Modulhandbuch
Bachelor
Informatik-Ingenieurwesen
Kohorte: Wintersemester 2014
Stand: 17. März 2017
Inhalt
Ingenieurdisziplinen nutzen Ergebnisse der Informatik- und Mathematikforschung in immer stärkerem Ausmaß, sowohl bei der Entwicklung von Produkten als auch in den Produkten selbst. Dieser Trend wird sich durchaus noch verstärken. Neue Ergebnisse in der Informatik und Mathematik werden so zu einem wichtigen Innovationsfaktor des Ingenieurwesens und sind daher zentrale Kompetenzfelder eines Ingenieurs und einer Technischen Universität.
Durch neue Forschungsresultate können flexible Systeme aufgebaut werden, so dass die bereitgestellte Funktionalität automatisch an aktuelle Anforderungen angepasst werden kann. Dabei ist zu beachten, dass nicht nur -- wie vielfach angenommen -- einfache, oft und schnell auszuführende Handlungsanweisungen vorzusehen sind, um die gewünschte Funktionalität zu erzielen. Es müssen Modelle verschiedener Art erstellt und sinnvoll mit Programmen verarbeitet werden. Dieses bedeutet in der Praxis auch, dass kombinierte Hardware- und Softwaresysteme automatisch aus Modellbeschreibungen erstellt werden, wobei ggf. sogar eine dynamische Rekonfigurierung von Hard- und Softwarekomponenten angestrebt werden kann, um Anforderungen an die Flexibilität von Systemen in der Praxis gerecht zu werden. Die kombinierte zustandsorientierte und kontinuierliche Modellierung von Systemverhalten erlangt eine immer größere Bedeutung in einer Welt, in der Hard- und Softwarekomponenten in engem Verbund zusammenwirken.
In diesem Rahmen wird deutlich, dass gewünschte oder ungewünschte Eigenschaften eines technischen Systems automatisch überprüft werden müssen, um Sicherheits- und Zuverlässigkeitsanforderungen zu erfüllen. Im Falle einer dynamischen Rekonfigurierung muss die Erfüllung bestimmter gewünschter Eigenschaften (oder die Abwesenheit ungewünschter Eigenschaften) sogar während der Lebenszeit eines Systems überprüft werden, um einen sicheren und optimalen Betrieb technischer Systeme zu gewährleisten (z.B. in der Medizin oder in der industriellen Automatisierung). Eventuell kommen im Betrieb auch neu zu überprüfende Eigenschaften hinzu.
Durch Simulation physikalischer Systeme können deren Eigenschaften schon vor der Produktionsphase untersucht und optimiert werden. Neue numerische Verfahren erlauben einerseits die exaktere Vorhersage von Verhalten und andererseits die Verwendung von neuartigen, ausdrucksstarken Modellierungsformen für Ingenieurprodukte der Zukunft. Wichtig ist, dass nicht nur isolierte Teilaspekte separat untersucht werden. Zustandsorientierte und kontinuierliche Modelle des Verhaltens von Systemen müssen in zunehmendem Maße integriert werden, um realistische Systeme, z.B. Robotersysteme oder eingebettete Systeme, die in industriellen oder auch in medizinischen Kontexten eingesetzt werden, beschreiben zu können.
Die Welt wird geprägt durch den globalen Informationsaustausch. Der in der Mikroelektronik begonnene Fortschritt hat seinen Weg längst über die traditionelle Datenverarbeitung zur Softwaretechnologie in alltägliche Lebensbereiche gefunden. Viele denkbare Visionen stehen erst am Anfang ihrer Realisierung. Die Ingenieurausbildung profitiert entscheidend von der Informatik, und die Informatik profitiert in erheblichem Maße von den im Ingenieurwesen verwendeten Modellierungsformen. Um für die Anforderungen der Zukunft gerüstet zu sein, ist die kombinierte Ausbildung im Studiengang Informatik-Ingenieurwesen also ein besonders nachhaltiges Ausbildungsprinzip, sowohl für die Industrie als auch für die Forschung.
Informatik-Ingenieurwesen flexibilisiert und öffnet die Grenze zwischen Hard- und Software. Entscheidungen, welche Teile eines Systems günstiger in Hardware oder besser mit Hilfe flexibler Software realisiert werden sollten, können nur auf der Basis solider Kenntnisse beider Disziplinen, sowohl der Informatik als auch des Ingenieurwesens, getroffen und ausgeführt werden. Der Studiengang führt in die Problemlage ein und wird beiden wesentlichen Aspekten gerecht.
Aufbauend auf einer integrierten Informatik- und Ingenieurausbildung können die Studierenden für den Bachelor-Abschluss eine Vertiefung
• Informatik oder
• Ingenieurwesen
zur Ausprägung ihres Studium wählen.
Im Informatik-Ingenieur-Masterstudium wählt der Studierende später nach Wunsch eine der folgenden Vertiefungen:
• Systemtechnik und Robotik
• Wissenschaftliches Rechnen
• Zuverlässige Einbettete Systeme / Cyber-physische Systeme
wobei die Vertiefungen durch die Studierenden flexibel durch Wahl von Modulen aus dem IIW-Gesamtprogramm in neue Richtungen weiterentwickelt werden können.
Modul M0561: Diskrete Algebraische Strukturen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine. |
Empfohlene Vorkenntnisse |
Abiturkenntnisse in Mathematik. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Wissen: Die Studierenden kennen
|
Fertigkeiten |
Fertigkeiten: Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachbüchern selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung Mathematik: Wahlpflicht |
Lehrveranstaltung L0164: Diskrete Algebraische Strukturen |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0165: Diskrete Algebraische Strukturen |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0575: Prozedurale Programmierung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Elementare Handhabung eines PC Elementare Mathematikkenntnisse |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden erwerben folgendes Wissen:
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden erwerben folgende Kompetenzen:
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0197: Prozedurale Programmierung |
Typ | Vorlesung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
Kernighan, Brian W (Ritchie, Dennis M.;) Sedgewick, Robert Kaiser, Ulrich (Kecher, Christoph.;) Wolf, Jürgen |
Lehrveranstaltung L0201: Prozedurale Programmierung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0202: Prozedurale Programmierung |
Typ | Laborpraktikum |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0577: Nichttechnische Ergänzungskurse im Bachelor |
Modulverantwortlicher | Dagmar Richter |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | siehe jeweilige Veranstaltungsbeschreibung |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studienbereich Nichttechnische Wahlpflichtfächer vermittelt die in Hinblick auf das Ausbildungsprofil der TUHH nötigen Kompetenzen, die ingenieurwissenschaftliche Fachlehre fördern aber nicht abschließend behandeln kann: Eigenverantwortlichkeit, Selbstführung, Zusammenarbeit und fachliche wie personale Leitungsbefähigung der zukünftigen Ingenieurinnen und Ingenieure. Er setzt diese Ausbildungsziele in seiner Lehrarchitektur, den Lehr-Lern-Arrangements, den Lehrbereichen und durch Lehrangebote um, in denen sich Studierende wahlweise für spezifische Kompetenzen und ein Kompetenzniveau auf Bachelor- oder Masterebene qualifizieren können. Die Lehrangebote sind jeweils in einem Modulkatalog Nichttechnische Ergänzungskurse zusammengefasst. Die Lehrarchitektur besteht aus einem studiengangübergreifenden Pflichtstudienangebot. Durch dieses zentral konzipierte Lehrangebot wird die Profilierung der TUHH Ausbildung auch im „Nichttechnischen Studienbereich“ gewährleistet. Die Lernarchitektur erfordert und übt eigenverantwortliche Bildungsplanung in Hinblick auf den individuellen Kompetenzaufbau ein und stellt dazu Orientierungswissen zu thematischen Schwerpunkten von Veranstaltungen bereit. Das über den gesamten Studienverlauf begleitend studierbare Angebot kann ggf. in ein-zwei Semestern studiert werden. Angesichts der bekannten, individuellen Anpassungsprobleme beim Übergang von Schule zu Hochschule in den ersten Semestern und um individuell geplante Auslandsemester zu fördern, wird jedoch von einer Studienfixierung in konkreten Fachsemestern abgesehen. Die Lehr-Lern-Arrangements sehen für Studierende - nach B.Sc. und M.Sc. getrennt - ein semester- und fachübergreifendes voneinander Lernen vor. Der Umgang mit Interdisziplinarität und einer Vielfalt von Lernständen in Veranstaltungen wird eingeübt - und in spezifischen Veranstaltungen gezielt gefördert. Die Lehrbereiche basieren auf Forschungsergebnissen aus den wissenschaftlichen Disziplinen Kulturwissenschaften, Gesellschaftswissenschaften, Kunst, Geschichtswissenschaften, Kommunikationswissenschaften, Nachhaltigkeitsforschung und aus der Fachdidaktik der Ingenieurwissenschaften. Über alle Studiengänge hinweg besteht im Bachelorbereich zusätzlich ab Wintersemester 2014/15 das Angebot, gezielt Betriebswirtschaftliches und Gründungswissen aufzubauen. Das Lehrangebot wird durch soft skill und Fremdsprachkurse ergänzt. Hier werden insbesondere kommunikative Kompetenzen z.B. für Outgoing Engineers gezielt gefördert. Das Kompetenzniveau der Veranstaltungen in den Modulen der nichttechnischen Ergänzungskurse unterscheidet sich in Hinblick auf das zugrunde gelegte Ausbildungsziel: Diese Unterschiede spiegeln sich in den verwendeten Praxisbeispielen, in den - auf unterschiedliche berufliche Anwendungskontexte verweisende – Inhalten und im für M.Sc. stärker wissenschaftlich-theoretischen Abstraktionsniveau. Die Soft skills für Bachelor- und für Masterabsolventinnen/ Absolventen unterscheidet sich an Hand der im Berufsleben unterschiedlichen Positionen im Team und bei der Anleitung von Gruppen. Fachkompetenz (Wissen) Die Studierenden können
|
Fertigkeiten |
Die Studierenden können in ausgewählten Teilbereichen
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind fähig ,
|
Selbstständigkeit |
Die Studierenden sind in ausgewählten Bereichen in der Lage,
|
Arbeitsaufwand in Stunden | Abhängig von der Wahl der Lehrveranstaltungen |
Leistungspunkte | 6 |
Lehrveranstaltungen |
Die Informationen zu den Lehrveranstaltungen entnehmen Sie dem separat veröffentlichten Modulhandbuch des Moduls. |
Modul M0743: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Manfred Kasper |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen die grundlegenden Theorien, Zusammenhänge und Methoden der Gleichstromnetzwerke, sowie elektrischer und magnetischer Felder. Hierzu gehören insbesondere:
|
Fertigkeiten |
Die Studierenden können die Beziehungen zwischen Strömen und Spannungen in einfachen Gleichstromnetzwerken aufstellen, die Größen berechnen und Schaltungen dimensionieren. Sie können die Grundgesetze des elektrischen und magnetischen Felds anwenden und die Beziehung zwischen Feldgrößen aufstellen und auswerten. Widerstände, Kapazitäten und Induktivitäten einfacher Anordnungen können berechnet werden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten. Sie können Konzepte erklären und anhand von Beispielen das eigene oder das Verständnis anderer überprüfen und vertiefen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, sich Teilbereiche des Fachgebietes anhand der Grundlagenliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. Die Studierenden entwickeln die Ausdauer, um auch schwierigere Problemstellungen zu bearbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | zweistündig |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0675: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Manfred Kasper |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0676: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Manfred Kasper |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Modul M0850: Mathematik I |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulmathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis I) + 60 min (Lineare Algebra I) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1010: Analysis I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung einer Variablen:
|
Literatur |
|
Lehrveranstaltung L1012: Analysis I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1013: Analysis I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0912: Lineare Algebra I |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0913: Lineare Algebra I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0914: Lineare Algebra I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0547: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen | Elektrotechnik I, Mathematik I |
Empfohlene Vorkenntnisse |
Gleichstromnetzwerke, komplexe Zahlen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegende Theorien, Zusammenhänge und Methoden der Wechselstromlehre erklären. Sie können das Verhalten von linearen Netzwerken mit Hilfe der komplexen Notation von Spannungen und Strömen beschreiben. Sie können einen Überblick über die Anwendungen der Wechselstromlehre im Bereich der elektrischen Energietechnik geben. Sie können das Verhalten einfacher passiver und aktiver Bauelemente sowie deren Anwendung in einfachen Schaltungen erläutern. |
Fertigkeiten |
Die Studierenden können einfache Wechselstrom-Netzwerke mit Hilfe der komplexen Notation von Spannungen und Strömen berechnen. Sie können einschätzen, welche prinzipiellen Effekte in einem Wechselstrom-Netzwerk auftauchen können. Sie können einfache Schaltkreise wie Schwingkreise, Filter und Anpassnetzwerke quantitativ analysieren und dimensionieren. Sie können die wesentlichen Elemente eines elektrischen Energieversorgungssystems (Übertrager, Leitung, Blindleistungskompensation, Mehrphasensystem) in ihrer Sinnhaftigkeit begründen und in ihren Grundzügen planen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Projektwoche). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Online-Tests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0178: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten - Darstellung und Eigenschaften von Sinussignalen - RLC-Elemente bei Wechselstrom/Wechselspannung - RLC-Elemente in komplexer Darstellung - Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation - Ortskurven und Bode-Diagramme - Wechselstrommesstechnik - Schwingkreise, Filter, elektrische Leitungen - Übertrager, Drehstrom, Energiewandler - Einfache nichtlineare und aktive Bauelemente |
