • Studierendenhandbuch
  • betriebliche Dokumente
  • Hochschulseitige Anwendungsempfehlungen zum Theorie-Praxis-Transfer

Fachmodule der Vertiefung Communication and Signal Processing

In der Vertiefungsrichtung Communication and Signal Processing erlernen die Studierenden sowohl die physikalischen und technischen Grundlagen moderner drahtgebundener und drahtloser Kommunikationssysteme als auch die Realisierung von technischen Ausführungsformen. Sie haben die Möglichkeit, ihre Kenntnisse in Richtung verschiedener Schwerpunkte, wie zum Beispiel Systeme für Audio- oder Videosignalprozessierung, auszubauen. Die Studierenden verstehen die Grundkonzepte dieser Systeme und können deren Grenzen erkennen. Mit Hilfe dieses Wissens können sie Verbesserungspotenzial identifizieren und Vorschläge für deren konkrete Umsetzung erarbeiten.

Alle Studierende müssen aus dieser Vertiefungsrichtung Lehrveranstaltungen mit einem Umfang von insgesamt 18 Leistungspunkten belegen.

Modul M0836: Communication Networks

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Themen der Kommunikationsnetze (L0899) Projekt-/problembasierte Lehrveranstaltung 2 2
Kommunikationsnetze (L0897) Vorlesung 2 2
Übung Kommunikationsnetze (L0898) Projekt-/problembasierte Lehrveranstaltung 1 2
Modulverantwortlicher Prof. Andreas Timm-Giel
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Fundamental stochastics
  • Basic understanding of computer networks and/or communication technologies is beneficial
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples.

Fertigkeiten

Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks.

Personale Kompetenzen
Sozialkompetenz

Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions.

Selbstständigkeit

Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Referat
Prüfungsdauer und -umfang 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte.
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0899: Selected Topics of Communication Networks
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Andreas Timm-Giel
Sprachen EN
Zeitraum WiSe
Inhalt Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term.
Literatur
  • see lecture
Lehrveranstaltung L0897: Communication Networks
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Andreas Timm-Giel, Dr.-Ing. Koojana Kuladinithi
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
  • Skript des Instituts für Kommunikationsnetze
  • Tannenbaum, Computernetzwerke, Pearson-Studium


Further literature is announced at the beginning of the lecture.

Lehrveranstaltung L0898: Communication Networks Excercise
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Andreas Timm-Giel
Sprachen EN
Zeitraum WiSe
Inhalt Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise.
Literatur
  • announced during lecture

Modul M0710: Hochfrequenztechnik

Lehrveranstaltungen
Titel Typ SWS LP
Hochfrequenztechnik (L0573) Vorlesung 2 3
Hochfrequenztechnik (L0574) Hörsaalübung 2 2
Hochfrequenztechnik (L0575) Laborpraktikum 1 1
Modulverantwortlicher Prof. Alexander Kölpin
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlagen der Nachrichtentechnik, Halbleiterelektronik und elektronischer Schaltungen, Grundkenntnisse der Wellenausbreitung aus den Vorlesungen Leitungstheorie und Theoretische Elektrotechnik.


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können Phänomene bei der Ausbreitung elektromagnetischer Wellen in unterschiedlichen Frequenzbändern erklären. Sie können Übertragungssysteme und die darin enthaltenen Komponenten beschreiben. Sie können einen Überblick über unterschiedliche Antennentypen geben und die grundlegenden Kenngrößen von Antennen beschreiben. Sie können das Rauschen von linearen Schaltungen erklären, Schaltungsvarianten anhand von Kenngrößen vergleichen und für unterschiedliche Situationen die jeweils am besten geeignete wählen.

Fertigkeiten

Die Studierenden sind in der Lage, die Ausbreitung elektromagnetischer Wellen zu berechnen. Sie können komplette Übertragungssysteme analysieren und einfache Empfängerschaltungen auslegen. Sie können die Eigenschaften und Kenngrößen von einfachen Antennen und Gruppenstrahlern anhand aus der Geometrie berechnen. Sie können das Rauschen von Empfängern und den Signal-zu-Rausch-Abstand von kompletten Übertragungssystemen berechnen. Die Studienenden können die erlerne Theorie in Praktikumsversuchen anwenden.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden führen während des Praktikums in Gruppen versuche durch. Sie dokumentieren, diskutieren und bewerten die Ergebnisse gemeinsam.


Selbstständigkeit

Die Studierenden sind fähig das erlernte Wissen mit ihren Vorkenntnissen aus anderen Vorlesungen zu verknüpfen. Sie können unter Anleitung für die Lösung spezifischer Probleme notwendige Daten aus externen Quellen, wie Normen oder Literatur, extrahieren und anwenden. Sie sind in der Lage eigenständig und mit Hilfe der Praktikumsumdrucke ihr Wissen in die Praxis umzusetzen.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Kernqualifikation: Pflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L0573: Hochfrequenztechnik
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Antennen: Berechnungsgrundlagen - Kenngrößen - Verschiedene Antennenformen

- Funkwellenausbreitung

- Sender: Leistungserzeugung mit Röhren - Sendeverstärker

- Empfänger: Vorverstärker - Überlagerungsempfang - Empfangsempfindlichkeit - Rauschen

- Ausgewählte Systembeispiele


Literatur

H.-G. Unger, „Elektromagnetische Theorie für die Hochfrequenztechnik, Teil I“, Hüthig, Heidelberg, 1988

H.-G. Unger, „Hochfrequenztechnik in Funk und Radar“, Teubner, Stuttgart, 1994

E. Voges, „Hochfrequenztechnik - Teil II: Leistungsröhren, Antennen und Funkübertragung, Funk- und Radartechnik“, Hüthig, Heidelberg, 1991

E. Voges, „Hochfrequenztechnik“, Hüthig, Bonn, 2004


C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982

R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, 1992

D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001

D. M. Pozar, “Microwave Engineerin”, John Wiley and Sons, 2005


Lehrveranstaltung L0574: Hochfrequenztechnik
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0575: Hochfrequenztechnik
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Alexander Kölpin
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0637: Advanced Concepts of Wireless Communications

Lehrveranstaltungen
Titel Typ SWS LP
Weiterführende Konzepte der drahtlosen Kommunikation (L0297) Vorlesung 3 4
Weiterführende Konzepte der drahtlosen Kommunikation (L0298) Hörsaalübung 2 2
Modulverantwortlicher Dr. Rainer Grünheid
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Lecture "Signals and Systems"
  • Lecture "Fundamentals of Telecommunications and Stochastic Processes"
  • Lecture "Digital Communications"
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (LTE, 5G) they can put the learnt content into a larger context.

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Fertigkeiten

Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application.

Personale Kompetenzen
Sozialkompetenz Students can jointly elaborate tasks in small groups and present their results in an adequate fashion.
Selbstständigkeit Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications".
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten; Umfang: Inhalt von Vorlesung und Übung
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L0297: Advanced Concepts of Wireless Communications
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum SoSe
Inhalt

The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack.

In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined.

In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including LTE, LTE Advanced, and 5G New Radio.


Literatur

John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007

David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005

Bernard Sklar: Digital Communications: Fundamentals and Applications. Second Edition, Pearson, 2013

Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011

Erik Dahlman, Stefan Parkvall, Johan Sköld: 5G NR - The Next Generation Wireless Access Technology. Second Edition, Academic Press, 2021

Lehrveranstaltung L0298: Advanced Concepts of Wireless Communications
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Rainer Grünheid
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1700: Satellite Communications and Navigation

Lehrveranstaltungen
Titel Typ SWS LP
Funkbasierte Positionierung und Navigation (L2711) Vorlesung 2 3
Satellitenkommunikation (L2710) Vorlesung 3 3
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

The module is designed for a diverse audience, i.e. students with different background. Basic knowledge of communications engineering and signal processing are of advantage but not required. The course intends to provide the chapters on communications techniques such that on the one hand students with a communications engineering background learn additional concepts and examples (e.g. modulation and coding schemes or signal processing concepts) which have not or in a different way been treated in our other bachelor and master courses. On the other hand, students with other background shall be able to grasp the ideas but may not be able to understand in the same depth. The individual background of the students will be taken into consideration in the oral exam.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students are able to understand, compare and analyse digital satellite communications system as well as navigation techniques. They are familiar with principal ideas of the respective communications, signal processing and positioning methods. They can describe distortions and resulting limitations caused by transmission channels and hardware components. They can describe how fundamental communications and navigation techniques are applied in selected practical systems. 

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.



Fertigkeiten

The students are able to describe and analyse digital satellite communications systems and navigation systems. They are able to analyse transmission chains including link budget calculations. They are able to choose appropriate transmission technologies and system parameters for given scenarios. 

Personale Kompetenzen
Sozialkompetenz

The students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L2711: Radio-Based Positioning and Navigation
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch, Dr. Ing. Rico Mendrzik
Sprachen EN
Zeitraum SoSe
Inhalt
  • Information extraction from communication signals
    • Time-of-arrival principle
      • Ranging in additive white Gaussian noise (AWGN) channel
      • Correlation-based range estimation
      • Effect of multipath propagation on time-of-arrival principle
      • Zero-forcing range estimation in the presence of multipath
      • Optimum range estimation in the presence of multipath
      • Zero-forcing in presence of noise
    • Angle-of-arrival principle
      • Angle-of-arrival estimation in AWGN channel
      • Delay-and-sum estimator
      • Multiple Signal Classifier (MUSIC)
      • MUSIC-based angle-of-arrival estimation
      • Case study: Comparison of estimators in AWGN channels
      • Effect of multipath propagation on angle-of-arrival principle
      • Case study: Comparison of estimators in multipath channels
  • Information fusion of extracted signals 
    • Distance-based positioning
      • Principle of time-of-arrival positioning
      • Geometric interpretation
      • Positioning in the absence of noise
      • Linearization of the positioning problem
      • Positioning in the presence of noise
      • Optimality criteria
      • Least squares time-of-arrival positioning
      • Maximum likelihood time-of-arrival positioning
      • Interactive Matlab demo
      • Excursion: gradient descent solvers for nonlinear programs
      • Real-life positioning with embedded development board (Arduino)
      • Linearized least squares time-of-arrival positioning
      • Effect of clock offsets on distance-based positioning
      • Time-difference-of-arrival principle
      • Least squares time-difference-of-arrival positioning
      • Clock offset mitigation via two-way ranging
    • Performance limits of distance-based positioning
      • Fisher information and the Cramér-Rao lower bound
      • Fisher information in the AWGN case
      • Multi-variate Fisher information
      • Cramér-Rao lower bound for synchronized time-of-arrival positioning
      • Case study: Synchronized time-of-arrival positioning
      • Cramér-Rao lower bound for unsynchronized time-of-arrival positioning
      • Case study: Unsynchronized time-of-arrival positioning
    • Angle-based Positioning
      • Angle-of-arrival positioning principle
      • Geometric interpretation angle-of-arrival positioning principle
      • Noise-free angle-of-arrival positioning with known orientation
      • Effect of noise on angle-of-arrival positioning
      • Least squares angle-of-arrival positioning with known orientation
      • Linear least squares angle-of-arrival positioning
      • Effect of orientation uncertainty
      • Angle-difference-of-arrival positioning
      • Geometric interpretation angle difference of arrival positioning
      • Proof of angle-difference-of-arrival locus
      • Inscribed angle lemma
      • Case study: Angle-difference-of-arrival-positioning
    • Performance limits of angle-based positioning
      • Cramér-Rao lower bound for angle-of-arrival positioning with known orientation
      • Case study: Angle-of-arrival positioning with known orientation
  • Information Filtering
    • Bayesian filtering
      • Principle of Bayesian filtering
      • General Problem Formulation
      • Solution to the linear Gaussian case
      • State transition in the linear Gaussian case
      • Proof of predicted posterior distribution of the Kalman filter
      • State update in the linear Gaussian case
      • Proof of marginal posterior distribution of the Kalman filter
      • Working with Gaussian random variables
        • Proof: Affine transformation
        • Proof: Marginalization
        • Proof: Conditioning
      • Kalman filter: Optimum Inference in the linear Gaussian case
      • Modeling of process noise
      • Modeling of measurement noise
      • Case study: Kalman filtering in the linear Gaussian case
      • Interactive Kalman filtering in Matlab
      • Dealing with nonlinearities in Bayesian filtering
      • Nonlinear Gaussian case
      • Extended Kalman filter
      • Proof of predicted posterior distribution of the extended Kalman filter
      • Proof of marginal posterior distribution of the extended Kalman filter
      • Example: Nonlinear state transition
      • Case study: Extended Kalman filtering
      • Practical considerations for filter design
  • Satellite Navigation
    • Overview from positioning perspective
      • Earth-centered earth-fixed (ECEF) coordinate system
      • World geodetic system (WGS)
      • Satellite navigation systems
      • System-receiver clock offsets and pseudo-ranges
      • Unsynchronized time-of-arrival positioning revisited
    • GPS legacy signals and ranging
      • Signal overview
      • Time-of-arrival principle revisited
      • Direct sequence spread spectrum principle
      • Short and long codes
      • Satellite signal generation
      • Carriers and codes
      • Correlation properties of codes
      • Code division multiple access in flat fading channels
      • Navigation message
    • Velocity estimation
    • Hands-on case study: Design of an extended Kalman filter for satellite navigation based on recorded data
  • Robust navigation
    • Multipath-assisted positioning in millimeter wave multiple antenna systems
    • Multi-sensor fusion 
Literatur
Lehrveranstaltung L2710: Satellite Communications
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to satellite communications
    • What is a satellite
    • Overview orbits, Van Allen Belt, components of a satellite
    • Satellite services
    • Frequency bands for satellite services
    • International Telecommunications Union (ITU)
    • Influence of atmospheric impairments
    • Milestones in satellite communications
  • Components of a satellite communications system
    • Ground segment
    • Space segment
    • Control segment
  • Communication links
    • Uplink, downlink
    • Forward link, reverse link
    • Intersatellite links
    • Multiple access
    • Performance measures
      • Effective isotropic radiated power (EIRP), antenna gain, figure of merit, G/T, carrier to noise ratio
      • Signal to noise power ratio vs. carrier to noise ratio
  • Single beam and multibeam satellites
    • Beam coverage
    • Examples for beam coverage of LEO and GEO satellites (Iridium, Viasat)
  • Transparent vs. regenerative payload
  • Orbits
    • Low earth orbot (LEO), medium earth orbit (MEO), geosynchroneous and geostationary orbits (GEO), highly elliptical orbits (HEO
    • Favourable orbits:
      • HEO orbits with 63-64o inclination, Molnya and Tundra orbits
      • Circular LEO orbits
      • Circular MEO Orbits (Intermediate Circular Orbits (ICO))
      • Equatorial orbits, geostationary orbit (GEO)
    • Important aspects of LEO, MEO and GEO satellites
  • Kepler’s laws of planetary motion
  • Gravitational force
  • Parameters of ellipses and elliptical orbits
    • Major and minor half axis
    • Foci
    • Eccentricity
    • Eccentric anomaly, mean anomaly, true anomaly
    • Area
    • Orbit period
    • Perigee, apogee
    • Distance of satellite from center of earth
    • Construction of ellipses according to de La Hire
    • Orbital plane in space, inclination, right ascension (longitude) of ascending node, Vernal equinox
  • Newton’s laws of motion
  • Newton’s universal law of gravitation
  • Energy of satellites: Potential energy, kinetic energy, total energy
  • Instantaneous speed of a satellite
  • Kepler’s equation
  • Satellite visibility, elevation
  • Required number of LEO, MEO or GEO satellites for continuous earth coverage
  • Satellite altitude and distance from a point on earth
  • Choice of orbits
    • LEO, HEO, GEO
    • Elliptical orbits with non-zero inclination, Molnya orbits, Tundra orbits
    • Geosynchronous orbits
      • Parameters of geosynchronous orbits
      • Circular geosynchronous orbits
      • Inclined geosynchronous orbits
      • Quasi-zenith satellite systems (QZSS)
      • Syb-synchronous circular equatorial orbits
      • Geostationary orbit
        • Parameters of the geostationary orbit
        • Visibility
        • Propagation delay
        • Applications and system examples
  • Perturbations of orbits
    • Station keeping
      • Station keeping box
      • Estimation of orbit parameters
  • Fundamentals of digital communications techniques
    • Components of a digital communications system
    • Principles of encryption
    • Scrambling
    • Scrambling vs. interleaving for randomization of data sequences
    • Interleaving: Block interleaver, convolutional interleaver, random interleaver
    • Digital modulation methods
      • Linear and non-linear digital modulation methods
      • Linear digital modulation methods
        • QAM modulator and demodulator
        • Pulse shaping, square-root raised-cosine pulses
        • Average power spectral density
        • Signal space constellation
        • Examples: M-ary phase shift keying (M-PSK), M-ary quadrature amplitude shift keying (M-QAM)
        • M-PSK in noisy channels
        • Bit error probabilities of M-PSK and M-QAM
        • M-PSK vs. M-QAM
        • M-ary amplitude and phase shift keying (M-APSK)
        • M-APSK vs. M-QAM
        • Differential phase shift keying (DPSK)

Error control coding (channel coding)

  • Error detecting and forward error correcting (FEC) codes
  • Principle of channel coding
  • Data rate, code rate, Baud rate, spectral efficiency of modulation and coding schemes
  • Bandwidth-power trade-off, bandwidth-limited vs. power-limited transmission
  • Coding and modulation for transparent vs. regenerative payload
  • Block codes and convolutional codes
  • Concatenated codes
  • Bit-interleaved coded modulation
  • Convolutional codes
  • Low density parity check (LDPC) codes, principle of message passing decoding, bit error rate performance
  • Cyclic block codes
    • Examples for cyclic block codes
    • Single errors vs. block errors, cyclic block codes for burst errors
    • Generator matrix, generator polynomials
    • Systematic encoding and syndrome determination with shift registers
    • Cyclic redundancy check (CRC) codes


  • Automatic repeat request (ARQ)
    • Principle of ARQ
    • Stop-and-wait ARQ
    • Go-back-N ARQ
    • Selective-repeat ARQ
  • Transmission gains and losses
    • Antenna gain
      • Antenna radiation pattern
      • Maximum antenna gain, 3dB beamwidth
      • Maximum antenna gain of circular aperture
      • Maximum antenna gain of a geostationary satellite with global coverage
    • Effective isotropic radiated power (EIRP)
    • Power flux density
    • Path loss
      • Free space loss, free space loss for geostationary satellites
      • Atmospheric loss
      • Received power
    • Losses in transmit and receive equipment
      • Feeder loss
      • Depointing loss
      • Polarization mismatch loss
    • Combined effect of losses
  • Noise
    • Origins of noise
    • White noise
    • Noise power spectral density and noise power
    • Additive white Gaussian noise (AWGN) channel model
    • Antenna noise temperature
    • Earth brightness temperature
    • Signal to noise ratios
  • Atmospheric distortions
    • Atmosphere of the earth: Troposphere, stratosphere, mesosphere, thermosphere, exosphere
    •  Attenuation and depolarization due to rain, fog, rain and ice clouds, sandstorms
    • Scintillation
    • Faraday effect
    • Multipath contributions
  • Link budget calculations
    • GEO clear sky uplink and downlink
    • GEO uplink and downlink under rain conditions
    • Transparent vs. regenerative payload
  • Link availability improvement through site diversity and adaptive transmission
    • Transparent vs. regenerative payload
      • Non-linear amplifiers
        • Saleh model, Rapp model
        • Input and output back-off factor
      • Single carrier and multicarrier operation
      • Dimensioning of transmission parameters
      • Sources of noise: Thermal noise, interference, intermodulation products
      • Signal to noise ratio and bit error probability
      • Robustness against interference and non-linear channels
  • Satellite networks
    • Satellite network reference architectures
    • Network topologies
    • Network connectivity
      • Types of network connectivity
      • On-board connectivity
      • Inter-satellite links
    • Broadcast networks
    • Satellite-based internet
  • Satellite communications systems and standards examples
    • The role of standards in satellite communications
    • The Digital Video Broadcast Satellite Standard: DVB-S, DVB-S2, DVB-S2X
    • Satellites in 3GPP mobile communications networks
    • LEO megaconstellations: SpaceX Starlink, Kuiper, OneWeb
    • Space debris
    • The German Heinrich Hertz mission


Literatur

Modul M0738: Digital Audio Signal Processing

Lehrveranstaltungen
Titel Typ SWS LP
Digitale Audiosignalverarbeitung (L0650) Vorlesung 3 4
Digitale Audiosignalverarbeitung (L0651) Hörsaalübung 1 2
Modulverantwortlicher Prof. Udo Zölzer
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Signals and Systems

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren.

