Studiengangsbeschreibung
Inhalt
Das wesentliche Ziel des Studiengangs besteht darin, das für den erfolgreichen Einsatz von Ingenieurtechniken in Industrie, Handel und Verwaltung notwendige Wissen und die damit verbundenen Fertigkeiten auf sehr hohem Niveau bereitzustellen, so dass nachhaltig die Produktivität der Absolventen gefördert wird.
Der Masterstudiengang Informatik-Ingenieurwesen vermittelt ein breites, fundiertes und vertieftes Grundlagenwissen auf den Gebieten mathematische Modellbildung in der Informatik, IT-Systeme und Ingenieurwissenschaften. Des Weiteren werden weiterführende Kenntnisse in Betriebswirtschaftslehre und Management sowie nichttechnischen Fächern erworben, um die Kompetenzen für das Bewältigen von umfangreichen ingenieurmäßigen IT-Projekten zu erhöhen. Der Masterstudiengang bereitet sowohl auf praktische Berufsfelder der Informatik als auch auf die Promotion vor.
Berufliche Perspektiven
Lernziele
Wissen
Das Wissen setzt sich zusammen aus Fakten, Grundsätzen und Theorien in den Fächern Informatik, Mathematik und Ingenieurwesen.
- Der Studierende kann neue und fortgeschrittene zur formalen Modellierung von Anwendungsproblemen notwendige Repräsentationssprachen der Informatik und Mathematik wiedergeben, definieren und erläutern (Syntax, Semantik, Entscheidungsprobleme), so dass auch Nicht-Standard-Anwendungsfälle behandelt werden können.
- Studierende können fortgeschrittene Daten- und Indexstrukturen für sequentielle und parallele Algorithmen wiedergeben und ihre Vor- und Nachteile für spezielle Aufgaben benennen. Studierende können optimale Algorithmen zur Lösung von Entscheidungsproblemen für formale Modellierungstechniken angeben, so dass (im typischen Fall) ein akzeptables Laufzeitverhalten entsteht.
- Studierende wissen, wie Komponenten integriert werden können, so dass sich ein gewünschtes Verhalten ergibt (reduktionistischer und selbstorganisierender Ansatz) und dabei Sicherheits- und Zuverlässigkeits- und Fehlertoleranzaspekte beachtet werden.
- Die Studierenden kennen auch nicht-klassische Anwendungsfälle der informatisch-mathematischen Modellierungstechniken im Ingenieurbereich und können diese erläutern.
- Die Absolventen und Absolventinnen sind in der Lage, Forschungsziele wiederzugeben, diesbezügliche Planung zu ihrer Erreichung zu erläutern, und die Organisations- und Personalstrukturen in Forschungsprojekten zu benennen.
Fertigkeiten
Die Fähigkeit, erlerntes Wissen anzuwenden, um Aufgaben zu bewältigen und damit Probleme zu lösen, wird in dem Studiengang Informatik-Ingenieurwesen in vielen Facetten unterstützt.
- Studierende können formale Repräsentationssprachen komplexe Probleme entwerfen und weiterentwickeln (Syntax, Semantik, Entscheidungsprobleme), und sie können die für spezielle Anwendungen notwendige Ausdrucksstärke einschätzen und bestimmen. Studierende können Entscheidungsprobleme verschiedener ausdruckstarker Formalismen aufeinander abbilden und damit die Ausdrucksstärke von Formalismen vergleichen.
- Studierende können Algorithmen für komplexe Entscheidungsprobleme auf Vollständigkeit und Korrektheit bzw. Konvergenzverhalten und Approximationsgüte untersuchen, und sie können darlegen, ob ein Algorithmus optimal ist bzw. für welche Arten von Eingaben der schlimmste bzw. der typische Fall in Bezug auf das Laufzeitverhalten eines Algorithmus auftritt.
- Der Studierende kann formale Modellierungstechniken für Ingenieuranwendungen einsetzen, um robuste Systeme zu erstellen, zu überprüfen oder zu bewerten, um damit nicht-triviale Probleme aus einem Anwendungskontext zu lösen (als Simulation, als Datenmanagement-System, als Applikation usw.).
- Studierende können demonstrieren, dass gewünschte Zustände eines komplexen Systems (im wahrscheinlichen Fall) rechtzeitig erreicht werden (Steuerbarkeit, Erreichbarkeit mit Zeiteinschränkungen), und dass ungewünschte Zustände in keinem Fall erreicht werden oder dass deren Erreichung unwahrscheinlich ist (Sicherheits- und Lebendigkeitseigenschaften).
- Studierende können Schnittstellen entwerfen, die es gestatten, große und verteilte Systeme aus Modulen aufzubauen, deren Interna angepasst werden können, ohne dass sich die Schnittstellen verändern. Studierende sind in der Lage, Kommunikationsstrukturen anzugeben bzw. zu entwickeln, die gewünschte Eigenschaften aufweisen und die Module in angemessener Weise verbinden.
Sozialkompetenz
Die Fähigkeit und der Wille, zielorientiert mit anderen zusammen zu arbeiten, ihre Interessen und sozialen Situationen zu erfassen, sich zu verständigen und die Arbeits- und Lebenswelt mitzugestalten wird für den Studiengang Informatik-Ingenieurwesen wie folgt aufgeschlüsselt:
- Studierende können sich zu Teams zur Lösung von nichttrivialen Problemen unter ggf. vager Aufgabebeschreibung in Gruppen zusammenschließen, Teilaufgaben definieren und verteilen, zeitliche Vereinbarungen treffen, Teillösungen integrieren. Sie sind in der Lage, effizient zu kommunizieren und sozial angemessen zu interagieren.
- Studierenden erläutern die in einem wissenschaftlichen Aufsatz geschilderten Probleme und die im Aufsatz entwickelten Lösungen in einem Fachgebiet der Informatik oder Mathematik, bewerten die vorgeschlagenen Lösungen in einem Vortrag und reagieren auf wissenschaftliche Nachfragen, Ergänzungen und Kommentare
- Studierenden beschreiben wissenschaftliche Fragstellungen in einem Fachgebiet der Informatik, des Ingenieurwesen oder der Mathematik und erläutern in einem Vortrag einen von ihnen entwickelten Ansatz zu dessen Lösung und reagieren dabei angemessen auf Nachfragen, Ergänzungen und Kommentare.
Kompetenz zum selbständigen Arbeiten
Das Vermögen und die Bereitschaft, eigenständig und verantwortlich zu handeln, eigenes Handeln und das Handeln anderer zu reflektieren, und auch die eigene Handlungsfähigkeit weiterzuentwickeln, zergliedert sich wie folgt:
- Die Studierenden bewerten selbständig Vor- und Nachteile von Repräsentationsformalismen für bestimmte Aufgaben, vergleichen verschiedene Algorithmen und Datenstrukturen sowie Programmiersprachen und Programmierwerkzeuge, und sie wählen eigenverantwortlich die jeweils beste Lösung aus.
- Die Absolventen und Absolventinnen erarbeiten sich selbständig ein wissenschaftliches Teilgebiet, können dieses in einer Präsentation vorstellen und verfolgen aktiv die Präsentationen anderer Studierender, so dass ein interaktiver Diskurs über ein wissenschaftliches Thema entsteht.
- Studierende integrieren sich selbständig in einen Projektkontext und übernehmen eigenverantwortlich Aufgaben in einem Software- oder Hardware-Entwicklungsprojekt.
Studiengangsstruktur
- Kernqualifikation
- Pflicht: 3 Module, 30 Leistungspunkte (LP), 1. - 3. Semester
- Vertiefung: 60 LP, 1. - 3. Semester
- Masterarbeit: 30 LP, 6. Semester
Damit ergibt sich ein Gesamtaufwand von 120 LP.
Die Pflichtmodule der Kernqualifikation teilen sich auf in überfachliche Module:
- Nichttechnische Ergänzungskurse im Master: 6 LP, 1. - 3. Semester
- Betrieb & Management: 6 LP, 1. - 3. Semester
und das Forschungsprojekt mit Seminar (18 LP, 3. Semester).
Der Studienplan enthält ein Mobilitätsfenster derart, dass Studierende das dritte Semester im Ausland absolvieren können.
In die
Vertiefungen sind mathematische Grundlagen in Algebra, Numerik und Stochastik integriert (markiert mit einem Stern). Weiterhin werden fachliche Schlüsselqualifikationen erworben. Es gibt die
folgenden Vertiefungen:
- Informations- und Kommunikationstechnik
- Systemtechnik - Robotik
- Wissenschaftliches Rechnen
Die Studierenden belegen eine der drei Vertiefungen und darin Module im Umfang von 60 LP. In den drei Zweigen bestehen ausreichend Wahlmöglichkeiten. Zudem sind in alle drei Vertiefungen je zwei Technische Ergänzungsfächer integriert. Diese stehen als Platzhalter für Veranstaltungen, die aus dem Gesamtbereich der technischen Fächer der TU gewählt werden können.
In der Vertiefung Informations- und Kommunikationstechnik gibt es zwei Verlaufspläne:
A. Vertiefung Informations- und Kommunikationstechnik
A1.
Verlaufsplan Eingebettete Systeme/Sicherheit (E)
1. Semester
- Effiziente Algorithmen*
- Softwareverifikation
- Software-Sicherheit
2. Semester
- Codes und Cryptosysteme
- Compiler für
eingebettete Systeme
- Informationssicherheit
in eingebetteten Systemen
- Kryptographie
- Software für
eingebettete Systeme
3. Semester
- Fortgeschrittener
Entwurf von Chip-Systemen (Praktikum)
- Praktischer
Schaltungsentwurf analog und digital
A2.
Verlaufsplan Netzwerke (N)
1. Semester
- Digitale
Nachrichtenübertragung
- Kommunikationsnetze I
- Analyse und Struktur
- Verteilte Algorithmen
2. Semester
- Anwendungssicherheit
- Digitale Sensornetze
- Informationstheorie
und Codierung
- Kommunikationsnetze II
- Simulation und Modellierung
- Netzwerk-Sicherheit
3. Semester
- Traffic Engineering
- Fortgeschrittener
Entwurf von Chip-Systemen (Praktikum)
A3.
Weitere Lehrveranstaltungen
- Algorithmische Algebra*
- Numerische Mathematik
II*
- Soft-Computing*
- Softwareanalyse
- Softwaretesten
- Weiterführende Konzepte der drahtlosen Kommunikation
B. Systemtheorie - Robotik
B1. Signalverarbeitung (S)
1. Semester
- Digitale Bildanalyse
- Digitale
Signalverarbeitung und Digitale Filter
- Digitale
Nachrichtenübertragung
- Effiziente Algorithmen*
- Math. Bildverarbeitung
2. Semester
- Informationstheorie
und Codierung*
- Methoden und Anwendungen der Differentialgeometrie
- Mustererkennung und
Datenkompression
3. Semester
- 3D Computer Vision
- Numerische Verfahren
in der medizinischen Bildgebung
B2. Mechatronik/Robotik (R)
1. Semester
- Robotik
- Theorie und Entwurf
regelungstechnischer Systeme
-
Prozessautomatisierungstechnik
2. Semester
- Angewandte Humanoide
Roboter
- Mechatronische Systeme
- Optimale und robuste
Regelung
- Robotik und Navigation
in der Medizin
- Mikrosystementwurf
3. Semester
- Intelligente Systeme
in der Medizin
- Mikrosystemtechnik
B3.
Weitere Lehrveranstaltungen
- Algorithmische Algebra*
- Autonome mobile Agenten und Robotik
- Digitale Audiosignalverarbeitung
- Maschinelles Lernen und Data Mining
-
Mikrosystemtechnologie
in Theorie und Praxis
- Numerische Mathematik II*
- Soft-Computing*
- Ausgewählte
Themen der Regelungstechnik
- Wiss. Rechnen und Genauigkeit*
- Verteilte Algorithmen
C: Vertiefung Wissenschaftliches Rechnen
C1: Verlaufsplan Mathematik (M)
1. Semester
- Effiziente Algorithmen
- Hierarchische
Algorithmen
- Matrixalgorithmen
- Matrixtheorie
2. Semester
- Approximation und
Stabilität
- Hochleistungsrechnen
- Numerik gewöhnlicher
Differentialgleichungen
- Numerische Mathematik
II
3. Semester
- Numerik partieller
Differentialgleichungen
- Wiss. Rechnen und
Genauigkeit
C2. Weitere Lehrveranstaltungen
-
Finite-Element-Methoden
-
Boundary-Element-Methoden
- Kontinuumsmechanik
- Technische
Schwingungslehre
- Ausgewählte Themen
der Schwingungslehre
- Nichtlineare Dynamik
- Lineare und
nichtlineare Wellen
- Skalenübergreifende
Modellierung
- Werkstoffmodellierung
Fachmodule der Kernqualifikation
Modul M0523: Betrieb & Management |
Modulverantwortlicher | Prof. Matthias Meyer |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0524: Nichttechnische Ergänzungskurse im Master |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Nichttechnischen Angebote (NTA) vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im nichttechnischen Bereich gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Migrationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende - Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0804: Forschungsprojekt und Seminar |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Wissen und Fertigkeiten aus einer der Vertiefungen im Master-Bereich des Studienganges |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden wissen, wie man sich ein Teilgebiet der Informatik (oder in einen angrenzenden Bereich) selbständig erschließt. |
Fertigkeiten |
Die Studierenden können ein Teilgebiet der Informatik (oder in einem angrenzenden Bereich) selbständig bearbeiten. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierenden erläutern die in einem wissenschaftlichen Aufsatz geschilderten Probleme und die im Aufsatz entwickelten Lösungen in einem Fachgebiet der Informatik oder Mathematik, bewerten die vorgeschlagenen Lösungen in einem Vortrag und reagieren auf wissenschaftliche Nachfragen, Ergänzungen und Kommentare. |
Selbstständigkeit |
Die Studierenden können ein Teilgebiet in einer Präsentation vorstellen. Sie können aktiv die Präsentationen anderer Studierender verfolgen, so dass evtl. ein interaktiver Diskurs über ein wissenschaftliches Thema entsteht. |
Arbeitsaufwand in Stunden | Eigenstudium 372, Präsenzstudium 168 |
Leistungspunkte | 18 |
Studienleistung | Keine |
Prüfung | Studienarbeit |
Prüfungsdauer und -umfang | Das Seminar erfordert die Präsentation eines aktuellen Forschungsthemas (Vortrag 25-30 min und Diskussion 5 min). |
Zuordnung zu folgenden Curricula |
Computer Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Information and Communication Systems: Kernqualifikation: Pflicht |
Lehrveranstaltung L1761: Forschungsprojekt |
Typ | Projektierungskurs |
SWS | 10 |
LP | 15 |
Arbeitsaufwand in Stunden | Eigenstudium 310, Präsenzstudium 140 |
Dozenten | Dozenten des SD E |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Aktuelle Forschungsthemen aus der gewählten Vertiefungsrichtung. |
Literatur |
Aktuelle Literatur zu Forschungsthemen aus der gewählten Vertiefungsrichtung. |
Lehrveranstaltung L0817: Hauptseminar |
Typ | Seminar |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dozenten des SD E |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Wird vom Veranstalter bekanntgegeben. |
Fachmodule der Vertiefung Informations- und Kommunikationstechnik
Modul M1244: Technischer Ergänzungskurs für IIWMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erwerben weitergehende Kenntnisse in einem an der TUHH vertretenen technischen Fach. |
Fertigkeiten | Die Studierenden erwerben weitergehende Fertigkeiten in einem an der TUHH ansässigen technischen Fach. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage, alleine oder in kleinen Gruppen weitergehende Kenntnisse und Fähigkeiten in einem an der TUHH vertretenen technischen Fach zu erwerben. |
Selbstständigkeit | Die Studierenden können die wesentlichen Inhalte des technischen Faches im Rahmen eines Vortrages oder einer Diskussion wiedergeben. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht |
Modul M0667: Algorithmische Algebra |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Prashant Batra |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathe I-III (Reelle Analysis,Rechnen in Vektorräumen, Vollst. Induktion) Diskrete Mathematik I (Gruppen, Ringe, Ideale, Körper; euklidscher Algorithmus) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern: Smith-Normalform, Chinesischer Restsatz, Gitterpunktsätze, Ganzzahlige Lösung von Ungleichungssystemen. |
Fertigkeiten |
Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren. Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten, wie beispielsweise bei der Lösung multivariater Gleichungssysteme und in der Gitterpunkttheorie. |
Personale Kompetenzen | |
Sozialkompetenz | , |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht |
Lehrveranstaltung L0422: Algorithmische Algebra |
Typ | Vorlesung | ||||||||||||||
SWS | 3 | ||||||||||||||
LP | 5 | ||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 | ||||||||||||||
Dozenten | Dr. Prashant Batra | ||||||||||||||
Sprachen | DE | ||||||||||||||
Zeitraum | WiSe | ||||||||||||||
Inhalt |
Erweiterter Euklidscher Algorithmus, Lösen der Bezout-Gleichung Teilen mit Rest in Ringen Schnelle Rechenalgorithmen (Konversion in Zahlformate, Schnelle Multiplikationen) Diskrete Fourier-Transformation in Ringe Rechnen mit modularen Resten, Lösen von Restsystemen (Chinesischer Restsatz), Lösbarkeit ganzzahliger 'Gleichungssysteme Linearisierung polynomialer Gleichungen - Matrizenansatz Sylvester-Matrix, Elimination Elimination in Ringen, Elimination mehrer Veränderlicher Buchberger-Algorithmus, Gröbner-Basis Minkowskischer Gitterpunktsatz und Ganzzahlige Optimierung LLL-Algorithmus zum Auffinden 'kurzer' Vektoren in polynomialer Zeit |
||||||||||||||
Literatur |
von zur Gathen, Joachim; Gerhard, Jürgen Modern computer algebra. 3rd ed. (English) Zbl 1277.68002 Yap, Chee Keng Free download for students from author's website: http://cs.nyu.edu/yap/book/berlin/ Cox, David; Little, John; O’Shea, Donal eBook: http://dx.doi.org/10.1007/978-0-387-35651-8
Koepf, Wolfram springer eBook: http://dx.doi.org/10.1007/3-540-29895-9 Kaplan, Michael springer eBook: http://dx.doi.org/10.1007/b137968 |
Lehrveranstaltung L0423: Algorithmische Algebra |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Prashant Batra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0676: Digitale Nachrichtenübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren. | ||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht |
Lehrveranstaltung L0444: Digitale Nachrichtenübertragung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Lehrveranstaltung L0445: Digitale Nachrichtenübertragung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- DSL-Übertragung - Stochastische Prozesse - Digitale Datenübertragung |
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Modul M0586: Effiziente Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Programmieren in Matlab und/oder C Grundkenntnisse in diskreter Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Theorien, Zusammenhänge und Methoden der Netzwerkalgorithmen und insbesondere deren Datenstrukturen erklären. Sie können das Rechenzeitverhalten wesentlicher Netzwerkalgorithmen beschreiben und analysieren. Die Studierenden können insbesondere zwischen effizient lösbaren und NP-harten Aufgabenstellungen diskriminieren. |
Fertigkeiten |
Die Studenten können komplexe Problemstellungen analysieren und die Möglichkeiten der Transformation in Netzwerkalgorithmen bestimmen. Sie können grundlegende Algorithmen und Datenstrukturen der linearen Optimierung und Netzwerktheorie effizient implementieren und mögliche Schwachstellen identifizieren. Sie können die Auswirkung der Nutzung verschiedener effizienter Datenstrukturen selbständig analysieren und jene gegebenenfalls einsetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0120: Effiziente Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Lineare Optimierung - Datenstrukturen - Leftist heaps - Minimum spanning tree - Shortest path - Maximum flow - NP-harte Probleme via max-cut |
Literatur |
R. E. Tarjan: Data Structures and Network Algorithms. CBMS 44, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983. Wesley, 2011 http://algs4.cs.princeton.edu/home/ V. Chvátal, ``Linear Programming'', Freeman, New York, 1983. |
Lehrveranstaltung L1207: Effiziente Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0836: Communication Networks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe the principles and structures of communication networks in detail. They can explain the formal description methods of communication networks and their protocols. They are able to explain how current and complex communication networks work and describe the current research in these examples. |
Fertigkeiten |
Students are able to evaluate the performance of communication networks using the learned methods. They are able to work out problems themselves and apply the learned methods. They can apply what they have learned autonomously on further and new communication networks. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to define tasks themselves in small teams and solve these problems together using the learned methods. They can present the obtained results. They are able to discuss and critically analyse the solutions. |
Selbstständigkeit |
Students are able to obtain the necessary expert knowledge for understanding the functionality and performance capabilities of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Referat |
Prüfungsdauer und -umfang | 1,5 Stunden Kolloquium mit je drei Prüflingen, also ca. 30 min je Prüfling. Inhalt des Kolloquiums sind die Poster der vorhergehenden Postersession sowie die Lehrinhalte. |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Informatik (3 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0897: Analysis and Structure of Communication Networks |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L0899: Selected Topics of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Example networks selected by the students will be researched on in a PBL course by the students in groups and will be presented in a poster session at the end of the term. |
Literatur |
|
Lehrveranstaltung L0898: Communication Networks Excercise |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Part of the content of the lecture Communication Networks are reflected in computing tasks in groups, others are motivated and addressed in the form of a PBL exercise. |
Literatur |
|
Modul M0926: Verteilte Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die wichtigsten Abstraktion von Verteilten Algorithmen erklären (synchrones/asynchrones Model, nachrichtenbasierte und speicherbasierte Kommunikation, Randomisierung). Sie sind in der Lage, komplexitätsmaße für verteilte Algorithmen zu beschreiben (Runden-, Nachrichten- und Speicherkomplexität). Sie können Basisalgorithmen für die wichtigsten verteilten Probleme: Leader election, wechselseitiger Ausschluss, Graphfärbungen, Spannbäume beschreiben. Sie kennen die wesentlichen Techniken von radomisierten Algorithmen. |
Fertigkeiten |
Studierende können eigene verteilte Algorithmen entwerfen und der Komplexität analysieren. Sie greifen dabei auf existierende Standardalgorithmen zurück. Sie analysieren die Komplexität randomisierter Algorithmen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Informatik (3 Kurse): Wahlpflicht |
Lehrveranstaltung L1071: Verteilte Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1072: Verteilte Algorithmen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0942: Software Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Gollmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Familiarity with C/C++, web programming |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
|
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit | Students are capable of acquiring knowledge independently from professional publications, technical standards, and other sources, and are capable of applying newly acquired knowledge to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Informatik (3 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L1103: Software Security |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Howard, D. LeBlanc: Writing Secure Code, 2nd edition, Microsoft Press (2002) G. Hoglund, G. McGraw: Exploiting Software, Addison-Wesley (2004) L. Gong, G. Ellison, M. Dageforde: Inside Java 2 Platform Security, 2nd edition, Addison-Wesley (2003) B. LaMacchia, S. Lange, M. Lyons, R. Martin, K. T. Price: .NET Framework Security, Addison-Wesley Professional (2002) D. Gollmann: Computer Security, 3rd edition (2011) |
Lehrveranstaltung L1104: Software Security |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1336: Soft-Computing |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelor-Informatik. Grundlagen in Analysis, Linearer Algebra, Graphentheorie und Optimierung. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von einschlägiger Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L1869: Soft-Computing |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden kennen
Die Studierenden können
|
Literatur |
1. David Barber, Bayes Reasoning and Machine Learning, Cambridge Univ. Press, Cambridge, 2012. |
Modul M0753: Software Verification |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students apply the major verification techniques in model checking and deductive verification. They explain in formal terms syntax and semantics of the underlying logics, and assess the expressivity of different logics as well as their limitations. They classify formal properties of software systems. They find flaws in formal arguments, arising from modeling artifacts or underspecification. |
||||||||
Fertigkeiten |
Students formulate provable properties of a software system in a formal language. They develop logic-based models that properly abstract from the software under verification and, where necessary, adapt model or property. They construct proofs and property checks by hand or using tools for model checking or deductive verification, and reflect on the scope of the results. Presented with a verification problem in natural language, they select the appropriate verification technique and justify their choice. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
||||||||
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software verification. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Informatik (3 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0629: Software Verification |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0630: Software Verification |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0637: Advanced Concepts of Wireless Communications |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Rainer Grünheid |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students are able to explain the general as well as advanced principles and techniques that are applied to wireless communications. They understand the properties of wireless channels and the corresponding mathematical description. Furthermore, students are able to explain the physical layer of wireless transmission systems. In this context, they are proficient in the concepts of multicarrier transmission (OFDM), modulation, error control coding, channel estimation and multi-antenna techniques (MIMO). Students can also explain methods of multiple access. On the example of contemporary communication systems (UMTS, LTE) they can put the learnt content into a larger context. |
Fertigkeiten |
Using the acquired knowledge, students are able to understand the design of current and future wireless systems. Moreover, given certain constraints, they can choose appropriate parameter settings of communication systems. Students are also able to assess the suitability of technical concepts for a given application. |
Personale Kompetenzen | |
Sozialkompetenz | Students can jointly elaborate tasks in small groups and present their results in an adequate fashion. |
Selbstständigkeit | Students are able to extract necessary information from given literature sources and put it into the perspective of the lecture. They can continuously check their level of expertise with the help of accompanying measures (such as online tests, clicker questions, exercise tasks) and, based on that, to steer their learning process accordingly. They can relate their acquired knowledge to topics of other lectures, e.g., "Fundamentals of Communications and Stochastic Processes" and "Digital Communications". |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten; Umfang: Inhalt von Vorlesung und Übung |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0297: Advanced Concepts of Wireless Communications |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The lecture deals with technical principles and related concepts of mobile communications. In this context, the main focus is put on the physical and data link layer of the ISO-OSI stack. In the lecture, the transmission medium, i.e., the mobile radio channel, serves as the starting point of all considerations. The characteristics and the mathematical descriptions of the radio channel are discussed in detail. Subsequently, various physical layer aspects of wireless transmission are covered, such as channel coding, modulation/demodulation, channel estimation, synchronization, and equalization. Moreover, the different uses of multiple antennas at the transmitter and receiver, known as MIMO techniques, are described. Besides these physical layer topics, concepts of multiple access schemes in a cellular network are outlined. In order to illustrate the above-mentioned technical solutions, the lecture will also provide a system view, highlighting the basics of some contemporary wireless systems, including UMTS/HSPA, LTE, LTE Advanced, and WiMAX. |
Literatur |
John G. Proakis, Masoud Salehi: Digital Communications. 5th Edition, Irwin/McGraw Hill, 2007 David Tse, Pramod Viswanath: Fundamentals of Wireless Communication. Cambridge, 2005 Bernard Sklar: Digital Communications: Fundamentals and Applications. 2nd Edition, Pearson, 2013 Stefani Sesia, Issam Toufik, Matthew Baker: LTE - The UMTS Long Term Evolution. Second Edition, Wiley, 2011 |
Lehrveranstaltung L0298: Advanced Concepts of Wireless Communications |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dr. Rainer Grünheid |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1318: Wireless Sensor Networks |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Bernd-Christian Renner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L1815: Wireless Sensor Networks |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1816: Wireless Sensor Networks |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1819: Wireless Sensor Networks: Project |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
The PrBL course part will be performed in small groups of students. Topics are from the field of wireless sensor networks and are loosely related to the lecture contents. Project descriptions and goals are provided but have to be solved by the students as follow:
Throughout the semester, there will be meetings with the supervisor on a regular basis (weekly or biweekly). Details about the topics and course organization will be provided in the first lecture. Please note that the number of participants is limited due to the available capacity (rooms, equipment, supervisors). |
Literatur |
Will be provided individually |
Modul M1337: Kurven, Codes und Cryptosysteme |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Algebra, Linearer Algebra und Analysis. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierende kennen
|
Fertigkeiten |
Die Studierenden sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich
Teilbereiche des Fachgebietes anhand von Fachbüchern selbständig zu
erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und
es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht |
Lehrveranstaltung L1870: Kurven, Codes und Cryptosysteme |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0837: Simulation of Communication Networks |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain the necessary stochastics, the discrete event simulation technology and modelling of networks for performance evaluation. |
Fertigkeiten |
Students are able to apply the method of simulation for performance evaluation to different, also not practiced, problems of communication networks. The students can analyse the obtained results and explain the effects observed in the network. They are able to question their own results. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to acquire expert knowledge in groups, present the results, and discuss solution approaches and results. They are able to work out solutions for new problems in small teams. |
Selbstständigkeit |
Students are able to transfer independently and in discussion with others the acquired method and expert knowledge to new problems. They can identify missing knowledge and acquire this knowledge independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht |
Lehrveranstaltung L0887: Simulation and Modelling of Communication Networks |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 5 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
In the course necessary basic stochastics and the discrete event simulation are introduced. Also simulation models for communication networks, for example, traffic models, mobility models and radio channel models are presented in the lecture. Students work with a simulation tool, where they can directly try out the acquired skills, algorithms and models. At the end of the course increasingly complex networks and protocols are considered and their performance is determined by simulation. |
Literatur |
Further literature is announced at the beginning of the lecture. |
Modul M1248: Compiler für Eingebettete Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul "Eingebettete Systeme" C/C++ Programmierkenntnisse |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Bedeutung Eingebetteter Systeme steigt von Jahr zu Jahr. Innerhalb Eingebetteter Systeme steigt der Software-Anteil, der auf Prozessoren ausgeführt wird, aufgrund geringerer Kosten und höherer Flexibilität ebenso kontinuierlich. Wegen der besonderen Einsatzgebiete Eingebetteter Systeme kommen hier hochgradig spezialisierte Prozessoren zum Einsatz, die applikationsspezifisch auf ihr jeweiliges Einsatzgebiet ausgerichtet sind. Diese hochgradig spezialisierten Prozessoren stellen hohe Anforderungen an einen Compiler, der Code von hoher Qualität generieren soll. Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage,
Wegen der hohen Anforderungen an Compiler für Eingebettete Systeme sind effektive Optimierungen unerlässlich. Die Studierenden lernen insbes.,
Da Compiler für Eingebettete Systeme oft verschiedene Zielfunktionen optimieren sollen (z.B. durchschnittliche oder worst-case Laufzeit, Energieverbrauch, Code-Größe), lernen die Studierenden den Einfluss von Optimierungen auf diese verschiedenen Zielfunktionen zu beurteilen. |
Fertigkeiten |
Studierende werden in die Lage versetzt, hochsprachlichen Programmcode in Maschinensprache zu übersetzen. Die Studierenden erwerben die Fähigkeit zu beurteilen, welche Art von Code-Optimierung innerhalb eines Compilers am effektivsten auf welchem Abstraktionsniveau (bspw. Quell- oder Assemblercode) durchzuführen ist. Während der Übungen erwerben die Studierenden die Fähigkeit, einen funktionierenden Compiler mitsamt Optimierungen zu implementieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1692: Compiler für Eingebettete Systeme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1693: Compiler für Eingebettete Systeme |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0673: Informationstheorie und Codierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die grundlegenden Definitionen zur informationstheoretischen Quantifizierung von Information. Sie kennen das Shannonsche Quellencodierungstheorem sowie das Kanalcodierungstheorem und können damit Grenzen der Kompression bzw. der fehlerfreien Datenübertragung bestimmen. Sie verstehen die Grundprinzipien der Datenkompression (Quellencodierung) und der fehlererkennenden und fehlerkorrigierenden Kanalcodierung. Sie sind mit den Prinzipien der Decodierung vertraut, insbesondere mit modernen Verfahren der iterativen Decodierung. Sie kennen grundlegende Codierverfahren, deren Eigenschaften und Decodierverfahren. |
Fertigkeiten |
Die Studierenden sind in der Lage, die Grenzen der Datenkompression bzw. der Datenübertragungsrate für gestörte Kanäle zu bestimmen und damit ein Übertragungsverfahren zu dimensionieren. Sie sind in der Lage, die Parameter eines fehlererkennenden bzw. fehlerkorrigierenden Kanalcodierungsverfahrens zum Erreichen gegebener Zielvorgaben abzuschätzen. Sie sind in der Lage, die Eigenschaften grundlegender Kanalcodierungs- und Decodierungsverfahren hinsichtlich Fehlerkorrektureigenschaften, Decodierverzögerung und Decodierkomplexität zu vergleichen und ein geeignetes Verfahren auszuwählen. Sie sind in der Lage, grundlegende Codier- und Decodierverfahren in Software zu implementieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten.
|
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0436: Informationstheorie und Codierung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bossert, M.: Kanalcodierung. Oldenbourg. Friedrichs, B.: Kanalcodierung. Springer. Lin, S., Costello, D.: Error Control Coding. Prentice Hall. Roth, R.: Introduction to Coding Theory. Johnson, S.: Iterative Error Correction. Cambridge. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press. Gallager, R. G.: Information theory and reliable communication. Whiley-VCH Cover, T., Thomas, J.: Elements of information theory. Wiley. |
Lehrveranstaltung L0438: Informationstheorie und Codierung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0943: Network Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Gollmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Discrete Mathematics, Computer Networks (TCP/IP) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
|
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz | None |
Selbstständigkeit | Students are capable of acquiring knowledge independently from professional publications, technical standards, and other sources, and are capable of applying newly acquired knowledge to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht |
Lehrveranstaltung L1105: Network Security |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
W. Stallings: Cryptography and Network Security: Principles and Practice, 6th edition (2013) A. Menezes, P. van Oorschot, S. Vanstone: Handbook of Applied Cryptography, CRC Press (1997) D. Gollmann: Computer Security, 3rd edition, Wiley (2011) V. Niemi, K. Nyberg: UMTS Security, Wiley (2003) |
Lehrveranstaltung L1106: Network Security |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0924: Software für Eingebettete Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die grundlegende Prinzipien und Vorgehensweisen für die Erstellung von Software für eingebettete Systeme erklären. Sie sind in der Lage, ereignisbasierte Programmiertechniken mittels Interrupts zu beschreiben. Sie kennen den Aufbau und Funktion eines konkreten Mikrocontrollers. Die Teilnehmer sind in der Lage, Anforderungen an Echtzeitsysteme zu erläutern. Sie können mindestens drei Scheduling Algorithmen für Echzeitbetriebssysteme erläutern (einschließlich Vor- und Nachteile) |
Fertigkeiten | Studierende erstellen interrupt-basierte Programme für einen konkreten Mikrocontroller. Sie erstellen und benutzen einen preemptiven scheduler. Sie setzen periphere Komponenten (Timer, ADCs, EEPROM) für komplexe Aufgaben eingebetteter System ein. Für den Anschluss externer Komponenten setzen sie serielle Protokolle ein. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht |
Lehrveranstaltung L1069: Software für Eingebettete Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1070: Software für Eingebettete Systeme |
Typ | Gruppenübung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0556: Computer Graphics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Students are expected to have a solid knowledge of object-oriented programming as well as of linear algebra and geometry. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students have acquired a theoretical basis in computer graphics and have a clear understanding of the process of computer animation. |
Fertigkeiten |
Students have acquired
|
Personale Kompetenzen | |
Sozialkompetenz |
Students are trained in communicating abstract ideas and are familiar with planning and conducting projects within a small team. |
Selbstständigkeit |
Students are able to direct complex computer animation projects. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L0145: Computer Graphics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Computer graphics and animation are leading to an unprecedented visual revolution. The course deals with its technological foundations:
Students will be be working on a series of mini-projects which will eventually evolve into a final project. Learning computer graphics and animation resembles learning a musical instrument. Therefore, doing your projects well and in time is essential for performing well on this course. |
Literatur |
Alan H. Watt: 3D Computer Graphics. Harlow: Pearson (3rd ed., repr., 2009). Dariush Derakhshani: Introducing Autodesk Maya 2014. New York, NY : Wiley (2013). |
Lehrveranstaltung L0768: Computer Graphics |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0758: Application Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Dieter Gollmann |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Familiarity with Information security, fundamentals of cryptography, Web protocols and the architecture of the Web |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can name current approaches for securing selected applications, in particular of web applications |
Fertigkeiten |
Students are capable of
|
Personale Kompetenzen | |
Sozialkompetenz | Students are capable of appreciating the impact of security problems on those affected and of the potential responsibilities for their resolution. |
Selbstständigkeit | Students are capable of acquiring knowledge independently from professional publications, technical standards, and other sources, and are capable of applying newly acquired knowledge to new problems. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L0726: Application Security |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Webseiten der OMG, W3C, OASIS, WS-Security, OECD, TCG D. Gollmann: Computer Security, 3rd edition, Wiley (2011) R. Anderson: Security Engineering, 2nd edition, Wiley (2008) U. Lang: CORBA Security, Artech House, 2002 |
Lehrveranstaltung L0729: Application Security |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1301: Software Testing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the different phases of testing, describe fundamental techniques of different types of testing, and paraphrase the basic principles of the corresponding test process. They give examples of software development scenarios and the corresponding test type and technique. They explain algorithms used for particular testing techniques and describe possible advantages and limitations. |
Fertigkeiten |
Students identify the appropriate testing type and technique for a given problem. They adapt and execute respective algorithms to execute a concrete test technique properly. They interpret testing results and execute corresponding steps for proper re-test scenarios. They write and analyze test specifications. They apply bug finding techniques for non-trivial problems. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. |
Selbstständigkeit |
Students can assess their level of knowledge continuously and adjust it appropriately, based on feedback and on self-guided studies. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software testing. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | Software |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht |
Lehrveranstaltung L1791: Software Testing |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1792: Software Testing |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M1397: Modellprüfung - Beweiser und Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen
|
Fertigkeiten |
Studierende können
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit | Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht |
Lehrveranstaltung L1979: Modellprüfung - Beweiser und Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Correctness is a major concern in embedded systems. Model checking can fully automatically proof formal properties about digital hardware or software. Such properties are given in temporal logic, e.g., to prove "No two orthogonal traffic lights will ever be green." And how do the underlying reasoning algorithms work so effectively in practice despite a computational complexity of NP hardness and beyond?
But what are the limitations of model checking? Among other topics, the lecture will consider the following topics:
|
Literatur |
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA, USA. A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands. Selected research papers |
Lehrveranstaltung L1980: Modellprüfung - Beweiser und Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0711: Numerische Mathematik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0568: Numerische Mathematik II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0569: Numerische Mathematik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1405: Randomisierte Algorithmen und Zufällige Graphen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung l. Numerics (TUHH): Wahlpflicht |
Lehrveranstaltung L2010: Randomisierte Algorithmen und Zufällige Graphen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Randomized Algorithms:
|
Literatur |
|
Lehrveranstaltung L2011: Randomisierte Algorithmen und Zufällige Graphen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0551: Pattern Recognition and Data Compression |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Rolf-Rainer Grigat |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Linear algebra (including PCA, unitary transforms), stochastics and statistics, binary arithmetics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can name the basic concepts of pattern recognition and data compression. Students are able to discuss logical connections between the concepts covered in the course and to explain them by means of examples. |
Fertigkeiten |
Students can apply statistical methods to classification problems in pattern recognition and to prediction in data compression. On a sound theoretical and methodical basis they can analyze characteristic value assignments and classifications and describe data compression and video signal coding. They are able to use highly sophisticated methods and processes of the subject area. Students are capable of assessing different solution approaches in multidimensional decision-making areas. |
Personale Kompetenzen | |
Sozialkompetenz |
k.A. |
Selbstständigkeit |
Students are capable of identifying problems independently and of solving them scientifically, using the methods they have learnt. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten, Umfang Vorlesung und Materialien im StudIP |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0128: Pattern Recognition and Data Compression |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Structure of a pattern recognition system, statistical decision theory, classification based on statistical models, polynomial regression, dimension reduction, multilayer perceptron regression, radial basis functions, support vector machines, unsupervised learning and clustering, algorithm-independent machine learning, mixture models and EM, adaptive basis function models and boosting, Markov random fields Information, entropy, redundancy, mutual information, Markov processes, basic coding schemes (code length, run length coding, prefix-free codes), entropy coding (Huffman, arithmetic coding), dictionary coding (LZ77/Deflate/LZMA2, LZ78/LZW), prediction, DPCM, CALIC, quantization (scalar and vector quantization), transform coding, prediction, decorrelation (DPCM, DCT, hybrid DCT, JPEG, JPEG-LS), motion estimation, subband coding, wavelets, HEVC (H.265,MPEG-H) |
Literatur |
Schürmann: Pattern Classification, Wiley 1996 Salomon, Data Compression, the Complete Reference, Springer, 2000 |
Modul M0913: CMOS Nanoelectronics with Practice |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Matthias Kuhl | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Fundamentals of MOS devices and electronic circuits | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
|
||||||||
Fertigkeiten |
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
|
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0764: CMOS Nanoelectronics |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1063: CMOS Nanoelectronics |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1059: CMOS Nanoelectronics |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1395: Real-Time Systems |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Computer Engineering, Basic knowledge in embedded systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Real-Time applications are an important class of embedded systems such as driver assistance systems in modern automobiles, medical devices, process plants and aircrafts. Their main feature is that they are required to complete work and deliver services on a timely basis. This course aims at introducing fundamental theories and concepts about real-time systems. As an introduction, the lecture describes several classes of real-time applications (e.g. digital controllers, signal processing, real-time databases and multimedia). It introduces the main characteristics of real-time systems and explains the relationship between timing requirements and functional requirements. Next, this is followed by a reference model used to characterize the main features of real-time applications. Several scheduling approaches (e.g clock-driven and priority-driven) and timing analysis techniques used for the verification and validation of the timing properties of real-time systems are introduced and discussed. The last part of the course will focus on the timing behavior of communications networks taking into account properties such as the end-to-end latency and the delay jitter, and on shared resources access control and synchronization in multiprocessor/multicore architectures. |
Fertigkeiten |
Students have solid notions about the basic properties of common real-time systems and the methods used to analyze them. Students are able to characterize and model the timing features of a real-time system. They use schedulability analysis techniques to compute the response time of systems and check if this meets the timing requirements (I.e deadline) of the system. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to solve similar problems alone or in a group and to present the results accordingly. |
Selbstständigkeit |
Students are able to acquire new knowledge from specific literature and to associate this knowledge with other classes. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1974: Real-Time Systems |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Ph.D Selma Saidi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Book reference: Jane W. S. Liu Real-Time Systems Prentice Hall 2000 |
Lehrveranstaltung L1975: Real-Time Systems |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Ph.D Selma Saidi |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Modul M0910: Fortgeschrittener Entwurf von Chip-Systemen (Praktikum) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Erfolgreiche Teilnahme am praktischen FPGA-Labor des Moduls "Rechnerarchitektur" ist zwingende Voraussetzung. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
In diesem Modul werden fortgeschrittene Konzepte der
Rechnerarchitektur praxisorientiert vermittelt. Mit Hilfe der Hardware-Beschreibungssprache VHDL und rekonfigurierbarer FPGA-Hardware lernen Studierende, wie komplexe Rechensysteme (sog. Systems-on-Chip, SoCs), wie sie insbesondere im Bereich der eingebetteten Systeme anzutreffen sind, in Hardware zu entwerfen sind. Ausgehend von einer einfachen Prozessor-Architektur lernen Studierende, die Verarbeitung von Befehlen durch eine Maschine nach dem Pipelining-Prinzip zu realisieren. Sie implementieren verschiedene Formen Cache-basierter Speicher-Hierarchien, untersuchen Ansätze zum dynamischen Scheduling von Maschinenbefehlen und zur Sprungvorhersage, und konstruieren letztlich ein komplexes MPSoC-System (multi-processor system-on-chip), das aus mehreren Kernen besteht, die über einen gemeinsamen Bus verbunden sind. |
Fertigkeiten |
Die Studierenden können analysieren, wie hochspezifische und individuelle Rechner aus einer Sammlung gängiger Einzelkomponenten zusammengesetzt werden. Sie sind in der Lage, die Wechselwirkungen zwischen einem physischen Rechensystem und der darauf ausgeführten Software beurteilen zu können. Sie sollen so in die Lage versetzt werden, Auswirkungen hardwarenaher Entwurfsentscheidungen auf die Leistung des Gesamtsystems abzuschätzen, zu beurteilen und geeignete Optionen vorzuschlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen in konkrete Implementierungen komplexer Hardware-Strukturen zu überführen und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | VHDL-Code und FPGA-basiere Implementierungen |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Embedded Systems: Wahlpflicht |
Lehrveranstaltung L1061: Fortgeschrittener Entwurf von Chip-Systemen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 3 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0919: Praktischer Schaltungsentwurf analog und digital |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Matthias Kuhl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundkenntnisse von Halbleiterbauelementen und in der Halbleiterschaltungstechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0692: Praktischer Schaltungsentwurf analog |
Typ | Laborpraktikum |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Handouts to be distributed |
Lehrveranstaltung L0694: Praktischer Schaltungsentwurf digital |
Typ | Laborpraktikum |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Matthias Kuhl |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur | Handouts will be distributed |
Modul M0839: Traffic Engineering |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to describe methods for planning, optimisation and performance evaluation of communication networks. |
Fertigkeiten |
Students are able to solve typical planning and optimisation tasks for communication networks. Furthermore they are able to evaluate the network performance using queuing theory. Students are able to apply independently what they have learned to other and new problems. They can present their results in front of experts and discuss them. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit |
Students are able to acquire the necessary expert knowledge to understand the functionality and performance of new communication networks independently. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht |
Lehrveranstaltung L0902: Seminar Traffic Engineering |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Selected applications of methods for planning, optimization, and performance evaluation of communication networks, which have been introduced in the traffic engineering lecture are prepared by the students and presented in a seminar. |
Literatur |
|
Lehrveranstaltung L0900: Traffic Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Network Planning and Optimization |
Literatur |
Literatur: |
Lehrveranstaltung L0901: Traffic Engineering Exercises |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Accompanying exercise for the traffic engineering course |
Literatur |
Literatur: |
Modul M0733: Software Analysis |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students apply the major approaches to data-flow analysis, control-flow analysis, and type-based analysis, along with their classification schemes, and employ abstract interpretation. They explain the standard forms of internal representations and models, including their mathematical structure and properties, and evaluate their suitability for a particular analysis. They explain and categorize the major analysis algorithms. They distinguish precise solutions from approximative approaches, and show termination and soundness properties. |
Fertigkeiten |
Presented with an analytical task for a software artifact, students select appropriate approaches from software analysis, and justify their choice. They design suitable representations by modifying standard representations. They develop customized analyses and devise them as safe overapproximations. They formulate analyses in a formal way and construct arguments for their correctness, behavior, and precision. |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss relevant topics in class. They defend their solutions orally. They communicate in English. |
Selbstständigkeit |
Using accompanying on-line material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. Within limits, they can set their own learning goals. Upon successful completion, students can identify and precisely formulate new problems in academic or applied research in the field of software analysis. Within this field, they can conduct independent studies to acquire the necessary competencies and compile their findings in academic reports. They can devise plans to arrive at new solutions or assess existing ones. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Fachtheoretisch-fachpraktische Arbeit |
Prüfungsdauer und -umfang | siehe englisch |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht |
Lehrveranstaltung L0631: Software Analysis |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0632: Software Analysis |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Systemtechnik - Robotik
Die Vertiefung, in der intelligentes Handeln und Verhalten eine besondere Rolle spielt, bietet einerseits eine umfangreiche Ausbildung für Anwendungen der Informatik in Medizinbereichen, wie z.B. medizinische Bildverarbeitung, oder auch Ingenieurbereichen, wie z.B. Automobilindustrie, Industrieautomatisierung, Smart Homes, Smart Ports, Smart Cities usw. Andererseits wird in dieser Vertiefung eine fundierte Ausbildung für eines der gesellschaftlich bedeutsamsten Forschungsgebiete in Informatik und Ingenieurwesen angeboten, so dass Absolventen vielfältige Möglichkeiten zur wissenschaftlichen Weiterqualifikation geboten werden.
Modul M1244: Technischer Ergänzungskurs für IIWMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erwerben weitergehende Kenntnisse in einem an der TUHH vertretenen technischen Fach. |
Fertigkeiten | Die Studierenden erwerben weitergehende Fertigkeiten in einem an der TUHH ansässigen technischen Fach. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage, alleine oder in kleinen Gruppen weitergehende Kenntnisse und Fähigkeiten in einem an der TUHH vertretenen technischen Fach zu erwerben. |
Selbstständigkeit | Die Studierenden können die wesentlichen Inhalte des technischen Faches im Rahmen eines Vortrages oder einer Diskussion wiedergeben. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht |
Modul M0563: Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Fundamentals of electrical engineering Broad knowledge of mechanics Fundamentals of control theory |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students are able to describe fundamental properties of robots and solution approaches for multiple problems in robotics. |
Fertigkeiten |
Students are able to derive and solve equations of motion for various manipulators. Students can generate trajectories in various coordinate systems. Students can design linear and partially nonlinear controllers for robotic manipulators. |
Personale Kompetenzen | |
Sozialkompetenz | Students are able to work goal-oriented in small mixed groups. |
Selbstständigkeit |
Students are able to recognize and improve knowledge deficits independently. With instructor assistance, students are able to evaluate their own knowledge level and define a further course of study. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechanical Engineering and Management: Kernqualifikation: Pflicht Mechatronics: Kernqualifikation: Pflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0168: Robotics: Modelling and Control |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Fundamental kinematics of rigid body systems Newton-Euler equations for manipulators Trajectory generation Linear and nonlinear control of robots |
Literatur |
Craig, John J.: Introduction to Robotics Mechanics and Control, Third Edition, Prentice Hall. ISBN 0201-54361-3 |
Lehrveranstaltung L1305: Robotics: Modelling and Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0846: Control Systems Theory and Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Introduction to Control Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students can obtain information from provided sources (lecture notes, software documentation, experiment guides) and use it when solving given problems. They can assess their knowledge in weekly on-line tests and thereby control their learning progress. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Pflicht Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0656: Control Systems Theory and Design |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
State space methods (single-input single-output) • State space models and transfer functions, state feedback Digital Control System identification and model order reduction Case study |
Literatur |
|
Lehrveranstaltung L0657: Control Systems Theory and Design |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0667: Algorithmische Algebra |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Prashant Batra |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathe I-III (Reelle Analysis,Rechnen in Vektorräumen, Vollst. Induktion) Diskrete Mathematik I (Gruppen, Ringe, Ideale, Körper; euklidscher Algorithmus) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern: Smith-Normalform, Chinesischer Restsatz, Gitterpunktsätze, Ganzzahlige Lösung von Ungleichungssystemen. |
Fertigkeiten |
Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren. Studierende können zu gegebenen Problemstellungen einen geeigneten Lösungsansatz entwickeln, diesen verfolgen und die Ergebnisse kritisch auswerten, wie beispielsweise bei der Lösung multivariater Gleichungssysteme und in der Gitterpunkttheorie. |
Personale Kompetenzen | |
Sozialkompetenz | , |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht |
Lehrveranstaltung L0422: Algorithmische Algebra |
Typ | Vorlesung | ||||||||||||||
SWS | 3 | ||||||||||||||
LP | 5 | ||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 | ||||||||||||||
Dozenten | Dr. Prashant Batra | ||||||||||||||
Sprachen | DE | ||||||||||||||
Zeitraum | WiSe | ||||||||||||||
Inhalt |
Erweiterter Euklidscher Algorithmus, Lösen der Bezout-Gleichung Teilen mit Rest in Ringen Schnelle Rechenalgorithmen (Konversion in Zahlformate, Schnelle Multiplikationen) Diskrete Fourier-Transformation in Ringe Rechnen mit modularen Resten, Lösen von Restsystemen (Chinesischer Restsatz), Lösbarkeit ganzzahliger 'Gleichungssysteme Linearisierung polynomialer Gleichungen - Matrizenansatz Sylvester-Matrix, Elimination Elimination in Ringen, Elimination mehrer Veränderlicher Buchberger-Algorithmus, Gröbner-Basis Minkowskischer Gitterpunktsatz und Ganzzahlige Optimierung LLL-Algorithmus zum Auffinden 'kurzer' Vektoren in polynomialer Zeit |
||||||||||||||
Literatur |
von zur Gathen, Joachim; Gerhard, Jürgen Modern computer algebra. 3rd ed. (English) Zbl 1277.68002 Yap, Chee Keng Free download for students from author's website: http://cs.nyu.edu/yap/book/berlin/ Cox, David; Little, John; O’Shea, Donal eBook: http://dx.doi.org/10.1007/978-0-387-35651-8
Koepf, Wolfram springer eBook: http://dx.doi.org/10.1007/3-540-29895-9 Kaplan, Michael springer eBook: http://dx.doi.org/10.1007/b137968 |
Lehrveranstaltung L0423: Algorithmische Algebra |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Prashant Batra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0550: Digital Image Analysis |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Rolf-Rainer Grigat |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
System theory of one-dimensional signals (convolution and correlation, sampling theory, interpolation and decimation, Fourier transform, linear time-invariant systems), linear algebra (Eigenvalue decomposition, SVD), basic stochastics and statistics (expectation values, influence of sample size, correlation and covariance, normal distribution and its parameters), basics of Matlab, basics in optics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can
|
Fertigkeiten |
Students are able to
Students can solve simple arithmetical problems relating to the specification and design of image processing and image analysis systems. Students are able to assess different solution approaches in multidimensional decision-making areas. Students can undertake a prototypical analysis of processes in Matlab. |
Personale Kompetenzen | |
Sozialkompetenz |
k.A. |
Selbstständigkeit |
Students can solve image analysis tasks independently using the relevant literature. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten, Umfang Vorlesung und Materialien im StudIP |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0126: Digital Image Analysis |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Bredies/Lorenz, Mathematische Bildverarbeitung, Vieweg, 2011 |
Modul M0677: Digital Signal Processing and Digital Filters |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | The students know and understand basic algorithms of digital signal processing. They are familiar with the spectral transforms of discrete-time signals and are able to describe and analyse signals and systems in time and image domain. They know basic structures of digital filters and can identify and assess important properties including stability. They are aware of the effects caused by quantization of filter coefficients and signals. They are familiar with the basics of adaptive filters. They can perform traditional and parametric methods of spectrum estimation, also taking a limited observation window into account. |
Fertigkeiten | The students are able to apply methods of digital signal processing to new problems. They can choose and parameterize suitable filter striuctures. In particular, the can design adaptive filters according to the minimum mean squared error (MMSE) criterion and develop an efficient implementation, e.g. based on the LMS or RLS algorithm. Furthermore, the students are able to apply methods of spectrum estimation and to take the effects of a limited observation window into account. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can jointly solve specific problems. |
Selbstständigkeit |
The students are able to acquire relevant information from appropriate literature sources. They can control their level of knowledge during the lecture period by solving tutorial problems, software tools, clicker system. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Microelectronics Complements: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0446: Digital Signal Processing and Digital Filters |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung. Vieweg Teubner. V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung. Pearson StudiumA. V. W. Hess: Digitale Filter. Teubner. Oppenheim, R. W. Schafer: Digital signal processing. Prentice Hall. S. Haykin: Adaptive flter theory. L. B. Jackson: Digital filters and signal processing. Kluwer. T.W. Parks, C.S. Burrus: Digital filter design. Wiley. |
Lehrveranstaltung L0447: Digital Signal Processing and Digital Filters |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0881: Mathematische Bildverarbeitung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten und sich theoretische Grundlagen erklären. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0991: Mathematische Bildverarbeitung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Marko Lindner |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Bredies/Lorenz: Mathematische Bildverarbeitung |
Lehrveranstaltung L0992: Mathematische Bildverarbeitung |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Marko Lindner |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0633: Industrial Process Automation |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
mathematics and optimization methods |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students can evaluate and assess discrete event systems. They can evaluate properties of processes and explain methods for process analysis. The students can compare methods for process modelling and select an appropriate method for actual problems. They can discuss scheduling methods in the context of actual problems and give a detailed explanation of advantages and disadvantages of different programming methods. The students can relate process automation to methods from robotics and sensor systems as well as to recent topics like 'cyberphysical systems' and 'industry 4.0'. |
||||||||
Fertigkeiten |
The students are able to develop and model processes and evaluate them accordingly. This involves taking into account optimal scheduling, understanding algorithmic complexity, and implementation using PLCs. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
The students work in teams to solve problems. |
||||||||
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Kabinensysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0344: Industrial Process Automation |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- foundations of problem solving and system modeling, discrete event systems |
Literatur |
J. Lunze: „Automatisierungstechnik“, Oldenbourg Verlag, 2012 |
Lehrveranstaltung L0345: Industrial Process Automation |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0586: Effiziente Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Programmieren in Matlab und/oder C Grundkenntnisse in diskreter Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Theorien, Zusammenhänge und Methoden der Netzwerkalgorithmen und insbesondere deren Datenstrukturen erklären. Sie können das Rechenzeitverhalten wesentlicher Netzwerkalgorithmen beschreiben und analysieren. Die Studierenden können insbesondere zwischen effizient lösbaren und NP-harten Aufgabenstellungen diskriminieren. |
Fertigkeiten |
Die Studenten können komplexe Problemstellungen analysieren und die Möglichkeiten der Transformation in Netzwerkalgorithmen bestimmen. Sie können grundlegende Algorithmen und Datenstrukturen der linearen Optimierung und Netzwerktheorie effizient implementieren und mögliche Schwachstellen identifizieren. Sie können die Auswirkung der Nutzung verschiedener effizienter Datenstrukturen selbständig analysieren und jene gegebenenfalls einsetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0120: Effiziente Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Lineare Optimierung - Datenstrukturen - Leftist heaps - Minimum spanning tree - Shortest path - Maximum flow - NP-harte Probleme via max-cut |
Literatur |
R. E. Tarjan: Data Structures and Network Algorithms. CBMS 44, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983. Wesley, 2011 http://algs4.cs.princeton.edu/home/ V. Chvátal, ``Linear Programming'', Freeman, New York, 1983. |
Lehrveranstaltung L1207: Effiziente Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0676: Digitale Nachrichtenübertragung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen | Die Studierenden sind in der Lage, moderne digitale Nachrichtenübertragungsverfahren zu verstehen, zu vergleichen und zu entwerfen. Sie sind vertraut mit den Eigenschaften linearer und nicht-linearer digitaler Modulationsverfahren. Sie können die Verzerrungen durch Übertragungskanäle beschreiben sowie Empfänger einschließlich Kanalschätzung und Entzerrung entwerfen und beurteilen. Sie kennen die Prinzipien der Single Carrier- und Multicarrier-Übertragung und die Grundlagen wichtiger Vielfachzugriffsverfahren. | ||||||||
Fertigkeiten |
Die Studierenden sind in der Lage, ein digitales Nachrichtenübertragungsverfahren einschließlich Vielfachzugriff zu analysieren und zu entwerfen. Sie sind in der Lage, ein hinsichtlich Übertragungsrate, Bandbreitebedarf, Fehlerwahrscheinlichkeit und weiterer Signaleigenschaften geeignetes digitales Modulationsverfahren zu wählen. Sie können einen geeigneten Detektor einschließlich Kanalschätzung und Entzerrung entwerfen und dabei Eigenschaften suboptimaler Verfahren hinsichtlich Leistungsfähigkeit und Aufwand berücksichtigen. Sie sind in der Lage, ein Single-Carrierverfahren oder ein Multicarrier-Verfahren zu dimensionieren und die Eigenschaften beider Ansätze gegeneinander abzuwägen. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten. |
||||||||
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme: Pflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Netze: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht |
Lehrveranstaltung L0444: Digitale Nachrichtenübertragung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Lehrveranstaltung L0445: Digitale Nachrichtenübertragung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0646: Praktikum Digitale Nachrichtenübertragung |
Typ | Laborpraktikum |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
- DSL-Übertragung - Stochastische Prozesse - Digitale Datenübertragung |
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley R.G. Gallager: Principles of Digital Communication. Cambridge A. Goldsmith: Wireless Communication. Cambridge. D. Tse, P. Viswanath: Fundamentals of Wireless Communication. Cambridge. |
Modul M1336: Soft-Computing |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Bachelor-Informatik. Grundlagen in Analysis, Linearer Algebra, Graphentheorie und Optimierung. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von einschlägiger Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L1869: Soft-Computing |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Die Studierenden kennen
Die Studierenden können
|
Literatur |
1. David Barber, Bayes Reasoning and Machine Learning, Cambridge Univ. Press, Cambridge, 2012. |
Modul M0926: Verteilte Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die wichtigsten Abstraktion von Verteilten Algorithmen erklären (synchrones/asynchrones Model, nachrichtenbasierte und speicherbasierte Kommunikation, Randomisierung). Sie sind in der Lage, komplexitätsmaße für verteilte Algorithmen zu beschreiben (Runden-, Nachrichten- und Speicherkomplexität). Sie können Basisalgorithmen für die wichtigsten verteilten Probleme: Leader election, wechselseitiger Ausschluss, Graphfärbungen, Spannbäume beschreiben. Sie kennen die wesentlichen Techniken von radomisierten Algorithmen. |
Fertigkeiten |
Studierende können eigene verteilte Algorithmen entwerfen und der Komplexität analysieren. Sie greifen dabei auf existierende Standardalgorithmen zurück. Sie analysieren die Komplexität randomisierter Algorithmen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Informatik (3 Kurse): Wahlpflicht |
Lehrveranstaltung L1071: Verteilte Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1072: Verteilte Algorithmen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0629: Intelligent Autonomous Agents and Cognitive Robotics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Rainer Marrone |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | Vectors, matrices, Calculus |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain the agent abstraction, define intelligence in terms of rational behavior, and give details about agent design (goals, utilities, environments). They can describe the main features of environments. The notion of adversarial agent cooperation can be discussed in terms of decision problems and algorithms for solving these problems. For dealing with uncertainty in real-world scenarios, students can summarize how Bayesian networks can be employed as a knowledge representation and reasoning formalism in static and dynamic settings. In addition, students can define decision making procedures in simple and sequential settings, with and with complete access to the state of the environment. In this context, students can describe techniques for solving (partially observable) Markov decision problems, and they can recall techniques for measuring the value of information. Students can identify techniques for simultaneous localization and mapping, and can explain planning techniques for achieving desired states. Students can explain coordination problems and decision making in a multi-agent setting in term of different types of equilibria, social choice functions, voting protocol, and mechanism design techniques. |
Fertigkeiten |
Students can select an appropriate agent architecture for concrete agent application scenarios. For simplified agent application students can derive decision trees and apply basic optimization techniques. For those applications they can also create Bayesian networks/dynamic Bayesian networks and apply bayesian reasoning for simple queries. Students can also name and apply different sampling techniques for simplified agent scenarios. For simple and complex decision making students can compute the best action or policies for concrete settings. In multi-agent situations students will apply techniques for finding different equilibria states,e.g., Nash equilibria. For multi-agent decision making students will apply different voting protocols and compare and explain the results. |
Personale Kompetenzen | |
Sozialkompetenz |
Students are able to discuss their solutions to problems with others. They communicate in English |
Selbstständigkeit |
Students are able of checking their understanding of complex concepts by solving varaints of concrete problems |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0341: Intelligent Autonomous Agents and Cognitive Robotics |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Rainer Marrone |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0512: Intelligent Autonomous Agents and Cognitive Robotics |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Rainer Marrone |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1302: Angewandte Humanoide Robotik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Patrick Göttsch |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Schriftliche Ausarbeitung |
Prüfungsdauer und -umfang | 5-10 Seiten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1794: Angewandte Humanoide Robotik |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 6 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Dozenten | Patrick Göttsch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0747: Microsystem Design |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Manfred Kasper | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Mathematical Calculus, Linear Algebra, Microsystem Engineering |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students know about the most important and most common simulation and design methods used in microsystem design. The scientific background of finite element methods and the basic theory of these methods are known. |
||||||||
Fertigkeiten |
Students are able to apply simulation methods and commercial simulators in a goal oriented approach to complex design tasks. Students know to apply the theory in order achieve estimates of expected accuracy and can judge and verify the correctness of results. Students are able to develop a design approach even if only incomplete information about material data or constraints are available. Student can make use of approximate and reduced order models in a preliminary design stage or a system simulation. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to solve specific problems alone or in a group and to present the results accordingly. Students can develop and explain their solution approach and subdivide the design task to subproblems which are solved separately by group members. |
||||||||
Selbstständigkeit |
Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0683: Microsystem Design |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Manfred Kasper |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Finite difference methods Approximation error Finite element method Order of convergence Error estimation, mesh refinement Makromodeling Reduced order modeling Black-box models System identification Multi-physics systems System simulation Levels of simulation, network simulation Transient problems Non-linear problems Introduction to Comsol Application to thermal, electric, electromagnetic, mechanical and fluidic problems |
Literatur |
M. Kasper: Mikrosystementwurf, Springer (2000) S. Senturia: Microsystem Design, Kluwer (2001) |
Lehrveranstaltung L0684: Microsystem Design |
Typ | Laborpraktikum |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Manfred Kasper |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0840: Optimal and Robust Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups on specific problems to arrive at joint solutions. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0658: Optimal and Robust Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0659: Optimal and Robust Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0551: Pattern Recognition and Data Compression |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Rolf-Rainer Grigat |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Linear algebra (including PCA, unitary transforms), stochastics and statistics, binary arithmetics |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can name the basic concepts of pattern recognition and data compression. Students are able to discuss logical connections between the concepts covered in the course and to explain them by means of examples. |
Fertigkeiten |
Students can apply statistical methods to classification problems in pattern recognition and to prediction in data compression. On a sound theoretical and methodical basis they can analyze characteristic value assignments and classifications and describe data compression and video signal coding. They are able to use highly sophisticated methods and processes of the subject area. Students are capable of assessing different solution approaches in multidimensional decision-making areas. |
Personale Kompetenzen | |
Sozialkompetenz |
k.A. |
Selbstständigkeit |
Students are capable of identifying problems independently and of solving them scientifically, using the methods they have learnt. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten, Umfang Vorlesung und Materialien im StudIP |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0128: Pattern Recognition and Data Compression |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Structure of a pattern recognition system, statistical decision theory, classification based on statistical models, polynomial regression, dimension reduction, multilayer perceptron regression, radial basis functions, support vector machines, unsupervised learning and clustering, algorithm-independent machine learning, mixture models and EM, adaptive basis function models and boosting, Markov random fields Information, entropy, redundancy, mutual information, Markov processes, basic coding schemes (code length, run length coding, prefix-free codes), entropy coding (Huffman, arithmetic coding), dictionary coding (LZ77/Deflate/LZMA2, LZ78/LZW), prediction, DPCM, CALIC, quantization (scalar and vector quantization), transform coding, prediction, decorrelation (DPCM, DCT, hybrid DCT, JPEG, JPEG-LS), motion estimation, subband coding, wavelets, HEVC (H.265,MPEG-H) |
Literatur |
Schürmann: Pattern Classification, Wiley 1996 Salomon, Data Compression, the Complete Reference, Springer, 2000 |
Modul M0630: Robotics and Navigation in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | None | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
The students can explain kinematics and tracking systems in clinical contexts and illustrate systems and their components in detail. Systems can be evaluated with respect to collision detection and safety and regulations. Students can assess typical systems regarding design and limitations. |
||||||||||||
Fertigkeiten |
The students are able to design and evaluate navigation systems and robotic systems for medical applications. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. |
||||||||||||
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktentwicklung: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Produktion: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Vertiefung Werkstoffe: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0335: Robotics and Navigation in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- kinematics |
Literatur |
Spong et al.: Robot Modeling and Control, 2005 |
Lehrveranstaltung L0338: Robotics and Navigation in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0336: Robotics and Navigation in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1310: Diskrete Differentialgeometrie |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Diese Vorlesung befaßt sich mit geometrischen Aspekten der Lösungen von Differentialgleichungen und ihrer Umsetzung auf den Rechner. Die benötigten Grundlagen aus linearer Algebra und Analysis werden zu Beginn resümiert. Anwendungen ergeben sich in der Behandlung gekrümmter Flächen, der Mechanik und Mechatronik, verschiedenen Typen von Feldgleichungen, und in der Übertragung mathematischer Konstruktionen in Datentypen, Compilerfunktionen, Programmiersprachen und spezielle Rechenwerke. - Grundbegriffe aus der linearen Algebra, Tensoren, äußere Algebra, Clifford-Algebren - Grundbegriffe der Analysis in koordinatenfreier Formulierung, Vektorfelder und Differenzialformen, Integration, Diskretisierung - Lokale Differenzialgeometrie: Zusammenhänge, symplektische Geometrie und Hamilton'sche Systeme, Riemann'sche Geometrie, Diskretisierung - Globale Differenzialgeometrie: Mannigfaltigkeiten, Liegruppen, Faserbündel, Zufallsprozesse, Raum und Zeit Literatur: Agricola, Friedrich Vektoranalysis, Vieweg/Teubner 2010 A. C. Da Silva, Lectures on Symplectic Geometry, Springer L.N. Math. 1764 J. Snygg, Differential Geometry using Clifford's Algebra, Birkhäuser 2010 M. Desbrun et al., Discrete exterior calculus, arXiv:math/0508341v2 J. E. Marsden et al., Discrete Mechanics and Variational Integrators, Acta Num. 2001 |
Fertigkeiten | |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht |
Lehrveranstaltung L1808: Diskrete Differentialgeometrie |
Typ | Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Georg Friedrich Mayer-Lindenberg |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Diese Vorlesung befaßt sich mit geometrischen Aspekten von Differentialgleichungen und ihrer Bearbeitung auf den Rechner. Die benötigten Grundlagen aus linearer Algebra und Analysis werden zu Beginn resümiert. Anwendungen ergeben sich in der Behandlung gekrümmter Flächen, der klassischen Mechanik und Mechatronik, verschiedenen Typen von Feldgleichungen, in der Computergraphik und der Übertragung mathematischer Konstruktionen in Datentypen, Compilerfunktionen, Programmiersprachen und spezielle Rechenwerke. Stichworte: - Grundbegriffe aus der linearen Algebra, Tensoren, äußere Algebra, Clifford-Algebren, Tupeltypen - Grundbegriffe der Analysis in koordinatenfreier Formulierung, Vektorfelder und Differenzialformen, Integration, Diskretisierung - Lokale Differenzialgeometrie: Zusammenhänge, Symplektische Geometrie, Riemann'sche Geometrie, Diskretisierung - Globale Differenzialgeometrie: Mannigfaltigkeiten, Liegruppen, Faserbündel, Fourier-Zerlegung, Zufallsprozesse, Raum und Zeit |
Literatur |
Agricola, Friedrich, Vektoranalysis, Vieweg/Teubner 2010 A.C. Da Silva, Lectures on Symplectic Geometry, Springer L.N. Math. 1764 J. Snygg, Differential Geometry using Clifford's Algebra, Birkhäuser 2010 T. Frankel, The Geometry of Physics, Cambridge U. P. 2012 M.Desbrun et al., Discrete exterior calculus, arXiv:math/0508341v2 J.Marsden et al., Discrete Mechanics and Variational Integrators, Acta numerica. 2001 |
Modul M0673: Informationstheorie und Codierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die grundlegenden Definitionen zur informationstheoretischen Quantifizierung von Information. Sie kennen das Shannonsche Quellencodierungstheorem sowie das Kanalcodierungstheorem und können damit Grenzen der Kompression bzw. der fehlerfreien Datenübertragung bestimmen. Sie verstehen die Grundprinzipien der Datenkompression (Quellencodierung) und der fehlererkennenden und fehlerkorrigierenden Kanalcodierung. Sie sind mit den Prinzipien der Decodierung vertraut, insbesondere mit modernen Verfahren der iterativen Decodierung. Sie kennen grundlegende Codierverfahren, deren Eigenschaften und Decodierverfahren. |
Fertigkeiten |
Die Studierenden sind in der Lage, die Grenzen der Datenkompression bzw. der Datenübertragungsrate für gestörte Kanäle zu bestimmen und damit ein Übertragungsverfahren zu dimensionieren. Sie sind in der Lage, die Parameter eines fehlererkennenden bzw. fehlerkorrigierenden Kanalcodierungsverfahrens zum Erreichen gegebener Zielvorgaben abzuschätzen. Sie sind in der Lage, die Eigenschaften grundlegender Kanalcodierungs- und Decodierungsverfahren hinsichtlich Fehlerkorrektureigenschaften, Decodierverzögerung und Decodierkomplexität zu vergleichen und ein geeignetes Verfahren auszuwählen. Sie sind in der Lage, grundlegende Codier- und Decodierverfahren in Software zu implementieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten.
|
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Ingenieurswissenschaften (2 Kurse): Wahlpflicht Information and Communication Systems: Kernqualifikation: Pflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0436: Informationstheorie und Codierung |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Bossert, M.: Kanalcodierung. Oldenbourg. Friedrichs, B.: Kanalcodierung. Springer. Lin, S., Costello, D.: Error Control Coding. Prentice Hall. Roth, R.: Introduction to Coding Theory. Johnson, S.: Iterative Error Correction. Cambridge. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press. Gallager, R. G.: Information theory and reliable communication. Whiley-VCH Cover, T., Thomas, J.: Elements of information theory. Wiley. |
Lehrveranstaltung L0438: Informationstheorie und Codierung |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0711: Numerische Mathematik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0568: Numerische Mathematik II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0569: Numerische Mathematik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0627: Machine Learning and Data Mining |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain the difference between instance-based and model-based learning approaches, and they can enumerate basic machine learning technique for each of the two basic approaches, either on the basis of static data, or on the basis of incrementally incoming data . For dealing with uncertainty, students can describe suitable representation formalisms, and they explain how axioms, features, parameters, or structures used in these formalisms can be learned automatically with different algorithms. Students are also able to sketch different clustering techniques. They depict how the performance of learned classifiers can be improved by ensemble learning, and they can summarize how this influences computational learning theory. Algorithms for reinforcement learning can also be explained by students. |
Fertigkeiten |
Student derive decision trees and, in turn, propositional rule sets from simple and static data tables and are able to name and explain basic optimization techniques. They present and apply the basic idea of first-order inductive leaning. Students apply the BME, MAP, ML, and EM algorithms for learning parameters of Bayesian networks and compare the different algorithms. They also know how to carry out Gaussian mixture learning. They can contrast kNN classifiers, neural networks, and support vector machines, and name their basic application areas and algorithmic properties. Students can describe basic clustering techniques and explain the basic components of those techniques. Students compare related machine learning techniques, e.g., k-means clustering and nearest neighbor classification. They can distinguish various ensemble learning techniques and compare the different goals of those techniques. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Informationstechnologie: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0340: Machine Learning and Data Mining |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Rainer Marrone |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0510: Machine Learning and Data Mining |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Rainer Marrone |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1397: Modellprüfung - Beweiser und Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Görschwin Fey |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Grundlegende Kenntnisse zu Datenstrukturen und Algorithmen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende kennen
|
Fertigkeiten |
Studierende können
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit | Studierende erlernen mittels Zusatzmaterial selbständig vertiefende Zusammenhänge der Konzepte aus der Vorlesung und erweiterte Lösungsverfahren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Software: Wahlpflicht |
Lehrveranstaltung L1979: Modellprüfung - Beweiser und Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Correctness is a major concern in embedded systems. Model checking can fully automatically proof formal properties about digital hardware or software. Such properties are given in temporal logic, e.g., to prove "No two orthogonal traffic lights will ever be green." And how do the underlying reasoning algorithms work so effectively in practice despite a computational complexity of NP hardness and beyond?
But what are the limitations of model checking? Among other topics, the lecture will consider the following topics:
|
Literatur |
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA, USA. A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands. Selected research papers |
Lehrveranstaltung L1980: Modellprüfung - Beweiser und Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Görschwin Fey |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0552: 3D Computer Vision |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Rolf-Rainer Grigat |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain and describe the field of projective geometry. |
Fertigkeiten |
Students are capable of
With assistance from the teacher students are able to link the contents of the three subject areas (modules)
in practical assignments. |
Personale Kompetenzen | |
Sozialkompetenz |
Students can collaborate in a small team on the practical realization and testing of a system to reconstruct a three-dimensional scene or to evaluate volume data sets. |
Selbstständigkeit |
Students are able to solve simple tasks independently with reference to the contents of the lectures and the exercise sets. Students are able to solve detailed problems independently with the aid of the tutorial’s programming task. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten, Umfang Vorlesung und Materialien im StudIP |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0129: 3D Computer Vision |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0130: 3D Computer Vision |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0832: Advanced Topics in Control |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | H-infinity optimal control, mixed-sensitivity design, linear matrix inequalities |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Students can work in small groups and arrive at joint results. |
Selbstständigkeit |
Students are able to find required information in sources provided (lecture notes, literature, software documentation) and use it to solve given problems. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energiesystemtechnik: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Avionik und Eingebettete Systeme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0661: Advanced Topics in Control |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0662: Advanced Topics in Control |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0738: Digital Audio Signal Processing |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Udo Zölzer |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Signals and Systems |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Verfahren und Methoden der digitalen Audiosignalverarbeitung erklären. Sie können die wesentlichen physikalischen Effekte bei der Sprach- und Audiosignalverarbeitung erläutern und in Kategorien einordnen. Sie können einen Überblick der numerischen Methoden und messtechnischen Charakterisierung von Algorithmen zur Audiosignalverarbeitung geben. Sie können die erarbeiteten Algorithmen auf weitere Anwendungen im Bereich der Informationstechnik und Informatik abstrahieren. |
Fertigkeiten |
The students will be able to apply methods and techniques from audio signal processing in the fields of mobile and internet communication. They can rely on elementary algorithms of audio signal processing in form of Matlab code and interactive JAVA applets. They can study parameter modifications and evaluate the influence on human perception and technical applications in a variety of applications beyond audio signal processing. Students can perform measurements in time and frequency domain in order to give objective and subjective quality measures with respect to the methods and applications. |
Personale Kompetenzen | |
Sozialkompetenz |
The students can work in small groups to study special tasks and problems and will be enforced to present their results with adequate methods during the exercise. |
Selbstständigkeit |
The students will be able to retrieve information out of the relevant literature in the field and putt hem into the context of the lecture. They can relate their gathered knowledge and relate them to other lectures (signals and systems, digital communication systems, image and video processing, and pattern recognition). They will be prepared to understand and communicate problems and effects in the field audio signal processing. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Nachrichten- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Information and Communication Systems: Vertiefung Sichere und zuverlässige IT-Systeme, Schwerpunkt Software und Signalverarbeitung : Wahlpflicht Information and Communication Systems: Vertiefung Kommunikationssysteme, Schwerpunkt Signalverarbeitung: Wahlpflicht Microelectronics and Microsystems: Vertiefung Communication and Signal Processing: Wahlpflicht |
Lehrveranstaltung L0650: Digital Audio Signal Processing |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
- U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005. - U. Zölzer, Digitale Audio Signal Processing, 2nd Edition, J. Wiley & Sons, 2005. - U. Zölzer (Ed), Digital Audio Effects, 2nd Edition, J. Wiley & Sons, 2011.
|
Lehrveranstaltung L0651: Digital Audio Signal Processing |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Udo Zölzer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0623: Intelligent Systems in Medicine |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer | ||||||||||||
Zulassungsvoraussetzungen | None | ||||||||||||
Empfohlene Vorkenntnisse |
|
||||||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||||||
Fachkompetenz | |||||||||||||
Wissen |
The students are able to analyze and solve clinical treatment planning and decision support problems using methods for search, optimization, and planning. They are able to explain methods for classification and their respective advantages and disadvantages in clinical contexts. The students can compare different methods for representing medical knowledge. They can evaluate methods in the context of clinical data and explain challenges due to the clinical nature of the data and its acquisition and due to privacy and safety requirements. |
||||||||||||
Fertigkeiten |
The students can give reasons for selecting and adapting methods for classification, regression, and prediction. They can assess the methods based on actual patient data and evaluate the implemented methods. |
||||||||||||
Personale Kompetenzen | |||||||||||||
Sozialkompetenz |
The students discuss the results of other groups, provide helpful feedback and can incoorporate feedback into their work. |
||||||||||||
Selbstständigkeit |
The students can reflect their knowledge and document the results of their work. They can present the results in an appropriate manner. |
||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 | ||||||||||||
Leistungspunkte | 6 | ||||||||||||
Studienleistung |
|
||||||||||||
Prüfung | Klausur | ||||||||||||
Prüfungsdauer und -umfang | 90 Minuten | ||||||||||||
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0331: Intelligent Systems in Medicine |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- methods for search, optimization, planning, classification, regression and prediction in a clinical context |
Literatur |
Russel & Norvig: Artificial Intelligence: a Modern Approach, 2012 |
Lehrveranstaltung L0334: Intelligent Systems in Medicine |
Typ | Projektseminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0333: Intelligent Systems in Medicine |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0746: Microsystem Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Manfred Kasper | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse | Basic courses in physics, mathematics and electric engineering | ||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students know about the most important technologies and materials of MEMS as well as their applications in sensors and actuators. |
||||||||
Fertigkeiten |
Students are able to analyze and describe the functional behaviour of MEMS components and to evaluate the potential of microsystems. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to solve specific problems alone or in a group and to present the results accordingly. |
||||||||
Selbstständigkeit |
Students are able to acquire particular knowledge using specialized literature and to integrate and associate this knowledge with other fields. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | zweistündig | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Elektrotechnik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht |
Lehrveranstaltung L0680: Microsystem Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Manfred Kasper |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Object and goal of MEMS Scaling Rules Lithography Film deposition Structuring and etching Energy conversion and force generation Electromagnetic Actuators Reluctance motors Piezoelectric actuators, bi-metal-actuator Transducer principles Signal detection and signal processing Mechanical and physical sensors Acceleration sensor, pressure sensor Sensor arrays System integration Yield, test and reliability |
Literatur |
M. Kasper: Mikrosystementwurf, Springer (2000) M. Madou: Fundamentals of Microfabrication, CRC Press (1997) |
Lehrveranstaltung L0682: Microsystem Engineering |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Manfred Kasper |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
Examples of MEMS components Layout consideration Electric, thermal and mechanical behaviour Design aspects |
Literatur |
Wird in der Veranstaltung bekannt gegeben |
Modul M0768: Microsystems Technology in Theory and Practice |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Hoc Khiem Trieu | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Basics in physics, chemistry, mechanics and semiconductor technology |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Students are able • to present and to explain current fabrication techniques for microstructures and especially methods for the fabrication of microsensors and microactuators, as well as the integration thereof in more complex systems • to explain in details operation principles of microsensors and microactuators and • to discuss the potential and limitation of microsystems in application. |
||||||||
Fertigkeiten |
Students are capable • to analyze the feasibility of microsystems, • to develop process flows for the fabrication of microstructures and • to apply them. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students are able to prepare and perform their lab experiments in team work as well as to present and discuss the results in front of audience. |
||||||||
Selbstständigkeit |
None |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 30 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Nanoelektronik und Mikrosystemtechnik: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Microelectronics and Microsystems: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0724: Microsystems Technology |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
M. Madou: Fundamentals of Microfabrication, CRC Press, 2002 N. Schwesinger: Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009 T. M. Adams, R. A. Layton:Introductory MEMS, Springer, 2010 G. Gerlach; W. Dötzel: Introduction to microsystem technology, Wiley, 2008 |
Lehrveranstaltung L0725: Microsystems Technology |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1249: Numerische Verfahren in der medizinischen Bildgebung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Linear Algebra, insbesondere im Lösen von Gleichungssystemen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, für verschiedene tomographische Bildgebungsmodalitäten Rekonstruktionsverfahren zu beschreiben. Insbesondere können die in der Computertomographie verwendeten Methoden, wie die gefilterte Rückprojektion, erläutert werden. Die Studierenden sind in der Lage die inversen Probleme hinter den verschiedenen Bildgebungsverfahren zu formulieren und Lösungsansätze zu beschreiben. |
Fertigkeiten |
Die Studierenden sind dazu in der Lage, Rekonstruktionsverfahren zu implementieren und diese anhand von tomographischen Messdaten zu testen. Sie können die rekonstruierten Bilder visualisieren und die Qualität ihrer Daten und Resultate und beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Elektrotechnik: Vertiefung Medizintechnik: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Bio- und Medizintechnik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1694: Numerische Verfahren in der medizinischen Bildgebung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
In der Vorlesung werden numerische Verfahren in der medizinischen Bildgebung vorgestellt. Dies beinhaltet sowohl die physikalischen Grundprinzipien der tomographischen Verfahren als auch Algorithmen für die Bildrekonstruktion. Neben Radonbasierten Verfahren wie die Computertomographie werden magnetische Verfahren wie die Magnetresonanztomographie und das Magnetic-Particle-Imaging behandelt. |
Literatur |
Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2000 Bildgebende Systeme für die medizinische Diagnostik; H. Morneburg (Hrsg.); Publicis MCD, München, 1995 Introduction to the Mathematics of Medical Imaging; C. L.Epstein; Siam, Philadelphia, 2008 Medical Image Processing, Reconstruction and Restoration; J. Jan; Taylor and Francis, Boca Raton, 2006 Principles of Magnetic Resonance Imaging; Z.-P. Liang and P. C. Lauterbur; IEEE Press, New York, 1999 |
Lehrveranstaltung L1695: Numerische Verfahren in der medizinischen Bildgebung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0549: Wissenschaftliches Rechnen und Genauigkeit |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in numerischer Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten haben vertiefte Kenntnisse von numerischen und seminumerischen Methoden mit dem Ziel, prinzipiell exakte und genaue Fehlerschranken zu berechnen. Für diverse, grundlegende Problemstellungen kennen sie Algorithmen mit der Verifikation der Korrektheit des Resultats. |
Fertigkeiten |
Die Studenten können für grundlegende Probleme Algorithmen entwerfen, die korrekte Fehlerschranken für die Lösung berechnen und gleichzeitig die Empfindlichkeit in bezug auf Variation der Eingabedaten analysieren.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0122: Einschließungsmethoden |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Neumaier: Interval Methods for Systems of Equations. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1990 S.M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19:287-449, 2010. |
Lehrveranstaltung L1208: Einschließungsmethoden |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Fachmodule der Vertiefung Wissenschaftliches Rechnen
Die Vertiefung, in der die Mathematische Modellbildung eine besondere Rolle spielt, bietet einerseits eine umfangreiche Ausbildung für Branchen der Informatik in verschiedenen Ingenieurbereichen wie z.B. Luftfahrt, Schifffahrt usw. Andererseits wird in dieser Vertiefung eine fundierte Ausbildung für eines der gesellschaftlich bedeutsamsten Forschungsgebiete in Informatik, Mathematik und Ingenieurwesen angeboten, so dass Absolventen vielfältige Möglichkeiten zur wissenschaftlichen Weiterqualifikation geboten werden.
Modul M1244: Technischer Ergänzungskurs für IIWMS (laut FSPO) |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erwerben weitergehende Kenntnisse in einem an der TUHH vertretenen technischen Fach. |
Fertigkeiten | Die Studierenden erwerben weitergehende Fertigkeiten in einem an der TUHH ansässigen technischen Fach. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden sind in der Lage, alleine oder in kleinen Gruppen weitergehende Kenntnisse und Fähigkeiten in einem an der TUHH vertretenen technischen Fach zu erwerben. |
Selbstständigkeit | Die Studierenden können die wesentlichen Inhalte des technischen Faches im Rahmen eines Vortrages oder einer Diskussion wiedergeben. |
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 12 |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht |
Modul M0716: Hierarchische Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 20 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung ll. Modelling and Simulation of Complex Systems (TUHH): Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0585: Hierarchische Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur | W. Hackbusch: Hierarchische Matrizen: Algorithmen und Analysis |
Lehrveranstaltung L0586: Hierarchische Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0586: Effiziente Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Programmieren in Matlab und/oder C Grundkenntnisse in diskreter Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Theorien, Zusammenhänge und Methoden der Netzwerkalgorithmen und insbesondere deren Datenstrukturen erklären. Sie können das Rechenzeitverhalten wesentlicher Netzwerkalgorithmen beschreiben und analysieren. Die Studierenden können insbesondere zwischen effizient lösbaren und NP-harten Aufgabenstellungen diskriminieren. |
Fertigkeiten |
Die Studenten können komplexe Problemstellungen analysieren und die Möglichkeiten der Transformation in Netzwerkalgorithmen bestimmen. Sie können grundlegende Algorithmen und Datenstrukturen der linearen Optimierung und Netzwerktheorie effizient implementieren und mögliche Schwachstellen identifizieren. Sie können die Auswirkung der Nutzung verschiedener effizienter Datenstrukturen selbständig analysieren und jene gegebenenfalls einsetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0120: Effiziente Algorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Lineare Optimierung - Datenstrukturen - Leftist heaps - Minimum spanning tree - Shortest path - Maximum flow - NP-harte Probleme via max-cut |
Literatur |
R. E. Tarjan: Data Structures and Network Algorithms. CBMS 44, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983. Wesley, 2011 http://algs4.cs.princeton.edu/home/ V. Chvátal, ``Linear Programming'', Freeman, New York, 1983. |
Lehrveranstaltung L1207: Effiziente Algorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0955: Matrixtheorie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in diskreter Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die grundlegenden Theorien, Zusammenhänge und Methoden der Matrixtheorie. Darüber hinaus kennen sie die Verbindung einzelner Elemente der Matrixtheorie und anderen Teilgebieten der Mathematik, Informatik und Ingenieurwissenschaften. |
Fertigkeiten |
Die Studierenden können komplexe Problemstellungen aus der Matrixtheorie analysieren und auch unorthodoxe Lösungsmöglichkeiten anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht |
Lehrveranstaltung L0123: Numerische Analysis und Matrixtheorie |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Ausgewählte Kapitel aus der Matrixtheorie |
Literatur |
R.A. Horn and Ch. Johnson, Matrix Analysis. Cambridge University Press, 1985 M. Fiedler: Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers, Dordrecht, 1986 G.H. Golub, Ch. Van Loan: Matrix Computations. third edition. Johns Hopkins University Press, Baltimore, 1996 |
Lehrveranstaltung L1209: Numerische Analysis und Matrixtheorie |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0720: Matrixalgorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Jens-Peter Zemke |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung ll. Modelling and Simulation of Complex Systems (TUHH): Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L0984: Matrixalgorithmen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Jens-Peter Zemke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur | Skript |
Lehrveranstaltung L0985: Matrixalgorithmen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Dr. Jens-Peter Zemke |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0808: Finite Elements Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students possess an in-depth knowledge regarding the derivation of the finite element method and are able to give an overview of the theoretical and methodical basis of the method. |
||||||||
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable finite elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
||||||||
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own finite element routines. Problems can be identified and the results are critically scrutinized. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 120 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Kernqualifikation: Pflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Lufttransportsysteme und Flugzeugvorentwurf: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Kernqualifikation: Pflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Pflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht |
Lehrveranstaltung L0291: Finite Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
- General overview on modern engineering |
Literatur |
Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin |
Lehrveranstaltung L0804: Finite Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1150: Kontinuumsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der linearen Kontinuumsmechanik wie z.B. im Modul Mechanik II unterrichtet (Kräfte und Drehmomente, Spannungen, lineare Verzerrungen, Schnittprinzip, linear-elastische Konstitutivgesetze, Verzerrungsenergie). |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können grundlegende Konzepte zur Berechnung von mechanischem Materialverhalten erklären. Sie können Methoden der Kontinuumsmechanik im größeren Kontext erläutern. |
Fertigkeiten |
Die Studierenden können Bilanzgleichungen aufstellen und Grundlagen der Deformationstheorie elastischer Körper anwenden und auf diesem Gebiet spezifische Aufgabenstellungen sowohl anwendungsorientiert als auch forschungsorientiert bearbeiten |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten in Schriftform präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der Kontinuumsmechanik identifizieren und lösen und sich dafür benötigtes Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L1533: Kontinuumsmechanik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Lehrveranstaltung L1534: Kontinuumsmechanik Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
R. Greve: Kontinuumsmechanik: Ein Grundkurs für Ingenieure und Physiker I-S. Liu: Continuum Mechanics, Springer |
Modul M0751: Technische Schwingungslehre |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können Begriffe und Zusammenhänge der Technischen Schwingungslehre wiedergeben und weiterentwickeln. |
Fertigkeiten | Studierende können Methoden der Technischen Schwingungslehre benennen und weiterentwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können auch in Gruppen zu Arbeitsergebnissen kommen. |
Selbstständigkeit | Studierende können sich eigenständig Forschungsaufgaben der Technischen Schwingungslehre erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Pflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0701: Technische Schwingungslehre |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Lineare und Nichtlineare Ein- und Mehrfreiheitsgradschwingungen und Wellen. |
Literatur | K. Magnus, K. Popp, W. Sextro: Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen. Springer Verlag, 2013. |
Modul M1152: Skalenübergreifende Modellierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der linearen und nichtlinearen Kontinuumsmechanik wie z.B. in den Modulen Mechanik II und Kontinuumsmechanik unterrichtet (Kräfte und Drehmomente, Spannungen, lineare und nichtlineare Verzerrungsmaße, Schnittprinzip, lineare und nichtlineare Konstitutivgesetze, Verzerrungsenergie). |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Verformungsmechanismen auf den einzelnen Längenskalen beschreiben und geeignete Modellierungskonzepte für die Beschreibung benennen. |
Fertigkeiten |
Die Studierende können erste Abschätzungen bzgl. des effektiven Materialverhaltens ausgehend von der vorliegenden Mikrostruktur treffen. Sie können das Schädigungsverhalten mit mikromechanischen Vorgängen korrelieren und diese beschreiben. Insbesondere können sie ihre Kenntnisse auf verschiedene Problemstellungen aus der Materialwissenschaft anwenden und Materialmodelle bewerten und implementieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der skalenübergreifenden Modellierung identifizieren und lösen und sich dafür benötigtes Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht |
Lehrveranstaltung L1537: Skalenübergreifende Modellierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch G. Gottstein., Physical Foundations of Materials Science, Springer |
Lehrveranstaltung L1538: Skalenübergreifende Modellierung Übung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
D. Gross, T. Seelig, Bruchmechanik: Mit einer Einführung in die Mikromechanik, Springer T. Zohdi, P. Wriggers: An Introduction to Computational Micromechanics D. Raabe: Computational Materials Science, The Simulation of Materials, Microstructures and Properties, Wiley-Vch G. Gottstein., Physical Foundations of Materials Science, Springer |
Modul M0692: Approximation und Stabilität |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner | ||||||||
Zulassungsvoraussetzungen | Keine | ||||||||
Empfohlene Vorkenntnisse |
|
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
Die Studierenden können
|
||||||||
Fertigkeiten |
Die Studierenden können
|
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten und ihre Ergebnisse in geeigneter Weise vor der Gruppe präsentieren (z.B. als Seminarvortrag). |
||||||||
Selbstständigkeit |
|
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Mündliche Prüfung | ||||||||
Prüfungsdauer und -umfang | 20 min | ||||||||
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung l. Numerics (TUHH): Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0487: Approximation und Stabilität |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Marko Lindner |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Es geht um die Lösung folgender Grundprobleme der linearen Algebra
in Funktionenräumen (d.h. in Vektorräumen mit unendlicher Dimension) durch stabile Approximation des Problems in einem Raum mit endlicher Dimension. Ablauf:
|
Literatur |
|
Lehrveranstaltung L0488: Approximation und Stabilität |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Marko Lindner |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0714: Numerik gewöhnlicher Differentialgleichungen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Chemical and Bioprocess Engineering: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Elektrotechnik: Vertiefung Regelungs- und Energietechnik: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung l. Numerics (TUHH): Pflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0576: Numerik gewöhnlicher Differentialgleichungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Christian Seifert, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Numerische Verfahren für Anfangswertprobleme
Numerische Verfahren für Randwertaufgaben
|
Literatur |
|
Lehrveranstaltung L0582: Numerik gewöhnlicher Differentialgleichungen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1281: Ausgewählte Themen der Schwingungslehre |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Schwingungslehre |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende sind in der Lage bestehende Begriffe und Konzepte der Höheren Schwingungslehre wiederzugeben und neue Begriffe und Konzepte zu entwickeln. |
Fertigkeiten | Studierende sind in der Lage bestehende Verfahren und Methoden der Höheren Schwingungslehre anzuwenden und neue Verfahren und Methoden zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können Arbeitsergebnisse auch in Gruppen erzielen. |
Selbstständigkeit | Studierende können eigenständig vorgegebene Forschungsaufgaben angehen und selbständig neue Forschungsaufgaben identifizieren und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Produktentwicklung und Produktion: Wahlpflicht |
Lehrveranstaltung L1743: Ausgewählte Themen der Schwingungslehre |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann, Merten Tiedemann, Sebastian Kruse |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Aktuelle Forschungsthemen der Schwingungslehre. |
Literatur | Aktuelle Veröffentlichungen |
Modul M0752: Nichtlineare Dynamik |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende sind in der Lage bestehende Begriffe und Konzepte der Nichtlinearen Dynamik wiederzugeben und neue Begriffe und Konzepte zu entwickeln. |
Fertigkeiten | Studierende sind in der Lage bestehende Verfahren und Methoden der Nichtlinearen Dynamik anzuwenden und neue Verfahren und Methoden zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können Arbeitsergebnisse auch in Gruppen erzielen. |
Selbstständigkeit | Studierende können eigenständig vorgegebene Forschungsaufgaben angehen und selbständig neue Forschungsaufgaben identifizieren und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Flugzeug-Systemtechnik: Vertiefung Flugzeugsysteme: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Internationales Wirtschaftsingenieurwesen: Vertiefung II. Mechatronik: Wahlpflicht Mechanical Engineering and Management: Vertiefung Mechatronik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0702: Nichtlineare Dynamik |
Typ | Integrierte Vorlesung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Grundlagen der Nichtlinearen Dynamik. |
Literatur | S. Strogatz: Nonlinear Dynamics and Chaos. Perseus, 2013. |
Modul M0711: Numerische Mathematik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Intelligence Engineering: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0568: Numerische Mathematik II |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Jens-Peter Zemke, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0569: Numerische Mathematik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne, Dr. Patricio Farrell |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0807: Boundary Element Methods |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Otto von Estorff | ||||||||
Zulassungsvoraussetzungen | None | ||||||||
Empfohlene Vorkenntnisse |
Mechanics I (Statics, Mechanics of Materials) and Mechanics II (Hydrostatics, Kinematics, Dynamics) |
||||||||
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht | ||||||||
Fachkompetenz | |||||||||
Wissen |
The students possess an in-depth knowledge regarding the derivation of the boundary element method and are able to give an overview of the theoretical and methodical basis of the method. |
||||||||
Fertigkeiten |
The students are capable to handle engineering problems by formulating suitable boundary elements, assembling the corresponding system matrices, and solving the resulting system of equations. |
||||||||
Personale Kompetenzen | |||||||||
Sozialkompetenz |
Students can work in small groups on specific problems to arrive at joint solutions. |
||||||||
Selbstständigkeit |
The students are able to independently solve challenging computational problems and develop own boundary element routines. Problems can be identified and the results are critically scrutinized. |
||||||||
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 | ||||||||
Leistungspunkte | 6 | ||||||||
Studienleistung |
|
||||||||
Prüfung | Klausur | ||||||||
Prüfungsdauer und -umfang | 90 min | ||||||||
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Vertiefung Tragwerke: Wahlpflicht Bauingenieurwesen: Vertiefung Tiefbau: Wahlpflicht Bauingenieurwesen: Vertiefung Hafenbau und Küstenschutz: Wahlpflicht Energietechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechanical Engineering and Management: Vertiefung Produktentwicklung und Produktion: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0523: Boundary Element Methods |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
- Boundary value problems - Hands-on Sessions (programming of BE routines) |
Literatur |
Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden |
Lehrveranstaltung L0524: Boundary Element Methods |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Otto von Estorff |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0653: Hochleistungsrechnen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die Grundlagen der Numerik und Algorithmen von Hochleistungsrechnern unter Verwendung von aktuellen Hardwarebeispielen erläutern. Studierende sind in der Lage, die algorithmische Verknüpfung von Hard- und Softwaremerkmalen zu erklären. |
Fertigkeiten |
Studierende sind durch ihre Kenntnisse in der Lage, die algorithmischen Effizienz von Simulationsverfahren zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende sind befähigt im Team Algorithmen zu entwickeln und zu kodieren. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 1.5h |
Zuordnung zu folgenden Curricula |
Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L0242: Grundlagen des Hochleistungsrechnens |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Grundlagen moderner Hardwarearchitektu, kritische Aspekte der rechnerischen bzw. hardwaretechnischen Umsetzung exemplarischer Algorithmen, Konzepte für Shared- und Distributed-Memory-System, Programmierkonzepte für Beschleunigerhardware (GPGPUs) |
Literatur |
1)
|
Lehrveranstaltung L1416: Grundlagen des Hochleistungsrechnens |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1405: Randomisierte Algorithmen und Zufällige Graphen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informations- und Kommunikationstechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Informatik-Ingenieurwesen (Weiterentwicklung): Vertiefung Kernfächer Mathematik (2 Kurse): Wahlpflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Vertiefung l. Numerics (TUHH): Wahlpflicht |
Lehrveranstaltung L2010: Randomisierte Algorithmen und Zufällige Graphen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Randomized Algorithms:
|
Literatur |
|
Lehrveranstaltung L2011: Randomisierte Algorithmen und Zufällige Graphen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz, Prof. Volker Turau |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1268: Lineare und Nichtlineare Wellen |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Norbert Hoffmann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Gute Kenntnisse in Mathematik, Mechanik und Dynamik. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende sind in der Lage, bestehende Begriffe und Konzepte der Wellenmechanik wiederzugeben und neue Begriffe und Konzepte zu entwickeln. |
Fertigkeiten | Studierende sind in der Lage bestehende Verfahren und Methoden der Wellenmechanik anzuwenden und neue Verfahren und Methoden zu entwickeln. |
Personale Kompetenzen | |
Sozialkompetenz | Studierende können Arbeitsergebnisse auch in Gruppen erzielen. |
Selbstständigkeit | Studierende können eigenständig vorgegebene Forschungsaufgaben angehen und selbständig neue Forschungsaufgaben identifizieren und bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Schiffbau und Meerestechnik: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Maritime Technik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht |
Lehrveranstaltung L1737: Lineare und Nichtlineare Wellen |
Typ | Projekt-/problembasierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Norbert Hoffmann, Dr. Antonio Papangelo |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Einführung in die Dynamik Linearer und Nichtlinearer Wellen. |
Literatur |
G.B. Witham, Linear and Nonlinear Waves. Wiley 1999. C.C. Mei, Theory and Applications of Ocean Surface Waves. World Scientific 2004. |
Modul M1020: Numerik partieller Differentialgleichungen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
Die Studierenden sind in der Lage, zu gegebenen partiellen Differentialgleichungsproblemen numerische Lösungansätze zu formulieren, theoretische Konvergenzaussagen zu treffen sowie diese Ansätze in der Praxis durchzuführen, d.h. zu implementieren und zu testen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in heterogen zusammengesetzten Teams (d.h. aus unterschiedlichen Studiengängen und mit unterschiedlichem Hintergrundwissen) zusammenarbeiten und sich theoretische Grundlagen erklären. |
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 25 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht |
Lehrveranstaltung L1247: Numerik partieller Differentialgleichungen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
Elementare Theorie und Numerik Partielle Diferentialgleichungen:
|
Literatur |
Dietrich Braess: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Berlin u.a., Springer 2007 Susanne Brenner, Ridgway Scott: The Mathematical Theory of Finite Element Methods, Springer, 2008 |
Lehrveranstaltung L1248: Numerik partieller Differentialgleichungen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | NN |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1151: Werkstoffmodellierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Cyron |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundlagen der linearen und nichtlinearen Kontinuumsmechanik wie z.B. in den Modulen Mechanik II und Kontinuumsmechanik unterrichtet (Kräfte und Drehmomente, Spannungen, lineare und nichtlineare Verzerrungsmaße, Schnittprinzip, lineare und nichtlineare Konstitutivgesetze, Verzerrungsenergie). |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Grundlagen von mehrdimensionalen Werkstoffgesetzen erläutern. |
Fertigkeiten |
Die Studierenden können eigene Materialmodelle in ein Finite Elemente Programm implementieren. Insbesondere können Sie Ihre Kenntnisse auf verschiedene Problemstellung aus der Materialwissenschaft anwenden und Materialmodelle entsprechend bewerten.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können Lösungen entwickeln, gegenüber Spezialisten präsentieren und Ideen weiterentwickeln. |
Selbstständigkeit |
Die Studierenden können ihre eigenen Stärken und Schwächen ermitteln. Sie können selbstständig und eigenverantwortlich Probleme im Bereich der Werkstoffmodellierung identifizieren und lösen und sich dafür benötigtes Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 45 min |
Zuordnung zu folgenden Curricula |
Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Materialwissenschaft: Vertiefung Modellierung: Wahlpflicht Mechanical Engineering and Management: Vertiefung Werkstoffe: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Produktentwicklung, Werkstoffe und Produktion: Kernqualifikation: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Werkstofftechnik: Wahlpflicht |
Lehrveranstaltung L1535: Werkstoffmodellierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Eine der wichtigsten Fragen bei der Modellierung mechanischer
Systeme in der Praxis ist, wie man das Materialverhalten der
einzelnen Bauteile modelliert. Neben einfacher isotroper
Elastizität sind dabei von besonderer Bedeutung:
|
Literatur |
Lehrveranstaltung L1536: Werkstoffmodellierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Christian Cyron |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0549: Wissenschaftliches Rechnen und Genauigkeit |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in numerischer Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studenten haben vertiefte Kenntnisse von numerischen und seminumerischen Methoden mit dem Ziel, prinzipiell exakte und genaue Fehlerschranken zu berechnen. Für diverse, grundlegende Problemstellungen kennen sie Algorithmen mit der Verifikation der Korrektheit des Resultats. |
Fertigkeiten |
Die Studenten können für grundlegende Probleme Algorithmen entwerfen, die korrekte Fehlerschranken für die Lösung berechnen und gleichzeitig die Empfindlichkeit in bezug auf Variation der Eingabedaten analysieren.
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Studienleistung | Keine |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Intelligenz-Engineering: Wahlpflicht Computer Science: Vertiefung Computer- und Software-Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Systemtechnik - Robotik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Wissenschaftliches Rechnen: Wahlpflicht Theoretischer Maschinenbau: Vertiefung Numerik und Informatik: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs: Wahlpflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht Verfahrenstechnik: Vertiefung Chemische Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0122: Einschließungsmethoden |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Neumaier: Interval Methods for Systems of Equations. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1990 S.M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19:287-449, 2010. |
Lehrveranstaltung L1208: Einschließungsmethoden |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Thesis
Modul M-002: Masterarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | keine |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 900, Präsenzstudium 0 |
Leistungspunkte | 30 |
Studienleistung | Keine |
Prüfung | Abschlussarbeit |
Prüfungsdauer und -umfang | laut ASPO |
Zuordnung zu folgenden Curricula |
Bauingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Chemical and Bioprocess Engineering: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht Energietechnik: Abschlussarbeit: Pflicht Environmental Engineering: Abschlussarbeit: Pflicht Flugzeug-Systemtechnik: Abschlussarbeit: Pflicht Global Innovation Management: Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Information and Communication Systems: Abschlussarbeit: Pflicht Internationales Wirtschaftsingenieurwesen: Abschlussarbeit: Pflicht Joint European Master in Environmental Studies - Cities and Sustainability: Abschlussarbeit: Pflicht Logistik, Infrastruktur und Mobilität: Abschlussarbeit: Pflicht Materialwissenschaft: Abschlussarbeit: Pflicht Mathematical Modelling in Engineering: Theory, Numerics, Applications: Abschlussarbeit: Pflicht Mechanical Engineering and Management: Abschlussarbeit: Pflicht Mechatronics: Abschlussarbeit: Pflicht Mediziningenieurwesen: Abschlussarbeit: Pflicht Microelectronics and Microsystems: Abschlussarbeit: Pflicht Produktentwicklung, Werkstoffe und Produktion: Abschlussarbeit: Pflicht Regenerative Energien: Abschlussarbeit: Pflicht Schiffbau und Meerestechnik: Abschlussarbeit: Pflicht Ship and Offshore Technology: Abschlussarbeit: Pflicht Teilstudiengang Lehramt Metalltechnik: Abschlussarbeit: Pflicht Theoretischer Maschinenbau: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht Wasser- und Umweltingenieurwesen: Abschlussarbeit: Pflicht |