Program description

Content

Microelectronics, or better named nanoelectronics, because the minimum structure size of state-of-the-art integrated electronic circuits are in the range of 20 nm and below, is the base of the products that significantly influence the daily life of people almost anywhere on earth. Examples are personal computers and smartphones. Both of them open up new possibilities of communication and give access to almost unlimited sources of information, especially when those devices are connected to the world wide web. Another example are medical diagnostic tools for computer tomography or nuclear resonance tomography or intelligent medical implants as all these systems are based on the high computational performance and high data communication efficiency provided by advanced nanoelectronics.

The fundament for microelectronics and microsystems is semiconductor physics and technology. Thus, the objective of the International Master Program “Microelectronics and Microsystems” is to give the students a profound knowledge on physical level about electronic effects in semiconductor materials, especially silicon, and on the functionality of electronic devices. Furthermore, the students are taught about process technology for fabrication of integrated circuits and microsystems. This will enable the students to understand in depth the function of advanced  electronic devices and fabrication processes. They will be able to comprehend in a critical way the problems accompanied with the transition to smaller minimum structure sizes. Thus, the students can conceive which possible solutions may exist or could be developed to overcome the problems of scaling-down the device minimum feature size. This will enable the students to understand the ongoing scaling-down of MOS transistors with its potential but also with its limitations.

Besides the essential role of physical basics the precise knowledge of process dependent manufacturing procedures are of key importance for training of the students in the field of nanoelectronics and microsystems. This will help them to develop during their professional life the ability to generate innovative concepts and bring them to practical applications.

The International Master Program “Microelectronics and Microsystems” qualifies the students for scientific professional work in the fields of electrical engineering and information technology. This professional work may extend from the development, production and application to the quality control of complex systems with highly integrated circuits and microsystems components. Both fields are coming closer and closer together, as a fast rising number of complex applications requires the integration of nanoelectronics and microsystems to one combined system.

In particular, this program enables the students not only to design new complex systems for innovative applications, but also to make them usable for practical applications. This can be realized by teaching the students engineering methods both on a physical and theoretical level and on an application oriented level.


Career prospects

The graduates of the International Master Program “Microelectronics and Microsystems” can find a wide variety of professional options as they have well founded knowledge about technology, design and application of highly integrated systems based on nanoelectronics and microsystems.

Thus, one group of possible employers are large companies with international sites for the production of integrated circuits, but also small or medium-sized companies for microsystems. Many job opportunities also exist in the field of development and design of integrated circuits and of microsystems. Because of the fast decline in prices of high-performance computer system, even small companies can conduct tasks that require many computational efforts such as the design of integrated circuits that, then, are fabricated by specialized companies, so-called silicon foundries. This allows many small companies to participate in the market for integrated circuits, so that they can contribute to a good job market for engineers in nanoelectronics and microsystems.


Learning target

Knowledge
  • The students understand the basic physical principles of microelectronic devices and functional block of microsystems. Furthermore, they have solid knowledge regarding fabrication technologies, so that they can explain them in detail.
  • They have gained solid knowledge in selected fields based on a broad theoretical and methodical fundament.
  • The students possess in-depth knowledge of interdisciplinary relationships.
  • They have the required background knowledge in order to position their professional subjects by appropriate means in the scientific and social environment.

Skills

The students are able

  • to apply computational methods for quantitative analysis of design parameters and for development of innovative systems for microelectronics and microsystems.
  • to solve complex problems and  tasks in a self-dependent manner by basic methodical approaches that may be, if necessary, beyond the standard patterns 
  • to consider technological progress and scientific advancements by taking into account the technical, financial and ecological boundary conditions.

Social Skills

The students are capable of

  • working in interdisciplinary teams and organizing their tasks in a process oriented manner to become prepared for conducting research based professional work and for taking management responsibilities.
  • to present their results in a written or oral form effectively targeting the audience, on international stage also.

Autonomy

  • The students can pervade in an effectively and self-dependently organized way special areas of their professional fields using scientific methods.
  • They are able to present their knowledge by appropriate media techniques or to describe it by documents with reasonable lengths.
  • The students are able to identify the need for additional information and to develop a strategy for self-dependent enhancement of their knowledge.

Program structure

The curriculum of the International Master Program „Microelectronics and Microsystems“ is structured as follows:
  • Core Qualification:
  • Main subject: The students choose one main subject out of the following two options:

The students have to take for their main subjects moduls totaling 18 CPs (1. - 3. semester).

  • Master thesis with 30 CP (4. semester)

The sum of required credit points of this Master program is 120 CP.

Core Qualification

Module M0523: Business & Management

Module Responsible Prof. Matthias Meyer
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students are able to find their way around selected special areas of management within the scope of business management.
  • Students are able to explain basic theories, categories, and models in selected special areas of business management.
  • Students are able to interrelate technical and management knowledge.


Skills
  • Students are able to apply basic methods in selected areas of business management.
  • Students are able to explain and give reasons for decision proposals on practical issues in areas of business management.


Personal Competence
Social Competence
  • Students are able to communicate in small interdisciplinary groups and to jointly develop solutions for complex problems

Autonomy
  • Students are capable of acquiring necessary knowledge independently by means of research and preparation of material.


Workload in Hours Depends on choice of courses
Credit points 6
Course L2599: Behavioral Game Theory
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Timo Heinrich
Language EN
Cycle WiSe
Content
  • The lecture introduces the behavioral approach to strategic interactions in economics.
  • We will critically review experimental studies of economic behavior in markets, bargaining, auctions and public choice.
Literature
  • Es gibt kein Lehrbuch auf das sich die Vorlesung stützt. Die relevanten Forschungspapiere werden im Lauf der Vorlesung vorgestellt.
  • There is no text book for this lecture. The relevant research papers will be introduced during the course of the module.
Course L2664: Behavioural Decision Theory
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min.
Lecturer Prof. Timo Heinrich
Language EN
Cycle SoSe
Content
  • The lecture introduces the behavioral approach to individual decisions in economics.
  • We will critically review experimental studies of economic behavior in decisions under uncertainty, intertemporal decisions and formation of beliefs.
Literature
  • Angner: A Course in Behavioral Economics, McMillan, 3rd edition, 2020.
  • Eeckhoudt/Gollier/Schlesinger: Economic and Financial Decisions under Risk, Princeton University Press, 2005.
  • Außerdem werden relevante Forschungspapiere im Lauf der Vorlesung vorgestellt.
  • Additionally, relevant research papers will be introduced during the course of the module.
Course L2546: Building Business Data Products
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2544: Business Data Science Basics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2545: Business Decisions with Machine Learning
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale folgt
Lecturer Prof. Christoph Ihl, Joschka Schwarz
Language EN
Cycle SoSe
Content
Literature
Course L2722: Digitalization and the impact on people
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung (laut FPrO)
Examination duration and scale Ausarbeitung, 5 Seiten
Lecturer Lucia Pohl, Robert Damköhler
Language DE
Cycle SoSe
Content
Literature
Course L1703: Emotional Design / User Centered Product Development
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Teamarbeit und abschließender Vortrag
Lecturer Jörg Heuser
Language DE
Cycle SoSe
Content

Lecture

  • Objective and subjective perception for the evaluation of product characteristics
  • Effects of material, color, shape and structure to the acceptance of a product
  • Aesthetic function of a product
  • Case studies, lack of acceptance of a product and possible reason

Seminar

  • Identification of non-technical product functions
  • Identification of subjective influences for the product development

Project Work

  • Topics will be developed in cooperation with the students. Project works will be presented in teams, presented and evaluated
Exemplary Project: Holistic product evaluation, product optimization


Literature Wird in der Veranstaltung angegeben
Course L1384: Intellectual Property
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Janna Thomsen, Cathérine Elkemann
Language DE
Cycle WiSe
Content
  • Trademark law
  • Copyright
  • Patent law
  • Know-how, supplementary performance protection, et al.
  • Enforcement of intellectual property rights
  • Licensing of intellectual property rights
  • Hypothecation, security assignment and evaluation of intellectual property rights


Literature

Quellen und Materialen wird im Internet zur Verfügung gestellt

Course L2600: Green Economy - Entrepreneurship, Innovation & Technology Management
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Ausarbeitung und Gruppenpräsentation
Lecturer Prof. Michael Prange
Language EN
Cycle WiSe/SoSe
Content

Topics:

  • Green Economy
  • Business models
  • Business strategy
  • Green Technologies
  • Green Innovation
  • Business planning
  • Business development
  • Green Entrepreneurship

Based on examples and case studies primarily in the field of Green Economy, students learn the basics of Entrepreneurship, Innovation and Technology Management and will be able to develop business models, to evaluate start‐up projects and to describe strategic innovation processes.

Literature

Präsentationsfolien, Beispiele und Fallstudien aus der Lehrveranstaltung.

Presentation slides, examples, and case studies from the lecture.

Course L2347: Human resource management for engineers
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 0
Lecturer Helge Kochskämper
Language DE
Cycle WiSe
Content
Literature
Course L1711: Innovation Debates
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes
Lecturer Prof. Daniel Heiner Ehls
Language EN
Cycle WiSe
Content

Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow.

The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership.

Literature

1.       Course notes and materials provided before the lecture

2.       Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional)

Course L0940: Innovation Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Cornelius Herstatt
Language DE/EN
Cycle SoSe
Content Innovation is key to corporate growth and sustainibility. In this lecture Prof. Herstatt presents a systematic way from generating ideas to the successful implementation of innovations. The lecture is presented in German language only
Literature
  • Goffin, K., Herstatt, C. and Mitchell, R. (2009): Innovationsmanagement: Strategie und effektive Umsetzung von Innovationsprozessen mit dem Pentathlon-Prinzip, München: Finanzbuch Verlag

    Weiterführende Literatur
  • Innovationsmanagement
    Juergen Hauschildt
  • F + E Management
    Specht, G. / Beckmann, Chr.
  • Management der frühen Innovationsphasen
    Cornelius Herstatt, Birgit Verworn
    (im TUHH-Intranet auch als E-Book verfügbar)
  • Bringing Technology and Innovation Into the Boardroom
  • weitere Literaturempfehlungen auf Anfrage
Course L0161: Internationalization Strategies
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten)
Lecturer Prof. Thomas Wrona
Language EN
Cycle SoSe
Content
  • Introduction
  • Internationalization of markets
  • Measuring internationalization of firms
  • Target market strategies
  • Market entry strategies
  • Timing strategies
  • Allocation strategies
  • Working in small teams on close-to-reality problems based on presented theories
  • Paper writing on developed solution to the given problem/project e.g. market attractiveness analysis; development of market entry strategy for a hypothetical product in a given region
Literature
  • Bartlett/Ghoshal (2002): Managing Across Borders, The Transnational Solution, 2nd edition, Boston
  • Buckley, P.J./Ghauri, P.N. (1998), The Internationalization of the Firm, 2nd edition
  • Czinkota, Ronkainen, Moffett, Marinova, Marinov (2009), International Business, Hoboken
  • Dunning, J.H. (1993), The Globalization of Business: The Challenge of the 1990s, London
  • Ghoshal, S. (1987), Global Strategy: An Organizing Framework, Strategic Management Journal, p. 425-440
  • Praveen Parboteeah, K.,Cullen, J.B. (2011) , Strategic International Management, International 5th Edition
  • Rugman, A.M./Collinson, S. (2012): International Business, 6th Edition, Essex 2012
Course L2717: Configuration Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer York Schnatmeier
Language DE
Cycle SoSe
Content

Configuration management in complex projects and plans with high development shares, long runtimes and the use of high technology.

Configuration management (KM) is thus becoming increasingly important, especially in public, national and international tenders/projects, as well as in the aerospace and shipbuilding industries, among others. It is a tool of project management.

The essential terms and processes of KM are explained. The common basis is the DIN ISO 10007. KM is classified and delimited to the essential other processes of project management such as systems engineering, scheduling, quality management, risk management, controlling, contract management, etc.. The necessary structures in the products to be developed and manufactured and within the project organization itself are shown. KM supports the interface between the Project Management Office (PMO) and the executing departments, as well as the subcontractors involved. A key discipline of KM is change control, starting from the identification of the need for change to its implementation in planning, design, manufacturing and product. Special attention is given to the involvement of the client, often the public sector client. The classical project phases, acquisition, realization, commissioning and utilization require commonalities as well as different requirements for the respective KM.

The content taught is intended to enable students to work purposefully on new projects from the outset, to drive existing projects forward and to use KM in the process.

Basics I    
Concepts of configuration management
Goals & definitions,
historical development
3x3 of project management, why processes are so important,
Different project phases
Complex projects and project management

Basics II     
Description of the configuration with physical and functional features/properties
Different project phases
Project organization (AG, AN, ARGE and consortia, UAN)
DIN ISO 10007
Complex projects and project management

Delimitations and interfaces to other processes    
Systems Engineering and the V-Model,
scheduling,
quality management,
risk management,
controlling,
Construction contract and contract management

Structures in projects
Product structure, functional, physical and logistic structures,
document structure, work breakdown structure
Organization and Responsibility Matrix

KM Identification
a. Formation of configuration units and product structure
b. Criteria for the formation of baselines
c. Baselines, Master Record Index
d. Scheduled subscription lists

KM Change Control + Change Management
a. Change demand and change effort
b. Changes with and without customer and subcontractor involvement
c. Vertical and horizontal object dependencies
d. Change process
e. Common point of disposal

KM auditing
a. Audits and audit levels
b. Audits with and without customer and subcontractor participation
c. Audits and the V-Model
d. Presentation of project progress based on completed audits
e. Audits and the quality management
f. Planning of audits

KM Accounting 
a. Accounting task & use of data
b. Interface to construction status management
c. Interface to existing databases the product lifecycle management PLM

KM Planning
a. Determination for the acquisition phase
b. Specifications for the realization phase during the acquisition phase
c.  The KM plan for the realization phase

KM Organization and Tools
a. Disposal point / Configuration Control Board

Summary

KM as an interface between project management and order processing.
KM as a success factor in product development and a tool for technical control


Literature DIN ISO 10007
Course L2350: Leadership
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Dr. Thomas Kosin
Language DE
Cycle WiSe
Content
Literature
Course L1231: Management and Leadership
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 Minuten
Lecturer Prof. Christian Ringle, Janna Ehrlich
Language DE
Cycle SoSe
Content
  • definitions and foundations of strategic management
  • strategic planning
  • strategic analysis and forecast
  • development of strategic options
  • strategy evaluaton, implementation and strategic control
Literature

- Bea, F.X.; Haas, J.: Strategisches Management, 5. Auflage, Stuttgart 2009.
- Dess, G. G.; Lumpkin, G. T.; Eisner, A. B.: Strategic management: Creating competitive advantages, Boston 2010
- Hahn, D.; Taylor, B.: Strategische Unternehmensplanung: Strategische Unternehmensführung, 9. Auflage, Heidelberg 2006.
- Hinterhuber, H.H.: Strategische Unternehmensführung Bd. 1: Strategisches Denken, 7. Aufl., Berlin u. a. 2004
- Hinterhuber, H.H.: Strategische Unternehmensführung Bd. 2: Strategisches Handeln, 7. Aufl., Berlin u. a. 2004
- Hungenberg, H.: Strategisches Management in Unternehmen, 6. Auflage, Wiesbaden 2011
- Johnson, G.; Scholes, K.; Whittington, R.: Strategisches Management. Eine Einführung, 9. Auflage, München 2011
- Macharzina, K.: Unternehmensführung: Das internationale Managementwissen, 7. Auflage, Wiesbaden 2010.
- Porter, M.E.: Competitive strategy, New York 1980 (deutsche Ausgabe: Wettbewerbsstrategie, 10. Aufl., Frankfurt am Main 1999)
- Welge, M. K.; Al-Laham, A.: Strategisches Management, 5. Auflage, Wiesbaden 2008.

Course L0863: Marketing
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Christian Lüthje
Language EN
Cycle WiSe
Content

Contents

Basics of Marketing

The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling

Strategic Marketing Planning

How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership  strategies?

Market-oriented Design of products and services

How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products?

Pricing

What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)?

Marketing Communication

What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations?

Sales and Distribution

How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets?


Knowledge

Students will gain an introduction and good overview of

  • Specific challenges in the marketing of innovative goods and services
  • Key strategic areas in strategic marketing planning (cooperation, internationalization, timing)
  • Tools for information gathering about future customer needs and requirements
  • Fundamental pricing theories and pricing methods
  • Main communication instruments
  • Marketing channels and main organizational issues in sales management
  • Basic approaches for managing customer relationship

Skills

Based on the acquired knowledge students will be able to:

  • Design market timing decisions
  • Make decisions for marketing-related cooperation and internationalization activities
  • Manage the challenges of market-oriented development of new products and services
  • Translate customer needs into concepts, prototypes and marketable offers
  • Determine the perceived quality of an existing product or service using advanced elicitation and measurement techniques that fit the given situation
  • Analyze the pricing alternatives for products and services
  • Make strategic sales decisions for products and services (i.e. selection of sales channels)
  • Analyze the value of customers and apply customer relationship management tools

Social Competence

The students will be able to

  • have fruitful discussions and exchange arguments
  • present results in a clear and concise way
  • carry out respectful team work

Self-reliance

The students will be able to

  • Acquire knowledge independently in the specific context and to map this knowledge on other new complex problem fields.
  • Consider proposed business actions in the field of marketing and reflect on them.



Literature

Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431

Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004,  p. 106-110

Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155

Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116


Course L2440: Mergers & Acquistions (M&A)
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Philipp Haberstock
Language DE
Cycle SoSe
Content
Literature
Course L0709: Project Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Prof. Carlos Jahn
Language EN
Cycle WiSe
Content

The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event.

The following topics will be covered in the lecture:

  • SMART, Work Breakdown Structure, Operationalization, Goals relation matrix
  • Metra-Potential Method (MPM), Critical-Path Method (CPM), Program evaluation and review technique (PERT)
  • Milestone Analysis, Earned Value Analyis (EVA)
  • Progress reporting, Tracing of project goals, deadlines and costs, Project Management Control Loop, Maturity Level Assurance (MLA)
  • Risk Management, Failure Mode and Effects Analysis (FMEA), Risk Matrix

Literature

Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute.

DeMarco, Tom (1997). The Deadline: A Novel About Project Management.

DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5)

Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management.

Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung

Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach.

Heyworth, Frank (2002). A Guide to Project Management.

ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E))

Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling.

Lock, Dennis (2018). Project Management.

Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager.

Murch, Richard (2011). Project Management: Best Practices for IT Professionals.

Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen.

Course L1385: Project Management in Industrial Practice
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Dipl.-Ing. Wilhelm Radomsky
Language DE
Cycle WiSe
Content
  • Project management in a company
  • Project life cycle / Project environment
  • Project structuring / Project planning
  • Deployment of methods / Team development
  • Contract / Risk / Change management
  • Multi-project management / Quality management
  • Project controlling / Reporting
  • Project organization / Project conclusion


Literature

• Brown (1998): Erfolgreiches Projektmanagement in 7 Tagen

• Burghardt (2002): Einführung in Projektmanagement

• Cleland / King (1997): Project Management Handbook

• Hemmrich, Harrant (2002): Projektmanagement, In 7 Schritten zum Erfolg

• Kerzner (2003): Projektmanagement

• Litke (2004): Projektmanagement

• Madauss (2005): Handbuch Projektmanagement

• Patzak / Rattay (2004): Projektmanagement

• PMI (2004): A Guide to the Project Management Body of Knowledge

• RKW / GPM: Projektmanagement Fachmann

• Schelle / Ottmann / Pfeiffer (2005): ProjektManager

Course L1897: Project Management and Agile Methods
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten)
Lecturer Christian Bussler
Language DE
Cycle SoSe
Content

The Seminar teaches the basics of project management, which constitutes the foundations for technical as well as for business projects. It also includes a sideline about process management. The participants will work on the following questions:

  • What is a project and what challenges does it imply?
  • What methods have been developed to meet those challenges?
  • How have this methods evolved over time? What is “state of the art” today?
  • What basic skills should project members have?
  • What is the difference between project and process? How can the latter be analyzed?

The approaches are not just taught theoretically, but put to use in group work. Through this approach, participants are enabled to work successfully on actual projects - and manage projects later on. As project work is increasingly important in work life, project management is a key skill for job applicants.

Main topics of the seminar include:

  • The “magic triangle” of project objectives
  • Typical project phases
  • Key instruments and methods (project structure plan, RACI, Gantt chart)
  • Project organization and steering
  • Team communication and collaboration
  • The agile approach of Scrum
  • Process levels and cascading
  • Process improvement

With the knowledge and experience from the seminar, participants should be able to acquire a basic certificate in project management with relatively little additional effort. The certification is available through institutions like GPM.

Participants already start working on their homework paper in the group work. It comprises 5 to 10 pages and a structure plan for the chosen project, which can be done in Excel for example. Ideally, the members of the work groups write their homework paper together. The expected scale of the paper would increase in this case, yet not proportionally with the number of group members (4 participants would be expected to hand in a paper of 15-20 pages).

Literature

Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015

Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014

GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014

Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007

Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/

Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010

Course L2349: Accounting and Financial Statements
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Prof. Matthias Meyer
Language DE
Cycle WiSe/SoSe
Content
Literature
Course L1293: Risk Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 Minuten
Lecturer Dr. Meike Schröder
Language DE
Cycle WiSe
Content

Risks are inherent in every aspect of business, and the ability of managing risks is one important aspect that differentiates successful business leaders from others. There exist various categories of risk, such as credit, country, market, liquidity, operational, supply chain and reputational. Companies are vulnerable to risks. What makes such risks even more complex and challenging to manage is that the risks are often not within the direct control of the business executive. They can exist outside of the company boundary, and yet the impact to the company can be huge. The awareness and knowledge of how to manage risks in companies, will become increasingly important.

Some of the main topics covered in this lecture include:

  • Targets and legal aspects of risk management
  • Risks and their impact
  • Risk types (classification)
  • Risk management and human resource
  • Steps of the risk management process and their instruments
  • Methods of risk assessment
  • Implementation of risk management
  • Management of specific risks

This lecture is presented in German language only.


Literature

Brühwiler, B., Romeike, F. (2010), Praxisleitfaden Risikomanagement. ISO 31000 und ONR 49000 sicher anwenden, Berlin: Erich Schmidt.

Cottin, C., Döhler, S. (2013), Risikoanalyse. Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen, 2. überarbeitete und erweiterte Aufl., Wiesbaden: Springer.

Eller, R., Heinrich, M., Perrot, R., Reif, M. (2010), Kompaktwissen Risikomanagement. Nachschlagen, verstehen und erfolgreich umsetzen, Wiesbaden: Gabler.

Fiege, S. (2006), Risikomanagement- und Überwachungssystem nach KonTraG. Prozess, Instrumente, Träger, Wiesbaden: Deutscher Universitäts-Verlag.

Frame, D. (2003), Managing Risk in organizations. A guide for managers, San Francisco: Wiley.

Götze, U., Henselmann, K., Mikus, B. (2001), Risikomanagement, Heidelberg: Physica-Verlag.

Müller, K. (2010), Handbuch Unternehmenssicherheit. Umfassendes Sicherheits-, Kontinuitäts- und Risikomanagement mit System, 2., neu bearbeitete Auflage, Wiesbaden: Springer.

Rosenkranz, F., Missler-Behr, M. (2005), Unternehmensrisiken erkennen und managen. Einführung in die quantitative Planung, Berlin u.a.: Springer.

Wengert, H., Schittenhelm F. A. (2013), Coporate Risk Mangement, Berlin: Springer.


Course L1389: Key Aspects of Patent Law
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Christian Rohnke
Language DE
Cycle WiSe/SoSe
Content

Mayor Issues in Patent Law:

The seminar covers five mayor issues in german patent law, namely patentatbility, prosecution, ownership and employee inventions, infringement and licensing and other commercila uses.

The lecturer will give an introduction to each issue which will be followed by in-depth inquiry by the participants through group work, presentation of results and moderated discussion.


Literature wird noch bekannt gegeben
Course L2796: Startup Engineering: Cases
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Christoph Ihl
Language EN
Cycle SoSe
Content
Literature
Course L2410: Startup Engineering: Project
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Prof. Christoph Ihl, Dr. Hannes Lampe
Language EN
Cycle SoSe
Content
Literature
Course L2409: Strategic Shared-Value Management
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 30 Minuten
Lecturer Dr. Jill Küberling-Jost
Language EN
Cycle WiSe/SoSe
Content
Literature
Course L2295: Strategische Planung mit Planspielen
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Dr. Jan Spitzner
Language DE
Cycle SoSe
Content
Literature
Course L1351: Management Consulting
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale
Lecturer Gerald Schwetje
Language DE
Cycle SoSe
Content

The Management Consulting lecture teaches students knowledge that is complementary to their technical and business administration studies. They learn the basics of consulting and agent-principal theory and are given an overview of the consulting market. They are also shown how management consulting works and which methodical building blocks (processes) are needed to deal with a client’s concerns and to undertake a consulting process. By means of practical examples students gain an insight into the extensive range of management consultancy services and of functional consulting.

Literature

Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008

Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008

Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009

Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003

Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992

Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008

Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991

Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996

Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997

Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005

Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013

Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011

Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011

Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011

Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012

Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012

Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010

Course L0536: Management of Trust and Reputation
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten und Thesenpapier
Lecturer Dr. Michael Florian
Language DE
Cycle SoSe
Content

The seminar offers a comparison and analysis of relevant theoretical concepts and practical issues in the corporate management of trust and reputation. Selected case studies will be used to discuss opportunities, problems, and limitations using trust and reputation to coordinate and control economic behavior.

Literature

Allgäuer, Jörg E. (2009): Vertrauensmanagement: Kontrolle ist gut, Vertrauen ist besser. Ein Plädoyer für Vertrauensmanagement als zentrale Aufgabe integrierter Unternehmenskommunikation von Dienstleistungsunternehmen. München: brain script Behr.
Beckert, Jens; Metzner, André; Roehl, Heiko (1998): Vertrauenserosion als organisatorische Gefahr und wie ihr zu begegnen ist. In: Organisationsentwicklung 17 (4), S. 57-66.
Eberl, Peter (2003): Vertrauen und Management. Studien zu einer theoretischen Fundierung des Vertrauenskonstruktes in der Managementlehre. Stuttgart: Schäffer-Poeschel.
Eberl, Peter (2012): Vertrauen und Kontrolle in Organisationen. Das problematische Verhältnis der Betriebswirtschaftslehre zum Vertrauen. In: Möller, Heidi (Hg.): Vertrauen in Organisationen. Riskante Vorleistung oder hoffnungsvolle Erwartung? Wiesbaden: Springer VS, S. 93-110.
Eisenegger, Mark (2005): Reputation in der Mediengesellschaft. Konstitution   Issues Monitoring   Issues Management. Wiesbaden: VS Verlag für Sozialwissenschaften.
Florian, Michael (2013): Paradoxien des Vertrauensmanagements. Risiken und Chancen einer widerspenstigen immateriellen Ressource. In: Personalführung 46, Heft 2/2013, S. 40-47.
Grüninger, Stephan (2001): Vertrauensmanagement - Kooperation, Moral und Governance. Marburg: Metropolis.
Grüninger, Stephan; John, Dieter (2004): Corporate Governance und Vertrauensmanagement. In: Josef Wieland (Hg.): Handbuch Wertemanagement. Erfolgsstrategien einer modernen Corporate Governance. Hamburg: Murmann, S. 149-177.
Meifert, Matthias (2008): Ist Vertrauenskultur machbar? Vorbedingungen und Überforderungen betrieblicher Personalpolitik. In: Rainer Benthin und Ulrich Brinkmann (Hg.): Unternehmenskultur und Mitbestimmung. Betriebliche Integration zwischen Konsens und Konflikt. Frankfurt/Main, New York: Campus, S. 309-327.
Neujahr, Elke; Merten, Klaus (2012): Reputationsmanagement. Zur Kommunikation von Wertschätzung. In: PR-Magazin 06/2012, S. 60-67.
Osterloh, Margit; Weibel, Antoinette (2006): Investition Vertrauen. Prozesse der Vertrauensentwicklung in Organisationen. Wiesbaden: Gabler.
Osterloh, Margit; Weibel, Antoinette (2006): Vertrauen und Kontrolle. In: Robert J. Zaugg und Norbert Thom (Hg.): Handbuch Kompetenzmanagement. Durch Kompetenz nachhaltig Werte schaffen. Festschrift für Prof. Dr. Dr. h.c. mult. Norbert Thom zum 60. Geburtstag. Bern [u.a.]: Haupt, S. 53-63.
Osterloh, Margit; Weibel, Antoinette (2007): Vertrauensmanagement in Unternehmen: Grundlagen und Fallbeispiele. In: Manfred Piwinger und Ansgar Zerfaß (Hg.): Handbuch Unternehmenskommunikation. Wiesbaden: Gabler, S. 189-203.
Schmidt, Matthias; Beschorner, Thomas (2005): Werte- und Reputationsmanagement. München und Mering: Hampp.
Seifert, Matthias (2003): Vertrauensmanagement in Unternehmen. Eine empirische Studie über Vertrauen zwischen Angestellten und ihren Führungskräften. 2. Aufl. München und Mering: Hampp.
Sprenger, Reinhard K. (2002): Vertrauen führt. Worauf es im Unternehmen wirklich ankommt, Frankfurt/Main, New York.
Thiessen, Ansgar (2011): Organisationskommunikation in Krisen. Reputationsmanagement durch strategische, integrierte und situative Krisenkommunikation. Wiesbaden: VS Verlag für Sozialwissenschaften.
Walgenbach, Peter (2000): Das Konzept der Vertrauensorganisation. Eine theoriegeleitete Betrachtung. In: Die Betriebswirtschaft 60 (6), S. 707-720.
Walgenbach, Peter (2006): Wieso ist Vertrauen in ökonomischen Transaktionsbeziehungen so wichtig, und wie lässt es sich generieren? In: Hans H. Bauer, Marcus M. Neumann und Anja Schüle (Hg.): Konsumentenvertrauen. Konzepte und Anwendungen für ein nachhaltiges Kundenbindungsmanagement. München: Vahlen, S. 17-26.
Weibel, Antoinette (2004): Kooperation in strategischen Wissensnetzwerken. Vertrauen und Kontrolle zur Lösung des sozialen Dilemmas. Wiesbaden: Dt. Univ.-Verl.
Weinreich. Uwe (2003): Vertrauensmanagement. In: Deutscher Manager-Verband e.V. (Hg.): Die Zukunft des Managements. Perspektiven für die Unternehmensführung. Zürich: Vdf, Hochsch.-Verl. an der ETH, S. 193-201.

Module M0524: Non-technical Courses for Master

Module Responsible Dagmar Richter
Admission Requirements None
Recommended Previous Knowledge None
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The Nontechnical Academic Programms (NTA)

imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses.

The Learning Architecture

consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses.

The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”.

The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies.

Teaching and Learning Arrangements

provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses.

Fields of Teaching

are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way.

The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations.

The Competence Level

of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc.

This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life.

Specialized Competence (Knowledge)

Students can

  • explain specialized areas in context of the relevant non-technical disciplines,
  • outline basic theories, categories, terminology, models, concepts or artistic techniques in the disciplines represented in the learning area,
  • different specialist disciplines relate to their own discipline and differentiate it as well as make connections, 
  • sketch the basic outlines of how scientific disciplines, paradigms, models, instruments, methods and forms of representation in the specialized sciences are subject to individual and socio-cultural interpretation and historicity,
  • Can communicate in a foreign language in a manner appropriate to the subject.
Skills

Professional Competence (Skills)

In selected sub-areas students can

  • apply basic and specific methods of the said scientific disciplines,
  • aquestion a specific technical phenomena, models, theories from the viewpoint of another, aforementioned specialist discipline,
  • to handle simple and advanced questions in aforementioned scientific disciplines in a sucsessful manner,
  • justify their decisions on forms of organization and application in practical questions in contexts that go beyond the technical relationship to the subject.



Personal Competence
Social Competence

Personal Competences (Social Skills)

Students will be able

  • to learn to collaborate in different manner,
  • to present and analyze problems in the abovementioned fields in a partner or group situation in a manner appropriate to the addressees,
  • to express themselves competently, in a culturally appropriate and gender-sensitive manner in the language of the country (as far as this study-focus would be chosen), 
  • to explain nontechnical items to auditorium with technical background knowledge.





Autonomy

Personal Competences (Self-reliance)

Students are able in selected areas

  • to reflect on their own profession and professionalism in the context of real-life fields of application
  • to organize themselves and their own learning processes      
  • to reflect and decide questions in front of a broad education background
  • to communicate a nontechnical item in a competent way in writen form or verbaly
  • to organize themselves as an entrepreneurial subject country (as far as this study-focus would be chosen)     



Workload in Hours Depends on choice of courses
Credit points 6
Course L1775: “What’s up, Doc?” Science and Stereotypes in Literature and Film
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Jennifer Henke
Language EN
Cycle WiSe/SoSe
Content

Popular novels and films significantly contribute to the public understanding of science and its representatives. How to define “good” or “bad” science is negotiated in a variety of artistic works. Stereotypes such as the “mad scientist”, which originated in early nineteenth century England, continue to persist. Mary Shelley created the prototype of the obsessive and reckless scientist in Frankenstein - The Modern Prometheus (1818) who conducts his forbidden experiments in a secret lab and crosses ethical boundaries. This masculine stereotype has been followed by further ones such as the noble, adventurous or clumsy scientist, whereas scholars have only recently begun to consider the representation of female science.

First, this seminar is devoted to selected formations of knowledge in relation to literature from classical antiquity to the present. Second, the focus shall rest on the production of persistent stereotypes in various media formats such as novels or films while paying particular attention to the aspect of gender. The overall goal of the seminar is an understanding of science as a cultural practice.  

Requirements for participation: Shelley, Mary: Frankenstein. New York: Norton, 2012. Please pay attention to the exact publication dates.

Literature Teilnahmevoraussetzungen: Shelley, Mary: Frankenstein. New York: Norton, 2012. Bitte ausschließlich diese Edition anschaffen.


Course L2064: 120 years of film history
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 90 min
Lecturer Dr. Oliver Schmidt
Language DE
Cycle WiSe/SoSe
Content The lecture deals with the relationship between the develpoment of film technology, film aesthetics, and society. Based on the nineteenth-century film's precursors such as the laterna magica, photography and kinetoscope, crucial stages of more than 120 years of film history are studied chronologically in terms of: How does the development of new media techniques reflect certain social changes and needs? What new forms of aesthetic expression are possible through such technical innovations as the introduction of sound film, color film or handheld camera? And to what extent do these new forms of aesthetic expression in turn reflect certain social sensitivities, ultimately the respective zeitgeist? Main topics of the lecture are: the technical euphoria of the 19th century, the early film, the German Expressionist film, the classic Hollywood cinema, the European postwar cinema, exploitation and underground cinema, New Hollywood, the blockbuster cinema, independent cinema up to current phenomena like the „cinema of dissolution“. On the one hand, the participants learn in-depth, detailed knowledge of the history, meaning and analysis of the medium film and thereby acquire media literacy. On the other hand, the participants should gain a deeper understanding of the real interdependencies of technologies in culture and society and their historical transformation processes through an interdisciplinary perspective on film (history of technology, media studies and social science).
Literature
Course L1774: Applied Arts: Form and Function
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Dr. Christian Lechelt
Language DE
Cycle WiSe/SoSe
Content

From Arts & Crafts to modern Design - applied arts focus on the design of all kinds of products. Therefore applied arts allow to come to more thorough conclusions about social, historical, cultural issues.

In the course the impact of social developments on these particular genres are discussed.

Literature

Wird noch angegeben

Will be announced in lecture
Course L2854: Care-Crisis, Corona-Crisis and Social Inequalities
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Gruppenreferat mit Handout (45 Minuten)
Lecturer Anna Maria Köster-Eiserfunke
Language DE
Cycle WiSe/SoSe
Content

As the Corona pandemic made clear, all people are dependent on caring activities and health infrastructures. However, the social distribution of these activities as well as the access to health care are characterized by numerous inequalities and are structurally in crisis. These processes of crisis as well as the significance of social inequalities in the handling of the Corona pandemic will be focused on and worked out together in the seminar. For this purpose, we will deal with the economization of the health sector and bio-political demarcations, with new family divisions of labor and the significance of poverty for health risks, as well as with political possibilities for action to overcome the crisis(es) in solidarity.

Literature

Aulenbacher, B., Dammayr, M. (Hg.) 2014: Für sich und andere sorgen. Krise und Zukunft von Care in der modernen Gesellschaft // Volkmer, M., Werner, K. 2020: Die Corona-Gesellschaft. Analysen zur Lage und Perspektiven für die Zukunft

Course L1990: Clash of Cultures. Film and TV series as images of the own and the other
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Jacobus Bracker
Language DE
Cycle WiSe/SoSe
Content

Images are negotiating concepts of the own, other and alien. Especially tv series like “Game of Thrones”, “Vikings”, or “The Walking Dead” and films like “Alien” or “Lord of the Rings” show clashes of cultures. Irrespective of their genre - fantasy, science fiction, or history - the moving images use always similar patterns to show and tell the own and the other. During the seminar we will deal with such concepts and concepts of culture and the specifics of film and series to watch and analyse selected examples from these perspectives.


Literature

Literaturhinweise, Texte etc. werden zu gegebener Zeit online zur Verfügung gestellt.

Course L1441: German as a Foreign Language for International Master Programs
Typ Seminar
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Examination Form Klausur
Examination duration and scale
Lecturer Dagmar Richter
Language DE
Cycle WiSe/SoSe
Content

Master’s German course in cooperation with IBH e.V. - Master’s German courses at different levels

In the international studies program these are obligatory for non-native speakers of German and for students without a DSH certificate or equivalent TEST-DAF result. Grading after an aptitude test. All other students must sign up for a total of 4 ECTS from the catalog of non-technical supplementary courses.



Literature - Will be announced in lectures -
Course L1884: The Hamburger Speicherstadt - from achievements of engineering to world cultural heritage
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20 minütiges Referat mit anschließender Diskussion
Lecturer Dr. Jörg Schilling
Language DE
Cycle WiSe/SoSe
Content

The seminar wants to show the problems and challenges for the engineers, who built the Hamburger Speicherstadt and their sustainable architectural solutions, which are still of vital importance and the basis for becoming a world cultural heritage.

Literature u.a.: Hamburg und seine Bauten unter Berücksichtigung seiner Nachbarstädte Altona und Wandsbek, hg. vom Architekten- und Ingenieur-Verein zu Hamburg, Hamburg 1890; Karin Maak: Die Speicherstadt im Hamburger Hafen, Hamburg 1895; Hermann Hipp: Freie und Hansestadt Hamburg, Köln 1989; Matthias von Popowski: Franz Andreas Meyer (1837-1901). Oberingenieur und Leiter des Ingenieurwesens von 1872-1901, in: Wie das Kunstwerk Hamburg entstand, hg. v. Dieter Schädel, Hamburg 2006, S. 64-79; Ralf Lange: HafenCity + Speicherstadt : das maritime Quartier in Hamburg, Hamburg 2010.
Course L2367: Digital art
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Referat ca. 20 min. plus anschließende Diskussion
Lecturer Dr. Imke Hofmeister
Language DE
Cycle WiSe/SoSe
Content

Digitalization is having a major impact on many areas of our lives and the use of digital technologies in art and design has increased rapidly. After all, art is not only subject to constant change, but also constantly adapts to technical conditions. After the photographic art of the mid-19th century and the video art of the 1960s, which already brought about major changes in artistic creation, digital art is becoming increasingly important in the field of media art. The first attempts to use the computer with corresponding graphic software as an artistic medium took place in the 80/90s of the 20th century. Since then, there has been a broad development in the field of digital art, which now encompasses the most diverse digital pictorial phenomena and art genres and is thus intertwined in its objects, theories and practices with digital media in a variety of ways. The seminar gives an overview of the history of digital art and its different genres. These include, for example, photopaintings, where digital manipulation, filtering processes and painting can process the image and transform it over many stages into a completely new form. Also 3-D images, vector graphics, mathematical art and computer art in general. At the same time, the digital development in art is to be illuminated, from the first beginnings on the computer with comparatively simple "digital aids", e.g. in the form of simple image processing programs, to the present sophisticated graphic tools.

In addition, the presentation, dissemination and conservation possibilities of digital art will also be discussed, which can be disseminated very well on the Internet primarily because it can be displayed on a computer screen. The great fascination with digital creative work and the almost inexhaustible possibilities offered by the medium of computers to artists, who will continue to ensure that digital art finds a permanent place alongside traditional media, will also be discussed. Finally, in contrast to the traditional production methods in the field of fine arts and design, there are always new manifestations of digital art, which ultimately give not only the "trained" artist but also the layman far-reaching possibilities for artistic expression. And all this in the spirit of the performance artist Joseph Beuys , who postulated, every human being is capable of creativity, indeed "every human being is an artist".

The seminar will also discuss the question of how digital art can be described as "the" contemporary art, i.e. contemporary art in the age of digital technology. Furthermore, it is of great interest to what extent the perception of art per se has already changed and will continue to change in a digitalized society.

Literature folgt
Course L2479: Introduction to technology journalism: How research, development and solutions reach the public
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 15 Minuten je 3er Team
Lecturer Prof. Margarete Jarchow, Matthias Kowalski
Language DE
Cycle WiSe/SoSe
Content

The seminar imparts basic journalistic knowledge and skills to convey technical content to a broad public.
Technical topics are increasingly being taken up and discussed not only in specialist and special interest magazines, but also in the public media such as daily newspapers, television, radio and on the Internet.
The participants of the seminar receive skills that can enable them to actively contribute to such discussions.
Technology journalism is a comparatively young branch of professional journalism and includes reporting on topics from the areas of construction and housing, energy and the environment, transport and transportation, trade and industrial production, trade and services, as well as information and communication. The topics of climate and sustainability have recently been added. From these areas, journalistic topics for the final presentations are conceived, researched and implemented in small teams.
The seminar uses digital and analog communication channels in technology journalism. The handling of often very complex subjects and their understandable presentation is trained, the reporting is analyzed, the research is conceived, and typical forms of presentation and linguistic peculiarities are learned. The relationship to science, research and public relations also plays a role here. The seminar is rounded off by an overview of legal and ethical framework conditions.

Literature

Newman, Nic: Journalism, Media & Technology - Trends and predictions 2019, Reuters Institute/ University of Oxford Digital News Publications http://www.digitalnewsreport.org/publications/2019/journalism-media-technology-trends-predictions-2019/#executive-summary;
Schümchen, Andreas: Technikjournalismus (Riehe Praktischer Journalismus), 328 S., UVK-Verlag 2008

Course L1084: Engineering Education Research and Applications
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Teilnahme an gegenseitiger Hospitation und umfassender Bericht, schriftliche Reflexionsaufgaben, mündliche Beiträge in Diskussionen
Lecturer Prof. Christian Kautz
Language DE
Cycle WiSe
Content
Learning scenarios, active learning methods
Methods, results and implications of engineering education research 
Conceptual understanding and misconceptions in introductory engineering courses
Research on learning behaviour, motivation, and beliefs     
Preparation of Tutorials for selected lecture courses
Problem-Based Learning
Learning styles in engineering education
Assessment

Literature
Ausgewählte Artikel aus Fachzeitschriften (überwiegend in englischer Sprache) werden an die Seminarteilnehmer verteilt.  
Weiterführende Literatur wird zum jeweiligen Thema angegeben.
Course L1994: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in German
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Matthias Kowalski
Language DE
Cycle WiSe/SoSe
Content Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required.
Literature
Course L2370: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in English
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Matthias Kowalski
Language EN
Cycle WiSe/SoSe
Content

Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required.

Literature folgt
Course L0970: Foreign Language Course
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Klausur
Examination duration and scale 60 min
Lecturer Dagmar Richter
Language
Cycle WiSe/SoSe
Content

In the Field of the Nontechnical Complementary Courses students are able to chose foreign language courses. Therefore the Hamburger Volkshochschule offers a special language programm on TUHH campus for TUHH Students. It includes courses in english, chinese, french, japanese, portuguese, russia, swedish, spanisch and german as a foreign language. All lectures impart common language knowledge, english courses although english for technical purposes.

Literature Kursspezifische Literatur / selected bibliography depending on special lecture programm.
Course L1844: Stay cool in conflict. Nonviolent Communication by Marshall Rosenberg
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 2-3 Seiten bzw. 10-20 Minuten plus anschließende Besprechung
Lecturer Dr. Claudia Wunram
Language DE
Cycle WiSe/SoSe
Content

„Words can build bridges or create rafts“ - this is also true for the scientific and business world. For example, how do I react if I get attacked in a professional debate by an opponent or by a colleague in my team, or if a fight arises during the planning of a project? In a challenging situation, what will help me to communicate respectfully and with appreciation? How can I express criticism or irritation honestly, directly and without reproach? 

Nonviolent Communication is a concept developped by Marshall B. Rosenberg, Ph.D., intended to help create an appreciative attitude towards oneself and others, and to live by it. Nonviolent Communication opens paths to express oneself in a mindful and responsible way, so that a bridge can be built even in challenging situations of conflict. Effective and satisfactory cooperation is only possible with well functioning communication between all parties involved, otherwise things will become difficult and inefficient.

By working with their own examples and anticipating questions that might arise in their future professional lives, the students of Engineering Sciences will be able to reflect their own communicative behavior and learn ways of cooperation and conjoint solution finding. This course will impart the essential competencies of communication necesary for that.

Literature German:
  • Rosenberg, Marshall.  (2001) Gewaltfreie Kommunikation. Eine Sprache des Lebens. Junfermann
  • Rosenberg, Marshall B. und Seils, Gabriele. (15. Auflage 2012) Konflikte lösen durch Gewaltfreie Kommunikation. Ein Gespräch mit Gabriele Seils. Herder Taschenbuch
  • Larsson, Liv. (2013) 42 Schlüsselunterscheidungen in der GFK. Für ein tieferes Verständnis der Gewaltfreien Kommunikation. Junfermann
  • De Haen, Nayoma V. und Torsten Hardieß. (2015) 30 Minuten Gewaltfreie Kommunikation. Gabal
  • Connor, Jane M. und Killian, Dian, Drs. (2014) Verbindung herstellen - Trennendes überbrücken. Mit jedermann, jederzeit und überall eine gemeinsame Ebene finden. Praktische GFK für den Alltag. Junfermann
  • Dietz, Angela. (2015) Macht ohne Machtwort. Verantwortung übernehmen, Potenziale entfalten. Business Village
  • Miyashiro, Marie R. (2013) Der Faktor Empathie. Ein Wettbewerbsvorteil für Teams und Organisationen. Junfermann
  • Brüggemeier, Beate. (2010) Wertschätzende Kommunikation im Business. Wer sich öffnet, kommt weiter. Wie Sie die GFK im Berufsalltag nutzen. Junfermann
  • Heim, Vera und Lindemann, Gabriele. (2016) Beziehungskompetenz im Beruf. Brücken bauen mit Empathie und Gewaltfreier Kommunikation. Haufe Taschen Guide

English:

  • Rosenberg, Marshall B., Ph.D. (3rd Edition 2015) Nonviolent Communication: A Language of Life. Create your Life, your Relationships, and your World in Harmony with your Values. Puddledancer Press
  • Connor, Jane, Ph.D. and Killian, Dian, Ph.D. (2nd edition 2012) Connecting Across Differences: Finding Common Ground with Anyone, Anywhere, Anytime. Puddledancer Press
  • Miyashiro, Marie R. (2011) The Empathy Factor. Your Competitive Advantage for Personal, Team and Business Success. Puddledancer Press
  • Roele, Hugo and Rich-Tolsma, Matthew, Drs. (2015) The Book of Needs. A Structural Model for Listening. Kommunikasie.nl
  • Kashtan, Miki. (2014) Reweaving our Human Fabric. Working Together to Create a Nonviolent Future. Fearless Heart Publications


Course L2345: Theory, Research and Practice of University Teaching
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale Schriftliche Ausarbeitung (in mehreren Teilen) sowie eine Präsentation
Lecturer Prof. Christian Kautz, Jenny Alice Rohde
Language DE
Cycle WiSe/SoSe
Content

This course covers theory and practice of being a student teaching assistant in small-group instructional settings at TUHH.  As part of the seminar, the participants have the opportunity to reflect on their work, e. g. through mutual observation and discussion.

For prior knowledge / the event requirements:

This event requires basic first work / collaboration experiences in the academic work structures of a higher education institution, which Master's students have acquired as part of the qualification for the Bachelor's degree at a university.

These presumed work experiences include specific self-study experiences at a college.

These are picked up, reflected, expanded and further developed both theoretically and practically with regard to learning from and in groups and later guiding this learning process.

Furthermore, experiences with different types of learning / group types of higher education, which are part of a degree program acquired during the bachelor's program, are assumed, taken up, reflected on, expanded and further developed here in the master's program.

The course also requires basic knowledge of presenting scholarly work results obtained by Master's students with a Bachelor's degree.

In the course, this experience with and in representation in a group situation will be expanded and further developed in the direction of students' involvement with their own role as well as their design in face-to-face interaction as well as in group processes, learning and leadership situations, as masters graduates Graduate unlike bachelor graduates professionally stronger in a moderating role and with the guidance of humans because with the guidance in subject matters are demanded.

According to the later professional role, the work of the seminar promotes and enables graduate students significantly more than graduates' qualifications for independent work and learning, transferring what they have learned to new areas, contributing, involving discussion and contributing their own examples and interests.

Literature

Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.

Bosse, E. (2016). Herausforderungen und Unterstützung für gelingendes Studieren: Studienanforderungen

und Angebote für den Studieneinstieg. In I. van den Berk, K. Petersen, K. Schultes, &

K. Stolz (Hrsg.). Studierfähigkeit - theoretische Erkenntnisse, empirische Befunde und praktische

Perspektiven (Bd. 15). (S.129-169). Hamburg: Universität Hamburg.

Collins, D. & Holton, E. (2004). The effectiveness of managerial leadership development programs: A meta-analysis of studies from 1982 to 2001. Human resource development quarterly, 15(2),

217 - 248.

Danielsiek, H., Hubwieser, P., Krugel, J., Magenheim, J., Ohrndorf, L., Ossenschmidt, D., Schaper,

N. & Vahrenhold, J. (2017). Verbundprojekt KETTI: Kompetenzerwerb von Tutorinnen und Tutoren in der Informatik. In A. Hanft, F. Bischoff, B. Prang (Hrsg.), Working Paper Lehr-/Lernformen. Perspektiven aus der Begleitforschung zum Qualitätspakt Lehre. Abgerufen von KoBF:

Freeman, S., Eddy, SL., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematic.

Proceedings of the National Academy of Sciences 11(23), 8410-8415.

Glathe, A. (2017). Effekte von Tutorentraining und die Kompetenzentwicklung von MINTFachtutor*

innen in Lernunterstützungsfunktion. (Nicht veröffentlichte Dissertation). Technische

Universität Darmstadt, Deutschland.

Kirkpatrick, D. L. (1959). Techniques for Evaluation Training Program. Journal of the American Society

of Training Directors, 13, 21-26.

Hänze, M. Fischer, E. Schreiber, Biehler, R. & Hochmuth, R- (2013). Innovationen in der Hochschullehre:

empirische Überprüfung eines Studienprogramms zur Verbesserung von vorlesungsbegleitenden

Übungsgruppen in der Mathematik. Zeitschrift für Hochschulentwicklung, 8(4), 89-

103.

Kröpke, H. (2014). Who is who? Tutoring und Mentoring - der Versuch einer begrifflichen Schärfung.

In D. Lenzen & H. Fischer (Hrsg.), Tutoring und Mentoring unter besonderer Berücksichtigung

der Orientierungseinheit (Bd. 5). (21-29). Hamburg: Universitätskolleg-Schriften.

Kühlmann, T. (2007). Fragebögen. In J. Straub, A. Weidemann & D. Weidemann (Hrsg.), Handbuch

interkulturelle Kommunikation und Kompetenz (346-352). Stuttgart: Metzler.

Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (11. aktualisierte und überarbeitete

Auflage). Weinheim/Basel: Beltz.

Mummendey, H. D. (1981). Methoden und Probleme der Kontrolle sozialer Erwünschtheit (Social

Desirability). Zeitschrift für Differentielle und Diagnostische Psychologie, 2, 199-218.

Rohde, J. & Block, M. (2018). Welche Herausforderungen und Bewältigungsstrategien berichten

Tutor/innen der Ingenieurwissenschaften? Eine explorative Analyse von Reflexionsberichten. Vortrag

auf der 47. Tagung der Deutschen Gesellschaft für Hochschuldidaktik, Karlsruhe.

Heterogenität der Studierenden und Lösungsansätze von Tutor/-innen

Jenny Alice Rohde. Posterpräsentation auf der Tagung “Tutorielle Lehre und Heterogenität”. Technische Universität Darmstadt, 16.05.2019.Hochschuldidaktische Tutorenqualifizierung - Eine Basisqualifizierung des akademischen Nachwuchses und Chance für den Wandel der Lehr-/Lernkultur?

Jenny Alice Rohde & Caroline Thon-Gairola. Posterpräsentation auf der DGHD am 07.03.2019.Welches Lehrverhalten zeigen geschulte Tutor/innen? Eine explorative Analyse selbst- und fremdwahrnehmungsbasierter Reflexionsberichte

Jenny Alice Rohde & Nadine Stahlberg. In: die hochschulehre (2019).

Schneider, M. & Preckel, F. (2017). Variables associated with achievement in higher education: A

systematic review of meta-analyse. Psychological Bulletin, 143(6), 565-600.

Skylar Powell, K. & Yalcin, S. (2010). Managerial training effectiveness: A meta-analysis 1952-2002.

Personnel Review, 39(2), 227-241.

27 Welches Lehrverhalten zeigen geschulte Tutor/innen

d ie hochs chul l ehre 2019 www.hochschullehre.org

Stes, A., Min-Leliveld, M., Gijbels, D. & Van Petegem, P. (2010). The impact of instructional development

in higher education: The state-of-the-art of the research. Educational Research Review,

5(1), 25-49.

Stroebe, W. (2016). Why Good Teaching Evaluations May Reward Bad Teaching: On Grade Inflation

and Other Unintended Consequences of Student Evaluation. Perspectives on Psychological Science,

11(6), 800-816.

Technische Universität Hamburg (2018). Kennzahlen 2017. Hamburg: Technische Universität Hamburg.

[https://www.tuhh.de/tuhh/uni/informationen/kennzahlen.html]

Thumser-Dauth, K. (2008). Und was bringt das? Evaluation hochschuldidaktischer Weiterbildung.

In B. Berendt, H.-P. Voss & J. Wildt (Hrsg.), Neues Handbuch Hochschullehre. Lehren und Lernen

effizient gestalten. Kap. L 1.11 Hochschuldidaktische Aus- und Weiterbildung. Veranstaltungskonzepte

und -modelle. Berlin: Raabe. S. 1-10.

Wibbecke, G. (2015): Evaluation einer hochschuldidaktischen Weiterbildung an der Medizinischen

Fakultät Heidelberg. Dissertation. Ruprecht-Karls-Universität Heidelberg.

Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015a). Randauszählung Studienqualitätsmonitor

2014, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im

Sommersemester 2014, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung.

Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015b). Randauszählung Studienqualitätsmonitor

2015, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im

Sommersemester 2015, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung.

Winkler, M. (2018). Tutorielle Lehransätze im Vergleich. Die KOMPASS Begleitforschung. Vortrag

gehalten am 12.03.2018 auf dem Netzwerktreffen Tutorienarbeit an Hochschulen in Würzburg.

Zech, F. (1977). Grundkurs Mathematikdidaktik: theoretische und praktische Anleitungen für das

Lehren und Lernen im Fach Mathematik. Weinheim: Beltz.

Course L1509: Intercultural Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Prof. Margarete Jarchow, Anna Katharina Bartel
Language EN
Cycle WiSe/SoSe
Content

As young professionals with technical background you may often tend to focus on communicating numbers and statistics in your presentations. However, facts are only one aspect of convincing others. Often, your personality, personal experience, cultural background and emotions are more important. You have to convince as a person in order to get your content across.

In this workshop you will learn how to increase and express your cultural competence. You will apply cultural knowledge and images in order to positively influence communicative situations. You will learn how to add character and interest to your talks, papers and publications by referring to your own and European Cultural background. You will find out the basics of communicating professionally and convincingly by showing personality and by referring to your own cultural knowledge. You will get hands-on experience both in preparing and in conducting such communicative situations. This course is not focussing on delivering new knowledge about European culture but helps you using existing knowledge or such that you can gain e.g. in other Humanities courses.

Content

  • How to enrich the personal character of your presentations by referring to European and your own culture.
  • How to properly arrange content and structure.
  • How to use PowerPoint for visualization (you will use computers in an NIT room).
  • How to be well-prepared and convincing when delivering your thoughts to your audience.
Literature

Literaturhinweise werden zu Beginn des Seminars bekanntgegeben.

Literature will be announced at the beginning of the seminar.

Course L2015: Intercultural Management - Theory and Awareness Training
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 15 Minuten Vortrag und dessen schriftliche Ausarbeitung (10 Seiten)
Lecturer Prof Jürgen Rothlauf
Language EN
Cycle WiSe/SoSe
Content

The subject of the course is the deepening of the intercultural dimension of international management in relation to fundamental challenges, the importance of culture in team work and leadership of large multinational companies. In addition, culture-awareness trainings are discussed and carried out.

Literature

Rothlauf, J (2014): A Global View on Intercultural Management - Challenges in a Globalized World, De Gruyter Oldenbourg Verlag, 360 p

Course L2851: Join Mini Challenges of the ECIU University
Typ Project-/problem-based Learning
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 90 Stunden Arbeitsaufwand
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe/SoSe
Content

Join multidisciplinary and international teams at the ECIU University and solve mini challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in mini challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning.

General procedure of a challenge:

  1. The mini challenge is provided by a city, region or business stakeholder and is entered on the ECIU University Challenge platform (challenges.eciu.org).
  2. You register to the mini challenge you find relevant on the platform.
  3. An international and interdisciplinary team is formed from registered participants from all ECIU partner universities and a team facilitator from the host university is assigned.
  4. You work with the team on the mini challenge, engage, investigate, and propose non-technical solutions using the challenge-based learning methodology (https://eciu.tuhh.de/challenge-based-learning/).
  5. During the process, you can select relevant micro-modules from ECIU member universities that help you gain additional knowledge or skills that are relevant to solve the mini challenge.
  6. Finally, teams deliver their outputs - which may include services, products, research questions, start-ups and spin-offs.

By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills.

TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org

“Mini challenges” are challenges in the ECIU University that are supposed to be done within 1-4 weeks. Focus is to define your actual challenge, find suitable solution(s) and to implement them. https://eciu.tuhh.de/cbl-in-more-detail/

This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team.

Literature

ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE

https://www.eciu.org/news/eciu-university-2030-connects-u-for-life

TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE

https://www.eciu.org/news/towards-a-european-micro-credentials-initiative

Course L2852: Join Nano Challenges of the ECIU University
Typ Project-/problem-based Learning
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 30 Stunden Arbeitsaufwand
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe/SoSe
Content

Join multidisciplinary and international teams at the ECIU University and solve nano challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in nano challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning.

General procedure of a challenge:

  1. The nano challenge is provided by a city, region or business stakeholder and is entered on the ECIU University Challenge platform (challenges.eciu.org).
  2. You register to the nano challenge you find relevant on the platform.
  3. An international and interdisciplinary team is formed from registered participants from all ECIU partner universities and a team facilitator from the host university is assigned.
  4. You work with the team on the nano challenge, engage, investigate, and propose non-technical solutions using the challenge-based learning methodology (https://eciu.tuhh.de/challenge-based-learning/).
  5. During the process, you can select relevant micro-modules from ECIU member universities that help you gain additional knowledge or skills that are relevant to solve the nano challenge.
  6. Finally, teams deliver their outputs - which may include services, products, research questions, start-ups and spin-offs.

By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills.

TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org

“Nano challenges” are the smallest unit of challenges in the ECIU University and are supposed to be done within 1-2 days. Focus is to define your actual challenge, find suitable solution(s) and create ideas for further steps. https://eciu.tuhh.de/cbl-in-more-detail/

This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team.

Literature

ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE

https://www.eciu.org/news/eciu-university-2030-connects-u-for-life

TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE

https://www.eciu.org/news/towards-a-european-micro-credentials-initiative

Course L2853: Join Standard Challenges of the ECIU University
Typ Project-/problem-based Learning
Hrs/wk 6
CP 6
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Examination Form Fachtheoretisch-fachpraktische Arbeit
Examination duration and scale 180 Stunden Arbeitsaufwand
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe/SoSe
Content

Join multidisciplinary and international teams at the ECIU University and solve standard challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in standard challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning.

General procedure of a challenge:

  1. The standard challenge is provided by a city, region or business stakeholder and is entered on the ECIU University Challenge platform (challenges.eciu.org).
  2. You register to the standard challenge you find relevant on the platform.
  3. An international and interdisciplinary team is formed from registered participants from all ECIU partner universities and a team facilitator from the host university is assigned.
  4. You work with the team on the standard challenge, engage, investigate, and propose non-technical solutions using the challenge-based learning methodology (https://eciu.tuhh.de/challenge-based-learning/).
  5. During the process, you can select relevant micro-modules from ECIU member universities that help you gain additional knowledge or skills that are relevant to solve the standard challenge.
  6. Finally, teams deliver their outputs - which may include services, products, research questions, start-ups and spin-offs.

By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills.

TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org

“Standard challenges” are challenges in the ECIU University that are supposed to be done within 3-6 months. Focus is to define your actual challenge, find suitable solution(s) and to implement as well as evaluate and publish them. https://eciu.tuhh.de/cbl-in-more-detail/

This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team.

Literature

ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE

https://www.eciu.org/news/eciu-university-2030-connects-u-for-life

TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE

https://www.eciu.org/news/towards-a-european-micro-credentials-initiative

Course L2176: Culture of Communication - Theories and Methods of Successful Communication
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Anna Katharina Bartel
Language DE
Cycle WiSe/SoSe
Content

This course is for master students. In this seminar, we will explore different theories, models and methods from the fields of communication, psychology and cultural theory.

The participants will work on theoretical content and do group presentations. They will also use examples from their own experiences to apply models and methods in practical exercises.

The way we communicate shapes the way we experience our relationships, in the business world as well as in our private lives. We spend an overwhelming amount of time in group situations. This makes it worthwhile to explore how communication works within the group context and how, within these different groups, different cultures of communication develop. This particularly applies in highly specialized fields, such as engineering.

Our ability to flexibly and successfully move from one context to another helps us along in building successful careers and allows us to feel positive about our private lives.

However, this is not always simple. For example:

            If we are part of a context in which many conflicts arise

            If we have to switch between different contexts frequently

            Or if, on the one hand, complicated facts and data are our main focus but on the other hand, we have to communicate them to people who are not familiar with the subject. Maybe we even have to win their attention in order to help along our causes.

Oftentimes, this leads to misunderstandings. There also might be a lack of openness or willingness to embrace conflict. This might make it difficult for us to reach our goals. To be able to reflect on the way we communicate, to identify patterns of communication and the ability to actively build positive relationships through communication are useful skills to help overcome those obstacles..

Literature
  • Knoblauch, H. (1995). Kommunikationskultur: Die kommunikative Konstruktion kultureller Kontexte (Materiale Soziologie, Band 5). de Gruyter.
  • Geert Hofstede, Geert Jan Hofstede, Michael Minkov. (2010). Cultures and Organizations - Software Of The Mind:Intercultural Cooperation and Its Importance for Survival. McGraw-Hill Education.
  • Bay, Rolf H. (2006) Erfolgreiche Gespräche durch aktives Zuhören. Ehningen. Expert-Verlag.
  • Cohn, Ruth (1975). Von der Psychoanalyse zur Themenzentrierten Interaktion. Stuttgart. Klett - Cotta
  • Fengler, Jörg (1998) Feedback geben. Weinheim. Beltz.
  • Lumma, Klaus (2006). Die Teamfibel oder das Einmaleins der Team- & Gruppenqualifizierung im sozialen und betrieblichen Bereich. Windmühle.
  • Spies, Stefan. (2010). Der  Gedanke lenkt den Körper: Körpersprache - Erfolgsstrathegien eines Regisseurs. Hoffmann und Campe.
Course L2369: Literature and Culture for international students of Master's degree programs in English (non-native speakers of German)
Typ Seminar
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Examination Form Referat
Examination duration and scale 45 min. Präsentation und anschließende Diskussion
Lecturer Bertrand Schütz
Language DE
Cycle WiSe/SoSe
Content

The seminar LITERATURE AND CULTURE investigates what culture is, especially what characterises epistemic cultures.

Culture is to be understood as the creative response to a given situation and the capacity to integrate inputs and influences, therefore as an ongoing process of permanent readjustment and learning, and by no means as a fixed identity in terms of an “essence”.

There is a growing awareness that Europe cannot lay claim to possess the ultimate standards of knowledge.

A topography of our contemporary world is to be sketched by highlighting its historical and cultural premises.

For more information please refer to the German description and the StudIP.

Literature

Je nach Thematik des Semesters wird eine spezifische
Literatur-Liste erstellt.

cf. StudIP

Course L2029: Lying press”? Functions and current challenges of journalism
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Mündliche Prüfung
Examination duration and scale 20 min
Lecturer Prof. Horst Pöttker
Language DE
Cycle WiSe/SoSe
Content

Lying press - there is a revival of the disparaging invective. Journalists use to shoot it down by leading it back to its supposed roots in the NS-propaganda. This is less convincing as several parties and ideologies have used it since the middle of the 19th century to discredit the media of other parties and ideologies. And it is missing the core of the problem. Critics are reasonably afraid that the choice of “lying press” to the “non-word of the year” 2014 has blocked the question, if there is a justified criticism of information media and journalism - or more precisely of the relationship between journalism and its audience. If this is the case both - journalism and audience - are involved from the perspective of inter actionism.    

Against this background interactive instructions will be given by scholarly literature and practical examples from the German and international media business.

Questions like the following will be discussed:

  • Is journalism really a profession? If so - since when?
  • What is journalism for? (task and duties, functions, self-images)
  • Do the audience and journalists themselves have a reasonable understanding of tasks, functions, practices, problems of journalism?
  • What is the current concept of journalistic professionalism? Has it ever been the same?
  • From an international perspective: Does journalism in Germany have special shortcomings - if so, how can they be removed?
  • What are the economic challenges for journalism from the digital media upheaval?
  • In which direction do journalistic professionalism and self-understanding change in the digital media world?

Objective is solid learning about professional tasks, ethics, techniques, endagerments, history and current problems of journalism including science journalism.


Literature

Zur Einführung:
Lilienthal, Volker/Neverla, Irene (Hrsg.) (2017): „Lügenpresse“. Anatomie eines politischen Kampfbegriffs. Köln: Kiepenheuer & Witsch. https://www.kiwi-verlag.de/buch/luegenpresse/978-3-462-31782-4/
Pöttker, Horst (2010): Der Beruf zur Öffentlichkeit. Über Aufgabe, Grundsätze und Perspektiven des Journalismus in der Mediengesellschaft aus der Sicht praktischer Vernunft. In: Publizistik, 55. Jg., H. 2, S. 107-128. https://www.springerprofessional.de/en/der-beruf-zur-oeffentlichkeit/5889108
Weischenberg, S. (2007): Das Jahrhundert des Journalismus ist vorbei. Rekonstruktionen und Prognosen zur Formation gesellschaftlicher Selbstbeobachtung. In: Bartelt-Kircher, G. et al.: Krise der Printmedien - eine Krise des Journalismus? Berlin und New York, de Gruyter Saur, S. 32-60.
https://medien21.wordpress.com/2011/10/17/weischenberg-das-jahrhundert-des-journalismus-ist-vorbei/
Eine ausführliche Literaturliste wird am Anfang des Seminars verteilt.


Weischenberg, S. (2010): Das Jahrhundert des Journalismus ist vorbei. Rekonstruktionen und Prognosen zur Formation gesellschaftlicher Selbstbeobachtung. In: Bartelt-Kircher, Gabriele u.a.: Krise der Printmedien - eine Krise des Journalismus? Berlin und New York: de Gruyter Saur, S. 32-60.

Eine ausführliche Literaturliste wird am Anfang des Seminars verteilt. 

Course L1846: Classical Journalism and New Media
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Ca. 20 min. plus anschließende Diskussion
Lecturer Dieter Bednarz
Language DE
Cycle WiSe/SoSe
Content

The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed. Has the media expert Neil Postman been right, when he one said, that we all one day will be „overnewsed but underinformed“?

Keeping a close eye on the real challenges of journalism, the seminar will discuss the standards of ethics in politics and media.


Literature

Wird im Seminar genannt

Course L1023: Politics
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Stephan Albrecht
Language EN
Cycle WiSe/SoSe
Content

Scientists and engineers neither just strive for truths and scientific laws, nor are they working in a space far from politics.  Science and engineering have contributed to what we now call the Anthropocene, the first time in the history of mankind when essential cycles of the earth system, e.g. carbon cycle, climate system, are heavily influenced or even shattered. Furthermore, Peak oil is indicating the end of cheap fossil energy thus triggering the search for alternatives such as biomass.

Systems of knowledge, science and technology in the OECD countries have since roughly 30 years increasingly become divided. On the one hand new technologies such as modern biotechnology, IT or nanotechnology are developing rapidly, bringing about many innovations for industry, agriculture, and consumers. On the other hand scientific studies from earth, environmental, climate change, agricultural and social sciences deliver increasingly robust evidence on more or less severe impacts on society, environment, global equity, and economy resulting from innovations during the last 50 years. Technological innovation thus is no longer an uncontested concept. And many protest movements demonstrate that the introduction of new or the enlargement of existing technologies (e.g. airports, railway stations, highways, high-voltage power lines surveillance) isn’t at all a matter of course.

It is important to bear in mind the fact that all processes of technological innovation are made by humans, individually and collectively. Industrial, social, and political organizations as actors from the local to global level of communication, deliberation, and decision making interact in diverse arenas, struggling to promote their respective corporate and/or political agenda. So innovations are as well a problem of technology as a problem of politics. Innovation and technology policies aren’t the same in all countries. We can observe conceptual and practical variations.

Since the 1992 Earth Summit in Rio de Janeiro Agenda 21 constitutes a normative umbrella, indicating Sustainable Development (SD) as core cluster of earth politics on all levels from local to global. Meanwhile other documents such as the Millennium Development Goals (MDG) have complemented the SD agenda. SD can be interpreted as operationalization of the Universal Declaration of Human Rights, adopted in 1948 by the General Assembly of the United Nations and since amended many times. 

Engineers and scientists as professionals can’t avoid to become confronted with many non-technical and non-disciplinary items, challenges, and dilemmas. So they have to choose between alternative options for action, as individuals and as members of organizations or employees. Therefore the seminar will address core elements of the complex interrelations between science, society and politics. Reflections on experiences of participants - e.g. from other countries as Germany - during the seminar are very welcome.

The goals of the seminar include:

  • Raising awareness and increasing knowledge about the political implications of scientific work and institutions;
  • Improving the understanding of different concepts and designs of innovation and technology policies;
  • Increasing knowledge about the status and perspectives of sustainable development as framework concept for technological and scientific progress;
  • Understanding core elements of recent arguments, conflicts, and crises on technological innovations, e.g. geo-engineering or bio-economy;
  • Improving the understanding of scientists’ responsibility for impacts of their professional activities;
  • Embedding individual professional responsibility in social and political contexts.

The seminar will deal with current problems from areas such as innovation policy, energy, food systems, and raw materials. Issues will include the future of energy, food security and electronics. Historical issues will also be addressed.

The seminar will start with a profound overarching introduction. Issues will be introduced by a short presentation and a Q & A session, followed by group work on selected problems. All participants will have to prepare a presentation during the weekend seminar. The seminar will use inter alia interactive tools of teaching such as focus groups, simulations and presentations by students. Regular and active participation is required at all stages.


Literature Literatur wird zu Beginn des Seminars abgesprochen.
Course L1856: Politics and Science - in German
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale Referat ca. 20 min. plus anschließende Diskussion
Lecturer Dr. Mirko Himmel, Dr. Ines Krohn-Molt
Language DE
Cycle WiSe/SoSe
Content

Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions.

Literature

Wird im Seminar genannt

Course L1779: Politics and Science - in English
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Frederik Postelt, Dr. Gunnar Jeremias
Language EN
Cycle WiSe/SoSe
Content

Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions.

During this seminar we would like to show the different range of influences - scientific, economic, social, environmental, ethical/normative, security-related - affecting decision-making on science and politics. Using case studies on current debates on food security, public health, nuclear energy and terrorism to discuss the interrelation between science and politics illuminating the role of various actors in this process, such as:

• Governments,

• International organizations,

• Scientific associations,

• Industry,

• Civil society, and

• Individual scientists.

The guiding questions will be:

• How does and should science influence politics?

• How does and should politics influence science?

In order to take responsibility for the consequences of scientific work, engineers and scientists increasingly need to acknowledge the political dimension of their work and their role in the political process. We will address this political dimension of scientific work by discussing:

• Biographies and motivations of famous scientists,

• Individual responsibility of scientists for the implications of their work, and

• The role of codes of conduct as guidelines for responsible behaviour.

The goals of the seminar include:

• Raising awareness and increasing knowledge about the political dimensions of scientific work,

• Providing guidelines for evaluating political implications of scientific research,

• Improving the understanding of scientists’ and engineers’ responsibility for the results of their professional activities,

• Taking decisions at the institutional, national and international level about rules and regulations concerning scientific conduct, and

• Choosing arguments and defending positions in situations of conflicting interests.

The seminar will use current issues, such as dilemmas in the life sciences or bio fuels to demonstrate the problematic relationship between science and politics. The seminar, however, does not focus on providing in-depth knowledge of these current issues. We strongly discourage students that have participated in an “Ethics for Engineers” seminar to take this course, because the contents of the two seminars overlap.

Issues will be introduced by short presentations and a Q&A session, followed by group work on selected problems. All participants will have to prepare a presentation. Those requiring a graded certificate (“Schein”) additionally have to write a 3-4 page paper on selected issues. The seminar will use interactive tools of teaching such as role playing and simulations. Group work and active participation is expected at all stages of the seminar.

Literature

will be announced in lecture

wird im Seminar bekannt gegeben

Course L1734: Projectrealisation: TUHH goes circular - Sustainability in Research, Education and campus management
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale
Lecturer Prof. Kerstin Kuchta
Language EN
Cycle WiSe/SoSe
Content

Description

The group project: TUHH goes Circular addresses environmental challenges and engages with science communication as an instrument of sustainable solution strategies. Due to the Covid-19-pandemic especially digital communication has gained importance - and this shall be adopted in the digital summer semester of 2021. The students are being introduced to the importance of high-quality science communication for ecologically and socially sustainable development. In a practical group task, the students are gaining experience with traditional and popular formats. Topics are to be chosen matching the general scope of environmental challenges, i.e. the challenges of rising resource consumption and waste production.

Competences

  • The students learn about: the role of scientific communication in sustainability research, traditional and popular formats and suitability for different audiences
  • The students gain experience with presenting scientific insights in traditional and popular formats
  • The students gain experience with visualisation, storytelling and digital tools i.e. audio and video editing
  • The students organise autonomously as groups and work in a targeted manner
  • The students present their chosen topics of interest in two different formats


Literature

Wird im Seminar bekannt gegeben

Will be announced in lecture.

Course L2649: Brave New World? Technology, Society and Digitalitization in Cinematic Dystopias
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 45 Minuten
Lecturer Dr. Marlis Bussacker
Language DE
Cycle WiSe/SoSe
Content

Desolate landscapes, destruction, violence - these are usually our first associations when we think of dystopias. But it is not that obvious. At first we often see an almost utopian-looking world without disease, without hunger, without poverty, in which many of our current problems have been solved. But the idyll is illusory and has its price.

What does this price look like? The seminar will focus on films in which technical progress and the development of artificial intelligence have opened up almost unlimited possibilities for people - to improve their living conditions, but also to gain complete control over them.

Who carries out this control? Is an individual life still possible? What about democratic structures? Do these films show us our future? How much freedom do we want to give up for a life that seems safe and carefree at first sight? And: Why are there no more social utopias? These questions, among others, will be focused in the discussion.

Literature

Wird im Seminar bekannt gegeben.

Course L1872: Social Learning: Social Commitment in Refugee Issues / Master
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 10 Seiten
Lecturer Muthana Al-Temimi
Language DE
Cycle WiSe/SoSe
Content

This seminar is intended to enable and promote social engagement for refugees and migrants and the social learning that goes along with it.

The term "social commitment for refugees" means active cooperation and participation in projects, initiatives or organizations that aim at supporting refugees/migrants in Germany. The recognition of activities within the framework of projects, initiatives or organizations with anti-democratic objectives is excluded.

The goal is "social learning within the framework of social commitment": On the one hand, this includes the acquisition or deepening of competencies on the part of the students through their commitment in the above-mentioned area; on the other hand, it includes the support/promotion/learning of the refugees/migrants through the competencies of the students.

In this course, students independently look for social projects in the above-mentioned sense and commit themselves for at least 50 hours. Previous social commitment in the above-mentioned area can be taken into account.

In this course, students engage in social projects for at least 50h. Previous social commitment in this field can be taken into account. In addition, participants will have the opportunity to exchange information with other students from the Social Learning seminars on their voluntary activities.

The participants will be closely accompanied and advised by the course instructor, especially in the search and selection of a suitable activity. Compulsory 20h of present teaching including consultation enable the students to reflect on the learning situation on site as well as their own competences in a reflection work / written elaboration

Obligatory 10 h of presence teaching including consulting time enable students to reflect the learning situation on site and their own competence in a structured and successful way, either accompanying or following their involvement in a reflection work / written elaboration  to be able to identify and evaluate their own learning process.

In addition, the participants are given the opportunity to specifically exchange information with other students from the Master's programs about their social activities.

Literature

Wird im Seminar bekannt gegeben.

Will be announced in lecture.

Course L2485: Social Learning: Social Engagement for Sustainability - M.Sc.
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 10 Seiten + mündliche Präsentation
Lecturer Tatjana Grimm
Language DE
Cycle WiSe/SoSe
Content

This seminar is intended promote social engagement in the field of ecological, economic and social sustainability and the accompanying social learning. "Social Engagement for Sustainability" means active cooperation and participation in projects, initiatives or organisations which aim to preserve or improve living conditions and environment for present and future generations, e.g. conservation of resources, nature protection or strengthening fair trade. Activities in projects, initiatives or organisations with anti-democratic objectives and in political parties are not accepted. In this course, students are volunteering in social projects for at least 32 hours. Previous social engagement in this field can be considered. In addition, participants are given the opportunity to exchange information with other students from the Social Learning seminars on their voluntary service. The participants will be closely accompanied and advised by the instructor, especially during the search and selection of a suitable activity. Obligatory 28 hours of presence teaching including counselling time enable students to critically reflect on their commitment. The focus is on the effects in society.

Literature -
Course L2480: Social Learning: Social commitment to preservation of historical cultural assets - MSc
Typ Seminar
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Examination Form Schriftliche Ausarbeitung
Examination duration and scale 10 Seiten + mündliche Präsentation
Lecturer Tatjana Grimm
Language DE
Cycle WiSe
Content

This seminar is intended to promote social engagement in the field of natural- and technical history and the associated social learning.

"Social commitment to preservation of historical cultural assets" means the active participation in projects, initiatives or organizations whose aim is to preserve natural-, social- and technological historical cultural assets. Possible contacts are natural history- and technology museums as well as monument protection foundations, which look after historic buildings, ships and port facilities or underground buildings. Activities in projects, initiatives or organisations with anti-democratic objectives and in political parties are not accepted.

In this course, students engage in social projects for at least 42h. Previous social commitment in this field can be taken into account. In addition, participants will have the opportunity to exchange information with other students from the Social Learning seminars on their voluntary activities.

The participants will be closely accompanied and advised by the course instructor, especially in the search and selection of a suitable activity. Compulsory 18h of present teaching including consultation enable the students to reflect on the learning situation on site as well as their own competences in a reflection work / written elaboration.

Literature -
Course L2849: Technology Assessment (TA) and Technology Genesis Research
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Schriftliche Ausarbeitung
Examination duration and scale Schriftliche Hausarbeit 7-10 Textseiten; verpflichtend: Präsentation der Zwischenergebnisse mit Diskussion (geht nicht in die Bewertung mit ein)
Lecturer Dr. Martin Schütz
Language DE
Cycle WiSe/SoSe
Content

Can we predict technical development and its multi-dimensional consequences? Can we assess if they are desirable or not? Genetic
engineering e.g. prove one-self to be a dilemma. -
Technique as social process: On development of technical artefacts. The ‘Leitbild-Konzept’ (model-concept) and its critique in Technology
Genesis Research.

Literature

− Bell, Daniel (1994): Technology and Society in a Post-industrial Age. In: Hans-Ulrich
Derlien (Hg.): Systemrationalität und Partialinteresse. Festschrift für Renate
Mayntz. Unter Mitarbeit von Renate Mayntz. Baden-Baden: Nomos, S. 491-511.
− Bogner, Alexander; Decker, Michael; Sotoudeh, Mahshid (Hg.) (2015): Responsible
Innovation. Neue Impulse für die Technikfolgenabschätzung? Baden-Baden:
edition sigma .
− Buhr, Regina; Buchholz, Boris (1999): Mit QWERTY ins 21. Jahrhundert? Die
Tastatur im Spannungsfeld zwischen Technikherstellung, Anwendung und
Geschlechterverhältnis. In: Ritter 1999:172-185.
− Conrad, Jobst (1994): AKW revisited - 50 Jahre danach. Substantielle und
prozedurale Effekte von Technikfolgenabschätzung. In: Johannes Weyer (Hg.):
Theorien und Praktiken der Technikfolgenabschätzung. München: Profil .
− Degele, Nina (2002): Einführung in die Techniksoziologie. München: Fink.
− Döring, Hans-Walter (1988): Technik und Ethik. Die sozialphilosophische und
politische Diskussion um die Gentechnologie. Frankfurt/Main: Campus-Verl.
− Grunwald, Armin (2010): Technikfolgenabschätzung. Eine Einführung. 2. Auflage.
Berlin: edition sigma.
− Häußling, Roger (2010): Stichwort: Techniksoziologie. In: Georg Kneer und Markus
Schroer (Hg.): Handbuch Spezielle Soziologien. Wiesbaden: VS Verlag für
Sozialwissenschaften, S. 623-643.
− Häußling, Roger (2014): Techniksoziologie. Baden-Baden: Nomos .
− Lengersdorf, Diana; Wieser, Matthias (Hg.) (2014): Schlüsselwerke der Science &
Technology Studies. Wiesbaden: Springer VS.
− Ogburn, William Fielding (1969): Kultur und sozialer Wandel. Ausgewählte
Schriften. Neuwied: Luchterhand (Soziologische Texte, 56).
− Passoth, Jan-Hendrik (2008): Technik und Gesellschaft. Wiesbaden: VS Verlag für
Sozialwissenschaften
− Rammert, Werner (2016): Technik - Handeln - Wissen. Zu einer pragmatistischen
Technik- und Sozialtheorie. 2., aktualisierte Auflage 2016. Wiesbaden: Springer VS.
− Ritter, Martina (Hg.) (1999): Bits und Bytes vom Apfel der Erkenntnis. Frauen,
Technik, Männer. Münster: Verl. Westfälisches Dampfboot .
− Schulz-Schaeffer, Ingo (2000): Sozialtheorie der Technik. Frankfurt/Main: Campus
Verl.
− Schulz-Schaeffer, Ingo (2008): Stichwort: Technik. In: Nina Baur, Hermann Korte,
Schütz
SCHÜTZ Techniksoziologie Lehrkonzept Schütz SoSe 2018 TFA.docx D. _ Richter S8 Seite 3 von 2
Martina Löw und Markus Schroer (Hg.): Handbuch Soziologie. Wiesbaden: VS
Verlag für Sozialwissenschaften, S. 445-463.
− Weyer, Johannes (2008): Techniksoziologie. Genese, Gestaltung und Steuerung
sozio-technischer Systeme. Weinheim: Juventa

Course L1771: The Arabic Spring an its Consequences
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dieter Bednarz
Language DE
Cycle WiSe/SoSe
Content

The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed:

Taking a close look at the Middle East the political impact of the new media´s triumphal procession will be assessed and evaluated. How come that Twitter and Facebook on one hand facilitated the so called Arabic  Spring and caused hope for the rise of democracy in the region, while on the other hand the revolutionaries failed so dramatically - at least for now.

Keeping a close  eye on both fields, the Media and the Middle East, the seminar will discuss the standards of ethics in politics and journalism.

Literature

Wird im Seminar angegeben und besprochen.

Will be announced in the lecture.

Course L1916: Responsible Conduct in Technology & Science
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Mirko Himmel, Dr. Ines Krohn-Molt
Language DE
Cycle WiSe/SoSe
Content

Aim of the seminar is raising awareness for the responsibility of engineers and researchers for a proper and ethical conduct in technology and science. The Participants will present and discuss practical examples for good as well as bad conduct in science.


Literature folgt im Seminar
Course L1991: What can philosophy do?
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Ursula Töller
Language DE
Cycle WiSe/SoSe
Content

Over the centuries, the philosophy is lined up as a discipline that provides complex and universal answers to contemporary history and circumstances. Often, she could design utopias that have led the way for political upheaval. While all scientific disciplines are subject to an increasing differentiation, the philosophy in the second half of the 20th century has lost its claim to universality. But what then are the topics of the philosophy of the 20th and 21st century and what impact have philosophical theories for processes of change?

We will provide an overview of Western philosophies of the 20th and 21st century. and take a critical look at the self-understanding of philosophy.

Literature

Gerhardt Schweppenhäuser: Kritische Theorie, Stuttgart 2010

Postmoderne und Dekonstruktion, Texte französischer Philosophen der Gegenwart, hrsg. von Peter Engelmann, Reclam UB 8668

Thomas Rentsch: Philosophie des 20. Jhdts. Von Husserl bis Derrida, München 2014

Geschichte der Philosophie in Text und Darstellung, Bd. 8=20 Jhdt.

Reclam UB 9918

Geschichte der Philosophie in Text und Darstellung, Bd. 9= Gegenwart

Reclam UB 18267

Course L0528: Economic Sociology
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale 20-30 Minuten Referat und Thesenpapier
Lecturer Dr. Michael Florian
Language DE
Cycle WiSe
Content

Economic sociology means the application of sociological theories, methods, and perspectives in the analysis of economic issues. The seminar is concerned with new developments in economic sociology. Using case studies, the course will offer insights into the strengths and weaknesses of different sociological approaches.

Literature

Baecker, Dirk: Wirtschaftssoziologie. Transcript: Bielefeld, 2006.
Bourdieu, Pierre et al.: Der Einzige und sein Eigenheim. Erweiterte Neuausgabe. Hamburg: VSA, 2002.
Beckert, Jens: Was ist soziologisch an der Wirtschaftssoziologie? Ungewißheit und die Einbettung wirtschaftlichen Handelns. In: Zeitschrift für Soziologie 25, 1996, S. 125-146.
Beckert, Jens: Grenzen des Marktes. Die sozialen Grundlagen wirtschaftlicher Effizienz. Campus: Frankfurt/New York, 1997
Beckert, Jens; Diaz-Bone, Rainer; Ganßmann, Heiner (Hg.) (2007): Märkte als soziale Strukturen. Frankfurt am Main/New York: Campus-Verlag.
Beckert, Jens; Deutschmann, Christoph (Hg.) (2010): Wirtschaftssoziologie. Sonderheft 49 der Kölner Zeitschrift für Soziologie und Sozialpsychologie: Wiesbaden: VS Verlag für Sozialwissenschaften.
Fligstein, Neil (2011): Die Architektur der Märkte. Wiesbaden: VS Verlag für Sozialwissenschaften.
Florian, Michael; Hillebrandt, Frank (Hg.): Pierre Bourdieu: Neue Perspektiven für die Soziologie der Wirtschaft. VS Verlag für Sozialwissenschaften: Wiesbaden, 2006.
Granovetter, Mark: Ökonomisches Handeln und soziale Struktur: Das Problem der Einbettung. In: Hans-Peter Müller und Steffen Sigmund (Hrsg.): Zeitgenössische amerikanische Soziologie. Leske + Budrich, Opladen 2000, S. 175-207.
Heinemann, Klaus (Hg.): Soziologie wirtschaftlichen Handelns. Sonderheft 28 der Kölner Zeitschrift für Soziologie und Sozialpsychologie. Opladen: Westdeutscher Verlag, 1987
Hirsch-Kreinsen, Hartmut: Wirtschafts- und Industriesoziologie. Grundlagen, Fragestellungen, Themenbereiche. Weinheim/München: Juventa, 2005.
Smelser, Neil J.; Swedberg, Richard (HG.): The Handbook of Economic Sociology. 2nd edition. Princeton/Oxford: Princeton University Press and New York: Russell Sage Foundation: New York, 2005.

Course L2343: Academic Writing and Presentation for Master-Students
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Examination Form Referat
Examination duration and scale etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion
Lecturer Dr. Sigrid Vierck
Language DE/EN
Cycle WiSe/SoSe
Content

The course is aimed at Master students who are planning to write their thesis, want to pursue their PhD or intend to present their research results at conferences and in journals. The course is structured on different levels: 1. searching, 2. presenting with words, slides and pictures and 3. practical appliance. The course refers to the work environment at university as well as in research groups and enterprises. In the course of the seminar, the participants become acquainted with various methods and theories on the subject. Furthermore, the methods and theories will be put into practice, reflected upon and discussed as part of the seminar.

Literature


Ascheron, Klaus: Die Kunst des wissenschaftlichen Präsentierens und Publizierens. Ein Praxisleitfaden für junge Wissenschaftler. München 2007.

Der Autor, Naturwissenschaftler, erklärt aufgrund seiner langjährigen und internationalen Erfahrung worauf es beim wissenschaftlichen Präsentieren (und Schreiben) ankommt. Aus seinem ganzheitlichen Ansatz heraus gibt er klare und hilfreiche Tipps für ein erfolgreiches und korrektes Darstellen im wissenschaftlichen Kontext.

Eufinger, Günther: Dokumente perfekt gestalten. München 2007.

Der Autor geht in dem kompakten Band auf die Schlüsselkompetenzen für erfolgreiches Präsentieren ein, die er aufgrund langjähriger praktischer Erfahrungen definiert. Darunter wird die Power-Point-Präsentation eingehend behandelt, wobei das in den weiteren Kapiteln dargestellte Basiswissen auch für PPP anzuwenden ist.

Feuerbacher, Bernd: Professionell Präsentieren in den Natur- und Ingenieurwissenschaften. Weinheim 2009.

Ansprechender, klar strukturierter Band, der auf die Unterschiede zwischen mündlichem Vortrag und schriftlichen Ausdruck eingeht sowie zusätzlich den Schwerpunkt auf die Power-Point-Präsentation legt. Wie im Titel angegeben zwar mit Betonung der Natur- und Ingenieurwissenschaften, aber in der Beschreibung rhetorischen Auftretens allgemeingültig formuliert.

Hug, Theo (Hrsg.): Wie kommt Wissenschaft zu Wissen, Band 1: Einführung in das wissenschaftliche Arbeiten. Hohengehren 2001.

Weitreichende Einführung, die bereits in den späteren Praxisbereich übergreift. Intensive Behandlung der internetbezogenen Arbeit.

Kremer, Bruno P.: Vom Referat bis zur Abschlussarbeit. Naturwissenschaftliche Texte perfekt produzieren, präsentieren und publizieren. 5. Aufl. 2018. Berlin, Heidelberg (Imprint: Springer Spektrum).

Der Autor schreibt mit langjähriger Erfahrung. Der Band, wie im Titel formuliert auf die Naturwissenschaften zugeschnitten, informiert umfassend, ist sehr gut gegliedert und verständlich geschrieben, sozusagen eine Werkstattanleitung, praxisnah und ermunternd.

Prexl, Lydia: Mit digitalen Quellen arbeiten: richtig zitieren aus Datenbanken, E-Books, YouTube & Co. 3., aktualisierte und überarbeitete Auflage, Paderborn, Stuttgart 2019 (UTB) https://elibrary.utb.de/doi/book/10.36198/9783838550725 (Lizenzpflichtig)

Die Autorin schildert in kleinen Schritten das wissenschaftliche Arbeiten mit Betonung des digitalen Anteils wie E-Books, E-Journals, Social-Media-Einträgen, Datenbanken und anderen elektronische Quellen. Vor allem bei der Frage nach der Verwendbarkeit und Zitierfähigkeit gibt dieser Ratgeber Lösungen ebenso wie zur Vermeidung von Plagiaten, sowie der bibliographischen Angabe, auch bei Unvollständigkeit.

Pöhm, Matthias: Präsentieren Sie noch oder faszinieren Sie schon? Der Irrtum PowerPoint. 6. Aufl. Heidelberg 2009.

Als Coach und Moderator bietet der Autor Tipps zur erfolgreichen Präsentation, die - wie er provokant im Titel formuliert - ohne PowerPoint auskommen soll, denn er setzt auf die Emotion als Kommunikationsmittel. Damit wird deutlich, dass er sich mehr im verkaufsorientierten als im wissenschaftlichen Bereich ansiedelt.

Pukas, Dietrich: Lernmanagement. Einführung in Lern- und Arbeitstechniken. 3. aktual. Aufl. Rinteln 2008.

Übersichtliches und umfassendes Kompendium zu den zahlreichen Fragen des Lernens und wissenschaftlichen Arbeitens. Zunächst wirtschaftswissenschaftlich orientiert, was auch durch die Struktur sowie die Tabellen und Diagramme deutlich wird, hat der Band durchaus allgemeine Gültigkeit. Darüber hinaus werden praxisorientierte Hinweise gegeben.

Reynolds, Garr: Zen oder die Kunst der Präsentation. München u.a. 2010.

Der Autor kommt aus dem Designbereich und bietet somit Stilmittel zur Gestaltung der PPP an. Wie im Titel angedeutet sind für ihn die Mittel der Konzentration auf das Wesentliche, der Ruhe und Einfachheit von entscheidender Bedeutung.

Rost, Friedrich: Lern- und Arbeitstechniken für das Studium. 8., überarb. u. aktual. Aufl. Wiesbaden 2018.

Ausführliche Vermittlung von Arbeitstechniken der Stoffermittlung, der Stoffverarbeitung, der Stoffsammlung, des informativen Schreibens, des Sprechens und Redens mit Berücksichtigung der computergestützten Arbeit und einem Anhang zu Ausdruck und Grammatik der deutschen Sprache.

Sesink, Werner: Einführung in das wissenschaftliche Arbeiten: inklusive E-Learning, Web-Recherche, digitale Präsentation u.a. 9., vollständ. überarb. u. aktual. Aufl. München 2014.

Arbeitshilfe mit Betonung auf der Computer-Verwendung. Erklärung des wissenschaftlichen Arbeitens und der Vorarbeiten wie Literatursuche und persönlicher Materialsammlung. Beschreibung des Abfassens einer schriftlichen Arbeit, auch Protokoll, Thesenpapier und Klausur. Ausführliche Behandlung der computergestützten Arbeit, vor allem auch des Textformatierens und der Textverarbeitung in der Studienpraxis.

Spoun, Sascha und Dominik B. Domnik: Erfolgreich studieren. Ein Handbuch für Wirtschafts- und Sozialwissenschaftler. München u.a. 2005.

Pearson-Studium. Handlicher Band, der Selbstorganisation als Erfolg versprechende Grundlage für das Studium sowie Techniken des Recherchierens, Lesens und Darstellens beschreibt. Durch die Konzentration auf das Wesentliche wird der Intensität und Kürze des Bachelor- und Masterstudiums Rechnung getragen und ein Leitfaden für die Bewältigung des workloads gegeben.

Theisen, Manuel R.: Wissenschaftliches Arbeiten. Technik, Methodik, Form. 17., aktual. u. bearb. Aufl. München 2017.

Zielgerichtete Beschreibung des Arbeitsprozesses von der Planung bis zum Druck und der Präsentation. Alle Stufen werden ausführlich, detailliert und in sinnvoller Reihenfolge beschrieben, wobei einzelne Kapitel auch für sich genommen werden können. Klar, übersichtlich, grundlegend. Der Autor ist in der Betriebswirtschaftslehre beheimatet.

Wolpert, Lewis: Unglaubliche Wissenschaft. Frankfurt a. M. 2004.

Der Autor, Naturwissenschaftler, vermittelt aufgrund seiner lebenslang gewonnenen Erfahrung den Weg zur wissenschaftlichen Erkenntnis durch Aufzeigen der grundlegenden Frageprinzipien und des wissenschaftlichen, sprich nachvollziehbaren und beweisfähigen Denkens. Der Band ist in der Reihe „Die Andere Bibliothek“ erschienen, mit der Herausgeber Hans Magnus Enzensberger ein Kompendium der Welt- und Wissensliteratur eigener Prägung schafft. Der Band regt zum unkonventionellen Denken an.

Module M0676: Digital Communications

Courses
Title Typ Hrs/wk CP
Digital Communications (L0444) Lecture 2 3
Digital Communications (L0445) Recitation Section (large) 2 2
Laboratory Digital Communications (L0646) Practical Course 1 1
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics 1-3
  • Signals and Systems
  • Fundamentals of Communications and Random Processes
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students are able to understand, compare and design modern digital information transmission schemes. They are familiar with the properties of linear and non-linear digital modulation methods. They can describe distortions caused by transmission channels and design and evaluate detectors including channel estimation and equalization. They know the principles of single carrier transmission and multi-carrier transmission as well as the fundamentals of basic multiple access schemes.
Skills The students are able to design and analyse a digital information transmission scheme including multiple access. They are able to choose a digital modulation scheme taking into account transmission rate, required bandwidth, error probability, and further signal properties. They can design an appropriate detector including channel estimation and equalization taking into account performance and complexity properties of suboptimum solutions. They are able to set parameters of a single carrier or multi carrier transmission scheme and trade the properties of both approaches against each other.
Personal Competence
Social Competence

The students can jointly solve specific problems.

Autonomy

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Core Qualification: Compulsory
Computational Science and Engineering: Specialisation II. Engineering Science: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems: Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory
International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0444: Digital Communications
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content
  • Digital modulation methods

  • Coherent and non-coherent detection

  • Channel estimation and equalization

  • Single-Carrier- and multi carrier transmission schemes, multiple access schemes (TDMA, FDMA, CDMA, OFDM)

Literature

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Course L0445: Digital Communications
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0646: Laboratory Digital Communications
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Gerhard Bauch
Language DE/EN
Cycle WiSe
Content

- DSL transmission

- Random processes

- Digital data transmission

Literature

K. Kammeyer: Nachrichtenübertragung, Teubner

P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner.

J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill.

S. Haykin: Communication Systems. Wiley

R.G. Gallager: Principles of Digital Communication. Cambridge

A. Goldsmith: Wireless Communication. Cambridge.

D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge.

Module M1048: Integrated Circuit Design

Courses
Title Typ Hrs/wk CP
Integrated Circuit Design (L0691) Lecture 3 4
Integrated Circuit Design (L0998) Recitation Section (small) 1 2
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of (solid-state) physics and mathematics.

Knowledge in fundamentals of electrical engineering and electrical networks.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain basic concepts of electron transport in semiconductor devices (energy bands, generation/recombination, carrier concentrations, drift and diffusion current densities, semiconductor device equations).  
  • Students are able to explain functional principles of pn-diodes, MOS capacitors, and MOSFETs using energy band diagrams.
  • Students can present and discuss current-voltage relationships and small-signal equivalent circuits of these devices.
  • Students can explain the physics and current-voltage behavior transistors based on charged carrier flow.
  • Students are able to explain the basic concepts for static and dynamic logic gates for integrated circuits
  • Students can exemplify approaches for low power consumption on the device and circuit level
  • Students can describe the potential and limitations of analytical expression for device and circuit analysis.
  • Students can explain characterization techniques for MOS devices.


Skills
  • Students can qualitatively construct energy band diagrams of the devices for varying applied voltages.
  • Students are able to qualitatively determine electric field, carrier concentrations, and charge flow from energy band diagrams.
  • Students can understand scientific publications from the field of semiconductor devices.
  • Students can calculate the dimensions of MOS devices in dependence of the circuits properties
  • Students can design complex electronic circuits and anticipate possible problems.
  • Students know procedure for optimization regarding high performance and low power consumption


Personal Competence
Social Competence
  • Students can team up with other experts in the field to work out innovative solutions.
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.
  • Students have the ability to critically question the value of their contributions to working groups.


Autonomy
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to define their personal approaches to solve challenging problems


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0691: Integrated Circuit Design
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content
  • Electron transport in semiconductors
  • Electronic operating principles of diodes, MOS capacitors, and MOS field-effect transistors
  • MOS transistor as four terminal device
  • Performace degradation due to short channel effects
  • Scaling-down of MOS technology
  • Digital logic circuits
  • Basic analog circuits
  • Operational amplifiers
  • Bipolar and BiCMOS circuits


Literature


  • Yuan Taur, Tak H. Ning:  Fundamentals of Modern VLSI Devices, Cambridge University Press 1998
  • R. Jacob Baker: CMOS, Circuit Design, Layout and Simulation,  IEEE Press, Wiley Interscience, 3rd Edition, 2010
  • Neil H.E. Weste and David Money Harris, Integrated Circuit Design, Pearson, 4th International Edition, 2013
  • John E. Ayers, Digital Integrated Circuits: Analysis and Design, CRC Press, 2009
  • Richard C. Jaeger and Travis N. Blalock: Microelectronic Circuit Design, Mc Graw-Hill, 4rd. Edition, 2010


Course L0998: Integrated Circuit Design
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0746: Microsystem Engineering

Courses
Title Typ Hrs/wk CP
Microsystem Engineering (L0680) Lecture 2 4
Microsystem Engineering (L0682) Project-/problem-based Learning 2 2
Module Responsible Prof. Manfred Kasper
Admission Requirements None
Recommended Previous Knowledge Basic courses in physics, mathematics and electric engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators.

Skills

Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems.

Personal Competence
Social Competence

Students are able to solve specific problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 10 % Presentation
Examination Written exam
Examination duration and scale 2h
Assignment for the Following Curricula Electrical Engineering: Core Qualification: Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory
Course L0680: Microsystem Engineering
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. rer. nat. Thomas Kusserow
Language EN
Cycle WiSe
Content

Object and goal of MEMS

Scaling Rules

Lithography

Film deposition

Structuring and etching

Energy conversion and force generation

Electromagnetic Actuators

Reluctance motors

Piezoelectric actuators, bi-metal-actuator

Transducer principles

Signal detection and signal processing

Mechanical and physical sensors

Acceleration sensor, pressure sensor

Sensor arrays

System integration

Yield, test and reliability

Literature

M. Kasper: Mikrosystementwurf, Springer (2000)

M. Madou: Fundamentals of Microfabrication, CRC Press (1997)

Course L0682: Microsystem Engineering
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. rer. nat. Thomas Kusserow
Language EN
Cycle WiSe
Content

Examples of MEMS components

Layout consideration

Electric, thermal and mechanical behaviour

Design aspects

Literature

Wird in der Veranstaltung bekannt gegeben

Module M0768: Microsystems Technology in Theory and Practice

Courses
Title Typ Hrs/wk CP
Microsystems Technology (L0724) Lecture 2 4
Microsystems Technology (L0725) Project-/problem-based Learning 2 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Basics in physics, chemistry, mechanics and semiconductor technology

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able

     to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems

     to explain in details operation principles of microsensors and microactuators and

     to discuss the potential and limitation of microsystems in application.


Skills

Students are capable

     to analyze the feasibility of microsystems,

     to develop process flows for the fabrication of microstructures and

     to apply them.




Personal Competence
Social Competence


Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.


Autonomy

None

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work Studierenden führen in Kleingruppen ein Laborpraktikum durch. Jede Gruppe präsentiert und diskutiert die Theorie sowie die Ergebniise ihrer Labortätigkeit. vor dem gesamten Kurs.
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory
International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0724: Microsystems Technology
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language EN
Cycle WiSe
Content
  • Introduction (historical view, scientific and economic relevance, scaling laws)
  • Semiconductor Technology Basics, Lithography (wafer fabrication, photolithography, improving resolution, next-generation lithography, nano-imprinting, molecular imprinting)
  • Deposition Techniques (thermal oxidation, epitaxy, electroplating, PVD techniques: evaporation and sputtering; CVD techniques: APCVD, LPCVD, PECVD and LECVD; screen printing)
  • Etching and Bulk Micromachining (definitions, wet chemical etching, isotropic etch with HNA, electrochemical etching, anisotropic etching with KOH/TMAH: theory, corner undercutting, measures for compensation and etch-stop techniques; plasma processes, dry etching: back sputtering, plasma etching, RIE, Bosch process, cryo process, XeF2 etching)
  • Surface Micromachining and alternative Techniques (sacrificial etching, film stress, stiction: theory and counter measures; Origami microstructures, Epi-Poly, porous silicon, SOI, SCREAM process, LIGA, SU8, rapid prototyping)
  • Thermal and Radiation Sensors (temperature measurement, self-generating sensors: Seebeck effect and thermopile; modulating sensors: thermo resistor, Pt-100, spreading resistance sensor, pn junction, NTC and PTC; thermal anemometer, mass flow sensor, photometry, radiometry, IR sensor: thermopile and bolometer)
  • Mechanical Sensors (strain based and stress based principle, capacitive readout, piezoresistivity,  pressure sensor: piezoresistive, capacitive and fabrication process; accelerometer: piezoresistive, piezoelectric and capacitive; angular rate sensor: operating principle and fabrication process)
  • Magnetic Sensors (galvanomagnetic sensors: spinning current Hall sensor and magneto-transistor; magnetoresistive sensors: magneto resistance, AMR and GMR, fluxgate magnetometer)
  • Chemical and Bio Sensors (thermal gas sensors: pellistor and thermal conductivity sensor; metal oxide semiconductor gas sensor, organic semiconductor gas sensor, Lambda probe, MOSFET gas sensor, pH-FET, SAW sensor, principle of biosensor, Clark electrode, enzyme electrode, DNA chip)
  • Micro Actuators, Microfluidics and TAS (drives: thermal, electrostatic, piezo electric and electromagnetic; light modulators, DMD, adaptive optics, microscanner, microvalves: passive and active, micropumps, valveless micropump, electrokinetic micropumps, micromixer, filter, inkjet printhead, microdispenser, microfluidic switching elements, microreactor, lab-on-a-chip, microanalytics)
  • MEMS in medical Engineering (wireless energy and data transmission, smart pill, implantable drug delivery system, stimulators: microelectrodes, cochlear and retinal implant; implantable pressure sensors, intelligent osteosynthesis, implant for spinal cord regeneration)
  • Design, Simulation, Test (development and design flows, bottom-up approach, top-down approach, testability, modelling: multiphysics, FEM and equivalent circuit simulation; reliability test, physics-of-failure, Arrhenius equation, bath-tub relationship)
  • System Integration (monolithic and hybrid integration, assembly and packaging, dicing, electrical contact: wire bonding, TAB and flip chip bonding; packages, chip-on-board, wafer-level-package, 3D integration, wafer bonding: anodic bonding and silicon fusion bonding; micro electroplating, 3D-MID)


Literature

M. Madou: Fundamentals of Microfabrication, CRC Press, 2002

N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010

G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008

Course L0725: Microsystems Technology
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1137: Technical Elective Complementary Course for IMPMM - field ET (according to Subject Specific Regulations)

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge Basic knowledge in electrical enginnering, physics, semiconductor devices and mathematics at Bachelor of Science level
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge As this modul can be chosen from the modul catalogue of the department E, the competence to be acquired is acccording to the chosen subject.
Skills

As this modul can be chosen from the modul catalogue of the department E, the skills to be acquired is acccording to the chosen subject.

Personal Competence
Social Competence
  • Students can team up with one or several partners who may have different professional backgrounds
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.
Autonomy


  • Students are able to assess their knowledge in a realistic manner.
  • The students are able to draw scenarios for estimation of the impact of advanced mobile electronics on the future lifestyle of the society.
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Microelectronics and Microsystems: Core Qualification: Elective Compulsory

Module M0918: Advanced IC Design

Courses
Title Typ Hrs/wk CP
Advanced IC Design (L0766) Lecture 2 3
Advanced IC Design (L1057) Project-/problem-based Learning 2 3
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge Fundamentals of electrical engineering, electronic devices and circuits
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain the basic structure of the circuit simulator SPICE.
  • Students are able to describe the differences between the MOS transistor models of the circuit simulator SPICE.
  • Students can discuss the different concept for realization the hardware of electronic circuits.
  • Students can exemplify the approaches for “Design for Testability”.
  • Students can specify models for calculation of the reliability of electronic circuits.


Skills
  • Students can determine the input parameters for the circuit simulation program SPICE.
  • Students can select the most appropriate MOS modelling approaches for circuit simulations.
  • Students can quantify the trade-off of different design styles.
  • Students can determine the lot sizes and costs for reliability analysis.


Personal Competence
Social Competence
  • Students can compile design studies by themselves or together with partners.
  • Students are able to select the most efficient design methodology for a given task.
  • Students are able to define the work packages for design teams.


Autonomy
  • Students are able to assess the strengths and weaknesses of their design work in a self-contained manner.
  • Students can name and bring together all the tools required for total design flow.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0766: Advanced IC Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language EN
Cycle SoSe
Content
  • Circuit-Simulator SPICE 
  • SPICE-Models for MOS transistors
  • IC design
  • Technology of MOS circuits
  • Standard cell design
  • Design of gate arrays
  • CMOS transconductance and transimpedance amplifiers
  • frequency behavior of CMOS circuits
  • Techniques for improved circuit behaviour (e.g. cascodes, gain boosting, folding, ...)
  • Examples for realization of ASICs in the institute of nanoelectronics
  • Reliability of integrated circuits
  • Testing of integrated circuits
Literature

R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 

B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000


X. Liu, VLSI-Design Methodology Demystified; IEEE, 2009


Course L1057: Advanced IC Design
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl, Weitere Mitarbeiter
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0761: Semiconductor Technology

Courses
Title Typ Hrs/wk CP
Semiconductor Technology (L0722) Lecture 4 4
Semiconductor Technology (L0723) Practical Course 2 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Basics in physics, chemistry, material science and semiconductor devices

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge


Students are able

     to describe and to explain current fabrication techniques for Si and GaAs substrates,

     to discuss in details the relevant fabrication processes, process flows and the impact thereof on the fabrication of semiconductor devices and integrated circuits and

     to present integrated process flows.


Skills


Students are capable

     to analyze the impact of process parameters on the processing results,

     to select and to evaluate processes and

     to develop process flows for the fabrication of semiconductor devices.


Personal Competence
Social Competence


Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.


Autonomy None
Workload in Hours Independent Study Time 96, Study Time in Lecture 84
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0722: Semiconductor Technology
Typ Lecture
Hrs/wk 4
CP 4
Workload in Hours Independent Study Time 64, Study Time in Lecture 56
Lecturer Prof. Hoc Khiem Trieu
Language DE/EN
Cycle SoSe
Content
  • Introduction (historical view and trends in microelectronics)
  • Basics in material science (semiconductor, crystal, Miller indices, crystallographic defects)
  • Crystal fabrication (crystal pulling for Si and GaAs: impurities, purification, Czochralski , Bridgeman and float zone process)
  • Wafer fabrication (process flow, specification, SOI)
  • Fabrication processes
  • Doping (energy band diagram, doping, doping by alloying, doping by diffusion: transport processes, doping profile, higher order effects and process technology, ion implantation: theory, implantation profile, channeling, implantation damage, annealing and equipment)

  • Oxidation (silicon dioxide: structure, electrical properties and oxide charges, thermal oxidation: reactions, kinetics, influences on growth rate, process technology and equipment, anodic oxidation, plasma oxidation, thermal oxidation of GaAs)

  • Deposition techniques (theory: nucleation, film growth and structure zone model, film growth process, reaction kinetics, temperature dependence and equipment; epitaxy: gas phase, liquid phase, molecular beam epitaxy; CVD techniques: APCVD, LPCVD, deposition of metal silicide, PECVD and LECVD; basics of plasma, equipment, PVD techniques: high vacuum evaporation, sputtering)

  • Structuring techniques (subtractive methods, photolithography: resist properties, printing techniques: contact, proximity and projection printing, resolution limit, practical issues and equipment, additive methods: liftoff technique and electroplating, improving resolution: excimer laser light source, immersion lithography and phase shift lithography, electron beam lithography, X-ray lithography, EUV lithography, ion beam lithography, wet chemical etching: isotropic and anisotropic, corner undercutting, compensation masks and etch stop techniques; dry etching: plasma enhanced etching, backsputtering, ion milling, chemical dry etching, RIE, sidewall passivation)

  • Process integration (CMOS process, bipolar process)

  • Assembly and packaging technology (hierarchy of integration, packages, chip-on-board, chip assembly, electrical contact: wire bonding, TAB and flip chip, wafer level package, 3D stacking)

     

Literature

S.K. Ghandi: VLSI Fabrication principles - Silicon and Gallium Arsenide, John Wiley & Sons

S.M. Sze: Semiconductor Devices - Physics and Technology, John Wiley & Sons

U. Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag

H. Beneking: Halbleitertechnologie - Eine Einführung in die Prozeßtechnik von Silizium und III-V-Verbindungen, Teubner Verlag

K. Schade: Mikroelektroniktechnologie, Verlag Technik Berlin

S. Campbell: The Science and Engineering of Microelectronic Fabrication, Oxford University Press

P. van Zant: Microchip Fabrication - A Practical Guide to Semiconductor Processing, McGraw-Hill

Course L0723: Semiconductor Technology
Typ Practical Course
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0747: Microsystem Design

Courses
Title Typ Hrs/wk CP
Microsystem Design (L0683) Lecture 2 3
Microsystem Design (L0684) Practical Course 3 3
Module Responsible Prof. Manfred Kasper
Admission Requirements None
Recommended Previous Knowledge

Mathematical Calculus, Linear Algebra, Microsystem Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know about the most important and most common simulation and design methods used in microsystem design. The scientific background of finite element methods and the basic theory of these methods are known.

Skills

Students are able to apply simulation methods and commercial simulators in a goal oriented approach to complex design tasks. Students know to apply the theory in order achieve estimates of expected accuracy and can judge and verify the correctness of results. Students are able to develop a design approach even if only incomplete information about material data or constraints are available. Student can make use of approximate and reduced order models in a preliminary design stage or a system simulation.

Personal Competence
Social Competence

Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can develop and explain their solution approach and subdivide the design task to subproblems which are solved separately by group members.

Autonomy

Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Written elaboration
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Course L0683: Microsystem Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Kasper
Language EN
Cycle SoSe
Content

Finite difference methods

Approximation error

Finite element method

Order of convergence

Error estimation, mesh refinement

Makromodeling

Reduced order modeling

Black-box models

System identification

Multi-physics systems

System simulation

Levels of simulation, network simulation

Transient problems

Non-linear problems

Introduction to Comsol

Application to thermal, electric, electromagnetic, mechanical and fluidic problems

Literature

M. Kasper: Mikrosystementwurf, Springer (2000)

S. Senturia: Microsystem Design, Kluwer (2001)

Course L0684: Microsystem Design
Typ Practical Course
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Manfred Kasper
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1131: Technical Elective Complementary Course for IMPMM - field TUHH (according to Subject Specific Regulations)

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge in electrical enginnering, physics, semiconductor devices, software and mathematics at Bachelor of Science level.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

As this module can be chosen from the module catalogue of the TUHH, the competence to be acquired is according to the chosen subject.

Skills


As this module can be chosen from the module catalogue of the TUHH, the skills to be acquired is according to the chosen subject.

Personal Competence
Social Competence
  • Students can team up with one or several partners who may have different professional backgrounds
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.
Autonomy
Workload in Hours Depends on choice of courses
Credit points 6
Assignment for the Following Curricula Microelectronics and Microsystems: Core Qualification: Elective Compulsory
Microelectronics and Microsystems: Core Qualification: Elective Compulsory

Module M1130: Project Work IMPMM

Courses
Title Typ Hrs/wk CP
Module Responsible NN
Admission Requirements None
Recommended Previous Knowledge Good knowledge in the design of electronic circuits, microprocessor systems, systems for signal processing and the handling of software packages for simulation of electrical and physical processes.
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The student is able to achieve in a specific scientific field special knowledge and she or he can independently acquire in this field the skills necessary for solving these scientific problems.
Skills The student is able to formulate the scientific problems to be solved and to work out solutions in an independent manner and to realize them.
Personal Competence
Social Competence The student can integrate herself or himself into small teams of researchers and she or he can discuss proposals for solutions of scientific problems within the team. She or he is able to present the results in a clear and well structured manner.
Autonomy The student can perform scientific work in a timely manner and document the results in a detailed and well readable form. She or he is able to anticipate possible problems well in advance and to prepare proposals for their solutions.
Workload in Hours Independent Study Time 480, Study Time in Lecture 0
Credit points 16
Course achievement None
Examination Study work
Examination duration and scale see FSPO
Assignment for the Following Curricula Microelectronics and Microsystems: Core Qualification: Compulsory

Module M1591: Seminar for IMPMM

Courses
Title Typ Hrs/wk CP
Seminar for IMPMM (L2428) Seminar 2 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge Basics from the field of the seminar
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students can explain the most important facts and relationships of a specific topic from the field of the seminar.
Skills Students are able to compile a specified topic from the field of the seminar and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject.
Personal Competence
Social Competence Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner.
Autonomy Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation.
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Credit points 2
Course achievement None
Examination Presentation
Examination duration and scale 15 minutes presentation + 5-10 minutes discussion + 2 pages written abstract
Assignment for the Following Curricula Microelectronics and Microsystems: Core Qualification: Compulsory
Course L2428: Seminar for IMPMM
Typ Seminar
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Hoc Khiem Trieu
Language EN
Cycle WiSe/SoSe
Content

Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English.

Evaluation Criteria:

  • understanding of subject, discussion, response to questions
  • structure and logic of presentation (clarity, precision)
  • coverage of the topic, selection of subjects presented
  • linguistic presentation (clarity, comprehensibility)
  • visual presentation (clarity, comprehensibility)
  • handout (see below)
  • compliance with timing requirement.

Handout:
A printed handout (short abstract) of your presentation in English language is mandatory. This should not be longer than two pages A4, and include the most important results,
conclusions, explanations and diagrams.

Literature

Aktuelle Veröffentlichungen zu dem gewählten Thema.

Recent publications of the selected topics.

Specialization Communication and Signal Processing

Students of the specialization Communication and Signal Processing learn both physical and technical basics of state-of-the-art wired and wireless communication systems and the hardware realization of those systems. They can deepen their knowledge towards core areas such as systems for audio or video signal processing. The students understand the fundamental concepts of those systems and can identify their limitations. Based on this knowledge they are able to determine possible improvements and to implement them.

Students have to choose lectures with a total of 18 credit points from the catalog of this specialization.

Module M0710: Microwave Engineering

Courses
Title Typ Hrs/wk CP
Microwave Engineering (L0573) Lecture 2 3
Microwave Engineering (L0574) Recitation Section (large) 2 2
Microwave Engineering (L0575) Practical Course 1 1
Module Responsible Prof. Alexander Kölpin
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of communication engineering, semiconductor devices and circuits. Basics of Wave propagation from transmission line theory and theoretical electrical engineering.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the propagation of electromagnetic waves and related phenomena. They can describe transmission systems and components. They can name different types of antennas and describe the main characteristics of antennas. They can explain noise in linear circuits, compare different circuits using characteristic numbers and select the best one for specific scenarios.


Skills

Students are able to calculate the propagation of electromagnetic waves. They can analyze complete transmission systems und configure simple receiver circuits. They can calculate the characteristic of simple antennas and arrays based on the geometry. They can calculate the noise of receivers and the signal-to-noise-ratio of transmission systems. They can apply their theoretical knowledge to the practical courses.


Personal Competence
Social Competence

Students work together in small groups during the practical courses. Together they document, evaluate and discuss their results.


Autonomy

Students are able to relate the knowledge gained in the course to contents of previous lectures. With given instructions they can extract data needed to solve specific problems from external sources. They are able to apply their knowledge to the laboratory courses using the given instructions.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Core Qualification: Compulsory
Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L0573: Microwave Engineering
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Arne Jacob
Language DE/EN
Cycle WiSe
Content

- Antennas: Analysis - Characteristics - Realizations

- Radio Wave Propagation

- Transmitter: Power Generation with Vacuum Tubes and Transistors

- Receiver: Preamplifier - Heterodyning - Noise

- Selected System Applications


Literature

H.-G. Unger, „Elektromagnetische Theorie für die Hochfrequenztechnik, Teil I“, Hüthig, Heidelberg, 1988

H.-G. Unger, „Hochfrequenztechnik in Funk und Radar“, Teubner, Stuttgart, 1994

E. Voges, „Hochfrequenztechnik - Teil II: Leistungsröhren, Antennen und Funkübertragung, Funk- und Radartechnik“, Hüthig, Heidelberg, 1991

E. Voges, „Hochfrequenztechnik“, Hüthig, Bonn, 2004


C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982

R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, 1992

D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001

D. M. Pozar, “Microwave Engineerin”, John Wiley and Sons, 2005


Course L0574: Microwave Engineering
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Arne Jacob
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0575: Microwave Engineering
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Arne Jacob
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0836: Communication Networks

Courses
Title Typ Hrs/wk CP
Selected Topics of Communication Networks (L0899) Project-/problem-based Learning 2 2
Communication Networks (L0897) Lecture 2 2
Communication Networks Excercise (L0898) Project-/problem-based Learning 1 2
Module Responsible Prof. Andreas Timm-Giel
Admission Requirements None
Recommended Previous Knowledge
  • Fundamental stochastics
  • Basic understanding of computer networks and/or communication technologies is beneficial
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples.

Skills

Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks.

Personal Competence
Social Competence

Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions.

Autonomy

Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Presentation
Examination duration and scale 1.5 hours colloquium with three students, therefore about 30 min per student. Topics of the colloquium are the posters from the previous poster session and the topics of the module.
Assignment for the Following Curricula Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory
Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory
International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L0899: Selected Topics of Communication Networks
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Timm-Giel
Language EN
Cycle WiSe
Content Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term.
Literature
  • see lecture
Course L0897: Communication Networks
Typ Lecture
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Andreas Timm-Giel, Dr.-Ing. Koojana Kuladinithi
Language EN
Cycle WiSe
Content
Literature
  • Skript des Instituts für Kommunikationsnetze
  • Tannenbaum, Computernetzwerke, Pearson-Studium


Further literature is announced at the beginning of the lecture.

Course L0898: Communication Networks Excercise
Typ Project-/problem-based Learning
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Andreas Timm-Giel
Language EN
Cycle WiSe
Content Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise.
Literature
  • announced during lecture

Module M0637: Advanced Concepts of Wireless Communications

Courses
Title Typ Hrs/wk CP
Advanced Concepts of Wireless Communications (L0297) Lecture 3 4
Advanced Concepts of Wireless Communications (L0298) Recitation Section (large) 2 2
Module Responsible Dr. Rainer Grünheid
Admission Requirements None
Recommended Previous Knowledge
  • Lecture "Signals and Systems"
  • Lecture "Fundamentals of Telecommunications and Stochastic Processes"
  • Lecture "Digital Communications"
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (UMTS, LTE) they can put the learnt content into a larger context.
Skills

Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application.

Personal Competence
Social Competence Students can jointly elaborate tasks in small groups and present their results in an adequate fashion.
Autonomy Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications".
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 minutes; scope: content of lecture and exercise
Assignment for the Following Curricula Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L0297: Advanced Concepts of Wireless Communications
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dr. Rainer Grünheid
Language EN
Cycle SoSe
Content

The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack.

In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined.

In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including UMTS/HSPA, LTE, LTE Advanced, and WiMAX.


Literature

John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007

David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005

Bernard Sklar: Digital Communications: Fundamentals and Applications. 2nd Edition, Pearson, 2013

Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011

Course L0298: Advanced Concepts of Wireless Communications
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Rainer Grünheid
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1686: Selected Aspects of Communication and Signal Processing

Courses
Title Typ Hrs/wk CP
Selected Aspects of Communication and Signal Processing (L2674) Lecture 3 4
Selected Aspects of Communication and Signal Processing (L2675) Recitation Section (small) 1 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L2674: Selected Aspects of Communication and Signal Processing
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content
Literature
Course L2675: Selected Aspects of Communication and Signal Processing
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content See interlocking course
Literature See interlocking course

Module M1743: COSIMA (Competition in Microsystem Application)

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 60 minutes
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory

Module M1598: Image Processing

Courses
Title Typ Hrs/wk CP
Image Processing (L2443) Lecture 2 4
Image Processing (L2444) Recitation Section (small) 2 2
Module Responsible Prof. Tobias Knopp
Admission Requirements None
Recommended Previous Knowledge Signal and Systems
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know about

  • visual perception
  • multidimensional signal processing
  • sampling and sampling theorem
  • filtering
  • image enhancement
  • edge detection
  • multi-resolution procedures: Gauss and Laplace pyramid, wavelets
  • image compression
  • image segmentation
  • morphological image processing
Skills

The students can

  • analyze, process, and improve multidimensional image data
  • implement simple compression algorithms
  • design custom filters for specific applications
Personal Competence
Social Competence

Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem.

Autonomy

Students are able to independently investigate a complex problem and assess which competencies are required to solve it. 

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Data Science: Core Qualification: Elective Compulsory
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L2443: Image Processing
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Prof. Tobias Knopp
Language DE/EN
Cycle WiSe
Content
  • Visual perception
  • Multidimensional signal processing
  • Sampling and sampling theorem
  • Filtering
  • Image enhancement
  • Edge detection
  • Multi-resolution procedures: Gauss and Laplace pyramid, wavelets
  • Image Compression
  • Segmentation
  • Morphological image processing
Literature

Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011
Pratt, Digital Image Processing, Wiley, 2001
Bernd Jähne: Digitale Bildverarbeitung - Springer, Berlin 2005

Course L2444: Image Processing
Typ Recitation Section (small)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Tobias Knopp
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0738: Digital Audio Signal Processing

Courses
Title Typ Hrs/wk CP
Digital Audio Signal Processing (L0650) Lecture 3 4
Digital Audio Signal Processing (L0651) Recitation Section (large) 1 2
Module Responsible Prof. Udo Zölzer
Admission Requirements None
Recommended Previous Knowledge

Signals and Systems

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren.

Skills

The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications.

Personal Competence
Social Competence

The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise.

Autonomy

The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Course L0650: Digital Audio Signal Processing
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Udo Zölzer
Language EN
Cycle WiSe
Content
  • Introduction (Studio Technology,  Digital Transmission Systems, Storage Media, Audio Components at Home)

  • Quantization (Signal Quantization, Dither, Noise Shaping, Number Representation)

  • AD/DA Conversion (Methods, AD Converters, DA Converters, Audio Processing Systems, Digital Signal Processors, Digital Audio Interfaces, Single-Processor Systems, Multiprocessor Systems)

  • Equalizers (Recursive Audio Filters, Nonrecursive Audio Filters, Multi-Complementary Filter Bank)

  • Room Simulation (Early Reflections, Subsequent Reverberation, Approximation of Room Impulse Responses)

  • Dynamic Range Control (Static Curve, Dynamic Behavior, Implementation, Realization Aspects)

  • Sampling Rate Conversion (Synchronous Conversion, Asynchronous Conversion, Interpolation Methods)

  • Data Compression (Lossless Data Compression, Lossy Data Compression, Psychoacoustics, ISO-MPEG1 Audio Coding)

Literature

- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005.

- U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005.


- U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.


 






Course L0651: Digital Audio Signal Processing
Typ Recitation Section (large)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Udo Zölzer
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1249: Medical Imaging

Courses
Title Typ Hrs/wk CP
Medical Imaging (L1694) Lecture 2 3
Medical Imaging (L1695) Recitation Section (small) 2 3
Module Responsible Prof. Tobias Knopp
Admission Requirements None
Recommended Previous Knowledge Basic knowledge in linear algebra, numerics, and signal processing
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

After successful completion of the module, students are able to describe reconstruction methods for different tomographic imaging modalities such as computed tomography and magnetic resonance imaging. They know the necessary basics from the fields of signal processing and inverse problems and are familiar with both analytical and iterative image reconstruction methods. The students have a deepened knowledge of the imaging operators of computed tomography and magnetic resonance imaging.

Skills

The students are able to implement reconstruction methods and test them using tomographic measurement data. They can visualize the reconstructed images and evaluate the quality of their data and results. In addition, students can estimate the temporal complexity of imaging algorithms.

Personal Competence
Social Competence

Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem.

Autonomy

Students are able to independently investigate a complex problem and assess which competencies are required to solve it. 

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory
Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory
Course L1694: Medical Imaging
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Tobias Knopp
Language DE/EN
Cycle WiSe
Content
  • Overview about different imaging methods
  • Signal processing
  • Inverse problems
  • Computed tomography
  • Magnetic resonance imaging
  • Compressed Sensing
  • Magnetic particle imaging

Literature

Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000

Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995

Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008

Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006

Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999

Course L1695: Medical Imaging
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Tobias Knopp
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0677: Digital Signal Processing and Digital Filters

Courses
Title Typ Hrs/wk CP
Digital Signal Processing and Digital Filters (L0446) Lecture 3 4
Digital Signal Processing and Digital Filters (L0447) Recitation Section (large) 2 2
Module Responsible Prof. Gerhard Bauch
Admission Requirements None
Recommended Previous Knowledge
  • Mathematics 1-3
  • Signals and Systems
  • Fundamentals of signal and system theory as well as random processes.
  • Fundamentals of spectral transforms (Fourier series, Fourier transform, Laplace transform)
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account.
Skills The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm.  Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account.
Personal Competence
Social Competence

The students can jointly solve specific problems.

Autonomy

The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory
Computational Science and Engineering: Specialisation II. Engineering Science: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Course L0446: Digital Signal Processing and Digital Filters
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Gerhard Bauch
Language EN
Cycle WiSe
Content
  • Transforms of discrete-time signals:

    • Discrete-time Fourier Transform (DTFT)

    • Discrete Fourier-Transform (DFT), Fast Fourier Transform (FFT)

    • Z-Transform

  • Correspondence of continuous-time and discrete-time signals, sampling, sampling theorem

  • Fast convolution, Overlap-Add-Method, Overlap-Save-Method

  • Fundamental structures and basic types of digital filters

  • Characterization of digital filters using pole-zero plots, important properties of digital filters

  • Quantization effects

  • Design of linear-phase filters

  • Fundamentals of stochastic signal processing and adaptive filters

    • MMSE criterion

    • Wiener Filter

    • LMS- and RLS-algorithm

  • Traditional and parametric methods of spectrum estimation

Literature

K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner.

V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V.

W. Hess: Digitale Filter. Teubner.

Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall.

S. Haykin:  Adaptive flter theory.

L. B. Jackson: Digital filters and signal processing. Kluwer.

T.W. Parks, C.S. Burrus: Digital filter design. Wiley.

Course L0447: Digital Signal Processing and Digital Filters
Typ Recitation Section (large)
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Gerhard Bauch
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0550: Digital Image Analysis

Courses
Title Typ Hrs/wk CP
Digital Image Analysis (L0126) Lecture 4 6
Module Responsible Prof. Rolf-Rainer Grigat
Admission Requirements None
Recommended Previous Knowledge

System theory of one-dimensional signals (convolution and correlation, sampling theory, interpolation and decimation, Fourier transform, linear time-invariant systems), linear algebra (Eigenvalue decomposition, SVD), basic stochastics and statistics (expectation values, influence of sample size, correlation and covariance, normal distribution and its parameters), basics of Matlab, basics in optics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can

  • Describe imaging processes
  • Depict the physics of sensorics
  • Explain linear and non-linear filtering of signals
  • Establish interdisciplinary connections in the subject area and arrange them in their context
  • Interpret effects of the most important classes of imaging sensors and displays using mathematical methods and physical models.


Skills

Students are able to

  • Use highly sophisticated methods and procedures of the subject area
  • Identify problems and develop and implement creative solutions.

Students can solve simple arithmetical problems relating to the specification and design of image processing and image analysis systems.

Students are able to assess different solution approaches in multidimensional decision-making areas.

Students can undertake a prototypical analysis of processes in Matlab.


Personal Competence
Social Competence k.A.


Autonomy

Students can solve image analysis tasks independently using the relevant literature.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 60 Minutes, Content of Lecture and materials in StudIP
Assignment for the Following Curricula Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory
International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory
Course L0126: Digital Image Analysis
Typ Lecture
Hrs/wk 4
CP 6
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Lecturer Prof. Rolf-Rainer Grigat
Language EN
Cycle WiSe
Content
  • Image representation, definition of images and volume data sets, illumination, radiometry, multispectral imaging, reflectivities, shape from shading
  • Perception of luminance and color, color spaces and transforms, color matching functions, human visual system, color appearance models
  • imaging sensors (CMOS, CCD, HDR, X-ray, IR), sensor characterization(EMVA1288), lenses and optics
  • spatio-temporal sampling (interpolation, decimation, aliasing, leakage, moiré, flicker, apertures)
  • features (filters, edge detection, morphology, invariance, statistical features, texture)
  • optical flow ( variational methods, quadratic optimization, Euler-Lagrange equations)
  • segmentation (distance, region growing, cluster analysis, active contours, level sets, energy minimization and graph cuts)
  • registration (distance and similarity, variational calculus, iterative closest points)
Literature

Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011
Wedel/Cremers, Stereo Scene Flow for 3D Motion Analysis, Springer 2011
Handels, Medizinische Bildverarbeitung, Vieweg, 2000
Pratt, Digital Image Processing, Wiley, 2001
Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989

Specialization Embedded Systems

Module M0791: Computer Architecture

Courses
Title Typ Hrs/wk CP
Computer Architecture (L0793) Lecture 2 3
Computer Architecture (L0794) Project-/problem-based Learning 2 2
Computer Architecture (L1864) Recitation Section (small) 1 1
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge

Module "Computer Engineering"

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module presents advanced concepts from the discipline of computer architecture. In the beginning, a broad overview over various programming models is given, both for general-purpose computers and for special-purpose machines (e.g., signal processors). Next, foundational aspects of the micro-architecture of processors are covered. Here, the focus particularly lies on the so-called pipelining and the methods used for the acceleration of instruction execution used in this context. The students get to know concepts for dynamic scheduling, branch prediction, superscalar execution of machine instructions and for memory hierarchies.

Skills

The students are able to describe the organization of processors. They know the different architectural principles and programming models. The students examine various structures of pipelined processor architectures and are able to explain their concepts and to analyze them w.r.t. criteria like, e.g., performance or energy efficiency. They evaluate different structures of memory hierarchies, know parallel computer architectures and are able to distinguish between instruction- and data-level parallelism.

Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
No 15 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 minutes, contents of course and 4 attestations from the PBL "Computer architecture"
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Elective Compulsory
Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory
Computational Science and Engineering: Specialisation Computer Science: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0793: Computer Architecture
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content
  • Introduction
  • VHDL Basics
  • Programming Models
  • Realization of Elementary Data Types
  • Dynamic Scheduling
  • Branch Prediction
  • Superscalar Machines
  • Memory Hierarchies

The theoretical tutorials amplify the lecture's content by solving and discussing exercise sheets and thus serve as exam preparation. Practical aspects of computer architecture are taught in the FPGA-based PBL on computer architecture whose attendance is mandatory.

Literature
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
Course L0794: Computer Architecture
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1864: Computer Architecture
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0924: Software for Embedded Systems

Courses
Title Typ Hrs/wk CP
Software for Embdedded Systems (L1069) Lecture 2 3
Software for Embdedded Systems (L1070) Recitation Section (small) 3 3
Module Responsible Prof. Bernd-Christian Renner
Admission Requirements None
Recommended Previous Knowledge
  • Good knowledge and experience in programming language C
  • Basis knowledge in software engineering
  • Basic understanding of assembly language
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge Students know the basic principles and procedures of software engineering for embedded systems. They are able to describe the usage and pros of event based programming using interrupts. They know the components and functions of a concrete microcontroller. The participants explain requirements of real time systems. They know at least three scheduling algorithms for real time operating systems including their pros and cons.
Skills Students build interrupt-based programs for a concrete microcontroller. They build and use a preemptive scheduler. They use peripheral components (timer, ADC, EEPROM) to realize complex tasks for embedded systems. To interface with external components they utilize serial protocols.
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement None
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory
Information and Communication Systems: Specialisation Communication Systems, Focus Software: Elective Compulsory
International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L1069: Software for Embdedded Systems
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Bernd-Christian Renner
Language DE/EN
Cycle SoSe
Content
  • General-Purpose Processors
  • Programming the Atmel AVR
  • Interrupts
  • C for Embedded Systems
  • Standard Single Purpose Processors: Peripherals
  • Finite-State Machines
  • Memory
  • Operating Systems for Embedded Systems
  • Real-Time Embedded Systems
  • Boot loader and Power Management
Literature
  1. Embedded System Design,  F. Vahid and T. Givargis,  John Wiley
  2. Programming Embedded Systems: With C and Gnu Development Tools, M. Barr and A. Massa, O'Reilly

  3. C und C++ für Embedded Systems,  F. Bollow, M. Homann, K. Köhn,  MITP
  4. The Art of Designing  Embedded Systems, J. Ganssle, Newnses

  5. Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie,  G. Schmitt, Oldenbourg
  6. Making Embedded Systems: Design Patterns for Great Software, E. White, O'Reilly

Course L1070: Software for Embdedded Systems
Typ Recitation Section (small)
Hrs/wk 3
CP 3
Workload in Hours Independent Study Time 48, Study Time in Lecture 42
Lecturer Prof. Bernd-Christian Renner
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M1400: Design of Dependable Systems

Courses
Title Typ Hrs/wk CP
Designing Dependable Systems (L2000) Lecture 2 3
Designing Dependable Systems (L2001) Recitation Section (small) 2 3
Module Responsible Prof. Görschwin Fey
Admission Requirements None
Recommended Previous Knowledge Basic knowledge about data structures and algorithms
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

In the following "dependable" summarizes the concepts Reliability, Availability, Maintainability, Safety and Security.

Knowledge about approaches for designing dependable systems, e.g.,

  • Structural solutions like modular redundancy
  • Algorithmic solutions like handling byzantine faults or checkpointing

Knowledge about methods for the analysis of dependable systems


Skills

Ability to implement dependable systems using the above approaches.

Ability to analyzs the dependability of systems using the above methods for analysis.

Personal Competence
Social Competence

Students

  • discuss relevant topics in class and
  • present their solutions orally.
Autonomy Using accompanying material students independently learn in-depth relations between concepts explained in the lecture and additional solution strategies.
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work Die Lösung einer Aufgabe ist Zuslassungsvoraussetzung für die Prüfung. Die Aufgabe wird in Vorlesung und Übung definiert.
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory
Information and Communication Systems: Specialisation Secure and Dependable IT Systems: Elective Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L2000: Designing Dependable Systems
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Görschwin Fey
Language DE/EN
Cycle SoSe
Content

Description

The term dependability comprises various aspects of a system. These are typically:
  • Reliability
  • Availability
  • Maintainability
  • Safety
  • Security
This makes dependability a core aspect that has to be considered early in system design, no matter whether software, embedded systems or full scale cyber-physical systems are considered.

Contents

The module introduces the basic concepts for the design and the analysis of dependable systems. Design examples for getting practical hands-on-experience in dependable design techniques. The module focuses towards embedded systems. The following topics are covered:
  • Modelling
  • Fault Tolerance
  • Design Concepts
  • Analysis Techniques
Literature
Course L2001: Designing Dependable Systems
Typ Recitation Section (small)
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Görschwin Fey
Language DE/EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0803: Embedded Systems

Courses
Title Typ Hrs/wk CP
Embedded Systems (L0805) Lecture 3 4
Embedded Systems (L0806) Recitation Section (small) 1 2
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge Computer Engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models).

Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered.

Skills After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist.
Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes.

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 10 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 minutes, contents of course and labs
Assignment for the Following Curricula General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory
Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Electrical Engineering: Core Qualification: Elective Compulsory
Engineering Science: Specialisation Mechatronics: Elective Compulsory
Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Computer Science: Elective Compulsory
General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory
Computational Science and Engineering: Core Qualification: Compulsory
Mechatronics: Specialisation System Design: Elective Compulsory
Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0805: Embedded Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content
  • Introduction
  • Specifications and Modeling
  • Embedded/Cyber-Physical Systems Hardware
  • System Software
  • Evaluation and Validation
  • Mapping of Applications to Execution Platforms
  • Optimization
Literature
  • Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer, 2012., Springer, 2012.
Course L0806: Embedded Systems
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Heiko Falk
Language EN
Cycle SoSe
Content See interlocking course
Literature See interlocking course

Module M0925: Digital Circuit Design

Courses
Title Typ Hrs/wk CP
Digital Circuit Design (L0698) Lecture 2 3
Advanced Digital Circuit Design (L0699) Lecture 2 3
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 40 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0698: Digital Circuit Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Volkhard Klinger
Language EN
Cycle WiSe
Content
Literature
Course L0699: Advanced Digital Circuit Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Volkhard Klinger
Language EN
Cycle SoSe
Content
Literature

Module M1687: Selected Aspects of Embedded Systems

Courses
Title Typ Hrs/wk CP
Selected Aspects of Embedded Systems (L2676) Lecture 3 4
Selected Aspects of Embedded Systems (L2677) Recitation Section (small) 1 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L2676: Selected Aspects of Embedded Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content
Literature
Course L2677: Selected Aspects of Embedded Systems
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content See interlocking course
Literature See interlocking course

Module M0910: Advanced System-on-Chip Design (Lab)

Courses
Title Typ Hrs/wk CP
Advanced System-on-Chip Design (L1061) Project-/problem-based Learning 3 6
Module Responsible Prof. Heiko Falk
Admission Requirements None
Recommended Previous Knowledge

Successful completion of the practical FPGA lab of module "Computer Architecture" is a mandatory prerequisite.

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

This module provides in-depth, hands-on experience on advanced concepts of computer architecture. Using the Hardware Description Language VHDL and using reconfigurable FPGA hardware boards, students learn how to design complex computer systems (so-called systems-on-chip, SoCs), that are commonly found in the domain of embedded systems, in actual hardware.

Starting with a simple processor architecture, the students learn to how realize instruction-processing of a computer processor according to the principle of pipelining. They implement different styles of cache-based memory hierarchies, examine strategies for dynamic scheduling of machine instructions and for branch prediction, and finally construct a complex MPSoC system (multi-processor system-on-chip) that consists of multiple processor cores that are connected via a shared bus.

Skills Students will be able to analyze, how highly specific and individual computer systems can be constructed using a library of given standard components. They evaluate the interferences between the physical structure of a computer system and the software executed thereon. This way, they will be enabled to estimate the effects of design decision at the hardware level on the performance of the entire system, to evaluate the whole and complex system and to propose design options to improve a system.
Personal Competence
Social Competence

Students are able to solve similar problems alone or in a group and to present the results accordingly.

Autonomy

Students are able to acquire new knowledge from specific literature, to transform this knowledge into actual implementations of complex hardware structures, and to associate this knowledge with contents of other classes.

Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale VHDL Codes and FPGA-based implementations
Assignment for the Following Curricula Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L1061: Advanced System-on-Chip Design
Typ Project-/problem-based Learning
Hrs/wk 3
CP 6
Workload in Hours Independent Study Time 138, Study Time in Lecture 42
Lecturer Prof. Heiko Falk
Language DE/EN
Cycle WiSe
Content
  • Introduction into fundamental technologies (FPGAs, MIPS single-cycle machine)
  • Pipelined instruction execution
  • Cache-based memory hierarchies
  • Busses and their arbitration
  • Multi-Processor Systems-on-Chip
  • Optional: Advanced pipelining concepts (dynamic scheduling, branch prediction)
Literature
  • D. Patterson, J. Hennessy. Rechnerorganisation und -entwurf. Elsevier, 2005.
  • A. Tanenbaum, J. Goodman. Computerarchitektur. Pearson, 2001.
  • A. Clements. The Principles of Computer Hardware. 3. Auflage, Oxford University Press, 2000.

Specialization Microelectronics Complements

Students of the specialization Microelectronics Complements expand their knowledge towards the application of microelectronics and microsystems for medical use, the processing of digital signals, the development and design of highly complex integrated systems and networks for optical communication. Thus, they strengthen their knowledge by analyzing practical applications and link it up with the requirements of technical realizations.

Students have to choose lectures with a total of 18 credit points from the catalog of this specialization.

Module M1611: Silicon Photonics

Courses
Title Typ Hrs/wk CP
Silicon Photonics (L2408) Lecture 2 4
Silicon Photonics (L2418) Project-/problem-based Learning 2 2
Module Responsible Dr. Timo Lipka
Admission Requirements None
Recommended Previous Knowledge

Basics in physics, optics, microsystem and semiconductor technology

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

The students know the fundamentals of silicon photonics and about the most important and commonly used materials and fabrication techniques. 

Students are able

  • to explain the basic principles of silicon photonics technology and to discuss theoretical and practical aspects
  • to describe photonic circuit devices and their working principle
  • to describe the manufacturing of silicon photonic devices and to discuss in details the relevant fabrication processes, process flows and the impact thereof on the fabrication of photonic integrated circuit components
Skills

Students are capable to

  • analyze the feasibility of integrated photonic circuit components
  • choose appropriate tools and methods to design them
  • develop process flows for the fabrication
Personal Competence
Social Competence

Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience.

Autonomy

none

Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L2408: Silicon Photonics
Typ Lecture
Hrs/wk 2
CP 4
Workload in Hours Independent Study Time 92, Study Time in Lecture 28
Lecturer Dr. Timo Lipka
Language EN
Cycle WiSe
Content
  • Introduction (historical view and trends in der Silicon Photonics)
  • Fabrication Technology (SOI-Wafer, Deposition, Sputtering and Evaporation, Epitaxy, MOCVD, Lithography)
  • Planar Waveguide Fundamentals
  • Optical Materials in silicon Photonics
  • Waveguide Types (Loss Mechanisms, Dispersion and Polarisation in Waveguides)
  • Coupling of Silicon Photonic Devices and Systems
  • Silicon Photonic Circuit Devices and Building Blocks (Passive Devices: Resonators, Interferometers, Mode Converters, Power Splitters,  Gratings, Polarizers and Rotators)
  • Material fundamentals and components for tuning and switching
  • Integration of active Devices (Laser, Detector, Modulators)
  • Photonics and Electronics Integration
  • Photonic Interconnects
  • Optical Multiplexing
  • Switch Fabrics and Routers
  • Silicon Photonics for Sensing
Literature
  • Graham T. Reed, Andrew Knights, Silicon Photonics - An Introduction, John Wiley & Sons Ltd (2004)
  • Clifford R. Pollocka and Michal Lipson, Integrated Photonics, Springer-Verlag (2003)
  • Sami Franssila, Introduction to microfabrication,  Chichester, West Sussex Wiley (2010)
  • Dominik G. Rabus, Integrated Ring Resonators: The Compendium,  in Springer Series in Optical Sciences (2007)  
Course L2418: Silicon Photonics
Typ Project-/problem-based Learning
Hrs/wk 2
CP 2
Workload in Hours Independent Study Time 32, Study Time in Lecture 28
Lecturer Dr. Timo Lipka
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M0925: Digital Circuit Design

Courses
Title Typ Hrs/wk CP
Digital Circuit Design (L0698) Lecture 2 3
Advanced Digital Circuit Design (L0699) Lecture 2 3
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 40 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory
Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Course L0698: Digital Circuit Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Volkhard Klinger
Language EN
Cycle WiSe
Content
Literature
Course L0699: Advanced Digital Circuit Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Volkhard Klinger
Language EN
Cycle SoSe
Content
Literature

Module M0921: Electronic Circuits for Medical Applications

Courses
Title Typ Hrs/wk CP
Electronic Circuits for Medical Applications (L0696) Lecture 2 3
Electronic Circuits for Medical Applications (L1056) Recitation Section (small) 1 2
Electronic Circuits for Medical Applications (L1408) Practical Course 1 1
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge Fundamentals of electrical engineering
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain the basic functionality of the information transfer by the central nervous system
  • Students are able to explain the build-up of an action potential and its propagation along an axon
  • Students can exemplify the communication between neurons and electronic devices
  • Students can describe the special features of low-noise amplifiers for medical applications
  • Students can explain the functions of prostheses, e. g. an artificial hand
  • Students are able to discuss the potential and limitations of cochlea implants and artificial eyes


Skills
  • Students can  calculate the  time dependent voltage behavior of an action potential
  • Students can give scenarios for further improvement of low-noise and low-power signal acquisition.
  • Students  can develop the block diagrams of prosthetic systems
  • Students can define the building blocks of electronic systems for an articifial eye.


Personal Competence
Social Competence
  • Students are trained to solve problems in the field of medical electronics in teams together with experts with different professional background.
  • Students are able to recognize their specific limitations, so that they can ask for assistance to the right time.
  • Students can document their work in a clear manner and communicate their results in a way that others can be involved whenever it is necessary


Autonomy
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their work in appropriate work packages and schedule their work in a realistic way.
  • Students can handle the complex data structures of bioelectrical experiments without needing support.
  • Students are able to act in a responsible manner in all cases and situations of experimental work.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Subject theoretical and practical work
No None Excercises
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Medical Technology: Elective Compulsory
Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory
Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory
Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory
Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory
Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory
Course L0696: Electronic Circuits for Medical Applications
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content
  • Market for medical instruments
  • Membrane potential, action potential, sodium-potassium pump
  • Information transfer by the central nervous system
  • Interface tissue - electrode
  • Amplifiers for medical applications, analog-digital converters
  • Examples for electronic implants
  • Artificial eye, cochlea implant



Literature

Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks

Ganong‘s Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010

Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p.,  4. editions, Springer, 2009

Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor)

Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only
Russell K. Hobbie, Bradley J. Roth, Intermediate Physics for Medicine and Biology, Springer, 4th ed., 616 p., 2007

Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm

Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/


Course L1056: Electronic Circuits for Medical Applications
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L1408: Electronic Circuits for Medical Applications
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content
  • Market for medical instruments
  • Membrane potential, action potential, sodium-potassium pump
  • Information transfer by the central nervous system
  • Interface tissue - electrode
  • Amplifiers for medical applications, analog-digital converters
  • Examples for electronic implants
  • Artificial eye, cochlea implant
Literature

Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks

Ganong‘s Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010

Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p.,  4. editions, Springer, 2009

Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor)

Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only
Russell K. Hobbie, Bradley J. Roth, Intermediate Physics for Medicine and Biology, Springer, 4th ed., 616 p., 2007

Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm

Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/

Module M0769: EMC I: Coupling Mechanisms, Countermeasures and Test Procedures

Courses
Title Typ Hrs/wk CP
EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures (L0743) Lecture 3 4
EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures (L0744) Recitation Section (small) 1 1
EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures (L0745) Practical Course 1 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of Electrical Engineering

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain the fundamental principles, inter-dependencies, and methods of Electromagnetic Compatibility of electric and electronic systems and to ensure Electromagnetic Compatibility of such systems. They are able to classify and explain the common interference sources and coupling mechanisms. They are capable of explaining the basic principles of shielding and filtering.  They are able of giving an overview over measurement and simulation methods for the characterization of Electromagnetic Compatibility in electrical engineering practice.

Skills

Students are able to apply a series of modeling methods for the Electromagnetic Compatibility of typical electric and electronic systems. They are able to determine the most important effects that these models are predicting in terms of Electromagnetic Compatibility. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in electrical engineering practice. They can evaluate their problem solving strategies against each other.

Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English, during laboratory work and exercises, e.g..

Autonomy

Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. Theoretical Electrical Engineering and Communication Theory). They can communicate problems and solutions in the field of Electromagnetic Compatibility in english language.

Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0743: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content
  • Introduction to Electromagnetic Compatibility (EMC)
  • Interference sources in time an frequency domain
  • Coupling mechanisms
  • Transmission lines and coupling to electromagnetic fields
  • Shielding
  • Filters
  • EMC test procedures
Literature
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
Course L0744: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content

The exercise sessions serve to deepen the understanding of the concepts of the lecture.

Literature
  • C.R. Paul: "Introduction to Electromagnetic Compatibility", 2nd ed., (Wiley, New Jersey, 2006).
  • A.J. Schwab und W. Kürner: "Elektromagnetische Verträglichkeit", 6. Auflage, (Springer, Berlin 2010).
  • F.M. Tesche, M.V. Ianoz, and T. Karlsson: "EMC Analysis Methods and Computational Models", (Wiley, New York, 1997).
  • Scientific articles and papers
Course L0745: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle SoSe
Content

Laboratory experiments serve to practically investigate the following EMC topics:

  • Shielding
  • Conducted EMC test procedures
  • The GTEM-cell as an environment for radiated EMC test
Literature Versuchsbeschreibungen und zugehörige Literatur werden innerhalb der Veranstaltung bereit gestellt.

Module M0919: Laboratory: Digital Circuit Design

Courses
Title Typ Hrs/wk CP
Laboratory: Digital Circuit Design (L0694) Project-/problem-based Learning 2 6
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge Basic knowledge of semiconductor devices and circuit design
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students are able to explain the functions of the logic gates of their digital design.
  • Students can explain the algorithms of checking routines.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.


Skills
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students are able to run the input desks for definition of their electronic circuits.
  • Students can define the building blocks of digital systems.


Personal Competence
Social Competence
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.


Autonomy
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.


Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 30 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0694: Laboratory: Digital Circuit Design
Typ Project-/problem-based Learning
Hrs/wk 2
CP 6
Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language EN
Cycle SoSe
Content
  • Definition of specifications
  • Architecture studies
  • Digital simulation flow
  • Philosophy of standard cells
  • Placement and routing of standard cells
  • Layout generation
  • Design checking routines


Literature Handouts will be distributed

Module M0645: Fibre and Integrated Optics

Courses
Title Typ Hrs/wk CP
Fibre and Integrated Optics (L0363) Lecture 2 3
Fibre and Integrated Optics (Problem Solving Course) (L0365) Recitation Section (small) 1 1
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge

Basic principles of electrodynamics and optics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental mathematical and physical relations and technological basics of guided optical waves. They can describe integrated optical as well as fibre optical structures. They can give an overview on the applications of integrated optical components in optical signal processing.

Skills

Students can generate models and derive mathematical descriptions in relation to fibre optical and integrated optical wave propagation. They can derive approximative solutions and judge factors influential on the components' performance.


Personal Competence
Social Competence Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.
Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.

Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Credit points 4
Course achievement None
Examination Written exam
Examination duration and scale 40 minutes
Assignment for the Following Curricula Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0363: Fibre and Integrated Optics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Hagen Renner
Language EN
Cycle SoSe
Content
  • Theory of optical waveguides
  • Coupling to and from waveguides
  • Losses
  • Linear and nonlinear dspersion
  • Components and technical applications
Literature

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Hunsperger, R.G., Integrated Optics: Theory and Technology, Springer, 2002
Agrawal, G.P.,Fiber-Optic Communication Systems, Wiley, 2002, ISBN 0471215716
Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press,1991, ISBN 0124709516
Tamir, T. (ed), Guided-Wave Optoelectronics, Springer, 1990

Course L0365: Fibre and Integrated Optics (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Hagen Renner
Language EN
Cycle SoSe
Content

See lecture Fibre and Integrated Optics

Literature

See lecture Fibre and Integrated Optics

Module M0643: Optoelectronics I - Wave Optics

Courses
Title Typ Hrs/wk CP
Optoelectronics I: Wave Optics (L0359) Lecture 2 3
Optoelectronics I: Wave Optics (Problem Solving Course) (L0361) Recitation Section (small) 1 1
Module Responsible Prof. Manfred Eich
Admission Requirements None
Recommended Previous Knowledge

Basics in electrodynamics, calculus


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental mathematical and physical relations of freely propagating optical waves.
They can give an overview on wave optical phenomena such as diffraction, reflection and refraction, etc. 
Students can describe waveoptics based components such as electrooptical modulators in an application oriented way.



Skills

Students can generate models and derive mathematical descriptions in relation to free optical wave propagation.
They can derive approximative solutions and judge factors influential on the components' performance.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Credit points 4
Course achievement None
Examination Written exam
Examination duration and scale 40 minutes
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory
Course L0359: Optoelectronics I: Wave Optics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Manfred Eich
Language EN
Cycle SoSe
Content
  • Introduction to optics
  • Electromagnetic theory of light
  • Interference
  • Coherence
  • Diffraction
  • Fourier optics
  • Polarisation and Crystal optics
  • Matrix formalism
  • Reflection and transmission
  • Complex refractive index
  • Dispersion
  • Modulation and switching of light
Literature

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 
Hecht, E., Optics, Benjamin Cummings, 2001
Goodman, J.W. Statistical Optics, Wiley, 2000
Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002

Course L0361: Optoelectronics I: Wave Optics (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Manfred Eich
Language EN
Cycle SoSe
Content see lecture Optoelectronics 1 - Wave Optics
Literature

see lecture Optoelectronics 1 - Wave Optics

Module M1688: Selected Aspects of Microelectronics and Microsystems

Courses
Title Typ Hrs/wk CP
Selected Aspects of Microelectronics and Microsystems (L2678) Lecture 3 4
Selected Aspects of Microelectronics and Microsystems (L2679) Recitation Section (small) 1 2
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement None
Examination Oral exam
Examination duration and scale 30 min
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L2678: Selected Aspects of Microelectronics and Microsystems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content
Literature
Course L2679: Selected Aspects of Microelectronics and Microsystems
Typ Recitation Section (small)
Hrs/wk 1
CP 2
Workload in Hours Independent Study Time 46, Study Time in Lecture 14
Lecturer Dozenten des SD E
Language EN
Cycle WiSe/SoSe
Content See interlocking course
Literature See interlocking course

Module M1743: COSIMA (Competition in Microsystem Application)

Courses
Title Typ Hrs/wk CP
Module Responsible Prof. Hoc Khiem Trieu
Admission Requirements None
Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
Skills
Personal Competence
Social Competence
Autonomy
Workload in Hours Independent Study Time 180, Study Time in Lecture 0
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 60 minutes
Assignment for the Following Curricula Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory

Module M0781: EMC II: Signal Integrity and Power Supply of Electronic Systems

Courses
Title Typ Hrs/wk CP
EMC II: Signal Integrity and Power Supply of Electronic Systems (L0770) Lecture 3 4
EMC II: Signal Integrity and Power Supply of Electronic Systems (L0771) Recitation Section (small) 1 1
EMC II: Signal Integrity and Power Supply of Electronic Systems (L0774) Practical Course 1 1
Module Responsible Prof. Christian Schuster
Admission Requirements None
Recommended Previous Knowledge

Fundamentals of electrical engineering


Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students are able to explain the fundamental principles, inter-dependencies, and methods of signal and power integrity of electronic systems. They are able to relate signal and power integrity to the context of interference-free design of such systems, i.e. their electromagnetic compatibility. They are capable of explaining the basic behavior of signals and power supply in typical packages and interconnects. They are able to propose and describe problem solving strategies for signal and power integrity issues. They are capable of giving an overview over measurement and simulation methods for characterization of signal and power integrity in electrical engineering practice.


Skills

Students are able to apply a series of modeling methods for characterization of electromagnetic field behavior in packages and interconnect structure of electronic systems. They are able to determine the most important effects that these models are predicting in terms of signal and power integrity. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in electrical engineering practice. The can evaluate their problem solving strategies against each other.


Personal Competence
Social Competence

Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during CAD exercises).


Autonomy

Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, communications, and semiconductor circuit design). They can communicate problems and solutions in the field of signal integrity and power supply of interconnect and packages in English.


Workload in Hours Independent Study Time 110, Study Time in Lecture 70
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes None Presentation
Examination Oral exam
Examination duration and scale 45 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Mechatronics: Technical Complementary Course: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0770: EMC II: Signal Integrity and Power Supply of Electronic Systems
Typ Lecture
Hrs/wk 3
CP 4
Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle WiSe
Content

- The role of packages and interconnects in electronic systems

- Components of packages and interconnects in electronic systems

- Main goals and concepts of signal and power integrity of electronic systems

- Repeat of relevant concepts from the theory electromagnetic fields

- Properties of digital signals and systems

- Design and characterization of signal integrity

- Design and characterization of power supply

- Techniques and devices for measurements in time- and frequency-domain

- CAD tools for electrical analysis and design of packages and interconnects

- Connection to overall electromagnetic compatibility of electronic systems


Literature

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Course L0771: EMC II: Signal Integrity and Power Supply of Electronic Systems
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course
Course L0774: EMC II: Signal Integrity and Power Supply of Electronic Systems
Typ Practical Course
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Prof. Christian Schuster
Language DE/EN
Cycle WiSe
Content

- The role of packages and interconnects in electronic systems

- Components of packages and interconnects in electronic systems

- Main goals and concepts of signal and power integrity of electronic systems

- Repeat of relevant concepts from the theory electromagnetic fields

- Properties of digital signals and systems

- Design and characterization of signal integrity

- Design and characterization of power supply

- Techniques and devices for measurements in time- and frequency-domain

- CAD tools for electrical analysis and design of packages and interconnects

- Connection to overall electromagnetic compatibility of electronic systems


Literature

- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012)

- R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001)

- S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994)

- S. Thierauf, "Understanding Signal Integrity", Artech House (2010)

- M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007)


Module M0913: Mixed-signal Circuit Design

Courses
Title Typ Hrs/wk CP
Mixed-signal Circuit Design (L0764) Lecture 2 3
Mixed-signal Circuit Design (L1063) Project-/problem-based Learning 2 3
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge Advanced knowledge of analog or digital MOS devices and circuits
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain the descriptive parameters of mixed-signal systems
  • Students can explain various architectures of analog-to-digital and digital-to-analog converters
  • Students are able to explain the fundamental limitations of different analog-to-digital and digital-to-analog converters
Skills
  • Students can derive the fundamental limitations of different analog-to-digital and digital-to-analog converters
  • Students can select the most suitable architecture for a specific mixed-signal task
  • Students can describe complex mixed-signal systems by their functional blocks.
  • Students can calculate the specifications of mixed-signal circuits
Personal Competence
Social Competence
  • Students can team up with one or several partners who may have different professional backgrounds
  • Students are able to work by their own or in small groups for solving problems and answer scientific questions.


Autonomy
  • Students are able to assess their knowledge in a realistic manner.
  • Students are able to draw scenarios for estimation of the impact of an increase of data vs. an increase of energy on the future lifestyle of the society.


Workload in Hours Independent Study Time 124, Study Time in Lecture 56
Credit points 6
Course achievement
Compulsory Bonus Form Description
Yes 5 % Subject theoretical and practical work
Examination Written exam
Examination duration and scale 90 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0764: Mixed-signal Circuit Design
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content
  • Differences between analog and digital filtering of electrical signals
  • Quantization error and its consideration in electrical circuits
  • Architectures of state-of-the-art digital-to-analog converters
  • Architectures of state-of-the-art analog-to-digital converters
  • Differentiation between Nyquist and oversampling converters
  • noise in ADCs and DACs 
Literature
  • R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 
  • B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000
Course L1063: Mixed-signal Circuit Design
Typ Project-/problem-based Learning
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl
Language EN
Cycle WiSe
Content See interlocking course
Literature See interlocking course

Module M1589: Laboratory: Analog Circuit Design

Courses
Title Typ Hrs/wk CP
Laboratory: Analog Circuit Design (L0692) Project-/problem-based Learning 2 6
Module Responsible Prof. Matthias Kuhl
Admission Requirements None
Recommended Previous Knowledge

Basic knowledge of semiconductor devices and circuit design

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • Students can explain the structure and philosophy of the software framework for circuit design.
  • Students can determine all necessary input parameters for circuit simulation.
  • Students know the basics physics of the analog behavior.
  • Students can explain the algorithms of circuit verification.
  • Students are able to select the appropriate transistor models for fast and accurate simulations.

Skills
  • Students can activate and execute all necessary checking routines for verification of proper circuit functionality.
  • Students can define the specifications of the electronic circuits to be designed.
  • Students can optimize the electronic circuits for low-noise and low-power.
  • Students can develop analog circuits for specific applications. 



Personal Competence
Social Competence
  • Students are trained to work through complex circuits in teams.
  • Students are able to share their knowledge for efficient design work.
  • Students can help each other to understand all the details and options of the design software.
  • Students are aware of their limitations regarding circuit design, so they do not go ahead, but they involve experts when required.
  • Students can present their design approaches for easy checking by more experienced experts.



Autonomy
  • Students are able to realistically judge the status of their knowledge and to define actions for improvements when necessary.
  • Students can break down their design work in sub-tasks and can schedule the design work in a realistic way.
  • Students can handle the complex data structures of their design task and document it in consice but understandable way.
  • Students are able to judge the amount of work for a major design project.



Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Credit points 6
Course achievement None
Examination Subject theoretical and practical work
Examination duration and scale 30 min
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0692: Laboratory: Analog Circuit Design
Typ Project-/problem-based Learning
Hrs/wk 2
CP 6
Workload in Hours Independent Study Time 152, Study Time in Lecture 28
Lecturer Prof. Matthias Kuhl, Weitere Mitarbeiter
Language EN
Cycle WiSe
Content
  • Input desk for circuits
  • Algorithms for simulation
  • MOS transistor model
  • Simulation of analog circuits
  • Placement and routing     
  • Generation of layouts
  • Design checking routines
  • Postlayout simulations



Literature Handouts to be distributed

Module M0644: Optoelectronics II - Quantum Optics

Courses
Title Typ Hrs/wk CP
Optoelectronics II: Quantum Optics (L0360) Lecture 2 3
Optoelectronics II: Quantum Optics (Problem Solving Course) (L0362) Recitation Section (small) 1 1
Module Responsible Dr. Alexander Petrov
Admission Requirements None
Recommended Previous Knowledge

Basic principles of electrodynamics, optics and quantum mechanics

Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge

Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications.

Skills

Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance.


Personal Competence
Social Competence

Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course.


Autonomy

Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures.


Workload in Hours Independent Study Time 78, Study Time in Lecture 42
Credit points 4
Course achievement None
Examination Written exam
Examination duration and scale 60 minutes
Assignment for the Following Curricula Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory
Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory
Course L0360: Optoelectronics II: Quantum Optics
Typ Lecture
Hrs/wk 2
CP 3
Workload in Hours Independent Study Time 62, Study Time in Lecture 28
Lecturer Dr. Alexander Petrov
Language EN
Cycle WiSe
Content
  • Generation of light
  • Photons
  • Thermal and nonthermal light
  • Laser amplifier
  • Noise
  • Optical resonators
  • Spectral properties of laser light
  • CW-lasers (gas, solid state, semiconductor)
  • Pulsed lasers
Literature

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007
Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002
Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001
Yariv, A., Quantum Electronics, Wiley, 1988
Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X
Siegman, A.E., Lasers, University Science Books, 1986

Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course)
Typ Recitation Section (small)
Hrs/wk 1
CP 1
Workload in Hours Independent Study Time 16, Study Time in Lecture 14
Lecturer Dr. Alexander Petrov
Language EN
Cycle WiSe
Content see lecture Optoelectronics 1 - Wave Optics
Literature

see lecture Optoelectronics 1 - Wave Optics

Thesis

Module M-002: Master Thesis

Courses
Title Typ Hrs/wk CP
Module Responsible Professoren der TUHH
Admission Requirements
  • According to General Regulations §21 (1):

    At least 60 credit points have to be achieved in study programme. The examinations board decides on exceptions.

Recommended Previous Knowledge
Educational Objectives After taking part successfully, students have reached the following learning results
Professional Competence
Knowledge
  • The students can use specialized knowledge (facts, theories, and methods) of their subject competently on specialized issues.
  • The students can explain in depth the relevant approaches and terminologies in one or more areas of their subject, describing current developments and taking up a critical position on them.
  • The students can place a research task in their subject area in its context and describe and critically assess the state of research.


Skills

The students are able:

  • To select, apply and, if necessary, develop further methods that are suitable for solving the specialized problem in question.
  • To apply knowledge they have acquired and methods they have learnt in the course of their studies to complex and/or incompletely defined problems in a solution-oriented way.
  • To develop new scientific findings in their subject area and subject them to a critical assessment.
Personal Competence
Social Competence

Students can

  • Both in writing and orally outline a scientific issue for an expert audience accurately, understandably and in a structured way.
  • Deal with issues competently in an expert discussion and answer them in a manner that is appropriate to the addressees while upholding their own assessments and viewpoints convincingly.


Autonomy

Students are able:

  • To structure a project of their own in work packages and to work them off accordingly.
  • To work their way in depth into a largely unknown subject and to access the information required for them to do so.
  • To apply the techniques of scientific work comprehensively in research of their own.
Workload in Hours Independent Study Time 900, Study Time in Lecture 0
Credit points 30
Course achievement None
Examination Thesis
Examination duration and scale According to General Regulations
Assignment for the Following Curricula Civil Engineering: Thesis: Compulsory
Bioprocess Engineering: Thesis: Compulsory
Chemical and Bioprocess Engineering: Thesis: Compulsory
Computer Science: Thesis: Compulsory
Electrical Engineering: Thesis: Compulsory
Energy and Environmental Engineering: Thesis: Compulsory
Energy Systems: Thesis: Compulsory
Environmental Engineering: Thesis: Compulsory
Aircraft Systems Engineering: Thesis: Compulsory
Global Innovation Management: Thesis: Compulsory
Computational Science and Engineering: Thesis: Compulsory
Information and Communication Systems: Thesis: Compulsory
Interdisciplinary Mathematics: Thesis: Compulsory
International Management and Engineering: Thesis: Compulsory
Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory
Logistics, Infrastructure and Mobility: Thesis: Compulsory
Materials Science: Thesis: Compulsory
Mechanical Engineering and Management: Thesis: Compulsory
Mechatronics: Thesis: Compulsory
Biomedical Engineering: Thesis: Compulsory
Microelectronics and Microsystems: Thesis: Compulsory
Product Development, Materials and Production: Thesis: Compulsory
Renewable Energies: Thesis: Compulsory
Naval Architecture and Ocean Engineering: Thesis: Compulsory
Ship and Offshore Technology: Thesis: Compulsory
Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory
Theoretical Mechanical Engineering: Thesis: Compulsory
Process Engineering: Thesis: Compulsory
Water and Environmental Engineering: Thesis: Compulsory
Certification in Engineering & Advisory in Aviation: Thesis: Compulsory