Fertigkeiten

The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications.

Personale Kompetenzen
Sozialkompetenz

The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise.

Selbstständigkeit

The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing.

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L0650: Digital Audio Signal Processing
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Udo Zölzer
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (Studio Technology,  Digital Transmission Systems, Storage Media, Audio Components at Home)

  • Quantization (Signal Quantization, Dither, Noise Shaping, Number Representation)

  • AD/DA Conversion (Methods, AD Converters, DA Converters, Audio Processing Systems, Digital Signal Processors, Digital Audio Interfaces, Single-Processor Systems, Multiprocessor Systems)

  • Equalizers (Recursive Audio Filters, Nonrecursive Audio Filters, Multi-Complementary Filter Bank)

  • Room Simulation (Early Reflections, Subsequent Reverberation, Approximation of Room Impulse Responses)

  • Dynamic Range Control (Static Curve, Dynamic Behavior, Implementation, Realization Aspects)

  • Sampling Rate Conversion (Synchronous Conversion, Asynchronous Conversion, Interpolation Methods)

  • Data Compression (Lossless Data Compression, Lossy Data Compression, Psychoacoustics, ISO-MPEG1 Audio Coding)

Literatur

- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005.

- U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005.


- U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.


 






Lehrveranstaltung L0651: Digital Audio Signal Processing
Typ Hörsaalübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Udo Zölzer
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1686: Selected Aspects of Communication and Signal Processing

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Kommunikation und Signalverarbeitung (L2674) Vorlesung 3 4
Ausgewählte Aspekte der Kommunikation und Signalverarbeitung (L2675) Gruppenübung 1 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Lehrveranstaltung L2674: Selected Aspects of Communication and Signal Processing
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2675: Selected Aspects of Communication and Signal Processing
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1598: Bildverarbeitung

Lehrveranstaltungen
Titel Typ SWS LP
Bildverarbeitung (L2443) Vorlesung 2 4
Bildverarbeitung (L2444) Gruppenübung 2 2
Modulverantwortlicher Prof. Tobias Knopp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Signal und Systeme
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden kennen

  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Fertigkeiten

Die Studierenden können

  • multidimensionale Bilddaten analysieren, bearbeiten, verbessern
  • einfache Kompressionsalgorithmen implementieren
  • eigene Filter für konkrete Anwendungen entwerfen
Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Data Science: Kernqualifikation: Wahlpflicht
Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L2443: Bildverarbeitung
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Visuelle Wahrnehmung
  • Mehrdimensionale Signalverarbeitung
  • Abtastung und Abtasttheorem
  • Filterung
  • Bildverbesserung
  • Kantendetektion
  • Mehrfachauflösende Verfahren: Gauss- und Laplace-Pyramide, Wavelets
  • Bildkompression
  • Segmentierung
  • Morphologische Bildverarbeitung
Literatur

Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011
Pratt, Digital Image Processing, Wiley, 2001
Bernd Jähne: Digitale Bildverarbeitung - Springer, Berlin 2005

Lehrveranstaltung L2444: Bildverarbeitung
Typ Gruppenübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0677: Digital Signal Processing and Digital Filters

Lehrveranstaltungen
Titel Typ SWS LP
Digitale Signalverarbeitung und Digitale Filter (L0446) Vorlesung 3 4
Digitale Signalverarbeitung und Digitale Filter (L0447) Hörsaalübung 2 2
Modulverantwortlicher Prof. Gerhard Bauch
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
  • Mathematics 1-3
  • Signals and Systems
  • Fundamentals of signal and system theory as well as random processes.
  • Fundamentals of spectral transforms (Fourier series, Fourier transform, Laplace transform)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account.

The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems.

Fertigkeiten The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm.  Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account.
Personale Kompetenzen
Sozialkompetenz

The students can jointly solve specific problems.

Selbstständigkeit

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht
Lehrveranstaltung L0446: Digital Signal Processing and Digital Filters
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt
  • Transforms of discrete-time signals:

    • Discrete-time Fourier Transform (DTFT)

    • Discrete Fourier-Transform (DFT), Fast Fourier Transform (FFT)

    • Z-Transform

  • Correspondence of continuous-time and discrete-time signals, sampling, sampling theorem

  • Fast convolution, Overlap-Add-Method, Overlap-Save-Method

  • Fundamental structures and basic types of digital filters

  • Characterization of digital filters using pole-zero plots, important properties of digital filters

  • Quantization effects

  • Design of linear-phase filters

  • Fundamentals of stochastic signal processing and adaptive filters

    • MMSE criterion

    • Wiener Filter

    • LMS- and RLS-algorithm

  • Traditional and parametric methods of spectrum estimation

Literatur

K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner.

V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V.

W. Hess: Digitale Filter. Teubner.

Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall.

S. Haykin:  Adaptive flter theory.

L. B. Jackson: Digital filters and signal processing. Kluwer.

T.W. Parks, C.S. Burrus: Digital filter design. Wiley.

Lehrveranstaltung L0447: Digital Signal Processing and Digital Filters
Typ Hörsaalübung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Gerhard Bauch
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1249: Medizinische Bildgebung

Lehrveranstaltungen
Titel Typ SWS LP
Medizinische Bildgebung (L1694) Vorlesung 2 3
Medizinische Bildgebung (L1695) Gruppenübung 2 3
Modulverantwortlicher Prof. Tobias Knopp
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundkenntnisse in Linear Algebra, Numerik und Signalverarbeitung

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, Rekonstruktionsverfahren für verschiedene tomographische Bildgebungsmodalitäten wie die Computertomographie und die Magnetresonanztomographie zu beschreiben. Sie kennen die nötigen Grundlagen aus den Bereichen der Signalverarbeitung und der inversen Probleme und kennen sowohl analytische als auch iterative Bildrekonstruktionsmethoden. Die Studierenden verfügen über vertiefende Kenntnisse über die Bildgebungoperatoren der Computertomographie und die Magnetresonanztomographie.



Fertigkeiten

Die Studierenden sind dazu in der Lage, Rekonstruktionsverfahren zu implementieren und diese anhand von tomographischen Messdaten zu testen. Sie können die rekonstruierten Bilder visualisieren und die Qualität ihrer Daten und Resultate und beurteilen. Zudem können die Studierenden die zeitliche Komplexität von Bildgebungsalgorithmen abschätzen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen.

Selbstständigkeit

Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. 

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Interdisciplinary Mathematics: Vertiefung III. Computational Methods in Biomedical Imaging: Pflicht
Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht
Lehrveranstaltung L1694: Medizinische Bildgebung
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Überblick über bekannte Bildgebungsverfahren
  • Signalverarbeitung
  • Inverse Probleme
  • Computertomographie
  • Magnetresonanztomographie
  • Compressed Sensing
  • Magnetic-Particle-Pmaging


Literatur

Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000

Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995

Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008

Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006

Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999

Lehrveranstaltung L1695: Medizinische Bildgebung
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Tobias Knopp
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1743: COSIMA (Competition in Microsystem Application)

Lehrveranstaltungen
Titel Typ SWS LP
COSIMA (Competition in Microsystem Application) (L3094) Projekt-/problembasierte Lehrveranstaltung 5 6
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Knowledge of microsystems operation and application.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Consolidation of knowledge in the application of microsystems with practical relevance. Learning how an idea could turn into a product.

Fertigkeiten

Realization of a concrete system by integrating hardware components and, under certain circumstances, software into a demonstrator. Development of a business plan for the innovative product. Convincing companies to sponsor the project. Presentation of the project in the form of an exposé.

Personale Kompetenzen
Sozialkompetenz

Students work in groups of 3 to 4 participants each to implement their project idea. The division of tasks takes place within the group, taking into account the complementary skills of the members.

Selbstständigkeit

The groups work on the project independently from the idea to the implementation. Supervision is provided through joint analysis of the problems and advice to the students.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L3094: COSIMA (Competition in Microsystem Application)
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 5
LP 6
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Dozenten Prof. Hoc Khiem Trieu, Dozenten des Studiengangs
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur

Fachmodule der Vertiefung Embedded Systems

Modul M0791: Rechnerarchitektur

Lehrveranstaltungen
Titel Typ SWS LP
Rechnerarchitektur (L0793) Vorlesung 2 3
Rechnerarchitektur (L0794) Projekt-/problembasierte Lehrveranstaltung 2 2
Rechnerarchitektur (L1864) Gruppenübung 1 1
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Modul "Technische Informatik"

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

In diesem Modul werden fortgeschrittene Konzepte der Rechnerarchitektur vorgestellt. Am Anfang steht ein breiter Überblick über mögliche Programmiermodelle, wie sie für Universalrechner aber auch für spezielle Maschinen (z.B. Signalprozessoren) entwickelt wurden. Anschließend werden prinzipielle Aspekte der Mikroarchitektur von Prozessoren behandelt. Der Schwerpunkt liegt hierbei insbesondere auf dem sogenannten Pipelining und den in diesem Zusammenhang angewandten Methoden zur Beschleunigung der Befehlsausführung. Die Studierenden lernen Mechanismen zum dynamischen Scheduling, zur Sprungvorhersage, zu superskalaren Architekturen und zu Speicher-Hierarchien kennen.


Fertigkeiten Die Studierenden sind in der Lage, den Aufbau eines Prozessors zu erklären. Sie kennen die verschiedenen Architekturprinzipien und Programmiermodelle. Die Studierenden untersuchen verschiedene Strukturen von Pipeline-Architekturen und sind in der Lage, deren Konzepte zu erklären und im Hinblick auf Kriterien wie Performance und Energieeffizienz zu analysieren. Sie bewerten unterschiedliche Speicherarchitekturen, kennen parallele Rechnerarchitekturen und können zwischen Befehls- und Datenparallelität unterscheiden.
Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren.

Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 15 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Min., Vorlesungsstoff + 4 Testate zur PBL "Rechnerarchitektur"
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0793: Rechnerarchitektur
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Einführung
  • Grundlagen von VHDL
  • Programmiermodelle
  • Realisierung elementarer Datentypen
  • Dynamisches Scheduling
  • Sprungvorhersage
  • Superskalare Maschinen
  • Speicher-Hierarchien

Die Gruppenübungen vertiefen die Vorlesungsinhalte durch Bearbeiten und Besprechen von Übungsblättern und dienen somit zur Klausur-Vorbereitung. Der praktische Umgang mit Fragestellungen aus der Rechnerarchitektur wird in der FPGA-basierten PBL zur Rechnerarchitektur vermittelt, deren Teilnahme verpflichtend ist.

Literatur
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
Lehrveranstaltung L0794: Rechnerarchitektur
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L1864: Rechnerarchitektur
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1749: Energieeffizienz in eingebetteten Systemen

Lehrveranstaltungen
Titel Typ SWS LP
Energieeffizienz in eingebetteten Systemen (L2870) Vorlesung 2 3
Energieeffizienz in eingebetteten Systemen (L2872) Projekt-/problembasierte Lehrveranstaltung 2 2
Energieeffizienz in eingebetteten Systemen (L2871) Hörsaalübung 1 1
Modulverantwortlicher Prof. Ulf Kulau
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Technische Informatik (notwendig)
  • Programmierkenntnisse in C (notwendig)
  • Rechnerarchitekturen (empfohlen)
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen Motivation:

Auf dem Gebiet der Informatik haben wir nur eingeschränkte Möglichkeiten auf die Effizienz der Hardware direkt einzuwirken, bzw. sind abhängig von den Herstellern (bspw. von Mikrocontrollern). Um jedoch das volle Potential der uns gestellten Hardware auf Systemebene auszunutzen, benötigen wir ein tiefergehendes Verständnis über die Hintergründe, Prozesse und Mechanismen von Verlustleistungen in eingebetteten Systemen. Woher kommt die Verlustleistung, was passiert auf Hardware-Ebene, welche Mechanismen kann ich direkt/indirekt nutzen, welchen Tradeoff zwischen Flexibilität und Effizienz habe ich,... sind nur einige Fragen, welche in dieser Veranstaltung erarbeitet und diskutiert werden sollen.

Lehrinhalte:
  • Motivation und Verlustleistung von Halbleitern
  • Verlustleistung digitaler Schaltungen, insbesondere CMOS
  • Power Management in Hard- und Software (Sleep Modes, DVS, FS, Undervolting)
  • Energieeffizientes Systemdesign (Anwendungen)
  • Energy Harvesting und Transiently Powered Computing (TPC)
Fertigkeiten

Nach Abschluss dieses Moduls besitzen die Studierenden ein tiefergehendes Verständnis von Hard- uns Software-Mechanismen zur Bewertung und Entwicklung energieeffizienter eingebetteter Systeme:

  • Sie besitzen ein tieferes Verständnis für die elektrotechnischen Grundlagen der Verlustleistung digitaler Systeme
  • Sie können die Verlustleistung von Systemen auf jeder Ebene analysieren und geeignete Methoden zur Erhöhung der Effizienz anwenden
  • Sie können eine Vielfalt von Standardtechniken anwenden, um „Energy-Efficiency by Design“ zu erreichen.
  • Sie können Energie-autonome modellieren, bewerten und implementieren.
Personale Kompetenzen
Sozialkompetenz Als Teil des Moduls sollen in Kleingruppen erlernte Konzepte auf einer Hardwareplattform umgesetzt werden. Studierende lernen dabei im Team zu agieren und gemeinsam Lösungen zu erarbeiten. Spezifische Aufgaben werden innerhalb der Gruppe bearbeitet, wobei auch eine Gruppen-übergreifende Zusammenarbeit (Austausch) stattfindet. Als zweiter Teil erfolgt ein Challenge-Based Project, bei dem die Gruppen in einem gesunden Wettbewerb zueinander möglichst energieeffiziente Lösungen finden. Dies stärkt den Zusammenhalt in den Gruppen und stärkt die gegenseitige Motivation, Unterstüzung und Kreativität.
Selbstständigkeit

Nach Abschluss dieses Moduls sind die Studierenden in der Lage aus dem erlernten Wissen und weiterführender Fachliteratur selbstständig Lösungen für eingebette Systeme zu entwickeln, zu optimieren und zu bewerten. 

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 25 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2870: Energieeffizienz in eingebetteten Systemen
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt Motivation:

Auf dem Gebiet der Informatik haben wir nur eingeschränkte Möglichkeiten auf die Effizienz der Hardware direkt einzuwirken, bzw. sind abhängig von den Herstellern (bspw. von Mikrocontrollern). Um jedoch das volle Potential der uns gestellten Hardware auf Systemebene auszunutzen, benötigen wir ein tiefergehendes Verständnis über die Hintergründe, Prozesse und Mechanismen von Verlustleistungen in eingebetteten Systemen. Woher kommt die Verlustleistung, was passiert auf Hardware-Ebene, welche Mechanismen kann ich direkt/indirekt nutzen, welchen Tradeoff zwischen Flexibilität und Effizienz habe ich,... sind nur einige Fragen, welche in dieser Veranstaltung erarbeitet und diskutiert werden sollen.

Lehrinhalte:
  • Motivation und Verlustleistung von Halbleitern
  • Verlustleistung digitaler Schaltungen, insbesondere CMOS
  • Power Management in Hard- und Software (Sleep Modes, DVS, FS, Undervolting)
  • Energieeffizientes Systemdesign (Anwendungen)
  • Energy Harvesting und Transiently Powered Computing (TPC)
Literatur

DE: Die Vorlesung basiert af einer Vielzahl von Quellen, welche in [1.] angegeben sind.

ENG: The lecture is based on multiple sources which are listed in [1.].

  1. Kulau, Ulf: Course: Energy Efficiency in Embedded Systems-A System-Level Perspective for Computer Scientists, EWME, 2018.
  2. Harris, David, and N. Weste: CMOS VLSI Design ed., Pearson Education, 2010
  3. Rabaey, Jan: Low Power Design Essentials (Integrated Circuits and Systems), Springer, 2009
Lehrveranstaltung L2872: Energieeffizienz in eingebetteten Systemen
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In dieser Projektbasierten Übung werden die erlernten Aspekte zur Erreichung von energieffizienten eingebetten Systemen in praxisnahen Umgebungen in einem kleinen Projekt imlementiert und gefestigt. Dabei wird zunächst durch definietre Aufgaben ein Tool-Set für die Implementierung von Energieeffizienzmechanismen in gemeinsamen Übungen implementiert. Im zweitenTeil erfolgt eine Challenge-Based Übung, bei der ein möglichst effizientes System eigenständig implementiert werden soll. Zur Anwendung kommt ein System basierend auf einem AVR Mikro-Controller, welcher durch einen Solar-Energy Harvester autonom betrieben werden kann.

  1. Aufgabenphase: 6 "hands-on" Aufgaben um Erfahrungen zu ammeln und eine SW Bibliothek zu erstellen
  2. Projekphase: Implementierung eines Energieautonomen Systems mit dem Ziel größtmögliche Energieefizienz (Challenge)
Literatur
Lehrveranstaltung L2871: Energieeffizienz in eingebetteten Systemen
Typ Hörsaalübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum WiSe
Inhalt

In der Hörsaalübung werden die in der Vorlesung gelehrten theoertischen Grundlagen vertieft. Dies geschiet durch vertiefende Diskussion relevanter Asekte, aber auch durch Rechenbeispiele, bei denen ein tiefergehendes verständnis zu der thematik der Energieefizienz in eingebeteten Systemen eröangt wird. Übungsaufgaben werden im Vorfeld verteilt und Lösungen in der Hörsaalübung vorgestellt. Inhalte der Übung sind wie folgt:

  • Grundlagen und Berechnung von verlustleistung auf Halbleitern
  • Verlustleistung von CMOS am Beispiel eines Inverters
  • Einfluss des Aktivitätsfaktors und externer Komponenten
  • DVS und Scheduling
  • Evaluation zur Darstellung des Nutzen von Undervolting
  • Aspekte des Energy-Harvesting (MPPT)
Literatur

Modul M0924: Software für Eingebettete Systeme

Lehrveranstaltungen
Titel Typ SWS LP
Software für Eingebettete Systeme (L1069) Vorlesung 2 3
Software für Eingebettete Systeme (L1070) Gruppenübung 3 3
Modulverantwortlicher Prof. Bernd-Christian Renner
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Sehr gute Kenntnisse und praktische Erfahrung in der Programmiersprache C
  • Grundkenntnisse in Softwaretechnik
  • Prinzipielles Verständnis von Assembler Sprachen
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Studierende können die grundlegende Prinzipien und Vorgehensweisen für die Erstellung von Software für eingebettete Systeme erklären. Sie sind in der Lage, ereignisbasierte Programmiertechniken mittels Interrupts zu beschreiben. Sie kennen den Aufbau und Funktion eines konkreten Mikrocontrollers. Die Teilnehmer sind in der Lage, Anforderungen an Echtzeitsysteme zu erläutern. Sie können mindestens drei Scheduling Algorithmen für Echzeitbetriebssysteme erläutern (einschließlich Vor- und Nachteile)

Fertigkeiten Studierende erstellen interrupt-basierte Programme für einen konkreten Mikrocontroller. Sie erstellen und benutzen einen preemptiven scheduler. Sie setzen periphere Komponenten (Timer, ADCs, EEPROM) für komplexe Aufgaben eingebetteter System ein. Für den Anschluss externer Komponenten setzen sie serielle Protokolle ein.
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Nein 10 % Testate
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht
Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L1069: Software für Eingebettete Systeme
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Bernd-Christian Renner
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • General-Purpose Processors
  • Programming the Atmel AVR
  • Interrupts
  • C für Embedded Systems
  • Standard Single Purpose Processors: Peripherals
  • Finite-State Machines
  • Speicher
  • Betriebssystem für Eingebettete Systeme
  • Echtzeit Eingebettete Systeme
Literatur
  1. Embedded System Design,  F. Vahid and T. Givargis,  John Wiley
  2. Programming Embedded Systems: With C and Gnu Development Tools, M. Barr and A. Massa, O'Reilly

  3. C und C++ für Embedded Systems,  F. Bollow, M. Homann, K. Köhn,  MITP
  4. The Art of Designing  Embedded Systems, J. Ganssle, Newnses

  5. Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie,  G. Schmitt, Oldenbourg
  6. Making Embedded Systems: Design Patterns for Great Software, E. White, O'Reilly

Lehrveranstaltung L1070: Software für Eingebettete Systeme
Typ Gruppenübung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Bernd-Christian Renner
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1400: Entwurf von Dependable Systems

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf von Dependable Systems (L2000) Vorlesung 2 3
Entwurf von Dependable Systems (L2001) Gruppenübung 2 3
Modulverantwortlicher Prof. Görschwin Fey
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Im Folgenden wird "Dependable" als Zusammenfassung von Zuverlässigkeit, Verfügbarkeit, Wartbarkeit, Sicherheit (Safety & Security) verwendet.

Kenntnis von Ansätzen zum Entwurf von Dependable Systems, z.B.

  • Strukturelle Lösungen wie z.B. Modular Redundancy
  • Algorithmische Lösungen wie z.B. Behandlung Byzantinischer Fehler, Checkpointing, etc.

Kenntnis von Methoden zur Analyse der Dependability von Systemen

Fertigkeiten

Fähigkeit zum Entwurf von Dependable Systems durch Implementierung der obigen Ansätze.

Fähigkeit zur Analyse der Dependability von Systemen durch Anwendung der obigen Analysemethoden.

Personale Kompetenzen
Sozialkompetenz

Studierende können

  • die jeweiligen Konzepte diskutieren und erläutern sowie
  • die Lösungen mündlich darstellen.
Selbstständigkeit Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren.
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Fachtheoretisch-fachpraktische Studienleistung Die Lösung einer Aufgabe ist Zuslassungsvoraussetzung für die Prüfung. Die Aufgabe wird in Vorlesung und Übung definiert.
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2000: Entwurf von Dependable Systems
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Görschwin Fey
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Beschreibung

Der Begriff „Dependability“ umfasst verschiedene Aspekte eines Systems. Dies sind typischer Weise:
  • Zuverlässigkeit
  • Verfügbarkeit
  • Wartbarkeit
  • Sicherheit - Safety & Security
Damit ist Dependability ein zentraler Aspekt, der früh im Systementwurf betrachtet werden muss. Dies gilt für Software, Eingebette Systeme wie auch umfassende Cyber-Physical Systems.

Inhalt

Das Modul führt grundlegende Konzept zum Entwurf und zur Analyse von Dependable Systems ein. Entwurfsbeispiele dienen dazu, eigene praktische Erfahrung zu sammeln. Ein Schwerpunkt des Moduls liegt im Bereich eingebetteter Systeme. Folgende Gebiete werden betrachtet:
  • Modellierung
  • Fehlertoleranz
  • Entwurfskonzepte
  • Analyse von Systemen
Literatur
Lehrveranstaltung L2001: Entwurf von Dependable Systems
Typ Gruppenübung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Görschwin Fey
Sprachen DE/EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1772: Smart Sensors

Lehrveranstaltungen
Titel Typ SWS LP
Smart Sensors (L2904) Vorlesung 2 2
Smart Sensors Lab (L2905) Projekt-/problembasierte Lehrveranstaltung 3 4
Modulverantwortlicher Prof. Ulf Kulau
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Eingebette Systeme
  • Technische Informatik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Forschungsschwerpunkte des Fachbereichs „Smart Sensors“

  • Sensors and Sensor Applications
  • Signal Processing
  • Real-time data processing
  • Energy-efficient processing
  • Fault tolerance and embedded fault diagnosis
  • Integration aktueller Forschung in der Kurs

Veranstaltungen:

  • Vorlesung (wöchentlich) zur Vermittlung theoretischer Inhalte
  • Begleitende Praktische Übung (Implementierung eines Sensorsystems mit integrierter Signalverarbeitung)
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 25 min
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2904: Smart Sensors
Typ Vorlesung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Inhalte:

  • Physikalische Messgrößen und Sensorik
  • Processing Units (MCUs, FPGAs, DSPs, HW-Accelerator)
  • Low-Power Processing, Fehlertoleranzmechanismen (in Bezug auf Sensoren)
  • Integrierte digitale Signalverarbeitung (Aggregation, Filter, Vorverarbeitung, Feature Detection)
  • Erweiterte integrierte Signalverarbeitung (Sensor Fusion, embedded AI)
  • Anwendungen und Trends in Smart Sensors
Literatur
Lehrveranstaltung L2905: Smart Sensors Lab
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Kennenlernen einer ULP FPGA Plattform und anschließende...
  • Begleitende Praktische Übung (Implementierung eines Sensorsystems mit integrierter Signalverarbeitung)
  • Freie Aufgabe
Literatur

Modul M0803: Embedded Systems

Lehrveranstaltungen
Titel Typ SWS LP
Eingebettete Systeme (L0805) Vorlesung 3 3
Eingebettete Systeme (L2938) Projekt-/problembasierte Lehrveranstaltung 1 1
Eingebettete Systeme (L0806) Gruppenübung 1 2
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Computer Engineering
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models).

Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered.

Fertigkeiten After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist.
Personale Kompetenzen
Sozialkompetenz

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Selbstständigkeit

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 10 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 Minuten, Inhalte der Vorlesung und Übungen
Zuordnung zu folgenden Curricula Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Elektrotechnik: Kernqualifikation: Wahlpflicht
Engineering Science: Vertiefung Mechatronics: Wahlpflicht
Engineering Science: Vertiefung Elektrotechnik: Wahlpflicht
Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht
General Engineering Science (7 Semester): Vertiefung Mechatronics: Wahlpflicht
Informatik-Ingenieurwesen: Kernqualifikation: Pflicht
Mechatronics: Vertiefung Systementwurf: Wahlpflicht
Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0805: Embedded Systems
Typ Vorlesung
SWS 3
LP 3
Arbeitsaufwand in Stunden Eigenstudium 48, Präsenzstudium 42
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literatur
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Lehrveranstaltung L2938: Embedded Systems
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literatur
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Lehrveranstaltung L0806: Embedded Systems
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Prof. Heiko Falk
Sprachen EN
Zeitraum SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1771: Research Based Learning - Smart Sensing Applications

Lehrveranstaltungen
Titel Typ SWS LP
Research Based Learning - Smart Sensing Applications (L2903) Projekt-/problembasierte Lehrveranstaltung 4 6
Modulverantwortlicher Prof. Ulf Kulau
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
  • Eingebette Systeme
  • Smart Sensors
  • Technische Informatik
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Einbindung von Studierenden in reales Forschungsthema
  • Themen können sich je nach Aktualität ändern. Als ein Thema bietet sich BCG: Es ist relevant, aktuell und interdisziplinär
  • Interdisziplinäre Anknüpfungspunkte schaffen / Kolloquium mit Projektbezogenen, jeodch auch Fachfremnden Instituten/Universitäten
  • Datensätze generieren oder bereitstellen
  • Methoden finden ableiten entwickeln für integrierte Signalverarbeitung für den jewieligen Projektbezug
  • Softskills im Bereich Kommunikation & Interdisziplinaritäten (Sprache des anderen verstehen lernen)
Fertigkeiten

Nach Abschluss des Moduls sind die Studierenden in der Lage, wissenschaftliche Prozesse besser zu verstehen und aktiv zu begleiten. Dabei ist die Einbindung in ein reales Forschungsprojekt (Thema je nach Aktualität) eine hohe Motivation und wird vorgegeben. Studierende erhalten ein generelles Verständnis über das jeweilige Forschungsprojekt, iundem Grundlagen und Hintergründe vermittelt werden. Um in dem gesteckten Rahmen eigene Forschungsbeiträge liefern zu können, werden Methoden zur wissenschaftlichen Praxis vermittelt.

  • Grundlagenvermittlung (Interdisziplinär, Smart Sensors / andere Fachbereiche)
  • Versuchsplanung / Hypothesen (Rahmen ist vorgegeben -> Methodik soll gelehrt werden)
  • Versuchsdurchführung (Durchführung Experiment / Generierung von Messdaten)
  • Wissenschaftliche Auswertung der Daten
  • Vorstellung der Ergebnisse Diskussion weiterer Verwertung (ggf. Publikation)  


Personale Kompetenzen
Sozialkompetenz

Die Arbeit erfolgt in Gruppen und es ist eine enge Zusammenarbeit und Abstimmung innerhalb der einzelnen Teams erforderlich. Durch die Schnittstelle „Sensoren“ ist es möglich, Themen mit einem starken interdisziplinären Anteil auszuwählen. Das gegenseitige Verstehen (gemeinsame Sprache finden) wird hierdurch erlernt. Da reale wissenschaftliche Fragestellungen untersucht werden sollen, erlangen die Studierenden die Fähigkeit diszipliniert, sachlich und kritisch gute wissenschaftliche Praxis umzusetzen.   


Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage, selbständig wissenschaftliche Prozesse zu planen und durchzuführen. In der Gruppenarbeit sollen Organisation, Ideenfindung, Herleitung von Hypothesen und  Denkprozesse selbständig moderiert und durchgeführt werden.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Schriftliche Ausarbeitung
Prüfungsdauer und -umfang Paper über die Erzielten Ergebnisse
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2903: Research Based Learning - Smart Sensing Applications
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 4
LP 6
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Dozenten Prof. Ulf Kulau
Sprachen DE/EN
Zeitraum SoSe
Inhalt
Literatur

Modul M0925: Digital Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf Digitaler Schaltungen (L0698) Vorlesung 2 3
Erweiterter Digitaler Schaltungsentwurf (L0699) Vorlesung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 40 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0698: Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L0699: Advanced Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur

Modul M1687: Selected Aspects of Embedded Systems

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte Eingebetteter Systeme (L2676) Vorlesung 3 4
Ausgewählte Aspekte Eingebetteter Systeme (L2677) Gruppenübung 1 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L2676: Selected Aspects of Embedded Systems
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2677: Selected Aspects of Embedded Systems
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0910: Fortgeschrittener Entwurf von Chip-Systemen (Praktikum)

Lehrveranstaltungen
Titel Typ SWS LP
Fortgeschrittener Entwurf von Chip-Systemen (L1061) Projekt-/problembasierte Lehrveranstaltung 3 6
Modulverantwortlicher Prof. Heiko Falk
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse Erfolgreiche Teilnahme am praktischen FPGA-Labor des Moduls "Rechnerarchitektur" ist zwingende Voraussetzung.
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

In diesem Modul werden fortgeschrittene Konzepte der Rechnerarchitektur praxisorientiert vermittelt. Mit Hilfe der Hardware-Beschreibungssprache VHDL und rekonfigurierbarer FPGA-Hardware lernen Studierende, wie komplexe Rechensysteme (sog. Systems-on-Chip, SoCs), wie sie insbesondere im Bereich der eingebetteten Systeme anzutreffen sind, in Hardware zu entwerfen sind.

Ausgehend von einer einfachen Prozessor-Architektur lernen Studierende, die Verarbeitung von Befehlen durch eine Maschine nach dem Pipelining-Prinzip zu realisieren. Sie implementieren verschiedene Formen Cache-basierter Speicher-Hierarchien, untersuchen Ansätze zum dynamischen Scheduling von Maschinenbefehlen und zur Sprungvorhersage, und konstruieren letztlich ein komplexes MPSoC-System (multi-processor system-on-chip), das aus mehreren Kernen besteht, die über einen gemeinsamen Bus verbunden sind.

Fertigkeiten

Die Studierenden können analysieren, wie hochspezifische und individuelle Rechner aus einer Sammlung gängiger Einzelkomponenten zusammengesetzt werden. Sie sind in der Lage, die Wechselwirkungen zwischen einem physischen Rechensystem und der darauf ausgeführten Software beurteilen zu können. Sie sollen so in die Lage versetzt werden, Auswirkungen hardwarenaher Entwurfsentscheidungen auf die Leistung des Gesamtsystems abzuschätzen, zu beurteilen und geeignete Optionen vorzuschlagen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren.

Selbstständigkeit

Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen in konkrete Implementierungen komplexer Hardware-Strukturen zu überführen und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen.

Arbeitsaufwand in Stunden Eigenstudium 138, Präsenzstudium 42
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang VHDL-Code und FPGA-basierte Implementierungen
Zuordnung zu folgenden Curricula Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L1061: Fortgeschrittener Entwurf von Chip-Systemen
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 3
LP 6
Arbeitsaufwand in Stunden Eigenstudium 138, Präsenzstudium 42
Dozenten Prof. Heiko Falk
Sprachen DE/EN
Zeitraum WiSe
Inhalt
  • Einführung in grundlegende Technologien (FPGAs, MIPS Einzelzyklus-Maschine)
  • Fließband-Befehlsverarbeitung
  • Cache-basierte Speicher-Hierarchien
  • Busse und Bus-Arbitrierung
  • Multi-Prozessor Chip-Systeme
  • Optional: Fortgeschrittene Fließband-Konzepte (Dynamisches Scheduling, Sprungvorhersage)
Literatur
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.

Modul M1743: COSIMA (Competition in Microsystem Application)

Lehrveranstaltungen
Titel Typ SWS LP
COSIMA (Competition in Microsystem Application) (L3094) Projekt-/problembasierte Lehrveranstaltung 5 6
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Knowledge of microsystems operation and application.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Consolidation of knowledge in the application of microsystems with practical relevance. Learning how an idea could turn into a product.

Fertigkeiten

Realization of a concrete system by integrating hardware components and, under certain circumstances, software into a demonstrator. Development of a business plan for the innovative product. Convincing companies to sponsor the project. Presentation of the project in the form of an exposé.

Personale Kompetenzen
Sozialkompetenz

Students work in groups of 3 to 4 participants each to implement their project idea. The division of tasks takes place within the group, taking into account the complementary skills of the members.

Selbstständigkeit

The groups work on the project independently from the idea to the implementation. Supervision is provided through joint analysis of the problems and advice to the students.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L3094: COSIMA (Competition in Microsystem Application)
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 5
LP 6
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Dozenten Prof. Hoc Khiem Trieu, Dozenten des Studiengangs
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur

Fachmodule der Vertiefung Microelectronics Complements

In der Vertiefungsrichtung Microelectronics Complements erweitern die Studierenden ihr Wissen in Richtung spezieller Anwendungsfelder, wie zum Beispiel die Anwendung von Mikroelektronik und Mikrosystemtechnik in der Medizintechnik, die Verarbeitung digitaler Signale, dem Entwurf und Design von hochkomplexen integrierten Systemen oder von Netzen für optische Nachrichtenübertragung. Sie verfestigen so ihr theoretisches Wissen durch die Analyse von praktischen Anwendungsbeispielen und verknüpfen es mit den Anforderungen, die technische Realisierungen stellen.

Alle Studierende müssen aus dieser Vertiefungsrichtung Lehrveranstaltungen mit einem Umfang von insgesamt 18 Leistungspunkten belegen.

Modul M0925: Digital Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Entwurf Digitaler Schaltungen (L0698) Vorlesung 2 3
Erweiterter Digitaler Schaltungsentwurf (L0699) Vorlesung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 40 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht
Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Lehrveranstaltung L0698: Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum WiSe
Inhalt
Literatur
Lehrveranstaltung L0699: Advanced Digital Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Volkhard Klinger
Sprachen EN
Zeitraum SoSe
Inhalt
Literatur

Modul M1611: Silicon Photonics

Lehrveranstaltungen
Titel Typ SWS LP
Silizium Photonik (L2408) Vorlesung 2 4
Silizium Photonik (L2418) Projekt-/problembasierte Lehrveranstaltung 2 2
Modulverantwortlicher Dr. Timo Lipka
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in physics, optics, microsystem and semiconductor technology

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

The students know the fundamentals of silicon photonics and about the most important and commonly used materials and fabrication techniques. 

Students are able

  • to explain the basic principles of silicon photonics technology and to discuss theoretical and practical aspects
  • to describe photonic circuit devices and their working principle
  • to describe the manufacturing of silicon photonic devices and to discuss in details the relevant fabrication processes, process flows and the impact thereof on the fabrication of photonic integrated circuit components
Fertigkeiten

Students are capable to

  • analyze the feasibility of integrated photonic circuit components
  • choose appropriate tools and methods to design them
  • develop process flows for the fabrication
Personale Kompetenzen
Sozialkompetenz

Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.

Selbstständigkeit

none

Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L2408: Silicon Photonics
Typ Vorlesung
SWS 2
LP 4
Arbeitsaufwand in Stunden Eigenstudium 92, Präsenzstudium 28
Dozenten Dr. Timo Lipka
Sprachen EN
Zeitraum WiSe
Inhalt
  • Introduction (historical view and trends in der Silicon Photonics)
  • Fabrication Technology (SOI-Wafer, Deposition, Sputtering and Evaporation, Epitaxy, MOCVD, Lithography)
  • Planar Waveguide Fundamentals
  • Optical Materials in silicon Photonics
  • Waveguide Types (Loss Mechanisms, Dispersion and Polarisation in Waveguides)
  • Coupling of Silicon Photonic Devices and Systems
  • Silicon Photonic Circuit Devices and Building Blocks (Passive Devices: Resonators, Interferometers, Mode Converters, Power Splitters,  Gratings, Polarizers and Rotators)
  • Material fundamentals and components for tuning and switching
  • Integration of active Devices (Laser, Detector, Modulators)
  • Photonics and Electronics Integration
  • Photonic Interconnects
  • Optical Multiplexing
  • Switch Fabrics and Routers
  • Silicon Photonics for Sensing
Literatur
  • Graham T. Reed, Andrew Knights, Silicon Photonics - An Introduction, John Wiley & Sons Ltd (2004)
  • Clifford R. Pollocka and Michal Lipson, Integrated Photonics, Springer-Verlag (2003)
  • Sami Franssila, Introduction to microfabrication,  Chichester, West Sussex Wiley (2010)
  • Dominik G. Rabus, Integrated Ring Resonators: The Compendium,  in Springer Series in Optical Sciences (2007)  
Lehrveranstaltung L2418: Silicon Photonics
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 2
Arbeitsaufwand in Stunden Eigenstudium 32, Präsenzstudium 28
Dozenten Dr. Timo Lipka
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M0769: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren

Lehrveranstaltungen
Titel Typ SWS LP
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0743) Vorlesung 3 4
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0744) Gruppenübung 1 1
EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren (L0745) Laborpraktikum 1 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Elektromagnetischen Verträglichkeit elektrischer und elektronischer Systeme erklären und in den Kontext des störungsfreien Aufbaus und des Nachweises der Elektromagnetischen Verträglichkeit solcher Systeme setzen. Sie können die verschiedenen Störquellen und Koppelpfade klassifizieren und erläutern. Sie können passive Entstörkonzepte für Probleme der Elektromagnetischen Verträglichkeit vorschlagen und beschreiben. Sie können einen Überblick über messtechnische und numerische Methoden zur Sicherstellung der Elektromagnetischen Verträglichkeit in der elektrotechnischen Praxis geben.

Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Modellbildung der Elektromagnetischen Verträglichkeit typischer elektrischer und elektronischer Systeme anwenden. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf die Elektromagnetische Verträglichkeit vorhersagen, können diese klassifizieren und quantitativ analysieren. Sie können Lösungsstrategien aus diesen Vorhersagen ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. Sie können verschiedene Lösungsstrategien gegeneinander abwägen.

Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren, etwa während der praktischen Versuche und Übungen.

Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik und Nachrichtentechnik) verknüpfen. Sie können Probleme und Lösungen im Bereich der Elektromagnetischen Verträglichkeit auf Englisch kommunizieren.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0743: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt
  • Einführung in die Elektromagnetische Verträglichkeit (EMV)
  • Störquellen in Zeit- und Frequenzbereich
  • Kopplungsmechanismen
  • Leitungen und ihre Kopplung an elektromagnetische Felder
  • Schirmung
  • Filter
  • EMV-Prüfverfahren
Literatur
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
Lehrveranstaltung L0744: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Die Übung dient der Vertiefung und Einübung der Vorlesungsinhalte.

Literatur
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
  • Scientific articles and papers
Lehrveranstaltung L0745: EMV I: Kopplungen, Gegenmaßnahmen und Prüfverfahren
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum SoSe
Inhalt

Mit Hilfe von Laborversuchen werden die folgenden Themenfelder der EMV praktisch untersucht:

  • Schirmung
  • Leitungsgeführte EMV-Prüfverfahren
  • Die GTEM-Zelle als feldgebundene Prüfumgebung
Literatur Versuchsbeschreibungen und zugehörige Literatur werden innerhalb der Veranstaltung bereit gestellt.

Modul M0919: Laboratory: Digital Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Praktischer Schaltungsentwurf - Digital (L0694) Projekt-/problembasierte Lehrveranstaltung 2 6
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Basic knowledge of semiconductor devices and circuit design
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students are able to explain the functions of the logic gates of their digital design.
  • Students can explain the algorithms of checking routines.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.


Fertigkeiten
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students are able to run the input desks for definition of their electronic circuits.
  • Students can define the building blocks of digital systems.


Personale Kompetenzen
Sozialkompetenz
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.


Selbstständigkeit
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.


Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0694: Laboratory: Digital Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 6
Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum SoSe
Inhalt
  • Definition of specifications
  • Architecture studies
  • Digital simulation flow
  • Philosophy of standard cells
  • Placement and routing of standard cells
  • Layout generation
  • Design checking routines


Literatur Handouts will be distributed

Modul M0645: Fibre and Integrated Optics

Lehrveranstaltungen
Titel Typ SWS LP
Faseroptik und Integrierte Optik (L0363) Vorlesung 2 3
Faseroptik und Integrierte Optik (Übung) (L0365) Gruppenübung 1 1
Modulverantwortlicher Prof. Manfred Eich
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrodynamics and optics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations and technological basics of guided optical waves. They can describe integrated optical as well as fibre optical structures. They can give an overview on the applications of integrated optical components in optical signal processing.

Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to fibre optical and integrated optical wave propagation. They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.
Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.

Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0363: Fibre and Integrated Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt
  • Theory of optical waveguides
  • Coupling to and from waveguides
  • Losses
  • Linear and nonlinear dspersion
  • Components and technical applications
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Hunsperger, R.G., Integrated Optics: Theory and Technology, Springer, 2002
Agrawal, G.P.,Fiber-Optic Communication Systems, Wiley, 2002, ISBN 0471215716
Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press,1991, ISBN 0124709516
Tamir, T. (ed), Guided-Wave Optoelectronics, Springer, 1990

Lehrveranstaltung L0365: Fibre and Integrated Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Hagen Renner
Sprachen EN
Zeitraum SoSe
Inhalt

See lecture Fibre and Integrated Optics

Literatur

See lecture Fibre and Integrated Optics

Modul M0643: Optoelectronics I - Wave Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik I: Wellenoptik (L0359) Vorlesung 2 3
Optoelektronik I: Wellenoptik (Übung) (L0361) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basics in electrodynamics, calculus


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of freely propagating optical waves.
They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc. 
Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.



Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.
They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Regenerative Energien: Vertiefung Solare Energiesysteme: Wahlpflicht
Lehrveranstaltung L0359: Optoelectronics I: Wave Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt
  • Introduction to optics
  • Electromagnetic theory of light
  • Interference
  • Coherence
  • Diffraction
  • Fourier optics
  • Polarisation and Crystal optics
  • Matrix formalism
  • Reflection and transmission
  • Complex refractive index
  • Dispersion
  • Modulation and switching of light
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 
Hecht, E., Optics, Benjamin Cummings, 2001
Goodman, J.W. Statistical Optics, Wiley, 2000
Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Lehrveranstaltung L0361: Optoelectronics I: Wave Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum SoSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M0781: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme

Lehrveranstaltungen
Titel Typ SWS LP
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0770) Vorlesung 3 4
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0771) Gruppenübung 1 1
EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme (L0774) Laborpraktikum 1 1
Modulverantwortlicher Prof. Christian Schuster
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik


Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die Studierenden können die grundlegenden Gesetzmäßigkeiten, Zusammenhänge und Methoden der Signalintegrität und der Güte der Spannungsversorgung (Powerintegrität) elektronischer Systeme erklären und in den Kontext des störungsfreien Aufbaus bzw. der elektromagnetischen Verträglichkeit solcher Systeme setzen. Sie können das prinzipielle Verhalten von Signalen und Spannungsversorgung vor dem Hintergrund der typischen Aufbau- und Verbindungstechnik erläutern.  Sie können Lösungsstrategien für Probleme der Signal- und Powerintegrität vorschlagen und beschreiben. Sie können einen Überblick über messtechnische und numerische Methoden zur Charakterisierung der Signal- und Powerintegrität in der elektrotechnischen Praxis geben.


Fertigkeiten

Die Studierenden können eine Reihe von Verfahren zur Modellbildung zur Beschreibung des elektromagnetischen Verhaltens typischer Aufbau- und Verbindungstechnik elektronischer Systeme anwenden. Sie können einschätzen, welche prinzipiellen Effekte diese Modelle in Bezug auf die Signal- und Powerintegrität vorhersagen, können diese klassifizieren und quantitativ analysieren. Sie können Lösungsstrategien aus diesen Vorhersagen ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. Sie können verschiedene Lösungsstrategien gegeneinander abwägen.


Personale Kompetenzen
Sozialkompetenz

Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise auf Englisch präsentieren (z.B. während der CAD-Übungen).


Selbstständigkeit

Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Theoretischer Elektrotechnik, Nachrichtentechnik und Halbleiterschaltungstechnik) verknüpfen. Sie können Probleme und Lösungen im Bereich der Signal- und Powerintegrität der Aufbau- und Verbindungstechnik auf Englisch kommunizieren.


Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja Keiner Referat
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 45 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Mechatronics: Technischer Ergänzungskurs: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0770: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Lehrveranstaltung L0771: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung
Lehrveranstaltung L0774: EMV II: Signalintegrität und Spannungsversorgung elektronischer Systeme
Typ Laborpraktikum
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Prof. Christian Schuster
Sprachen DE/EN
Zeitraum WiSe
Inhalt

- Die Rolle von Packages und Interconnects in elektronischen Systemen

- Komponenten der Aufbau- und Verbindungstechnik elektronischer Systeme

- Hauptziele und Konzepte der Signal- und Powerintegrität elektronischer Systeme

- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie

- Eigenschaften digitaler Signale und Systeme

- Entwurf und Charakterisierung der Signalintegrität

- Entwurf und Charakterisierung der Spannungsversorgung

- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich

- CAD-Werkzeuge für elektrische Analyse und Entwurf von Packages und Interconnects

- Bezug zur gesamten elektromagnetischen Verträglichkeit von elektronischen Systemen


Literatur

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Modul M0913: Mixed-signal Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Mixed-signal Schaltungsentwurf (L0764) Vorlesung 2 3
Mixed-signal Schaltungsentwurf (L1063) Projekt-/problembasierte Lehrveranstaltung 2 3
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse Advanced knowledge of analog or digital MOS devices and circuits
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the descriptive parameters of mixed-signal systems
  • Students can explain various architectures of analog-to-digital and digital-to-analog converters
  • Students are able to explain the fundamental limitations of different analog-to-digital and digital-to-analog converters
Fertigkeiten
  • Students can derive the fundamental limitations of different analog-to-digital and digital-to-analog converters
  • Students can select the most suitable architecture for a specific mixed-signal task
  • Students can describe complex mixed-signal systems by their functional blocks.
  • Students can calculate the specifications of mixed-signal circuits
Personale Kompetenzen
Sozialkompetenz
  • Students can team up with one or several partners who may have different professional backgrounds
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.


Selbstständigkeit
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to draw scenarios for estimation of the impact of an increase of data vs. an increase of energy on the future lifestyle of the society.


Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung
Verpflichtend Bonus Art der Studienleistung Beschreibung
Ja 5 % Fachtheoretisch-fachpraktische Studienleistung
Prüfung Klausur
Prüfungsdauer und -umfang 90 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0764: Mixed-signal Circuit Design
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt
  • Differences between analog and digital filtering of electrical signals
  • Quantization error and its consideration in electrical circuits
  • Architectures of state-of-the-art digital-to-analog converters
  • Architectures of state-of-the-art analog-to-digital converters
  • Differentiation between Nyquist and oversampling converters
  • noise in ADCs and DACs 
Literatur
  • R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 
  • B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000
Lehrveranstaltung L1063: Mixed-signal Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl
Sprachen EN
Zeitraum WiSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1688: Selected Aspects of Microelectronics and Microsystems

Lehrveranstaltungen
Titel Typ SWS LP
Ausgewählte Aspekte der Mikroelektronik und Mikrosysteme (L2678) Vorlesung 3 4
Ausgewählte Aspekte der Mikroelektronik und Mikrosysteme (L2679) Gruppenübung 1 2
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
Fertigkeiten
Personale Kompetenzen
Sozialkompetenz
Selbstständigkeit
Arbeitsaufwand in Stunden Eigenstudium 124, Präsenzstudium 56
Leistungspunkte 6
Studienleistung Keine
Prüfung Mündliche Prüfung
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L2678: Selected Aspects of Microelectronics and Microsystems
Typ Vorlesung
SWS 3
LP 4
Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur
Lehrveranstaltung L2679: Selected Aspects of Microelectronics and Microsystems
Typ Gruppenübung
SWS 1
LP 2
Arbeitsaufwand in Stunden Eigenstudium 46, Präsenzstudium 14
Dozenten Dozenten des SD E
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt Siehe korrespondierende Vorlesung
Literatur Siehe korrespondierende Vorlesung

Modul M1589: Laboratory: Analog Circuit Design

Lehrveranstaltungen
Titel Typ SWS LP
Praktischer Schaltungsentwurf - Analog (L0692) Projekt-/problembasierte Lehrveranstaltung 2 6
Modulverantwortlicher Prof. Matthias Kuhl
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic knowledge of semiconductor devices and circuit design

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students know the basics physics of the analog behavior.
  • Students can explain the algorithms of circuit verification.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.

Fertigkeiten
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students can define the specifications of the electronic circuits to be designed.
  • Students can optimize the electronic circuits for low-noise and low-power.
  • Students can develop analog circuits for specific applications. 



Personale Kompetenzen
Sozialkompetenz
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.



Selbstständigkeit
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.



Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 30 min
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0692: Laboratory: Analog Circuit Design
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 2
LP 6
Arbeitsaufwand in Stunden Eigenstudium 152, Präsenzstudium 28
Dozenten Prof. Matthias Kuhl, Weitere Mitarbeiter
Sprachen EN
Zeitraum WiSe
Inhalt
  • Input desk for circuits
  • Algorithms for simulation
  • MOS transistor model
  • Simulation of analog circuits
  • Placement and routing     
  • Generation of layouts
  • Design checking routines
  • Postlayout simulations



Literatur Handouts to be distributed

Modul M0644: Optoelectronics II - Quantum Optics

Lehrveranstaltungen
Titel Typ SWS LP
Optoelektronik II: Quantenoptik (L0360) Vorlesung 2 3
Optoelektronik II: Quantenoptik (Übung) (L0362) Gruppenübung 1 1
Modulverantwortlicher Dr. Alexander Petrov
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Basic principles of electrodynamics, optics and quantum mechanics

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.

Fertigkeiten

Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.


Personale Kompetenzen
Sozialkompetenz

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Selbstständigkeit

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Arbeitsaufwand in Stunden Eigenstudium 78, Präsenzstudium 42
Leistungspunkte 4
Studienleistung Keine
Prüfung Klausur
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht
Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht
Materialwissenschaft: Vertiefung Nano- und Hybridmaterialien: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L0360: Optoelectronics II: Quantum Optics
Typ Vorlesung
SWS 2
LP 3
Arbeitsaufwand in Stunden Eigenstudium 62, Präsenzstudium 28
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt
  • Generation of light
  • Photons
  • Thermal and nonthermal light
  • Laser amplifier
  • Noise
  • Optical resonators
  • Spectral properties of laser light
  • CW-lasers (gas, solid state, semiconductor)
  • Pulsed lasers
Literatur

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002
Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001
Yariv, A., Quantum Electronics, Wiley, 1988
Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X
Siegman, A.E., Lasers, University Science Books, 1986

Lehrveranstaltung L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)
Typ Gruppenübung
SWS 1
LP 1
Arbeitsaufwand in Stunden Eigenstudium 16, Präsenzstudium 14
Dozenten Dr. Alexander Petrov
Sprachen EN
Zeitraum WiSe
Inhalt see lecture Optoelectronics 1 - Wave Optics
Literatur

see lecture Optoelectronics 1 - Wave Optics

Modul M1743: COSIMA (Competition in Microsystem Application)

Lehrveranstaltungen
Titel Typ SWS LP
COSIMA (Competition in Microsystem Application) (L3094) Projekt-/problembasierte Lehrveranstaltung 5 6
Modulverantwortlicher Prof. Hoc Khiem Trieu
Zulassungsvoraussetzungen None
Empfohlene Vorkenntnisse

Knowledge of microsystems operation and application.

Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Consolidation of knowledge in the application of microsystems with practical relevance. Learning how an idea could turn into a product.

Fertigkeiten

Realization of a concrete system by integrating hardware components and, under certain circumstances, software into a demonstrator. Development of a business plan for the innovative product. Convincing companies to sponsor the project. Presentation of the project in the form of an exposé.

Personale Kompetenzen
Sozialkompetenz

Students work in groups of 3 to 4 participants each to implement their project idea. The division of tasks takes place within the group, taking into account the complementary skills of the members.

Selbstständigkeit

The groups work on the project independently from the idea to the implementation. Supervision is provided through joint analysis of the problems and advice to the students.

Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Leistungspunkte 6
Studienleistung Keine
Prüfung Fachtheoretisch-fachpraktische Arbeit
Prüfungsdauer und -umfang 60 Minuten
Zuordnung zu folgenden Curricula Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht
Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht
Lehrveranstaltung L3094: COSIMA (Competition in Microsystem Application)
Typ Projekt-/problembasierte Lehrveranstaltung
SWS 5
LP 6
Arbeitsaufwand in Stunden Eigenstudium 110, Präsenzstudium 70
Dozenten Prof. Hoc Khiem Trieu, Dozenten des Studiengangs
Sprachen EN
Zeitraum WiSe/SoSe
Inhalt
Literatur

Thesis

Modul M1801: Masterarbeit im dualen Studium

Lehrveranstaltungen
Titel Typ SWS LP
Modulverantwortlicher Professoren der TUHH
Zulassungsvoraussetzungen Keine
Empfohlene Vorkenntnisse
Modulziele/ angestrebte Lernergebnisse Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht
Fachkompetenz
Wissen

Die dual Studierenden ...

  • ... setzen das Spezialwissen (Fakten, Theorien und Methoden) ihres Studienfaches und das erworbene berufliche Wissen sicher zur Bearbeitung fachlicher und berufspraktischer Fragestellungen ein.
  • ... können in einem oder mehreren Spezialbereichen ihres Faches die relevanten Ansätze und Terminologien in der Tiefe erklären, aktuelle Entwicklungen beschreiben und kritisch Stellung beziehen.
  • ... formulieren für eine berufliche Fragestellung eine eigene Forschungsaufgabe und verorten diese in ihrem Fachgebiet. Sie erheben den aktuellen Forschungsstand und schätzen diesen kritisch ein.
Fertigkeiten

Die dual Studierenden ...

  • ... sind in der Lage, für die jeweilige fachlich-berufspraktische Problemstellung geeignete Methoden auszuwählen, anzuwenden und nach Bedarf weiterzuentwickeln. 
  • ... beurteilen im Studium (inklusive Praxisphasen) erworbenes Wissen und erlernte Methoden und wenden ihre Fachkompetenzen auf komplexe und/oder unvollständig definierte Problemstellungen lösungs- und anwendungsorientiert an. 
  • ... erarbeiten sich in ihrem Fachgebiet neue wissenschaftliche Erkenntnisse und beurteilen diese kritisch.
Personale Kompetenzen
Sozialkompetenz

Die dual Studierenden ...

  • ... können eine berufliche Problemstellung in Form einer wissenschaftlichen Fragestellung sowohl für ein Fachpublikum als auch für berufliche Anspruchsgruppen schriftlich und mündlich strukturiert, verständlich und sachlich richtig darstellen.
  • ... antworten in einer Fachdiskussion Fragen fachkundig und zugleich adressatengerecht. Eigene Standpunkte und Einschätzungen vertreten sie dabei überzeugend.
Selbstständigkeit

Die dual Studierenden ...

  • ... sind in der Lage, ein eigenes Projekt in Arbeitspakete zu strukturieren, auf wissenschaftlichem Niveau abzuarbeiten und hinsichtlich umsetzbarer Handlungsoptionen für die Berufspraxis zu reflektieren.
  • ... arbeiten sich in ein teilweise unbekanntes Arbeitsgebiet des Studienfachs vertieft ein und erschließen sich die dafür benötigten Informationen.
  • ... wenden die Techniken des wissenschaftlichen Arbeitens umfassend in einer eigenen Forschungsarbeit mit einer betrieblichen Problem- und Fragestellung an.
Arbeitsaufwand in Stunden Eigenstudium 900, Präsenzstudium 0
Leistungspunkte 30
Studienleistung Keine
Prüfung Abschlussarbeit
Prüfungsdauer und -umfang laut ASPO
Zuordnung zu folgenden Curricula Bauingenieurwesen: Abschlussarbeit: Pflicht
Bioverfahrenstechnik: Abschlussarbeit: Pflicht
Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht
Computer Science: Abschlussarbeit: Pflicht
Elektrotechnik: Abschlussarbeit: Pflicht
Energietechnik: Abschlussarbeit: Pflicht
Environmental Engineering: Abschlussarbeit: Pflicht
Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht
Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht
Information and Communication Systems: Abschlussarbeit: Pflicht
Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht
Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht
Materialwissenschaft: Abschlussarbeit: Pflicht
Mechanical Engineering and Management: Abschlussarbeit: Pflicht
Mechatronics: Abschlussarbeit: Pflicht
Mediziningenieurwesen: Abschlussarbeit: Pflicht
Microelectronics and Microsystems: Abschlussarbeit: Pflicht
Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht
Regenerative Energien: Abschlussarbeit: Pflicht
Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht
Theoretischer Maschinenbau: Abschlussarbeit: Pflicht
Verfahrenstechnik: Abschlussarbeit: Pflicht
Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht