Program description
Content
The fundament for microelectronics and microsystems is semiconductor physics and technology. Thus, the objective of the International Master Program “Microelectronics and Microsystems” is to give the students a profound knowledge on physical level about electronic effects in semiconductor materials, especially silicon, and on the functionality of electronic devices. Furthermore, the students are taught about process technology for fabrication of integrated circuits and microsystems. This will enable the students to understand in depth the function of advanced electronic devices and fabrication processes. They will be able to comprehend in a critical way the problems accompanied with the transition to smaller minimum structure sizes. Thus, the students can conceive which possible solutions may exist or could be developed to overcome the problems of scaling-down the device minimum feature size. This will enable the students to understand the ongoing scaling-down of MOS transistors with its potential but also with its limitations.
Besides the essential role of physical basics the precise knowledge of process dependent manufacturing procedures are of key importance for training of the students in the field of nanoelectronics and microsystems. This will help them to develop during their professional life the ability to generate innovative concepts and bring them to practical applications.
The International Master Program “Microelectronics and Microsystems” qualifies the students for scientific professional work in the fields of electrical engineering and information technology. This professional work may extend from the development, production and application to the quality control of complex systems with highly integrated circuits and microsystems components. Both fields are coming closer and closer together, as a fast rising number of complex applications requires the integration of nanoelectronics and microsystems to one combined system.
In particular, this program enables the students not only to design new complex systems for innovative applications, but also to make them usable for practical applications. This can be realized by teaching the students engineering methods both on a physical and theoretical level and on an application oriented level.
Career prospects
Thus, one group of possible employers are large companies with international sites for the production of integrated circuits, but also small or medium-sized companies for microsystems. Many job opportunities also exist in the field of development and design of integrated circuits and of microsystems. Because of the fast decline in prices of high-performance computer system, even small companies can conduct tasks that require many computational efforts such as the design of integrated circuits that, then, are fabricated by specialized companies, so-called silicon foundries. This allows many small companies to participate in the market for integrated circuits, so that they can contribute to a good job market for engineers in nanoelectronics and microsystems.
Learning target
- The students understand the basic physical principles of microelectronic devices and functional block of microsystems. Furthermore, they have solid knowledge regarding fabrication technologies, so that they can explain them in detail.
- They have gained solid knowledge in selected fields based on a broad theoretical and methodical fundament.
- The students possess in-depth knowledge of interdisciplinary relationships.
- They have the required background knowledge in order to position their professional subjects by appropriate means in the scientific and social environment.
Skills
The students are able
- to apply computational methods for quantitative analysis of design parameters and for development of innovative systems for microelectronics and microsystems.
- to solve complex problems and tasks in a self-dependent manner by basic methodical approaches that may be, if necessary, beyond the standard patterns
- to consider technological progress and scientific advancements by taking into account the technical, financial and ecological boundary conditions.
Social Skills
The students are capable of
- working in interdisciplinary teams and organizing their tasks in a process oriented manner to become prepared for conducting research based professional work and for taking management responsibilities.
- to present their results in a written or oral form effectively targeting the audience, on international stage also.
Autonomy
- The students can pervade in an effectively and self-dependently organized way special areas of their professional fields using scientific methods.
- They are able to present their knowledge by appropriate media techniques or to describe it by documents with reasonable lengths.
- The students are able to identify the need for additional information and to develop a strategy for self-dependent enhancement of their knowledge.
Program structure
- Core Qualification:
- Main subject: The students choose one main subject out of the following two options:
The students have to take for their main subjects moduls totaling 18 CPs (1. - 3. semester).
- Master thesis with 30 CP (4. semester)
The sum of required credit points of this Master program is 120 CP.
Core Qualification
Module M0523: Business & Management |
Module Responsible | Prof. Matthias Meyer |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Course L2599: Behavioral Game Theory |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Timo Heinrich |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2664: Behavioural Decision Theory |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min. |
Lecturer | Prof. Timo Heinrich |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2546: Building Business Data Products |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | folgt |
Lecturer | Prof. Christoph Ihl, Joschka Schwarz |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2544: Business Data Science Basics |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | folgt |
Lecturer | Prof. Christoph Ihl, Joschka Schwarz |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2545: Business Decisions with Machine Learning |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | folgt |
Lecturer | Prof. Christoph Ihl, Joschka Schwarz |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2722: Digitalization and the impact on people |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung (laut FPrO) |
Examination duration and scale | Ausarbeitung, 5 Seiten |
Lecturer | Lucia Pohl, Robert Damköhler |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L1703: Emotional Design / User Centered Product Development |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | Teamarbeit und abschließender Vortrag |
Lecturer | Jörg Heuser |
Language | DE |
Cycle | SoSe |
Content |
Lecture
Seminar
Project Work
|
Literature | Wird in der Veranstaltung angegeben |
Course L1384: Intellectual Property |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Janna Thomsen, Cathérine Elkemann |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
Quellen und Materialen wird im Internet zur Verfügung gestellt |
Course L2600: Green Economy - Entrepreneurship, Innovation & Technology Management |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | Ausarbeitung und Gruppenpräsentation |
Lecturer | Prof. Michael Prange |
Language | EN |
Cycle |
WiSe/ |
Content |
Topics:
Based on examples and case studies primarily in the field of Green Economy, students learn the basics of Entrepreneurship, Innovation and Technology Management and will be able to develop business models, to evaluate start‐up projects and to describe strategic innovation processes. |
Literature |
Präsentationsfolien, Beispiele und Fallstudien aus der Lehrveranstaltung. Presentation slides, examples, and case studies from the lecture. |
Course L2347: Human resource management for engineers |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 0 |
Lecturer | Helge Kochskämper |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Course L1711: Innovation Debates |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | 3 Präsentationen der schriftlichen Ausarbeitung à 20 Minutes |
Lecturer | Prof. Daniel Heiner Ehls |
Language | EN |
Cycle | WiSe |
Content |
Scientific knowledge grows continuously but also experiences certain alignments over time. For example, early cultures had the believe of a flat earth while latest research has a spherical earth model. Also in social science and business management, from time to time certain concepts that have even been the predominant paradigm are challenged by new observations and models. Consequently, certain controversies emerge and build the base for advancing theory and managerial practice. With this lecture, we put ourselves in the middle of heated debates for informed academics and practitioners of the day after tomorrow. The lecture targets several controversies in the domain of technology strategy and innovation management. By the classical academic method and the novel problem based learning format of a structured discussion, a given controversy is scrutinized. On selected topics, students will discuss a dispute and gain a thorough understanding. Specifically, based on a brief introduction of a motion, a affirmative constructive as well as a negative constructive is presented by two different student groups. Each presentation is followed by a response of the other group and questions from the class. Topics range from latest theories and concepts for value capture, to the importance of operating within a global marketplace, to cutting edge approaches for innovation stimulation and technology management. Consequently, this lecture deepens the knowledge in technology strategy and innovation management (TIM), enables a critical thinking and thought leadership. |
Literature |
1. Course notes and materials provided before the lecture 2. Leiblein/ Ziedonis (2011): Technology Strategy and innovation management. Edward Elgar Publishing Ltd (optional) |
Course L0940: Innovation Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Prof. Cornelius Herstatt |
Language | DE/EN |
Cycle | SoSe |
Content |
Innovation is key to corporate growth and sustainibility. In this lecture Prof. Herstatt presents a systematic way from generating ideas to the successful implementation of innovations. The lecture is presented in German language only |
Literature |
|
Course L0161: Internationalization Strategies |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 20-30 Minuten Referat einschl. Diskussionsleitung plus schriftliche Ausarbeitung (ca. 10 Seiten) |
Lecturer | Prof. Thomas Wrona |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L2717: Configuration Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | York Schnatmeier |
Language | DE |
Cycle | SoSe |
Content |
Configuration management in complex projects and plans with high development shares, long runtimes and the use of high technology. Configuration management (KM) is thus becoming increasingly important, especially in public, national and international tenders/projects, as well as in the aerospace and shipbuilding industries, among others. It is a tool of project management. The essential terms and processes of KM are explained. The common basis is the DIN ISO 10007. KM is classified and delimited to the essential other processes of project management such as systems engineering, scheduling, quality management, risk management, controlling, contract management, etc.. The necessary structures in the products to be developed and manufactured and within the project organization itself are shown. KM supports the interface between the Project Management Office (PMO) and the executing departments, as well as the subcontractors involved. A key discipline of KM is change control, starting from the identification of the need for change to its implementation in planning, design, manufacturing and product. Special attention is given to the involvement of the client, often the public sector client. The classical project phases, acquisition, realization, commissioning and utilization require commonalities as well as different requirements for the respective KM. The content taught is intended to enable students to work purposefully on new projects from the outset, to drive existing projects forward and to use KM in the process. Basics I Structures in projects |
Literature | DIN ISO 10007 |
Course L2350: Leadership |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dr. Thomas Kosin |
Language | DE |
Cycle | WiSe |
Content | |
Literature |
Course L1231: Management and Leadership |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 Minuten |
Lecturer | Prof. Christian Ringle, Janna Ehrlich |
Language | DE |
Cycle | SoSe |
Content |
|
Literature |
- Bea, F.X.; Haas, J.: Strategisches Management, 5. Auflage, Stuttgart 2009. |
Course L0863: Marketing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Prof. Christian Lüthje |
Language | EN |
Cycle | WiSe |
Content |
Contents Basics of Marketing The philosophy and fundamental aims of marketing. Contrasting different marketing fields (e.g. business-to-consumer versus business-to-business marketing). The process of marketing planning, implementation and controlling Strategic Marketing Planning How to find profit opportunities? How to develop cooperation, internationalization, timing, differentiation and cost leadership strategies? Market-oriented Design of products and services How can companies get valuable customer input on product design and development? What is a service? How can companies design innovative services supporting the products? Pricing What are the underlying determinants of pricing decision? Which pricing strategies should companies choose over the life cycle of products? What are special forms of pricing on business-to-business markets (e.g. competitive bidding, auctions)? Marketing Communication What is the role of communication and advertising in business-to-business markets? Why advertise? How can companies manage communication over advertisement, exhibitions and public relations? Sales and Distribution How to build customer relationship? What are the major requirements of industrial selling? What is a distribution channel? How to design and manage a channel strategy on business-to-business markets? Knowledge Students will gain an introduction and good overview of
Skills Based on the acquired knowledge students will be able to:
Social Competence The students will be able to
Self-reliance The students will be able to
|
Literature |
Homburg, C., Kuester, S., Krohmer, H. (2009). Marketing Management, McGraw-Hill Education, Berkshire, extracts p. 31-32, p. 38-53, 406-414, 427-431 Bingham, F. G., Gomes, R., Knowles, P. A. (2005). Business Marketing, McGraw-Hill Higher Education, 3rd edition, 2004, p. 106-110 Besanke, D., Dranove, D., Shanley, M., Schaefer, S. (2007), Economics of strategy, Wiley, 3rd edition, 2007, p. 149-155 Hutt, M. D., Speh, T.W. (2010), Business Marketing Management, 10th edition, South Western, Lengage Learning, p. 112-116 |
Course L2440: Mergers & Acquistions (M&A) |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Philipp Haberstock |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L0709: Project Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Prof. Carlos Jahn |
Language | EN |
Cycle | WiSe |
Content |
The lecture “project management” aims at characterizing typical phases of projects. Important contents are: possible tasks, organization, techniques and tools for initiation, definition, planning, management and finalization of projects. This will also be deepened by exercises within the framework of the event. The following topics will be covered in the lecture:
|
Literature |
Project Management Institute (2017): A Guide to the Project Management Body of Knowledge (PMBOK® Guide) 6. Aufl. Newtown Square, PA, USA: Project Management Institute. DeMarco, Tom (1997). The Deadline: A Novel About Project Management. DIN Deutsches Institut für Normung e.V. (2009). Projektmanagement - Projektmanagementsysteme - Teil 5: Begriffe. (DIN 69901-5) Frigenti, Enzo and Comninos, Dennis (2002). The Practice of Project Management. Haberfellner, Reinhard (2015). Systems Engineering: Grundlagen und Anwendung Harrison, Frederick and Lock, Dennis (2004). Advanced Project Management: A Structured Approach. Heyworth, Frank (2002). A Guide to Project Management. ISO - International Organization for Standardization (2012). Guidance on Project Management. (21500:2012(E)) Kerzner, Harold (2013). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. Lock, Dennis (2018). Project Management. Martinelli, Russ J. and Miloševic, Dragan (2016). Project Management Toolbox: Tools and Techniques for the Practicing Project Manager. Murch, Richard (2011). Project Management: Best Practices for IT Professionals. Patzak, Gerold and Rattay, Günter (2009). Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen. |
Course L1385: Project Management in Industrial Practice |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Dipl.-Ing. Wilhelm Radomsky |
Language | DE |
Cycle | WiSe |
Content |
|
Literature |
• Brown (1998): Erfolgreiches Projektmanagement in 7 Tagen • Burghardt (2002): Einführung in Projektmanagement • Cleland / King (1997): Project Management Handbook • Hemmrich, Harrant (2002): Projektmanagement, In 7 Schritten zum Erfolg • Kerzner (2003): Projektmanagement • Litke (2004): Projektmanagement • Madauss (2005): Handbuch Projektmanagement • Patzak / Rattay (2004): Projektmanagement • PMI (2004): A Guide to the Project Management Body of Knowledge • RKW / GPM: Projektmanagement Fachmann • Schelle / Ottmann / Pfeiffer (2005): ProjektManager |
Course L1897: Project Management and Agile Methods |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | Ausarbeitung eines Projektplans in Kleingruppen (ca. 5-10 Seiten) |
Lecturer | Christian Bussler |
Language | DE |
Cycle | SoSe |
Content |
The Seminar teaches the basics of project management, which constitutes the foundations for technical as well as for business projects. It also includes a sideline about process management. The participants will work on the following questions:
The approaches are not just taught theoretically, but put to use in group work. Through this approach, participants are enabled to work successfully on actual projects - and manage projects later on. As project work is increasingly important in work life, project management is a key skill for job applicants. Main topics of the seminar include:
With the knowledge and experience from the seminar, participants should be able to acquire a basic certificate in project management with relatively little additional effort. The certification is available through institutions like GPM. Participants already start working on their homework paper in the group work. It comprises 5 to 10 pages and a structure plan for the chosen project, which can be done in Excel for example. Ideally, the members of the work groups write their homework paper together. The expected scale of the paper would increase in this case, yet not proportionally with the number of group members (4 participants would be expected to hand in a paper of 15-20 pages). |
Literature |
Hans-D. Litke, Ilonka Kunow; Projektmanagement. 3. Auflage 2015 Georg Patzak, Günter Rattay; Projektmanagement: Projekte, Projektpotfolios, Programme und projektorientierte Unternehmen. 6. Auflage 2014 GPM Deutsche Gesellschaft für Projektmanagement; Kompetenzbasiertes Projektmanagement (PM3): Handbuch für die Projektarbeit, Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 3.0. 6. Auflage, 2014 Tom DeMarco; Der Termin: Ein Roman über Projektmanagement. 2007 Jeff Sutherland, Ken Schwaber; Der Scrum Guide. Der gültige Leitfaden für Scrum: Die Spielregeln. Ständig aktualisiert, kostenloser Download auf http://www.scrumguides.org/ Jurgen Appello; Management 3.0: Leading Agile Developers, Developing Agile Leaders. 2010 |
Course L2349: Accounting and Financial Statements |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Prof. Matthias Meyer |
Language | DE |
Cycle |
WiSe/ |
Content | |
Literature |
Course L1293: Risk Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 Minuten |
Lecturer | Dr. Meike Schröder |
Language | DE |
Cycle | WiSe |
Content |
Risks are inherent in every aspect of business, and the ability of managing risks is one important aspect that differentiates successful business leaders from others. There exist various categories of risk, such as credit, country, market, liquidity, operational, supply chain and reputational. Companies are vulnerable to risks. What makes such risks even more complex and challenging to manage is that the risks are often not within the direct control of the business executive. They can exist outside of the company boundary, and yet the impact to the company can be huge. The awareness and knowledge of how to manage risks in companies, will become increasingly important. Some of the main topics covered in this lecture include:
This lecture is presented in German language only. |
Literature |
Brühwiler, B., Romeike, F. (2010), Praxisleitfaden Risikomanagement. ISO 31000 und ONR 49000 sicher anwenden, Berlin: Erich Schmidt. Cottin, C., Döhler, S. (2013), Risikoanalyse. Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen, 2. überarbeitete und erweiterte Aufl., Wiesbaden: Springer. Eller, R., Heinrich, M., Perrot, R., Reif, M. (2010), Kompaktwissen Risikomanagement. Nachschlagen, verstehen und erfolgreich umsetzen, Wiesbaden: Gabler. Fiege, S. (2006), Risikomanagement- und Überwachungssystem nach KonTraG. Prozess, Instrumente, Träger, Wiesbaden: Deutscher Universitäts-Verlag. Frame, D. (2003), Managing Risk in organizations. A guide for managers, San Francisco: Wiley. Götze, U., Henselmann, K., Mikus, B. (2001), Risikomanagement, Heidelberg: Physica-Verlag. Müller, K. (2010), Handbuch Unternehmenssicherheit. Umfassendes Sicherheits-, Kontinuitäts- und Risikomanagement mit System, 2., neu bearbeitete Auflage, Wiesbaden: Springer. Rosenkranz, F., Missler-Behr, M. (2005), Unternehmensrisiken erkennen und managen. Einführung in die quantitative Planung, Berlin u.a.: Springer. Wengert, H., Schittenhelm F. A. (2013), Coporate Risk Mangement, Berlin: Springer. |
Course L1389: Key Aspects of Patent Law |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | |
Lecturer | Prof. Christian Rohnke |
Language | DE |
Cycle |
WiSe/ |
Content |
Mayor Issues in Patent Law: The seminar covers five mayor issues in german patent law, namely patentatbility, prosecution, ownership and employee inventions, infringement and licensing and other commercila uses. The lecturer will give an introduction to each issue which will be followed by in-depth inquiry by the participants through group work, presentation of results and moderated discussion. |
Literature | wird noch bekannt gegeben |
Course L2796: Startup Engineering: Cases |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 30 Minuten |
Lecturer | Prof. Christoph Ihl |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2410: Startup Engineering: Project |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 30 Minuten |
Lecturer | Prof. Christoph Ihl, Dr. Hannes Lampe |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Course L2409: Strategic Shared-Value Management |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 30 Minuten |
Lecturer | Dr. Jill Küberling-Jost |
Language | EN |
Cycle |
WiSe/ |
Content | |
Literature |
Course L2295: Strategische Planung mit Planspielen |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | |
Lecturer | Dr. Jan Spitzner |
Language | DE |
Cycle | SoSe |
Content | |
Literature |
Course L1351: Management Consulting |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Gerald Schwetje |
Language | DE |
Cycle | SoSe |
Content |
The Management Consulting lecture teaches students knowledge that is complementary to their technical and business administration studies. They learn the basics of consulting and agent-principal theory and are given an overview of the consulting market. They are also shown how management consulting works and which methodical building blocks (processes) are needed to deal with a client’s concerns and to undertake a consulting process. By means of practical examples students gain an insight into the extensive range of management consultancy services and of functional consulting. |
Literature |
Bamberger, Ingolf (Hrsg.): Strategische Unternehmensberatung: Konzeptionen - Prozesse - Methoden, Gabler Verlag, Wiesbaden 2008 Bansbach, Schübel, Brötzel & Partner (Hrsg.): Consulting: Analyse - Konzepte - Gestaltung, Stollfuß Verlag, Bonn 2008 Fink, Dietmar (Hrsg.): Strategische Unternehmensberatung, Vahlens Handbücher, München, Verlag Vahlen, 2009 Heuermann, R./Herrmann, F.: Unternehmensberatung: Anatomie und Perspektiven einer Dienstleistungselite, Fakten und Meinungen für Kunden, Berater und Beobachter der Branche, Verlag Vahlen, München 2003 Kubr, Milan: Management consulting: A guide to the profession, 3. Auflage, Geneva, International Labour Office, 1992 Küting, Karlheinz (Hrsg.): Saarbrücker Handbuch der Betriebswirtschaftlichen Beratung; 4. Aufl., NWB Verlag, Herne 2008 Nagel, Kurt: 200 Strategien, Prinzipien und Systeme für den persönlichen und unternehmerischen Erfolg, 4. Aufl., Landsberg/Lech, mi-Verlag, 1991 Niedereichholz, Christel: Unternehmensberatung: Beratungsmarketing und Auftragsakquisition, Band 1, 2. Aufl., Oldenburg Verlag, 1996 Niedereichholz; Christel: Unternehmensberatung: Auftragsdurchführung und Qualitätssicherung, Band 2, Oldenburg Verlag, 1997 Quiring, Andreas: Rechtshandbuch für Unternehmensberater: Eine praxisorientierte Darstellung der typischen Risiken und der zweckmäßigen Strategien zum Risikomanagement mit Checklisten und Musterverträgen, Vahlen Verlag, München 2005 Schwetje, Gerald: Ihr Weg zur effizienten Unternehmensberatung: Beratungserfolg durch eine qualifizierte Beratungsmethode, NWB Verlag, Herne 2013 Schwetje, Gerald: Wer seine Nachfolge nicht regelt, vermindert seinen Unternehmenswert, in: NWB, Betriebswirtschaftliche Beratung, 03/2011 und: Sparkassen Firmenberatung aktuell, 05/2011 Schwetje, Gerald: Strategie-Assessment mit Hilfe von Arbeitshilfen der NWB-Datenbank - Pragmatischer Beratungsansatz speziell für KMU: NWB, Betriebswirtschaftliche Beratung, 10/2011 Schwetje, Gerald: Strategie-Werkzeugkasten für kleine Unternehmen, Fachbeiträge, Excel-Berechnungsprogramme, Checklisten/Muster und Mandanten-Merkblatt: NWB, Downloadprodukte, 11/2011 Schwetje, Gerald: Die Unternehmensberatung als komplementäres Leistungsangebot der Steuerberatung - Zusätzliches Honorar bei bestehenden Klienten: NWB, Betriebswirtschaftliche Beratung, 02/2012 Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Beziehungsmanagement, in: NWB Betriebswirtschaftliche Beratung, 08/2012 Schwetje, Gerald: Die Mandanten-Berater-Beziehung: Erfolgsfaktor Vertrauen, in: NWB Betriebswirtschaftliche Beratung, 09/2012 Wohlgemuth, Andre C.: Unternehmensberatung (Management Consulting): Dokumentation zur Vorlesung „Unternehmensberatung“, vdf Hochschulverlag, Zürich 2010 |
Course L0536: Management of Trust and Reputation |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 20-30 Minuten und Thesenpapier |
Lecturer | Dr. Michael Florian |
Language | DE |
Cycle | SoSe |
Content |
The seminar offers a comparison and analysis of relevant theoretical concepts and practical issues in the corporate management of trust and reputation. Selected case studies will be used to discuss opportunities, problems, and limitations using trust and reputation to coordinate and control economic behavior. |
Literature |
Allgäuer, Jörg E. (2009): Vertrauensmanagement: Kontrolle ist gut, Vertrauen ist besser. Ein Plädoyer für Vertrauensmanagement als zentrale Aufgabe integrierter Unternehmenskommunikation von Dienstleistungsunternehmen. München: brain script Behr. |
Module M0524: Non-technical Courses for Master |
Module Responsible | Dagmar Richter |
Admission Requirements | None |
Recommended Previous Knowledge | None |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The Nontechnical Academic Programms (NTA) imparts skills that, in view of the TUHH’s training profile, professional engineering studies require but are not able to cover fully. Self-reliance, self-management, collaboration and professional and personnel management competences. The department implements these training objectives in its teaching architecture, in its teaching and learning arrangements, in teaching areas and by means of teaching offerings in which students can qualify by opting for specific competences and a competence level at the Bachelor’s or Master’s level. The teaching offerings are pooled in two different catalogues for nontechnical complementary courses. The Learning Architecture consists of a cross-disciplinarily study offering. The centrally designed teaching offering ensures that courses in the nontechnical academic programms follow the specific profiling of TUHH degree courses. The learning architecture demands and trains independent educational planning as regards the individual development of competences. It also provides orientation knowledge in the form of “profiles”. The subjects that can be studied in parallel throughout the student’s entire study program - if need be, it can be studied in one to two semesters. In view of the adaptation problems that individuals commonly face in their first semesters after making the transition from school to university and in order to encourage individually planned semesters abroad, there is no obligation to study these subjects in one or two specific semesters during the course of studies. Teaching and Learning Arrangements provide for students, separated into B.Sc. and M.Sc., to learn with and from each other across semesters. The challenge of dealing with interdisciplinarity and a variety of stages of learning in courses are part of the learning architecture and are deliberately encouraged in specific courses. Fields of Teaching are based on research findings from the academic disciplines cultural studies, social studies, arts, historical studies, communication studies, migration studies and sustainability research, and from engineering didactics. In addition, from the winter semester 2014/15 students on all Bachelor’s courses will have the opportunity to learn about business management and start-ups in a goal-oriented way. The fields of teaching are augmented by soft skills offers and a foreign language offer. Here, the focus is on encouraging goal-oriented communication skills, e.g. the skills required by outgoing engineers in international and intercultural situations. The Competence Level of the courses offered in this area is different as regards the basic training objective in the Bachelor’s and Master’s fields. These differences are reflected in the practical examples used, in content topics that refer to different professional application contexts, and in the higher scientific and theoretical level of abstraction in the B.Sc. This is also reflected in the different quality of soft skills, which relate to the different team positions and different group leadership functions of Bachelor’s and Master’s graduates in their future working life. Specialized Competence (Knowledge) Students can
|
Skills |
Professional Competence (Skills) In selected sub-areas students can
|
Personal Competence | |
Social Competence |
Personal Competences (Social Skills) Students will be able
|
Autonomy |
Personal Competences (Self-reliance) Students are able in selected areas
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Course L1775: “What’s up, Doc?” Science and Stereotypes in Literature and Film |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Jennifer Henke |
Language | EN |
Cycle |
WiSe/ |
Content |
Popular novels and films significantly contribute to the public understanding of science and its representatives. How to define “good” or “bad” science is negotiated in a variety of artistic works. Stereotypes such as the “mad scientist”, which originated in early nineteenth century England, continue to persist. Mary Shelley created the prototype of the obsessive and reckless scientist in Frankenstein - The Modern Prometheus (1818) who conducts his forbidden experiments in a secret lab and crosses ethical boundaries. This masculine stereotype has been followed by further ones such as the noble, adventurous or clumsy scientist, whereas scholars have only recently begun to consider the representation of female science. First, this seminar is devoted to selected formations of knowledge in relation to literature from classical antiquity to the present. Second, the focus shall rest on the production of persistent stereotypes in various media formats such as novels or films while paying particular attention to the aspect of gender. The overall goal of the seminar is an understanding of science as a cultural practice. Requirements for participation: Shelley, Mary: Frankenstein. New York: Norton, 2012. Please pay attention to the exact publication dates. |
Literature |
Teilnahmevoraussetzungen: Shelley, Mary: Frankenstein. New York: Norton, 2012. Bitte ausschließlich diese Edition anschaffen. |
Course L2064: 120 years of film history |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 90 min |
Lecturer | Dr. Oliver Schmidt |
Language | DE |
Cycle |
WiSe/ |
Content | The lecture deals with the relationship between the develpoment of film technology, film aesthetics, and society. Based on the nineteenth-century film's precursors such as the laterna magica, photography and kinetoscope, crucial stages of more than 120 years of film history are studied chronologically in terms of: How does the development of new media techniques reflect certain social changes and needs? What new forms of aesthetic expression are possible through such technical innovations as the introduction of sound film, color film or handheld camera? And to what extent do these new forms of aesthetic expression in turn reflect certain social sensitivities, ultimately the respective zeitgeist? Main topics of the lecture are: the technical euphoria of the 19th century, the early film, the German Expressionist film, the classic Hollywood cinema, the European postwar cinema, exploitation and underground cinema, New Hollywood, the blockbuster cinema, independent cinema up to current phenomena like the „cinema of dissolution“. On the one hand, the participants learn in-depth, detailed knowledge of the history, meaning and analysis of the medium film and thereby acquire media literacy. On the other hand, the participants should gain a deeper understanding of the real interdependencies of technologies in culture and society and their historical transformation processes through an interdisciplinary perspective on film (history of technology, media studies and social science). |
Literature |
Course L1774: Applied Arts: Form and Function |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Prof. Margarete Jarchow, Dr. Christian Lechelt |
Language | DE |
Cycle |
WiSe/ |
Content |
From Arts & Crafts to modern Design - applied arts focus on the design of all kinds of products. Therefore applied arts allow to come to more thorough conclusions about social, historical, cultural issues. In the course the impact of social developments on these particular genres are discussed. |
Literature |
Wird noch angegeben Will be announced in lecture |
Course L2854: Care-Crisis, Corona-Crisis and Social Inequalities |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | Gruppenreferat mit Handout (45 Minuten) |
Lecturer | Anna Maria Köster-Eiserfunke |
Language | DE |
Cycle |
WiSe/ |
Content |
As the Corona pandemic made clear, all people are dependent on caring activities and health infrastructures. However, the social distribution of these activities as well as the access to health care are characterized by numerous inequalities and are structurally in crisis. These processes of crisis as well as the significance of social inequalities in the handling of the Corona pandemic will be focused on and worked out together in the seminar. For this purpose, we will deal with the economization of the health sector and bio-political demarcations, with new family divisions of labor and the significance of poverty for health risks, as well as with political possibilities for action to overcome the crisis(es) in solidarity. |
Literature |
Aulenbacher, B., Dammayr, M. (Hg.) 2014: Für sich und andere sorgen. Krise und Zukunft von Care in der modernen Gesellschaft // Volkmer, M., Werner, K. 2020: Die Corona-Gesellschaft. Analysen zur Lage und Perspektiven für die Zukunft |
Course L1990: Clash of Cultures. Film and TV series as images of the own and the other |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Jacobus Bracker |
Language | DE |
Cycle |
WiSe/ |
Content |
Images are negotiating concepts of the own, other and alien. Especially tv series like “Game of Thrones”, “Vikings”, or “The Walking Dead” and films like “Alien” or “Lord of the Rings” show clashes of cultures. Irrespective of their genre - fantasy, science fiction, or history - the moving images use always similar patterns to show and tell the own and the other. During the seminar we will deal with such concepts and concepts of culture and the specifics of film and series to watch and analyse selected examples from these perspectives. |
Literature |
Literaturhinweise, Texte etc. werden zu gegebener Zeit online zur Verfügung gestellt. |
Course L1441: German as a Foreign Language for International Master Programs |
Typ | Seminar |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Examination Form | Klausur |
Examination duration and scale | |
Lecturer | Dagmar Richter |
Language | DE |
Cycle |
WiSe/ |
Content |
Master’s German course in cooperation with IBH e.V. - Master’s German courses at different levels In the international studies program these are obligatory for non-native speakers of German and for students without a DSH certificate or equivalent TEST-DAF result. Grading after an aptitude test. All other students must sign up for a total of 4 ECTS from the catalog of non-technical supplementary courses. |
Literature | - Will be announced in lectures - |
Course L1884: The Hamburger Speicherstadt - from achievements of engineering to world cultural heritage |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 20 minütiges Referat mit anschließender Diskussion |
Lecturer | Dr. Jörg Schilling |
Language | DE |
Cycle |
WiSe/ |
Content |
The seminar wants to show the problems and challenges for the engineers, who built the Hamburger Speicherstadt and their sustainable architectural solutions, which are still of vital importance and the basis for becoming a world cultural heritage. |
Literature | u.a.: Hamburg und seine Bauten unter Berücksichtigung seiner Nachbarstädte Altona und Wandsbek, hg. vom Architekten- und Ingenieur-Verein zu Hamburg, Hamburg 1890; Karin Maak: Die Speicherstadt im Hamburger Hafen, Hamburg 1895; Hermann Hipp: Freie und Hansestadt Hamburg, Köln 1989; Matthias von Popowski: Franz Andreas Meyer (1837-1901). Oberingenieur und Leiter des Ingenieurwesens von 1872-1901, in: Wie das Kunstwerk Hamburg entstand, hg. v. Dieter Schädel, Hamburg 2006, S. 64-79; Ralf Lange: HafenCity + Speicherstadt : das maritime Quartier in Hamburg, Hamburg 2010. |
Course L2367: Digital art |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | Referat ca. 20 min. plus anschließende Diskussion |
Lecturer | Dr. Imke Hofmeister |
Language | DE |
Cycle |
WiSe/ |
Content |
Digitalization is having a major impact on many areas of our lives and the use of digital technologies in art and design has increased rapidly. After all, art is not only subject to constant change, but also constantly adapts to technical conditions. After the photographic art of the mid-19th century and the video art of the 1960s, which already brought about major changes in artistic creation, digital art is becoming increasingly important in the field of media art. The first attempts to use the computer with corresponding graphic software as an artistic medium took place in the 80/90s of the 20th century. Since then, there has been a broad development in the field of digital art, which now encompasses the most diverse digital pictorial phenomena and art genres and is thus intertwined in its objects, theories and practices with digital media in a variety of ways. The seminar gives an overview of the history of digital art and its different genres. These include, for example, photopaintings, where digital manipulation, filtering processes and painting can process the image and transform it over many stages into a completely new form. Also 3-D images, vector graphics, mathematical art and computer art in general. At the same time, the digital development in art is to be illuminated, from the first beginnings on the computer with comparatively simple "digital aids", e.g. in the form of simple image processing programs, to the present sophisticated graphic tools. In addition, the presentation, dissemination and conservation possibilities of digital art will also be discussed, which can be disseminated very well on the Internet primarily because it can be displayed on a computer screen. The great fascination with digital creative work and the almost inexhaustible possibilities offered by the medium of computers to artists, who will continue to ensure that digital art finds a permanent place alongside traditional media, will also be discussed. Finally, in contrast to the traditional production methods in the field of fine arts and design, there are always new manifestations of digital art, which ultimately give not only the "trained" artist but also the layman far-reaching possibilities for artistic expression. And all this in the spirit of the performance artist Joseph Beuys , who postulated, every human being is capable of creativity, indeed "every human being is an artist". The seminar will also discuss the question of how digital art can be described as "the" contemporary art, i.e. contemporary art in the age of digital technology. Furthermore, it is of great interest to what extent the perception of art per se has already changed and will continue to change in a digitalized society. |
Literature | folgt |
Course L2479: Introduction to technology journalism: How research, development and solutions reach the public |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 15 Minuten je 3er Team |
Lecturer | Prof. Margarete Jarchow, Matthias Kowalski |
Language | DE |
Cycle |
WiSe/ |
Content |
The seminar imparts basic journalistic knowledge and skills to convey technical content to a broad public. |
Literature |
Newman, Nic: Journalism, Media & Technology - Trends and predictions 2019, Reuters Institute/ University of Oxford Digital News Publications http://www.digitalnewsreport.org/publications/2019/journalism-media-technology-trends-predictions-2019/#executive-summary; |
Course L1084: Engineering Education Research and Applications |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | Teilnahme an gegenseitiger Hospitation und umfassender Bericht, schriftliche Reflexionsaufgaben, mündliche Beiträge in Diskussionen |
Lecturer | Prof. Christian Kautz |
Language | DE |
Cycle | WiSe |
Content |
Learning scenarios, active learning methods Methods, results and implications of engineering education research Conceptual understanding and misconceptions in introductory engineering courses Research on learning behaviour, motivation, and beliefs Preparation of Tutorials for selected lecture courses Problem-Based Learning Learning styles in engineering education Assessment |
Literature |
Ausgewählte Artikel aus Fachzeitschriften (überwiegend in englischer Sprache) werden an die Seminarteilnehmer verteilt. |
Course L1994: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in German |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Prof. Margarete Jarchow, Matthias Kowalski |
Language | DE |
Cycle |
WiSe/ |
Content | Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required. |
Literature |
Course L2370: Facts, Facts, Facts - Understanding and Applying Techniques of Journalism - in English |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Prof. Margarete Jarchow, Matthias Kowalski |
Language | EN |
Cycle |
WiSe/ |
Content |
Regardless of whether it is via classic channels such as newspapers and magazines or radio and TV as well as via internet, social media or via communication in specialist circles: Today we encounter journalism in almost all forms of public and private communication. But what makes a story really important in this flood of content? How do we recognize relevance? How do we expose fake news? In this block seminar the principles of journalistic techniques are imparted by means of practical examples and editorial exercises. The participants also develop tools to detect and deactivate manipulation and fake news. Regular attendance and attendance at all block dates is required. |
Literature | folgt |
Course L0970: Foreign Language Course |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Klausur |
Examination duration and scale | 60 min |
Lecturer | Dagmar Richter |
Language | |
Cycle |
WiSe/ |
Content |
In the Field of the Nontechnical Complementary Courses students are able to chose foreign language courses. Therefore the Hamburger Volkshochschule offers a special language programm on TUHH campus for TUHH Students. It includes courses in english, chinese, french, japanese, portuguese, russia, swedish, spanisch and german as a foreign language. All lectures impart common language knowledge, english courses although english for technical purposes. |
Literature | Kursspezifische Literatur / selected bibliography depending on special lecture programm. |
Course L1844: Stay cool in conflict. Nonviolent Communication by Marshall Rosenberg |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 2-3 Seiten bzw. 10-20 Minuten plus anschließende Besprechung |
Lecturer | Dr. Claudia Wunram |
Language | DE |
Cycle |
WiSe/ |
Content |
„Words can build bridges or create rafts“ - this is also true for the scientific and business world. For example, how do I react if I get attacked in a professional debate by an opponent or by a colleague in my team, or if a fight arises during the planning of a project? In a challenging situation, what will help me to communicate respectfully and with appreciation? How can I express criticism or irritation honestly, directly and without reproach? Nonviolent Communication is a concept developped by Marshall B. Rosenberg, Ph.D., intended to help create an appreciative attitude towards oneself and others, and to live by it. Nonviolent Communication opens paths to express oneself in a mindful and responsible way, so that a bridge can be built even in challenging situations of conflict. Effective and satisfactory cooperation is only possible with well functioning communication between all parties involved, otherwise things will become difficult and inefficient. By working with their own examples and anticipating questions that might arise in their future professional lives, the students of Engineering Sciences will be able to reflect their own communicative behavior and learn ways of cooperation and conjoint solution finding. This course will impart the essential competencies of communication necesary for that. |
Literature |
German:
English:
|
Course L2345: Theory, Research and Practice of University Teaching |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | Schriftliche Ausarbeitung (in mehreren Teilen) sowie eine Präsentation |
Lecturer | Prof. Christian Kautz, Jenny Alice Rohde |
Language | DE |
Cycle |
WiSe/ |
Content |
This course covers theory and practice of being a student teaching assistant in small-group instructional settings at TUHH. As part of the seminar, the participants have the opportunity to reflect on their work, e. g. through mutual observation and discussion. For prior knowledge / the event requirements: This event requires basic first work / collaboration experiences in the academic work structures of a higher education institution, which Master's students have acquired as part of the qualification for the Bachelor's degree at a university. These presumed work experiences include specific self-study experiences at a college. These are picked up, reflected, expanded and further developed both theoretically and practically with regard to learning from and in groups and later guiding this learning process. Furthermore, experiences with different types of learning / group types of higher education, which are part of a degree program acquired during the bachelor's program, are assumed, taken up, reflected on, expanded and further developed here in the master's program. The course also requires basic knowledge of presenting scholarly work results obtained by Master's students with a Bachelor's degree. In the course, this experience with and in representation in a group situation will be expanded and further developed in the direction of students' involvement with their own role as well as their design in face-to-face interaction as well as in group processes, learning and leadership situations, as masters graduates Graduate unlike bachelor graduates professionally stronger in a moderating role and with the guidance of humans because with the guidance in subject matters are demanded. According to the later professional role, the work of the seminar promotes and enables graduate students significantly more than graduates' qualifications for independent work and learning, transferring what they have learned to new areas, contributing, involving discussion and contributing their own examples and interests. |
Literature |
Auszüge aus Fachliteratur zu oben genannten Themen werden in der Veranstaltung ausgegeben. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman. Bosse, E. (2016). Herausforderungen und Unterstützung für gelingendes Studieren: Studienanforderungen und Angebote für den Studieneinstieg. In I. van den Berk, K. Petersen, K. Schultes, & K. Stolz (Hrsg.). Studierfähigkeit - theoretische Erkenntnisse, empirische Befunde und praktische Perspektiven (Bd. 15). (S.129-169). Hamburg: Universität Hamburg. Collins, D. & Holton, E. (2004). The effectiveness of managerial leadership development programs: A meta-analysis of studies from 1982 to 2001. Human resource development quarterly, 15(2), 217 - 248. Danielsiek, H., Hubwieser, P., Krugel, J., Magenheim, J., Ohrndorf, L., Ossenschmidt, D., Schaper, N. & Vahrenhold, J. (2017). Verbundprojekt KETTI: Kompetenzerwerb von Tutorinnen und Tutoren in der Informatik. In A. Hanft, F. Bischoff, B. Prang (Hrsg.), Working Paper Lehr-/Lernformen. Perspektiven aus der Begleitforschung zum Qualitätspakt Lehre. Abgerufen von KoBF: Freeman, S., Eddy, SL., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematic. Proceedings of the National Academy of Sciences 11(23), 8410-8415. Glathe, A. (2017). Effekte von Tutorentraining und die Kompetenzentwicklung von MINTFachtutor* innen in Lernunterstützungsfunktion. (Nicht veröffentlichte Dissertation). Technische Universität Darmstadt, Deutschland. Kirkpatrick, D. L. (1959). Techniques for Evaluation Training Program. Journal of the American Society of Training Directors, 13, 21-26. Hänze, M. Fischer, E. Schreiber, Biehler, R. & Hochmuth, R- (2013). Innovationen in der Hochschullehre: empirische Überprüfung eines Studienprogramms zur Verbesserung von vorlesungsbegleitenden Übungsgruppen in der Mathematik. Zeitschrift für Hochschulentwicklung, 8(4), 89- 103. Kröpke, H. (2014). Who is who? Tutoring und Mentoring - der Versuch einer begrifflichen Schärfung. In D. Lenzen & H. Fischer (Hrsg.), Tutoring und Mentoring unter besonderer Berücksichtigung der Orientierungseinheit (Bd. 5). (21-29). Hamburg: Universitätskolleg-Schriften. Kühlmann, T. (2007). Fragebögen. In J. Straub, A. Weidemann & D. Weidemann (Hrsg.), Handbuch interkulturelle Kommunikation und Kompetenz (346-352). Stuttgart: Metzler. Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (11. aktualisierte und überarbeitete Auflage). Weinheim/Basel: Beltz. Mummendey, H. D. (1981). Methoden und Probleme der Kontrolle sozialer Erwünschtheit (Social Desirability). Zeitschrift für Differentielle und Diagnostische Psychologie, 2, 199-218. Rohde, J. & Block, M. (2018). Welche Herausforderungen und Bewältigungsstrategien berichten Tutor/innen der Ingenieurwissenschaften? Eine explorative Analyse von Reflexionsberichten. Vortrag auf der 47. Tagung der Deutschen Gesellschaft für Hochschuldidaktik, Karlsruhe. Heterogenität der Studierenden und Lösungsansätze von Tutor/-innen Jenny Alice Rohde. Posterpräsentation auf der Tagung “Tutorielle Lehre und Heterogenität”. Technische Universität Darmstadt, 16.05.2019.Hochschuldidaktische Tutorenqualifizierung - Eine Basisqualifizierung des akademischen Nachwuchses und Chance für den Wandel der Lehr-/Lernkultur? Jenny Alice Rohde & Caroline Thon-Gairola. Posterpräsentation auf der DGHD am 07.03.2019.Welches Lehrverhalten zeigen geschulte Tutor/innen? Eine explorative Analyse selbst- und fremdwahrnehmungsbasierter Reflexionsberichte Jenny Alice Rohde & Nadine Stahlberg. In: die hochschulehre (2019). Schneider, M. & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyse. Psychological Bulletin, 143(6), 565-600. Skylar Powell, K. & Yalcin, S. (2010). Managerial training effectiveness: A meta-analysis 1952-2002. Personnel Review, 39(2), 227-241. 27 Welches Lehrverhalten zeigen geschulte Tutor/innen d ie hochs chul l ehre 2019 www.hochschullehre.org Stes, A., Min-Leliveld, M., Gijbels, D. & Van Petegem, P. (2010). The impact of instructional development in higher education: The state-of-the-art of the research. Educational Research Review, 5(1), 25-49. Stroebe, W. (2016). Why Good Teaching Evaluations May Reward Bad Teaching: On Grade Inflation and Other Unintended Consequences of Student Evaluation. Perspectives on Psychological Science, 11(6), 800-816. Technische Universität Hamburg (2018). Kennzahlen 2017. Hamburg: Technische Universität Hamburg. [https://www.tuhh.de/tuhh/uni/informationen/kennzahlen.html] Thumser-Dauth, K. (2008). Und was bringt das? Evaluation hochschuldidaktischer Weiterbildung. In B. Berendt, H.-P. Voss & J. Wildt (Hrsg.), Neues Handbuch Hochschullehre. Lehren und Lernen effizient gestalten. Kap. L 1.11 Hochschuldidaktische Aus- und Weiterbildung. Veranstaltungskonzepte und -modelle. Berlin: Raabe. S. 1-10. Wibbecke, G. (2015): Evaluation einer hochschuldidaktischen Weiterbildung an der Medizinischen Fakultät Heidelberg. Dissertation. Ruprecht-Karls-Universität Heidelberg. Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015a). Randauszählung Studienqualitätsmonitor 2014, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im Sommersemester 2014, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung. Willige, J., Woisch, A., Grützmacher, J. & Naumann, H. (2015b). Randauszählung Studienqualitätsmonitor 2015, Technische Universität Hamburg-Harburg, Online-Befragung Studierender im Sommersemester 2015, DZHW - Deutsches Zentrum für Hochschul- und Wissenschaftsforschung. Winkler, M. (2018). Tutorielle Lehransätze im Vergleich. Die KOMPASS Begleitforschung. Vortrag gehalten am 12.03.2018 auf dem Netzwerktreffen Tutorienarbeit an Hochschulen in Würzburg. Zech, F. (1977). Grundkurs Mathematikdidaktik: theoretische und praktische Anleitungen für das Lehren und Lernen im Fach Mathematik. Weinheim: Beltz. |
Course L1509: Intercultural Communication |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Prof. Margarete Jarchow, Anna Katharina Bartel |
Language | EN |
Cycle |
WiSe/ |
Content |
As young professionals with technical background you may often tend to focus on communicating numbers and statistics in your presentations. However, facts are only one aspect of convincing others. Often, your personality, personal experience, cultural background and emotions are more important. You have to convince as a person in order to get your content across. In this workshop you will learn how to increase and express your cultural competence. You will apply cultural knowledge and images in order to positively influence communicative situations. You will learn how to add character and interest to your talks, papers and publications by referring to your own and European Cultural background. You will find out the basics of communicating professionally and convincingly by showing personality and by referring to your own cultural knowledge. You will get hands-on experience both in preparing and in conducting such communicative situations. This course is not focussing on delivering new knowledge about European culture but helps you using existing knowledge or such that you can gain e.g. in other Humanities courses. Content
|
Literature |
Literaturhinweise werden zu Beginn des Seminars bekanntgegeben. Literature will be announced at the beginning of the seminar. |
Course L2015: Intercultural Management - Theory and Awareness Training |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 15 Minuten Vortrag und dessen schriftliche Ausarbeitung (10 Seiten) |
Lecturer | Prof Jürgen Rothlauf |
Language | EN |
Cycle |
WiSe/ |
Content |
The subject of the course is the deepening of the intercultural dimension of international management in relation to fundamental challenges, the importance of culture in team work and leadership of large multinational companies. In addition, culture-awareness trainings are discussed and carried out. |
Literature |
Rothlauf, J (2014): A Global View on Intercultural Management - Challenges in a Globalized World, De Gruyter Oldenbourg Verlag, 360 p |
Course L2851: Join Mini Challenges of the ECIU University |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | 90 Stunden Arbeitsaufwand |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle |
WiSe/ |
Content |
Join multidisciplinary and international teams at the ECIU University and solve mini challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in mini challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Mini challenges” are challenges in the ECIU University that are supposed to be done within 1-4 weeks. Focus is to define your actual challenge, find suitable solution(s) and to implement them. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literature |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Course L2852: Join Nano Challenges of the ECIU University |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | 30 Stunden Arbeitsaufwand |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle |
WiSe/ |
Content |
Join multidisciplinary and international teams at the ECIU University and solve nano challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in nano challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Nano challenges” are the smallest unit of challenges in the ECIU University and are supposed to be done within 1-2 days. Focus is to define your actual challenge, find suitable solution(s) and create ideas for further steps. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literature |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Course L2853: Join Standard Challenges of the ECIU University |
Typ | Project-/problem-based Learning |
Hrs/wk | 6 |
CP | 6 |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Examination Form | Fachtheoretisch-fachpraktische Arbeit |
Examination duration and scale | 180 Stunden Arbeitsaufwand |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle |
WiSe/ |
Content |
Join multidisciplinary and international teams at the ECIU University and solve standard challenges linked to the SDG11 - Sustainable cities and communities, provided by business and societal partners across Europe. Participation in standard challenges will allow you to make a real impact in the community, city, or region by solving real-time local, national, and global challenges with a new way of learning - the challenge-based learning. General procedure of a challenge:
By working in multi-disciplinary and/or international teams, you will build up inter-cultural competences and increase your network of expertise by developing problem-solving and team-work skills. TUHH is major part of the ECIU University leading institution related to the Challenge-based learning. All ECIU challenges will constantly be updated at the challenge platform: challenges.eciu.org “Standard challenges” are challenges in the ECIU University that are supposed to be done within 3-6 months. Focus is to define your actual challenge, find suitable solution(s) and to implement as well as evaluate and publish them. https://eciu.tuhh.de/cbl-in-more-detail/ This course is aimed at Master students from member universities of the ECIU network (www.eciu.org). The course requires an independent approach to work, the willingness to learn independently about new non-technical topics and research methods, and the motivation to learn and actively participate in an international/disciplinary team. |
Literature |
ECIU UNIVERSITY 2030, CONNECTS U FOR LIFE https://www.eciu.org/news/eciu-university-2030-connects-u-for-life TOWARDS A EUROPEAN MICRO-CREDENTIALS INITIATIVE https://www.eciu.org/news/towards-a-european-micro-credentials-initiative |
Course L2176: Culture of Communication - Theories and Methods of Successful Communication |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Anna Katharina Bartel |
Language | DE |
Cycle |
WiSe/ |
Content |
This course is for master students. In this seminar, we will explore different theories, models and methods from the fields of communication, psychology and cultural theory. The participants will work on theoretical content and do group presentations. They will also use examples from their own experiences to apply models and methods in practical exercises. The way we communicate shapes the way we experience our relationships, in the business world as well as in our private lives. We spend an overwhelming amount of time in group situations. This makes it worthwhile to explore how communication works within the group context and how, within these different groups, different cultures of communication develop. This particularly applies in highly specialized fields, such as engineering. Our ability to flexibly and successfully move from one context to another helps us along in building successful careers and allows us to feel positive about our private lives. However, this is not always simple. For example: If we are part of a context in which many conflicts arise If we have to switch between different contexts frequently Or if, on the one hand, complicated facts and data are our main focus but on the other hand, we have to communicate them to people who are not familiar with the subject. Maybe we even have to win their attention in order to help along our causes. Oftentimes, this leads to misunderstandings. There also might be a lack of openness or willingness to embrace conflict. This might make it difficult for us to reach our goals. To be able to reflect on the way we communicate, to identify patterns of communication and the ability to actively build positive relationships through communication are useful skills to help overcome those obstacles.. |
Literature |
|
Course L2369: Literature and Culture for international students of Master's degree programs in English (non-native speakers of German) |
Typ | Seminar |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Examination Form | Referat |
Examination duration and scale | 45 min. Präsentation und anschließende Diskussion |
Lecturer | Bertrand Schütz |
Language | DE |
Cycle |
WiSe/ |
Content |
The seminar LITERATURE AND CULTURE investigates what culture is, especially what characterises epistemic cultures. Culture is to be understood as the creative response to a given situation and the capacity to integrate inputs and influences, therefore as an ongoing process of permanent readjustment and learning, and by no means as a fixed identity in terms of an “essence”. There is a growing awareness that Europe cannot lay claim to possess the ultimate standards of knowledge. A topography of our contemporary world is to be sketched by highlighting its historical and cultural premises. For more information please refer to the German description and the StudIP. |
Literature |
Je nach Thematik des Semesters wird eine spezifische cf. StudIP |
Course L2029: Lying press”? Functions and current challenges of journalism |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Mündliche Prüfung |
Examination duration and scale | 20 min |
Lecturer | Prof. Horst Pöttker |
Language | DE |
Cycle |
WiSe/ |
Content |
Lying press - there is a revival of the disparaging invective. Journalists use to shoot it down by leading it back to its supposed roots in the NS-propaganda. This is less convincing as several parties and ideologies have used it since the middle of the 19th century to discredit the media of other parties and ideologies. And it is missing the core of the problem. Critics are reasonably afraid that the choice of “lying press” to the “non-word of the year” 2014 has blocked the question, if there is a justified criticism of information media and journalism - or more precisely of the relationship between journalism and its audience. If this is the case both - journalism and audience - are involved from the perspective of inter actionism. Against this background interactive instructions will be given by scholarly literature and practical examples from the German and international media business. Questions like the following will be discussed:
Objective is solid learning about professional tasks, ethics, techniques, endagerments, history and current problems of journalism including science journalism. |
Literature |
Zur Einführung: Weischenberg, S. (2010): Das Jahrhundert des Journalismus ist vorbei. Rekonstruktionen und Prognosen zur Formation gesellschaftlicher Selbstbeobachtung. In: Bartelt-Kircher, Gabriele u.a.: Krise der Printmedien - eine Krise des Journalismus? Berlin und New York: de Gruyter Saur, S. 32-60. Eine ausführliche Literaturliste wird am Anfang des Seminars verteilt. |
Course L1846: Classical Journalism and New Media |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | Ca. 20 min. plus anschließende Diskussion |
Lecturer | Dieter Bednarz |
Language | DE |
Cycle |
WiSe/ |
Content |
The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed. Has the media expert Neil Postman been right, when he one said, that we all one day will be „overnewsed but underinformed“? Keeping a close eye on the real challenges of journalism, the seminar will discuss the standards of ethics in politics and media. |
Literature |
Wird im Seminar genannt |
Course L1023: Politics |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Stephan Albrecht |
Language | EN |
Cycle |
WiSe/ |
Content |
Scientists and engineers neither just strive for truths and scientific laws, nor are they working in a space far from politics. Science and engineering have contributed to what we now call the Anthropocene, the first time in the history of mankind when essential cycles of the earth system, e.g. carbon cycle, climate system, are heavily influenced or even shattered. Furthermore, Peak oil is indicating the end of cheap fossil energy thus triggering the search for alternatives such as biomass. Systems of knowledge, science and technology in the OECD countries have since roughly 30 years increasingly become divided. On the one hand new technologies such as modern biotechnology, IT or nanotechnology are developing rapidly, bringing about many innovations for industry, agriculture, and consumers. On the other hand scientific studies from earth, environmental, climate change, agricultural and social sciences deliver increasingly robust evidence on more or less severe impacts on society, environment, global equity, and economy resulting from innovations during the last 50 years. Technological innovation thus is no longer an uncontested concept. And many protest movements demonstrate that the introduction of new or the enlargement of existing technologies (e.g. airports, railway stations, highways, high-voltage power lines surveillance) isn’t at all a matter of course. It is important to bear in mind the fact that all processes of technological innovation are made by humans, individually and collectively. Industrial, social, and political organizations as actors from the local to global level of communication, deliberation, and decision making interact in diverse arenas, struggling to promote their respective corporate and/or political agenda. So innovations are as well a problem of technology as a problem of politics. Innovation and technology policies aren’t the same in all countries. We can observe conceptual and practical variations. Since the 1992 Earth Summit in Rio de Janeiro Agenda 21 constitutes a normative umbrella, indicating Sustainable Development (SD) as core cluster of earth politics on all levels from local to global. Meanwhile other documents such as the Millennium Development Goals (MDG) have complemented the SD agenda. SD can be interpreted as operationalization of the Universal Declaration of Human Rights, adopted in 1948 by the General Assembly of the United Nations and since amended many times. Engineers and scientists as professionals can’t avoid to become confronted with many non-technical and non-disciplinary items, challenges, and dilemmas. So they have to choose between alternative options for action, as individuals and as members of organizations or employees. Therefore the seminar will address core elements of the complex interrelations between science, society and politics. Reflections on experiences of participants - e.g. from other countries as Germany - during the seminar are very welcome. The goals of the seminar include:
The seminar will deal with current problems from areas such as innovation policy, energy, food systems, and raw materials. Issues will include the future of energy, food security and electronics. Historical issues will also be addressed. The seminar will start with a profound overarching introduction. Issues will be introduced by a short presentation and a Q & A session, followed by group work on selected problems. All participants will have to prepare a presentation during the weekend seminar. The seminar will use inter alia interactive tools of teaching such as focus groups, simulations and presentations by students. Regular and active participation is required at all stages. |
Literature | Literatur wird zu Beginn des Seminars abgesprochen. |
Course L1856: Politics and Science - in German |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | Referat ca. 20 min. plus anschließende Diskussion |
Lecturer | Dr. Mirko Himmel, Dr. Ines Krohn-Molt |
Language | DE |
Cycle |
WiSe/ |
Content |
Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions. |
Literature |
Wird im Seminar genannt |
Course L1779: Politics and Science - in English |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Frederik Postelt, Dr. Gunnar Jeremias |
Language | EN |
Cycle |
WiSe/ |
Content |
Scientists often like to believe that their work is non-political. Within this seminar we want to demonstrate how deeply both are interconnected and converged. Not only, scientific guidance is often needed to take a political decision but also scientific outcomes are a sub-ject to political interpretation. Also, politics are significantly influencing scientific progress by framing research agendas and by funding decisions. During this seminar we would like to show the different range of influences - scientific, economic, social, environmental, ethical/normative, security-related - affecting decision-making on science and politics. Using case studies on current debates on food security, public health, nuclear energy and terrorism to discuss the interrelation between science and politics illuminating the role of various actors in this process, such as: • Governments, • International organizations, • Scientific associations, • Industry, • Civil society, and • Individual scientists. The guiding questions will be: • How does and should science influence politics? • How does and should politics influence science? In order to take responsibility for the consequences of scientific work, engineers and scientists increasingly need to acknowledge the political dimension of their work and their role in the political process. We will address this political dimension of scientific work by discussing: • Biographies and motivations of famous scientists, • Individual responsibility of scientists for the implications of their work, and • The role of codes of conduct as guidelines for responsible behaviour. The goals of the seminar include: • Raising awareness and increasing knowledge about the political dimensions of scientific work, • Providing guidelines for evaluating political implications of scientific research, • Improving the understanding of scientists’ and engineers’ responsibility for the results of their professional activities, • Taking decisions at the institutional, national and international level about rules and regulations concerning scientific conduct, and • Choosing arguments and defending positions in situations of conflicting interests. The seminar will use current issues, such as dilemmas in the life sciences or bio fuels to demonstrate the problematic relationship between science and politics. The seminar, however, does not focus on providing in-depth knowledge of these current issues. We strongly discourage students that have participated in an “Ethics for Engineers” seminar to take this course, because the contents of the two seminars overlap. Issues will be introduced by short presentations and a Q&A session, followed by group work on selected problems. All participants will have to prepare a presentation. Those requiring a graded certificate (“Schein”) additionally have to write a 3-4 page paper on selected issues. The seminar will use interactive tools of teaching such as role playing and simulations. Group work and active participation is expected at all stages of the seminar. |
Literature |
will be announced in lecture wird im Seminar bekannt gegeben |
Course L1734: Projectrealisation: TUHH goes circular - Sustainability in Research, Education and campus management |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | |
Lecturer | Prof. Kerstin Kuchta |
Language | EN |
Cycle |
WiSe/ |
Content |
Description The group project: TUHH goes Circular addresses environmental challenges and engages with science communication as an instrument of sustainable solution strategies. Due to the Covid-19-pandemic especially digital communication has gained importance - and this shall be adopted in the digital summer semester of 2021. The students are being introduced to the importance of high-quality science communication for ecologically and socially sustainable development. In a practical group task, the students are gaining experience with traditional and popular formats. Topics are to be chosen matching the general scope of environmental challenges, i.e. the challenges of rising resource consumption and waste production. Competences
|
Literature |
Wird im Seminar bekannt gegeben Will be announced in lecture. |
Course L2649: Brave New World? Technology, Society and Digitalitization in Cinematic Dystopias |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 45 Minuten |
Lecturer | Dr. Marlis Bussacker |
Language | DE |
Cycle |
WiSe/ |
Content |
Desolate landscapes, destruction, violence - these are usually our first associations when we think of dystopias. But it is not that obvious. At first we often see an almost utopian-looking world without disease, without hunger, without poverty, in which many of our current problems have been solved. But the idyll is illusory and has its price. What does this price look like? The seminar will focus on films in which technical progress and the development of artificial intelligence have opened up almost unlimited possibilities for people - to improve their living conditions, but also to gain complete control over them. Who carries out this control? Is an individual life still possible? What about democratic structures? Do these films show us our future? How much freedom do we want to give up for a life that seems safe and carefree at first sight? And: Why are there no more social utopias? These questions, among others, will be focused in the discussion. |
Literature |
Wird im Seminar bekannt gegeben. |
Course L1872: Social Learning: Social Commitment in Refugee Issues / Master |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 10 Seiten |
Lecturer | Muthana Al-Temimi |
Language | DE |
Cycle |
WiSe/ |
Content |
This seminar is intended to enable and promote social engagement for refugees and migrants and the social learning that goes along with it. The term "social commitment for refugees" means active cooperation and participation in projects, initiatives or organizations that aim at supporting refugees/migrants in Germany. The recognition of activities within the framework of projects, initiatives or organizations with anti-democratic objectives is excluded. The goal is "social learning within the framework of social commitment": On the one hand, this includes the acquisition or deepening of competencies on the part of the students through their commitment in the above-mentioned area; on the other hand, it includes the support/promotion/learning of the refugees/migrants through the competencies of the students. In this course, students independently look for social projects in the above-mentioned sense and commit themselves for at least 50 hours. Previous social commitment in the above-mentioned area can be taken into account. In this course, students engage in social projects for at least 50h. Previous social commitment in this field can be taken into account. In addition, participants will have the opportunity to exchange information with other students from the Social Learning seminars on their voluntary activities. The participants will be closely accompanied and advised by the course instructor, especially in the search and selection of a suitable activity. Compulsory 20h of present teaching including consultation enable the students to reflect on the learning situation on site as well as their own competences in a reflection work / written elaboration Obligatory 10 h of presence teaching including consulting time enable students to reflect the learning situation on site and their own competence in a structured and successful way, either accompanying or following their involvement in a reflection work / written elaboration to be able to identify and evaluate their own learning process. In addition, the participants are given the opportunity to specifically exchange information with other students from the Master's programs about their social activities. |
Literature |
Wird im Seminar bekannt gegeben. Will be announced in lecture. |
Course L2485: Social Learning: Social Engagement for Sustainability - M.Sc. |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 10 Seiten + mündliche Präsentation |
Lecturer | Tatjana Grimm |
Language | DE |
Cycle |
WiSe/ |
Content |
This seminar is intended promote social engagement in the field of ecological, economic and social sustainability and the accompanying social learning. "Social Engagement for Sustainability" means active cooperation and participation in projects, initiatives or organisations which aim to preserve or improve living conditions and environment for present and future generations, e.g. conservation of resources, nature protection or strengthening fair trade. Activities in projects, initiatives or organisations with anti-democratic objectives and in political parties are not accepted. In this course, students are volunteering in social projects for at least 32 hours. Previous social engagement in this field can be considered. In addition, participants are given the opportunity to exchange information with other students from the Social Learning seminars on their voluntary service. The participants will be closely accompanied and advised by the instructor, especially during the search and selection of a suitable activity. Obligatory 28 hours of presence teaching including counselling time enable students to critically reflect on their commitment. The focus is on the effects in society. |
Literature | - |
Course L2480: Social Learning: Social commitment to preservation of historical cultural assets - MSc |
Typ | Seminar |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | 10 Seiten + mündliche Präsentation |
Lecturer | Tatjana Grimm |
Language | DE |
Cycle | WiSe |
Content |
This seminar is intended to promote social engagement in the field of natural- and technical history and the associated social learning. "Social commitment to preservation of historical cultural assets" means the active participation in projects, initiatives or organizations whose aim is to preserve natural-, social- and technological historical cultural assets. Possible contacts are natural history- and technology museums as well as monument protection foundations, which look after historic buildings, ships and port facilities or underground buildings. Activities in projects, initiatives or organisations with anti-democratic objectives and in political parties are not accepted. In this course, students engage in social projects for at least 42h. Previous social commitment in this field can be taken into account. In addition, participants will have the opportunity to exchange information with other students from the Social Learning seminars on their voluntary activities. The participants will be closely accompanied and advised by the course instructor, especially in the search and selection of a suitable activity. Compulsory 18h of present teaching including consultation enable the students to reflect on the learning situation on site as well as their own competences in a reflection work / written elaboration. |
Literature | - |
Course L2849: Technology Assessment (TA) and Technology Genesis Research |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Schriftliche Ausarbeitung |
Examination duration and scale | Schriftliche Hausarbeit 7-10 Textseiten; verpflichtend: Präsentation der Zwischenergebnisse mit Diskussion (geht nicht in die Bewertung mit ein) |
Lecturer | Dr. Martin Schütz |
Language | DE |
Cycle |
WiSe/ |
Content |
Can we predict technical development and its multi-dimensional consequences? Can we assess if they are desirable or not? Genetic |
Literature |
− Bell, Daniel (1994): Technology and Society in a Post-industrial Age. In: Hans-Ulrich |
Course L1771: The Arabic Spring an its Consequences |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dieter Bednarz |
Language | DE |
Cycle |
WiSe/ |
Content |
The world wide walkover of the internet dramatically changed the perception of classical media like newspapers, magazines and even TV. In this seminar the reasons of and the consequences for the dramatic changes regarding our information habits will be analyzed and discussed: Taking a close look at the Middle East the political impact of the new media´s triumphal procession will be assessed and evaluated. How come that Twitter and Facebook on one hand facilitated the so called Arabic Spring and caused hope for the rise of democracy in the region, while on the other hand the revolutionaries failed so dramatically - at least for now. Keeping a close eye on both fields, the Media and the Middle East, the seminar will discuss the standards of ethics in politics and journalism. |
Literature |
Wird im Seminar angegeben und besprochen. Will be announced in the lecture. |
Course L1916: Responsible Conduct in Technology & Science |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Mirko Himmel, Dr. Ines Krohn-Molt |
Language | DE |
Cycle |
WiSe/ |
Content |
Aim of the seminar is raising awareness for the responsibility of engineers and researchers for a proper and ethical conduct in technology and science. The Participants will present and discuss practical examples for good as well as bad conduct in science.
|
Literature | folgt im Seminar |
Course L1991: What can philosophy do? |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Ursula Töller |
Language | DE |
Cycle |
WiSe/ |
Content |
Over the centuries, the philosophy is lined up as a discipline that provides complex and universal answers to contemporary history and circumstances. Often, she could design utopias that have led the way for political upheaval. While all scientific disciplines are subject to an increasing differentiation, the philosophy in the second half of the 20th century has lost its claim to universality. But what then are the topics of the philosophy of the 20th and 21st century and what impact have philosophical theories for processes of change? We will provide an overview of Western philosophies of the 20th and 21st century. and take a critical look at the self-understanding of philosophy. |
Literature |
Gerhardt Schweppenhäuser: Kritische Theorie, Stuttgart 2010 Postmoderne und Dekonstruktion, Texte französischer Philosophen der Gegenwart, hrsg. von Peter Engelmann, Reclam UB 8668 Thomas Rentsch: Philosophie des 20. Jhdts. Von Husserl bis Derrida, München 2014 Geschichte der Philosophie in Text und Darstellung, Bd. 8=20 Jhdt. Reclam UB 9918 Geschichte der Philosophie in Text und Darstellung, Bd. 9= Gegenwart Reclam UB 18267 |
Course L0528: Economic Sociology |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | 20-30 Minuten Referat und Thesenpapier |
Lecturer | Dr. Michael Florian |
Language | DE |
Cycle | WiSe |
Content |
Economic sociology means the application of sociological theories, methods, and perspectives in the analysis of economic issues. The seminar is concerned with new developments in economic sociology. Using case studies, the course will offer insights into the strengths and weaknesses of different sociological approaches. |
Literature |
Baecker, Dirk: Wirtschaftssoziologie. Transcript: Bielefeld, 2006. |
Course L2343: Academic Writing and Presentation for Master-Students |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Examination Form | Referat |
Examination duration and scale | etwa 20 Minuten Präsentation und 10-20 Minuten Diskussion |
Lecturer | Dr. Sigrid Vierck |
Language | DE/EN |
Cycle |
WiSe/ |
Content |
The course is aimed at Master students who are planning to write their thesis, want to pursue their PhD or intend to present their research results at conferences and in journals. The course is structured on different levels: 1. searching, 2. presenting with words, slides and pictures and 3. practical appliance. The course refers to the work environment at university as well as in research groups and enterprises. In the course of the seminar, the participants become acquainted with various methods and theories on the subject. Furthermore, the methods and theories will be put into practice, reflected upon and discussed as part of the seminar. |
Literature |
Ascheron, Klaus: Die Kunst des wissenschaftlichen Präsentierens und Publizierens. Ein Praxisleitfaden für junge Wissenschaftler. München 2007. Der Autor, Naturwissenschaftler, erklärt aufgrund seiner langjährigen und internationalen Erfahrung worauf es beim wissenschaftlichen Präsentieren (und Schreiben) ankommt. Aus seinem ganzheitlichen Ansatz heraus gibt er klare und hilfreiche Tipps für ein erfolgreiches und korrektes Darstellen im wissenschaftlichen Kontext. Eufinger, Günther: Dokumente perfekt gestalten. München 2007. Der Autor geht in dem kompakten Band auf die Schlüsselkompetenzen für erfolgreiches Präsentieren ein, die er aufgrund langjähriger praktischer Erfahrungen definiert. Darunter wird die Power-Point-Präsentation eingehend behandelt, wobei das in den weiteren Kapiteln dargestellte Basiswissen auch für PPP anzuwenden ist. Feuerbacher, Bernd: Professionell Präsentieren in den Natur- und Ingenieurwissenschaften. Weinheim 2009. Ansprechender, klar strukturierter Band, der auf die Unterschiede zwischen mündlichem Vortrag und schriftlichen Ausdruck eingeht sowie zusätzlich den Schwerpunkt auf die Power-Point-Präsentation legt. Wie im Titel angegeben zwar mit Betonung der Natur- und Ingenieurwissenschaften, aber in der Beschreibung rhetorischen Auftretens allgemeingültig formuliert. Hug, Theo (Hrsg.): Wie kommt Wissenschaft zu Wissen, Band 1: Einführung in das wissenschaftliche Arbeiten. Hohengehren 2001. Weitreichende Einführung, die bereits in den späteren Praxisbereich übergreift. Intensive Behandlung der internetbezogenen Arbeit. Kremer, Bruno P.: Vom Referat bis zur Abschlussarbeit. Naturwissenschaftliche Texte perfekt produzieren, präsentieren und publizieren. 5. Aufl. 2018. Berlin, Heidelberg (Imprint: Springer Spektrum). Der Autor schreibt mit langjähriger Erfahrung. Der Band, wie im Titel formuliert auf die Naturwissenschaften zugeschnitten, informiert umfassend, ist sehr gut gegliedert und verständlich geschrieben, sozusagen eine Werkstattanleitung, praxisnah und ermunternd. Prexl, Lydia: Mit digitalen Quellen arbeiten: richtig zitieren aus Datenbanken, E-Books, YouTube & Co. 3., aktualisierte und überarbeitete Auflage, Paderborn, Stuttgart 2019 (UTB) https://elibrary.utb.de/doi/book/10.36198/9783838550725 (Lizenzpflichtig) Die Autorin schildert in kleinen Schritten das wissenschaftliche Arbeiten mit Betonung des digitalen Anteils wie E-Books, E-Journals, Social-Media-Einträgen, Datenbanken und anderen elektronische Quellen. Vor allem bei der Frage nach der Verwendbarkeit und Zitierfähigkeit gibt dieser Ratgeber Lösungen ebenso wie zur Vermeidung von Plagiaten, sowie der bibliographischen Angabe, auch bei Unvollständigkeit. Pöhm, Matthias: Präsentieren Sie noch oder faszinieren Sie schon? Der Irrtum PowerPoint. 6. Aufl. Heidelberg 2009. Als Coach und Moderator bietet der Autor Tipps zur erfolgreichen Präsentation, die - wie er provokant im Titel formuliert - ohne PowerPoint auskommen soll, denn er setzt auf die Emotion als Kommunikationsmittel. Damit wird deutlich, dass er sich mehr im verkaufsorientierten als im wissenschaftlichen Bereich ansiedelt. Pukas, Dietrich: Lernmanagement. Einführung in Lern- und Arbeitstechniken. 3. aktual. Aufl. Rinteln 2008. Übersichtliches und umfassendes Kompendium zu den zahlreichen Fragen des Lernens und wissenschaftlichen Arbeitens. Zunächst wirtschaftswissenschaftlich orientiert, was auch durch die Struktur sowie die Tabellen und Diagramme deutlich wird, hat der Band durchaus allgemeine Gültigkeit. Darüber hinaus werden praxisorientierte Hinweise gegeben. Reynolds, Garr: Zen oder die Kunst der Präsentation. München u.a. 2010. Der Autor kommt aus dem Designbereich und bietet somit Stilmittel zur Gestaltung der PPP an. Wie im Titel angedeutet sind für ihn die Mittel der Konzentration auf das Wesentliche, der Ruhe und Einfachheit von entscheidender Bedeutung. Rost, Friedrich: Lern- und Arbeitstechniken für das Studium. 8., überarb. u. aktual. Aufl. Wiesbaden 2018. Ausführliche Vermittlung von Arbeitstechniken der Stoffermittlung, der Stoffverarbeitung, der Stoffsammlung, des informativen Schreibens, des Sprechens und Redens mit Berücksichtigung der computergestützten Arbeit und einem Anhang zu Ausdruck und Grammatik der deutschen Sprache. Sesink, Werner: Einführung in das wissenschaftliche Arbeiten: inklusive E-Learning, Web-Recherche, digitale Präsentation u.a. 9., vollständ. überarb. u. aktual. Aufl. München 2014. Arbeitshilfe mit Betonung auf der Computer-Verwendung. Erklärung des wissenschaftlichen Arbeitens und der Vorarbeiten wie Literatursuche und persönlicher Materialsammlung. Beschreibung des Abfassens einer schriftlichen Arbeit, auch Protokoll, Thesenpapier und Klausur. Ausführliche Behandlung der computergestützten Arbeit, vor allem auch des Textformatierens und der Textverarbeitung in der Studienpraxis. Spoun, Sascha und Dominik B. Domnik: Erfolgreich studieren. Ein Handbuch für Wirtschafts- und Sozialwissenschaftler. München u.a. 2005. Pearson-Studium. Handlicher Band, der Selbstorganisation als Erfolg versprechende Grundlage für das Studium sowie Techniken des Recherchierens, Lesens und Darstellens beschreibt. Durch die Konzentration auf das Wesentliche wird der Intensität und Kürze des Bachelor- und Masterstudiums Rechnung getragen und ein Leitfaden für die Bewältigung des workloads gegeben. Theisen, Manuel R.: Wissenschaftliches Arbeiten. Technik, Methodik, Form. 17., aktual. u. bearb. Aufl. München 2017. Zielgerichtete Beschreibung des Arbeitsprozesses von der Planung bis zum Druck und der Präsentation. Alle Stufen werden ausführlich, detailliert und in sinnvoller Reihenfolge beschrieben, wobei einzelne Kapitel auch für sich genommen werden können. Klar, übersichtlich, grundlegend. Der Autor ist in der Betriebswirtschaftslehre beheimatet. Wolpert, Lewis: Unglaubliche Wissenschaft. Frankfurt a. M. 2004. Der Autor, Naturwissenschaftler, vermittelt aufgrund seiner lebenslang gewonnenen Erfahrung den Weg zur wissenschaftlichen Erkenntnis durch Aufzeigen der grundlegenden Frageprinzipien und des wissenschaftlichen, sprich nachvollziehbaren und beweisfähigen Denkens. Der Band ist in der Reihe „Die Andere Bibliothek“ erschienen, mit der Herausgeber Hans Magnus Enzensberger ein Kompendium der Welt- und Wissensliteratur eigener Prägung schafft. Der Band regt zum unkonventionellen Denken an. |
Module M0676: Digital Communications |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Gerhard Bauch | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
|
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge | The students are able to understand, compare and design modern digital information transmission schemes. They are familiar with the properties of linear and non-linear digital modulation methods. They can describe distortions caused by transmission channels and design and evaluate detectors including channel estimation and equalization. They know the principles of single carrier transmission and multi-carrier transmission as well as the fundamentals of basic multiple access schemes. | ||||||||
Skills | The students are able to design and analyse a digital information transmission scheme including multiple access. They are able to choose a digital modulation scheme taking into account transmission rate, required bandwidth, error probability, and further signal properties. They can design an appropriate detector including channel estimation and equalization taking into account performance and complexity properties of suboptimum solutions. They are able to set parameters of a single carrier or multi carrier transmission scheme and trade the properties of both approaches against each other. | ||||||||
Personal Competence | |||||||||
Social Competence |
The students can jointly solve specific problems. |
||||||||
Autonomy |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Core Qualification: Compulsory Computational Science and Engineering: Specialisation II. Engineering Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0444: Digital Communications |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Course L0445: Digital Communications |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0646: Laboratory Digital Communications |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Gerhard Bauch |
Language | DE/EN |
Cycle | WiSe |
Content |
- DSL transmission - Random processes - Digital data transmission |
Literature |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Module M1048: Integrated Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of (solid-state) physics and mathematics. Knowledge in fundamentals of electrical engineering and electrical networks. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0691: Integrated Circuit Design |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L0998: Integrated Circuit Design |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0746: Microsystem Engineering |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Manfred Kasper | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Basic courses in physics, mathematics and electric engineering | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators. |
||||||||
Skills |
Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve specific problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 2h | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Core Qualification: Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0680: Microsystem Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Dr. rer. nat. Thomas Kusserow |
Language | EN |
Cycle | WiSe |
Content |
Object and goal of MEMS Scaling Rules Lithography Film deposition Structuring and etching Energy conversion and force generation Electromagnetic Actuators Reluctance motors Piezoelectric actuators, bi-metal-actuator Transducer principles Signal detection and signal processing Mechanical and physical sensors Acceleration sensor, pressure sensor Sensor arrays System integration Yield, test and reliability |
Literature |
M. Kasper: Mikrosystementwurf, Springer (2000) M. Madou: Fundamentals of Microfabrication, CRC Press (1997) |
Course L0682: Microsystem Engineering |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. rer. nat. Thomas Kusserow |
Language | EN |
Cycle | WiSe |
Content |
Examples of MEMS components Layout consideration Electric, thermal and mechanical behaviour Design aspects |
Literature |
Wird in der Veranstaltung bekannt gegeben |
Module M0768: Microsystems Technology in Theory and Practice |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Basics in physics, chemistry, mechanics and semiconductor technology |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able • to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems • to explain in details operation principles of microsensors and microactuators and • to discuss the potential and limitation of microsystems in application. |
||||||||
Skills |
Students are capable • to analyze the feasibility of microsystems, • to develop process flows for the fabrication of microstructures and • to apply them. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience. |
||||||||
Autonomy |
None |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory International Management and Engineering: Specialisation II. Mechatronics: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0724: Microsystems Technology |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Course L0725: Microsystems Technology |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1137: Technical Elective Complementary Course for IMPMM - field ET (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | Basic knowledge in electrical enginnering, physics, semiconductor devices and mathematics at Bachelor of Science level |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | As this modul can be chosen from the modul catalogue of the department E, the competence to be acquired is acccording to the chosen subject. |
Skills |
As this modul can be chosen from the modul catalogue of the department E, the skills to be acquired is acccording to the chosen subject. |
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Module M0918: Advanced IC Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | Fundamentals of electrical engineering, electronic devices and circuits |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0766: Advanced IC Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
R. J. Baker, „CMOS-Circuit Design, Layout, and Simulation“, Wiley & Sons, IEEE Press, 2010 B. Razavi,"Design of Analog CMOS Integrated Circuits", McGraw-Hill Education Ltd, 2000 X. Liu, VLSI-Design Methodology Demystified; IEEE, 2009 |
Course L1057: Advanced IC Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl, Weitere Mitarbeiter |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0761: Semiconductor Technology |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics in physics, chemistry, material science and semiconductor devices |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able • to describe and to explain current fabrication techniques for Si and GaAs substrates, • to discuss in details the relevant fabrication processes, process flows and the impact thereof on the fabrication of semiconductor devices and integrated circuits and • to present integrated process flows. |
Skills |
Students are capable • to analyze the impact of process parameters on the processing results, • to select and to evaluate processes and • to develop process flows for the fabrication of semiconductor devices. |
Personal Competence | |
Social Competence |
Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience. |
Autonomy | None |
Workload in Hours | Independent Study Time 96, Study Time in Lecture 84 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Elective Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0722: Semiconductor Technology |
Typ | Lecture |
Hrs/wk | 4 |
CP | 4 |
Workload in Hours | Independent Study Time 64, Study Time in Lecture 56 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
S.K. Ghandi: VLSI Fabrication principles - Silicon and Gallium Arsenide, John Wiley & Sons S.M. Sze: Semiconductor Devices - Physics and Technology, John Wiley & Sons U. Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag H. Beneking: Halbleitertechnologie - Eine Einführung in die Prozeßtechnik von Silizium und III-V-Verbindungen, Teubner Verlag K. Schade: Mikroelektroniktechnologie, Verlag Technik Berlin S. Campbell: The Science and Engineering of Microelectronic Fabrication, Oxford University Press P. van Zant: Microchip Fabrication - A Practical Guide to Semiconductor Processing, McGraw-Hill |
Course L0723: Semiconductor Technology |
Typ | Practical Course |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0747: Microsystem Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Manfred Kasper | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Mathematical Calculus, Linear Algebra, Microsystem Engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
The students know about the most important and most common simulation and design methods used in microsystem design. The scientific background of finite element methods and the basic theory of these methods are known. |
||||||||
Skills |
Students are able to apply simulation methods and commercial simulators in a goal oriented approach to complex design tasks. Students know to apply the theory in order achieve estimates of expected accuracy and can judge and verify the correctness of results. Students are able to develop a design approach even if only incomplete information about material data or constraints are available. Student can make use of approximate and reduced order models in a preliminary design stage or a system simulation. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can develop and explain their solution approach and subdivide the design task to subproblems which are solved separately by group members. |
||||||||
Autonomy |
Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Course L0683: Microsystem Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Manfred Kasper |
Language | EN |
Cycle | SoSe |
Content |
Finite difference methods Approximation error Finite element method Order of convergence Error estimation, mesh refinement Makromodeling Reduced order modeling Black-box models System identification Multi-physics systems System simulation Levels of simulation, network simulation Transient problems Non-linear problems Introduction to Comsol Application to thermal, electric, electromagnetic, mechanical and fluidic problems |
Literature |
M. Kasper: Mikrosystementwurf, Springer (2000) S. Senturia: Microsystem Design, Kluwer (2001) |
Course L0684: Microsystem Design |
Typ | Practical Course |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Manfred Kasper |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1131: Technical Elective Complementary Course for IMPMM - field TUHH (according to Subject Specific Regulations) |
||||
Courses | ||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge in electrical enginnering, physics, semiconductor devices, software and mathematics at Bachelor of Science level. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
As this module can be chosen from the module catalogue of the TUHH, the competence to be acquired is according to the chosen subject. |
Skills |
As this module can be chosen from the module catalogue of the TUHH, the skills to be acquired is according to the chosen subject. |
Personal Competence | |
Social Competence |
|
Autonomy | |
Workload in Hours | Depends on choice of courses |
Credit points | 6 |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Core Qualification: Elective Compulsory Microelectronics and Microsystems: Core Qualification: Elective Compulsory |
Module M1130: Project Work IMPMM |
||||
Courses | ||||
|
Module Responsible | NN |
Admission Requirements | None |
Recommended Previous Knowledge | Good knowledge in the design of electronic circuits, microprocessor systems, systems for signal processing and the handling of software packages for simulation of electrical and physical processes. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | The student is able to achieve in a specific scientific field special knowledge and she or he can independently acquire in this field the skills necessary for solving these scientific problems. |
Skills | The student is able to formulate the scientific problems to be solved and to work out solutions in an independent manner and to realize them. |
Personal Competence | |
Social Competence |
The student can integrate herself or himself into small teams of researchers and she or he can discuss proposals for solutions of scientific problems within the team. She or he is able to present the results in a clear and well structured manner. |
Autonomy | The student can perform scientific work in a timely manner and document the results in a detailed and well readable form. She or he is able to anticipate possible problems well in advance and to prepare proposals for their solutions. |
Workload in Hours | Independent Study Time 480, Study Time in Lecture 0 |
Credit points | 16 |
Course achievement | None |
Examination | Study work |
Examination duration and scale | see FSPO |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Core Qualification: Compulsory |
Module M1591: Seminar for IMPMM |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | Basics from the field of the seminar |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students can explain the most important facts and relationships of a specific topic from the field of the seminar. |
Skills | Students are able to compile a specified topic from the field of the seminar and to give a clear, structured and comprehensible presentation of the subject. They can comply with a given duration of the presentation. They can write in English a summary including illustrations that contains the most important results, relationships and explanations of the subject. |
Personal Competence | |
Social Competence | Students are able to adapt their presentation with respect to content, detailedness, and presentation style to the composition and previous knowledge of the audience. They can answer questions from the audience in a curt and precise manner. |
Autonomy | Students are able to autonomously carry out a literature research concerning a given topic. They can independently evaluate the material. They can self-reliantly decide which parts of the material should be included in the presentation. |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Credit points | 2 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 15 minutes presentation + 5-10 minutes discussion + 2 pages written abstract |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Core Qualification: Compulsory |
Course L2428: Seminar for IMPMM |
Typ | Seminar |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Hoc Khiem Trieu |
Language | EN |
Cycle |
WiSe/ |
Content |
Prepare, present, and discuss talks about recent topics from the field of semiconductors. The presentations must be given in English. Evaluation Criteria:
Handout: |
Literature |
Aktuelle Veröffentlichungen zu dem gewählten Thema. Recent publications of the selected topics. |
Specialization Communication and Signal Processing
Students have to choose lectures with a total of 18 credit points from the catalog of this specialization.
Module M0710: Microwave Engineering |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Alexander Kölpin | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of communication engineering, semiconductor devices and circuits. Basics of Wave propagation from transmission line theory and theoretical electrical engineering. |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students can explain the propagation of electromagnetic waves and related phenomena. They can describe transmission systems and components. They can name different types of antennas and describe the main characteristics of antennas. They can explain noise in linear circuits, compare different circuits using characteristic numbers and select the best one for specific scenarios. |
||||||||
Skills |
Students are able to calculate the propagation of electromagnetic waves. They can analyze complete transmission systems und configure simple receiver circuits. They can calculate the characteristic of simple antennas and arrays based on the geometry. They can calculate the noise of receivers and the signal-to-noise-ratio of transmission systems. They can apply their theoretical knowledge to the practical courses. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students work together in small groups during the practical courses. Together they document, evaluate and discuss their results. |
||||||||
Autonomy |
Students are able to relate the knowledge gained in the course to contents of previous lectures. With given instructions they can extract data needed to solve specific problems from external sources. They are able to apply their knowledge to the laboratory courses using the given instructions. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Core Qualification: Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L0573: Microwave Engineering |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Arne Jacob |
Language | DE/EN |
Cycle | WiSe |
Content |
- Antennas: Analysis - Characteristics - Realizations - Radio Wave Propagation - Transmitter: Power Generation with Vacuum Tubes and Transistors - Receiver: Preamplifier - Heterodyning - Noise - Selected System Applications |
Literature |
H.-G. Unger, „Elektromagnetische Theorie für die Hochfrequenztechnik, Teil I“, Hüthig, Heidelberg, 1988 H.-G. Unger, „Hochfrequenztechnik in Funk und Radar“, Teubner, Stuttgart, 1994 E. Voges, „Hochfrequenztechnik - Teil II: Leistungsröhren, Antennen und Funkübertragung, Funk- und Radartechnik“, Hüthig, Heidelberg, 1991 E. Voges, „Hochfrequenztechnik“, Hüthig, Bonn, 2004 C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982 R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, 1992 D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001 D. M. Pozar, “Microwave Engineerin”, John Wiley and Sons, 2005 |
Course L0574: Microwave Engineering |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Arne Jacob |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0575: Microwave Engineering |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Arne Jacob |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0836: Communication Networks |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Andreas Timm-Giel |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Skills |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personal Competence | |
Social Competence |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Autonomy |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Presentation |
Examination duration and scale | 1.5 hours colloquium with three students, therefore about 30 min per student. Topics of the colloquium are the posters from the previous poster session and the topics of the module. |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Networks: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L0899: Selected Topics of Communication Networks |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Timm-Giel |
Language | EN |
Cycle | WiSe |
Content | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literature |
|
Course L0897: Communication Networks |
Typ | Lecture |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Andreas Timm-Giel, Dr.-Ing. Koojana Kuladinithi |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Further literature is announced at the beginning of the lecture. |
Course L0898: Communication Networks Excercise |
Typ | Project-/problem-based Learning |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Andreas Timm-Giel |
Language | EN |
Cycle | WiSe |
Content | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literature |
|
Module M0637: Advanced Concepts of Wireless Communications |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Rainer Grünheid |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (UMTS, LTE) they can put the learnt content into a larger context. |
Skills |
Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application. |
Personal Competence | |
Social Competence | Students can jointly elaborate tasks in small groups and present their results in an adequate fashion. |
Autonomy | Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications". |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 minutes; scope: content of lecture and exercise |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L0297: Advanced Concepts of Wireless Communications |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Dr. Rainer Grünheid |
Language | EN |
Cycle | SoSe |
Content |
The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack. In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined. In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including UMTS/HSPA, LTE, LTE Advanced, and WiMAX. |
Literature |
John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007 David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005 Bernard Sklar: Digital Communications: Fundamentals and Applications. 2nd Edition, Pearson, 2013 Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011 |
Course L0298: Advanced Concepts of Wireless Communications |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Rainer Grünheid |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1686: Selected Aspects of Communication and Signal Processing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L2674: Selected Aspects of Communication and Signal Processing |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | |
Literature |
Course L2675: Selected Aspects of Communication and Signal Processing |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M1743: COSIMA (Competition in Microsystem Application) |
||||
Courses | ||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Module M1598: Image Processing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Tobias Knopp |
Admission Requirements | None |
Recommended Previous Knowledge | Signal and Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students know about
|
Skills |
The students can
|
Personal Competence | |
Social Competence |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Autonomy |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Data Science: Core Qualification: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L2443: Image Processing |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Course L2444: Image Processing |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0738: Digital Audio Signal Processing |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Udo Zölzer |
Admission Requirements | None |
Recommended Previous Knowledge |
Signals and Systems |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren. |
Skills |
The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications. |
Personal Competence | |
Social Competence |
The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise. |
Autonomy |
The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory |
Course L0650: Digital Audio Signal Processing |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Udo Zölzer |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005. - U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005. - U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.
|
Course L0651: Digital Audio Signal Processing |
Typ | Recitation Section (large) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Udo Zölzer |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1249: Medical Imaging |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Tobias Knopp |
Admission Requirements | None |
Recommended Previous Knowledge | Basic knowledge in linear algebra, numerics, and signal processing |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
After successful completion of the module, students are able to describe reconstruction methods for different tomographic imaging modalities such as computed tomography and magnetic resonance imaging. They know the necessary basics from the fields of signal processing and inverse problems and are familiar with both analytical and iterative image reconstruction methods. The students have a deepened knowledge of the imaging operators of computed tomography and magnetic resonance imaging. |
Skills |
The students are able to implement reconstruction methods and test them using tomographic measurement data. They can visualize the reconstructed images and evaluate the quality of their data and results. In addition, students can estimate the temporal complexity of imaging algorithms. |
Personal Competence | |
Social Competence |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Autonomy |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Interdisciplinary Mathematics: Specialisation Computational Methods in Biomedical Imaging: Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L1694: Medical Imaging |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000 Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995 Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008 Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006 Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999 |
Course L1695: Medical Imaging |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Tobias Knopp |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0677: Digital Signal Processing and Digital Filters |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Gerhard Bauch |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account. |
Skills | The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm. Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account. |
Personal Competence | |
Social Competence |
The students can jointly solve specific problems. |
Autonomy |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Control and Power Systems Engineering: Elective Compulsory Computational Science and Engineering: Specialisation II. Engineering Science: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0446: Digital Signal Processing and Digital Filters |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Gerhard Bauch |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner. V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V. W. Hess: Digitale Filter. Teubner. Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall. S. Haykin: Adaptive flter theory. L. B. Jackson: Digital filters and signal processing. Kluwer. T.W. Parks, C.S. Burrus: Digital filter design. Wiley. |
Course L0447: Digital Signal Processing and Digital Filters |
Typ | Recitation Section (large) |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Gerhard Bauch |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0550: Digital Image Analysis |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Rolf-Rainer Grigat |
Admission Requirements | None |
Recommended Previous Knowledge |
System theory of one-dimensional signals (convolution and correlation, sampling theory, interpolation and decimation, Fourier transform, linear time-invariant systems), linear algebra (Eigenvalue decomposition, SVD), basic stochastics and statistics (expectation values, influence of sample size, correlation and covariance, normal distribution and its parameters), basics of Matlab, basics in optics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can
|
Skills |
Students are able to
Students can solve simple arithmetical problems relating to the specification and design of image processing and image analysis systems. Students are able to assess different solution approaches in multidimensional decision-making areas. Students can undertake a prototypical analysis of processes in Matlab. |
Personal Competence | |
Social Competence |
k.A. |
Autonomy |
Students can solve image analysis tasks independently using the relevant literature. |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 Minutes, Content of Lecture and materials in StudIP |
Assignment for the Following Curricula |
Computer Science: Specialisation II: Intelligence Engineering: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Robotics and Computer Science: Elective Compulsory |
Course L0126: Digital Image Analysis |
Typ | Lecture |
Hrs/wk | 4 |
CP | 6 |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Lecturer | Prof. Rolf-Rainer Grigat |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Specialization Embedded Systems
Module M0791: Computer Architecture |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Heiko Falk | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Module "Computer Engineering" |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
This module presents advanced concepts from the discipline of computer architecture. In the beginning, a broad overview over various programming models is given, both for general-purpose computers and for special-purpose machines (e.g., signal processors). Next, foundational aspects of the micro-architecture of processors are covered. Here, the focus particularly lies on the so-called pipelining and the methods used for the acceleration of instruction execution used in this context. The students get to know concepts for dynamic scheduling, branch prediction, superscalar execution of machine instructions and for memory hierarchies. |
||||||||
Skills |
The students are able to describe the organization of processors. They know the different architectural principles and programming models. The students examine various structures of pipelined processor architectures and are able to explain their concepts and to analyze them w.r.t. criteria like, e.g., performance or energy efficiency. They evaluate different structures of memory hierarchies, know parallel computer architectures and are able to distinguish between instruction- and data-level parallelism. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes, contents of course and 4 attestations from the PBL "Computer architecture" | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Computer Science: Elective Compulsory Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory Computational Science and Engineering: Specialisation Computer Science: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L0793: Computer Architecture |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content |
The theoretical tutorials amplify the lecture's content by solving and discussing exercise sheets and thus serve as exam preparation. Practical aspects of computer architecture are taught in the FPGA-based PBL on computer architecture whose attendance is mandatory. |
Literature |
|
Course L0794: Computer Architecture |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1864: Computer Architecture |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0924: Software for Embedded Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Bernd-Christian Renner |
Admission Requirements | None |
Recommended Previous Knowledge |
|
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | Students know the basic principles and procedures of software engineering for embedded systems. They are able to describe the usage and pros of event based programming using interrupts. They know the components and functions of a concrete microcontroller. The participants explain requirements of real time systems. They know at least three scheduling algorithms for real time operating systems including their pros and cons. |
Skills | Students build interrupt-based programs for a concrete microcontroller. They build and use a preemptive scheduler. They use peripheral components (timer, ADC, EEPROM) to realize complex tasks for embedded systems. To interface with external components they utilize serial protocols. |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 |
Credit points | 6 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 90 min |
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Electrical Engineering: Specialisation Information and Communication Systems: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems, Focus Software and Signal Processing: Elective Compulsory Information and Communication Systems: Specialisation Communication Systems, Focus Software: Elective Compulsory International Management and Engineering: Specialisation II. Information Technology: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L1069: Software for Embdedded Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Bernd-Christian Renner |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L1070: Software for Embdedded Systems |
Typ | Recitation Section (small) |
Hrs/wk | 3 |
CP | 3 |
Workload in Hours | Independent Study Time 48, Study Time in Lecture 42 |
Lecturer | Prof. Bernd-Christian Renner |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1400: Design of Dependable Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Görschwin Fey | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Basic knowledge about data structures and algorithms | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
In the following "dependable" summarizes the concepts Reliability, Availability, Maintainability, Safety and Security. Knowledge about approaches for designing dependable systems, e.g.,
Knowledge about methods for the analysis of dependable systems |
||||||||
Skills |
Ability to implement dependable systems using the above approaches. Ability to analyzs the dependability of systems using the above methods for analysis. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students
|
||||||||
Autonomy | Using accompanying material students independently learn in-depth relations between concepts explained in the lecture and additional solution strategies. | ||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 30 min | ||||||||
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Computational Science and Engineering: Specialisation I. Computer Science: Elective Compulsory Information and Communication Systems: Specialisation Secure and Dependable IT Systems: Elective Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L2000: Designing Dependable Systems |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | SoSe |
Content |
Description The term dependability comprises various aspects of a system. These are typically:
Contents The module introduces the basic concepts for the design and the analysis of dependable systems. Design examples for getting practical hands-on-experience in dependable design techniques. The module focuses towards embedded systems. The following topics are covered:
|
Literature |
Course L2001: Designing Dependable Systems |
Typ | Recitation Section (small) |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Görschwin Fey |
Language | DE/EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0803: Embedded Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Heiko Falk | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Computer Engineering | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Embedded systems can be defined as information processing systems embedded into enclosing products. This course teaches the foundations of such systems. In particular, it deals with an introduction into these systems (notions, common characteristics) and their specification languages (models of computation, hierarchical automata, specification of distributed systems, task graphs, specification of real-time applications, translations between different models). Another part covers the hardware of embedded systems: Sonsors, A/D and D/A converters, real-time capable communication hardware, embedded processors, memories, energy dissipation, reconfigurable logic and actuators. The course also features an introduction into real-time operating systems, middleware and real-time scheduling. Finally, the implementation of embedded systems using hardware/software co-design (hardware/software partitioning, high-level transformations of specifications, energy-efficient realizations, compilers for embedded processors) is covered. |
||||||||
Skills |
After having attended the course, students shall be able to realize simple embedded systems. The students shall realize which relevant parts of technological competences to use in order to obtain a functional embedded systems. In particular, they shall be able to compare different models of computations and feasible techniques for system-level design. They shall be able to judge in which areas of embedded system design specific risks exist. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
||||||||
Autonomy |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 minutes, contents of course and labs | ||||||||
Assignment for the Following Curricula |
General Engineering Science (German program, 7 semester): Specialisation Computer Science: Elective Compulsory General Engineering Science (German program, 7 semester): Specialisation Computer Science: Compulsory Computer Science: Specialisation Computer and Software Engineering: Elective Compulsory Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Electrical Engineering: Core Qualification: Elective Compulsory Engineering Science: Specialisation Mechatronics: Elective Compulsory Aircraft Systems Engineering: Specialisation Avionic Systems: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Computer Science: Elective Compulsory General Engineering Science (English program, 7 semester): Specialisation Mechatronics: Elective Compulsory Computational Science and Engineering: Core Qualification: Compulsory Mechatronics: Specialisation System Design: Elective Compulsory Mechatronics: Specialisation Intelligent Systems and Robotics: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L0805: Embedded Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Heiko Falk |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0806: Embedded Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Heiko Falk |
Language | EN |
Cycle | SoSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0925: Digital Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 40 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L0698: Digital Circuit Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volkhard Klinger |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L0699: Advanced Digital Circuit Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volkhard Klinger |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M1687: Selected Aspects of Embedded Systems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L2676: Selected Aspects of Embedded Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | |
Literature |
Course L2677: Selected Aspects of Embedded Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M0910: Advanced System-on-Chip Design (Lab) |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Heiko Falk |
Admission Requirements | None |
Recommended Previous Knowledge |
Successful completion of the practical FPGA lab of module "Computer Architecture" is a mandatory prerequisite. |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
This module provides in-depth, hands-on experience on advanced concepts of computer architecture. Using the Hardware Description Language VHDL and using reconfigurable FPGA hardware boards, students learn how to design complex computer systems (so-called systems-on-chip, SoCs), that are commonly found in the domain of embedded systems, in actual hardware. Starting with a simple processor architecture, the students learn to how realize instruction-processing of a computer processor according to the principle of pipelining. They implement different styles of cache-based memory hierarchies, examine strategies for dynamic scheduling of machine instructions and for branch prediction, and finally construct a complex MPSoC system (multi-processor system-on-chip) that consists of multiple processor cores that are connected via a shared bus. |
Skills |
Students will be able to analyze, how highly specific and individual computer systems can be constructed using a library of given standard components. They evaluate the interferences between the physical structure of a computer system and the software executed thereon. This way, they will be enabled to estimate the effects of design decision at the hardware level on the performance of the entire system, to evaluate the whole and complex system and to propose design options to improve a system. |
Personal Competence | |
Social Competence |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
Autonomy |
Students are able to acquire new knowledge from specific literature, to transform this knowledge into actual implementations of complex hardware structures, and to associate this knowledge with contents of other classes. |
Workload in Hours | Independent Study Time 138, Study Time in Lecture 42 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | VHDL Codes and FPGA-based implementations |
Assignment for the Following Curricula |
Computer Science: Specialisation I. Computer and Software Engineering: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L1061: Advanced System-on-Chip Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 3 |
CP | 6 |
Workload in Hours | Independent Study Time 138, Study Time in Lecture 42 |
Lecturer | Prof. Heiko Falk |
Language | DE/EN |
Cycle | WiSe |
Content |
|
Literature |
|
Specialization Microelectronics Complements
Students have to choose lectures with a total of 18 credit points from the catalog of this specialization.
Module M1611: Silicon Photonics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Timo Lipka |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics in physics, optics, microsystem and semiconductor technology |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
The students know the fundamentals of silicon photonics and about the most important and commonly used materials and fabrication techniques. Students are able
|
Skills |
Students are capable to
|
Personal Competence | |
Social Competence |
Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience. |
Autonomy |
none |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L2408: Silicon Photonics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 4 |
Workload in Hours | Independent Study Time 92, Study Time in Lecture 28 |
Lecturer | Dr. Timo Lipka |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L2418: Silicon Photonics |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 2 |
Workload in Hours | Independent Study Time 32, Study Time in Lecture 28 |
Lecturer | Dr. Timo Lipka |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M0925: Digital Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 40 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory International Management and Engineering: Specialisation II. Electrical Engineering: Elective Compulsory Mechanical Engineering and Management: Specialisation Mechatronics: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Course L0698: Digital Circuit Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volkhard Klinger |
Language | EN |
Cycle | WiSe |
Content | |
Literature |
Course L0699: Advanced Digital Circuit Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Volkhard Klinger |
Language | EN |
Cycle | SoSe |
Content | |
Literature |
Module M0921: Electronic Circuits for Medical Applications |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Matthias Kuhl | ||||||||||||
Admission Requirements | None | ||||||||||||
Recommended Previous Knowledge | Fundamentals of electrical engineering | ||||||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||||||
Professional Competence | |||||||||||||
Knowledge |
|
||||||||||||
Skills |
|
||||||||||||
Personal Competence | |||||||||||||
Social Competence |
|
||||||||||||
Autonomy |
|
||||||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||||||
Credit points | 6 | ||||||||||||
Course achievement |
|
||||||||||||
Examination | Written exam | ||||||||||||
Examination duration and scale | 90 min | ||||||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Medical Technology: Elective Compulsory Biomedical Engineering: Specialisation Artificial Organs and Regenerative Medicine: Elective Compulsory Biomedical Engineering: Specialisation Implants and Endoprostheses: Elective Compulsory Biomedical Engineering: Specialisation Medical Technology and Control Theory: Compulsory Biomedical Engineering: Specialisation Management and Business Administration: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Theoretical Mechanical Engineering: Technical Complementary Course: Elective Compulsory Theoretical Mechanical Engineering: Specialisation Bio- and Medical Technology: Elective Compulsory |
Course L0696: Electronic Circuits for Medical Applications |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks Ganong‘s Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010 Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p., 4. editions, Springer, 2009 Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor) Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/ |
Course L1056: Electronic Circuits for Medical Applications |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L1408: Electronic Circuits for Medical Applications |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Kim E. Barret, Susan M. Barman, Scott Boitano and Heddwen L. Brooks Ganong‘s Review of Medical Physiology, 24nd Edition, McGraw Hill Lange, 2010 Tier- und Humanphysiologie: Eine Einführung von Werner A. Müller (Author), Stephan Frings (Author), 657 p., 4. editions, Springer, 2009 Robert F. Schmidt (Editor), Hans-Georg Schaible (Editor) Neuro- und Sinnesphysiologie (Springer-Lehrbuch) (Paper back), 488 p., Springer, 2006, 5. Edition, currently online only Vorlesungen der Universität Heidelberg zur Tier- und Humanphysiologie: http://www.sinnesphysiologie.de/gruvo03/gruvoin.htm Internet: http://butler.cc.tut.fi/~malmivuo/bem/bembook/ |
Module M0769: EMC I: Coupling Mechanisms, Countermeasures and Test Procedures |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Christian Schuster | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of Electrical Engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to explain the fundamental principles, inter-dependencies, and methods of Electromagnetic Compatibility of electric and electronic systems and to ensure Electromagnetic Compatibility of such systems. They are able to classify and explain the common interference sources and coupling mechanisms. They are capable of explaining the basic principles of shielding and filtering. They are able of giving an overview over measurement and simulation methods for the characterization of Electromagnetic Compatibility in electrical engineering practice. |
||||||||
Skills |
Students are able to apply a series of modeling methods for the Electromagnetic Compatibility of typical electric and electronic systems. They are able to determine the most important effects that these models are predicting in terms of Electromagnetic Compatibility. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in electrical engineering practice. They can evaluate their problem solving strategies against each other. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English, during laboratory work and exercises, e.g.. |
||||||||
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. Theoretical Electrical Engineering and Communication Theory). They can communicate problems and solutions in the field of Electromagnetic Compatibility in english language. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 45 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0743: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | SoSe |
Content |
|
Literature |
|
Course L0744: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | SoSe |
Content |
The exercise sessions serve to deepen the understanding of the concepts of the lecture. |
Literature |
|
Course L0745: EMC I: Coupling Mechanisms, Countermeasures, and Test Procedures |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | SoSe |
Content |
Laboratory experiments serve to practically investigate the following EMC topics:
|
Literature | Versuchsbeschreibungen und zugehörige Literatur werden innerhalb der Veranstaltung bereit gestellt. |
Module M0919: Laboratory: Digital Circuit Design |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge | Basic knowledge of semiconductor devices and circuit design |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0694: Laboratory: Digital Circuit Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 6 |
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | SoSe |
Content |
|
Literature | Handouts will be distributed |
Module M0645: Fibre and Integrated Optics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Manfred Eich |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic principles of electrodynamics and optics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the fundamental mathematical and physical relations and technological basics of guided optical waves. They can describe integrated optical as well as fibre optical structures. They can give an overview on the applications of integrated optical components in optical signal processing. |
Skills |
Students can generate models and derive mathematical descriptions in relation to fibre optical and integrated optical wave propagation. They can derive approximative solutions and judge factors influential on the components' performance. |
Personal Competence | |
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Credit points | 4 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 40 minutes |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0363: Fibre and Integrated Optics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Hagen Renner |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Course L0365: Fibre and Integrated Optics (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Hagen Renner |
Language | EN |
Cycle | SoSe |
Content |
See lecture Fibre and Integrated Optics |
Literature |
See lecture Fibre and Integrated Optics |
Module M0643: Optoelectronics I - Wave Optics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Manfred Eich |
Admission Requirements | None |
Recommended Previous Knowledge |
Basics in electrodynamics, calculus |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the fundamental mathematical and physical relations of freely propagating optical waves. |
Skills |
Students can generate models and derive mathematical descriptions in relation to free optical wave propagation. |
Personal Competence | |
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Credit points | 4 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 40 minutes |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Renewable Energies: Specialisation Solar Energy Systems: Elective Compulsory |
Course L0359: Optoelectronics I: Wave Optics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Manfred Eich |
Language | EN |
Cycle | SoSe |
Content |
|
Literature |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Course L0361: Optoelectronics I: Wave Optics (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Manfred Eich |
Language | EN |
Cycle | SoSe |
Content | see lecture Optoelectronics 1 - Wave Optics |
Literature |
see lecture Optoelectronics 1 - Wave Optics |
Module M1688: Selected Aspects of Microelectronics and Microsystems |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 |
Credit points | 6 |
Course achievement | None |
Examination | Oral exam |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L2678: Selected Aspects of Microelectronics and Microsystems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | |
Literature |
Course L2679: Selected Aspects of Microelectronics and Microsystems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 2 |
Workload in Hours | Independent Study Time 46, Study Time in Lecture 14 |
Lecturer | Dozenten des SD E |
Language | EN |
Cycle |
WiSe/ |
Content | See interlocking course |
Literature | See interlocking course |
Module M1743: COSIMA (Competition in Microsystem Application) |
||||
Courses | ||||
|
Module Responsible | Prof. Hoc Khiem Trieu |
Admission Requirements | None |
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge | |
Skills | |
Personal Competence | |
Social Competence | |
Autonomy | |
Workload in Hours | Independent Study Time 180, Study Time in Lecture 0 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Microelectronics and Microsystems: Specialisation Communication and Signal Processing: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory Microelectronics and Microsystems: Specialisation Embedded Systems: Elective Compulsory |
Module M0781: EMC II: Signal Integrity and Power Supply of Electronic Systems |
||||||||||||||||
Courses | ||||||||||||||||
|
Module Responsible | Prof. Christian Schuster | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge |
Fundamentals of electrical engineering |
||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
Students are able to explain the fundamental principles, inter-dependencies, and methods of signal and power integrity of electronic systems. They are able to relate signal and power integrity to the context of interference-free design of such systems, i.e. their electromagnetic compatibility. They are capable of explaining the basic behavior of signals and power supply in typical packages and interconnects. They are able to propose and describe problem solving strategies for signal and power integrity issues. They are capable of giving an overview over measurement and simulation methods for characterization of signal and power integrity in electrical engineering practice. |
||||||||
Skills |
Students are able to apply a series of modeling methods for characterization of electromagnetic field behavior in packages and interconnect structure of electronic systems. They are able to determine the most important effects that these models are predicting in terms of signal and power integrity. They can classify these effects and they can quantitatively analyze them. They are capable of deriving problem solving strategies from these predictions and they can adapt them to applications in electrical engineering practice. The can evaluate their problem solving strategies against each other. |
||||||||
Personal Competence | |||||||||
Social Competence |
Students are able to work together on subject related tasks in small groups. They are able to present their results effectively in English (e.g. during CAD exercises). |
||||||||
Autonomy |
Students are capable to gather necessary information from the references provided and relate that information to the context of the lecture. They are able to make a connection between their knowledge obtained in this lecture with the content of other lectures (e.g. theory of electromagnetic fields, communications, and semiconductor circuit design). They can communicate problems and solutions in the field of signal integrity and power supply of interconnect and packages in English. |
||||||||
Workload in Hours | Independent Study Time 110, Study Time in Lecture 70 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Oral exam | ||||||||
Examination duration and scale | 45 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Mechatronics: Technical Complementary Course: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0770: EMC II: Signal Integrity and Power Supply of Electronic Systems |
Typ | Lecture |
Hrs/wk | 3 |
CP | 4 |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
- The role of packages and interconnects in electronic systems - Components of packages and interconnects in electronic systems - Main goals and concepts of signal and power integrity of electronic systems - Repeat of relevant concepts from the theory electromagnetic fields - Properties of digital signals and systems - Design and characterization of signal integrity - Design and characterization of power supply - Techniques and devices for measurements in time- and frequency-domain - CAD tools for electrical analysis and design of packages and interconnects - Connection to overall electromagnetic compatibility of electronic systems |
Literature |
- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012) - R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001) - S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994) - S. Thierauf, "Understanding Signal Integrity", Artech House (2010) - M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007) |
Course L0771: EMC II: Signal Integrity and Power Supply of Electronic Systems |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Course L0774: EMC II: Signal Integrity and Power Supply of Electronic Systems |
Typ | Practical Course |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Prof. Christian Schuster |
Language | DE/EN |
Cycle | WiSe |
Content |
- The role of packages and interconnects in electronic systems - Components of packages and interconnects in electronic systems - Main goals and concepts of signal and power integrity of electronic systems - Repeat of relevant concepts from the theory electromagnetic fields - Properties of digital signals and systems - Design and characterization of signal integrity - Design and characterization of power supply - Techniques and devices for measurements in time- and frequency-domain - CAD tools for electrical analysis and design of packages and interconnects - Connection to overall electromagnetic compatibility of electronic systems |
Literature |
- J. Franz, "EMV: Störungssicherer Aufbau elektronischer Schaltungen", Springer (2012) - R. Tummala, "Fundamentals of Microsystems Packaging", McGraw-Hill (2001) - S. Ramo, J. Whinnery, T. Van Duzer, "Fields and Waves in Communication Electronics", Wiley (1994) - S. Thierauf, "Understanding Signal Integrity", Artech House (2010) - M. Swaminathan, A. Engin, "Power Integrity Modeling and Design for Semiconductors and Systems", Prentice-Hall (2007) |
Module M0913: Mixed-signal Circuit Design |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Prof. Matthias Kuhl | ||||||||
Admission Requirements | None | ||||||||
Recommended Previous Knowledge | Advanced knowledge of analog or digital MOS devices and circuits | ||||||||
Educational Objectives | After taking part successfully, students have reached the following learning results | ||||||||
Professional Competence | |||||||||
Knowledge |
|
||||||||
Skills |
|
||||||||
Personal Competence | |||||||||
Social Competence |
|
||||||||
Autonomy |
|
||||||||
Workload in Hours | Independent Study Time 124, Study Time in Lecture 56 | ||||||||
Credit points | 6 | ||||||||
Course achievement |
|
||||||||
Examination | Written exam | ||||||||
Examination duration and scale | 90 min | ||||||||
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0764: Mixed-signal Circuit Design |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
|
Course L1063: Mixed-signal Circuit Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl |
Language | EN |
Cycle | WiSe |
Content | See interlocking course |
Literature | See interlocking course |
Module M1589: Laboratory: Analog Circuit Design |
||||||||
Courses | ||||||||
|
Module Responsible | Prof. Matthias Kuhl |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic knowledge of semiconductor devices and circuit design |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
|
Personal Competence | |
Social Competence |
|
Autonomy |
|
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Credit points | 6 |
Course achievement | None |
Examination | Subject theoretical and practical work |
Examination duration and scale | 30 min |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0692: Laboratory: Analog Circuit Design |
Typ | Project-/problem-based Learning |
Hrs/wk | 2 |
CP | 6 |
Workload in Hours | Independent Study Time 152, Study Time in Lecture 28 |
Lecturer | Prof. Matthias Kuhl, Weitere Mitarbeiter |
Language | EN |
Cycle | WiSe |
Content |
|
Literature | Handouts to be distributed |
Module M0644: Optoelectronics II - Quantum Optics |
||||||||||||
Courses | ||||||||||||
|
Module Responsible | Dr. Alexander Petrov |
Admission Requirements | None |
Recommended Previous Knowledge |
Basic principles of electrodynamics, optics and quantum mechanics |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
Students can explain the fundamental mathematical and physical relations of quantum optical phenomena such as absorption, stimulated and spontanous emission. They can describe material properties as well as technical solutions. They can give an overview on quantum optical components in technical applications. |
Skills |
Students can generate models and derive mathematical descriptions in relation to quantum optical phenomena and processes. They can derive approximative solutions and judge factors influential on the components' performance. |
Personal Competence | |
Social Competence |
Students can jointly solve subject related problems in groups. They can present their results effectively within the framework of the problem solving course. |
Autonomy |
Students are capable to extract relevant information from the provided references and to relate this information to the content of the lecture. They can reflect their acquired level of expertise with the help of lecture accompanying measures such as exam typical exam questions. Students are able to connect their knowledge with that acquired from other lectures. |
Workload in Hours | Independent Study Time 78, Study Time in Lecture 42 |
Credit points | 4 |
Course achievement | None |
Examination | Written exam |
Examination duration and scale | 60 minutes |
Assignment for the Following Curricula |
Electrical Engineering: Specialisation Nanoelectronics and Microsystems Technology: Elective Compulsory Electrical Engineering: Specialisation Microwave Engineering, Optics, and Electromagnetic Compatibility: Elective Compulsory Materials Science: Specialisation Nano and Hybrid Materials: Elective Compulsory Microelectronics and Microsystems: Specialisation Microelectronics Complements: Elective Compulsory |
Course L0360: Optoelectronics II: Quantum Optics |
Typ | Lecture |
Hrs/wk | 2 |
CP | 3 |
Workload in Hours | Independent Study Time 62, Study Time in Lecture 28 |
Lecturer | Dr. Alexander Petrov |
Language | EN |
Cycle | WiSe |
Content |
|
Literature |
Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Wiley 2007 |
Course L0362: Optoelectronics II: Quantum Optics (Problem Solving Course) |
Typ | Recitation Section (small) |
Hrs/wk | 1 |
CP | 1 |
Workload in Hours | Independent Study Time 16, Study Time in Lecture 14 |
Lecturer | Dr. Alexander Petrov |
Language | EN |
Cycle | WiSe |
Content | see lecture Optoelectronics 1 - Wave Optics |
Literature |
see lecture Optoelectronics 1 - Wave Optics |
Thesis
Module M-002: Master Thesis |
||||
Courses | ||||
|
Module Responsible | Professoren der TUHH |
Admission Requirements |
|
Recommended Previous Knowledge | |
Educational Objectives | After taking part successfully, students have reached the following learning results |
Professional Competence | |
Knowledge |
|
Skills |
The students are able:
|
Personal Competence | |
Social Competence |
Students can
|
Autonomy |
Students are able:
|
Workload in Hours | Independent Study Time 900, Study Time in Lecture 0 |
Credit points | 30 |
Course achievement | None |
Examination | Thesis |
Examination duration and scale | According to General Regulations |
Assignment for the Following Curricula |
Civil Engineering: Thesis: Compulsory Bioprocess Engineering: Thesis: Compulsory Chemical and Bioprocess Engineering: Thesis: Compulsory Computer Science: Thesis: Compulsory Electrical Engineering: Thesis: Compulsory Energy and Environmental Engineering: Thesis: Compulsory Energy Systems: Thesis: Compulsory Environmental Engineering: Thesis: Compulsory Aircraft Systems Engineering: Thesis: Compulsory Global Innovation Management: Thesis: Compulsory Computational Science and Engineering: Thesis: Compulsory Information and Communication Systems: Thesis: Compulsory Interdisciplinary Mathematics: Thesis: Compulsory International Management and Engineering: Thesis: Compulsory Joint European Master in Environmental Studies - Cities and Sustainability: Thesis: Compulsory Logistics, Infrastructure and Mobility: Thesis: Compulsory Materials Science: Thesis: Compulsory Mechanical Engineering and Management: Thesis: Compulsory Mechatronics: Thesis: Compulsory Biomedical Engineering: Thesis: Compulsory Microelectronics and Microsystems: Thesis: Compulsory Product Development, Materials and Production: Thesis: Compulsory Renewable Energies: Thesis: Compulsory Naval Architecture and Ocean Engineering: Thesis: Compulsory Ship and Offshore Technology: Thesis: Compulsory Teilstudiengang Lehramt Metalltechnik: Thesis: Compulsory Theoretical Mechanical Engineering: Thesis: Compulsory Process Engineering: Thesis: Compulsory Water and Environmental Engineering: Thesis: Compulsory Certification in Engineering & Advisory in Aviation: Thesis: Compulsory |