Literatur |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Lehrveranstaltung L0179: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Netzwerkverhalten bei allgemeinen Zeitabhängigkeiten - Darstellung und Eigenschaften von Sinussignalen - RLC-Elemente bei Wechselstrom/Wechselspannung - RLC-Elemente in komplexer Darstellung - Leistung in Wechselstrom-Netzwerken, Blindleistungskompensation - Ortskurven und Bode-Diagramme - Wechselstrommesstechnik - Schwingkreise, Filter, elektrische Leitungen - Übertrager, Drehstrom, Energiewandler - Einfache nichtlineare und aktive Bauelemente |
Literatur |
- M. Albach, "Elektrotechnik", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik", Harri Deutsch (2010) - C. Kautz, "Tutorien zur Elektrotechnik", Pearson (2009) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2013) - R. Dorf, "The Electrical Engineering Handbook", CRC (2006) |
Modul M0553: Objektorientierte Programmierung, Algorithmen und Datenstrukturen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Rolf-Rainer Grigat |
Zulassungsvoraussetzungen | Veranstaltung Prozedurale Programmierung oder gleichwertige Programmierkenntnisse in imperativer Programmierung |
Empfohlene Vorkenntnisse |
Zwingende Voraussetzung ist die Beherrschung imperativer Programmierung (C, Pascal, Fortran oder ähnlich). Sie sollten also z.B. einfache Datentypen (integer, double, char, bool), arrays, if-then-else, for, while, Prozedur- bzw. Funktionsaufrufe und Zeiger kennen und in eigenen Programmen damit experimentiert haben, also auch Editor, Linker, Compiler und Debugger nutzen können. Die Veranstaltung beginnt mit der Einführung von Objekten, setzt also auf oben genannte Grundlagen auf. Dieser Hinweis ist insbesondere wichtig für Studiengänge wie AIW, GES, LUM da oben genannte Voraussetzungen dort nicht Bestandteil des Studienplans sind, sondern zu den Studienvoraussetzungen dieser Studiengänge zählen. Die Studiengänge ET, CI und IIW besitzen die erforderlichen Vorkenntnisse aus der Veranstaltung Prozedurale Programmierung im ersten Semester. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die Grundzüge des Software-Entwurfs wie den Entwurf einer Klassenarchitektur unter Einbeziehung vorhandener Klassenbibliotheken und Entwurfsmuster erklären. Studierende können grundlegende Datenstrukturen der diskreten Mathematik beschreiben sowie wichtige Algorithmen zum Sortieren und Suchen bezüglich ihrer Komplexität bewerten. |
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in Teams arbeiten und in Foren kommunizieren. |
Selbstständigkeit |
Studierende sind in der Lage selbständig über einen Zeitraum von 2-3 Wochen, unter Verwendung von SVN Repository und google Test, Programmieraufgaben z.B. LZW Datenkompression zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten, Umfang Vorlesung, Übungen und Materialien im StudIP |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Technomathematik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0131: Objektorientierte Programmierung, Algorithmen und Datenstrukturen |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Objektorientierte Analyse und Entwurf:
Datenstrukturen und Algorithmen:
|
Literatur | Skriptum |
Lehrveranstaltung L0132: Objektorientierte Programmierung, Algorithmen und Datenstrukturen |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Rolf-Rainer Grigat |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0624: Logic, Automata and Formal Languages |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Tobias Knopp |
Zulassungsvoraussetzungen | |
Empfohlene Vorkenntnisse |
Participating students should be able to - specify algorithms for simple data structures (such as, e.g., arrays) to solve computational problems - apply propositional logic and predicate logic for specifying and understanding mathematical proofs - apply the knowledge and skills taught in the module Discrete Algebraic Structures |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain syntax, semantics, and decision problems of propositional logic, and they are able to give algorithms for solving decision problems. Students can show correspondences to Boolean algebra. Students can describe which application problems are hard to represent with propositional logic, and therefore, the students can motivate predicate logic, and define syntax, semantics, and decision problems for this representation formalism. Students can explain unification and resolution for solving the predicate logic SAT decision problem. Students can also describe syntax, semantics, and decision problems for various kinds of temporal logic, and identify their application areas. The participants of the course can define various kinds of finite automata and can identify relationships to logic and formal grammars. The spectrum that students can explain ranges from deterministic and nondeterministic finite automata and pushdown automata to Turing machines. Students can name those formalism for which nondeterminism is more expressive than determinism. They are also able to demonstrate which decision problems require which expressivity, and, in addition, students can transform decision problems w.r.t. one formalism into decision problems w.r.t. other formalisms. They understand that some formalisms easily induce algorithms whereas others are best suited for specifying systems and their properties. Students can describe the relationships between formalisms such as logic, automata, or grammars. |
Fertigkeiten |
Students can apply propositional logic as well as predicate logic resolution to a given set of formulas. Students analyze application problems in order to derive propositional logic, predicate logic, or temporal logic formulas to represent them. They can evaluate which formalism is best suited for a particular application problem, and they can demonstrate the application of algorithms for decision problems to specific formulas. Students can also transform nondeterministic automata into deterministic ones, or derive grammars from automata and vice versa. They can show how parsers work, and they can apply algorithms for the language emptiness problem in case of infinite words. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0332: Logic, Automata Theory and Formal Languages |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0507: Logic, Automata Theory and Formal Languages |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Tobias Knopp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0829: Grundlagen der Betriebswirtschaftslehre |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christoph Ihl |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Schulkenntnisse in Mathematik und Wirtschaft |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können...
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind in der Lage
|
Selbstständigkeit |
Die Studierenden sind in der Lage
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0880: Grundlagen der Betriebswirtschaftslehre |
Typ | Vorlesung |
SWS | 4 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 64, Präsenzstudium 56 |
Dozenten | Prof. Christoph Ihl, Prof. Thorsten Blecker, Prof. Christian Lüthje, Prof. Christian Ringle, Prof. Kathrin Fischer, Prof. Cornelius Herstatt, Prof. Wolfgang Kersten, Prof. Matthias Meyer, Prof. Thomas Wrona |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur |
Bamberg, G., Coenenberg, A.: Betriebswirtschaftliche Entscheidungslehre, 14. Aufl., München 2008 Eisenführ, F., Weber, M.: Rationales Entscheiden, 4. Aufl., Berlin et al. 2003 Heinhold, M.: Buchführung in Fallbeispielen, 10. Aufl., Stuttgart 2006. Kruschwitz, L.: Finanzmathematik. 3. Auflage, München 2001. Pellens, B., Fülbier, R. U., Gassen, J., Sellhorn, T.: Internationale Rechnungslegung, 7. Aufl., Stuttgart 2008. Schweitzer, M.: Planung und Steuerung, in: Bea/Friedl/Schweitzer: Allgemeine Betriebswirtschaftslehre, Bd. 2: Führung, 9. Aufl., Stuttgart 2005. Weber, J., Schäffer, U. : Einführung in das Controlling, 12. Auflage, Stuttgart 2008. Weber, J./Weißenberger, B.: Einführung in das Rechnungswesen, 7. Auflage, Stuttgart 2006. |
Lehrveranstaltung L0882: Projekt Entrepreneurship |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christoph Ihl |
Sprachen | DE |
Zeitraum |
WiSe/ |
Inhalt |
Inhalt ist die eigenständige Erarbeitung eines Gründungsprojekts, von der ersten Idee bis zur fertigen Konzeption, wobei die betriebswirtschaftlichen Grundkenntnisse aus der Vorlesung "Grundlagen der Betriebswirtschaftslehre" zum Einsatz kommen sollen. Die Erarbeitung erfolgt in Teams und unter Anleitung eines Mentors. |
Literatur | Relevante Literatur aus der korrespondierenden Vorlesung. |
Modul M0851: Mathematik II |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Mathematik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis II) + 60 min (Lineare Algebra II) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1025: Analysis II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1026: Analysis II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1027: Analysis II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0915: Lineare Algebra II |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0916: Lineare Algebra II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0917: Lineare Algebra II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0569: Technische Mechanik I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Mathematik und Physik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik benennen. |
Fertigkeiten |
Der Studierende kann Theorien und Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemen starrer Körper und Grundlagen der Elastostatik anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen. |
Selbstständigkeit |
Der Studierende ist fähig eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0187: Technische Mechanik I |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Methoden zur Berechnung der Kräfte in statisch bestimmt gelagerten Systemem starrer Körper
Grundlagen der Elastizitätslehre
|
Literatur |
|
Lehrveranstaltung L0190: Technische Mechanik I |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0662: Numerische Mathematik I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Bioverfahrenstechnik: Vertiefung A - Allgemeine Bioverfahrenstechnik: Wahlpflicht Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Verfahrenstechnik: Vertiefung Allgemeine Verfahrenstechnik: Wahlpflicht |
Lehrveranstaltung L0417: Numerische Mathematik I |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0418: Numerische Mathematik I |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0834: Computernetworks and Internet Security |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Andreas Timm-Giel |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students are able to explain important and common Internet protocols in detail and classify them, in order to be able to analyse and develop networked systems in further studies and job. |
Fertigkeiten |
Students are able to analyse common Internet protocols and evaluate the use of them in different domains. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
Students can select relevant parts out of high amount of professional knowledge and can independently learn and understand it. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Technomathematik: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L1098: Computer Networks and Internet Security |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Andreas Timm-Giel, Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
In this class an introduction to computer networks with focus on the Internet and its security is given. Basic functionality of complex protocols are introduced. Students learn to understand these and identify common principles. In the exercises these basic principles and an introduction to performance modelling are addressed using computing tasks and (virtual) labs. In the second part of the lecture an introduction to Internet security is given. This class comprises:
|
Literatur |
Further literature is announced at the beginning of the lecture. |
Lehrveranstaltung L1099: Computer Networks and Internet Security |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Andreas Timm-Giel, Prof. Dieter Gollmann |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0730: Technische Informatik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Dieses Modul vermittelt Grundkenntnisse der Funktionsweise von Rechensystemen. Abgedeckt werden die Ebenen von der Assemblerprogrammierung bis zur Gatterebene. Das Modul behandelt folgende Inhalte:
|
Fertigkeiten |
Die Studierenden fassen ein Rechensystem aus der Perspektive des Architekten auf, d.h. sie erkennen die interne Struktur und den physischen Aufbau von Rechensystemen. Die Studierenden können analysieren, wie hochspezifische und individuelle Rechner aus einer Sammlung gängiger Einzelkompenenten zusammengesetzt werden. Sie sind in der Lage, die unterschiedlichen Abstraktionsebenen heutiger Rechensysteme - von Gattern und Schaltungen bis hin zu Prozessoren - zu unterscheiden und zu erklären. Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage, die Wechselwirkungen zwischen einem physischen Rechensystem und der darauf ausgeführten Software beurteilen zu können. Insbesondere sollen sie die Konsequenzen der Ausführung von Software in den hardwarenahen Schichten von der Assemblersprache bis zu Gattern erkennen können. Sie sollen so in die Lage versetzt werden, Auswirkungen unterer Schichten auf die Leistung des Gesamtsystems abzuschätzen und geeignete Optionen vorzuschlagen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten, Inhalte der Vorlesung und Übungen |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0321: Technische Informatik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einführung
|
Literatur |
|
Lehrveranstaltung L0324: Technische Informatik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
1. Einführung
|
Literatur |
|
Modul M0853: Mathematik III |
||||||||||||||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathematik I + II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 128, Präsenzstudium 112 |
Leistungspunkte | 8 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 min (Analysis III) + 60 min (Differentialgleichungen 1) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bau- und Umweltingenieurwesen: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L1028: Analysis III |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Differential- und Integralrechnung mehrerer Variablen:
|
Literatur |
|
Lehrveranstaltung L1029: Analysis III |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1030: Analysis III |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1031: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen
|
Literatur |
|
Lehrveranstaltung L1032: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1033: Differentialgleichungen 1 (Gewöhnliche Differentialgleichungen) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0570: Technische Mechanik II |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Uwe Weltin |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Technische Mechanik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Der Studierende kann grundlegende Zusammenhänge, Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D benennen. |
Fertigkeiten |
Der Studierende kann Theorien und Methoden zur Berechnung von Kräften und der Bewegung von Systemen starrer Körpern in 3D anwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Der Studierende kann lösungsorientiert in heterogenen Kleingruppen arbeiten und erlernt und vertieft das gegenseitige Helfen. |
Selbstständigkeit |
Der Studierende ist fähig, mit Hilfe von Hinweisen eigenständig Aufgaben aus dieser Lehrveanstaltung zu lösen |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min. |
Zuordnung zu folgenden Curricula |
Bioverfahrenstechnik: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Kernqualifikation: Pflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0191: Technische Mechanik II |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Methoden zur Berechnung von Kräften und der Bewegung von starren Körpern in 3D
|
Literatur |
|
Lehrveranstaltung L0192: Technische Mechanik II |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Uwe Weltin |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0672: Signale und Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Das Modul führt in das Thema der Signal- und
Systemtheorie ein. Sicherer Umgang mit grundlegenden mathematschen Methoden, wie sie in den
Modulen Mathematik 1-3 vermittelt werden, wird erwartet. Darüber hinaus sind Vorkenntnisse in Grundlagen von
Spektraltransformationen (Fourier-Reihe, Fourier-Transformation,
Laplace-Transformation) zwar nützlich, aber keine Voraussetzung. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Signale und lineare zeitinvariante (LTI) Systeme im Sinne der Signal- und Systemtheorie klassifizieren und beschreiben. Sie beherrschen die grundlegenden Integraltransformationen zeitkontinuierlicher und zeitdiskreter deterministischer Signale und Systeme. Sie können deterministische Signale und Systeme in Zeit- und Bildbereich mathematisch beschreiben und analysieren. Sie verstehen elementare Operationen und Konzepte der Signalverarbeitung und können diese in Zeit- und Bildbereich beschreiben. Insbesondere verstehen Sie die mit dem Übergang vom zeitkontinuierlichen zum zeitdiskreten Signal bzw. System einhergehenden Effekte in Zeit- und Bildbereich. |
Fertigkeiten |
Die Studierenden können deterministische Signale und lineare zeitinvariante Systeme mit den Methoden der Signal- und Systemtheorie beschreiben und analysieren. Sie können einfache Systeme hinsichtlich wichtiger Eigenschaften wie Betrags- und Phasenfrequenzgang, Stabilität, Linearität etc. analysieren und entwerfen. Sie können den Einfluß von LTI-Systemen auf die Signaleigenschaften in Zeit- und Frequenzbereich beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische Aufgaben gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Bau- und Umweltingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Bau- und Umweltingenieurwesen: Pflicht General Engineering Science: Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Verfahrenstechnik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0432: Signale und Systeme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0433: Signale und Systeme |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0803: Eingebettete Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Technische Informatik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Eingebettete Systeme sind Systeme, bei denen eine Informationsverarbeitung in eine Umgebung eingebettet ist. In der Vorlesung werden die Grundzüge solcher Systeme vermittelt. Die Vorlesung behandelt insbesondere eine Einführung in diese Systeme (Begriffsbildung, charakteristische Eigenschaften) und deren Spezifikationssprachen (models of computation, hierarchische Zustandsautomaten, Spezifikation von verteilten Systemen, Task-Graphen, Spezifikation von Realzeit-Anwendungen, Übersetzung zwischen Modellen). Ein weiterer Abschnitt behandelt Hardware eingebetteter Systeme: Sensoren, A/D- und D/A-Wandler, realzeitfähige Kommunikationshardware, eingebettete Prozessoren, Speicher, Energiebedarf, rekonfigurierbare Logik und Aktuatoren. Zum Modul gehört auch eine Einführung in Realzeit-Betriebssysteme, Middleware und Realzeit-Scheduling. Schließlich wird auf die Implementierung eingebetteter Systeme mittels Hardware/Software Co-Design (Hardware/Software-Partitionierung, high-level Transformationen der Spezifikation, energieeffiziente Realisierungen, Compiler für Eingebettete Prozessoren) eingegangen. |
Fertigkeiten |
Nach dem Besuch der Veranstaltung sollen die Studierenden in der Lage sein, einfache Eingebettete Systeme zu entwickeln. Dabei sollen die Studierenden erkennen können, welche relevanten Bereiche technologischer Kompetenzen eingesetzt werden müssen, um ein funktionierendes Eingebettetes System zu erhalten. Insbesondere sollen sie Modellierungstechniken miteinander vergleichen und geeignete Techniken zur Systementwicklung einsetzen können. Sie sollen beurteilen können, in welchen Bereichen besondere Risiken bestehen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten, Inhalte der Vorlesung und Übungen |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht |
Lehrveranstaltung L0805: Eingebettete Systeme |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
|
Lehrveranstaltung L0806: Eingebettete Systeme |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0852: Graphentheorie und Optimierung |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Technomathematik: Vertiefung Mathematik: Wahlpflicht |
Lehrveranstaltung L1046: Graphentheorie und Optimierung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1047: Graphentheorie und Optimierung |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0793: Seminare Informatik und Mathematik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Karl-Heinz Zimmermann |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Informatik, Mathematik und evtl. Ingenieurwissenschaften. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden wissen, wie man Grundkenntnisse aus einem rudimentären Teilgebiet der Informatik, Mathematik oder Ingenieurwissenschaften durch selbständiges Arbeiten erlangt. |
Fertigkeiten | Die Studierenden können sich ein rudimentäres Teilgebiet aus Informatik, Mathematik oder Ingenieurwissenschaften selbständig erarbeiten. |
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Referat |
Prüfungsdauer und -umfang | Pro Seminar erfolgt der Scheinerwerb durch Präsentation (Seminarvortrag 25 min und Diskussion 5 min) |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht |
Lehrveranstaltung L0797: Seminar Computergestützte Mathematik/Informatik |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Karl-Heinz Zimmermann, Dr. Jens-Peter Zemke |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur | Wird vom Seminarveranstalter bekanntgegeben. |
Lehrveranstaltung L0796: Seminar Informatik/Ingenieurwesen |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Karl-Heinz Zimmermann |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur |
Wird vom Seminarveranstalter bekanntgegeben. |
Lehrveranstaltung L1781: Seminar Ingenieurmathematik/Informatik |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Karl-Heinz Zimmermann, Dr. Jens-Peter Zemke |
Sprachen | DE/EN |
Zeitraum |
WiSe/ |
Inhalt |
|
Literatur |
Wird vom Seminarveranstalter bekanntgegeben. |
Modul M0833: Grundlagen der Regelungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Herbert Werner |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz | Studierende können in kleinen Gruppen fachspezifische Fragen gemeinsam bearbeiten und ihre Reglerentwürfe experimentell testen und bewerten |
Selbstständigkeit |
Studierende können sich Informationen aus bereit gestellten Quellen (Skript, Software-Dokumentation, Versuchsunterlagen) beschaffen und für die Lösung gegebener Probleme verwenden. Sie können ihren Wissensstand mit Hilfe wöchentlicher On-Line Tests kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Bauingenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Verfahrenstechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Bioverfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Bauingenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Verfahrenstechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Biomechanik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Flugzeug-Systemtechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Materialien in den Ingenieurwissenschaften: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Theoretischer Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Produktentwicklung und Produktion: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Energietechnik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Theoretischer Maschinenbau: Technischer Ergänzungskurs Kernfächer: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0654: Grundlagen der Regelungstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Signale und Systeme
Regelkreise
Wurzelortskurven
Frequenzgang-Verfahren
Totzeitsysteme
Digitale Regelung
Software-Werkzeuge
|
Literatur |
|
Lehrveranstaltung L0655: Grundlagen der Regelungstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Herbert Werner |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0727: Stochastics |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Marko Lindner |
Zulassungsvoraussetzungen | none |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Students can explain the main definitions of probability, and they can give basic definitions of modeling elements (random variables, events, dependence, independence assumptions) used in discrete and continuous settings (joint and marginal distributions, density functions). Students can describe characteristic notions such as expected values, variance, standard deviation, and moments. Students can define decision problems and explain algorithms for solving these problems (based on the chain rule or Bayesian networks). Algorithms, or estimators as they are caller, can be analyzed in terms of notions such as bias of an estimator, etc. Student can describe the main ideas of stochastic processes and explain algorithms for solving decision and computation problem for stochastic processes. Students can also explain basic statistical detection and estimation techniques. |
Fertigkeiten |
Students can apply algorithms for solving decision problems, and they can justify whether approximation techniques are good enough in various application contexts, i.e., students can derive estimators and judge whether they are applicable or reliable. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Pflicht Informatik-Ingenieurwesen: Kernqualifikation: Pflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht |
Lehrveranstaltung L0777: Stochastics |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Francisco Javier Hoecker-Escuti |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
Foundations of probability theory
Practical representations for joint probabilities
Stochastic processes
Detection & estimation
|
Literatur |
|
Lehrveranstaltung L0778: Stochastics |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Francisco Javier Hoecker-Escuti |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Die Vertiefung Informatik dient zur Schwerpunktsetzung im Bereich Informatik, entweder für eine Berufsqualifizierung als Entwickler direkt nach dem Bachelor-Abschluss oder für eine Fortsetzung des Studiums Informatik-Ingenieurwesen in einer der Master-Vertiefungen
• Sichere Einbettete Systeme / Cyber-physische Systeme oder
• Systemtechnik und Robotik.
Modul M0868: Entwurf von Chip-Systemen (Praktikum) |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | NN |
Zulassungsvoraussetzungen | Keine. |
Empfohlene Vorkenntnisse | Technische Informatik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten | Die Studierenden können eine einfache CPU in VHDL entwerfen und testen sowie die Einbettung der CPU in einen technischen Rahmen beschreiben. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachbüchern selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0792: Entwurf von Chip-Systemen |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 3 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Dozenten | NN |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Modul M0971: Betriebssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Studierende können die wichtigsten Abstraktion von Betriebssystem erklären (Prozess, virtueller Speicher, Datei, Deadlock, Lifelock). Sie sind in der Lage, die Prozesszustände und die dazugehörenden Übergänge zu beschreiben. Sie kennen die wichtigsten Architekturvarianten von Betriebssystemen und können existierende Betriebssysteme diesen Varianten zuordnen. Die Teilnehmer sind in der Lage, nebenläufige Programm mittels Threads, conditional Variablen und Semaphoren zu erstellen. Sie können mehrere Varianten zur Realisierung von Filesystemen erläutern. Des Weiteren können sie mindestens drei Scheduling Algorithmen erläutern. |
Fertigkeiten |
Studierende können die POSIX Bibliotheken zur nebenläufigen Programmierung korrekt und effizient einsetzen. Sie sind in der Lage für eine Scheduling Aufgabe unter gegebenen Randbedingungen die Effezienz eines Scheduling-Algorithmus zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik-Ingenieurwesen: Pflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Informatik-Ingenieurwesen: Pflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L1153: Betriebssysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1154: Betriebssysteme |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0791: Rechnerarchitektur |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Modul "Technische Informatik" Bei erfolgreicher Teilnahme an den Übungen wird diese erbrachte Vorleistung bei der Bewertung der Klausur gemäß folgender Regeln mitberücksichtigt:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
In diesem Modul werden fortgeschrittene Konzepte der Rechnerarchitektur vorgestellt. Am Anfang steht ein breiter Überblick über mögliche Programmiermodelle, wie sie für Universalrechner aber auch für spezielle Maschinen (z.B. Signalprozessoren) entwickelt wurden. Anschließend werden prinzipielle Aspekte der Mikroarchitektur von Prozessoren behandelt. Der Schwerpunkt liegt hierbei insbesondere auf dem sogenannten Pipelining und den in diesem Zusammenhang angewandten Methoden zur Beschleunigung der Befehlsausführung. Die Studierenden lernen Mechanismen zum dynamischen Scheduling, zur Sprungvorhersage, zu superskalaren Architekturen und zu Speicher-Hierarchien kennen. |
Fertigkeiten |
Die Studierenden sind in der Lage, den Aufbau eines Prozessors zu erklären. Sie kennen die verschiedenen Architekturprinzipien und Programmiermodelle. Die Studierenden untersuchen verschiedene Strukturen von Pipeline-Architekturen und sind in der Lage, deren Konzepte zu erklären und im Hinblick auf Kriterien wie Performance und Energieeffizienz zu analysieren. Sie bewerten unterschiedliche Speicherarchitekturen, kennen parallele Rechnerarchitekturen und können zwischen Befehls- und Datenparallelität unterscheiden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Min., Vorlesungsstoff + 4 Übungstestate |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Informatik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht General Engineering Science: Vertiefung Informatik: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0793: Rechnerarchitektur |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0794: Rechnerarchitektur |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | siehe korrespondierende Lehrveranstaltung |
Literatur |
siehe korrespondierende Lehrveranstaltung see interlocking course |
Modul M0651: Rechnergestützte Geometrie |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Prashant Batra |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Lineare Algebra und Analytische Geometrie wie aus der schulischen Oberstufe bekannt (Rechnen mit Vektoren u. Determinanten, Deutung von Skalarprodukt, Kreuzprodukt, Darstellung v. Geraden/Ebenen, Satz d. Pythagoras, Cosinus-Satz, Satz d. Thales, Projektionen/Einbettungen) Grundlegende Datenstrukturen (Bäume, binäre Bäume, Suchbäume, balancierte binäre Bäume, Verkettete Listen) Definition eines Graphen |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die grundlegenden Begriffe der Rechnergestützten Geoemtrie benennen, mathematisch exakt beschreiben und anhand von Beispielen erklären. Studierende sind in der Lage, logische Zusammenhänge zwischen diesen Konzepten zu diskutieren und anhand von Beispielen zu erläutern. |
Fertigkeiten |
Studierende können Aufgabenstellungen aus der Rechnergestützten Geometrie mit Hilfe der kennengelernten Konzepte modellieren und mit den erlernten Methoden lösen. |
Personale Kompetenzen | |
Sozialkompetenz |
Studierende sind in der Lage, mit den Teilnehmerinnen und Teilnehmer ihre eigenen algorithmischen Vorschläge zur Lösung der vorgestellten Probleme zu erörtern. Studierende sind in der Lage, in Teams zusammenzuarbeiten und beherrschen die Mathematik als gemeinsame Sprache. |
Selbstständigkeit |
Studierende sind in der Lage, sich weitere logische Zusammenhänge zwischen den kennengelernten Konzepten selbständig zu erschließen und können diese verifizieren. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0393: Rechnergestützte Geometrie |
Typ | Vorlesung | ||||||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||||||
LP | 4 | ||||||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 | ||||||||||||||||||||||||
Dozenten | Dr. Prashant Batra | ||||||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||||||
Zeitraum | WiSe | ||||||||||||||||||||||||
Inhalt |
Konstruktion einer konvexen Hülle von n Punkten Triangulierung eines schlichten Polygons Konstruktion einer Delaunay-Triangulation, eines Voronoi-Diagramms Algorithmen und Datenstrukturen zum Bestimmen eines Arrangements, eines Ham-Sandwich-Cuts. des Schnitts von Halbebenen, der Optimierung eines linearen Funktionals. Effiziente Bestimmung aller Schnittpunkte von (orthogonalen) Streckensegmenten Approximative Berechnung des Durchmessers einer Punktemenge Inkrementelle randomisierte Algorithmen Grundlagen der Gitterpunktlehre, LLL-Algorithmus und Anwendungen in der ganzzahligen Optimierung Grundlagen der Bewegungsplanung |
||||||||||||||||||||||||
Literatur |
Computational Geometry Algorithms and Applications Authors:
Springer e-Book: http://dx.doi.org/10.1007/978-3-540-77974-2
Springer e-Book: http://dx.doi.org/10.1007/3-540-27619-X O’Rourke, Joseph ISBN: 0-521-44034-3 ; 0-521-44592-2
Devadoss, Satyan L.; O’Rourke, Joseph
|
Lehrveranstaltung L0394: Rechnergestützte Geometrie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Prashant Batra |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0972: Verteilte Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Volker Turau |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die wichtigsten Abstraktion von Verteilten Systemen erklären (Marshalling, Proxy, Dienst, Adresse, Entfernter Aufruf, synchrones/asynchrones System). Sie sind in der Lage, die Vor- und Nachteile verschiedener Arten von Interprozesskommunikation zu beschreiben. Sie kennen die wichtigsten Architekturvarianten von Verteilten Systemen einschließlich ihrer Vor- und Nachteile. Die Teilnehmer sind in der Lage, mindestens drei Synchronisationsverfahren zu beschreiben. |
Fertigkeiten |
Studierende können auf unterschiedliche Arten verteilte Systeme realisieren. Dabei können sie folgende Methoden verwenden:
|
Personale Kompetenzen | |
Sozialkompetenz | |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L1155: Verteilte Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1156: Verteilte Systeme |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Volker Turau |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0863: Numerik und Computer Algebra |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Siegfried Rump |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in numerischer und diskreter Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen den Unterschied zwischen Rechengenauigkeit und Ergebnisgenauigkeit. Für diverse, grundlegende Problemstellungen kennen sie approximative sowie exakte Lösungsmöglichkeiten. Sie können zwischen effizient, nicht effizient und prinzipiell unlösbaren Problemen unterscheiden. |
Fertigkeiten |
Die Studierenden können komplexe Problemstellungen aus der Mathematik und Informatik analysieren und insbesondere die Empfindlichkeit der Lösung bestimmen. Sie können für diverse Probleme bestmögliche Algorithmen im Hinblick auf die Genauigkeit der Lösung entwerfen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren, zum Beispiel während Kleingruppenübungen. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern.
|
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0115: Numerik und Computer Algebra |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
· Grundlegende numerische Methoden · Algorithmen · Gleitpunktarithmetik IEEE 754 · Arithmetik von Sunaga (Avizienis), Olver, Matula · Kettenbrüche · Basic Linear Algebra Subroutines (BLAS) · Methoden der Computer Algebra · Turing Maschinen und Berechenbarkeit · Churchsche These · Busy Beaver Funktion · NP Klassen · Handlungsreisendenproblem |
Literatur |
Higham, N.J.: Accuracy and stability of numerical algorithms, SIAM Publications, Philadelphia, 2nd edition, 2002 Golub, G.H. and Van Loan, Ch.: Matrix Computations, John Hopkins University Press, 3rd edition, 1996 Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, Vol. 2. Addison Wesley, Reading, Massachusetts, 1969 |
Lehrveranstaltung L1060: Numerik und Computer Algebra |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L0117: Numerik und Computer Algebra |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Siegfried Rump |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0941: Kombinatorische Strukturen und Algorithmen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 min |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht |
Lehrveranstaltung L1100: Kombinatorische Strukturen und Algorithmen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1101: Kombinatorische Strukturen und Algorithmen |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Anusch Taraz |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0760: Elektronische Bauelemente |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Hoc Khiem Trieu |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
Aufbau der Atome und Quantentheorie, elektrische Ströme in Festkörpern, Grundlagen der Festkörperphysik Erfolgreiche Teilnahme an Physik für Ingenieure und Werkstoffe der Elektrotechnik oder Veranstaltungen mit äquivalentem Inhalt |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können
|
Fertigkeiten |
Die Studierenden sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können in Gruppen Versuche planen, durchführen sowie die Ergebnisse präsentieren und vor anderen vertreten. |
Selbstständigkeit |
Studierende sind fähig sich eigenständig das für die Versuche notwendige Wissen mit Literatur zu erschließen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L0720: Elektronische Bauelemente |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
S.M. Sze: Semiconductor devices, Physics and Technology, John Wiley & Sons (1985)F. Thuselt: Physik der Halbleiterbauelemente, Springer (2011) T. Thille, D. Schmitt-Landsiedel: Mikroelektronik, Halbleiterbauelemente und deren Anwendung in elektronischen Schaltungen, Springer (2004) B.L. Anderson, R.L. Anderson: Fundamentals of Semiconductor Devices, McGraw-Hill (2005) D.A. Neamen: Semiconductor Physics and Devices, McGraw-Hill (2011) M. Shur: Introduction to Electronic Devices, John Wiley & Sons (1996) S.M. Sze: Physics of semiconductor devices, John Wiley & Sons (2007) H. Schaumburg: Halbleiter, B.G. Teubner (1991) A. Möschwitzer: Grundlagen der Halbleiter-&Mikroelektronik, Bd1 Elektronische Halbleiterbauelemente, Carl Hanser (1992) H.-G. Unger, W. Schultz, G. Weinhausen: Elektronische Bauelemente und Netzwerke I, Physikalische Grundlagen der Halbleiterbauelemente, Vieweg (1985) |
Lehrveranstaltung L0721: Elektronische Bauelemente |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Hoc Khiem Trieu |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1254: Grundlagen der Informatik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Bernd-Christian Renner |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Keine Vorkenntnisse notwendig. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen
|
Fertigkeiten |
Die Studierenden können
|
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, fachspezifische Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachbüchern und anderweitiger Literatur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L1699: Grundlagen der Informatik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1700: Grundlagen der Informatik |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Bernd-Christian Renner |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0625: Databases |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Sandro Schulze |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
Students should habe basic knowledge in the following areas:
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students can explain the general architecture of an application system that is based on a database. They describe the syntax and semantics of the Entity Relationship conceptual modeling languages, and they can enumerate basic decision problems and know which features of a domain model can be captured with ER and which features cannot be represented. Furthermore, students can summarize the features of the relational data model, and can describe how ER models can be systematically transformed into the relational data model. Student are able to discuss dependency theory using the operators of relational algebra, and they know how to use relational algebra as a query language. In addition, they can sketch the main modules of the architecture of a database system from an implementation point of view. Storage and index structures as well as query answering and optimization techniques can be explained. The role of transactions can be described in terms of ACID conditions and common recovery mechanisms can be characterized. The students can recall why recursion is important for query languages and describe how Datalog can be used and implemented.They demonstrate how Datalog can be used for information integration. For solving ER decision problems the students can explain description logics with their syntax and semantics, they describe description logic decision problems and explain how these problems can be mapped onto each other. They can sketch the idea of ontology-based data access and can name the main complexity measure in database theory. Last but not least, the students can describe the main features of XML and can explain XPath and XQuery as query languages. |
Fertigkeiten |
Students can apply ER for describing domains for which they receive a textual description, and students can transform relational schemata with a given set of functional dependencies into third normal form or even Boyce-Codd normal form. They can also apply relational algebra, SQL, or Datalog to specify queries. Using specific datasets, they can explain how index structures work (e.g., B-trees) and how index structures change while data is added or deleted. They can rewrite queries for better performance of query evaluation. Students can analyse which query language expressivity is required for which application problem. Description logics can be applied for domain modeling, and students can transform ER diagrams into description logics in order to check for consistency and implicit subsumption relations. They solve data integration problems using Datalog and LAV or GAV rules. Students can apply XPath and Xquery to retrieve certain patterns in XML data. |
Personale Kompetenzen | |
Sozialkompetenz | Students develop an understanding of social structures in a company used for developing real-world products. They know the responsibilities of data analysts, programmers, and managers in the overall production process. |
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0337: Databases |
Typ | Vorlesung |
SWS | 4 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 94, Präsenzstudium 56 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1150: Databases |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | NN |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0754: Compiler Construction |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the workings of a compiler and break down a compilation task in different phases. They apply and modify the major algorithms for compiler construction and code improvement. They can re-write those algorithms in a programming language, run and test them. They choose appropriate internal languages and representations and justify their choice. They explain and modify implementations of existing compiler frameworks and experiment with frameworks and tools. |
Fertigkeiten |
Students design and implement arbitrary compilation phases. They integrate their code in existing compiler frameworks. They organize their compiler code properly as a software project. They generalize algorithms for compiler construction to algorithms that analyze or synthesize software. |
Personale Kompetenzen | |
Sozialkompetenz |
Students develop the software in a team. They explain problems and solutions to their team members. They present and defend their software in class. They communicate in English. |
Selbstständigkeit |
Students develop their software independently and define milestones by themselves. They receive feedback throughout the entire project. They organize the software project so that they can assess their progress themselves. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L0703: Compiler Construction |
Typ | Vorlesung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Alfred Aho, Jeffrey Ullman, Ravi Sethi, and Monica S. Lam, Compilers: Principles, Techniques, and Tools, 2nd edition Aarne Ranta, Implementing Programming Languages, An Introduction to Compilers and Interpreters, with an appendix coauthored by Markus Forsberg, College Publications, London, 2012 |
Lehrveranstaltung L0704: Compiler Construction |
Typ | Gruppenübung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0777: Halbleiterschaltungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Krautschneider |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik Elementare Grundlagen der Physik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Maschinenbau: Vertiefung Mechatronik: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Kernqualifikation: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0763: Halbleiterschaltungstechnik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Wolfgang Krautschneider |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Inhalt:
|
Literatur |
R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc., 3. Auflage, 2011, ISBN: 047170055S H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674 K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944 U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 14. Auflage, 2012, ISBN 3540428496 H. Göbel, Einführung in die Halbleiter-Schaltungstechnik, Berlin, Heidelberg Springer-Verlag Berlin Heidelberg, 2011, ISBN: 9783642208874 ISBN: 9783642208867 URL: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10499499 URL: http://dx.doi.org/10.1007/978-3-642-20887-4 URL: http://ebooks.ciando.com/book/index.cfm/bok_id/319955 URL: http://www.ciando.com/img/bo |
Lehrveranstaltung L0864: Halbleiterschaltungstechnik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Wolfgang Krautschneider |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1269: Labor Cyber-Physical Systems |
||||||||
Lehrveranstaltungen | ||||||||
|
Modulverantwortlicher | Prof. Heiko Falk |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Modul "Eingebettete Systeme" |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Cyber-Physical Systems (CPS) stehen über Sensoren, A/D- und D/A-Wandler und Aktoren in enger Verbindung mit ihrer Umgebung. Wegen der besonderen Einsatzgebiete kommen hier hochgradig spezialisierte Sensoren, Prozessoren und Aktoren zum Einsatz, die applikationsspezifisch auf ihr jeweiliges Einsatzgebiet ausgerichtet sind. Dementsprechend existiert - im Gegensatz zum klassischen Software Engineering - eine Vielzahl unterschiedlicher Techniken zur Spezifikation von CPS. In Form von rechnergestützten Versuchen mit Roboterbausätzen werden in dieser Veranstaltung die Grundzüge der Spezifikation und Modellierung von CPS vermittelt. Das Labor behandelt die Einführung in diese Systeme (Begriffsbildung, charakteristische Eigenschaften) und deren Spezifikationssprachen (models of computation, hierarchische Zustandsautomaten, Datenfluss-Modelle, Petri-Netze, imperative Techniken). Da CPS häufig Steuerungs- und Regelungsaufgaben erfüllen, wird das Labor praxisnah einfache Anwendungen aus der Regelungstechnik vermitteln. Die Versuche nutzen gängige Spezifikationswerkzeuge (MATLAB/Simulink, LabVIEW, NXC), um hiermit Cyber-Physical Systems zu modellieren, die über Sensoren und Aktoren mit ihrer Umwelt interagieren. |
Fertigkeiten | Nach erfolgreichem Besuch der Veranstaltung sind die Studierenden in der Lage, einfache CPS zu entwickeln. Sie können Wechselwirkungen zwischen einem CPS und dessen umgebenden Prozessen beurteilen, der sich aus dem Kreislauf zwischen physikalischer Umwelt, Sensor, A/D-Wandler, digitalem Prozessor, D/A-Wandler und Aktor ergibt. Die Veranstaltung versetzt die Studierenden in die Lage, Modellierungstechniken miteinander vergleichen, deren Vor- und Nachteile abwägen, und geeignete Techniken zur Systementwicklung einsetzen zu können. Sie erwerben die Fähigkeit, diese Techniken im Rahmen konkreter praktischer Aufgabenstellungen anzuwenden. Sie haben erste Erfahrungen im hardwarenahen Software-Entwurf, im Umgang mit industrierelevanten Spezifikationswerkzeugen und im Entwurf einfacher Regelungssysteme erworben. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden sind nach Abschluss des Moduls in der Lage, ähnliche Aufgaben alleine oder in einer Gruppe zu bearbeiten und die Resultate geeignet zu präsentieren. |
Selbstständigkeit |
Die Studierenden sind nach Abschluss des Moduls in der Lage, sich Teilbereiche des Fachgebietes anhand von Fachliteratur selbständig zu erarbeiten, das erworbene Wissen zusammenzufassen, zu präsentieren und es mit den Inhalten anderer Lehrveranstaltungen zu verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | Durchführung und Beschreibung sämtlicher Versuche |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Mechatronics: Vertiefung Intelligente Systeme und Robotik: Wahlpflicht Mechatronics: Vertiefung Systementwurf: Wahlpflicht |
Lehrveranstaltung L1740: Labor Cyber-Physical Systems |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 6 |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Dozenten | Prof. Heiko Falk |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Modul M0634: Einführung in Medizintechnische Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen Mathematik (Algebra, Analysis) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Funktionen von medizintechnischen Systemen wie beispielsweise bildgebenden Systemen, Assistenzsystemen im OP, medizintechnischen Sensorsystemen und medizintechnischen Informationssystemen erklären. Sie können einen Überblick über Regulatorische Rahmenbedingungen und Standards in der Medizintechnik geben. |
Fertigkeiten |
Die Studierenden sind in der Lage ihr grundlegendes Verständnis von medizintechnischen Systemem auf praxisrelevante Problemstellungen anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen ein medizintechnisches Thema als Projekt beschreiben, in Teilaufgaben untergliedern und gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren. Sie können die erzielten Ergebnisse kritisch bewerten und in geeigneter Weise präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0342: Einführung in Medizintechnische Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Bildgebende Systeme |
Literatur |
Wird in der Veranstaltung bekannt gegeben. |
Lehrveranstaltung L0343: Einführung in Medizintechnische Systeme |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 34, Präsenzstudium 56 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0715: Löser für schwachbesetzte lineare Gleichungssysteme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sabine Le Borne |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage,
|
Personale Kompetenzen | |
Sozialkompetenz |
Studierende können
|
Selbstständigkeit |
Studierende sind fähig,
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Mündliche Prüfung |
Prüfungsdauer und -umfang | 30 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Elektrotechnik: Vertiefung Modellierung und Simulation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht |
Lehrveranstaltung L0583: Löser für schwachbesetzte lineare Gleichungssysteme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0584: Löser für schwachbesetzte lineare Gleichungssysteme |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sabine Le Borne |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1062: Mathematische Statistik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Anusch Taraz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Mathematische Stochastik Maßtheoretische Konzepte der Stochastik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Vertiefung Computational Mathematics: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung I. Mathematik: Wahlpflicht |
Lehrveranstaltung L1339: Mathematische Statistik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L1340: Mathematische Statistik |
Typ | Gruppenübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Dozenten des Fachbereiches Mathematik der UHH |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1300: Software Development |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the fundamental concepts of agile methods, describe the process of |
Fertigkeiten |
For a given task on a legacy system, students identify the corresponding parts in the system and select an appropriate method for understanding the details. They choose the proper approach of splitting a task in independent testable and extensible pieces and, thus, solve the task with proper methods for quality assurance. They design tests for legacy systems, create automated builds, and find errors at different levels. They integrate the resulting artifacts in a continuous development environment |
Personale Kompetenzen | |
Sozialkompetenz |
Students discuss different design decisions in a group. They defend their solutions orally. They communicate in English. |
Selbstständigkeit |
Using accompanying tools, students can assess their level of knowledge continuously and adjust it appropriately. Within limits, they can set their own learning goals. Upon successful completion, students can identify and formulate concrete problems of software systems and propose solutions. Within this field, they can conduct independent studies to acquire the necessary competencies. They can devise plans to arrive at new solutions or assess existing ones. |
Arbeitsaufwand in Stunden | Eigenstudium 138, Präsenzstudium 42 |
Leistungspunkte | 6 |
Prüfung | Projektarbeit |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht |
Lehrveranstaltung L1790: Software Development |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 2 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 122, Präsenzstudium 28 |
Dozenten | Dr. Sandro Schulze |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | |
Literatur |
Lehrveranstaltung L1789: Software Development |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Sandro Schulze |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Modul M0732: Software Engineering |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Sibylle Schupp |
Zulassungsvoraussetzungen |
None |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Students explain the phases of the software life cycle, describe the fundamental terminology and concepts of software engineering, and paraphrase the principles of structured software development. They give examples of software-engineering tasks of existing large-scale systems. They write test cases for different test strategies and devise specifications or models using different notations, and critique both. They explain simple design patterns and the major activities in requirements analysis, maintenance, and project planning. |
Fertigkeiten |
For a given task in the software life cycle, students identify the corresponding phase and select an appropriate method. They choose the proper approach for quality assurance. They design tests for realistic systems, assess the quality of the tests, and find errors at different levels. They apply and modify non-executable artifacts. They integrate components based on interface specifications. |
Personale Kompetenzen | |
Sozialkompetenz |
Students practice peer programming. They explain problems and solutions to their peer. They communicate in English. |
Selbstständigkeit |
Using on-line quizzes and accompanying material for self study, students can assess their level of knowledge continuously and adjust it appropriately. Working on exercise problems, they receive additional feedback. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Informatik: Wahlpflicht Computer Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht |
Lehrveranstaltung L0627: Software Engineering |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
Kassem A. Saleh, Software Engineering, J. Ross Publishing 2009. |
Lehrveranstaltung L0628: Software Engineering |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Sibylle Schupp |
Sprachen | EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Die Vertiefung Informatik dient zur Schwerpunktsetzung im Bereich Ingenieurwesen zur Fortsetzung des Studiums Informatik-Ingenieurwesen in der Master-Vertiefung Wissenschaftliches Rechnen.
Modul M0567: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Schuster |
Zulassungsvoraussetzungen |
Elektrotechnik I, Elektrotechnik II, Mathematik I, Mathematik II, Mathematik III |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik und der höheren Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Formeln, Zusammenhänge und Methoden der Theorie zeitunabhängiger elektromagnetischer Felder erklären. Sie können das prinzipielle Verhalten von elektrostatischen, magnetostatischen und elektrischen Strömungsfeldern in Abhängigkeit von ihren Quellen erläutern. Sie können die Eiegenschaften komplexer elektromagnetischer Felder mit Hilfe des Superpositionsprinzips auf Basis einfacher Feldlösungen beschreiben. Sie können einen Überblick über die Anwendungen zeitunabhängiger elektromagnetischer Felder in der elektrotechnischen Praxis geben. |
Fertigkeiten |
Die Studierenden können die integrale Form der Maxwellgleichung zur Lösung hochsymmetrischer Probleme zeitunabhängiger elektromagnetischer Feldprobleme anwenden. Ebenso können sie eine Reihe von Verfahren zur Lösung der differentiellen Form der Maxwellgleichung für allgemeinere Feldprobleme anwenden. Sie können einschätzen, welche prinzipiellen Effekte gewisse zeitunabhängige Feldquellen erzeugen und können diese quantitativ analysieren. Sie können abgeleitete Größen zur Charakterisierung elektrostatischer, magnetostatischer und elektrischer Strömungsfelder (Kapazitäten, Induktivitäten, Widerstände usw.) aus den Feldern ableiten und für die Anwendung in der elektrotechnischen Praxis dimensionieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Kleingruppenübungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Quiz-Fragen in den Vorlesungen, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90-150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0180: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
Typ | Vorlesung |
SWS | 3 |
LP | 5 |
Arbeitsaufwand in Stunden | Eigenstudium 108, Präsenzstudium 42 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Maxwellsche Gleichungen in integraler und differentieller Form - Rand- und Sprungbedingungen - Energieerhaltungssatz und Ladungserhaltungssatz - Klassifikation elektromagnetischen Feldverhaltens - Integrale Größen zeitunabhängiger Felder (R,L,C) - Allgemeine Lösungsverfahren für die Poissongleichung - Elektrostatische Felder und ihre speziellen Lösungsmethoden - Magnetostatische Felder und ihre speziellen Lösungsmethoden - Elektrische Strömungsfelder und ihre speziellen Lösungsmethoden - Kraftwirkung in zeitunabhängigen Feldern - Numerische Methoden zur Lösung zeitunabhängiger Probleme |
Literatur |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Lehrveranstaltung L0181: Theoretische Elektrotechnik I: Zeitunabhängige Felder |
Typ | Gruppenübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Christian Schuster |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Maxwellsche Gleichungen in integraler und differentieller Form - Rand- und Sprungbedingungen - Energieerhaltungssatz und Ladungserhaltungssatz - Klassifikation elektromagnetischen Feldverhaltens - Integrale Größen zeitunabhängiger Felder (R,L,C) - Allgemeine Lösungsverfahren für die Poissongleichung - Elektrostatische Felder und ihre speziellen Lösungsmethoden - Magnetostatische Felder und ihre speziellen Lösungsmethoden - Elektrische Strömungsfelder und ihre speziellen Lösungsmethoden - Kraftwirkung in zeitunabhängigen Feldern - Numerische Methoden zur Lösung zeitunabhängiger Probleme |
Literatur |
- G. Lehner, "Elektromagnetische Feldtheorie: Für Ingenieure und Physiker", Springer (2010) - H. Henke, "Elektromagnetische Felder: Theorie und Anwendung", Springer (2011) - W. Nolting, "Grundkurs Theoretische Physik 3: Elektrodynamik", Springer (2011) - D. Griffiths, "Introduction to Electrodynamics", Pearson (2012) - J. Edminister, " Schaum's Outline of Electromagnetics", Mcgraw-Hill (2013) - Richard Feynman, "Feynman Lectures on Physics: Volume 2", Basic Books (2011) |
Modul M0671: Technische Thermodynamik I |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse | Grundkenntnisse in Mathematik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit den Hauptsätzen der Thermodynamik vertraut. Sie wissen über die gegenseitige Verknüpfung der einzelnen Energieformen untereinander entsprechend dem 1. Hauptsatz der Thermodynamik und kennen die Grenzen einer Wandlung der verschiedenen Energieformen bei natürlichen und technischen Vorgängen entsprechend dem 2. Hauptsatz der Thermodynamik. Sie sind in der Lage, Zustandsgrößen von Prozessgrößen zu unterscheiden und kennen die Bedeutung der einzelnen Zustandsgrößen wie z. B. Temperatur, Enthalpie oder Entropie sowie der damit verbundenen Begriffe Exergie und Anergie. Sie können den Carnotprozess in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie können den Unterschied zwischen einem idealen und einem realem Gas physikalisch beschreiben und kennen die entsprechenden thermischen Zustandsgleichungen. Sie wissen, was eine Fundamentalgleichung ist und sind mit grundlegenden Zusammenhängen der Zweiphasenthermodynamik vertraut. - Methoden zur systematischen Lösung von Übungsaufgaben anwenden. |
Fertigkeiten |
Studierende sind in der Lage, die Inneren Energie, die Enthalpie, die Kinetische und Potenzielle Energie sowie Arbeit und Wärme für einfache Zustandsänderungen zu berechnen und diese Berechnungsmöglichkeiten auch auf den Carnotprozess anzuwenden. Darüber hinaus können sie Zustandsgrößen für ideale und reale Gase aus messbaren thermischen Zustandsgrößen berechnen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwesen: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung Ingenieurwissenschaften: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0437: Technische Thermodynamik I |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0439: Technische Thermodynamik I |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0441: Technische Thermodynamik I |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0688: Technische Thermodynamik II |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Schmitz |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse in Mathematik, Mechanik und Technische Thermodynamik I |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende sind mit verschiedenen Kreisprozessen wie Joule, Otto, Diesel, Stirling, Seiliger und Clausius-Rankine vertraut. Sie können die jeweiligen energetischen und exergetischen Wirkungsgrade herleiten und kennen damit den Einfluss verschiedener Faktoren auf den Wirkungsgrad. Sie können linkslaufende und rechtslaufende Kreisprozesse den jeweiligen Anwendungen (Wärmekraftprozess, Kälteprozess) zuordnen. Sie haben vertiefte Kenntnisse von Dampfkreisprozessen und können die Kreisprozesse in den in der Technischen Thermodynamik üblichen Diagrammen darstellen. Sie beherrschen die Gesetzmäßigkeiten bei der Mischung idealer Gase, insbesondere bei Feuchte-Luft-Prozessen und können für einfache Brenngase eine Verbrennungsrechnung durchführen. Sie verfügen über das Basiswissen auf dem Gebiet der Gasdynamik und wissen damit, wie die Schallgeschwindigkeit definiert ist und was eine Lavaldüse ist. |
Fertigkeiten |
Studierende sind in der Lage, die Grundlagen der Thermodynamik auf technische Prozesse anzuwenden. Insbesondere können Sie Energie-, Exergie- und Entropiebilanzen aufstellen, um damit technische Prozesse zu optimieren. Sie können einfache sicherheitstechnische Rechnungen hinsichtlich des Ausströmens von Gasen aus einem Behälter durchführen. Sie sind in der Lage, einen verbal geschilderten Zusammenhang in einen abstrakten Formalismus umzusetzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Kleingruppen diskutieren und einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Studierende sind in der Lage, eigenständig Aufgaben zu definieren, hierfür notwendiges Wissen aufbauend auf dem vermittelten Wissen selbst zu erarbeiten sowie geeignete Mittel zur Umsetzung einzusetzen. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Kernqualifikation: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Kernqualifikation: Pflicht Bioverfahrenstechnik: Kernqualifikation: Pflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht Verfahrenstechnik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0449: Technische Thermodynamik II |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
8. Kreisprozesse 9. Gas-Dampf-Gemische 10. Stationäre Fließprozesse 11. Verbrennungsprozesse 12. Sondergebiete |
Literatur |
|
Lehrveranstaltung L0450: Technische Thermodynamik II |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L0451: Technische Thermodynamik II |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Schmitz |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0675: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Gerhard Bauch |
Zulassungsvoraussetzungen |
Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden kennen und verstehen die grundlegenden Funktionseinheiten eines Nachrichtenübertragungssystems. Sie können die einzelnen Funktionsblöcke mit Hilfe grundlegender Kenntnisse der Signal- und Systemtheorie sowie der Theorie stochastischer Prozesse beschreiben und analysieren. Sie kennen die entscheidenden Resourcen und Bewertungskriterien der Nachrichtenübertragung und können ein elementares nachrichtentechnisches System entwerfen und beurteilen. |
Fertigkeiten |
Die Studierenden sind in der Lage, ein elementares nachrichtentechnisches System zu entwerfen und zu beurteilen. Insbesondere können Sie den Bedarf an Resourcen wie Bandbreite und Leistung abschätzen. Sie sind in der Lage, wichtige Beurteilungskriterien wie die Bandbreiteneffizienz oder die Bitfehlerwahrscheinlichkeit elementarer Nachrichtenübertragungssysteme abzuschätzen und darauf basierend ein Übertragungsverfahren auszuwählen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in fachspezifische Aufgaben gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus geeigneten Literaturquellen selbständig zu beschaffen und in den Kontext der Vorlesung zu setzen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (klausurnahe Aufgaben, Software-Tools, Clicker-System) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0442: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Kammeyer: Nachrichtenübertragung, Teubner P.A. Höher: Grundlagen der digitalen Informationsübertragung, Teubner. M. Bossert: Einführung in die Nachrichtentechnik, Oldenbourg. J.G. Proakis, M. Salehi: Grundlagen der Kommunikationstechnik. Pearson Studium. J.G. Proakis, M. Salehi: Digital Communications. McGraw-Hill. S. Haykin: Communication Systems. Wiley J.G. Proakis, M. Salehi: Communication Systems Engineering. Prentice-Hall. J.G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems. Cengage Learning. |
Lehrveranstaltung L0443: Einführung in die Nachrichtentechnik und ihre stochastischen Methoden |
Typ | Hörsaalübung |
SWS | 1 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 46, Präsenzstudium 14 |
Dozenten | Prof. Gerhard Bauch |
Sprachen | DE/EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1105: Mechanics III (GES) |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Radoslaw Iwankiewicz |
Zulassungsvoraussetzungen | None |
Empfohlene Vorkenntnisse | None |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
The primary purpose of the study of Mechanics III (Fluid Statics, Kinematics and Kinetics) is to develop the capacity to predict the effects of forces and motions, necessary for the analysis and design of moving machine parts, different machinery, vehicles, aircraft, spacecraft, automatic control systems, etc.The particular objectives of this course are to:
|
Fertigkeiten |
At the end of this course the student should be able to:
3. Calculate the velocity and acceleration of a particle in different reference systems.
5. Analyse the motion of the system of particles and forces acting on it with the aid of work-energy and impulse-momentum relationships, 6. Calculate the instantaneous linear and angular velocities and accelerations of the planar mechanisms. 7. Derive and solve the equations of a plane motion of a rigid body and find forces acting on it, 8. Apply work-energy and impulse-momentum relationships to analyse plane kinetics of a rigid body. 9. Calculate the instantaneous linear and angular velocities and accelerations of the three-dimensional motion of a rigid body. 10. Derive the equations of a motion of a three-dimensional motion of a rigid body. 11. Apply in three-dimensional kinematics and kinetics of rigid body both methods of vector algebra and matrix methods. |
Personale Kompetenzen | |
Sozialkompetenz | Students can: - work in groups and report on the findings, - develop joint solutions in mixed teams and present them to others, - assess the team collaboration and their share in it. |
Selbstständigkeit | Students are able to: -solve the problems independently with the help of hints, - assess their own strengths and weaknesses, e.g. with the aid of the mid-term test. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 2 Stunden |
Zuordnung zu folgenden Curricula |
General Engineering Science: Kernqualifikation: Pflicht General Engineering Science (7 Semester): Kernqualifikation: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1421: Mechanics III (GES) |
Typ | Vorlesung |
SWS | 3 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 48, Präsenzstudium 42 |
Dozenten | Prof. Radoslaw Iwankiewicz |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1420: Mechanics III (GES) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Radoslaw Iwankiewicz |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Lehrveranstaltung L1419: Mechanics III (GES) |
Typ | Hörsaalübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Radoslaw Iwankiewicz |
Sprachen | EN |
Zeitraum | WiSe |
Inhalt |
FLUID STATICS
KINEMATICS
KINETICS
|
Literatur |
1. J.L. Meriam and L.G, Kraige, Engineering Mechanics, Vol. 2, Dynamics, John Wiley & Sons, SI Version, 4th Edition 2 . R.C. Hibbeler, Engineering Mechanics, Dynamics, Pearson, Prentice Hall, SI 3rd Edition |
Modul M0783: Messtechnik und Messdatenverarbeitung |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen |
keine |
Empfohlene Vorkenntnisse |
Grundlagen Mathematik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Aufgaben von Messsystemen sowie das Vorgehen bei der Messdatenerfassungen und -verarbeitungen erklären. Die für die Messtechnik relevanten Aspekte der Wahrscheinlichkeitstheorie und der Messfehlerbehandlung sowie das Vorgehen bei der Messungen stochastischer Signale können wiedergegeben werden. Methoden zur Beschreibungen gemessener Signale und zur Digitalisierungen von Signalen sind den Studierenden bekannt und können erläutert werden. |
Fertigkeiten |
Die Studierenden sind in der Lage messtechnische Fragestellungen zu erklären und Methoden zur Beschreibung und Verarbeitung von Messdaten anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden lösen Übungsaufgaben in Kleingruppen. |
Selbstständigkeit |
Die Studierenden können ihren Wissensstand einschätzen und die von Ihnen erzielten Ergebnisse kritisch bewerten. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0781: Elektrotechnisches Versuchspraktikum |
Typ | Laborpraktikum |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer, Prof. Christian Schuster, Prof. Günter Ackermann, Prof. Rolf-Rainer Grigat, Prof. Arne Jacob, Prof. Herbert Werner, Dozenten des SD E, Prof. Heiko Falk |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Praktikumsversuche "Digitale Schaltungen" Prof. Grigat "Halbleiter-Bauelemente" Prof. Jacob "Mikrocontroller" Prof. Mayer-Lindenb. "Analoge Schaltungen" Prof. Werner "Leistung im Wechselstromkreis" Prof. Schuster "Elektrische Maschinen" Prof. Ackermann |
Literatur | Wird in der Lehrveranstaltung festgelegt |
Lehrveranstaltung L0779: Messtechnik und Messdatenverarbeitung |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
Einführung, Messsysteme und Messfehler, Wahrscheinlichkeitstheorie, Messung stochastischer Signale, Beschreibung gemessener Signale, |
Literatur |
Puente León, Kiencke: Messtechnik, Springer 2012 |
Lehrveranstaltung L0780: Messtechnik und Messdatenverarbeitung |
Typ | Gruppenübung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M1235: Elektrische Energiesysteme I |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Christian Becker |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen der Elektrotechnik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können einen Überblick über die konventionelle und moderne elektrische Energietechnik geben. Technologien der elektrischen Energieerzeugung, -übertragung, -speicherung und -verteilung sowie Integration von Betriebsmitteln können detailliert erläutert und kritisch bewertet werden. |
Fertigkeiten |
Mit Abschluss dieses Moduls sind die Studierenden in der Lage, das erlernte Fachwissen in Aufgabenstellungen zur Auslegung, Integration oder Entwicklung elektrischer Energiesysteme angemessen anzuwenden und die Ergebnisse einzuschätzen und zu beurteilen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können fachspezifische und fachübergreifende Diskussionen führen, Ideen weiterentwicklen und ihre eigenen Arbeitsergebnissen vor anderen vertreten. |
Selbstständigkeit |
Die Studierenden können sich selbstständig Quellen über die Schwerpunkte der Vorlesung erschließen und das darin enthaltene Wissen aneignen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 - 150 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Vertiefung Energietechnik: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht Energietechnik: Vertiefung Energiesysteme: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Regenerative Energien: Kernqualifikation: Pflicht Regenerative Energien: Kernqualifikation: Pflicht |
Lehrveranstaltung L1670: Elektrische Energiesysteme I |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014 A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005 |
Lehrveranstaltung L1671: Elektrische Energiesysteme I |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Christian Becker |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
|
Literatur |
K. Heuck, K.-D. Dettmann, D. Schulz: "Elektrische Energieversorgung", Vieweg + Teubner, 9. Auflage, 2014 A. J. Schwab: "Elektroenergiesysteme", Springer, 3. Auflage, 2012 R. Flosdorff: "Elektrische Energieverteilung" Vieweg + Teubner, 9. Auflage, 2005 |
Modul M0708: Elektrotechnik III: Netzwerktheorie und Transienten |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Arne Jacob |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Elektrotechnik I und II, Mathematik I und II |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Berechnungsverfahren von elektrischen Netzwerken erklären. Sie kennen die Analyse linearer, mit periodischen Signalen angeregter Netzwerke, mittels Fourier-Reihenentwicklung. Sie kennen die Berechnungsmethoden von Einschaltvorgängen in linearen Netzwerken sowohl im Zeit- als auch im Frequenzbereich. Sie können das Frequenzverhalten und die Synthese einfacher passiver Zweipol-Netzwerke erläutern. |
Fertigkeiten |
Die Studierenden können Spannungen und Ströme in elektrischen Netzwerken, auch bei periodischer Anregung, mit Hilfe von grundlegenden Berechnungsverfahren bestimmen. Sie können sowohl im Zeit- als auch im Frequenzbereich Einschaltvorgänge in elektrischen Netzwerken berechnen und deren Einschaltverhalten beschreiben. Sie können das Frequenzverhalten passiver Zweipol-Netzwerke analysieren und synthetisieren. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Übungsgruppen vorlesungsrelevante Aufgaben gemeinsam bearbeiten und die selbst erarbeiteten Lösungen innerhalb der Übungsgruppe präsentieren. |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Berechnungsverfahren für die zu lösenden Probleme zu erkennen und anzuwenden. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen (Kurzfragentests, klausurnahe Aufgaben) kontinuierlich überprüfen und auf dieser Basis ihre Lernprozesse steuern. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I und Mathematik) verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau, Schwerpunkt Mechatronik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0566: Netzwerktheorie |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Arne Jacob |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt |
- Systematische Berechnung linearer, elektrischer Netzwerke - Berechnung von N-Tor-Netzwerken - Periodische Anregung von linearen Netzwerken - Einschaltvorgänge im Zeitbereich - Einschaltvorgänge im Frequenzbereich; Laplace-Transformation - Frequenzverhalten passiver Zweipol-Netzwerke |
Literatur |
- M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium (2011) - M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium (2011) - L. P. Schmidt, G. Schaller, S. Martius, "Grundlagen der Elektrotechnik 3", Pearson Studium (2011) - T. Harriehausen, D. Schwarzenau, "Moeller Grundlagen der Elektrotechnik", Springer (2013) - A. Hambley, "Electrical Engineering: Principles and Applications", Pearson (2008)- R. C. Dorf, J. A. Svoboda, "Introduction to electrical circuits", Wiley (2006) - L. Moura, I. Darwazeh, "Introduction to Linear Circuit Analysis and Modeling", Amsterdam Newnes (2005) |
Lehrveranstaltung L0567: Netzwerktheorie |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Arne Jacob |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | siehe korrespondierende Lehrveranstaltung |
Literatur |
siehe korrespondierende Lehrveranstaltung see interlocking course |
Modul M1242: Quantenmechanik für Studierende der Ingenieurswissenschaften |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Wolfgang Hansen |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
|
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen | Die Studierenden können grundlegende Begriffe und Prinzipien der Quantenmechanik beschreiben und erläutern. Sie kennen Gemeinsamkeiten und Unterschiede zur klassischen Physik und wissen, in welchen Situationen quantenmechanische Effekte erwartet werden können. |
Fertigkeiten | Die Studierenden sind in der Lage, quantenmechanische Konzepte und Methoden auf einfache Probleme anzuwenden. Sie sind umgekehrt auch in der Lage, die Voraussetzungen und Prinzipien einfacher Anwendungen der Quantenmechanik in elektrooptischen Bauelementen nachzuvollziehen. |
Personale Kompetenzen | |
Sozialkompetenz | Die Studierenden diskutieren den Vorlesungsstoff und präsentieren Lösungen einfacher quantenmechanischer Probleme in Kleingruppen während der Übungen. |
Selbstständigkeit | Die Studierenden sind in der Lage selbstständig einfache Lösungswege zu quantenmechanische Problemen zu erarbeiten. Sie sind so weit mit Konzepten der Quantenmechanik vertraut, dass sie sich selbständig Literatur zu komplexeren Fragestellungen mit quantenmechanischem Hintergrund erarbeiten können. |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L1686: Quantenmechanik für Studierende der Ingenieurwissenschaften |
Typ | Vorlesung | ||||||||||||||||||||
SWS | 2 | ||||||||||||||||||||
LP | 3 | ||||||||||||||||||||
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 | ||||||||||||||||||||
Dozenten | Prof. Wolfgang Hansen | ||||||||||||||||||||
Sprachen | DE | ||||||||||||||||||||
Zeitraum | WiSe | ||||||||||||||||||||
Inhalt |
Diese Veranstaltung führt in grundlegende Konzepte, Methoden und Begriffe der Quantenmechanik ein, die in den Materialwissenschaften wichtig sind. Anwendungen werden anhand konkreter Beispiele aus dem Bereich elektronischer und optischer Bauelemente diskutiert. Zentrale Begriffe und Themen sind: Schrödinger-Gleichung, Wellenfunktionen, Operatoren, Eigenzustände, Eigenwerte, Quantentöpfe, harmonischer Oszillator, Tunnelprozesse, resonante Tunneldiode, Bandstruktur, Zustandsdichte, Besetzungsverteilung, Zener-Diode, stationäre Störungsrechnung am Beispiel des Quantum Confined Stark Effekts, Fermis Goldene Regel und Übergangsmatrixelemente, Heterostrukturlaser, Quantenkaskadenlaser, Vielteilchensysteme, Moleküle und Austauschwechselwirkung, Quantenbits und Quantenkryptographie |
||||||||||||||||||||
Literatur |
|
Lehrveranstaltung L1688: Quantenmechanik für Studierende der Ingenieurwissenschaften |
Typ | Gruppenübung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Wolfgang Hansen |
Sprachen | DE |
Zeitraum | WiSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0680: Strömungsmechanik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Thomas Rung |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Gute Kenntnisse der höheren Mathematik (Differential-, Integral-, Vektorrechnung), technischen Mechanik und technischen Thermodynamik. |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können aufgrund ihrer fundierten Kenntnisse allgemeine strömungstechnische und strömungsphysikalische Prinzipien erklären. Sie sind in der Lage die physikalischen Grundlagen unter Verwendung von mathematischen Modellen wissenschaftlich zu erläutern und kennen Analyse- und Berechnungsverfahren zur Prognose der Funktionstüchtigkeit strömungstechnischer Apparate. |
Fertigkeiten |
Die Vorlesung befähigt den Studenten, strömungsmechanische Prinzipien bzw. strömungsphysikalische Modelle zur Analyse technischer Systeme anzuwenden oder diese zu erklären, sowie theoretische Berechnungen auf wissenschaftlichem Niveau für strömungsmechanische Entwurfs- und Konstruktionsaufgaben durchzuführen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Probleme diskutieren und gemeinsam einen Lösungsweg erarbeiten. |
Selbstständigkeit |
Die Studierenden können eine komplexe Aufgabenstellung selbstständig bearbeiten sowie die Ergebnisse kritisch analysieren. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 180 min |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Schiffbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Schiffbau: Pflicht General Engineering Science: Vertiefung Maschinenbau: Pflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science: Vertiefung Schiffbau: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Schiffbau: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Maschinenbau: Kernqualifikation: Pflicht Schiffbau: Kernqualifikation: Pflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0454: Strömungsmechanik |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
|
Lehrveranstaltung L0455: Strömungsmechanik |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Thomas Rung |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0748: Werkstoffe der Elektrotechnik |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Manfred Eich |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse | Physik und Mathematik auf Abiturniveau |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können Aufbau und strukturelle Eigenschaften der in der Elektrotechnik eingesetzten Werkstoffe erklären. Sie können die Relevanz der mechanischen, elektrischen, thermischen, dielektrischen, magnetischen und chemischen Eigenschaften von Werkstoffen mit Bezug auf die Anwendungen in der Elektrotechnik erläutern. |
Fertigkeiten |
Die Studierenden können geeignete Beschreibungsmodelle identifizieren, diese mathematisch anwenden, Näherungslösungen ableiten und Einflussfaktoren auf die Performance von Materialien in elektrotechnischen Anwendungen einschätzen. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen fachspezifische Aufgaben gemeinsam bearbeiten und Ergebnisse in geeigneter Weise präsentieren (z.B. während der Übungen). |
Selbstständigkeit |
Die Studierenden sind in der Lage, die notwendigen Informationen aus den angegebenen Literaturquellen zu beschaffen und in den Kontext der Vorlesung zu stellen. Sie können ihren Wissensstand mit Hilfe vorlesungsbegleitender Maßnahmen wie klausurnahe Aufgaben effektiv überprüfen. Sie können ihr Wissen mit den Inhalten anderer Lehrveranstaltungen verknüpfen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 60 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0714: Demonstration elektrotechnischer Experimente |
Typ | Vorlesung |
SWS | 1 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 16, Präsenzstudium 14 |
Dozenten | Dr. Wieland Hingst |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Themenschwerpunkte: - Spannungen natürlichen Ursprungs - Oszilloskop - Charakterisierung von Signalen - 2-Pole - 4-Pole - Leistung - Anpassung - Induktive Kopplung - Resonanz - HF-Technik - Transistorschaltungen - Messtechnik - Materialien für die ET - Alles, was Spass macht |
Literatur |
Tietze, Schenk: "Halbleiterschaltungstechnik", Springer |
Lehrveranstaltung L0685: Werkstoffe der Elektrotechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
The Hamiltonian approach to classical mechanics. Analysis of a simple oscillator. |
Literatur |
1.Anikeeva, Beach, Holten-Andersen, Fink, Electronic, Optical and Magnetic Properties
of Materials, 2.Hagelstein et al., Introductory Applied Quantum and Statistical Mechanics, Wiley 2004 3.Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1994 4.Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, 1994 5.Fick, Einführung in die Grundlagen der Quantentheorie, Akad. Verlagsges., 1979 6.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004 7.Ashcroft, Mermin, Solid State Physics, Harcourt, 1976 8.Pierret, Semiconductor Fundamentals Vol. 1, Addison Wesley, 1988 9.Sze, Physics of Semiconductor Devices, Wiley, 1981 10.Saleh, Teich, Fundamentals of Photonics, 2nd ed., 2007 11.Joannopoulos, Johnson, Winn Meade, Photonic Crystals, 2nd ed., Princeton Universty Press, 2008 12.Handley, Modern Magnetic Materials, Wiley, 2000 13.Wikipedia, Wikimedia |
Lehrveranstaltung L0687: Werkstoffe der Elektrotechnik (Übung) |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Manfred Eich |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
|
Literatur |
H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993) |
Modul M0668: Algebraische Methoden in der Regelungstechnik |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Dr. Prashant Batra |
Zulassungsvoraussetzungen | Keine |
Empfohlene Vorkenntnisse |
Mathe I-III (Reelle Analysis, Lineare Algebra, ) und entweder: Einführung in die Regelungstechnik (Beschreibung u. gewünschte Eigenschaften von Systemen, Zeitbereich/Frequenzbereich) oder: Diskrete Mathematik (Gruppen, Ringe, Ideale, Körper, Euklidscher Algorithmus) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können
|
Fertigkeiten |
Studierende sind in der Lage
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit | |
Arbeitsaufwand in Stunden | Eigenstudium 124, Präsenzstudium 56 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Computer Science: Vertiefung Computational Mathematics: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung II. Informatik: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0428: Algebraische Methoden in der Regelungstechnik |
Typ | Vorlesung |
SWS | 2 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 92, Präsenzstudium 28 |
Dozenten | Dr. Prashant Batra |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
- Algebraische Methoden der Regelungstechniks, polynomialer Ansatz, Faktorisierungsbeschreibung
- Parametrisierung sämtlicher stabilisierenden Regler - Reglerentwurf bei Polvorgabe - Berücksichtigung von Systemeigenschaften: Störanfälligkeit, Sensitivität.
- Euklidscher Algorithmus u. Diophantische Gleichungen über Ringen - Smith-McMillan Normal Form |
Literatur |
Vidyasagar, M.: Control system synthesis: a factorization approach. Kučera, V.: Analysis and Design of Discrete Linear Control Systems. Praha: Academia, 1991. |
Lehrveranstaltung L0429: Algebraische Methoden in der Regelungstechnik |
Typ | Gruppenübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dr. Prashant Batra |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0634: Einführung in Medizintechnische Systeme |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Alexander Schlaefer |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundlagen Mathematik (Algebra, Analysis) |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die Funktionen von medizintechnischen Systemen wie beispielsweise bildgebenden Systemen, Assistenzsystemen im OP, medizintechnischen Sensorsystemen und medizintechnischen Informationssystemen erklären. Sie können einen Überblick über Regulatorische Rahmenbedingungen und Standards in der Medizintechnik geben. |
Fertigkeiten |
Die Studierenden sind in der Lage ihr grundlegendes Verständnis von medizintechnischen Systemem auf praxisrelevante Problemstellungen anzuwenden. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in Gruppen ein medizintechnisches Thema als Projekt beschreiben, in Teilaufgaben untergliedern und gemeinsam bearbeiten. |
Selbstständigkeit |
Die Studierenden können ihren Wissensstand einschätzen und ihre Arbeitsergebnisse dokumentieren. Sie können die erzielten Ergebnisse kritisch bewerten und in geeigneter Weise präsentieren. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 90 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Mediziningenieurwesen: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Computer Science: Vertiefung Computer and Software Engineering: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht General Engineering Science: Vertiefung Mediziningenieurwesen: Pflicht General Engineering Science (7 Semester): Vertiefung Mediziningenieurwesen: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Informatik: Wahlpflicht Mediziningenieurwesen: Vertiefung Künstliche Organe und Regenerative Medizin: Wahlpflicht Mediziningenieurwesen: Vertiefung Implantate und Endoprothesen: Wahlpflicht Mediziningenieurwesen: Vertiefung Medizin- und Regelungstechnik: Wahlpflicht Mediziningenieurwesen: Vertiefung Management und Administration: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht |
Lehrveranstaltung L0342: Einführung in Medizintechnische Systeme |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Bildgebende Systeme |
Literatur |
Wird in der Veranstaltung bekannt gegeben. |
Lehrveranstaltung L0343: Einführung in Medizintechnische Systeme |
Typ | Problemorientierte Lehrveranstaltung |
SWS | 4 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 34, Präsenzstudium 56 |
Dozenten | Prof. Alexander Schlaefer |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M0610: Elektrische Maschinen |
||||||||||||
Lehrveranstaltungen | ||||||||||||
|
Modulverantwortlicher | Prof. Günter Ackermann |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Grundkenntnisse Mathematik, insbesondere komplexe Zahlen, Integrale, Differenziale Grundlage der Elektrotechnik und Mechanik |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Studierende können die grundlegenden Zusammenhänge bei elektrischen und magnetischen Feldern skizzieren und erläutern. Sie können die Funktion der Grundtypen elektrischer Maschinen beschreiben und die zugehörigen Gleichungen und Kennlinien darstellen. Für praktisch vorkommende Antriebskonfigurationen können sie die wesentlichen Parameter für die Energieeffizienz des Gesamtsystems von der Versorgung bis zur Arbeitsmaschine erläutern. |
Fertigkeiten |
Studierende sind fähig, zweidimensionale elektrische Felder und magnetische Felder insbesondere in Eisenkreisen mit Luftspalt zu berechnen. Sie wenden dabei die üblichen Methoden des Elektromaschinenbaus an. Sie können das Betriebsverhalten elektrischer Maschinen aus gegebenen Grunddaten analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. Dabei wenden sie die üblichen Ersatzschaltbilder und grafische Verfahren an. |
Personale Kompetenzen | |
Sozialkompetenz | keine |
Selbstständigkeit |
Studierende sind fähig, eigenständig anwendungsnahe elektrische und magnetische Felder zu berechnen. Sie können eigenständig das Betriebsverhalten elektrischer Maschinen aus deren Grunddaten zu analysieren und ausgewählte Größen und Kennlinien daraus zu berechnen. |
Arbeitsaufwand in Stunden | Eigenstudium 110, Präsenzstudium 70 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | 120 Minuten |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften: Vertiefung Maschinenbau: Wahlpflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Elektrotechnik: Kernqualifikation: Wahlpflicht Energie- und Umwelttechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science: Vertiefung Maschinenbau: Wahlpflicht General Engineering Science (7 Semester): Vertiefung Energie- und Umwelttechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Maschinenbau: Wahlpflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Logistik und Mobilität: Vertiefung Ingenieurwissenschaft: Wahlpflicht Maschinenbau: Kernqualifikation: Wahlpflicht Mechatronik: Kernqualifikation: Pflicht |
Lehrveranstaltung L0293: Elektrische Maschinen |
Typ | Vorlesung |
SWS | 3 |
LP | 4 |
Arbeitsaufwand in Stunden | Eigenstudium 78, Präsenzstudium 42 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Elektrisches Feld: Coulomb´sches Gesetz, Potenzial, Kondensator, Kraft und Energie Magnetisches Feld: Kraft, Fluss, Durchflutungssatz, Feld an Grenzflächen, elektrisches Ersatzschaltbild, Hysterese, Induktion, Transformator Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung, Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers, Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm Drehzahlvariable Antrieb mit Frequenzumrichtern, Sonderbauformen elektrischer Maschinen, Schrittmotoren |
Literatur |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Lehrveranstaltung L0294: Elektrische Maschinen |
Typ | Hörsaalübung |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Prof. Günter Ackermann |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
Bearbeiten von Übungsaufgaben zur Anwendung elektrischer und magnetischer Felder Bearbeiten von Übungsaufgaben zum Betriebsverhalten elektrischer Maschinen |
Literatur |
Hermann Linse, Roland Fischer: "Elektrotechnik für Maschinenbauer", Vieweg-Verlag; Signatur der Bibliothek der TUHH: ETB 313 Ralf Kories, Heinz Schmitt-Walter: "Taschenbuch der Elektrotechnik"; Verlag Harri Deutsch; Signatur der Bibliothek der TUHH: ETB 122 "Grundlagen der Elektrotechnik" - anderer Autoren Fachbücher "Elektrische Maschinen" |
Modul M0709: Elektrotechnik IV: Leitungen und Forschungsseminar |
||||||||||||||||
Lehrveranstaltungen | ||||||||||||||||
|
Modulverantwortlicher | Prof. Arne Jacob |
Zulassungsvoraussetzungen | keine |
Empfohlene Vorkenntnisse |
Elektrotechnik I-III, Mathematik I-III |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
Die Studierenden können die grundlegenden Zusammenhänge der Wellenausbreitung auf den Leitungen der Niederfrequenz- und Hochfrequenztechnik erklären. Sie können das Verhalten von Schaltungen mit Leitungen im Zeit- und Frequenzbereich analysieren. Sie können einfache Ersatzschaltungen für Leitungen erklären. Sie können Schaltungen mit Mehrfachleitersystemen untersuchen. Sie können die Inhalte von einem selbst gewählten Forschungsthema präsentieren und diskutieren. |
Fertigkeiten |
Die Studierenden können Ausbreitungsvorgänge in einfachen Netzwerken mit Leitungen untersuchen und quantitativ berechnen. Sie können Netzwerke im Frequenzbereich untersuchen und mittels des Leitungsdiagramms untersuchen. Sie können Ersatzschaltungen von Leitungen analysieren. Sie können Mehrfachleitersysteme mit vektoriellen Leitungsgleichungen analysieren. Sie können einen Fachvortrag halten. |
Personale Kompetenzen | |
Sozialkompetenz |
Die Studierenden können in kleinen Gruppen Aufgaben gemeinsam bearbeiten und ihre Ergebnisse diskutieren. Sie können die gelehrte Theorie in vorlesungsbegleitenden Experimenten überprüfen und in kleinen Gruppen diskutieren. Sie können ein Forschungsthema einem Fachpublikum präsentieren und in einer Diskussion bewerten. |
Selbstständigkeit |
Die Studierenden sind in der Lage, eigenständig Aufgaben zu lösen und sich Fähigkeiten aus der Vorlesung und der Literatur zu erarbeiten. Sie sind in der Lage, Wissen durch Computeranimationen zu überprüfen und zu vertiefen. Sie können ihren Wissensstand mit Kurzfragen während der Vorlesung und begleitende Tests überprüfen. Sie können ihr erlangtes Wissen mit den Inhalten anderer Lehrveranstaltungen (z.B. Elektrotechnik I-III und Mathematik I-III) verknüpfen. Sie können sich eigenständig in ein Forschungsthema einarbeiten und eine Präsentation ausarbeiten. |
Arbeitsaufwand in Stunden | Eigenstudium 96, Präsenzstudium 84 |
Leistungspunkte | 6 |
Prüfung | Klausur |
Prüfungsdauer und -umfang | |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Vertiefung Elektrotechnik: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Vertiefung Elektrotechnik: Pflicht Elektrotechnik: Kernqualifikation: Pflicht General Engineering Science: Vertiefung Elektrotechnik: Pflicht General Engineering Science (7 Semester): Vertiefung Elektrotechnik: Pflicht Informatik-Ingenieurwesen: Vertiefung Ingenieurwissenschaften: Wahlpflicht Technomathematik: Vertiefung III. Ingenieurwissenschaften: Wahlpflicht Technomathematik: Kernqualifikation: Wahlpflicht |
Lehrveranstaltung L0571: Forschungsseminar Elektrotechnik, Informatik, Mathematik |
Typ | Seminar |
SWS | 2 |
LP | 2 |
Arbeitsaufwand in Stunden | Eigenstudium 32, Präsenzstudium 28 |
Dozenten | Dozenten des SD E, Siavash Ahmadi Barogh |
Sprachen | DE/EN |
Zeitraum | SoSe |
Inhalt |
Seminarvortrag zu vorgegebenem Thema Durchführungsverordnung: Alle Seminare im Umfang von 2 LP, die in den Master- oder Bachelorstudienplänen der Studiengänge ET, IIW und Technomathematik namentlich aufgeführt sind, dürfen von den Studierenden belegt werden. Voraussetzung ist jeweils die Zustimmung des Seminarleiters, dass eine für Bachelorstudenten adäquate Aufgabenstellung gefunden werden kann (diese Bestätigung ist von den Studierenden im Vorfeld einzuholen). Anforderungen für eine erfolgreiche Teilnahme sind: regelmäßige Anwesenheit, ein eigener Seminarbeitrag und eine dazugehörende schriftliche Ausarbeitung (Zusammenfassung). Bescheinigungen über die erfolgreiche Teilnahme sind unbenotet und Prof. Jacob (Modulverantwortlicher Elektrotechnik IV) zu übermitteln. |
Literatur | Themenabhängig / subject related |
Lehrveranstaltung L0570: Leitungstheorie |
Typ | Vorlesung |
SWS | 2 |
LP | 3 |
Arbeitsaufwand in Stunden | Eigenstudium 62, Präsenzstudium 28 |
Dozenten | Prof. Arne Jacob |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt |
- Wellenausbreitung am Modell elektrischer Leitungen - Ausgleichsvorgänge und Impulse auf Leitungen - Leitungen im eingeschwungenen Zustand - Widerstandstransformation und Leitungsdiagramm - Ersatzschaltungen und Kettenleiter - Mehrfachleitungen und symmetrische Komponenten |
Literatur |
- Unger, H.-G., "Elektromagnetische Wellen auf Leitungen", Hüthig Verlag (1991) |
Lehrveranstaltung L0572: Leitungstheorie |
Typ | Hörsaalübung |
SWS | 2 |
LP | 1 |
Arbeitsaufwand in Stunden | Eigenstudium 2, Präsenzstudium 28 |
Dozenten | Prof. Arne Jacob |
Sprachen | DE |
Zeitraum | SoSe |
Inhalt | Siehe korrespondierende Vorlesung |
Literatur | Siehe korrespondierende Vorlesung |
Modul M-001: Bachelorarbeit |
||||
Lehrveranstaltungen | ||||
|
Modulverantwortlicher | Professoren der TUHH |
Zulassungsvoraussetzungen |
|
Empfohlene Vorkenntnisse | |
Modulziele/ angestrebte Lernergebnisse | Nach erfolgreicher Teilnahme haben die Studierenden die folgenden Lernergebnisse erreicht |
Fachkompetenz | |
Wissen |
|
Fertigkeiten |
|
Personale Kompetenzen | |
Sozialkompetenz |
|
Selbstständigkeit |
|
Arbeitsaufwand in Stunden | Eigenstudium 360, Präsenzstudium 0 |
Leistungspunkte | 12 |
Prüfung | laut FSPO |
Prüfungsdauer und -umfang | laut FSPO |
Zuordnung zu folgenden Curricula |
Allgemeine Ingenieurwissenschaften: Abschlussarbeit: Pflicht Allgemeine Ingenieurwissenschaften (7 Semester): Abschlussarbeit: Pflicht Bau- und Umweltingenieurwesen: Abschlussarbeit: Pflicht Bioverfahrenstechnik: Abschlussarbeit: Pflicht Computer Science: Abschlussarbeit: Pflicht Elektrotechnik: Abschlussarbeit: Pflicht Energie- und Umwelttechnik: Abschlussarbeit: Pflicht General Engineering Science: Abschlussarbeit: Pflicht General Engineering Science (7 Semester): Abschlussarbeit: Pflicht Informatik-Ingenieurwesen: Abschlussarbeit: Pflicht Logistik und Mobilität: Abschlussarbeit: Pflicht Maschinenbau: Abschlussarbeit: Pflicht Mechatronik: Abschlussarbeit: Pflicht Schiffbau: Abschlussarbeit: Pflicht Technomathematik: Abschlussarbeit: Pflicht Verfahrenstechnik: Abschlussarbeit: Pflicht |