Studiengangsbeschreibung
Inhalt
Among the industries with the greatest growth rates is the communications industry which, over the years, has achieved in its products the synergy of the classical disciplines of computer science and networking. The International Master Program Information and Communication Systems addresses this rapidly evolving area by laying in-depth foundations for the design and implementation of networking infrastructures, networked Cyber Physical Systems and the applications and services running on them.
The program is organized as a two-year course (four semesters) which starts on 1st of October each year. It includes around two semesters of lectures and practical courses and almost two semesters devoted to work in a research team (project work) and to the preparation of a master’s thesis. The “Master of Science” degree will be awarded. Language of the program is English.
Graduates of the program are provided with the basics and knowledge that are required for a successful engineering activity in the information and communication technology in an international environment. They acquire extensive knowledge in the mathematical, engineering and scientific basic principles of this discipline based on a solid theoretical foundation including all the essential application-oriented aspects. Graduates are qualified to independently resolve problems in the information and communications technology and related disciplines.
The graduates are able to apply methods and procedures required to work on technical issues, as well as critically examine new insights to further develop and incorporate in their work. In this way, they are qualified to carry out their duties for society responsibly.
In addition to the foundational curriculum taught at TUHH, seminars on developing personal skills are integrated into the dual study programme, in the context of transfer between theory and practice. These seminars correspond to the modern professional requirements expected of an engineer, as well as promoting the link between the two places of learning.
The intensive dual courses at TUHH integrating practical experience consist of an academic-oriented and a practice-oriented element, which are completed at two places of learning. The academic-oriented element comprises study at TUHH. The practice-oriented element is coordinated with the study programme in terms of content and time, and consists of practical modules and phases spent in an affiliate company during periods when there are no lectures.
Fachmodule der Kernqualifikation
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M1759: Theorie-Praxis-Verzahnung im dualen Master |
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden … … können ausgewählte klassische und aktuelle Theorien, Konzepte und Methoden ...
... beschreiben, einordnen sowie auf konkrete Situationen, Prozesse und Vorhaben in Ihrem persönlichen beruflichen Kontext anwenden. |
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine fortlaufende Dokumentation und Reflexion der Lernerfahrungen und der Kompetenzentwicklung im Bereich der Personalen Kompetenz. |
Lehrveranstaltung L2890: Projektmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante) |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur |
Seminarapparat |
Lehrveranstaltung L2891: Veränderungs- und Transformationsmanagement im Ingenieurbereich verantwortungsvoll gestalten (duale Studienvariante) |
Typ | Seminar |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Henning Haschke, Heiko Sieben |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Seminarapparat |
Modul M1756: Praxismodul 1 im dualen Master |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Leistungspunkte | 10 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Pflicht Environmental Engineering: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Microelectronics and Microsystems: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Regenerative Energien: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L2887: Praxisphase 1 im dualen Master |
Typ | |
SWS | 0 |
LP | 10 |
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M0673: Information Theory and Coding |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students know the basic definitions for quantification of information in the sense of information theory. They know Shannon's source coding theorem and channel coding theorem and are able to determine theoretical limits of data compression and error-free data transmission over noisy channels. They understand the principles of source coding as well as error-detecting and error-correcting channel coding. They are familiar with the principles of decoding, in particular with modern methods of iterative decoding. They know fundamental coding schemes, their properties and decoding algorithms. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Fertigkeiten | The students are able to determine the limits of data compression as well as of data transmission through noisy channels and based on those limits to design basic parameters of a transmission scheme. They can estimate the parameters of an error-detecting or error-correcting channel coding scheme for achieving certain performance targets. They are able to compare the properties of basic channel coding and decoding schemes regarding error correction capabilities, decoding delay, decoding complexity and to decide for a suitable method. They are capable of implementing basic coding and decoding schemes in software. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can jointly solve specific problems. |
Selbstständigkeit |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0436: Information Theory and Coding |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bossert, M.: Kanalcodierung. Oldenbourg. Friedrichs, B.: Kanalcodierung. Springer. Lin, S., Costello, D.: Error Control Coding. Prentice Hall. Roth, R.: Introduction to Coding Theory. Johnson, S.: Iterative Error Correction. Cambridge. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press. Gallager, R. G.: Information theory and reliable communication. Whiley-VCH Cover, T., Thomas, J.: Elements of information theory. Wiley. |
Lehrveranstaltung L0438: Information Theory and Coding |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1246: Technischer Ergänzungskurs für IMPICS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Information and Communication Systems: Kernqualifikation: Pflicht |
Modul M1757: Praxismodul 2 im dualen Master |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Leistungspunkte | 10 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Pflicht Environmental Engineering: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Microelectronics and Microsystems: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Regenerative Energien: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L2888: Praxisphase 2 im dualen Master |
Typ | |
SWS | 0 |
LP | 10 |
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Modul M1776: Research Project ICS |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Riccardo Scandariato |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge and techniques in the chosen field of specialization. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to acquire advanced knowledge in a specific field of Computer Science or a closely related subject. |
Fertigkeiten |
Students are able to work self-dependent in a field of Computer Science or a closely related field. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 248, Präsenzstudium 112 |
Leistungspunkte | 12 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | Präsentation eines aktuellen Forschungsthemas (Vortrag 25-30 min und Diskussion 5 min) |
Zuordnung zu folgenden Curricula |
Information and Communication Systems: Kernqualifikation: Pflicht |
Lehrveranstaltung L2919: Research Project ICS |
Typ | Projektierungskurs |
SWS | 8 |
LP | 12 |
Arbeitsaufwand in Stunden | Eigenstudium 248, Präsenzstudium 112 |
Dozenten | Dozenten des SD E |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Current research topics of the chosen specialization. |
Literatur |
Aktuelle Literatur zu Forschungsthemen aus der gewählten Vertiefungsrichtung. |
Modul M1758: Praxismodul 3 im dualen Master |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Dr. Henning Haschke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden …
|
Fertigkeiten |
Die Studierenden …
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden …
|
Selbstständigkeit |
Die Studierenden …
|
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Leistungspunkte | 10 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | Studienbegleitende und semesterübergreifende Dokumentation: Die Leistungspunkte für das Modul werden durch die Anfertigung eines digitalen Lern- und Entwicklungsberichtes (E-Portfolio) erworben. Dabei handelt es sich um eine Dokumentation und Reflexion der individuellen Lernerfahrungen und Kompetenzentwicklungen im Bereich der Theorie-Praxis-Verzahnung und der Berufspraxis. Zusätzlich erbringt das Kooperationsunternehmen gegenüber der Koordinierungsstelle dual@TUHH den Nachweis, dass die bzw. der dual Studierende die Praxisphase absolviert hat. |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Chemical and Bioprocess Engineering: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Data Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Pflicht Environmental Engineering: Kernqualifikation: Pflicht Flugzeug-Systemtechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Kernqualifikation: Pflicht Logistik, Infrastruktur und Mobilität: Kernqualifikation: Pflicht Luftfahrttechnik: Kernqualifikation: Pflicht Materials Science and Engineering: Kernqualifikation: Pflicht Materialwissenschaft: Kernqualifikation: Pflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Kernqualifikation: Pflicht Microelectronics and Microsystems: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Regenerative Energien: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Pflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht Wasser- und Umweltingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L2889: Praxisphase 3 im dualen Master |
Typ | |
SWS | 0 |
LP | 10 |
Arbeitsaufwand in Stunden | Eigenstudium 300, Präsenzstudium 0 |
Dozenten | Dr. Henning Haschke |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Onboarding Betrieb
Betriebliches Wissen und betriebliche Fertigkeiten
Lerntransfer/-reflexion
|
Literatur |
|
Fachmodule der Vertiefung Kommunikationssysteme
Graduates of the Communication Systems specialisation are qualified to
independently resolve problems in communication networks and digital
communications. They also have profound knowledge in software
development principles and signal processing. Graduates are qualified to
independently resolve problems in communication systems technology and
related disciplines.
The Communication Systems specialisation is recommended for students
who already bring along a good mathematical foundation, basic knowledge
in computer science and/or electrical engineering with focus on
information and communication technology.
Modul M0676: Digitale Nachrichtenübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren. Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0444: Digital Communications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Lehrveranstaltung L0445: Digital Communications |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- DSL-Übertragung - Stochastische Prozesse - Digitale Datenübertragung |
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Modul M0836: Communication Networks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Fertigkeiten |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Selbstständigkeit |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte. |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0899: Selected Topics of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literatur |
|
Lehrveranstaltung L0897: Communication Networks |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel, Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L0898: Communication Networks Excercise |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literatur |
|
Modul M0710: Hochfrequenztechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Kölpin | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
Grundlagen der Nachrichtentechnik, Halbleiterelektronik und elektronischer Schaltungen, Grundkenntnisse der Wellenausbreitung aus den Vorlesungen Leitungstheorie und Theoretische Elektrotechnik. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können Phänomene bei der Ausbreitung elektromagnetischer Wellen in unterschiedlichen Frequenzbändern erklären. Sie können Übertragungssysteme und die darin enthaltenen Komponenten beschreiben. Sie können einen Überblick über unterschiedliche Antennentypen geben und die grundlegenden Kenngrößen von Antennen beschreiben. Sie können das Rauschen von linearen Schaltungen erklären, Schaltungsvarianten anhand von Kenngrößen vergleichen und für unterschiedliche Situationen die jeweils am besten geeignete wählen. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, die Ausbreitung elektromagnetischer Wellen zu berechnen. Sie können komplette Übertragungssysteme analysieren und einfache Empfängerschaltungen auslegen. Sie können die Eigenschaften und Kenngrößen von einfachen Antennen und Gruppenstrahlern anhand aus der Geometrie berechnen. Sie können das Rauschen von Empfängern und den Signal-zu-Rausch-Abstand von kompletten Übertragungssystemen berechnen. Die Studienenden können die erlerne Theorie in Praktikumsversuchen anwenden. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden führen während des Praktikums in Gruppen versuche durch. Sie dokumentieren, diskutieren und bewerten die Ergebnisse gemeinsam. |
||||||||
Selbstständigkeit |
Die Studierenden sind fähig das erlernte Wissen mit ihren Vorkenntnissen aus anderen Vorlesungen zu verknüpfen. Sie können unter Anleitung für die Lösung spezifischer Probleme notwendige Daten aus externen Quellen, wie Normen oder Literatur, extrahieren und anwenden. Sie sind in der Lage eigenständig und mit Hilfe der Praktikumsumdrucke ihr Wissen in die Praxis umzusetzen. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0573: Hochfrequenztechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Kölpin |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- Antennen: Berechnungsgrundlagen - Kenngrößen - Verschiedene Antennenformen - Funkwellenausbreitung - Sender: Leistungserzeugung mit Röhren - Sendeverstärker - Empfänger: Vorverstärker - Überlagerungsempfang - Empfangsempfindlichkeit - Rauschen - Ausgewählte Systembeispiele |
Literatur |
H.-G. Unger, „Elektromagnetische Theorie für die Hochfrequenztechnik, Teil I“, Hüthig, Heidelberg, 1988 H.-G. Unger, „Hochfrequenztechnik in Funk und Radar“, Teubner, Stuttgart, 1994 E. Voges, „Hochfrequenztechnik - Teil II: Leistungsröhren, Antennen und Funkübertragung, Funk- und Radartechnik“, Hüthig, Heidelberg, 1991 E. Voges, „Hochfrequenztechnik“, Hüthig, Bonn, 2004 C.A. Balanis, “Antenna Theory”, John Wiley and Sons, 1982 R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, 1992 D. M. Pozar, “Microwave and RF Design of Wireless Systems”, John Wiley and Sons, 2001 D. M. Pozar, “Microwave Engineerin”, John Wiley and Sons, 2005 |
Lehrveranstaltung L0574: Hochfrequenztechnik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Kölpin |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0575: Hochfrequenztechnik |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Kölpin |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0637: Advanced Concepts of Wireless Communications |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Rainer Grünheid |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (LTE, 5G) they can put the learnt content into a larger context. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Fertigkeiten |
Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application. |
Personale Kompetenzen | |
Sozialkompetenz | Students can jointly elaborate tasks in small groups and present their results in an adequate fashion. |
Selbstständigkeit | Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications". |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten; Umfang: Inhalt von Vorlesung und Übung |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0297: Advanced Concepts of Wireless Communications |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack. In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined. In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including LTE, LTE Advanced, and 5G New Radio. |
Literatur |
John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007 David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005 Bernard Sklar: Digital Communications: Fundamentals and Applications. Second Edition, Pearson, 2013 Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011 Erik Dahlman, Stefan Parkvall, Johan Sköld: 5G NR - The Next Generation Wireless Access Technology. Second Edition, Academic Press, 2021 |
Lehrveranstaltung L0298: Advanced Concepts of Wireless Communications |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0837: Simulation of Communication Networks |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. |
Fertigkeiten |
Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. |
Selbstständigkeit |
Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0887: Simulation of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 5 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. |
Literatur |
Further literature is announced at the beginning of the lecture. |
Modul M1564: Hauptseminare Informatik und Kommunikationstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dozenten des SD E |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus der Informatik und Mathematik auf Masterebene. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage,
|
Selbstständigkeit |
Die Studierenden werden die Lage versetzt,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | x |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung IV. Fachspezifische Fokussierung: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L2352: Advanced Seminar Computer Science and Communication Technology I |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD E |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
- Seminar presentations by enrolled students about selected topics of
computer science and communication technology
|
Literatur |
Wird vom Veranstalter bekanntgegeben. |
Lehrveranstaltung L2429: Hauptseminar Informatik und Kommunikationstechnik II |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD E |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt | |
Literatur |
Modul M0638: Modern Wireless Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Rainer Grünheid | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students have an overview of a variety of contemporary wireless systems of different size and complexity. They understand the technical solutions from the perspective of the physical and data link layer. They have developed a system view and are aware of the technical arguments, considering the respective applications and associated constraints. For several examples (e.g., 5G New Radio), students are able to explain different concepts in a very deep technical detail. The students are familiar with the contents of lecture and PBL course. They can explain and apply them to new problems. |
||||||||
Fertigkeiten | Students have developed a system view. They can transfer their knowledge to evaluate other systems, not discussed in the lecture, and to understand the respective technical solutions. Given specific contraints and technical requirements, students are in a position to make proposals for certain design aspects by an appropriate assessment and the consideration of alternatives. | ||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can jointly elaborate tasks in small groups and present their results in an adequate fashion. |
||||||||
Selbstständigkeit |
Students are able to extract necessary information from given literature
sources and put it into the perspective of the lecture. They can
continuously check their level of expertise with the help of
accompanying measures (such as online tests, clicker questions, exercise
tasks) and, based on that, to steer their learning process accordingly.
They can relate their acquired knowledge to topics of other lectures,
e.g., "Digital Communications" and "Advanced Topics of Wireless Communications". |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 40 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht |
Lehrveranstaltung L1982: Selected Topics of Modern Wireless Systems |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this course, selected "hot" topics of modern wireless systems will be covererd. For that purpose, students work in small groups to elaborate a given subject, including a quantitative analysis with provided simulation tools. The results will be presented in a poster session or a talk towards the end of the semester. Possible topics can include various system concepts and related technical principles, such as:
|
Literatur | will be provided, depending on the given topics |
Lehrveranstaltung L0296: Modern Wireless Systems |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
The lecture gives an overview of contemporary wireless communication concepts and related techniques from a system point of view. For that purpose, different systems, ranging from Wireless Personal to Wide Area Networks, are covered, mainly discussing the physical and data link layer. - Near Field Communication (NFC) - L-band Digital Aeronautical Communication System (LDACS) |
Literatur |
John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007 Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011 Erik Dahlman, Stefan Parkvall, Johan Sköld: 5G NR - The Next Generation Wireless Access Technology. Second Edition, Academic Press, 2021 |
Fachmodule des Schwerpunktes Signalverarbeitung
Modul M0738: Digital Audio Signal Processing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Udo Zölzer |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Signals and Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren. |
Fertigkeiten |
The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise. |
Selbstständigkeit |
The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0650: Digital Audio Signal Processing |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005. - U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005. - U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.
|
Lehrveranstaltung L0651: Digital Audio Signal Processing |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0677: Digital Signal Processing and Digital Filters |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Fertigkeiten | The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm. Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can jointly solve specific problems. |
Selbstständigkeit |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0446: Digital Signal Processing and Digital Filters |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner. V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V. W. Hess: Digitale Filter. Teubner. Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall. S. Haykin: Adaptive flter theory. L. B. Jackson: Digital filters and signal processing. Kluwer. T.W. Parks, C.S. Burrus: Digital filter design. Wiley. |
Lehrveranstaltung L0447: Digital Signal Processing and Digital Filters |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0556: Computer Graphics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain and describe basic algorithms in 3D computer graphics. |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can collaborate in a small team on the realization and validation of a 3D computer graphics pipeline. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0145: Computer Graphics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Computer graphics and animation are leading to an unprecedented visual revolution. The course deals with its technological foundations:
Students will be be working on a series of mini-projects which will eventually evolve into a final project. Learning computer graphics and animation resembles learning a musical instrument. Therefore, doing your projects well and in time is essential for performing well on this course. |
Literatur |
Alan H. Watt: 3D Computer Graphics. Harlow: Pearson (3rd ed., repr., 2009). Dariush Derakhshani: Introducing Autodesk Maya 2014. New York, NY : Wiley (2013). |
Lehrveranstaltung L0768: Computer Graphics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1700: Satellite Communications and Navigation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
The module is designed for a diverse audience, i.e. students with different background. Basic knowledge of communications engineering and signal processing are of advantage but not required. The course intends to provide the chapters on communications techniques such that on the one hand students with a communications engineering background learn additional concepts and examples (e.g. modulation and coding schemes or signal processing concepts) which have not or in a different way been treated in our other bachelor and master courses. On the other hand, students with other background shall be able to grasp the ideas but may not be able to understand in the same depth. The individual background of the students will be taken into consideration in the oral exam. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to understand, compare and analyse digital satellite communications system as well as navigation techniques. They are familiar with principal ideas of the respective communications, signal processing and positioning methods. They can describe distortions and resulting limitations caused by transmission channels and hardware components. They can describe how fundamental communications and navigation techniques are applied in selected practical systems. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Fertigkeiten |
The students are able to describe and analyse digital satellite communications systems and navigation systems. They are able to analyse transmission chains including link budget calculations. They are able to choose appropriate transmission technologies and system parameters for given scenarios. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can jointly solve specific problems. |
Selbstständigkeit |
The students are able to acquire relevant information from appropriate literature sources. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L2711: Radio-Based Positioning and Navigation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch, Dr. Rico Mendrzik |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L2710: Satellite Communications |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Error control coding (channel coding)
|
Literatur |
Modul M1702: Process Imaging |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Penn |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
No special prerequisites needed |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging but also covers a range of more recent imaging modalities. The students will learn:
Learning goals: After the successful completion of the course, the students shall:
|
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | In the problem-based interactive course, students work in small teams and set up two process imaging systems and use these systems to measure relevant process parameters in different chemical and bioprocess engineering applications. The teamwork will foster interpersonal communication skills. |
Selbstständigkeit | Students are guided to work in self-motivation due to the challenge-based character of this module. A final presentation improves presentation skills. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung B - Industrielle Bioverfahrenstechnik: Wahlpflicht Bioverfahrenstechnik: Vertiefung C - Bioökonomische Verfahrenstechnik, Schwerpunkt Energie und Bioprozesstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung II. Intelligenz-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Verfahrenstechnik und Biotechnologie: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Umweltverfahrenstechnik: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Umwelt: Wahlpflicht Wasser- und Umweltingenieurwesen: Vertiefung Wasser: Wahlpflicht |
Lehrveranstaltung L2723: Process Imaging |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Alexander Penn |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395 |
Lehrveranstaltung L2724: Process Imaging |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Alexander Penn, Dr. Stefan Benders |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Content: The module focuses primarily on discussing established imaging techniques including (a) optical and infrared imaging, (b) magnetic resonance imaging, (c) X-ray imaging and tomography, and (d) ultrasound imaging and also covers a range of more recent imaging modalities. The students will learn:
Learning goals: After the successful completion of the course, the students shall:
|
Literatur |
Wang, M. (2015). Industrial Tomography. Cambridge, UK: Woodhead Publishing. Available as e-book in the library of TUHH: https://katalog.tub.tuhh.de/Record/823579395 |
Modul M1598: Bildverarbeitung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Signal und Systeme |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen. |
Selbstständigkeit |
Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Data Science: Kernqualifikation: Wahlpflicht Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht Data Science: Vertiefung II. Computer Science: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2443: Bildverarbeitung |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Lehrveranstaltung L2444: Bildverarbeitung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule des Schwerpunktes Software
Modul M0753: Software Verification |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students apply the major verification techniques in model checking and deductive verification. They explain in formal terms syntax and semantics of the underlying logics, and assess the expressivity of different logics as well as their limitations. They classify formal properties of software systems. They find flaws in formal arguments, arising from modeling artifacts or underspecification. |
||||||||
Fertigkeiten |
Students formulate provable properties of a software system in a formal language. They develop logic-based models that properly abstract from the software under verification and, where necessary, adapt model or property. They construct proofs and property checks by hand or using tools for model checking or deductive verification, and reflect on the scope of the results. Presented with a verification problem in natural language, they select the appropriate verification technique and justify their choice. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
||||||||
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software verification. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Pflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0629: Software Verification |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0630: Software Verification |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0733: Software Analysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students apply the major approaches to data-flow analysis, control-flow analysis, and type-based analysis, along with their classification schemes, and employ abstract interpretation. They explain the standard forms of internal representations and models, including their mathematical structure and properties, and evaluate their suitability for a particular analysis. They explain and categorize the major analysis algorithms. They distinguish precise solutions from approximative approaches, and show termination and soundness properties. |
Fertigkeiten |
Presented with an analytical task for a software artifact, students select appropriate approaches from software analysis, and justify their choice. They design suitable representations by modifying standard representations. They develop customized analyses and devise them as safe overapproximations. They formulate analyses in a formal way and construct arguments for their correctness, behavior, and precision. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software analysis. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | siehe englisch |
Zuordnung zu folgenden Curricula |
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0631: Software Analysis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0632: Software Analysis |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1397: Modellprüfung - Beweiser und Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende kennen
|
||||||||
Fertigkeiten |
Studierende können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können
|
||||||||
Selbstständigkeit | Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L1979: Modellprüfung - Beweiser und Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Correctness is a major concern in embedded systems. Model checking can fully automatically proof formal properties about digital hardware or software. Such properties are given in temporal logic, e.g., to prove "No two orthogonal traffic lights will ever be green." And how do the underlying reasoning algorithms work so effectively in practice despite a computational complexity of NP hardness and beyond?
But what are the limitations of model checking? Among other topics, the lecture will consider the following topics:
|
Literatur |
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA, USA. A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands. Selected research papers |
Lehrveranstaltung L1980: Modellprüfung - Beweiser und Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1301: Software Testing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the different phases of testing, describe fundamental techniques of different types of testing, and paraphrase the basic principles of the corresponding test process. They give examples of software development scenarios and the corresponding test type and technique. They explain algorithms used for particular testing techniques and describe possible advantages and limitations. |
Fertigkeiten |
Students identify the appropriate testing type and technique for a given problem. They adapt and execute respective algorithms to execute a concrete test technique properly. They interpret testing results and execute corresponding steps for proper re-test scenarios. They write and analyze test specifications. They apply bug finding techniques for non-trivial problems. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. |
Selbstständigkeit |
Students can assess their level of knowledge continuously and adjust it appropriately, based on feedback and on self-guided studies. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software testing. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Software |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L1791: Software Testing |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1792: Software Testing |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1682: Secure Software Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Riccardo Scandariato |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Familiarity with basic software engineering concepts (e.g., requirements, design) and basic security concepts (e.g., confidentiality, integrity, availability) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can:
|
Fertigkeiten | Select appropriate security assurance techniques to be used in a security assurance program |
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit |
Students can apply the knowledge acquired throughout the course to the resolution of industrial case studies. Students should also be capable to acquire new knowledge independently from academic publications, techical standards, and white papers. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L2667: Secure Software Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Sindre, G. and Opdahl, A.L., 2005. Eliciting security requirements with misuse cases. Requirements engineering, 10(1), pp.34-44. Fontaine, P.J., Van Lamsweerde, A., Letier, E. and Darimont, R., 2001. Goal-oriented elaboration of security requirements. Mead, N.R. and Stehney, T., 2005. Security quality requirements engineering (SQUARE) methodology. ACM SIGSOFT Software Engineering Notes, 30(4), pp.1-7. Mirakhorli, M., Shin, Y., Cleland-Huang, J. and Cinar, M., 2012, June. A tactic-centric approach for automating traceability of quality concerns. In 2012 34th international conference on software engineering (ICSE) (pp. 639-649). IEEE. Jürjens, J., UMLsec: Extending UML for secure systems development, International Conference on The Unified Modeling Language, 2002 Lund, M.S., Solhaug, B. and Stølen, K., 2011. A guided tour of the CORAS method. In Model-Driven Risk Analysis (pp. 23-43). Springer, Berlin, Heidelberg. Howard, M.A., 2006. A process for performing security code reviews. IEEE Security & privacy, 4(4), pp.74-79 Diaz, C. and Gürses, S., 2012. Understanding the landscape of privacy technologies. Proceedings of the information security summit, 12, pp.58-63. |
Lehrveranstaltung L2668: Secure Software Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M1794: Applied Cryptography |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Fröschle | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | |||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | |||||||||
Fertigkeiten | |||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | |||||||||
Selbstständigkeit | |||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht |
Lehrveranstaltung L2954: Applied Cryptography |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This module provides a comprehensive knowledge in modern cryptography and how it plays a key role in securing the digital world we live in today. We will thoroughly treat cryptographic primitives such as symmetric and asymmetric encryption schemes, cryptographic hash functions, message authentication codes, and digital signatures. Moreover, we will cover aspects of practical deployment such as key management, public key infrastructures, and secure storage of keys. We will see how everything comes together in applications such as the ubiquitous security protocols of the Internet (e.g. TLS and WPA3) and/or the Internet-of-things. We also discuss current challenges such as the need for post-quantum cryptography. |
Literatur |
Introduction to Modern Cryptography, Third Edition, Jonathan Katz and Jehuda Lindell, Chapman & Hall/CRC, 2021 Sicherheit und Kryptographie im Internet, 5th Edition, Jörg Schwenk, Springer-Verlag, 2020 |
Lehrveranstaltung L2955: Applied Cryptography |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | See corresponding lecture |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1774: Advanced Internet Computing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Schulte |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Good programming skills are necessary. Previous knowledge in the field of distributed systems is helpful. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the course, students are able to:
|
Fertigkeiten |
The students acquire the ability to model Internet-based distributed systems and to work with these systems. This comprises especially the ability to select and utilize fitting technologies for different application areas. Furthermore, students are able to critically assess the chosen technologies. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Selbstständigkeit |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Guppenprojekt mit Präsentation (50 %), schriftlicher Test (60 min, 50 %) |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht |
Lehrveranstaltung L2916: Advanced Internet Computing |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Schulte |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This lecture discusses modern Internet-based distributed systems in three blocks: (i) Cloud computing, (ii) the Internet of Things, and (iii) blockchain technologies. The following topics will be covered in the single lectures:
|
Literatur | Will be discussed in the lecture |
Lehrveranstaltung L2917: Advanced Internet Computing |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Schulte |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This project-/problemoriented part of the module augments the theoretical content of the lecture by a concrete technical problem, which needs to be solved by the students in group work during the semester. Possible topics are (blockchain-based) sensor data integration, Big Data processing, Cloud-based redundant data storages, and Cloud-based Onion Routing. |
Literatur |
Will be discussed in the lecture. |
Modul M0924: Software für Eingebettete Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bernd-Christian Renner | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende können die grundlegende Prinzipien und Vorgehensweisen für die Erstellung von Software für eingebettete Systeme erklären. Sie sind in der Lage, ereignisbasierte Programmiertechniken mittels Interrupts zu beschreiben. Sie kennen den Aufbau und Funktion eines konkreten Mikrocontrollers. Die Teilnehmer sind in der Lage, Anforderungen an Echtzeitsysteme zu erläutern. Sie können mindestens drei Scheduling Algorithmen für Echzeitbetriebssysteme erläutern (einschließlich Vor- und Nachteile) |
||||||||
Fertigkeiten | Studierende erstellen interrupt-basierte Programme für einen konkreten Mikrocontroller. Sie erstellen und benutzen einen preemptiven scheduler. Sie setzen periphere Komponenten (Timer, ADCs, EEPROM) für komplexe Aufgaben eingebetteter System ein. Für den Anschluss externer Komponenten setzen sie serielle Protokolle ein. | ||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | |||||||||
Selbstständigkeit | |||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L1069: Software für Eingebettete Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1070: Software für Eingebettete Systeme |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1785: Machine Learning in Electrical Engineering and Information Technology |
||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
The module is designed for a diverse audience, i.e. students with different background. It shall be suitable for both students with deeper knowledge in machine learning methods but less knowledge in electrical engineering, e.g. math or computer science students, and students with deeper knowledge in electrical engineering but less knowledge in machine learning methods, e.g. electrical engineering students. Machine learning methods will be explained on a relatively high level indicating mainly principle ideas. The focus is on specific applications in electrical engineering and information technology. The chapters of the course will be understandable in different depth depending on the individual background of the student. The individual background of the students will be taken into consideration in the oral exam. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung HF-Technik, Optik und Elektromagnetische Verträglichkeit: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht |
Lehrveranstaltung L3004: General Introduction Machine Learning |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Maximilian Stark |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L3008: Machine Learning Applications in Electric Power Systems |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christian Becker, Dr. Davood Babazadeh |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3006: Machine Learning in Electromagnetic Compatibility (EMC) Engineering |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Christian Schuster, Dr. Cheng Yang |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Electromagnetic Compatibility (EMC) Engineering deals with design, simulation, measurement, and certification of electronic and electric components and systems in such a way that their operation is safe, reliable, and efficient in any possible application. Safety is hereby understood as safe with respect to parasitic effects of electromagnetic fields on humans as well as on the operation of other components and systems nearby. Examples for components and systems range from the wiring in aircraft and ships to high-speed interconnects in server systems and wirless interfaces for brain implants. In this part of the course we will give an introduction to the physical basics of EMC engineering and then show how methods of Machine Learning (ML) can be applied to expand todays physcis-based approaches in EMC Engineering. |
Literatur |
Lehrveranstaltung L3007: Machine Learning in High-Frequency Technology and Radar |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Kölpin, Dr. Fabian Lurz |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3005: Machine Learning in Wireless Communications |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Maximilian Stark |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M1780: Massively Parallel Systems: Architecture and Programming |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sohan Lal | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
An introductory module on computer Engineering or computer architecture, good programming skills in C/C++. |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The course starts with parallel computers classification, multithreading, and covers the architecture of centralized and distributed shared-memory parallel systems, multiprocessor cache coherence, snooping / directory-based cache coherence protocols, implementation, and limitations. Next, students study interconnection networks and routing in parallel systems. To ensure the correctness of shared-memory multithreaded programs, independent of the speed of execution of their individual threads, the important topics of memory consistency and synchronization will be covered in detail. As a case study, the architecture of a few accelerators such as GPUs will also be discussed in detail. Besides understanding the architecture and organization of parallel systems, programming them is also very challenging. The course will also cover how to program massively parallel systems using API/libraries such as CUDA/OpenCL/MPI/OpenMP. |
||||||||
Fertigkeiten |
After completing this course, students will be able to understand the architecture and organization of parallel systems. They will be able to evaluate different design choices and make decisions while designing a parallel system. In addition, they will be able to program parallel systems (ranging from an embedded system to a supercomputer) using CUDA/OpenCL/MPI/OpenMP. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | The course will encourage students to work in small groups to solve complex problems, thus, inculcating the importance of teamwork. | ||||||||
Selbstständigkeit |
Today, parallel computers are present everywhere. Students will be able to not only program parallel computers independently, but also understand their underlying organization and architecture. This will further help to understand the performance issues of parallel applications and provide insights to improve them. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 25 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Data Science: Vertiefung II. Computer Science: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L2936: Massively Parallel Systems: Architecture and Programming |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sohan Lal |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Brief outline:
|
Literatur |
|
Lehrveranstaltung L2937: Massively Parallel Systems: Architecture and Programming |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sohan Lal |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
There will be 3-4 assignments for project-based learning consisting of the following:
|
Literatur |
The following literature will be useful for project-based learning. The further required resources will be discussed during the course.
|
Fachmodule der Vertiefung Sichere und zuverlässige IT-Systeme
Graduates of the Secure and Dependable IT Systems specialisation acquire
extensive knowledge in software verification and IT security. They also
have knowledge in communication networks and signal processing. They
are able to apply methods and procedures required to work on secure and
dependable IT systems, as well as critically examine new insights to
further develop and incorporate in their work.
The Secure and Dependable IT Systems specialisation is recommended
for students who already have a good mathematical foundation and basic
knowledge in computer science and software development.
Modul M0753: Software Verification |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students apply the major verification techniques in model checking and deductive verification. They explain in formal terms syntax and semantics of the underlying logics, and assess the expressivity of different logics as well as their limitations. They classify formal properties of software systems. They find flaws in formal arguments, arising from modeling artifacts or underspecification. |
||||||||
Fertigkeiten |
Students formulate provable properties of a software system in a formal language. They develop logic-based models that properly abstract from the software under verification and, where necessary, adapt model or property. They construct proofs and property checks by hand or using tools for model checking or deductive verification, and reflect on the scope of the results. Presented with a verification problem in natural language, they select the appropriate verification technique and justify their choice. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
||||||||
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software verification. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Pflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0629: Software Verification |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0630: Software Verification |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0942: Software Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Riccardo Scandariato |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Familiarity with C/C++, web programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
|
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit | Students are capable of acquiring knowledge independently from professional publications, technical standards, and other sources, and are capable of applying newly acquired knowledge to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L1103: Software Security |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Howard, D. LeBlanc: Writing Secure Code, 2nd edition, Microsoft Press (2002) G. Hoglund, G. McGraw: Exploiting Software, Addison-Wesley (2004) L. Gong, G. Ellison, M. Dageforde: Inside Java 2 Platform Security, 2nd edition, Addison-Wesley (2003) B. LaMacchia, S. Lange, M. Lyons, R. Martin, K. T. Price: .NET Framework Security, Addison-Wesley Professional (2002) D. Gollmann: Computer Security, 3rd edition (2011) |
Lehrveranstaltung L1104: Software Security |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1397: Modellprüfung - Beweiser und Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Studierende kennen
|
||||||||
Fertigkeiten |
Studierende können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können
|
||||||||
Selbstständigkeit | Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L1979: Modellprüfung - Beweiser und Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Correctness is a major concern in embedded systems. Model checking can fully automatically proof formal properties about digital hardware or software. Such properties are given in temporal logic, e.g., to prove "No two orthogonal traffic lights will ever be green." And how do the underlying reasoning algorithms work so effectively in practice despite a computational complexity of NP hardness and beyond?
But what are the limitations of model checking? Among other topics, the lecture will consider the following topics:
|
Literatur |
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA, USA. A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands. Selected research papers |
Lehrveranstaltung L1980: Modellprüfung - Beweiser und Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1773: Cybersecurity Data Science |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Riccardo Scandariato |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Basic knowledge of probabilities and statistics. Familiarity with object oriented programming. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can:
|
Fertigkeiten |
Implement and evaluate data-driven models for the identification, treatment, and mitigation of cybersecurity risks |
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit |
Students can apply the knowledge acquired throughout the course to the resolution of industrial case studies. Students should also be capable to acquire new knowledge independently from academic publications, techical standards, and white papers. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L2914: Cybersecurity Data Science |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Theoretical Foundations:
Cybersecutrity Applications:
|
Literatur |
[1] Sarker, I.H., Kayes, A.S.M., Badsha, S., Alqahtani, H., Watters, P. and Ng, A., 2020. Cybersecurity data science: an overview from machine learning perspective. Journal of Big data, 7(1), pp.1-29. [2] Truong, T.C., Zelinka, I., Plucar, J., Čandík, M. and Šulc, V., 2020. Artificial intelligence and cybersecurity: Past, presence, and future. In Artificial intelligence and evolutionary computations in engineering systems (pp. 351-363). Springer, Singapore. [3] Dua, S. and Du, X., 2016. Data mining and machine learning in cybersecurity. CRC press. [4] Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L. and Rieck, K., Dos and Don'ts of Machine Learning in Computer Security. [5] Torres, J.M., Comesaña, C.I. and Garcia-Nieto, P.J., 2019. Machine learning techniques applied to cybersecurity. International Journal of Machine Learning and Cybernetics, 10(10), pp.2823-2836. [6] Russell, S. and Norvig, P., 2010. Artificial Intelligence: A Modern Approach, Prentice Hall. |
Lehrveranstaltung L2915: Exercise Cybersecurity Data Science |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Theoretical Foundations:
Cybersecutrity Applications:
|
Literatur |
[1] Sarker, I.H., Kayes, A.S.M., Badsha, S., Alqahtani, H., Watters, P. and Ng, A., 2020. Cybersecurity data science: an overview from machine learning perspective. Journal of Big data, 7(1), pp.1-29. [2] Truong, T.C., Zelinka, I., Plucar, J., Čandík, M. and Šulc, V., 2020. Artificial intelligence and cybersecurity: Past, presence, and future. In Artificial intelligence and evolutionary computations in engineering systems (pp. 351-363). Springer, Singapore. [3] Dua, S. and Du, X., 2016. Data mining and machine learning in cybersecurity. CRC press. [4] Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L. and Rieck, K., Dos and Don'ts of Machine Learning in Computer Security. [5] Torres, J.M., Comesaña, C.I. and Garcia-Nieto, P.J., 2019. Machine learning techniques applied to cybersecurity. International Journal of Machine Learning and Cybernetics, 10(10), pp.2823-2836. [6] Russell, S. and Norvig, P., 2010. Artificial Intelligence: A Modern Approach, Prentice Hall. |
Modul M1400: Entwurf von Dependable Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Im Folgenden wird "Dependable" als Zusammenfassung von Zuverlässigkeit, Verfügbarkeit, Wartbarkeit, Sicherheit (Safety & Security) verwendet. Kenntnis von Ansätzen zum Entwurf von Dependable Systems, z.B.
Kenntnis von Methoden zur Analyse der Dependability von Systemen |
||||||||
Fertigkeiten |
Fähigkeit zum Entwurf von Dependable Systems durch Implementierung der obigen Ansätze. Fähigkeit zur Analyse der Dependability von Systemen durch Anwendung der obigen Analysemethoden. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Studierende können
|
||||||||
Selbstständigkeit | Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren. | ||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L2000: Entwurf von Dependable Systems |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Beschreibung Der Begriff „Dependability“ umfasst verschiedene Aspekte eines Systems. Dies sind typischer Weise:
Inhalt Das Modul führt grundlegende Konzept zum Entwurf und zur Analyse von Dependable Systems ein. Entwurfsbeispiele dienen dazu, eigene praktische Erfahrung zu sammeln. Ein Schwerpunkt des Moduls liegt im Bereich eingebetteter Systeme. Folgende Gebiete werden betrachtet:
|
Literatur |
Lehrveranstaltung L2001: Entwurf von Dependable Systems |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1564: Hauptseminare Informatik und Kommunikationstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dozenten des SD E |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlegende Module aus der Informatik und Mathematik auf Masterebene. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage,
|
Selbstständigkeit |
Die Studierenden werden die Lage versetzt,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | x |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung IV. Fachspezifische Fokussierung: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L2352: Advanced Seminar Computer Science and Communication Technology I |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD E |
Sprachen | EN |
Zeitraum |
WiSe/ |
Inhalt |
- Seminar presentations by enrolled students about selected topics of
computer science and communication technology
|
Literatur |
Wird vom Veranstalter bekanntgegeben. |
Lehrveranstaltung L2429: Hauptseminar Informatik und Kommunikationstechnik II |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD E |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt | |
Literatur |
Fachmodule des Schwerpunktes Netze
Modul M0836: Communication Networks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Fertigkeiten |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Selbstständigkeit |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte. |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L0899: Selected Topics of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literatur |
|
Lehrveranstaltung L0897: Communication Networks |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel, Dr. Koojana Kuladinithi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L0898: Communication Networks Excercise |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literatur |
|
Modul M0676: Digitale Nachrichtenübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren. Die Studierenden kennen die Vorlesungs- und Übungsinhalte und können diese erläutern sowie auf neue Fragestellungen anwenden. |
||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung II. Ingenieurwissenschaften: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0444: Digital Communications |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Lehrveranstaltung L0445: Digital Communications |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- DSL-Übertragung - Stochastische Prozesse - Digitale Datenübertragung |
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Modul M0837: Simulation of Communication Networks |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. |
Fertigkeiten |
Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. |
Selbstständigkeit |
Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Flugzeug-Systemtechnik: Kernqualifikation: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Simulationstechnik: Wahlpflicht |
Lehrveranstaltung L0887: Simulation of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 5 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. |
Literatur |
Further literature is announced at the beginning of the lecture. |
Modul M1774: Advanced Internet Computing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Stefan Schulte |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Good programming skills are necessary. Previous knowledge in the field of distributed systems is helpful. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
After successful completion of the course, students are able to:
|
Fertigkeiten |
The students acquire the ability to model Internet-based distributed systems and to work with these systems. This comprises especially the ability to select and utilize fitting technologies for different application areas. Furthermore, students are able to critically assess the chosen technologies. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can work on complex problems both independently and in teams. They can exchange ideas with each other and use their individual strengths to solve the problem. |
Selbstständigkeit |
Students are able to independently investigate a complex problem and assess which competencies are required to solve it. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Guppenprojekt mit Präsentation (50 %), schriftlicher Test (60 min, 50 %) |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht |
Lehrveranstaltung L2916: Advanced Internet Computing |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Schulte |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This lecture discusses modern Internet-based distributed systems in three blocks: (i) Cloud computing, (ii) the Internet of Things, and (iii) blockchain technologies. The following topics will be covered in the single lectures:
|
Literatur | Will be discussed in the lecture |
Lehrveranstaltung L2917: Advanced Internet Computing |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Stefan Schulte |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
This project-/problemoriented part of the module augments the theoretical content of the lecture by a concrete technical problem, which needs to be solved by the students in group work during the semester. Possible topics are (blockchain-based) sensor data integration, Big Data processing, Cloud-based redundant data storages, and Cloud-based Onion Routing. |
Literatur |
Will be discussed in the lecture. |
Modul M0839: Traffic Engineering |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe methods for planning, optimisation and performance evaluation of communication networks. |
Fertigkeiten |
Students are able to solve typical planning and optimisation tasks for communication networks. Furthermore they are able to evaluate the network performance using queuing theory. Students are able to apply independently what they have learned to other and new problems. They can present their results in front of experts and discuss them. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Students are able to acquire the necessary expert knowledge to understand the functionality and performance of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht |
Lehrveranstaltung L0902: Seminar Traffic Engineering |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel, Dr. Phuong Nga Tran |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Selected applications of methods for planning, optimization, and performance evaluation of communication networks, which have been introduced in the traffic engineering lecture are prepared by the students and presented in a seminar. |
Literatur |
|
Lehrveranstaltung L0900: Traffic Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel, Dr. Phuong Nga Tran |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Network Planning and Optimization |
Literatur |
Literatur: |
Lehrveranstaltung L0901: Traffic Engineering Exercises |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Accompanying exercise for the traffic engineering course |
Literatur |
Literatur: |
Fachmodule des Schwerpunktes Software und Signalverarbeitung
Modul M0738: Digital Audio Signal Processing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Udo Zölzer |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Signals and Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren. |
Fertigkeiten |
The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise. |
Selbstständigkeit |
The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0650: Digital Audio Signal Processing |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005. - U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005. - U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.
|
Lehrveranstaltung L0651: Digital Audio Signal Processing |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0733: Software Analysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students apply the major approaches to data-flow analysis, control-flow analysis, and type-based analysis, along with their classification schemes, and employ abstract interpretation. They explain the standard forms of internal representations and models, including their mathematical structure and properties, and evaluate their suitability for a particular analysis. They explain and categorize the major analysis algorithms. They distinguish precise solutions from approximative approaches, and show termination and soundness properties. |
Fertigkeiten |
Presented with an analytical task for a software artifact, students select appropriate approaches from software analysis, and justify their choice. They design suitable representations by modifying standard representations. They develop customized analyses and devise them as safe overapproximations. They formulate analyses in a formal way and construct arguments for their correctness, behavior, and precision. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software analysis. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | siehe englisch |
Zuordnung zu folgenden Curricula |
Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0631: Software Analysis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0632: Software Analysis |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0556: Computer Graphics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain and describe basic algorithms in 3D computer graphics. |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can collaborate in a small team on the realization and validation of a 3D computer graphics pipeline. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0145: Computer Graphics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Computer graphics and animation are leading to an unprecedented visual revolution. The course deals with its technological foundations:
Students will be be working on a series of mini-projects which will eventually evolve into a final project. Learning computer graphics and animation resembles learning a musical instrument. Therefore, doing your projects well and in time is essential for performing well on this course. |
Literatur |
Alan H. Watt: 3D Computer Graphics. Harlow: Pearson (3rd ed., repr., 2009). Dariush Derakhshani: Introducing Autodesk Maya 2014. New York, NY : Wiley (2013). |
Lehrveranstaltung L0768: Computer Graphics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1682: Secure Software Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Riccardo Scandariato |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Familiarity with basic software engineering concepts (e.g., requirements, design) and basic security concepts (e.g., confidentiality, integrity, availability) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can:
|
Fertigkeiten | Select appropriate security assurance techniques to be used in a security assurance program |
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit |
Students can apply the knowledge acquired throughout the course to the resolution of industrial case studies. Students should also be capable to acquire new knowledge independently from academic publications, techical standards, and white papers. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L2667: Secure Software Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Sindre, G. and Opdahl, A.L., 2005. Eliciting security requirements with misuse cases. Requirements engineering, 10(1), pp.34-44. Fontaine, P.J., Van Lamsweerde, A., Letier, E. and Darimont, R., 2001. Goal-oriented elaboration of security requirements. Mead, N.R. and Stehney, T., 2005. Security quality requirements engineering (SQUARE) methodology. ACM SIGSOFT Software Engineering Notes, 30(4), pp.1-7. Mirakhorli, M., Shin, Y., Cleland-Huang, J. and Cinar, M., 2012, June. A tactic-centric approach for automating traceability of quality concerns. In 2012 34th international conference on software engineering (ICSE) (pp. 639-649). IEEE. Jürjens, J., UMLsec: Extending UML for secure systems development, International Conference on The Unified Modeling Language, 2002 Lund, M.S., Solhaug, B. and Stølen, K., 2011. A guided tour of the CORAS method. In Model-Driven Risk Analysis (pp. 23-43). Springer, Berlin, Heidelberg. Howard, M.A., 2006. A process for performing security code reviews. IEEE Security & privacy, 4(4), pp.74-79 Diaz, C. and Gürses, S., 2012. Understanding the landscape of privacy technologies. Proceedings of the information security summit, 12, pp.58-63. |
Lehrveranstaltung L2668: Secure Software Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Riccardo Scandariato |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M1700: Satellite Communications and Navigation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
The module is designed for a diverse audience, i.e. students with different background. Basic knowledge of communications engineering and signal processing are of advantage but not required. The course intends to provide the chapters on communications techniques such that on the one hand students with a communications engineering background learn additional concepts and examples (e.g. modulation and coding schemes or signal processing concepts) which have not or in a different way been treated in our other bachelor and master courses. On the other hand, students with other background shall be able to grasp the ideas but may not be able to understand in the same depth. The individual background of the students will be taken into consideration in the oral exam. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The students are able to understand, compare and analyse digital satellite communications system as well as navigation techniques. They are familiar with principal ideas of the respective communications, signal processing and positioning methods. They can describe distortions and resulting limitations caused by transmission channels and hardware components. They can describe how fundamental communications and navigation techniques are applied in selected practical systems. The students are familiar with the contents of lecture and tutorials. They can explain and apply them to new problems. |
Fertigkeiten |
The students are able to describe and analyse digital satellite communications systems and navigation systems. They are able to analyse transmission chains including link budget calculations. They are able to choose appropriate transmission technologies and system parameters for given scenarios. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can jointly solve specific problems. |
Selbstständigkeit |
The students are able to acquire relevant information from appropriate literature sources. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L2711: Radio-Based Positioning and Navigation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch, Dr. Rico Mendrzik |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Lehrveranstaltung L2710: Satellite Communications |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Error control coding (channel coding)
|
Literatur |
Modul M1842: GPU Architectures |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sohan Lal |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
An introductory module on
computer |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L3039: GPU Architecture |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Sohan Lal |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Review of computer architecture basics - measuring
performance, |
Literatur |
Lehrveranstaltung L3040: GPU Architecture |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Sohan Lal |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1301: Software Testing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the different phases of testing, describe fundamental techniques of different types of testing, and paraphrase the basic principles of the corresponding test process. They give examples of software development scenarios and the corresponding test type and technique. They explain algorithms used for particular testing techniques and describe possible advantages and limitations. |
Fertigkeiten |
Students identify the appropriate testing type and technique for a given problem. They adapt and execute respective algorithms to execute a concrete test technique properly. They interpret testing results and execute corresponding steps for proper re-test scenarios. They write and analyze test specifications. They apply bug finding techniques for non-trivial problems. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. |
Selbstständigkeit |
Students can assess their level of knowledge continuously and adjust it appropriately, based on feedback and on self-guided studies. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software testing. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Software |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L1791: Software Testing |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1792: Software Testing |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1810: Autonomous Cyber-Physical Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bernd-Christian Renner | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | |||||||||
Fertigkeiten | |||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz | |||||||||
Selbstständigkeit | |||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L3000: Autonomous Cyber-Physical Systems |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L3001: Autonomous Cyber-Physical Systems |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1694: Security of Cyber-Physical Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Fröschle | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
IT security, programming skills, statistics |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students know and can explain - the threats posed by cyber attacks to cyber-physical systems (CPS) - concrete attacks at a technical level, e.g. on bus systems - security solutions specific to CPS with their capabilities and limitations - examples of security architectures for CPS and the requirements they guarantee - standard security engineering processes for CPS |
||||||||
Fertigkeiten |
The students are able to - identify security threats and assess the risks for a given CPS - apply attack toolkits to analyse a networked control system, and detect attacks beyond those taught in class - identify and apply security solutions suitable to the requirements - follow security engineering processes to develop a security architecture for a given CPS - recognize challenges and limitations, e.g. posed by novel types of attack |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
The students are able to - expertly discuss security risks and incidents of CPS and their mitigation in a solution-oriented fashion with experts and non-experts - foster a security culture with respect to CPS and the corresponding critical infrastructures |
||||||||
Selbstständigkeit |
The students are able to - follow up and critically assess current developments in the security of CPS including relevant security incidents - master a new topic within the area by self-study and self-initiated interaction with experts and peers. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung I. Computer- und Software-Engineering: Wahlpflicht Data Science: Vertiefung II. Computer Science: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung I. Informatik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L2691: Security of Cyber-Physical Systems |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Embedded systems in energy, production, and transportation are currently undergoing a technological transition to highly networked automated cyber-physical systems (CPS). Such systems are potentially vulnerable to cyber attacks, and these can have physical impact. In this course we investigate security threats, solutions and architectures that are specific to CPS. The topics are as follows: Fundamentals and motivating examples Networked and embedded control systems Bus system level attacks Intruder detection systems (IDS), in particular physics-based IDS System security architectures, including cryptographic solutions Adversarial machine learning attacks in the physical world Aspects of Location and Localization Wireless networks and infrastructures for critical applications Communication security architectures and remaining threats Intruder detection systems (IDS), in particular data-centric IDS Resilience against multi-instance attacks Security Engineering of CPS: Process and Norms |
Literatur |
Recent scientific papers and reports in the public domain. |
Lehrveranstaltung L2692: Security of Cyber-Physical Systems |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Fröschle |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1598: Bildverarbeitung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Signal und Systeme |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in sowohl selbstständig als auch in Teams an komplexen Problemen arbeiten. Sie können sich untereinander austauschen und ihre individuellen Stärken zur Lösung des Problems einbringen. |
Selbstständigkeit |
Die Studierenden sind in der Lage ein komplexes Problem eigenständig zu untersuchen und einzuschätzen, welche Kompetenzen zur Lösung des Problems benötigt werden. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Data Science: Kernqualifikation: Wahlpflicht Data Science: Vertiefung I. Mathematik/Informatik: Wahlpflicht Data Science: Vertiefung II. Computer Science: Wahlpflicht Data Science: Vertiefung IV. Special Focus Area: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Kernqualifikation: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Robotik und Informatik: Wahlpflicht |
Lehrveranstaltung L2443: Bildverarbeitung |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Lehrveranstaltung L2444: Bildverarbeitung |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M1801: Masterarbeit im dualen Studium |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die dual Studierenden ...
|
Fertigkeiten |
Die dual Studierenden ...
|
Personale Kompetenzen | |
Sozialkompetenz |
Die dual Studierenden ...
|
Selbstständigkeit |
Die dual Studierenden ...
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Data Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Luftfahrttechnik: Abschlussarbeit: Pflicht Materials Science and Engineering: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |